CINXE.COM
cochain on a simplicial set (changes) in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> cochain on a simplicial set (changes) in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> cochain on a simplicial set (changes) </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/diff/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/10459/#Item_3" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <p class="show_diff"> Showing changes from revision #14 to #15: <ins class="diffins">Added</ins> | <del class="diffdel">Removed</del> | <del class="diffmod">Chan</del><ins class="diffmod">ged</ins> </p> <ins class='diffins'><blockquote> <p>This entry may need to be merged with <em><a class='existingWikiWord' href='/nlab/show/diff/simplicial+cochain'>simplicial cochain</a></em>.</p> </blockquote></ins><ins class='diffins'> </ins><div class='rightHandSide'> <div class='toc clickDown' tabindex='0'> <h3 id='context'>Context</h3> <h4 id='cohomology'>Cohomology</h4> <div class='hide'> <p><strong><a class='existingWikiWord' href='/nlab/show/diff/cohomology'>cohomology</a></strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/cocycle'>cocycle</a>, <a class='existingWikiWord' href='/nlab/show/diff/coboundary'>coboundary</a>, <a class='existingWikiWord' href='/nlab/show/diff/coefficient'>coefficient</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homology'>homology</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/chain'>chain</a>, <a class='existingWikiWord' href='/nlab/show/diff/cycle'>cycle</a>, <a class='existingWikiWord' href='/nlab/show/diff/boundary'>boundary</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/characteristic+class'>characteristic class</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/universal+characteristic+class'>universal characteristic class</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/secondary+characteristic+class'>secondary characteristic class</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/differential+characteristic+class'>differential characteristic class</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fiber+sequence'>fiber sequence</a>/<a class='existingWikiWord' href='/nlab/show/diff/long+exact+sequence+in+homology'>long exact sequence in cohomology</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fiber+infinity-bundle'>fiber ∞-bundle</a>, <a class='existingWikiWord' href='/nlab/show/diff/principal+infinity-bundle'>principal ∞-bundle</a>, <a class='existingWikiWord' href='/nlab/show/diff/associated+infinity-bundle'>associated ∞-bundle</a>, <a class='existingWikiWord' href='/nlab/show/diff/twisted+infinity-bundle'>twisted ∞-bundle</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/infinity-group+extension'>∞-group extension</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/obstruction'>obstruction</a></p> </li> </ul> <h3 id='special_and_general_types'>Special and general types</h3> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/chain+homology+and+cohomology'>cochain cohomology</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/ordinary+cohomology'>ordinary cohomology</a>, <a class='existingWikiWord' href='/nlab/show/diff/singular+cohomology'>singular cohomology</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/group+cohomology'>group cohomology</a>, <a class='existingWikiWord' href='/nlab/show/diff/nonabelian+group+cohomology'>nonabelian group cohomology</a>, <a class='existingWikiWord' href='/nlab/show/diff/Lie+group+cohomology'>Lie group cohomology</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Galois+cohomology'>Galois cohomology</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/groupoid+cohomology'>groupoid cohomology</a>, <a class='existingWikiWord' href='/nlab/show/diff/nonabelian+groupoid+cohomology'>nonabelian groupoid cohomology</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/generalized+%28Eilenberg-Steenrod%29+cohomology'>generalized (Eilenberg-Steenrod) cohomology</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/cobordism+cohomology+theory'>cobordism cohomology theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/integral+cohomology'>integral cohomology</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/K-theory'>K-theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/elliptic+cohomology'>elliptic cohomology</a>, <a class='existingWikiWord' href='/nlab/show/diff/tmf'>tmf</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/topological+automorphic+form'>taf</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/abelian+sheaf+cohomology'>abelian sheaf cohomology</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Deligne+cohomology'>Deligne cohomology</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/de+Rham+complex'>de Rham cohomology</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Dolbeault+cohomology'>Dolbeault cohomology</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%C3%A9tale+cohomology'>etale cohomology</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/group+of+units'>group of units</a>, <a class='existingWikiWord' href='/nlab/show/diff/Picard+group'>Picard group</a>, <a class='existingWikiWord' href='/nlab/show/diff/Brauer+group'>Brauer group</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/crystalline+cohomology'>crystalline cohomology</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/syntomic+cohomology'>syntomic cohomology</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/motivic+cohomology'>motivic cohomology</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/cohomology+of+operads'>cohomology of operads</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Hochschild+cohomology'>Hochschild cohomology</a>, <a class='existingWikiWord' href='/nlab/show/diff/cyclic+homology'>cyclic cohomology</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/string+topology'>string topology</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/nonabelian+cohomology'>nonabelian cohomology</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/principal+infinity-bundle'>principal ∞-bundle</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/universal+principal+infinity-bundle'>universal principal ∞-bundle</a>, <a class='existingWikiWord' href='/nlab/show/diff/groupal+model+for+universal+principal+infinity-bundles'>groupal model for universal principal ∞-bundles</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/principal+bundle'>principal bundle</a>, <a class='existingWikiWord' href='/nlab/show/diff/Atiyah+Lie+groupoid'>Atiyah Lie groupoid</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/principal+2-bundle'>principal 2-bundle</a>/<a class='existingWikiWord' href='/nlab/show/diff/gerbe'>gerbe</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/locally+constant+infinity-stack'>covering ∞-bundle</a>/<a class='existingWikiWord' href='/nlab/show/diff/local+system'>local system</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-module+bundle'>(∞,1)-vector bundle</a> / <a class='existingWikiWord' href='/nlab/show/diff/n-vector+bundle'>(∞,n)-vector bundle</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/quantum+anomaly'>quantum anomaly</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/orientation'>orientation</a>, <a class='existingWikiWord' href='/nlab/show/diff/spin+structure'>Spin structure</a>, <a class='existingWikiWord' href='/nlab/show/diff/spin%E1%B6%9C+structure'>Spin^c structure</a>, <a class='existingWikiWord' href='/nlab/show/diff/string+structure'>String structure</a>, <a class='existingWikiWord' href='/nlab/show/diff/Fivebrane+structure'>Fivebrane structure</a></li> </ul> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/cohomology+with+constant+coefficients'>cohomology with constant coefficients</a> / <a class='existingWikiWord' href='/nlab/show/diff/local+system'>with a local system of coefficients</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/infinity-Lie+algebra+cohomology'>∞-Lie algebra cohomology</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Lie+algebra+cohomology'>Lie algebra cohomology</a>, <a class='existingWikiWord' href='/nlab/show/diff/nonabelian+Lie+algebra+cohomology'>nonabelian Lie algebra cohomology</a>, <a class='existingWikiWord' href='/nlab/show/diff/Lie+algebra+extension'>Lie algebra extensions</a>, <a class='existingWikiWord' href='/nlab/show/diff/Gelfand-Fuks+cohomology'>Gelfand-Fuks cohomology</a>,</li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Gerstenhaber-Schack+cohomology'>bialgebra cohomology</a></p> </li> </ul> <h3 id='special_notions'>Special notions</h3> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%C4%8Cech+cohomology'>Čech cohomology</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/hypercohomology'>hypercohomology</a></p> </li> </ul> <h3 id='variants'>Variants</h3> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/equivariant+cohomology'>equivariant cohomology</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/equivariant+homotopy+theory'>equivariant homotopy theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Bredon+cohomology'>Bredon cohomology</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/twisted+cohomology'>twisted cohomology</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/twisted+bundle'>twisted bundle</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/twisted+K-theory'>twisted K-theory</a>, <a class='existingWikiWord' href='/nlab/show/diff/twisted+spin+structure'>twisted spin structure</a>, <a class='existingWikiWord' href='/nlab/show/diff/twisted+spin%E1%B6%9C+structure'>twisted spin^c structure</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/twisted+differential+c-structure'>twisted differential c-structures</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/differential+string+structure'>twisted differential string structure</a>, <a class='existingWikiWord' href='/nlab/show/diff/differential+fivebrane+structure'>twisted differential fivebrane structure</a></li> </ul> </li> </ul> </li> <li> <p>differential cohomology</p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/differential+cohomology'>differential generalized (Eilenberg-Steenrod) cohomology</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/differential+cobordism+cohomology'>differential cobordism cohomology</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Deligne+cohomology'>Deligne cohomology</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/differential+K-theory'>differential K-theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/differential+elliptic+cohomology'>differential elliptic cohomology</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/schreiber/show/diff/differential+cohomology+in+a+cohesive+topos' title='schreiber'>differential cohomology in a cohesive topos</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Chern-Weil+theory'>Chern-Weil theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Chern-Weil+theory+in+Smooth%E2%88%9EGrpd'>∞-Chern-Weil theory</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/relative+cohomology'>relative cohomology</a></p> </li> </ul> <h3 id='extra_structure'>Extra structure</h3> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Hodge+structure'>Hodge structure</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/orientation'>orientation</a>, <a class='existingWikiWord' href='/nlab/show/diff/orientation+in+generalized+cohomology'>in generalized cohomology</a></p> </li> </ul> <h3 id='operations'>Operations</h3> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/cohomology+operation'>cohomology operations</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/cup+product'>cup product</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/connecting+homomorphism'>connecting homomorphism</a>, <a class='existingWikiWord' href='/nlab/show/diff/Bockstein+homomorphism'>Bockstein homomorphism</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fiber+integration'>fiber integration</a>, <a class='existingWikiWord' href='/nlab/show/diff/transgression'>transgression</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/cohomology+localization'>cohomology localization</a></p> </li> </ul> <h3 id='theorems'>Theorems</h3> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/universal+coefficient+theorem'>universal coefficient theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/K%C3%BCnneth+theorem'>Künneth theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/de+Rham+theorem'>de Rham theorem</a>, <a class='existingWikiWord' href='/nlab/show/diff/Poincar%C3%A9+lemma'>Poincare lemma</a>, <a class='existingWikiWord' href='/nlab/show/diff/Stokes+theorem'>Stokes theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Hodge+theory'>Hodge theory</a>, <a class='existingWikiWord' href='/nlab/show/diff/Hodge+theorem'>Hodge theorem</a></p> <p><a class='existingWikiWord' href='/nlab/show/diff/nonabelian+Hodge+theory'>nonabelian Hodge theory</a>, <a class='existingWikiWord' href='/nlab/show/diff/noncommutative+Hodge+structure'>noncommutative Hodge theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Brown+representability+theorem'>Brown representability theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/abelian+sheaf+cohomology'>hypercovering theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Eckmann-Hilton+duality'>Eckmann-Hilton-Fuks duality</a></p> </li> </ul> <div> <p> <a href='/nlab/edit/cohomology+-+contents'>Edit this sidebar</a> </p> </div></div> <h4 id='homotopy_theory'>Homotopy theory</h4> <div class='hide'> <p><strong><a class='existingWikiWord' href='/nlab/show/diff/homotopy+theory'>homotopy theory</a>, <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-category+theory'>(∞,1)-category theory</a>, <a class='existingWikiWord' href='/nlab/show/diff/homotopy+type+theory'>homotopy type theory</a></strong></p> <p>flavors: <a class='existingWikiWord' href='/nlab/show/diff/stable+homotopy+theory'>stable</a>, <a class='existingWikiWord' href='/nlab/show/diff/equivariant+homotopy+theory'>equivariant</a>, <a class='existingWikiWord' href='/nlab/show/diff/rational+homotopy+theory'>rational</a>, <a class='existingWikiWord' href='/nlab/show/diff/p-adic+homotopy+theory'>p-adic</a>, <a class='existingWikiWord' href='/nlab/show/diff/proper+homotopy+theory'>proper</a>, <a class='existingWikiWord' href='/nlab/show/diff/geometric+homotopy+type+theory'>geometric</a>, <a class='existingWikiWord' href='/nlab/show/diff/cohesive+homotopy+theory'>cohesive</a>, <a class='existingWikiWord' href='/nlab/show/diff/directed+homotopy+theory'>directed</a>…</p> <p>models: <a class='existingWikiWord' href='/nlab/show/diff/topological+homotopy+theory'>topological</a>, <a class='existingWikiWord' href='/nlab/show/diff/simplicial+homotopy+theory'>simplicial</a>, <a class='existingWikiWord' href='/nlab/show/diff/localic+homotopy+theory'>localic</a>, …</p> <p>see also <strong><a class='existingWikiWord' href='/nlab/show/diff/algebraic+topology'>algebraic topology</a></strong></p> <p><strong>Introductions</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Introduction+to+Topology+--+2'>Introduction to Basic Homotopy Theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Introduction+to+Homotopy+Theory'>Introduction to Abstract Homotopy Theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/geometry+of+physics+--+homotopy+types'>geometry of physics -- homotopy types</a></p> </li> </ul> <p><strong>Definitions</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy'>homotopy</a>, <a class='existingWikiWord' href='/nlab/show/diff/higher+homotopy'>higher homotopy</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy+type'>homotopy type</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Pi-algebra'>Pi-algebra</a>, <a class='existingWikiWord' href='/nlab/show/diff/spherical+object'>spherical object and Pi(A)-algebra</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy+coherent+category+theory'>homotopy coherent category theory</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopical+category'>homotopical category</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/model+category'>model category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/category+of+fibrant+objects'>category of fibrant objects</a>, <a class='existingWikiWord' href='/nlab/show/diff/cofibration+category'>cofibration category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Waldhausen+category'>Waldhausen category</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy+category'>homotopy category</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Ho%28Top%29'>Ho(Top)</a></li> </ul> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-category'>(∞,1)-category</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/homotopy+category+of+an+%28infinity%2C1%29-category'>homotopy category of an (∞,1)-category</a></li> </ul> </li> </ul> <p><strong>Paths and cylinders</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy'>left homotopy</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/cylinder+object'>cylinder object</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/mapping+cone'>mapping cone</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy'>right homotopy</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/path+space+object'>path object</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/mapping+cocone'>mapping cocone</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/generalized+universal+bundle'>universal bundle</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/interval+object'>interval object</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/localization+at+geometric+homotopies'>homotopy localization</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/infinitesimal+interval+object'>infinitesimal interval object</a></p> </li> </ul> </li> </ul> <p><strong>Homotopy groups</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy+group'>homotopy group</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fundamental+group'>fundamental group</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/fundamental+group+of+a+topos'>fundamental group of a topos</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Brown-Grossman+homotopy+group'>Brown-Grossman homotopy group</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/categorical+homotopy+groups+in+an+%28infinity%2C1%29-topos'>categorical homotopy groups in an (∞,1)-topos</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/geometric+homotopy+groups+in+an+%28infinity%2C1%29-topos'>geometric homotopy groups in an (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fundamental+infinity-groupoid'>fundamental ∞-groupoid</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fundamental+groupoid'>fundamental groupoid</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/path+groupoid'>path groupoid</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fundamental+infinity-groupoid+in+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fundamental+infinity-groupoid+of+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid of a locally ∞-connected (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fundamental+%28infinity%2C1%29-category'>fundamental (∞,1)-category</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/fundamental+category'>fundamental category</a></li> </ul> </li> </ul> <p><strong>Basic facts</strong></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/fundamental+group+of+the+circle+is+the+integers'>fundamental group of the circle is the integers</a></li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/fundamental+theorem+of+covering+spaces'>fundamental theorem of covering spaces</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Freudenthal+suspension+theorem'>Freudenthal suspension theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Blakers-Massey+theorem'>Blakers-Massey theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/higher+homotopy+van+Kampen+theorem'>higher homotopy van Kampen theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/nerve+theorem'>nerve theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Whitehead+theorem'>Whitehead's theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Hurewicz+theorem'>Hurewicz theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Galois+theory'>Galois theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/homotopy+hypothesis'>homotopy hypothesis</a>-theorem</p> </li> </ul> </div> </div> </div> <h1 id='contents'>Contents</h1> <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#definition'>Definition</a></li><li><a href='#properties'>Properties</a><ul><li><a href='#homotopycommutativity'>Homotopy commutativity</a></li></ul></li><li><a href='#examples'>Examples</a></li><li><a href='#related_concepts'>Related concepts</a></li><li><a href='#References'>References</a></li></ul></div> <h2 id='idea'>Idea</h2> <p>The collection <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><msup><mi>S</mi> <mo>•</mo></msup><mo>,</mo><mi>R</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[S^\bullet,R]</annotation></semantics></math> of <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-valued functions on a <a class='existingWikiWord' href='/nlab/show/diff/simplicial+set'>simplicial set</a> <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>S^\bullet</annotation></semantics></math> is a commutative <a class='existingWikiWord' href='/nlab/show/diff/cosimplicial+algebra'>cosimplicial algebra</a>. Under the <a class='existingWikiWord' href='/nlab/show/diff/monoidal+Dold-Kan+correspondence'>monoidal Dold–Kan correspondence</a> it maps to its <a class='existingWikiWord' href='/nlab/show/diff/Moore+complex'>Moore cochain complex</a> <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mo stretchy='false'>[</mo><msup><mi>S</mi> <mo>•</mo></msup><mo>,</mo><mi>R</mi><mo stretchy='false'>]</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>C^\bullet([S^\bullet,R])</annotation></semantics></math> which is a <a class='existingWikiWord' href='/nlab/show/diff/differential+graded+algebra'>dg-algebra</a> under the <a class='existingWikiWord' href='/nlab/show/diff/cup+product'>cup product</a>: this is the <strong>cochain complex of the simplicial set</strong>.</p> <p>Notably, this cochain complex is an <a class='existingWikiWord' href='/nlab/show/diff/E-infinity+algebra'>E-∞ algebra</a> (an <a class='existingWikiWord' href='/nlab/show/diff/algebra+over+an+operad'>algebra</a> over the <a class='existingWikiWord' href='/nlab/show/diff/E-infinity+operad'>E-∞ operad</a>). In <a class='existingWikiWord' href='/nlab/show/diff/chain+homology+and+cohomology'>cohomology</a> it becomes a <a class='existingWikiWord' href='/nlab/show/diff/graded+algebra'>graded-commutative algebra</a>.</p> <h2 id='definition'>Definition</h2> <p>Let <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> be commutative <a class='existingWikiWord' href='/nlab/show/diff/ring'>ring</a>.</p> <p>For <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math> a set, write</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo stretchy='false'>]</mo><mo>=</mo><msup><mi>R</mi> <mi>S</mi></msup></mrow><annotation encoding='application/x-tex'>[S,R] = R^S</annotation></semantics></math></div> <p>for the <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-valued functions on <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math>: the set of maps from <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math> to <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> (using either <a class='existingWikiWord' href='/nlab/show/diff/internal+hom'>internal hom</a> notation or <a class='existingWikiWord' href='/nlab/show/diff/exponential+object'>exponential object</a> notation).</p> <p>This is in particular naturally</p> <ul> <li> <p>a <a class='existingWikiWord' href='/nlab/show/diff/group'>group</a> (using the addition in <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>);</p> </li> <li> <p>and even an <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/diff/module'>module</a></p> </li> <li> <p>and even an <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/diff/algebra'>algebra</a>.</p> </li> <li> <p>and even a commutative <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> algebra (since <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> is assumed to be commutative ring).</p> </li> </ul> <p>Similarly, for <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi><mo>=</mo><mo stretchy='false'>(</mo><msub><mi>S</mi> <mo>•</mo></msub><mo stretchy='false'>)</mo><mo>:</mo><msup><mi>Δ</mi> <mi>op</mi></msup><mo>→</mo><mi>Set</mi></mrow><annotation encoding='application/x-tex'>S = (S_\bullet) : \Delta^{op} \to Set</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/diff/simplicial+set'>simplicial set</a> write <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><msub><mi>S</mi> <mo>•</mo></msub><mo>,</mo><mi>R</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[S_\bullet,R] </annotation></semantics></math> for the <a class='existingWikiWord' href='/nlab/show/diff/cosimplicial+algebra'>cosimplicial algebra</a> obtained by taking <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-valued functions in each degree. This is naturally</p> <ul> <li> <p>a <a class='existingWikiWord' href='/nlab/show/diff/simplicial+group'>cosimplicial group</a></p> </li> <li> <p>and even a cosimplicial <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-module</p> </li> <li> <p>and even a <a class='existingWikiWord' href='/nlab/show/diff/cosimplicial+algebra'>cosimplicial algebra</a> over <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> .</p> </li> </ul> <p>Equivalently, if we write <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi><mo stretchy='false'>[</mo><msub><mi>S</mi> <mo>•</mo></msub><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>R [S_\bullet]</annotation></semantics></math> for the <a class='existingWikiWord' href='/nlab/show/diff/simplicial+object'>simplicial</a> <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-module which is in degree <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> the free <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math>-module on the set <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>S</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>S_n</annotation></semantics></math>, we have a canonical <a class='existingWikiWord' href='/nlab/show/diff/isomorphism'>isomorphism</a></p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><msub><mi>S</mi> <mo>•</mo></msub><mo>,</mo><mi>R</mi><mo stretchy='false'>]</mo><mo>≃</mo><msub><mi>Hom</mi> <mrow><mi>R</mi><mi>Mod</mi></mrow></msub><mo stretchy='false'>(</mo><mi>R</mi><mo stretchy='false'>[</mo><msub><mi>S</mi> <mo>•</mo></msub><mo stretchy='false'>]</mo><mo>,</mo><mi>R</mi><mo stretchy='false'>)</mo><mspace width='thinmathspace' /><mo>.</mo></mrow><annotation encoding='application/x-tex'> [S_\bullet,R] \simeq Hom_{R Mod}(R[S_\bullet], R) \,. </annotation></semantics></math></div> <p>This latter point of view is often preferred in the literature when <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi><mo stretchy='false'>[</mo><msub><mi>S</mi> <mo>•</mo></msub><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>R[S_\bullet]</annotation></semantics></math> is regarded as the collection of <em>chains</em> on <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><msub><mi>S</mi> <mo>•</mo></msub><mo>,</mo><mi>R</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[S_\bullet,R]</annotation></semantics></math> as that of <em>cochains</em> .</p> <p>More precisely, we should speak of chains and cochains after applying the <a class='existingWikiWord' href='/nlab/show/diff/Moore+complex'>Moore complex</a> functor. Write</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo stretchy='false'>)</mo><mo>:</mo><mo>=</mo><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mo stretchy='false'>[</mo><msub><mi>S</mi> <mo>•</mo></msub><mo>,</mo><mi>R</mi><mo stretchy='false'>]</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> C^\bullet(S,R) := C^\bullet([S_\bullet,R]) </annotation></semantics></math></div> <p>for the <a class='existingWikiWord' href='/nlab/show/diff/Moore+complex'>Moore cochain complex</a> obtained from the <a class='existingWikiWord' href='/nlab/show/diff/simplicial+group'>cosimplicial group</a> <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><msub><mi>S</mi> <mo>•</mo></msub><mo>,</mo><mi>R</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[S_\bullet,R]</annotation></semantics></math>. This is the <strong>cochain complex</strong> of the simplicial set <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math>. Using the <a class='existingWikiWord' href='/nlab/show/diff/cup+product'>cup product</a>, this is even a <a class='existingWikiWord' href='/nlab/show/diff/differential+graded+algebra'>dg-algebra</a>.</p> <h2 id='properties'>Properties</h2> <div class='un_prop'> <h6 id='proposition'>Proposition</h6> <p>The functor</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mi>R</mi><mo stretchy='false'>]</mo><mo>:</mo><mi>SSet</mi><mo>→</mo><mo stretchy='false'>[</mo><msup><mi>Δ</mi> <mo lspace='0em' rspace='thinmathspace'>op</mo></msup><mo>,</mo><mi>R</mi><mi>Mod</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'> [-,R] : SSet \to [\Delta^\op,R Mod] </annotation></semantics></math></div> <p>is a <a class='existingWikiWord' href='/nlab/show/diff/symmetric+monoidal+functor'>symmetric</a> <a class='existingWikiWord' href='/nlab/show/diff/monoidal+functor'>lax monoidal functor</a>.</p> </div> <div class='proof'> <h6 id='proof'>Proof</h6> <p>For instance Prop 3.8 in (<a href='#May03'>May03</a>) .</p> </div> <p>…</p> <h3 id='homotopycommutativity'>Homotopy commutativity</h3> <p>The <a class='existingWikiWord' href='/nlab/show/diff/differential+graded+algebra'>dg-algebra</a> of cochains <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>C^\bullet(S,R)</annotation></semantics></math> is not, in general, (graded) commutative. But it is homotopy commutative in that it is an <a class='existingWikiWord' href='/nlab/show/diff/algebra+over+an+operad'>algebra over an operad</a> for an <a class='existingWikiWord' href='/nlab/show/diff/E-infinity+operad'>E-∞ operad</a>.</p> <div class='un_theorem'> <h6 id='theorem'>Theorem</h6> <p>The cochain functor</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>[</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mi>R</mi><mo stretchy='false'>]</mo><mo>:</mo><mi>SSet</mi><mo>→</mo><mi>dgAlg</mi></mrow><annotation encoding='application/x-tex'> C^\bullet[-,R] : SSet \to dgAlg </annotation></semantics></math></div> <p>naturally factors through <a class='existingWikiWord' href='/nlab/show/diff/algebra+over+an+operad'>algebras over</a> an <a class='existingWikiWord' href='/nlab/show/diff/E-infinity+operad'>E-∞ operad</a>, notably the <a class='existingWikiWord' href='/nlab/show/diff/Eilenberg-Zilber+operad'>EilenbergZilber operad</a> as well as the <a class='existingWikiWord' href='/nlab/show/diff/Barratt-Eccles+operad'>Barratt-Eccles operad</a>.</p> <p>In both these cases the complex of binary operations in these operads has a 0-cycle whose action <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo stretchy='false'>)</mo><mo>⊗</mo><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo stretchy='false'>)</mo><mo>→</mo><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>C^\bullet(S,R) \otimes C^\bullet(S,R) \to C^\bullet(S,R)</annotation></semantics></math> is the usual <a class='existingWikiWord' href='/nlab/show/diff/cup+product'>cup product</a>.</p> </div> <div class='proof'> <h6 id='proof_2'>Proof</h6> <p>The statement for the Eilenberg–Zilber operad goes back to <a href='HinSch87'>HinSch87</a> . A good review is in (<a href='#May03'>May03</a>) . The statement for the Barrat–Eccles operad is in (<a href='#BerFre01'>BerFre01</a>) .</p> </div> <h2 id='examples'>Examples</h2> <ul> <li>For <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/diff/topological+space'>topological space</a> and <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Δ</mi> <mi>Top</mi></msub><mo>:</mo><mi>Δ</mi><mo>→</mo><mi>Top</mi></mrow><annotation encoding='application/x-tex'>\Delta_{Top} : \Delta \to Top</annotation></semantics></math> the canonical topological simplices, the simplicial set <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>X</mi> <mrow><msubsup><mi>Δ</mi> <mi>Top</mi> <mo>•</mo></msubsup></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{\Delta^\bullet_{Top}}</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/diff/singular+simplicial+complex'>singular simplicial complex</a> of <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math>. It cochain dg-algebra is the one that computes the <a class='existingWikiWord' href='/nlab/show/diff/singular+cohomology'>singular cohomology</a> of <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math>.</li> </ul> <h2 id='related_concepts'>Related concepts</h2> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/chain+homology+and+cohomology'>chain homology</a></li> </ul> <h2 id='References'>References</h2> <p>Basics are for instance in <em>Application 1.1.3</em> of</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Charles+Weibel'>Charles Weibel</a>, <em><a class='existingWikiWord' href='/nlab/show/diff/An+Introduction+to+Homological+Algebra'>An Introduction to Homological Algebra</a></em></li> </ul> <p>An explicit description of the cochains that express the homotopy symmetry of the cup product is given from page 30 on of the old</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Norman+Steenrod'>Norman Steenrod</a>, <em><a class='existingWikiWord' href='/nlab/files/SteenrodOnCohomologyOperations.pdf' title='Cohomology operations and obstructions to extending continuous functions'>Cohomology operations and obstructions to extending continuous functions</a></em> , Colloquium lectures (1957)</li> </ul> <p>The modern <a class='existingWikiWord' href='/nlab/show/diff/operad'>operad</a>-theoretic statement that for <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi><mo>∈</mo></mrow><annotation encoding='application/x-tex'>S \in</annotation></semantics></math> <a class='existingWikiWord' href='/nlab/show/diff/SimpSet'>SSet</a> a <a class='existingWikiWord' href='/nlab/show/diff/simplicial+set'>simplicial set</a>, the cochain complex <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_44' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mo stretchy='false'>[</mo><mi>S</mi><mo>,</mo><mi>R</mi><mo stretchy='false'>]</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>C^\bullet([S,R])</annotation></semantics></math> is an <a class='existingWikiWord' href='/nlab/show/diff/E-infinity+algebra'>E-∞ algebra</a> apparently goes back to</p> <ul id='HinSch87'> <li><a class='existingWikiWord' href='/nlab/show/diff/Vladimir+Hinich'>V. Hinich</a> and <span class='newWikiWord'>V. Schechtman<a href='/nlab/new/V.+Schechtman'>?</a></span>, <em>On homotopy limits of homotopy algebras</em>, in <em>K-theory, arithmetic and geometry</em>, Lecture notes Vol. 1289, Berlin 1987 pp. 240–264</li> </ul> <p>A particularly clear exposition is in</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Michael+Mandell'>Michael Mandell</a>, <em>Cochain multiplication</em>, Amer. J. Math. 124 (2002)</li> </ul> <p>This in turn is nicely reviewed and spelled out in section 3 of</p> <ul id='May03'> <li><a class='existingWikiWord' href='/nlab/show/diff/Peter+May'>Peter May</a>, <em>Operads and sheaf cohomology</em> (2003). <a href='https://www.math.uchicago.edu/~may/PAPERS/Esheaf.pdf'>PDF</a>. (unpublished private notes – but maybe we get permission to upload them here?)</li> </ul> <p>These describe actions of the <a class='existingWikiWord' href='/nlab/show/diff/Eilenberg-Zilber+operad'>Eilenberg-Zilber operad</a> on <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_45' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mo stretchy='false'>[</mo><msup><mi>S</mi> <mo>•</mo></msup><mo>,</mo><mi>R</mi><mo stretchy='false'>]</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>C^\bullet([S^\bullet,R])</annotation></semantics></math>.</p> <p>An action of instead the <a class='existingWikiWord' href='/nlab/show/diff/Barratt-Eccles+operad'>Barratt-Eccles operad</a> is described in</p> <ul id='BerFre01'> <li><a class='existingWikiWord' href='/nlab/show/diff/Clemens+Berger'>Clemens Berger</a>, <a class='existingWikiWord' href='/nlab/show/diff/Benoit+Fresse'>Benoit Fresse</a> <em>Combinatorial operad actions on cochains</em> (<a href='http://arxiv.org/abs/math/0109158'>arXiv:0109158</a>)</li> </ul> <p>An action of a <a class='existingWikiWord' href='/nlab/show/diff/sequence+operad'>sequence operad</a>, which is isomorphic to the <span class='newWikiWord'>surjection operad<a href='/nlab/new/surjection+operad'>?</a></span> of Berger and Fresse was constructed by</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/James+McClure'>James E. McClure</a>, <a class='existingWikiWord' href='/nlab/show/diff/Jeff+Smith'>Jeffrey H. Smith</a>, <em>Multivariable cochains operations and little <math class='maruku-mathml' display='inline' id='mathml_ac9e164f21df977a8f871c78db9d67fa92bfa1b1_46' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>-cubes_</em> (<a href='https://arxiv.org/abs/math/0106024'>arXiv:math/0106024</a>)</li> </ul> <p> </p> </div> <div class="revisedby"> <p> Last revised on February 1, 2021 at 02:32:05. See the <a href="/nlab/history/cochain+on+a+simplicial+set" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/cochain+on+a+simplicial+set" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/10459/#Item_3">Discuss</a><span class="backintime"><a href="/nlab/revision/diff/cochain+on+a+simplicial+set/14" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/cochain+on+a+simplicial+set" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Hide changes</a><a href="/nlab/history/cochain+on+a+simplicial+set" accesskey="S" class="navlink" id="history" rel="nofollow">History (14 revisions)</a> <a href="/nlab/show/cochain+on+a+simplicial+set/cite" style="color: black">Cite</a> <a href="/nlab/print/cochain+on+a+simplicial+set" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/cochain+on+a+simplicial+set" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>