CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;32 of 32 results for author: <span class="mathjax">Mondal, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Mondal%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Mondal, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Mondal%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Mondal, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05727">arXiv:2411.05727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05727">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Cascade hot carriers via broad-band resonant tunneling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Paul%2C+K+K">Kamal Kumar Paul</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Ashok Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J+W">Jae Woo Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J">Ji-Hee Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+Y+H">Young Hee Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05727v1-abstract-short" style="display: inline;"> Extraction of hot carriers (HCs) over the band-edge is a key to harvest solar energy beyond Shockley-Queisser limit1. Graphene is known as a HC-layered material due to phonon bottleneck effect near Dirac point, but limited by low photocarrier density2. Graphene/transition metal dichalcogenide (TMD) heterostructures circumvent this issue by ultrafast carrier transfer from TMD to graphene2,3. Nevert&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05727v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05727v1-abstract-full" style="display: none;"> Extraction of hot carriers (HCs) over the band-edge is a key to harvest solar energy beyond Shockley-Queisser limit1. Graphene is known as a HC-layered material due to phonon bottleneck effect near Dirac point, but limited by low photocarrier density2. Graphene/transition metal dichalcogenide (TMD) heterostructures circumvent this issue by ultrafast carrier transfer from TMD to graphene2,3. Nevertheless, efficient extraction of photocurrent by means of HCs together with carrier multiplication (CM) is still missing. Here, we introduce an ultrathin broadband resonant tunneling (BRT) barrier, TiOX to efficiently extract photocurrent with simultaneous CM and HC measurements in MoS2/graphene/TiOX heterostructure. The BRT layer gives rise to boosting open circuit voltage which is linearly proportional to incident photon energy. Meanwhile, short circuit current rises rapidly over 2Eg with obvious CM feature. This was explained by defining the joint density of states between graphene and TiOX layer over positive and negative voltage. The broadband resonant tunneling states inherently constructed from oxidation states varying from Ti3+ to Ti4+ allow the ultrafast HCs to efficiently transfer from graphene to TiOX layer. We find that the number of available tunneling states is directly proportional to short circuit current, which is well corroborated with TiOX and MoS2 thickness variance. We obtained an optimum thickness of BRT layer of ~2.8 nm, yielding cascade open circuit voltage as high as ~0.7 V, two orders of magnitude higher than that without BRT layer to reach a record efficiency of 5.3% with improved fill factor owing to synergistic HC and CM conversion under 1-SUN with long-term stability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05727v1-abstract-full').style.display = 'none'; document.getElementById('2411.05727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05246">arXiv:2410.05246</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05246">pdf</a>, <a href="https://arxiv.org/format/2410.05246">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Study of Gas Electron Multiplier Detector Using ANSYS and GARFIELD$^{++}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+M+K+A">Md Kaosor Ali Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Angiras%2C+P">Poojan Angiras</a>, <a href="/search/physics?searchtype=author&amp;query=Rana%2C+S">Sachin Rana</a>, <a href="/search/physics?searchtype=author&amp;query=Sarkar%2C+A">A. Sarkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05246v1-abstract-short" style="display: inline;"> Micro-Pattern Gas Detectors (MPGDs) represent a category of gaseous ionization detectors that utilize microelectronics. They feature a remarkably small distance between the high potential difference anode and cathode electrodes and are typically filled with gases. When a high-energy particle interacts with the gas medium, it generates ions and electrons, which are subsequently accelerated in oppos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05246v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05246v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05246v1-abstract-full" style="display: none;"> Micro-Pattern Gas Detectors (MPGDs) represent a category of gaseous ionization detectors that utilize microelectronics. They feature a remarkably small distance between the high potential difference anode and cathode electrodes and are typically filled with gases. When a high-energy particle interacts with the gas medium, it generates ions and electrons, which are subsequently accelerated in opposite directions due to the applied electric field. Deflected electrons trigger further ionization to create electron-ion pairs through an avalanche process. These particles can be detected with very high precision at the readout. The Gas Electron Multiplier (GEM) is one type of MPGD constructed with a polyimide film sandwiched between two conductors under a high voltage difference. Microscopic holes in the foil facilitate electron avalanche. However, the current geometry of the GEM detector used in various experiments is sub-optimal for the gain and performance. In this study, we have modified the geometry of the GEM detector to enhance the gain, reduce ions backflow, and enhance the performance of the detector. We are proposing a new geometry of the GEM detector foil for higher gain, better performance, and durability. For this study, the geometry has been constructed in ANSYS, and further studies have been performed using Garfield$^{++}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05246v1-abstract-full').style.display = 'none'; document.getElementById('2410.05246v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08368">arXiv:2408.08368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08368">pdf</a>, <a href="https://arxiv.org/format/2408.08368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Spin Hall Nano-Antenna </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fabiha%2C+R">Raisa Fabiha</a>, <a href="/search/physics?searchtype=author&amp;query=Pal%2C+P+K">Pratap Kumar Pal</a>, <a href="/search/physics?searchtype=author&amp;query=Suche%2C+M">Michael Suche</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A+K">Amrit Kumar Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Topsakal%2C+E">Erdem Topsakal</a>, <a href="/search/physics?searchtype=author&amp;query=Barman%2C+A">Anjan Barman</a>, <a href="/search/physics?searchtype=author&amp;query=Bandyopadhyay%2C+S">Supriyo Bandyopadhyay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08368v1-abstract-short" style="display: inline;"> The spin Hall effect is a celebrated phenomenon in spintronics and magnetism that has found numerous applications in digital electronics (memory and logic), but very few in analog electronics. Practically, the only analog application in widespread use is the spin Hall nano-oscillator (SHNO) that delivers a high frequency alternating current or voltage to a load. Here, we report its analogue - a sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08368v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08368v1-abstract-full" style="display: none;"> The spin Hall effect is a celebrated phenomenon in spintronics and magnetism that has found numerous applications in digital electronics (memory and logic), but very few in analog electronics. Practically, the only analog application in widespread use is the spin Hall nano-oscillator (SHNO) that delivers a high frequency alternating current or voltage to a load. Here, we report its analogue - a spin Hall nano-antenna (SHNA) that radiates a high frequency electromagnetic wave (alternating electric/magnetic fields) into the surrounding medium. It can also radiate an acoustic wave in an underlying substrate if the nanomagnets are made of a magnetostrictive material. That makes it a dual electromagnetic/acoustic antenna. The SHNA is made of an array of ledged magnetostrictive nanomagnets deposited on a substrate, with a heavy metal nanostrip underlying/overlying the ledges. An alternating charge current passed through the nanostrip generates an alternating spin-orbit torque in the nanomagnets via the spin Hall effect which makes their magnetizations oscillate in time with the frequency of the current, producing confined spin waves (magnons), which radiate electromagnetic waves (photons) in space with the same frequency as the ac current. Despite being much smaller than the radiated wavelength, the SHNA surprisingly does not act as a point source which would radiate isotropically. Instead, there is clear directionality (anisotropy) in the radiation pattern, which is frequency-dependent. This is due to the (frequency-dependent) intrinsic anisotropy in the confined spin wave patterns generated within the nanomagnets, which effectively endows the &#34;point source&#34; with internal anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08368v1-abstract-full').style.display = 'none'; document.getElementById('2408.08368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17799">arXiv:2406.17799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17799">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamics of Coupled Metamaterials: Acoustic Black Hole, Local Resonator &amp; Multistable Oscillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Arghya Mondal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17799v1-abstract-short" style="display: inline;"> Vibration attenuation has played a crucial role in engineering structure, wherein metamaterials have found escalated usage. These structures can be cleverly built to be lightweight and have negative mass properties, which can attenuate waves at specific frequency bands. The first part studies wave propagation in meta-beam with coupled acoustic black holes and local resonators, whereas the second p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17799v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17799v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17799v1-abstract-full" style="display: none;"> Vibration attenuation has played a crucial role in engineering structure, wherein metamaterials have found escalated usage. These structures can be cleverly built to be lightweight and have negative mass properties, which can attenuate waves at specific frequency bands. The first part studies wave propagation in meta-beam with coupled acoustic black holes and local resonators, whereas the second part discusses multi-stable nonlinear oscillators in a 1D metamaterial chain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17799v1-abstract-full').style.display = 'none'; document.getElementById('2406.17799v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Master&#39;s thesis</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06040">arXiv:2405.06040</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06040">pdf</a>, <a href="https://arxiv.org/format/2405.06040">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Searches for the BSM scenarios at the LHC using decision tree based machine learning algorithms: A comparative study and review of Random Forest, Adaboost, XGboost and LightGBM frameworks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Choudhury%2C+A">Arghya Choudhury</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Arpita Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Sarkar%2C+S">Subhadeep Sarkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06040v1-abstract-short" style="display: inline;"> Machine learning algorithms are now being extensively used in our daily lives, spanning across diverse industries as well as academia. In the field of high energy physics (HEP), the most common and challenging task is separating a rare signal from a much larger background. The boosted decision tree (BDT) algorithm has been a cornerstone of the high energy physics for analyzing event triggering, pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06040v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06040v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06040v1-abstract-full" style="display: none;"> Machine learning algorithms are now being extensively used in our daily lives, spanning across diverse industries as well as academia. In the field of high energy physics (HEP), the most common and challenging task is separating a rare signal from a much larger background. The boosted decision tree (BDT) algorithm has been a cornerstone of the high energy physics for analyzing event triggering, particle identification, jet tagging, object reconstruction, event classification, and other related tasks for quite some time. This article presents a comprehensive overview of research conducted by both HEP experimental and phenomenological groups that utilize decision tree algorithms in the context of the Standard Model and Supersymmetry (SUSY). We also summarize the basic concept of machine learning and decision tree algorithm along with the working principle of \texttt{Random Forest}, \texttt{AdaBoost} and two gradient boosting frameworks, such as \texttt{XGBoost}, and \texttt{LightGBM}. Using a case study of electroweakino productions at the high luminosity LHC, we demonstrate how these algorithms lead to improvement in the search sensitivity compared to traditional cut-based methods in both compressed and non-compressed R-parity conserving SUSY scenarios. The effect of different hyperparameters and their optimization, feature importance study using SHapley values are also discussed in detail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06040v1-abstract-full').style.display = 'none'; document.getElementById('2405.06040v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">62 pages, 26 figures, 9 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02259">arXiv:2405.02259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.02259">pdf</a>, <a href="https://arxiv.org/format/2405.02259">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Spatio-temporal spectral transfers in fluid dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Avik Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Morten%2C+A+J">Andrew J. Morten</a>, <a href="/search/physics?searchtype=author&amp;query=Arbic%2C+B+K">Brian K. Arbic</a>, <a href="/search/physics?searchtype=author&amp;query=Flierl%2C+G+R">Glenn R. Flierl</a>, <a href="/search/physics?searchtype=author&amp;query=Scott%2C+R+B">Robert B. Scott</a>, <a href="/search/physics?searchtype=author&amp;query=Skitka%2C+J">Joseph Skitka</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02259v2-abstract-short" style="display: inline;"> Motivated by previous work on kinetic energy cascades in the ocean and atmosphere, we develop a spatio-temporal spectral transfer tool that can be used to study scales of variability in generalized dynamical systems. In particular, we use generalized time-frequency methods from signal analysis to broaden the applicability of frequency transfers from theoretical to practical applications such as th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02259v2-abstract-full').style.display = 'inline'; document.getElementById('2405.02259v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02259v2-abstract-full" style="display: none;"> Motivated by previous work on kinetic energy cascades in the ocean and atmosphere, we develop a spatio-temporal spectral transfer tool that can be used to study scales of variability in generalized dynamical systems. In particular, we use generalized time-frequency methods from signal analysis to broaden the applicability of frequency transfers from theoretical to practical applications such as the study of ocean or atmosphere data or simulation output. We also show that triad interactions in wavenumber used to study kinetic energy and enstrophy cascades can be generalized to study triad interactions in frequency or wavenumber-frequency. We study the effects of sweeping on the locality of frequency transfers and frequency triad interactions to better understand the locality of spatio-temporal frequency transfers. As an illustrative example, we use the spatio-temporal spectral transfer tool to study the results of a simulation of two-dimensional homogeneous isotropic turbulence. This simulated fluid is forced at a well-defined wavenumber and frequency with dissipation occurring at both large and small scales, making this one of the first studies of &#34;modulated turbulence&#34; in two dimensions. Our results show that the spatio-temporal transfers we develop in this paper are robust to potential practical problems such as low sampling rates or nonstationarity in time series of interest. We anticipate that this method will be a useful tool in studying scales of spatio-temporal variability in a wide range of fluids applications as higher resolution data and simulations become more widely available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02259v2-abstract-full').style.display = 'none'; document.getElementById('2405.02259v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 11 figures, 1 table. Avik Mondal and Andrew J Morten report themselves as co-first authors. Please cite as Mondal, Morten et al. Submitted to Phys Rev Fluids</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13554">arXiv:2404.13554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13554">pdf</a>, <a href="https://arxiv.org/ps/2404.13554">ps</a>, <a href="https://arxiv.org/format/2404.13554">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Simulating neuronal dynamics in fractional adaptive exponential integrate-and-fire models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fikl%2C+A">Alexandru Fikl</a>, <a href="/search/physics?searchtype=author&amp;query=Jhinga%2C+A">Aman Jhinga</a>, <a href="/search/physics?searchtype=author&amp;query=Kaslik%2C+E">Eva Kaslik</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Argha Mondal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13554v2-abstract-short" style="display: inline;"> We introduce an efficient discretization of a novel fractional-order adaptive exponential (FrAdEx) integrate-and-fire model, which is used to study the fractional-order dynamics of neuronal activities. The discretization is based on extension of L1-type methods that can accurately handle the exponential growth and the spiking mechanism of the model. This new method is implicit and uses adaptive ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13554v2-abstract-full').style.display = 'inline'; document.getElementById('2404.13554v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13554v2-abstract-full" style="display: none;"> We introduce an efficient discretization of a novel fractional-order adaptive exponential (FrAdEx) integrate-and-fire model, which is used to study the fractional-order dynamics of neuronal activities. The discretization is based on extension of L1-type methods that can accurately handle the exponential growth and the spiking mechanism of the model. This new method is implicit and uses adaptive time stepping to robustly handle the stiff system that arises due to the exponential term. The implicit nonlinear system can be solved exactly, without the need for iterative methods, making the scheme efficient while maintaining accuracy. We present a complete error model for the numerical scheme that can be extended to other integrate-and-fire models with minor changes. To show the feasibility of our approach, the numerical method has been rigorously validated and used to investigate several different spiking oscillations of the model. We observed that the fractional-order model is capable of predicting biophysical activities, which are interpreted through phase diagrams describing the transition from one firing type to another. This simple model shows significant promise, as it has sufficient expressive dynamics to reproduce several features qualitatively from a biophysical dynamical perspective. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13554v2-abstract-full').style.display = 'none'; document.getElementById('2404.13554v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 9 figures. v1: changed title, updated references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 26A33 (Primary) 37M05; 37N25; 45D05; 45G15; 65R20; 92C20 (Secondary) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12470">arXiv:2402.12470</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.12470">pdf</a>, <a href="https://arxiv.org/ps/2402.12470">ps</a>, <a href="https://arxiv.org/format/2402.12470">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Field-extension statistics of charged semiflexible polymers stretched with uniform electric fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Ananya Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Morrison%2C+G">Greg Morrison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12470v1-abstract-short" style="display: inline;"> Single-molecule force-extension experiments have allowed quantitative measurements of the mechanical responses of biomolecules to applied forces explaining their roles in key biological functions. Electrophoretic stretching of charged polymers such as DNA in uniform electric fields is one such example, currently, used for sequencing purposes. Field-extension statistics of charged polymers differ f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12470v1-abstract-full').style.display = 'inline'; document.getElementById('2402.12470v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12470v1-abstract-full" style="display: none;"> Single-molecule force-extension experiments have allowed quantitative measurements of the mechanical responses of biomolecules to applied forces explaining their roles in key biological functions. Electrophoretic stretching of charged polymers such as DNA in uniform electric fields is one such example, currently, used for sequencing purposes. Field-extension statistics of charged polymers differ from laser optical tweezer setups due to a non-uniform tension along the backbone of the chain, the effects of which remain poorly understood. In this paper, we modify an existing analytically tractable mean-field (MF) approach to account for the heterogeneity in tension for electric fields. Naively using this model for stretching of charged polymers such as DNA under electric fields results in local overstretching of the chain and gives inaccurate field-extension statistics. We improve this approach and account for the inhomogeneity in the tension by subdividing the chain into smaller segments while imposing the inextensibility of the chain. We find that the subdivided MF model shows better agreement with the simulations for the force-extension plots. We also show that using an isotropic mean-field model overestimates the longitudinal fluctuations both for tension forces as well as for fields. We correct the quantitative predictions for the fluctuations in the mean extension by numerically differentiating the field-extension plots. We also find that the subdivided MF model can accurately predict the statistics of experimentally relevant quantities, such as transverse fluctuations, due to the analytical tractability of the model. These field-extension predictions may be further used to introduce confinement effects in the subdivided MF model and develop a comprehensive understanding of sequencing technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12470v1-abstract-full').style.display = 'none'; document.getElementById('2402.12470v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16082">arXiv:2401.16082</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.16082">pdf</a>, <a href="https://arxiv.org/ps/2401.16082">ps</a>, <a href="https://arxiv.org/format/2401.16082">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Parametric analysis of electron beam quality in laser wakefield acceleration based on the truncated ionization injection mechanism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Maity%2C+S">Srimanta Maity</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Alamgir Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Vishnyakov%2C+E">Eugene Vishnyakov</a>, <a href="/search/physics?searchtype=author&amp;query=Molodozhentsev%2C+A">Alexander Molodozhentsev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16082v1-abstract-short" style="display: inline;"> Laser wakefield acceleration (LWFA) in a gas cell target separating injection and acceleration section has been investigated to produce high-quality electron beams. A detailed study has been performed on controlling the quality of accelerated electron beams using a combination of truncated ionization and density downramp injection mechanisms. For this purpose, extensive two-dimensional Particle-In&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16082v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16082v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16082v1-abstract-full" style="display: none;"> Laser wakefield acceleration (LWFA) in a gas cell target separating injection and acceleration section has been investigated to produce high-quality electron beams. A detailed study has been performed on controlling the quality of accelerated electron beams using a combination of truncated ionization and density downramp injection mechanisms. For this purpose, extensive two-dimensional Particle-In-Cell (PIC) simulations have been carried out considering a gas cell target consisting of a hydrogen and nitrogen mixture in the first part and pure hydrogen in the second part. Such a configuration can be realized experimentally using a specially designed capillary setup. Using the parameters already available in the existing experimental setups, we show the generation of an electron beam with a peak energy of 500-600 MeV, relative energy spread less than 5%, normalized beam emittance around 1.5 mm-mrad, and beam charge of 2-5 pC/micrometer. Our study reveals that the quality of the accelerated electron beam can be independently controlled and manipulated through the beam loading effect by tuning the parameters, e.g., laser focusing position, nitrogen concentration, and gas target profile. These simulation results will be useful for future experimental campaigns on LWFA, particularly at ELI Beamlines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16082v1-abstract-full').style.display = 'none'; document.getElementById('2401.16082v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 11 figures (accepted in Plasma Physics and Controlled Fusion, IOP Publishing)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.03979">arXiv:2301.03979</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.03979">pdf</a>, <a href="https://arxiv.org/format/2301.03979">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.107.053502">10.1103/PhysRevA.107.053502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Apodized photonic crystals: A non-dissipative system hosting multiple exceptional points </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Abhishek Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Sharma%2C+S">Shailja Sharma</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+R">Ritwick Das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.03979v1-abstract-short" style="display: inline;"> Optical systems obeying non-Hermitian dynamics have been the subject of intense and concerted investigation over the last two decades owing to their broad implications in photonics, acoustics, electronics as well as atomic physics. A vast majority of such investigations rely on a dissipative, balanced loss-gain system which introduces unavoidable noise and consequently, this limits the coherent co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03979v1-abstract-full').style.display = 'inline'; document.getElementById('2301.03979v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.03979v1-abstract-full" style="display: none;"> Optical systems obeying non-Hermitian dynamics have been the subject of intense and concerted investigation over the last two decades owing to their broad implications in photonics, acoustics, electronics as well as atomic physics. A vast majority of such investigations rely on a dissipative, balanced loss-gain system which introduces unavoidable noise and consequently, this limits the coherent control of propagation dynamics. Here, we show that an all-dielectric, non-dissipative photonic crystal (PC) could host, at least two exceptional points in its eigenvalue spectrum. By introducing optimum apodization in the PC architecture, namely 1D-APC, we show that such a configuration supports a spectrum of exceptional points which distinctly demarcates the PT-symmetric region from the region where PT -symmetry is broken in the parameter space. The analytical framework allows us to estimate the geometric phase of the reflected beam and derive the constraint that governs the excitation of topologically-protected optical Tamm-plasmon modes in 1D-APCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03979v1-abstract-full').style.display = 'none'; document.getElementById('2301.03979v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07736">arXiv:2210.07736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.07736">pdf</a>, <a href="https://arxiv.org/format/2210.07736">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.496686">10.1364/OE.496686 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-harmonic generation in liquids with few-cycle pulses: effect of laser-pulse duration on the cut-off energy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Angana Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Waser%2C+B">Benedikt Waser</a>, <a href="/search/physics?searchtype=author&amp;query=Balciunas%2C+T">Tadas Balciunas</a>, <a href="/search/physics?searchtype=author&amp;query=Neufeld%2C+O">Ofer Neufeld</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+Z">Zhong Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Tancogne-Dejean%2C+N">Nicolas Tancogne-Dejean</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/physics?searchtype=author&amp;query=W%C3%B6rner%2C+H+J">Hans Jakob W枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07736v1-abstract-short" style="display: inline;"> High-harmonic generation (HHG) in liquids is opening new opportunities for attosecond light sources and attosecond time-resolved studies of dynamics in the liquid phase. In gas-phase HHG, few-cycle pulses are routinely used to create isolated attosecond pulses and to extend the cut-off energy. Here, we study the properties of HHG in liquids, including water and several alcohols, by continuously tu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07736v1-abstract-full').style.display = 'inline'; document.getElementById('2210.07736v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07736v1-abstract-full" style="display: none;"> High-harmonic generation (HHG) in liquids is opening new opportunities for attosecond light sources and attosecond time-resolved studies of dynamics in the liquid phase. In gas-phase HHG, few-cycle pulses are routinely used to create isolated attosecond pulses and to extend the cut-off energy. Here, we study the properties of HHG in liquids, including water and several alcohols, by continuously tuning the pulse duration of a mid-infrared driver from the multi- to the sub-two-cycle regime. Similar to the gas phase, we observe the transition from discrete odd-order harmonics to continuous extreme-ultraviolet emission. However, the cut-off energy is shown to be entirely independent of the pulse duration. This observation is confirmed by ab-initio simulations of HHG in large clusters. Our results support the notion that the cut-off energy is a fundamental property of the liquid, independent of the driving-pulse properties. Combined with the recently reported wavelength-independence of the cutoff, these results confirm the direct sensitivity of HHG to the mean-free paths of slow electrons in liquids. Our results additionally imply that few-cycle mid-infrared laser pulses are suitable drivers for generating isolated attosecond pulses from liquids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07736v1-abstract-full').style.display = 'none'; document.getElementById('2210.07736v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14078">arXiv:2208.14078</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.14078">pdf</a>, <a href="https://arxiv.org/format/2208.14078">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0124041">10.1063/5.0124041 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Manifestations of the structural origin of supercooled water&#39;s anomalies in the heterogeneous relaxation on the potential energy landscape </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Arijit Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=R.%2C+G">Gadha R.</a>, <a href="/search/physics?searchtype=author&amp;query=Singh%2C+R+S">Rakesh S. Singh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14078v1-abstract-short" style="display: inline;"> Liquid water is well-known for its intriguing thermodynamic anomalies in the supercooled state. The phenomenological two-state models - based on the assumption of the existence of two types of competing local states (or, structures) in liquid water - have been extremely successful in describing water&#39;s thermodynamic anomalies. However, the precise structural features of these competing local state&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14078v1-abstract-full').style.display = 'inline'; document.getElementById('2208.14078v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14078v1-abstract-full" style="display: none;"> Liquid water is well-known for its intriguing thermodynamic anomalies in the supercooled state. The phenomenological two-state models - based on the assumption of the existence of two types of competing local states (or, structures) in liquid water - have been extremely successful in describing water&#39;s thermodynamic anomalies. However, the precise structural features of these competing local states in liquid water still remain elusive. Here, we have employed a geometrical order parameter-free approach to unambiguously identify the two types of competing local states -- entropically and energetically-favored -- with significantly different structural and energetic features in the TIP4P/2005 liquid water. This identification is based on the heterogeneous structural relaxation of the system in the potential energy landscape (PEL) during the steepest-descent energy minimization. This heterogeneous relaxation is characterized using order parameters inspired by the spin-glass transition in frustrated magnetic systems. We have further established a direct relationship between the population fluctuation of the two states and the anomalous behavior of the heat capacity in supercooled water. The composition-dependent spatial distribution of the entropically-favored local states shows an interesting crossover from a spanning network-like single cluster to the spatially delocalized clusters in the close vicinity of the Widom line. Additionally, this study establishes a direct relationship between the topographic features of the PEL and the water&#39;s thermodynamic anomalies in the supercooled state and provides alternate markers (in addition to the locus of maxima of thermodynamic response functions) for the Widom line in the phase plane. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14078v1-abstract-full').style.display = 'none'; document.getElementById('2208.14078v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03425">arXiv:2208.03425</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.03425">pdf</a>, <a href="https://arxiv.org/format/2208.03425">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.vacuum.2023.112055">10.1016/j.vacuum.2023.112055 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lithium fluoride (LiF) target preparation for nuclear physics experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sahoo%2C+L+K">Lalit Kumar Sahoo</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A+K">Ashok Kumar Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Basak%2C+D">Dipali Basak</a>, <a href="/search/physics?searchtype=author&amp;query=Basu%2C+C">Chinmay Basu</a>, <a href="/search/physics?searchtype=author&amp;query=Karan%2C+S+K">Suraj Kumar Karan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03425v1-abstract-short" style="display: inline;"> The LiF target preparation on self-supporting Ag backing (LiF/Ag) is discussed in a detailed manner using vacuum evaporation process. The target thickness is measured using the energy loss of three line alpha source. 183.74 渭g/cm 2 thickness of LiF is achieved through the evaporation process. Good uniformity of targets is observed. Non-uniformity in targets is found within 6 %. The XPS analysis co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03425v1-abstract-full').style.display = 'inline'; document.getElementById('2208.03425v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03425v1-abstract-full" style="display: none;"> The LiF target preparation on self-supporting Ag backing (LiF/Ag) is discussed in a detailed manner using vacuum evaporation process. The target thickness is measured using the energy loss of three line alpha source. 183.74 渭g/cm 2 thickness of LiF is achieved through the evaporation process. Good uniformity of targets is observed. Non-uniformity in targets is found within 6 %. The XPS analysis confirms the presence of both the F and Li atoms on sample surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03425v1-abstract-full').style.display = 'none'; document.getElementById('2208.03425v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Vacuum 212 (2023) 112055 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.07921">arXiv:2206.07921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.07921">pdf</a>, <a href="https://arxiv.org/format/2206.07921">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0104910">10.1063/5.0104910 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Compression-induced continuous phase transition in the buckling of a semiflexible filament for two and three dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Ananya Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Morrison%2C+G">Greg Morrison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.07921v1-abstract-short" style="display: inline;"> The ability of biomolecules to exert forces on their surroundings or resist compression from the environment is essential in a variety of biologically relevant contexts. As has been understood for centuries, slender rods can only be compressed so far until they buckle, adopting an intrinsically bent state that may be unable to bear a compressive load. In the low-temperature limit and for a constan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07921v1-abstract-full').style.display = 'inline'; document.getElementById('2206.07921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.07921v1-abstract-full" style="display: none;"> The ability of biomolecules to exert forces on their surroundings or resist compression from the environment is essential in a variety of biologically relevant contexts. As has been understood for centuries, slender rods can only be compressed so far until they buckle, adopting an intrinsically bent state that may be unable to bear a compressive load. In the low-temperature limit and for a constant compressive force, Euler buckling theory predicts a sudden transition from a compressed to a bent state in these slender rods. In this paper, we use a mean-field theory to show that if a semiflexible chain is compressed at a finite temperature with a fixed end-to-end distance (permitting fluctuations in the compressive forces), it exhibits a continuous phase transition to a buckled state at a critical level of compression, and we determine a quantitatively accurate prediction of the transverse position distribution function of the midpoint of the chain that indicates the transition. We find the mean compressive forces are non-monotonic as the extension of the filament varies, consistent with the observation that strongly buckled filaments are less able to bear an external load. We also find that for the fixed extension (isometric) ensemble that the buckling transition does not coincide with the local minimum of the mean force (in contrast to Euler buckling). We also show the theory is highly sensitive to fluctuations in length, and that the buckling transition can still be accurately recovered by accounting for those fluctuations. These predictions may be useful in understanding the behavior of filamentous biomolecules compressed by fluctuating forces, relevant in a variety of biological contexts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07921v1-abstract-full').style.display = 'none'; document.getElementById('2206.07921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07077">arXiv:2203.07077</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07077">pdf</a>, <a href="https://arxiv.org/format/2203.07077">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> </div> <p class="title is-5 mathjax"> Dynamical analysis of the infection status in diverse communities due to COVID-19 using a modified SIR model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cooper%2C+I">Ian Cooper</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Argha Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Antonopoulos%2C+C+G">Chris G. Antonopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Mishra%2C+A">Arindam Mishra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07077v1-abstract-short" style="display: inline;"> In this article, we model and study the spread of COVID-19 in Germany, Japan, India and highly impacted states in India, i.e., in Delhi, Maharashtra, West Bengal, Kerala and Karnataka. We consider recorded data published in Worldometers and COVID-19 India websites from April 2020 to July 2021, including periods of interest where these countries and states were hit severely by the pandemic. Our met&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07077v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07077v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07077v1-abstract-full" style="display: none;"> In this article, we model and study the spread of COVID-19 in Germany, Japan, India and highly impacted states in India, i.e., in Delhi, Maharashtra, West Bengal, Kerala and Karnataka. We consider recorded data published in Worldometers and COVID-19 India websites from April 2020 to July 2021, including periods of interest where these countries and states were hit severely by the pandemic. Our methodology is based on the classic susceptible-infected-removed (SIR) model and can track the evolution of infections in communities, where we (a) allow for the susceptible and infected populations to be reset at times where surges, outbreaks or secondary waves appear in the recorded data sets, (b) consider the parameters in the SIR model that represent the effective transmission and recovery rates to be functions of time and (c) estimate the number of deaths by combining the model solutions with the recorded data sets to approximate them between consecutive surges, outbreaks or secondary waves, providing a more accurate estimate. We report on the status of the current infections in these countries and states, and the infections and deaths in India and Japan. Our model can adapt to the recorded data and can be used to explain them and importantly, to forecast the number of infected, recovered, removed and dead individuals, as well as it can estimate the effective infection and recovery rates as functions of time, assuming an outbreak occurs at a given time. The latter can be used to forecast the future reproduction number and together with the forecast on the number of infected and dead individuals, our approach can be used to suggest the implementation of intervention strategies and mitigation policies to keep at bay the number of infected and dead individuals. This can help reduce the impact of the spread around the world and improve the wellbeing of people. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07077v1-abstract-full').style.display = 'none'; document.getElementById('2203.07077v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.03617">arXiv:2203.03617</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.03617">pdf</a>, <a href="https://arxiv.org/format/2203.03617">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02214-0">10.1038/s41567-023-02214-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the low-energy electron-scattering dynamics in liquids with high-harmonic spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Angana Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Neufeld%2C+O">Ofer Neufeld</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+Z">Zhong Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Nourbakhsh%2C+Z">Zahra Nourbakhsh</a>, <a href="/search/physics?searchtype=author&amp;query=Svoboda%2C+V">Vit Svoboda</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/physics?searchtype=author&amp;query=Tancogne-Dejean%2C+N">Nicolas Tancogne-Dejean</a>, <a href="/search/physics?searchtype=author&amp;query=W%C3%B6rner%2C+H+J">Hans Jakob W枚rner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.03617v2-abstract-short" style="display: inline;"> High-harmonic spectroscopy (HHS) is a nonlinear all-optical technique with inherent attosecond temporal resolution, which has been applied successfully to a broad variety of systems in the gas phase and solid state. Here, we extend HHS to the liquid phase, and uncover the mechanism of high-harmonic generation (HHG) for this phase of matter. Studying HHG over a broad range of wavelengths and intens&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03617v2-abstract-full').style.display = 'inline'; document.getElementById('2203.03617v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.03617v2-abstract-full" style="display: none;"> High-harmonic spectroscopy (HHS) is a nonlinear all-optical technique with inherent attosecond temporal resolution, which has been applied successfully to a broad variety of systems in the gas phase and solid state. Here, we extend HHS to the liquid phase, and uncover the mechanism of high-harmonic generation (HHG) for this phase of matter. Studying HHG over a broad range of wavelengths and intensities, we show that the cut-off ($E_c$) is independent of the wavelength beyond a threshold intensity, and find that $E_c$ is a characteristic property of the studied liquid. We explain these observations within an intuitive semi-classical model based on electron trajectories that are limited by scattering to a characteristic length, which is connected to the electron mean-free path. Our model is validated against rigorous multi-electron time-dependent density-functional theory calculations in, both, supercells of liquid water with periodic boundary conditions, and large clusters of a variety of liquids. These simulations confirm our interpretation and thereby clarify the mechanism of HHG in liquids. Our results demonstrate a new, all-optical access to effective mean-free paths of slow electrons ($\leq$10 eV) in liquids, in a regime that is inaccessible to accurate calculations, but is critical for the understanding of radiation damage to living tissue. Our work also establishes the possibility of resolving sub-femtosecond electron dynamics in liquids, which offers a novel, all-optical approach to attosecond spectroscopy of chemical processes in their native liquid environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03617v2-abstract-full').style.display = 'none'; document.getElementById('2203.03617v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.05227">arXiv:2108.05227</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.05227">pdf</a>, <a href="https://arxiv.org/format/2108.05227">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.446783">10.1364/OE.446783 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometric representation of adiabatic distributed-Bragg-reflectors and broadening the photonic bandgap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sharma%2C+S">Shailja Sharma</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Abhishek Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+R">Ritwick Das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.05227v1-abstract-short" style="display: inline;"> Adiabatic following has been an widely-employed technique for achieving near-complete population transfer in a `two-level&#39; quantum mechanical system. The theoretical basis, however, could be generalized to a broad class of systems exhibiting SU(2) symmetry. In the present work, we present an analogy of population transfer dynamics of two level atomic system with that of light propagation in a clas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05227v1-abstract-full').style.display = 'inline'; document.getElementById('2108.05227v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.05227v1-abstract-full" style="display: none;"> Adiabatic following has been an widely-employed technique for achieving near-complete population transfer in a `two-level&#39; quantum mechanical system. The theoretical basis, however, could be generalized to a broad class of systems exhibiting SU(2) symmetry. In the present work, we present an analogy of population transfer dynamics of two level atomic system with that of light propagation in a classical `one-dimensional&#39; photonic crystal, commonly known as distributed-Bragg-reflector (DBR). This formalism facilitates in adapting the idea of adiabatic following, more precisely the rapid adiabatic passage (RAP) which is usually encountered in a broad class of quantum-mechanical systems. We present a chirped DBR configuration in which the adiabatic constraints are satisfied by virtue of optimally chirping the DBR. The reflection spectrum of the configuration exhibit broadening of photonic bandgap (PBG) in addition to a varying degree of suppression of sharp reflection peaks in the transmission band. The intermodal coupling between counter-propagating modes as well as their phase-mismatch, for the DBR configuration, exhibits a longitudinal variation which is usually observed in `Allen-Eberly&#39; scheme of adiabatic population transfer in two-level atomic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05227v1-abstract-full').style.display = 'none'; document.getElementById('2108.05227v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures. arXiv admin note: substantial text overlap with arXiv:2107.08220</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.04489">arXiv:2108.04489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.04489">pdf</a>, <a href="https://arxiv.org/format/2108.04489">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.437958">10.1364/OL.437958 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Infrared rainbow trapping via optical Tamm modes in one-dimensional dielectric chirped photonic crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sharma%2C+S">Shailja Sharma</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Abhishek Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+R">Ritwick Das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.04489v1-abstract-short" style="display: inline;"> The phenomenon of trapping broad spectrum of light is known as `rainbow trapping&#39; and achieved using all-dielectric, hybrid metallo-dielectric or all-metallic configurations. In the latter cases, unavoidable ohmic losses result in sub-picosecond trapped-mode lifetimes. For all practical purposes, novel strategies are required to be devised for trapping and subsequently, releasing broadband electro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04489v1-abstract-full').style.display = 'inline'; document.getElementById('2108.04489v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.04489v1-abstract-full" style="display: none;"> The phenomenon of trapping broad spectrum of light is known as `rainbow trapping&#39; and achieved using all-dielectric, hybrid metallo-dielectric or all-metallic configurations. In the latter cases, unavoidable ohmic losses result in sub-picosecond trapped-mode lifetimes. For all practical purposes, novel strategies are required to be devised for trapping and subsequently, releasing broadband electromagnetic (em) field with lifetime &gt; 1 ps. We present a rainbow trapping configuration using the excitation of multiple optical Tamm (OT) modes in an one-dimensional chirped photonic crystal (PC) designed for adiabatically coupling counter-propagating modes. In the geometry, the multiple pi phase jumps enable excitation of OT modes when a thin plasmon-active metal is placed adjacent to the terminating layer of chirped-PC (CPC). The strongly localized OT resonances are spatially separated in the chirped-PC geometry and their group-velocities reduce to as low as 0.17c. The time-domain simulations elucidate localization takes place in the dielectric sections of CPC which manifest into lifetimes 3 ps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04489v1-abstract-full').style.display = 'none'; document.getElementById('2108.04489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.08220">arXiv:2107.08220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.08220">pdf</a>, <a href="https://arxiv.org/format/2107.08220">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Broadening the photonic bandgap in adiabatic distributed-Bragg-reflectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sharma%2C+S">Shailja Sharma</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Abhishek Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+R">Ritwick Das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.08220v1-abstract-short" style="display: inline;"> Adiabatic following has been an widely-employed technique for achieving near-complete population transfer in a two-level quantum mechanical system. The theoretical basis, however, could be generalized to a broad class of systems exhibiting SU(2) symmetry. In the present work, we present an analogy of population transfer dynamics of two level system with that of light propagation in a classical one&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08220v1-abstract-full').style.display = 'inline'; document.getElementById('2107.08220v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.08220v1-abstract-full" style="display: none;"> Adiabatic following has been an widely-employed technique for achieving near-complete population transfer in a two-level quantum mechanical system. The theoretical basis, however, could be generalized to a broad class of systems exhibiting SU(2) symmetry. In the present work, we present an analogy of population transfer dynamics of two level system with that of light propagation in a classical one-dimensional photonic crystal, commonly known as distributed-Bragg-reflector (DBR).This formalism facilitates in adapting the idea of adiabatic following, more precisely the rapid adiabatic passage (RAP) which is usually encountered in a broad class of quantum-mechanical systems.We present two different DBR configurations in which the adiabatic constraints are obeyed along the DBR length by virtue of optimum design. The reflection spectrum for both the configurations exhibit broadening of photonic bandgap (PBG) in addition to a varying degree of suppression of sharp transmission resonances. The inter modal coupling between counter-propagating modes as well as their phase-mismatch, for both the DBR configuration, exhibits a longitudinal variation which is usually observed in Allen-Eberly scheme of adiabatic population transfer in two-level atomic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08220v1-abstract-full').style.display = 'none'; document.getElementById('2107.08220v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03866">arXiv:2107.03866</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03866">pdf</a>, <a href="https://arxiv.org/format/2107.03866">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Laser structured micro-targets generate MeV electron temperature at $4 \times 10^{16}$ W/cm$^2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Angana Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Sabui%2C+R">Ratul Sabui</a>, <a href="/search/physics?searchtype=author&amp;query=Tata%2C+S">Sheroy Tata</a>, <a href="/search/physics?searchtype=author&amp;query=Trines%2C+R+M+G+M">R. M. G. M Trines</a>, <a href="/search/physics?searchtype=author&amp;query=Rahul%2C+S+V">S. V. Rahul</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">Feiyu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Sarkar%2C+S">Soubhik Sarkar</a>, <a href="/search/physics?searchtype=author&amp;query=Trickey%2C+W">William Trickey</a>, <a href="/search/physics?searchtype=author&amp;query=Kumar%2C+R+Y">Rakesh Y. Kumar</a>, <a href="/search/physics?searchtype=author&amp;query=Rajak%2C+D">Debobrata Rajak</a>, <a href="/search/physics?searchtype=author&amp;query=Pasley%2C+J">John Pasley</a>, <a href="/search/physics?searchtype=author&amp;query=Sheng%2C+Z">Zhengming Sheng</a>, <a href="/search/physics?searchtype=author&amp;query=Jha%2C+J">J. Jha</a>, <a href="/search/physics?searchtype=author&amp;query=Anand%2C+M">M. Anand</a>, <a href="/search/physics?searchtype=author&amp;query=Gopal%2C+R">Ram Gopal</a>, <a href="/search/physics?searchtype=author&amp;query=Robinson%2C+A+P+L">A. P. L. Robinson</a>, <a href="/search/physics?searchtype=author&amp;query=Krishnamurthy%2C+M">M. Krishnamurthy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03866v2-abstract-short" style="display: inline;"> Relativistic temperature electrons higher than 0.5 MeV are generated typically with laser intensities of about 10$^{18}$ W/cm$^{2}$. Their generation with high repetition rate lasers that operate at non-relativistic intensities ($\simeq$10$^{16}$ W/cm$^{2}$) is cardinal for the realization of compact, ultra-short, bench-top electron sources. New strategies, capable of exploiting different aspects&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03866v2-abstract-full').style.display = 'inline'; document.getElementById('2107.03866v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03866v2-abstract-full" style="display: none;"> Relativistic temperature electrons higher than 0.5 MeV are generated typically with laser intensities of about 10$^{18}$ W/cm$^{2}$. Their generation with high repetition rate lasers that operate at non-relativistic intensities ($\simeq$10$^{16}$ W/cm$^{2}$) is cardinal for the realization of compact, ultra-short, bench-top electron sources. New strategies, capable of exploiting different aspects of laser-plasma interaction, are necessary for reducing the required intensity. We report here, a novel technique of dynamic target structuring of microdroplets, capable of generating 200 keV and 1 MeV electron temperatures at 1/100th of the intensity required by ponderomotive scaling($10^{18}$ W/cm$^2$) to generate relativistic electron temperature. Combining the concepts of pre-plasma tailoring, optimized scale length and micro-optics, this method achieves two-plasmon decay boosted electron acceleration with &#34;non-ideal&#34; ultrashort (25 fs) pulses at $4\times10^{16}$ W/cm$^2$, only. With shot repeatability at kHz, this precise in-situ targetry produces directed, imaging quality beam-like electron emission up to 6 MeV with milli-joule class lasers, that can be transformational for time-resolved, microscopic studies in all fields of science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03866v2-abstract-full').style.display = 'none'; document.getElementById('2107.03866v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text- 9 pages, 4 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13226">arXiv:2009.13226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.13226">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.optmat.2021.111459">10.1016/j.optmat.2021.111459 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulse-duration dependence of saturable and reverse saturable absorption in ZnCo2O4 microflowers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Khan%2C+P">Pritam Khan</a>, <a href="/search/physics?searchtype=author&amp;query=Yadav%2C+R+K">Rajesh Kumar Yadav</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Anirban Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Rout%2C+C+S">Chandra Sekhar Rout</a>, <a href="/search/physics?searchtype=author&amp;query=Adarsh%2C+K+V">K. V. Adarsh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13226v2-abstract-short" style="display: inline;"> We employed open-aperture Z-scan technique to unveil the third-order optical nonlinearity in ZnCo2O4 (ZCO) microflowers. Our results indicate that intersystem crossing (ISC) lifetime can be used as simple tool to demonstrate remarkably contrasting optical nonlinearity in ZCO. Ultrafast transient absorption measurements reveal that ISC from singlet to triplet state takes place in 5 ps. For femtosec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13226v2-abstract-full').style.display = 'inline'; document.getElementById('2009.13226v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13226v2-abstract-full" style="display: none;"> We employed open-aperture Z-scan technique to unveil the third-order optical nonlinearity in ZnCo2O4 (ZCO) microflowers. Our results indicate that intersystem crossing (ISC) lifetime can be used as simple tool to demonstrate remarkably contrasting optical nonlinearity in ZCO. Ultrafast transient absorption measurements reveal that ISC from singlet to triplet state takes place in 5 ps. For femtosecond laser pulses, when the pulse duration is shorter than ISC lifetime, saturable absorption (SA) takes place for all intensities. On the contrary, when the pulse duration is longer than ISC for nanosecond excitation, we observe transition from SA to reverse SA (RSA) at higher intensities via excited-state absorption. We envisage that benefiting from SA and RSA, ZCO emerges as potential candidate for mode locking and optical limiting devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13226v2-abstract-full').style.display = 'none'; document.getElementById('2009.13226v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.02032">arXiv:2007.02032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.02032">pdf</a>, <a href="https://arxiv.org/format/2007.02032">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2020.110298">10.1016/j.chaos.2020.110298 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cooper%2C+I">Ian Cooper</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Argha Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Antonopoulos%2C+C+G">Chris G. Antonopoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.02032v1-abstract-short" style="display: inline;"> In this paper, a susceptible-infected-removed (SIR) model has been used to track the evolution of the spread of the COVID-19 virus in four countries of interest. In particular, the epidemic model, that depends on some basic characteristics, has been applied to model the time evolution of the disease in Italy, India, South Korea and Iran. The economic, social and health consequences of the spread o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.02032v1-abstract-full').style.display = 'inline'; document.getElementById('2007.02032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.02032v1-abstract-full" style="display: none;"> In this paper, a susceptible-infected-removed (SIR) model has been used to track the evolution of the spread of the COVID-19 virus in four countries of interest. In particular, the epidemic model, that depends on some basic characteristics, has been applied to model the time evolution of the disease in Italy, India, South Korea and Iran. The economic, social and health consequences of the spread of the virus have been cataclysmic. Hence, it is essential that available mathematical models can be developed and used for the comparison to be made between published data sets and model predictions. The predictions estimated from the SIR model here, can be used in both the qualitative and quantitative analysis of the spread. It gives an insight into the spread of the virus that the published data alone cannot do by updating them and the model on a daily basis. For example, it is possible to detect the early onset of a spike in infections or the development of a second wave using our modeling approach. We considered data from March to June, 2020, when different communities are severely affected. We demonstrate predictions depending on the model&#39;s parameters related to the spread of COVID-19 until September 2020. By comparing the published data and model results, we conclude that in this way, it may be possible to better reflect the success or failure of the adequate measures implemented by governments and individuals to mitigate and control the current pandemic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.02032v1-abstract-full').style.display = 'none'; document.getElementById('2007.02032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.10651">arXiv:2006.10651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.10651">pdf</a>, <a href="https://arxiv.org/format/2006.10651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2020.110057">10.1016/j.chaos.2020.110057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A SIR model assumption for the spread of COVID-19 in different communities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cooper%2C+I">Ian Cooper</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Argha Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Antonopoulos%2C+C+G">Chris G. Antonopoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.10651v1-abstract-short" style="display: inline;"> In this paper, we study the effectiveness of the modelling approach on the pandemic due to the spreading of the novel COVID-19 disease and develop a susceptible-infected-removed (SIR) model that provides a theoretical framework to investigate its spread within a community. Here, the model is based upon the well-known susceptible-infected-removed (SIR) model with the difference that a total populat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10651v1-abstract-full').style.display = 'inline'; document.getElementById('2006.10651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.10651v1-abstract-full" style="display: none;"> In this paper, we study the effectiveness of the modelling approach on the pandemic due to the spreading of the novel COVID-19 disease and develop a susceptible-infected-removed (SIR) model that provides a theoretical framework to investigate its spread within a community. Here, the model is based upon the well-known susceptible-infected-removed (SIR) model with the difference that a total population is not defined or kept constant per se and the number of susceptible individuals does not decline monotonically. To the contrary, as we show herein, it can be increased in surge periods! In particular, we investigate the time evolution of different populations and monitor diverse significant parameters for the spread of the disease in various communities, represented by countries and the state of Texas in the USA. The SIR model can provide us with insights and predictions of the spread of the virus in communities that the recorded data alone cannot. Our work shows the importance of modelling the spread of COVID-19 by the SIR model that we propose here, as it can help to assess the impact of the disease by offering valuable predictions. Our analysis takes into account data from January to June, 2020, the period that contains the data before and during the implementation of strict and control measures. We propose predictions on various parameters related to the spread of COVID-19 and on the number of susceptible, infected and removed populations until September 2020. By comparing the recorded data with the data from our modelling approaches, we deduce that the spread of COVID-19 can be under control in all communities considered, if proper restrictions and strong policies are implemented to control the infection rates early from the spread of the disease. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10651v1-abstract-full').style.display = 'none'; document.getElementById('2006.10651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.02466">arXiv:2005.02466</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.02466">pdf</a>, <a href="https://arxiv.org/format/2005.02466">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergence of mixed mode oscillations in random networks of diverse excitable neurons: the role of neighbors and electrical coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ghosh%2C+S">Subrata Ghosh</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Argha Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+P">Peng Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Mishra%2C+A">Arindam Mishra</a>, <a href="/search/physics?searchtype=author&amp;query=Dana%2C+S+K">Syamal Kumar Dana</a>, <a href="/search/physics?searchtype=author&amp;query=Antonopoulos%2C+C+G">Chris G. Antonopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Hens%2C+C">Chittaranjan Hens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.02466v1-abstract-short" style="display: inline;"> In this paper, we focus on the emergence of diverse neuronal oscillations arising in a mixed population of neurons with different excitability properties. These properties produce mixed mode oscillations (MMOs) characterized by the combination of large amplitudes and alternate subthreshold or small amplitude oscillations. Considering the biophysically plausible, Izhikevich neuron model, we demonst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02466v1-abstract-full').style.display = 'inline'; document.getElementById('2005.02466v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.02466v1-abstract-full" style="display: none;"> In this paper, we focus on the emergence of diverse neuronal oscillations arising in a mixed population of neurons with different excitability properties. These properties produce mixed mode oscillations (MMOs) characterized by the combination of large amplitudes and alternate subthreshold or small amplitude oscillations. Considering the biophysically plausible, Izhikevich neuron model, we demonstrate that various MMOs, including MMBOs (mixed mode bursting oscillations) and synchronized tonic spiking appear in a randomly connected network of neurons, where a fraction of them is in a quiescent (silent) state and the rest in self-oscillatory (firing) states. We show that MMOs and other patterns of neural activity depend on the number of oscillatory neighbors of quiescent nodes and on electrical coupling strengths. Our results are verified by constructing a reduced-order network model and supported by systematic bifurcation diagrams as well as for a small-world network. Our results suggest that, for weak couplings, MMOs appear due to the de-synchronization of a large number of quiescent neurons in the networks. The quiescent neurons together with the firing neurons produce high frequency oscillations and bursting activity. The overarching goal is to uncover a favorable network architecture and suitable parameter spaces where Izhikevich model neurons generate diverse responses ranging from MMOs to tonic spiking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02466v1-abstract-full').style.display = 'none'; document.getElementById('2005.02466v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Frontiers in Computational Neuroscience</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.06356">arXiv:2004.06356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.06356">pdf</a>, <a href="https://arxiv.org/format/2004.06356">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0009828">10.1063/5.0009828 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct measurement of interfacial Dzyaloshinskii-Moriya interaction at the MoS$_{\rm 2}$/Ni$_{80}$Fe$_{20}$ interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kumar%2C+A">Akash Kumar</a>, <a href="/search/physics?searchtype=author&amp;query=Chaurasiya%2C+A+K">Avinash Kumar Chaurasiya</a>, <a href="/search/physics?searchtype=author&amp;query=Chowdhury%2C+N">Niru Chowdhury</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A+K">Amrit Kumar Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Bansal%2C+R">Rajni Bansal</a>, <a href="/search/physics?searchtype=author&amp;query=Barvat%2C+A">Arun Barvat</a>, <a href="/search/physics?searchtype=author&amp;query=Khanna%2C+S+P">Suraj P Khanna</a>, <a href="/search/physics?searchtype=author&amp;query=Pal%2C+P">Prabir Pal</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhary%2C+S">Sujeet Chaudhary</a>, <a href="/search/physics?searchtype=author&amp;query=Barman%2C+A">Anjan Barman</a>, <a href="/search/physics?searchtype=author&amp;query=Muduli%2C+P+K">P. K. Muduli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.06356v2-abstract-short" style="display: inline;"> We report on a direct measurement of sizable interfacial Dzyaloshinskii-Moriya interaction (iDMI) at the interface of two-dimensional transition metal dichalcogenide (2D-TMD), MoS$_{\rm 2}$ and Ni$_{80}$Fe$_{20}$ (Py) using Brillouin light scattering spectroscopy. A clear asymmetry in spin-wave dispersion is measured in MoS$_{\rm 2}$/Py/Ta, while no such asymmetry is detected in the reference Py/T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.06356v2-abstract-full').style.display = 'inline'; document.getElementById('2004.06356v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.06356v2-abstract-full" style="display: none;"> We report on a direct measurement of sizable interfacial Dzyaloshinskii-Moriya interaction (iDMI) at the interface of two-dimensional transition metal dichalcogenide (2D-TMD), MoS$_{\rm 2}$ and Ni$_{80}$Fe$_{20}$ (Py) using Brillouin light scattering spectroscopy. A clear asymmetry in spin-wave dispersion is measured in MoS$_{\rm 2}$/Py/Ta, while no such asymmetry is detected in the reference Py/Ta system. A linear scaling of the DMI constant with the inverse of Py thickness indicates the interfacial origin of the observed DMI. We further observe an enhancement of DMI constant in three to four layer MoS$_{\rm 2}$/Py system (by 56$\%$) as compared to 2 layer MoS$_{\rm 2}$/Py which is caused by a higher density of MoO$_{\rm 3}$ defect species in the case of three to four layer MoS$_{\rm 2}$. The results open possibilities of spin-orbitronic applications utilizing the 2D-TMD based heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.06356v2-abstract-full').style.display = 'none'; document.getElementById('2004.06356v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 116, 232405 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.01394">arXiv:1910.01394</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.01394">pdf</a>, <a href="https://arxiv.org/format/1910.01394">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Effect of magnetic field on the laterally colliding plasma plumes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Alamgir Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Singh%2C+R+K">R. K. Singh</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhari%2C+V">Vishnu Chaudhari</a>, <a href="/search/physics?searchtype=author&amp;query=Joshi%2C+H+C">H. C. Joshi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.01394v3-abstract-short" style="display: inline;"> An experimental investigation of laser produced colliding plasma of aluminium target in the presence of external magnetic field in vacuum is done. Characteristic parameters and line emission of plasma plume in the presence of magnetic field are compared with those for field free case. Axial expansion of the plasma is slowed down in the presence of magnetic field as compared to the field free case.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.01394v3-abstract-full').style.display = 'inline'; document.getElementById('1910.01394v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.01394v3-abstract-full" style="display: none;"> An experimental investigation of laser produced colliding plasma of aluminium target in the presence of external magnetic field in vacuum is done. Characteristic parameters and line emission of plasma plume in the presence of magnetic field are compared with those for field free case. Axial expansion of the plasma is slowed down in the presence of magnetic field as compared to the field free case. Contrary to the field free case no sharp interaction zone is observed. Higher electron temperature and increased ionic line emission from singly as well as doubly ionized aluminium can be attributed to the Joule heating phenomenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.01394v3-abstract-full').style.display = 'none'; document.getElementById('1910.01394v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures, Journal article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.11854">arXiv:1908.11854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.11854">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> The influence of impurities on the charge carrier mobility of small molecule organic semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Friederich%2C+P">Pascal Friederich</a>, <a href="/search/physics?searchtype=author&amp;query=Fediai%2C+A">Artem Fediai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jing Li</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Anirban Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Kotadiya%2C+N+B">Naresh B. Kotadiya</a>, <a href="/search/physics?searchtype=author&amp;query=Symalla%2C+F">Franz Symalla</a>, <a href="/search/physics?searchtype=author&amp;query=Wetzelaer%2C+G+A+H">Gert-Jan A. H. Wetzelaer</a>, <a href="/search/physics?searchtype=author&amp;query=Andrienko%2C+D">Denis Andrienko</a>, <a href="/search/physics?searchtype=author&amp;query=Blase%2C+X">Xavier Blase</a>, <a href="/search/physics?searchtype=author&amp;query=Beljonne%2C+D">David Beljonne</a>, <a href="/search/physics?searchtype=author&amp;query=Blom%2C+P+W+M">Paul W. M. Blom</a>, <a href="/search/physics?searchtype=author&amp;query=Br%C3%A9das%2C+J">Jean-Luc Br茅das</a>, <a href="/search/physics?searchtype=author&amp;query=Wenzel%2C+W">Wolfgang Wenzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.11854v2-abstract-short" style="display: inline;"> Amorphous organic semiconductors based on small molecules and polymers are used in many applications, most prominently organic light emitting diodes (OLEDs) and organic solar cells. Impurities and charge traps are omnipresent in most currently available organic semiconductors and limit charge transport and thus device efficiency. The microscopic cause as well as the chemical nature of these traps&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.11854v2-abstract-full').style.display = 'inline'; document.getElementById('1908.11854v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.11854v2-abstract-full" style="display: none;"> Amorphous organic semiconductors based on small molecules and polymers are used in many applications, most prominently organic light emitting diodes (OLEDs) and organic solar cells. Impurities and charge traps are omnipresent in most currently available organic semiconductors and limit charge transport and thus device efficiency. The microscopic cause as well as the chemical nature of these traps are presently not well understood. Using a multiscale model we characterize the influence of impurities on the density of states and charge transport in small-molecule amorphous organic semiconductors. We use the model to quantitatively describe the influence of water molecules and water-oxygen complexes on the electron and hole mobilities. These species are seen to impact the shape of the density of states and to act as explicit charge traps within the energy gap. Our results show that trap states introduced by molecular oxygen can be deep enough to limit the electron mobility in widely used materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.11854v2-abstract-full').style.display = 'none'; document.getElementById('1908.11854v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages + SI, 7 figures + TOC-graphic + 2 figures in SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.05711">arXiv:1901.05711</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.05711">pdf</a>, <a href="https://arxiv.org/format/1901.05711">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C9JA00158A">10.1039/C9JA00158A <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Compositional analysis of laser produced plasma plume in front and back ablation geometries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Alamgir Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Singh%2C+R+K">R. K. Singh</a>, <a href="/search/physics?searchtype=author&amp;query=Joshi%2C+H+C">H. C. Joshi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.05711v1-abstract-short" style="display: inline;"> Composition analysis of LiF-C thin film for neutral and ionic contributions in Front Ablation (FA) and Back Ablation (BA) geometries in vacuum and 2\times10-1 mbar argon has been done. Temporal evolution of ionic to neutral ratio and neutral abundance for both the geometries has been estimated. For neutral abundance, two approaches viz Atomic Data and Analysis Structure (ADAS) analysis as well as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.05711v1-abstract-full').style.display = 'inline'; document.getElementById('1901.05711v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.05711v1-abstract-full" style="display: none;"> Composition analysis of LiF-C thin film for neutral and ionic contributions in Front Ablation (FA) and Back Ablation (BA) geometries in vacuum and 2\times10-1 mbar argon has been done. Temporal evolution of ionic to neutral ratio and neutral abundance for both the geometries has been estimated. For neutral abundance, two approaches viz Atomic Data and Analysis Structure (ADAS) analysis as well as integrated intensity ratio of Li I 670.1 nm and Li I 610.3 nm lines assuming LTE conditions are explored. The present attempt will be interesting from the view point of understanding the evolution of plasma composition in various geometries/configurations of laser ablation which has important implications in various applications e.g. pulsed laser deposition and laser cleaning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.05711v1-abstract-full').style.display = 'none'; document.getElementById('1901.05711v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This manuscript is of 17 pages and has 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.00092">arXiv:1811.00092</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.00092">pdf</a>, <a href="https://arxiv.org/format/1811.00092">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Tissues and Organs">q-bio.TO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.99.042406">10.1103/PhysRevE.99.042406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Network models for characterization of trabecular bone </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Avik Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Nguyen%2C+C">Chantal Nguyen</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xiao Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Elbanna%2C+A+E">Ahmed E. Elbanna</a>, <a href="/search/physics?searchtype=author&amp;query=Carlson%2C+J+M">Jean M. Carlson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.00092v2-abstract-short" style="display: inline;"> Trabecular bone is a lightweight, compliant material organized as a web of struts and rods (trabeculae) that erode with age and the onset of bone diseases like osteoporosis, leading to increased fracture risk. The traditional diagnostic marker of osteoporosis, bone mineral density (BMD), has been shown in ex vivo experiments to correlate poorly with fracture resistance when considered on its own,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00092v2-abstract-full').style.display = 'inline'; document.getElementById('1811.00092v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.00092v2-abstract-full" style="display: none;"> Trabecular bone is a lightweight, compliant material organized as a web of struts and rods (trabeculae) that erode with age and the onset of bone diseases like osteoporosis, leading to increased fracture risk. The traditional diagnostic marker of osteoporosis, bone mineral density (BMD), has been shown in ex vivo experiments to correlate poorly with fracture resistance when considered on its own, while structural features in conjunction with BMD can explain more of the variation in trabecular bone strength. We develop a network-based model of trabecular bone by creating graphs from micro-computed tomography images of human bone, with weighted links representing trabeculae and nodes representing branch points. These graphs enable calculation of quantitative network metrics to characterize trabecular structure. We also create finite element models of the networks in which each link is represented by a beam, facilitating analysis of the mechanical response of the bone samples to simulated loading. We examine the structural and mechanical properties of trabecular bone at the scale of individual trabeculae (of order 0.1 mm) and at the scale of selected volumes of interest (approximately a few mm), referred to as VOIs. At the VOI scale, we find significant correlations between the stiffness of VOIs and 10 different structural metrics. Individually, the volume fraction of each VOI is most strongly correlated to the stiffness of the VOI. We use multiple linear regression to identify the smallest subset of variables needed to capture the variation in stiffness. In a linear fit, we find that node degree, weighted node degree, Z-orientation, weighted Z-orientation, trabecular spacing, link length, and the number of links are the structural metrics that are most significant (p &lt; 0.05) in capturing the variation of stiffness in trabecular networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00092v2-abstract-full').style.display = 'none'; document.getElementById('1811.00092v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 99, 042406 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.00742">arXiv:1802.00742</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.00742">pdf</a>, <a href="https://arxiv.org/ps/1802.00742">ps</a>, <a href="https://arxiv.org/format/1802.00742">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10773-018-3670-1">10.1007/s10773-018-3670-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ideal gas with a varying (negative absolute) temperature: An alternative to dark energy? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Saha%2C+S">Subhajit Saha</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">Anindita Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Corda%2C+C">Christian Corda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.00742v1-abstract-short" style="display: inline;"> The present work is an attempt to investigate whether the evolutionary history of the Universe from the offset of inflation can be described by assuming the cosmic fluid to be an ideal gas with a specific gas constant but a varying negative absolute temperature (NAT). The motivation of this work is to search for an alternative to the &#34;exotic&#34; and &#34;supernatural&#34; dark energy (DE). In fact, the NAT w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.00742v1-abstract-full').style.display = 'inline'; document.getElementById('1802.00742v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.00742v1-abstract-full" style="display: none;"> The present work is an attempt to investigate whether the evolutionary history of the Universe from the offset of inflation can be described by assuming the cosmic fluid to be an ideal gas with a specific gas constant but a varying negative absolute temperature (NAT). The motivation of this work is to search for an alternative to the &#34;exotic&#34; and &#34;supernatural&#34; dark energy (DE). In fact, the NAT works as an &#34;effective quintessence&#34; and there is need to deal neither with exotic matter like DE nor with modified gravity theories. For the sake of completeness, we release some clarifications on NATs in Section 3 of the paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.00742v1-abstract-full').style.display = 'none'; document.getElementById('1802.00742v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, accepted for publication in International Journal of Theoretical Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Journal of Theoretical Physics 57, 1417 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.06563">arXiv:1704.06563</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.06563">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.compscitech.2008.08.007">10.1016/j.compscitech.2008.08.007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extruded Mg based hybrid composite alloys studied by longitudinal impression creep </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A+K">A. K. Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Kumar%2C+S">S. Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.06563v2-abstract-short" style="display: inline;"> The creep behaviour of a creep-resistant AE42 magnesium alloy reinforced with Saffil short fibres and SiC particulates in various combinations has been examined in the longitudinal direction, i.e., the plane containing random fibre orientation was parallel to the loading direction, in the temperature range of 175-300 C at the stress levels ranging from 60 to 140 MPa using impression creep test tec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.06563v2-abstract-full').style.display = 'inline'; document.getElementById('1704.06563v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.06563v2-abstract-full" style="display: none;"> The creep behaviour of a creep-resistant AE42 magnesium alloy reinforced with Saffil short fibres and SiC particulates in various combinations has been examined in the longitudinal direction, i.e., the plane containing random fibre orientation was parallel to the loading direction, in the temperature range of 175-300 C at the stress levels ranging from 60 to 140 MPa using impression creep test technique. At 175 C, normal creep behaviour, i.e., strain rate decreasing with strain and then reaching a steady state, is observed at all the stresses employed. At 240 C, normal creep behaviour is observed up to 80 MPa and reverse creep behaviour, i.e., strain rate increasing with strain, then reaching a steady state and again decreasing, is observed above that stress. At 300 C, reverse creep behaviour is observed at all the stresses employed. This pattern remains the same for all the composites. The reverse creep behaviour is found to be associated with the fibre breakage. The stress exponent is found to be very high for all the composites. However, after taking the threshold stress into account, the stress exponent varies from 3.9 to 7.0, which suggests viscous glide and dislocation climb being the dominant creep mechanisms. The apparent activation energy Qc was not calculated due to insufficient data at any stress level either for normal or reverse creep behaviour. The creep resistance of the hybrid composites is found to be comparable to that of the composite reinforced with 20% Saffil short fibres at all the temperatures and stress levels investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.06563v2-abstract-full').style.display = 'none'; document.getElementById('1704.06563v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures. Corrected typographical errors and updated title and conclusions</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Composites Science and Technology, 68, 3251 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.00562">arXiv:1608.00562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.00562">pdf</a>, <a href="https://arxiv.org/ps/1608.00562">ps</a>, <a href="https://arxiv.org/format/1608.00562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/11/10/T10001">10.1088/1748-0221/11/10/T10001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-term stability test of a triple GEM detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adak%2C+R+P">R. P. Adak</a>, <a href="/search/physics?searchtype=author&amp;query=Biswas%2C+S">S. Biswas</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+S">S. Das</a>, <a href="/search/physics?searchtype=author&amp;query=Ghosal%2C+D">D. Ghosal</a>, <a href="/search/physics?searchtype=author&amp;query=Ghosh%2C+S+K">S. K. Ghosh</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+A">A. Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Nag%2C+D">D. Nag</a>, <a href="/search/physics?searchtype=author&amp;query=Nayak%2C+T+K">T. K. Nayak</a>, <a href="/search/physics?searchtype=author&amp;query=Patra%2C+R+N">R. N. Patra</a>, <a href="/search/physics?searchtype=author&amp;query=Prasad%2C+S+K">S. K Prasad</a>, <a href="/search/physics?searchtype=author&amp;query=Raha%2C+S">S. Raha</a>, <a href="/search/physics?searchtype=author&amp;query=Sahu%2C+P+K">P. K. Sahu</a>, <a href="/search/physics?searchtype=author&amp;query=Sahu%2C+S">S. Sahu</a>, <a href="/search/physics?searchtype=author&amp;query=Swain%2C+S">S. Swain</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.00562v1-abstract-short" style="display: inline;"> The main aim of the study is to perform the long-term stability test of gain of the single mask triple GEM detector. A simple method is used for this long- term stability test using a radioactive X-ray source with high activity. The test is continued till accumulation of charge per unit area &gt; 12.0 mC/mm2. The details of the chamber fabrication, the test set-up, the method of measurement and the t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00562v1-abstract-full').style.display = 'inline'; document.getElementById('1608.00562v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.00562v1-abstract-full" style="display: none;"> The main aim of the study is to perform the long-term stability test of gain of the single mask triple GEM detector. A simple method is used for this long- term stability test using a radioactive X-ray source with high activity. The test is continued till accumulation of charge per unit area &gt; 12.0 mC/mm2. The details of the chamber fabrication, the test set-up, the method of measurement and the test results are presented in this paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00562v1-abstract-full').style.display = 'none'; document.getElementById('1608.00562v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10