CINXE.COM
Search results for: Stoneley waves
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Stoneley waves</title> <meta name="description" content="Search results for: Stoneley waves"> <meta name="keywords" content="Stoneley waves"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Stoneley waves" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Stoneley waves"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 724</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Stoneley waves</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">724</span> Investigation of Stoneley Waves in Multilayered Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%20Li">Bing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Lu"> Tong Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Qiang"> Lei Qiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20equation" title="characteristic equation">characteristic equation</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20waves" title=" interface waves"> interface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20function" title=" potential function"> potential function</a>, <a href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves" title=" Stoneley waves"> Stoneley waves</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20structure" title=" wave structure"> wave structure</a> </p> <a href="https://publications.waset.org/abstracts/45214/investigation-of-stoneley-waves-in-multilayered-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">723</span> Computational Fluid Dynamics Simulation of Floating Body Motion Interacting with Focused Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seul-Ki%20Park">Seul-Ki Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Chun%20Park"> Jong-Chun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyu-Mok%20Jeon"> Gyu-Mok Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Kyung%20Ock"> Dae-Kyung Ock</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Gyu%20Jeong"> Seung-Gyu Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rogue waves cause frequent accidents of ships and offshore structures, which can result in severe damage to the structures. The Rogue waves, which are also known as big waves, freak waves, extreme waves, monster waves, focused waves, giant waves and abnormal waves, are unexpected and suddenly appearing, and can have a breaking force to destroy the structure even though modern structures are designed to tolerate a breaking wave. In the present study, a series of focused waves are numerically reproduced by concentrating nonlinear multi-directional waves into a target point using a commercial CFD software, Star-CCM+. A flow analysis for investigating the physical characteristics of the focused waves is performed using the Star-CCM+, while it has several difficulties to examine the inner properties of the waves in existing potential theory and experiments. Additionally, the 6-DOF (Degree of Freedom) motion of a floating body interacting with the focused waves are simulated, and the dynamic response of the body are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multidirectional%20waves" title="multidirectional waves">multidirectional waves</a>, <a href="https://publications.waset.org/abstracts/search?q=focused%20waves" title=" focused waves"> focused waves</a>, <a href="https://publications.waset.org/abstracts/search?q=rogue%20waves" title=" rogue waves"> rogue waves</a>, <a href="https://publications.waset.org/abstracts/search?q=wave-structure%20interaction" title=" wave-structure interaction"> wave-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20wave%20tank" title=" numerical wave tank"> numerical wave tank</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/83771/computational-fluid-dynamics-simulation-of-floating-body-motion-interacting-with-focused-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">722</span> Energization of the Ions by EMIC Waves using MMS Observation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abid%20Ali%20Abid">Abid Ali Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromagnetic ion cyclotron waves have been playing a significant role in inner magnetosphere, and their proton band has been detected using the Magnetospheric-Multiscale (MMS) satellite observations in the inner magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. Thermal anisotropy of hot protons initiates the waves. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these formerly invisible protons are now visible. The EMIC waves, whose frequency ranges from 0.001 Hz to 5 Hz in the inner magnetosphere and received considerable attention for energy transport across the magnetosphere. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20ion%20cyclotron%20waves" title="electromagnetic ion cyclotron waves">electromagnetic ion cyclotron waves</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetospheric-multiscale%20%28MMS%29%20satellite" title=" magnetospheric-multiscale (MMS) satellite"> magnetospheric-multiscale (MMS) satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20protons" title=" cold protons"> cold protons</a>, <a href="https://publications.waset.org/abstracts/search?q=inner%20magnetosphere" title=" inner magnetosphere"> inner magnetosphere</a> </p> <a href="https://publications.waset.org/abstracts/162109/energization-of-the-ions-by-emic-waves-using-mms-observation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">721</span> Propagation of Weak Non-Linear Waves in Non-Equilibrium Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Jena">J. Jena</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20Saxena"> Monica Saxena </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the propagation of weak nonlinear waves in non-equilibrium flow has been studied in detail using the perturbation method. The expansive action of receding piston undergoing infinite acceleration has been discussed. Central expansion fan, compression waves and shock fronts have been discussed and the solutions up to the first order in the characteristic plane and physical plane have been obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Characteristic%20wave%20front" title="Characteristic wave front">Characteristic wave front</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20non-linear%20waves" title=" weak non-linear waves"> weak non-linear waves</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20expansion%20fan" title=" central expansion fan"> central expansion fan</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20waves" title=" compression waves"> compression waves</a> </p> <a href="https://publications.waset.org/abstracts/14207/propagation-of-weak-non-linear-waves-in-non-equilibrium-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">720</span> The Effects of Electron Trapping by Electron-Ecoustic Waves Excited with Electron Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abid%20Ali%20Abid">Abid Ali Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One-dimensional (1-D) particle-in-cell (PIC) electrostatic simulations are carried out to investigate the electrostatic waves, whose constituents are hot, cold and beam electrons in the background of motionless positive ions. In fact, the electrostatic modes excited are electron acoustic waves, beam driven waves as well as Langmuir waves. It is assessed that the relevant plasma parameters, for example, hot electron temperature, beam electron drift speed, and the electron beam density significantly modify the electrostatics wave's profiles. In the nonlinear stage, the wave-particle interaction becomes more evident and the waves have obtained its saturation level. Consequently, electrons become trapped in the waves and trapping vortices are clearly formed. Because of this trapping vortices and mixing of the electrons in phase space, finally, lead to electrons thermalization. It is observed that for the high-density value of the beam-electron, the solitary waves having a bipolar form of the electric field. These solitons are the nonlinear Brenstein-Greene and Kruskal wave mode that attributes the trapping of electrons potential well of phase-space hole. These examinations revealed that electrostatic waves have been exited in beam-plasma model and producing waves having broad-frequency ranges, which may clarify the broadband electrostatic noise (BEN) spectrum studied in the auroral zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20acoustic%20%20waves" title="electron acoustic waves">electron acoustic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=trapping%20of%20cold%20electron" title=" trapping of cold electron"> trapping of cold electron</a>, <a href="https://publications.waset.org/abstracts/search?q=Langmuir%20waves" title=" Langmuir waves"> Langmuir waves</a>, <a href="https://publications.waset.org/abstracts/search?q=particle-in%20cell%20simulation" title=" particle-in cell simulation"> particle-in cell simulation</a> </p> <a href="https://publications.waset.org/abstracts/120540/the-effects-of-electron-trapping-by-electron-ecoustic-waves-excited-with-electron-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">719</span> Rogue Waves Arising on the Standing Periodic Wave in the High-Order Ablowitz-Ladik Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanpei%20Zhen">Yanpei Zhen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nonlinear Schrödinger (NLS) equation models wave dynamics in many physical problems related to fluids, plasmas, and optics. The standing periodic waves are known to be modulationally unstable, and rogue waves (localized perturbations in space and time) have been observed on their backgrounds in numerical experiments. The exact solutions for rogue waves arising on the periodic standing waves have been obtained analytically. It is natural to ask if the rogue waves persist on the standing periodic waves in the integrable discretizations of the integrable NLS equation. We study the standing periodic waves in the semidiscrete integrable system modeled by the high-order Ablowitz-Ladik (AL) equation. The standing periodic wave of the high-order AL equation is expressed by the Jacobi cnoidal elliptic function. The exact solutions are obtained by using the separation of variables and one-fold Darboux transformation. Since the cnoidal wave is modulationally unstable, the rogue waves are generated on the periodic background. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darboux%20transformation" title="Darboux transformation">Darboux transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20wave" title=" periodic wave"> periodic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=Rogue%20wave" title=" Rogue wave"> Rogue wave</a>, <a href="https://publications.waset.org/abstracts/search?q=separating%20the%20variables" title=" separating the variables"> separating the variables</a> </p> <a href="https://publications.waset.org/abstracts/174512/rogue-waves-arising-on-the-standing-periodic-wave-in-the-high-order-ablowitz-ladik-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">718</span> The Kinks, the Solitons, and the Shocks in Series Connected Discrete Josephson Transmission Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Kogan">Eugene Kogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We analytically study the localized running waves in the discrete Josephson transmission lines (JTL), constructed from Josephson junctions (JJ) and capacitors. The quasi-continuum approximation reduces the calculation of the running wave properties to the problem of equilibrium of an elastic rod in the potential field. Making additional approximations, we reduce the problem to the motion of the fictitious Newtonian particle in the potential well. We show that there exist running waves in the form of supersonic kinks and solitons and calculate their velocities and profiles. We show that the nonstationary smooth waves, which are small perturbations on the homogeneous non-zero background, are described by Korteweg-de Vries equation, and those on zero background -by the modified Korteweg-de Vries equation. We also study the effect of dissipation on the running waves in JTL and find that in the presence of the resistors, shunting the JJ and/or in series with the ground capacitors, the only possible stationary running waves are the shock waves, whose profiles are also found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josephson%20transmission%20line" title="Josephson transmission line">Josephson transmission line</a>, <a href="https://publications.waset.org/abstracts/search?q=shocks" title=" shocks"> shocks</a>, <a href="https://publications.waset.org/abstracts/search?q=solitary%20waves" title=" solitary waves"> solitary waves</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20waves" title=" nonlinear waves"> nonlinear waves</a> </p> <a href="https://publications.waset.org/abstracts/148051/the-kinks-the-solitons-and-the-shocks-in-series-connected-discrete-josephson-transmission-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">717</span> Heating of the Ions by Electromagnetic Ion Cyclotron (EMIC) Waves Using Magnetospheric Multiscale (MMS) Satellite Observation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Abid">A. A. Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetospheric multiscale (MMS) satellite observations in the inner magnetosphere were used to detect the proton band of the electromagnetic ion cyclotron (EMIC) waves on December 14, 2015, which have been significantly contributing to the dynamics of the magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. The waves are triggered by hot proton thermal anisotropy. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these previously invisible protons are now visible. As a result, the EMC waves also excite the helium ions. The EMIC waves, whose frequency in the magnetosphere of the Earth ranges from 0.001 Hz to 5 Hz, have drawn a lot of attention for their ability to carry energy. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. This work examines how the excitation of EMIC waves is affected by the energy of hot proton temperature anisotropy, and It has a minimum resonance energy of 6.9 keV and a range of 7 to 26 keV. On the hot protons, however, the reverse effect can be seen for energies below the minimum resonance energy. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. Key Points: 1. The analysis of EMIC waves produced by hot proton temperature anisotropy using MMS data. 2. The number density and temperature anisotropy of the cold protons increases owing to high-intensity EMIC waves. 3. The cold protons with an energy range of 1-100eV are energized by EMIC waves using the Magnetospheric Multiscale (MMS) satellite not been discussed before <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMIC%20waves" title="EMIC waves">EMIC waves</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20anisotropy%20of%20hot%20protons" title=" temperature anisotropy of hot protons"> temperature anisotropy of hot protons</a>, <a href="https://publications.waset.org/abstracts/search?q=energization%20of%20the%20cold%20proton" title=" energization of the cold proton"> energization of the cold proton</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetospheric%20multiscale%20%28MMS%29%20satellite%20observations" title=" magnetospheric multiscale (MMS) satellite observations"> magnetospheric multiscale (MMS) satellite observations</a> </p> <a href="https://publications.waset.org/abstracts/161623/heating-of-the-ions-by-electromagnetic-ion-cyclotron-emic-waves-using-magnetospheric-multiscale-mms-satellite-observation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">716</span> Comparative Study of Soliton Collisions in Uniform and Nonuniform Magnetized Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renu%20Tomar">Renu Tomar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitendra%20K.%20Malik"> Hitendra K. Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20P.%20Dahiya"> Raj P. Dahiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Similar to the sound waves in air, plasmas support the propagation of ion waves, which evolve into the solitary structures when the effect of non linearity and dispersion are balanced. The ion acoustic solitary waves have been investigated in details in homogeneous plasmas, inhomogeneous plasmas, and magnetized plasmas. The ion acoustic solitary waves are also found to reflect from a density gradient or boundary present in the plasma after propagating. Another interesting feature of the solitary waves is their collision. In the present work, we carry out analytical calculations for the head-on collision of solitary waves in a magnetized plasma which has dust grains in addition to the ions and electrons. For this, we employ Poincar´e-Lighthill-Kuo (PLK) method. To lowest nonlinear order, the problem of colliding solitary waves leads to KdV (modified KdV) equations and also yields the phase shifts that occur in the interaction. These calculations are accomplished for the uniform and nonuniform plasmas, and the results on the soliton properties are discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inhomogeneous%20magnetized%20plasma" title="inhomogeneous magnetized plasma">inhomogeneous magnetized plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20charging" title=" dust charging"> dust charging</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20collisions" title=" soliton collisions"> soliton collisions</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetized%20plasma" title=" magnetized plasma"> magnetized plasma</a> </p> <a href="https://publications.waset.org/abstracts/14740/comparative-study-of-soliton-collisions-in-uniform-and-nonuniform-magnetized-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">715</span> Two-Step Inversion Method for Multi-mode Surface Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Zhang">Ying Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface waves provide critical constraints about the earth's structure in the crust and upper mantle. However, different modes of Love waves with close group velocities often arrive at a similar time and interfere with each other. This problem is typical for Love waves at intermediate periods that travel through the oceanic lithosphere. Therefore, we developed a two-step inversion approach to separate the waveforms of the fundamental and first higher mode of Love waves. We first solve the phase velocities of the two modes and their amplitude ratios. The misfit function is based on the sum of phase differences among the station pairs. We then solve the absolute amplitudes of the two modes and their initial phases using obtained phase velocities and amplitude ratio. The separated waveforms of each mode from the two-step inversion method can be further used in surface wave tomography to improve model resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20wave%20inversion" title="surface wave inversion">surface wave inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=waveform%20separation" title=" waveform separation"> waveform separation</a>, <a href="https://publications.waset.org/abstracts/search?q=love%20waves" title=" love waves"> love waves</a>, <a href="https://publications.waset.org/abstracts/search?q=higher-mode%20interference" title=" higher-mode interference"> higher-mode interference</a> </p> <a href="https://publications.waset.org/abstracts/164271/two-step-inversion-method-for-multi-mode-surface-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">714</span> Effects of Charge Fluctuating Positive Dust on Linear Dust-Acoustic Waves </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjit%20Kumar%20Paul">Sanjit Kumar Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Mamun"> A. A. Mamun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Amin"> M. R. Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Linear propagation of the dust-acoustic wave in a dusty plasma consisting of Boltzmann distributed electrons and ions and mobile charge fluctuating positive dust grains has been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and its responsible for the formation of the dust-acoustic waves in such a dusty plasma. The basic features of such dust-acoustic waves have been identified. It has been proposed to design a new laboratory experiment which will be able to identify the basic features of the dust-acoustic waves predicted in this theoretical investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dust%20acoustic%20waves" title="dust acoustic waves">dust acoustic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=dusty%20plasma" title=" dusty plasma"> dusty plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=Boltzmann%20distributed%20electrons" title=" Boltzmann distributed electrons"> Boltzmann distributed electrons</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20fluctuation" title=" charge fluctuation"> charge fluctuation</a> </p> <a href="https://publications.waset.org/abstracts/8380/effects-of-charge-fluctuating-positive-dust-on-linear-dust-acoustic-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">639</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">713</span> Patent on Brian: Brain Waves Stimulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalil%20Qoulizadeh">Jalil Qoulizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Sadeghi"> Hasan Sadeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain waves are electrical wave patterns that are produced in the human brain. Knowing these waves and activating them can have a positive effect on brain function and ultimately create an ideal life. The brain has the ability to produce waves from 0.1 to above 65 Hz. (The Beta One device produces exactly these waves) This is because it is said that the waves produced by the Beta One device exactly match the waves produced by the brain. The function and method of this device is based on the magnetic stimulation of the brain. The technology used in the design and producƟon of this device works in a way to strengthen and improve the frequencies of brain waves with a pre-defined algorithm according to the type of requested function, so that the person can access the expected functions in life activities. to perform better. The effect of this field on neurons and their stimulation: In order to evaluate the effect of this field created by the device, on the neurons, the main tests are by conducting electroencephalography before and after stimulation and comparing these two baselines by qEEG or quantitative electroencephalography method using paired t-test in 39 subjects. It confirms the significant effect of this field on the change of electrical activity recorded after 30 minutes of stimulation in all subjects. The Beta One device is able to induce the appropriate pattern of the expected functions in a soft and effective way to the brain in a healthy and effective way (exactly in accordance with the harmony of brain waves), the process of brain activities first to a normal state and then to a powerful one. Production of inexpensive neuroscience equipment (compared to existing rTMS equipment) Magnetic brain stimulation for clinics - homes - factories and companies - professional sports clubs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stimulation" title="stimulation">stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=brain" title=" brain"> brain</a>, <a href="https://publications.waset.org/abstracts/search?q=waves" title=" waves"> waves</a>, <a href="https://publications.waset.org/abstracts/search?q=betaOne" title=" betaOne"> betaOne</a> </p> <a href="https://publications.waset.org/abstracts/160354/patent-on-brian-brain-waves-stimulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">712</span> Model of Cosserat Continuum Dispersion in a Half-Space with a Scatterer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Velez">Francisco Velez</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20David%20Gomez"> Juan David Gomez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dispersion effects on the Scattering for a semicircular canyon in a micropolar continuum are analyzed, by using a computational finite element scheme. The presence of microrotational waves and the dispersive SV waves affects the propagation of elastic waves. Here, a contrast with the classic model is presented, and the dependence with the micropolar parameters is studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scattering" title="scattering">scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=semicircular%20canyon" title=" semicircular canyon"> semicircular canyon</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20dispersion" title=" wave dispersion"> wave dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=micropolar%20medium" title=" micropolar medium"> micropolar medium</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20modeling" title=" FEM modeling"> FEM modeling</a> </p> <a href="https://publications.waset.org/abstracts/11667/model-of-cosserat-continuum-dispersion-in-a-half-space-with-a-scatterer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">711</span> Investigating Viscous Surface Wave Propagation Modes in a Finite Depth Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Ghahraman">Arash Ghahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyula%20Bene"> Gyula Bene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The object of this study is to investigate the effect of viscosity on the propagation of free-surface waves in an incompressible viscous fluid layer of arbitrary depth. While we provide a more detailed study of properties of linear surface waves, the description of fully nonlinear waves in terms of KdV-like (Korteweg-de Vries) equations is discussed. In the linear case, we find that in shallow enough fluids, no surface waves can propagate. Even in any thicker fluid layers, propagation of very short and very long waves is forbidden. When wave propagation is possible, only a single propagating mode exists for any given horizontal wave number. The numerical results show that there can be two types of non-propagating modes. One type is always present, and there exist still infinitely many of such modes at the same parameters. In contrast, there can be zero, one or two modes belonging to the other type. Another significant feature is that KdV-like equations. They describe propagating nonlinear viscous surface waves. Since viscosity gives rise to a new wavenumber that cannot be small at the same time as the original one, these equations may not exist. Nonetheless, we propose a reasonable nonlinear description in terms of 1+1 variate functions that make possible successive approximations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20surface%20wave" title="free surface wave">free surface wave</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20waves" title=" water waves"> water waves</a>, <a href="https://publications.waset.org/abstracts/search?q=KdV%20equation" title=" KdV equation"> KdV equation</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/112217/investigating-viscous-surface-wave-propagation-modes-in-a-finite-depth-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">710</span> Lamb Waves in Plates Subjected to Uniaxial Stresses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munawwar%20Mohabuth">Munawwar Mohabuth</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrei%20Kotousov"> Andrei Kotousov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Tai%20Ng"> Ching-Tai Ng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On the basis of the finite deformation theory, the effect of homogeneous stress on the propagation of Lamb waves in an initially isotropic hyperelastic plate is analysed. The equations governing the propagation of small amplitude waves in the prestressed plate are derived using the theory of small deformations superimposed on large deformations. By enforcing traction free boundary conditions at the upper and lower surfaces of the plate, acoustoelastic dispersion equations for Lamb wave propagation are obtained, which are solved numerically. Results are given for an aluminum plate subjected to a range of applied stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustoelasticity" title="acoustoelasticity">acoustoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20deformation" title=" finite deformation"> finite deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=lamb%20waves" title=" lamb waves"> lamb waves</a> </p> <a href="https://publications.waset.org/abstracts/32316/lamb-waves-in-plates-subjected-to-uniaxial-stresses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">709</span> Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ziaran">S. Ziaran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Musil"> M. Musil</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Cekan"> M. Cekan</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Chlebo"> O. Chlebo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20structure" title="building structure">building structure</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20waves" title=" seismic waves"> seismic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20analysis" title=" spectral analysis"> spectral analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20response" title=" structural response"> structural response</a> </p> <a href="https://publications.waset.org/abstracts/2072/analysis-of-seismic-waves-generated-by-blasting-operations-and-their-response-on-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">708</span> Observations of Magnetospheric Ulf Waves in Connection to the Kelvin-Helmholtz Instability at Mercury</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elisabet%20Liljeblad">Elisabet Liljeblad</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Karlsson"> Tomas Karlsson</a>, <a href="https://publications.waset.org/abstracts/search?q=Torbjorn%20Sundberg"> Torbjorn Sundberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Anita%20Kullen"> Anita Kullen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetospheric magnetic field data from the MESSENGER spacecraft is investigated to establish the presence of ultra-low frequency (ULF) waves in connection to 131 previously observed nonlinear Kelvin-Helmholtz waves (KHWs) at Mercury. Distinct ULF signatures are detected in 44 out of the 131 magnetospheric traversals prior to or after observing a KHW. In particular, 39 of these 44 ULF events are highly coherent at the frequency of maximum power spectral density. The waves observed at the dayside, which appears mainly at the duskside and naturally following the KHW occurrence asymmetry, are significantly different to the events behind the dawn-dusk terminator and have the following distinct wave characteristics: they oscillate clearly in the perpendicular (azimuthal) direction to the mean magnetic field with a wave normal angle more in the parallel than the perpendicular direction, increase in absolute ellipticity with distance from noon, are almost exclusively right-hand polarized, and are observed mainly for frequencies in the range 0.02-0.04 Hz. These results indicate that the dayside ULF waves are likely to shear Alfvén waves driven by KHWs at the magnetopause, which in turn manifests the importance of the Kelvin-Helmholtz instability in terms of mass transport throughout the Mercury magnetosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra-low%20frequency%20waves" title="ultra-low frequency waves">ultra-low frequency waves</a>, <a href="https://publications.waset.org/abstracts/search?q=kelvin-Helmholtz%20instability" title=" kelvin-Helmholtz instability"> kelvin-Helmholtz instability</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetospheric%20processes" title=" magnetospheric processes"> magnetospheric processes</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury" title=" mercury"> mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=messenger" title=" messenger"> messenger</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20and%20momentum%20transfer%20in%20planetary%20environments" title=" energy and momentum transfer in planetary environments"> energy and momentum transfer in planetary environments</a> </p> <a href="https://publications.waset.org/abstracts/51968/observations-of-magnetospheric-ulf-waves-in-connection-to-the-kelvin-helmholtz-instability-at-mercury" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">707</span> Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafdaoui%20Hichem">Hafdaoui Hichem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehadjebia%20Cherifa"> Mehadjebia Cherifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Benatia%20Djamel"> Benatia Djamel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20material" title="piezoelectric material">piezoelectric material</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29" title=" probabilistic neural network (PNN)"> probabilistic neural network (PNN)</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20microwaves" title=" acoustic microwaves"> acoustic microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20waves" title=" bulk waves"> bulk waves</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20attenuation%20coefficient" title=" the attenuation coefficient"> the attenuation coefficient</a> </p> <a href="https://publications.waset.org/abstracts/43264/using-probabilistic-neural-network-pnn-for-extracting-acoustic-microwaves-bulk-acoustic-waves-in-piezoelectric-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">706</span> A Review on the Hydrodynamic Characteristics of Caisson Breakwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20Jemi%20Jeya">T. J. Jemi Jeya</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sriram"> V. Sriram</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sundar"> V. Sundar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Caisson breakwaters are gravity structures resting on the seabed and piercing the free surface sunk in coastal waters to break the energy in the waves and protect the water area behind them by creating tranquil conditions on its lee side for the purpose of berthing of vessels. A number of formula and methodologies have been proposed for calculating the forces on caissons due to waves, most of which being evolved through intensive laboratory and field measurements. The reflection of waves from such breakwaters often generates clapotis, leading to an amplification of waves in its vicinity. This result in increased pressures and forces, forcing researchers to modify its seaside shape as well as placing dissipaters in the form of screens. Apart from the above aspects, this paper also discusses the other important phenomena, like overtopping that dictates the stability of caisson breakwaters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caisson%20breakwater" title="caisson breakwater">caisson breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=Jarlan%20type%20breakwater" title=" Jarlan type breakwater"> Jarlan type breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=screens" title=" screens"> screens</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20breakwater" title=" circular breakwater"> circular breakwater</a> </p> <a href="https://publications.waset.org/abstracts/35150/a-review-on-the-hydrodynamic-characteristics-of-caisson-breakwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">705</span> Exposure to Radio Frequency Waves of Mobile Phone and Temperature Changes of Brain Tissue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Forouharmajd">Farhad Forouharmajd</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Ebrahimi"> Hossein Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Pourabdian"> Siamak Pourabdian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Prevalent use of cell phones (mobile phones) has led to increasing worries about the effect of radiofrequency waves on the physiology of human body. This study was done to determine different reactions of the temperatures in different depths of brain tissue in confronting with radiofrequency waves of cell phones. Methodology: This study was an empirical research. A cow's brain tissue was placed in a compartment and the effects of radiofrequency waves of the cell phone was analyzed during confrontation and after confrontation, in three different depths of 2, 12, and 22 mm of the tissue, in 4 mm and 4 cm distances of the tissue to a cell phone, for 15 min. Lutron thermometer was used to measure the tissue temperatures. Data analysis was done by Lutron software. Findings: The rate of increasing the temperature at the depth of 22 mm was higher than 2 mm and 12mm depths, during confrontation of the brain tissue at the distance of 4 mm with the cell phone, such that the tissue temperatures at 2, 12, and 22 mm depths increased by 0.29 ˚C, 0.31 ˚C, and 0.37 ˚C, respectively, relative to the base temperature (tissue temperature before confrontation). Moreover, the temperature of brain tissue at the distance of 4 cm by increasing the tissue depth was more than other depths. Increasing the tissue temperature also existed by increasing the brain tissue depth after the confrontation with the cell phone. The temperature of the 22 mm depth increased with higher speed at the time confrontation. Conclusion: Not only radiofrequency waves of cell phones increased the tissue temperature in all the depths of the brain tissue, but also the temperature due to radiofrequency waves of the cell phone was more at the depths higher than 22 mm of the tissue. In fact, the thermal effect of radiofrequency waves was higher in higher depths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20phone" title="mobile phone">mobile phone</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20waves" title=" radio frequency waves"> radio frequency waves</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tissue" title=" brain tissue"> brain tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/98613/exposure-to-radio-frequency-waves-of-mobile-phone-and-temperature-changes-of-brain-tissue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">704</span> Using Peer Instruction in Physics of Waves for Pre-Service Science Teacher</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumalee%20Tientongdee">Sumalee Tientongdee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, it was aimed to investigate Physics achievement of the pre-service science teacher studying in general science program at Suan Sunandha Rajabhat University, Bangkok, Thailand. The program has provided the new curriculum that focuses on 21st-century skills development. Active learning approaches are used to teach in all subjects. One of the active learning approaches Peer Instruction, or PI was used in this study to teach physics of waves as a compulsory course. It was conducted in the second semester from January to May of 2017. The concept test was given to evaluate pre-service science teachers’ understanding in concept of waves. Problem-solving assessment form was used to evaluate their problem-solving skill. The results indicated that after they had learned through Peer Instruction in physics of waves course, their concepts in physics of waves was significantly higher at 0.05 confident levels. Their problem-solving skill from the whole class was at the highest level. Based on the group interview on the opinions of using Peer Instruction in Physics class, they mostly felt that it was very useful and helping them understand more about physics, especially for female students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peer%20instruction" title="peer instruction">peer instruction</a>, <a href="https://publications.waset.org/abstracts/search?q=physics%20of%20waves" title=" physics of waves"> physics of waves</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-service%20science%20teacher" title=" pre-service science teacher"> pre-service science teacher</a>, <a href="https://publications.waset.org/abstracts/search?q=Suan%20Sunandha%20Rajabhat%20university" title=" Suan Sunandha Rajabhat university"> Suan Sunandha Rajabhat university</a> </p> <a href="https://publications.waset.org/abstracts/83122/using-peer-instruction-in-physics-of-waves-for-pre-service-science-teacher" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">703</span> Existence and Stability of Periodic Traveling Waves in a Bistable Excitable System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Osman%20Gani">M. Osman Gani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ferdows"> M. Ferdows</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiyuki%20Ogawa"> Toshiyuki Ogawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we proposed a modified FHN-type reaction-diffusion system for a bistable excitable system by adding a scaled function obtained from a given function. We study the existence and the stability of the periodic traveling waves (or wavetrains) for the FitzHugh-Nagumo (FHN) system and the modified one and compare the results. The stability results of the periodic traveling waves (PTWs) indicate that most of the solutions in the fast family of the PTWs are stable for the FitzHugh-Nagumo equations. The instability occurs only in the waves having smaller periods. However, the smaller period waves are always unstable. The fast family with sufficiently large periods is always stable in FHN model. We find that the oscillation of pulse widths is absent in the standard FHN model. That motivates us to study the PTWs in the proposed FHN-type reaction-diffusion system for the bistable excitable media. A good agreement is found between the solutions of the traveling wave ODEs and the corresponding whole PDE simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bistable%20system" title="bistable system">bistable system</a>, <a href="https://publications.waset.org/abstracts/search?q=Eckhaus%20bifurcation" title=" Eckhaus bifurcation"> Eckhaus bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=excitable%20media" title=" excitable media"> excitable media</a>, <a href="https://publications.waset.org/abstracts/search?q=FitzHugh-Nagumo%20model" title=" FitzHugh-Nagumo model"> FitzHugh-Nagumo model</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20traveling%20waves" title=" periodic traveling waves"> periodic traveling waves</a> </p> <a href="https://publications.waset.org/abstracts/85926/existence-and-stability-of-periodic-traveling-waves-in-a-bistable-excitable-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">702</span> Discussion on Dispersion Curves of Non-penetrable Soils from in-Situ Seismic Dilatometer Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angelo%20Aloisio%20Dag">Angelo Aloisio Dag</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasquale%20Pasca"> Pasquale Pasca</a>, <a href="https://publications.waset.org/abstracts/search?q=Massimo%20Fragiacomo"> Massimo Fragiacomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferdinando%20Totani"> Ferdinando Totani</a>, <a href="https://publications.waset.org/abstracts/search?q=Gianfranco%20Totani"> Gianfranco Totani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The estimate of the velocity of shear waves (Vs) is essential in seismic engineering to characterize the dynamic response of soils. There are various direct methods to estimate the Vs. The authors report the results of site characterization in Macerata, where they measured the Vs using the seismic dilatometer in a 100m deep borehole. The standard Vs estimation originates from the cross-correlation between the signals acquired by two geophones at increasing depths. This paper focuses on the estimate of the dependence of Vs on the wavenumber. The dispersion curves reveal an unexpected hyperbolic dispersion curve typical of Lamb waves. Interestingly, the contribution of Lamb waves may be notable up to 100m depth. The amplitude of surface waves decrease rapidly with depth: still, their influence may be essential up to depths considered unusual for standard geotechnical investigations, where their effect is generally neglected. Accordingly, these waves may bias the outcomes of the standard Vs estimations, which ignore frequency-dependent phenomena. The paper proposes an enhancement of the accepted procedure to estimate Vs and addresses the importance of Lamb waves in soil characterization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion%20curve" title="dispersion curve">dispersion curve</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20dilatometer" title=" seismic dilatometer"> seismic dilatometer</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave" title=" shear wave"> shear wave</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20mechanics" title=" soil mechanics"> soil mechanics</a> </p> <a href="https://publications.waset.org/abstracts/132758/discussion-on-dispersion-curves-of-non-penetrable-soils-from-in-situ-seismic-dilatometer-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">701</span> Nonlinear Internal Waves in Rotating Ocean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20A.%20Ostrovsky">L. A. Ostrovsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu.%20A.%20Stepanyants"> Yu. A. Stepanyants</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of Earth rotation on nonlinear waves is a practically important and theoretically challenging problem of fluid mechanics and geophysics. Whereas the large-scale, geostrophic processes such as Rossby waves are a classical object of oceanic and atmospheric physics, rotation effects on mesoscale waves are not well studied. In particular, the Coriolis force can radically modify the behavior of nonlinear internal gravity waves in the ocean having spatial scales of 1-10 kilometers and time durations of few hours. In the last decade, such a non-trivial behavior was observed more than once. Similar effects are possible for magnetic sound in the ionosphere. Here we outline the main physical peculiarities in the behavior of nonlinear internal waves due to the rotation effect and present some results of our recent studies. The consideration is based on the fourth-order equation derived by one of the authors as a rotation-modified Korteweg–de Vries (rKdV) equation which includes two types of dispersion: one is responsible for the finiteness of depth as in the classical KdV equation; another is due to the Coriolis effect. This equation is, in general, non-integrable; moreover, under the conditions typical of oceanic waves (positive dispersion parameter), it does not allow solitary solutions at all. In the opposite case (negative dispersion) which is possible for, e.g., magnetic sound, solitary solutions do exist and can form complex bound states (multisoliton). Another non-trivial properties of nonlinear internal waves with rotation include, to name a few, the ‘terminal’ damping of the initial KdV soliton disappearing in a finite time due to radiation losses caused by Earth’s rotation, and eventual transformation of a KdV soliton into a wave packet (an envelope soliton). The new results to be discussed refer to the interaction of a soliton with a long background wave. It is shown, in particular, that in this case internal solitons can exist since the radiation losses are compensated by energy pumping from the background wave. Finally, the relevant oceanic observations of rotation effect on internal waves are briefly described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Earth%20rotation" title="Earth rotation">Earth rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20waves" title=" internal waves"> internal waves</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20waves" title=" nonlinear waves"> nonlinear waves</a>, <a href="https://publications.waset.org/abstracts/search?q=solitons" title=" solitons"> solitons</a> </p> <a href="https://publications.waset.org/abstracts/28004/nonlinear-internal-waves-in-rotating-ocean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">672</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">700</span> Study of Ultrasonic Waves in Unidirectional Fiber-Reinforced Composite Plates for the Aerospace Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=DucTho%20Le">DucTho Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Duy%20Kien%20Dao"> Duy Kien Dao</a>, <a href="https://publications.waset.org/abstracts/search?q=Quoc%20Tinh%20Bui"> Quoc Tinh Bui</a>, <a href="https://publications.waset.org/abstracts/search?q=Haidang%20Phan"> Haidang Phan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article is concerned with the motion of ultrasonic guided waves in a unidirectional fiber-reinforced composite plate under acoustic sources. Such unidirectional composite material has orthotropic elastic properties as it is very stiff along the fibers and rather compliant across the fibers. The dispersion equations of free Lamb waves propagating in an orthotropic layer are derived that results in the dispersion curves. The connection of these equations to the Rayleigh-Lamb frequency relations of isotropic plates is discussed. By the use of reciprocity in elastodynamics, closed-form solutions of elastic wave motions subjected to time-harmonic loads in the layer are computed in a simple manner. We also consider the problem of Lamb waves generated by a set of time-harmonic sources. The obtained computations can be very useful for developing ultrasound-based methods for nondestructive evaluation of composite structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lamb%20waves" title="lamb waves">lamb waves</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-reinforced%20composite%20plates" title=" fiber-reinforced composite plates"> fiber-reinforced composite plates</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20equations" title=" dispersion equations"> dispersion equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nondestructive%20evaluation" title=" nondestructive evaluation"> nondestructive evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=reciprocity%20theorems" title=" reciprocity theorems"> reciprocity theorems</a> </p> <a href="https://publications.waset.org/abstracts/110250/study-of-ultrasonic-waves-in-unidirectional-fiber-reinforced-composite-plates-for-the-aerospace-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">699</span> Numerical Modeling of Storm Swells in Harbor by Boussinesq Equations Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Kamel%20Mihoubi">Mustapha Kamel Mihoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Dahmani"> Hocine Dahmani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of work is to study the phenomenon of agitation of storm waves at basin caused by different directions of waves relative to the current provision thrown numerical model based on the equation in shallow water using Boussinesq model MIKE 21 BW. According to the diminishing effect of penetration of a wave optimal solution will be available to be reproduced in reduced model. Another alternative arrangement throws will be proposed to reduce the agitation and the effects of the swell reflection caused by the penetration of waves in the harbor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agitation" title="agitation">agitation</a>, <a href="https://publications.waset.org/abstracts/search?q=Boussinesq%20equations" title=" Boussinesq equations"> Boussinesq equations</a>, <a href="https://publications.waset.org/abstracts/search?q=combination" title=" combination"> combination</a>, <a href="https://publications.waset.org/abstracts/search?q=harbor" title=" harbor"> harbor</a> </p> <a href="https://publications.waset.org/abstracts/16182/numerical-modeling-of-storm-swells-in-harbor-by-boussinesq-equations-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">698</span> Kinetic Model to Interpret Whistler Waves in Multicomponent Non-Maxwellian Space Plasmas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Warda%20Nasir">Warda Nasir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20S.%20Qureshi"> M. N. S. Qureshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whistler waves are right handed circularly polarized waves and are frequently observed in space plasmas. The Low frequency branch of the Whistler waves having frequencies nearly around 100 Hz, known as Lion roars, are frequently observed in magnetosheath. Another feature of the magnetosheath is the observations of flat top electron distributions with single as well as two electron populations. In the past, lion roars were studied by employing kinetic model using classical bi-Maxwellian distribution function, however, could not be justified both on quantitatively as well as qualitatively grounds. We studied Whistler waves by employing kinetic model using non-Maxwellian distribution function such as the generalized (r,q) distribution function which is the generalized form of kappa and Maxwellian distribution functions by employing kinetic theory with single or two electron populations. We compare our results with the Cluster observations and found good quantitative and qualitative agreement between them. At times when lion roars are observed (not observed) in the data and bi-Maxwellian could not provide the sufficient growth (damping) rates, we showed that when generalized (r,q) distribution function is employed, the resulted growth (damping) rates exactly match the observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinetic%20model" title="kinetic model">kinetic model</a>, <a href="https://publications.waset.org/abstracts/search?q=whistler%20waves" title=" whistler waves"> whistler waves</a>, <a href="https://publications.waset.org/abstracts/search?q=non-maxwellian%20distribution%20function" title=" non-maxwellian distribution function"> non-maxwellian distribution function</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20plasmas" title=" space plasmas"> space plasmas</a> </p> <a href="https://publications.waset.org/abstracts/52048/kinetic-model-to-interpret-whistler-waves-in-multicomponent-non-maxwellian-space-plasmas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">697</span> Scaling Analysis for the Liquefaction Phenomena Generated by Water Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Arcos">E. Arcos</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Bautista"> E. Bautista</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M%C3%A9ndez"> F. Méndez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a scaling analysis of the liquefaction phenomena is presented. The characteristic scales are obtained by balancing term by term of the well-known partial dynamics governing equations, (U − P). From the above, the order of magnitude of the horizontal displacement is very smaller compared with the vertical displacement and therefore the governing equation is only a function of the dependent vertical variables. The U − P approximation is reduced and presented in its dimensionless version. This scaling analysis can be used to obtain analytical solutions of the liquefaction phenomena under the action of the water waves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximation%20U-P" title="approximation U-P">approximation U-P</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20seabed" title=" porous seabed"> porous seabed</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling%20analysis" title=" scaling analysis"> scaling analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20waves" title=" water waves"> water waves</a> </p> <a href="https://publications.waset.org/abstracts/41544/scaling-analysis-for-the-liquefaction-phenomena-generated-by-water-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">696</span> Lamb Waves Wireless Communication in Healthy Plates Using Coherent Demodulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudy%20Bahouth">Rudy Bahouth</a>, <a href="https://publications.waset.org/abstracts/search?q=Farouk%20Benmeddour"> Farouk Benmeddour</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Moulin"> Emmanuel Moulin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Assaad"> Jamal Assaad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Guided ultrasonic waves are used in Non-Destructive Testing (NDT) and Structural Health Monitoring (SHM) for inspection and damage detection. Recently, wireless data transmission using ultrasonic waves in solid metallic channels has gained popularity in some industrial applications such as nuclear, aerospace and smart vehicles. The idea is to find a good substitute for electromagnetic waves since they are highly attenuated near metallic components due to Faraday shielding. The proposed solution is to use ultrasonic guided waves such as Lamb waves as an information carrier due to their capability of propagation for long distances. In addition to this, valuable information about the health of the structure could be extracted simultaneously. In this work, the reliable frequency bandwidth for communication is extracted experimentally from dispersion curves at first. Then, an experimental platform for wireless communication using Lamb waves is described and built. After this, coherent demodulation algorithm used in telecommunications is tested for Amplitude Shift Keying, On-Off Keying and Binary Phase Shift Keying modulation techniques. Signal processing parameters such as threshold choice, number of cycles per bit and Bit Rate are optimized. Experimental results are compared based on the average Bit Error Rate. Results have shown high sensitivity to threshold selection for Amplitude Shift Keying and On-Off Keying techniques resulting a Bit Rate decrease. Binary Phase Shift Keying technique shows the highest stability and data rate between all tested modulation techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lamb%20waves%20communication" title="lamb waves communication">lamb waves communication</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communication" title=" wireless communication"> wireless communication</a>, <a href="https://publications.waset.org/abstracts/search?q=coherent%20demodulation" title=" coherent demodulation"> coherent demodulation</a>, <a href="https://publications.waset.org/abstracts/search?q=bit%20error%20rate" title=" bit error rate"> bit error rate</a> </p> <a href="https://publications.waset.org/abstracts/134984/lamb-waves-wireless-communication-in-healthy-plates-using-coherent-demodulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">695</span> Electron Spin Resonance of Conduction and Spin Waves Dynamics Investigations in Bi-2223 Superconductor for Decoding Pairing Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Ekbote">S. N. Ekbote</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Padam"> G. K. Padam</a>, <a href="https://publications.waset.org/abstracts/search?q=Manju%20Arora"> Manju Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electron spin resonance (ESR) spectroscopic investigations of (Bi, Pb)₂Sr₂Ca₂Cu₃O₁₀₋ₓ (Bi-2223) bulk samples were carried out in both the normal and superconducting states. A broad asymmetric resonance signal with side signals is obtained in the normal state, and all of them disappear in the superconducting state. The temperature and angular orientation effects on these signals suggest that the broad asymmetric signal arises from electron spin resonance of conduction electrons (CESR) and the side signals from exchange interactions as Platzman-Wolff type spin waves. The disappearance of CESR and spin waves in a superconducting state demonstrates the role of exchange interactions in Cooper pair formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bi-2223%20superconductor" title="Bi-2223 superconductor">Bi-2223 superconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=CESR" title=" CESR"> CESR</a>, <a href="https://publications.waset.org/abstracts/search?q=ESR" title=" ESR"> ESR</a>, <a href="https://publications.waset.org/abstracts/search?q=exchange%20interactions" title=" exchange interactions"> exchange interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20waves" title=" spin waves"> spin waves</a> </p> <a href="https://publications.waset.org/abstracts/157103/electron-spin-resonance-of-conduction-and-spin-waves-dynamics-investigations-in-bi-2223-superconductor-for-decoding-pairing-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves&page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves&page=25">25</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>