CINXE.COM
Search results for: ordinary cement concrete
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ordinary cement concrete</title> <meta name="description" content="Search results for: ordinary cement concrete"> <meta name="keywords" content="ordinary cement concrete"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ordinary cement concrete" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ordinary cement concrete"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2818</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ordinary cement concrete</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2818</span> Experimental Study of Different Types of Concrete in Uniaxial Compression Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khashayar%20Jafari">Khashayar Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Jafarian%20Abyaneh"> Mostafa Jafarian Abyaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahab%20Toufigh"> Vahab Toufigh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer concrete (PC) is a distinct concrete with superior characteristics in comparison to ordinary cement concrete. It has become well-known for its applications in thin overlays, floors and precast components. In this investigation, the mechanical properties of PC with different epoxy resin contents, ordinary cement concrete (OCC) and lightweight concrete (LC) have been studied under uniaxial compression test. The study involves five types of concrete, with each type being tested four times. Their complete elastic-plastic behavior was compared with each other through the measurement of volumetric strain during the tests. According to the results, PC showed higher strength, ductility and energy absorption with respect to OCC and LC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20concrete" title="polymer concrete">polymer concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20cement%20concrete" title=" ordinary cement concrete"> ordinary cement concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20concrete" title=" lightweight concrete"> lightweight concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20compression%20test" title=" uniaxial compression test"> uniaxial compression test</a>, <a href="https://publications.waset.org/abstracts/search?q=volumetric%20strain" title=" volumetric strain"> volumetric strain</a> </p> <a href="https://publications.waset.org/abstracts/58218/experimental-study-of-different-types-of-concrete-in-uniaxial-compression-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2817</span> Mineral Slag Used as an Alternative of Cement in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eskinder%20Desta%20Shumuye">Eskinder Desta Shumuye</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Zhao"> Jun Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zike%20Wang"> Zike Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper summarizes the results of experimental studies carried out at Zhengzhou University, School of Mechanics and Engineering Science, research laboratory, on the performance of concrete produced by combining Ordinary Portland Cement (OPC) with Ground-Granulated Blast Furnace Slag (GGBS). Concrete specimens cast with OPC and various percentage of GGBS (0%, 30%, 50%, and 70%) were subjected to high temperature exposure and extensive experimental test reproducing basic freeze-thaw cycle and a chloride-ion attack to determine their combined effects within the concrete samples. From the experimental studies, comparisons were made on the physical, mechanical, and microstructural properties in compassion with ordinary Portland cement concrete (OPC). Further, durability of GGBS cement concrete, such as exposure to accelerated carbonation, chloride ion attack, and freeze-thaw action in compassion with various percentage of GGBS and ordinary Portland cement concrete of similar mixture composition was analyzed. The microstructure, mineralogical composition, and pore size distribution of concrete specimens were determined via Scanning Electron Microscopy (SEM) analysis and X-Ray Diffraction (XRD). The result demonstrated that when the exposure temperature increases from 200 ºC to 400 ºC, the residual compressive strength was fluctuating for all concrete group, and compressive strength and chloride ion exposure of the concrete decreased with the increasing of slag content. The SEM and EDS results showed an increase in carbonation rate with increasing in slag content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20carbonation" title="accelerated carbonation">accelerated carbonation</a>, <a href="https://publications.waset.org/abstracts/search?q=chloride-ion" title=" chloride-ion"> chloride-ion</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ground-granulated%20blast%20furnace%20slag" title=" ground-granulated blast furnace slag"> ground-granulated blast furnace slag</a>, <a href="https://publications.waset.org/abstracts/search?q=GGBS" title=" GGBS"> GGBS</a>, <a href="https://publications.waset.org/abstracts/search?q=high-temperature" title=" high-temperature "> high-temperature </a> </p> <a href="https://publications.waset.org/abstracts/129517/mineral-slag-used-as-an-alternative-of-cement-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2816</span> Properties of Triadic Concrete Containing Rice Husk Ash and Wood Waste Ash as Partial Cement Replacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rahman%20Mohd.%20Sam">Abdul Rahman Mohd. Sam</a>, <a href="https://publications.waset.org/abstracts/search?q=Olukotun%20Nathaniel"> Olukotun Nathaniel</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunu%20Williams"> Dunu Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is one of the most popular materials used in construction industry. However, one of the setbacks is that concrete can degrade with time upon exposure to an aggressive environment that leads to decrease in strength. Thus, research works and innovative ways are needed to enhance the strength and durability of concrete. This work tries to look into the potential use of rice husk ash (RHA) and wood waste ash (WWA) as cement replacement material. These are waste materials that may not only enhance the properties of concrete but also can serves as a viable method of disposal of waste for sustainability. In addition, a substantial replacement of Ordinary Portland Cement (OPC) with these pozzolans will mean reduction in CO₂ emissions and high energy requirement associated with the production of OPC. This study is aimed at assessing the properties of triadic concrete produced using RHA and WWA as a partial replacement of cement. The effects of partial replacement of OPC with 10% RHA and 5% WWA on compressive and tensile strength of concrete among other properties were investigated. Concrete was produced with nominal mix of 1:2:4 and 0.55 water-cement ratio, prepared, cured and subjected to compressive and tensile strength test at 3, 7, 14, 28 and 90days. The experimental data demonstrate that concrete containing RHA and WWA produced lighter weight in comparison with OPC sample. Results also show that combination of RHA and WWA help to prolong the initial and final setting time by about 10-30% compared to the control sample. Furthermore, compressive strength was increased by 15-30% with 10% RHA and 5% WWA replacement, respectively above the control, RHA and WWA samples. Tensile strength test at the ages of 3, 7, 14, 28 and 90 days reveals that a replacement of 15% RHA and 5% WWA produced samples with the highest tensile capacity compared to the control samples. Thus, it can be concluded that RHA and WWA can be used as partial cement replacement materials in concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20waste%20ash" title=" wood waste ash"> wood waste ash</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20Portland%20cement" title=" ordinary Portland cement"> ordinary Portland cement</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/77993/properties-of-triadic-concrete-containing-rice-husk-ash-and-wood-waste-ash-as-partial-cement-replacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2815</span> Influence of Pulverized Granite on the Mechanical and Durability Properties of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwabena%20A.%20Boakye">Kwabena A. Boakye</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Atiemo"> Eugene Atiemo</a>, <a href="https://publications.waset.org/abstracts/search?q=Trinity%20A.%20Tagbor"> Trinity A. Tagbor</a>, <a href="https://publications.waset.org/abstracts/search?q=Delali%20Adjei"> Delali Adjei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of mineral admixtures such as metakaolin, GGBS, fly ash, etc., in concrete is a common practice in the world. However, the only admixture available for use in the Ghanaian construction industry is calcined clay pozzolan. This research, therefore, studies the alternate use of granite dust, a by-product from stone quarrying, as a mineral admixture in concrete. Granite dust, which is usually damped as waste or as an erosion control material, was collected and pulverized to about 75µm. Some physical, chemical, and mineralogical tests were conducted on the granite dust. 5%-25% ordinary Portland cement of Class 42.5N was replaced with granite dust which was used as the main binder in the preparation of 150mm×150mm×150mm concrete cubes according to methods prescribed by BS EN 12390-2:2000. Properties such as workability, compressive strength, flexural strength, water absorption, and durability were determined. Compressive and flexural strength results indicate that granite dust could be used to replace ordinary Portland cement up to an optimum of 15% to achieve C25. Water permeability increased as the granite dust admixture content increased from 5% - 25%. Durability studies after 90 days proved that even though strength decreased as granite dust content increased, the concrete containing granite dust had better resistance to sulphate attack comparable to the reference cement. Pulverized granite can be used to partially replace ordinary Portland cement in concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=admixture" title="admixture">admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=granite%20dust" title=" granite dust"> granite dust</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolans" title=" pozzolans"> pozzolans</a> </p> <a href="https://publications.waset.org/abstracts/106009/influence-of-pulverized-granite-on-the-mechanical-and-durability-properties-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2814</span> Correlation between Initial Absorption of the Cover Concrete, the Compressive Strength and Carbonation Depth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouzidi%20Yassine">Bouzidi Yassine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experimental work was aimed to characterize the porosity of the concrete cover zone using the capillary absorption test, and establish the links between open porosity characterized by the initial absorption, the compressive strength and carbonation depth. Eight formulations of workability similar made from ordinary Portland cement (CEM I 42.5) and a compound cement (CEM II/B 42.5) four of each type are studied. The results allow us to highlight the effect of the cement type. Indeed, concretes-based cement CEM II/B 42.5 carbonatent approximately faster than concretes-based cement CEM I 42.5. This effect is attributed in part to the lower content of portlandite Ca(OH)2 of concretes-based cement CEM II/B 42.5, but also the impact of the cement type on the open porosity of the cover concrete. The open porosity of concretes-based cement CEM I 42.5 is lower than that of concretes-based cement CEM II/B 42.5. The carbonation depth is a decreasing function of the compressive strength at 28 days and increases with the initial absorption. Through the results obtained, correlations between the quantity of water absorbed in 1 h, the carbonation depth at 180 days and the compressive strength at 28 days were performed in an acceptable manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=initial%20absorption" title="initial absorption">initial absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=cover%20concrete" title=" cover concrete"> cover concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonation%20depth" title=" carbonation depth "> carbonation depth </a> </p> <a href="https://publications.waset.org/abstracts/25875/correlation-between-initial-absorption-of-the-cover-concrete-the-compressive-strength-and-carbonation-depth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2813</span> Geopolymer Concrete: A Review of Properties, Applications and Limitations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Ahmed%20Albu%20Shaqraa">Abbas Ahmed Albu Shaqraa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of a safe environment and low greenhouse gas emissions is a common concern especially in the construction industry. The produced carbon dioxide (CO2) emissions are nearly a ton in producing only one ton of Portland cement, which is the primary ingredient of concrete. Current studies had investigated the utilization of several waste materials in producing a cement free concrete. The geopolymer concrete is a green material that results from the reaction of aluminosilicate material with an alkaline liquid. A summary of several recent researches in geopolymer concrete will be presented in this manuscript. In addition, the offered presented review considers the use of several waste materials including fly ash, granulated blast furnace slag, cement kiln dust, kaolin, metakaolin, and limestone powder as binding materials in making geopolymer concrete. Moreover, the mechanical, chemical and thermal properties of geopolymer concrete will be reviewed. In addition, the geopolymer concrete applications and limitations will be discussed as well. The results showed a high early compressive strength gain in geopolymer concrete when dry- heating or steam curing was performed. Also, it was stated that the outstanding acidic resistance of the geopolymer concrete made it possible to be used where the ordinary Portland cement concrete was doubtable. Thus, the commercial geopolymer concrete pipes were favored for sewer system in case of high acidic conditions. Furthermore, it was reported that the geopolymer concrete could stand up to 1200 °C in fire without losing its strength integrity whereas the Portland cement concrete was losing its function upon heating to some 100s °C only. However, the geopolymer concrete still considered as an emerging field and occupied mainly by the precast industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geopolymer%20concrete" title="geopolymer concrete">geopolymer concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=Portland%20cement%20concrete" title=" Portland cement concrete"> Portland cement concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20liquid" title=" alkaline liquid"> alkaline liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/44283/geopolymer-concrete-a-review-of-properties-applications-and-limitations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2812</span> Production Cement Mortar and Concrete by Using Nano Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ashraf">Mohammad Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kawther%20Mohamed"> Kawther Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research tackles a new kind of additions (Nano Clay) and its effect on the features of concrete and both fresh and hardened cement mortar, as well as setting an optimal percentage of adding it to achieve the desired results and obtain on a strong concrete and mortar can be used for skyscrapers. The cementations additions are mineral materials in the form of a fine powder, added to concrete or cement mortar as partly cement substitutes, which means to be added instead of an equivalent amount of cement in order to improve and enhance some features of concrete or both the newly made and hardened cementations materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20clay%20in%20structure%20engineering" title="nano clay in structure engineering">nano clay in structure engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology%20in%20construction%20industry" title=" nanotechnology in construction industry"> nanotechnology in construction industry</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20additions%20in%20concrete" title=" advanced additions in concrete"> advanced additions in concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20concrete%20for%20skyscrapers" title=" special concrete for skyscrapers"> special concrete for skyscrapers</a> </p> <a href="https://publications.waset.org/abstracts/71065/production-cement-mortar-and-concrete-by-using-nano-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2811</span> Possibilities of Utilization Zeolite in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sedlmajer">M. Sedlmajer</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Zach"> J. Zach</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hroudova"> J. Hroudova</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rovnan%C3%ADkova"> P. Rovnaníkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several possibilities of reducing the required amount of cement in concrete production. Natural zeolite is one of the raw materials which can partly substitute Portland cement. The effort to reduce the amount of Portland cement used in concrete production is brings both economical as well as ecological benefits. The paper presents the properties of concrete containing natural zeolite as an active admixture in the concrete which partly substitutes Portland cement. The properties discussed here bring information about the basic mechanical properties and frost resistance of concrete containing zeolite. The properties of concretes with the admixture of zeolite are compared with a reference concrete with no content of zeolite. The properties of the individual concretes are observed for 360 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/30263/possibilities-of-utilization-zeolite-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2810</span> Assessing the Effect of Freezing and Thawing of Coverzone of Ground Granulated Blast-Furnace Slag Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulkarim%20Mohammed%20Iliyasu">Abdulkarim Mohammed Iliyasu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmud%20Abba%20Tahir"> Mahmud Abba Tahir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Freezing and thawing are considered to be one of the major causes of concrete deterioration in the cold regions. This study aimed at assessing the freezing and thawing of concrete within the cover zone by monitoring the formation of ice and melting at different temperatures using electrical measurement technique. A multi-electrode array system was used to obtain the resistivity of ice formation and melting at discrete depths within the cover zone of the concrete. A total number of four concrete specimens (250 mm x 250 mm x 150 mm) made of ordinary Portland cement concrete and ordinary Portland cement replaced by 65% ground granulated blast furnace slag (GGBS) is investigated. Water/binder ratios of 0.35 and 0.65 were produced and ponded with water to ensure full saturation and then subjected to freezing and thawing process in a refrigerator within a temperature range of -30 <sup>0</sup>C and 20 <sup>0</sup>C over a period of time 24 hours. The data were collected and analysed. The obtained results show that the addition of GGBS changed the pore structure of the concrete which resulted in the decrease in conductance. It was recommended among others that, the surface of the concrete structure should be protected as this will help to prevent the instantaneous propagation of ice trough the rebar and to avoid corrosion and subsequent damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=conductance" title=" conductance"> conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=deterioration" title=" deterioration"> deterioration</a>, <a href="https://publications.waset.org/abstracts/search?q=freezing%20and%20thawing" title=" freezing and thawing"> freezing and thawing</a> </p> <a href="https://publications.waset.org/abstracts/48551/assessing-the-effect-of-freezing-and-thawing-of-coverzone-of-ground-granulated-blast-furnace-slag-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2809</span> Assessment of the Performance of Fly Ash Based Geo-Polymer Concrete under Sulphate and Acid Attack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talakokula%20Visalakshi">Talakokula Visalakshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is the most commonly used construction material across the globe, its usage is second only to water. It is prepared using ordinary Portland cement whose production contributes to 5-8% of total carbon emission in the world. On the other hand the fly ash by product from the power plants is produced in huge quantities is termed as waste and disposed in landfills. In order to address the above issues mentioned, it is essential that other forms of binding material must be developed in place of cement to make concrete. The geo polymer concrete is one such alternative developed by Davidovits in 1980’s. Geopolymer do not form calcium-silicate hydrates for matrix formation and strength but undergo polycondensation of silica and alumina precursors to attain structural strength. Its setting mechanism depends upon polymerization rather than hydration. As a result it is able to achieve its strength in 3-5 days whereas concrete requires about a month to do the same. The objective of this research is to assess the performance of geopolymer concrete under sulphate and acid attack. The assessment is done based on the experiments conducted on geopolymer concrete. The expected outcomes include that if geopolymer concrete is more durable than normal concrete, then it could be a competitive replacement option of concrete and can lead to significant reduction of carbon foot print and have a positive impact on the environment. Fly ash based geopolymer concrete offers an opportunity to completely remove the cement content from concrete thereby making the concrete a greener and future construction material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title="fly ash">fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=geo%20polymer" title=" geo polymer"> geo polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer%20concrete" title=" geopolymer concrete"> geopolymer concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20material" title=" construction material"> construction material</a> </p> <a href="https://publications.waset.org/abstracts/13816/assessment-of-the-performance-of-fly-ash-based-geo-polymer-concrete-under-sulphate-and-acid-attack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2808</span> Reactivation of Hydrated Cement and Recycled Concrete Powder by Thermal Treatment for Partial Replacement of Virgin Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gustave%20Semugaza">Gustave Semugaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Zora%20Gierth"> Anne Zora Gierth</a>, <a href="https://publications.waset.org/abstracts/search?q=Tommy%20Mielke"> Tommy Mielke</a>, <a href="https://publications.waset.org/abstracts/search?q=Marianela%20Escobar%20Castillo"> Marianela Escobar Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nat%20Doru%20C.%20Lupascu"> Nat Doru C. Lupascu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generation of Construction and Demolition Waste (CDW) has globally increased enormously due to the enhanced need in construction, renovation, and demolition of construction structures. Several studies investigated the use of CDW materials in the production of new concrete and indicated the lower mechanical properties of the resulting concrete. Many other researchers considered the possibility of using the Hydrated Cement Powder (HCP) to replace a part of Ordinary Portland Cement (OPC), but only very few investigated the use of Recycled Concrete Powder (RCP) from CDW. The partial replacement of OPC for making new concrete intends to decrease the CO₂ emissions associated with OPC production. However, the RCP and HCP need treatment to produce the new concrete of required mechanical properties. The thermal treatment method has proven to improve HCP properties before their use. Previous research has stated that for using HCP in concrete, the optimum results are achievable by heating HCP between 400°C and 800°C. The optimum heating temperature depends on the type of cement used to make the Hydrated Cement Specimens (HCS), the crushing and heating method of HCP, and the curing method of the Rehydrated Cement Specimens (RCS). This research assessed the quality of recycled materials by using different techniques such as X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and thermogravimetry (TG), Scanning electron Microscopy (SEM), and X-ray Fluorescence (XRF). These recycled materials were thermally pretreated at different temperatures from 200°C to 1000°C. Additionally, the research investigated to what extent the thermally treated recycled cement could partially replace the OPC and if the new concrete produced would achieve the required mechanical properties. The mechanical properties were evaluated on the RCS, obtained by mixing the Dehydrated Cement Powder and Recycled Powder (DCP and DRP) with water (w/c = 0.6 and w/c = 0.45). The research used the compressive testing machine for compressive strength testing, and the three-point bending test was used to assess the flexural strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrated%20cement%20powder" title="hydrated cement powder">hydrated cement powder</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydrated%20cement%20powder" title=" dehydrated cement powder"> dehydrated cement powder</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20powder" title=" recycled concrete powder"> recycled concrete powder</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20treatment" title=" thermal treatment"> thermal treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivation" title=" reactivation"> reactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20performance" title=" mechanical performance"> mechanical performance</a> </p> <a href="https://publications.waset.org/abstracts/148142/reactivation-of-hydrated-cement-and-recycled-concrete-powder-by-thermal-treatment-for-partial-replacement-of-virgin-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2807</span> Characterization of Cement Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20B.%20Anil%20Kumar">T. B. Anil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mallikarjun%20Hiremath"> Mallikarjun Hiremath</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Ramachandra"> V. Ramachandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present experimental investigation deals with the quality performance analysis of cement concrete with 0, 15 and 25% fly ash and 0, 0.2, 0.4 and 0.6% of polypropylene fibers by weight of cement. The various test parameters like workability, unit weight, compressive strength, flexural strength, split tensile strength and abrasion resistance are detailed in the analysis. The compressive strength of M40 grade concrete attains higher value by the replacement of cement by 15% fly ash and at 0.4% PP after 28 and 56 days of curing. Higher flexural strength of concrete was observed by the replacement of cement by 15% fly ash with 0.2% PP after 28 and 56 days of curing. Similarly, split tensile strength value also increases and attains higher value by the replacement of cement by 15% fly ash with 0.4% PP after 28 and 56 days of curing. The percentage of wear gets reduced to 30 to 33% by the addition of fibers at 0.2%, 0.4% and 0.6% in cement concrete replaced by 15 and 25% fly ash. Hence, it is found that the pavement thickness gets reduced up to 20% when compared with plain concrete slab by the 15% fly ash treated with 0.2% PP fibers and also reduced up to 27% of surface course cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement" title="cement">cement</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20fiber" title=" polypropylene fiber"> polypropylene fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20design" title=" pavement design"> pavement design</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title=" cost analysis"> cost analysis</a> </p> <a href="https://publications.waset.org/abstracts/2093/characterization-of-cement-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2806</span> Influence of Metakaolin and Cements Types on Compressive Strength and Transport Properties of Self-Consolidating Concrete </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kianoosh%20Samimi">Kianoosh Samimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Estakhr"> Farhad Estakhr</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Mahdikhani"> Mahdi Mahdikhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Faramaz%20Moodi"> Faramaz Moodi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The self-consolidating concrete (SCC) performance over ordinary concrete is generally related to the ingredients used. The metakaolin can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three types of Portland cement and metakaolin on compressive strength and transport properties of SCC at early ages and up to 90 days. Six concrete mixtures were prepared with three types of different cements and substitution of 15% metakaolin. The results show that the highest value of compressive strength was achieved for Portland Slag Cement (PSC) and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for Pozzolanic Portland Cement (PPC) and containing 15% metakaolin. As can be seen in the results, compressive strength in SCC containing Portland cement type II with metakaolin is higher compared to that relative to SCC without metakaolin from 28 days of age. On the other hand, the samples containing PSC and PPC with metakaolin had a lower compressive strength than the plain samples. Therefore, it can be concluded that metakaolin has a negative effect on the compressive strength of SCC containing PSC and PPC. In addition, results show that metakaolin has enhanced chloride durability of SCCs and reduced capillary water absorption at 28, 90 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SCC" title="SCC">SCC</a>, <a href="https://publications.waset.org/abstracts/search?q=metakaolin" title=" metakaolin"> metakaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20type" title=" cement type"> cement type</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=chloride%20diffusion" title=" chloride diffusion"> chloride diffusion</a> </p> <a href="https://publications.waset.org/abstracts/76210/influence-of-metakaolin-and-cements-types-on-compressive-strength-and-transport-properties-of-self-consolidating-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2805</span> Investigation on Strength Properties of Concrete Using Industrial Waste as Supplementary Cementitious Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Prasad%20Darapureddi">Ravi Prasad Darapureddi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of industrial waste in making concrete reduce the consumption of natural resources and pollution of the environment. These materials possess problems of disposal and health hazards. An attempt has been made to use paper and thermal industrial wastes such as lime sludge and flyash. Present investigation is aimed at the utilization of Lime Sludge and Flyash as Supplementary Cementitious Materials (SCM) and influence of these materials on strength properties of concrete. Thermal industry waste fly ash is mixed with lime sludge and used as a replacement to cement at different proportions to obtain the strength properties and compared with ordinary concrete prepared without any additives. Grade of concrete prepared was M₂₅ designed according to Indian standard method. Cement has been replaced by paper industry waste and fly ash in different proportions such as 0% (normal concrete), 10%, 20%, and 30% by weight. Mechanical properties such as compressive strength, splitting tensile strength and flexural strength were assessed. Test results indicated that the use of lime sludge and Fly ash in concrete had improved the properties of concrete. Better results were observed at 20% replacement of cement with these additives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supplementary%20cementitious%20materials" title="supplementary cementitious materials">supplementary cementitious materials</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20sludge" title=" lime sludge"> lime sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20properties" title=" strength properties"> strength properties</a> </p> <a href="https://publications.waset.org/abstracts/78196/investigation-on-strength-properties-of-concrete-using-industrial-waste-as-supplementary-cementitious-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2804</span> Effect of Crashed Stone on Properties of Fly Ash Based-Geopolymer Concrete with Local Alkaline Activator in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Omar">O. M. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20D.%20Abd%20Elhameed"> G. D. Abd Elhameed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Heniegal"> A. M. Heniegal</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Mohamadien"> H. A. Mohamadien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green concrete are generally composed of recycling materials as hundred or partial percent substitutes for aggregate, cement, and admixture in concrete. To reduce greenhouse gas emissions, efforts are needed to develop environmentally friendly construction materials. Using of fly ash based geopolymer as an alternative binder can help reduce CO2 emission of concrete. The binder of geopolymer concrete is different from the ordinary Portland cement concrete. Geopolymer Concrete specimens were prepared with different concentration of NaOH solution M10, M14, and, M16 and cured at 60 ºC in duration of 24 hours and 8 hours, in addition to the curing in direct sunlight. Thus, it is necessary to study the effects of the geopolymer binder on the behavior of concrete. Concrete is made by using geopolymer technology is environmental friendly and could be considered as part of the sustainable development. In this study the Local Alkaline Activator in Egypt and dolomite as coarse aggregate in fly ash based-geopolymer concrete was investigated. This paper illustrates the development of mechanical properties. Since the gained compressive strength for geopolymer concrete at 28 days was in the range of 22.5MPa – 43.9MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title="geopolymer">geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=molarity" title=" molarity"> molarity</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20silicate" title=" sodium silicate"> sodium silicate</a> </p> <a href="https://publications.waset.org/abstracts/38420/effect-of-crashed-stone-on-properties-of-fly-ash-based-geopolymer-concrete-with-local-alkaline-activator-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2803</span> Investigation of the Decisive Factors on the Slump Loss: A Case Study of Cement Factors (Portland Cement Type 2)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Ahmadi">M. B. Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Kaffash%20B."> A. A. Kaffash B.</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Mobaraki"> B. Mobaraki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Slump loss, which refers to the gradual reduction of workability and the amount of slump in fresh concrete over time, is one of the significant challenges in the ready-mixed concrete industry. Therefore, having accurate knowledge of the factors affecting slump loss is a crucial solution in this field. In this paper, an attempt was made to investigate the effect of cement produced by different units on the slump of concrete in a laboratory setting. For this purpose, 12 cement samples were prepared from 6 different production units. Physical and chemical tests were performed on the cement samples. Subsequently, a laboratory concrete mix with a slump of 13 ± 1 cm was prepared with each cement sample, and the slump was measured at 0, 15, 30, 45, and 60 minutes. Although the environmental factors, mix design specifications, and execution conditions—factors that significantly influence the slump loss trend—were constant in all 12 laboratory concrete mixes, the slump loss trends differed among them. These trends were categorized based on the results, and the relationship between the slump loss percentage in 60 minutes, the water-cement ratio, and the LOI and K2O values of different cements were introduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=slump%20loss" title=" slump loss"> slump loss</a>, <a href="https://publications.waset.org/abstracts/search?q=portland%20cement" title=" portland cement"> portland cement</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/182265/investigation-of-the-decisive-factors-on-the-slump-loss-a-case-study-of-cement-factors-portland-cement-type-2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2802</span> The Effect of Rice Husk Ash on the Mechanical and Durability Properties of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Binyamien%20Rasoul">Binyamien Rasoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Portland cement is one of the most widely used construction materials in the world today; however, manufacture of ordinary Portland cement (OPC) emission significant amount of CO2 resulting environmental impact. On the other hand, rice husk ash (RHA), which is produce as by product material is generally considered to be an environmental issue as a waste material. This material (RHA) consists of non-crystalline silicon dioxide with high specific surface area and high pozzolanic reactivity. These RHA properties can demonstrate a significant influence in improving the mechanical and durability properties of mortar and concrete. Furthermore, rice husk ash can provide a cost effective and give concrete more sustainability. In this paper, chemical composition, reactive silica and fineness effect was assessed by examining five different types of RHA. Mortars and concrete specimens were molded with 5% to 50% of ash, replacing the Portland cement, and measured their compressive and tensile strength behavior. Beyond it, another two parameters had been considered: the durability of concrete blended RHA, and effect of temperature on the transformed of amorphous structure to crystalline form. To obtain the rice husk ash properties, these different types were subjected to X-Ray fluorescence to determine the chemical composition, while pozzolanic activity obtained by using X-Ray diffraction test. On the other hand, finesses and specific surface area were obtained by used Malvern Mastersizer 2000 test. The measured parameters properties of fresh mortar and concrete obtained by used flow table and slump test. While, for hardened mortar and concrete the compressive and tensile strength determined pulse the chloride ions penetration for concrete using NT Build 492 (Nord Test) – non-steady state migration test (RMT Test). The obtained test results indicated that RHA can be used as a cement replacement material in concrete with considerable proportion up to 50% percentages without compromising concrete strength. The use of RHA in the concrete as blending materials improved the different characteristics of the concrete product. The paper concludes that to exhibits a good compressive strength of OPC mortar or concrete with increase RHA replacement ratio rice husk ash should be consist of high silica content with high pozzolanic activity. Furthermore, with high amount of carbon content (12%) could be improve the strength of concrete when the silica structure is totally amorphous. As well RHA with high amount of crystalline form (25%) can be used as cement replacement when the silica content over 90%. The workability and strength of concrete increased by used of superplasticizer and it depends on the silica structure and carbon content. This study therefore is an investigation of the effect of partially replacing Ordinary Portland cement (OPC) with Rice hush Ash (RHA) on the mechanical properties and durability of concrete. This paper gives satisfactory results to use RHA in sustainable construction in order to reduce the carbon footprint associated with cement industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OPC" title="OPC">OPC</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20Portland%20cement" title=" ordinary Portland cement"> ordinary Portland cement</a>, <a href="https://publications.waset.org/abstracts/search?q=RHA%20rice%20husk%20ash" title=" RHA rice husk ash"> RHA rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=W%2FB%20%20water%20to%20binder%20ratio" title=" W/B water to binder ratio"> W/B water to binder ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2" title=" CO2"> CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a> </p> <a href="https://publications.waset.org/abstracts/52979/the-effect-of-rice-husk-ash-on-the-mechanical-and-durability-properties-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2801</span> S-N-Pf Relationship for Steel Fibre Reinforced Concrete Made with Cement Additives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurbir%20Kaur">Gurbir Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Surinder%20Pal%20Singh"> Surinder Pal Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is a part of the research work on the effect of limestone powder (LP), silica fume (SF) and metakaolin (MK), on the flexural fatigue performance of steel fibre reinforced concrete (SFRC). Corrugated rectangular steel fibres of size 0.6x2.0x35 mm at a constant volume fraction of 1.0% have been incorporated in all mix combinations as the reinforcing material. Three mix combinations were prepared by replacing 30% of ordinary Portland cement (OPC) by weight with these cement additives in binary and ternary fashion to demonstrate their contribution. An experimental programme was conducted to obtain the fatigue lives of all mix combinations at various stress levels. The fatigue life data have been analysed as an attempt to determine the relationship between stress level ‘S’, number of cycles to failure ‘N’ and probability of failure ‘Pf’ for all mix combinations. The experimental coefficients of the fatigue equation have also been obtained from the fatigue data to represent the S-N-Pf curves analytically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20additives" title="cement additives">cement additives</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20failure" title=" probability of failure"> probability of failure</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibre%20reinforced%20concrete" title=" steel fibre reinforced concrete"> steel fibre reinforced concrete</a> </p> <a href="https://publications.waset.org/abstracts/8937/s-n-pf-relationship-for-steel-fibre-reinforced-concrete-made-with-cement-additives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2800</span> Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20Gunneswara%20Rao">T. D. Gunneswara Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudimby%20Andal"> Mudimby Andal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, partial replacement to fine aggregates and admixture. Addition of fly ash to the concrete in each one of the form mentioned above, makes the concrete more workable and durable than the conventional concrete. Studies on fly ash as partial replacement to cement gained momentum as such replacement makes the concrete economical. In the present study, an attempt has been made to understand the effects of fly ash on the workability characteristics and strength aspects of fly ash concretes. In India, major number of thermal power plants are producing low calcium fly ash. Hence, in the present investigation, low calcium fly ash has been used. Fly ash in concrete was considered for the partial replacement of cement. The percentage replacement of cement by fly ash varied from 0% to 40% at regular intervals of 10%. Moreover the fine aggregate to coarse aggregate ratio also has been varied as 1:1, 1:2, and 1:3. The workability tests revealed that up to 30% replacement of cement by fly ash in concrete mixes water demand for reduces and beyond 30% replacement of cement by fly ash demanded more water content for constant workability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cementing%20efficiency" title="cementing efficiency">cementing efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20calcium%20fly%20ash" title=" low calcium fly ash"> low calcium fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a> </p> <a href="https://publications.waset.org/abstracts/3427/cementing-efficiency-of-low-calcium-fly-ash-in-fly-ash-concretes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2799</span> Estimation Model for Concrete Slump Recovery by Using Superplasticizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaiyakrit%20Raoupatham">Chaiyakrit Raoupatham</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Hari%20Dhakal"> Ram Hari Dhakal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chalermchai%20Wanichlamlert"> Chalermchai Wanichlamlert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice, in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%- 1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameter, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estimation%20model" title="estimation model">estimation model</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20superplasticizer%20dosage" title=" second superplasticizer dosage"> second superplasticizer dosage</a>, <a href="https://publications.waset.org/abstracts/search?q=slump%20loss" title=" slump loss"> slump loss</a>, <a href="https://publications.waset.org/abstracts/search?q=slump%20recovery" title=" slump recovery"> slump recovery</a> </p> <a href="https://publications.waset.org/abstracts/41122/estimation-model-for-concrete-slump-recovery-by-using-superplasticizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2798</span> Influence of Gum Acacia Karroo on Some Mechanical Properties of Cement Mortars and Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mbugua%20R.%20N.">Mbugua R. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20R.%20W."> Salim R. W.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ndambuki%20J.%20M."> Ndambuki J. M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural admixtures provide concrete with enhanced properties but their processing end up making them very expensive resulting in increase to cost of concrete. In this study the effect of Gum from Acacia Karroo (GAK) as set-retarding admixture in cement pastes was studied. The possibility of using GAK as water reducing admixture both in cement mortar concrete was also investigated. Cement pastes with different dosages of GAK were prepared to measure the setting time using different dosages. Compressive strength of cement mortars with 0.7, 0.8 and 0.9% weight of cement and w/c ratio of 0.5 were compared to those with water cement (w/c) ratio of 0.44 but same dosage of GAK. Concrete samples were prepared using higher dosages of GAK (1, 2 and 3\% wt of cement) and a water bidder (w/b) of 0.61 were compared to those with the same GAK dosage but with reduced w/b ratio. There was increase in compressive strength of 9.3% at 28 days for cement mortar samples with 0.9% dosage of GAK and reduced w/c ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=Gum%20Acacia%20Karroo" title=" Gum Acacia Karroo"> Gum Acacia Karroo</a>, <a href="https://publications.waset.org/abstracts/search?q=retarding%20admixture" title=" retarding admixture"> retarding admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=setting%20time" title=" setting time"> setting time</a>, <a href="https://publications.waset.org/abstracts/search?q=water-reducing%20admixture" title=" water-reducing admixture"> water-reducing admixture</a> </p> <a href="https://publications.waset.org/abstracts/30168/influence-of-gum-acacia-karroo-on-some-mechanical-properties-of-cement-mortars-and-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2797</span> Compressive Strength Development of Normal Concrete and Self-Consolidating Concrete Incorporated with GGBS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nili">M. Nili</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Tavasoli"> S. Tavasoli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Yazdandoost"> A. R. Yazdandoost</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an experimental investigation on the effect of Isfahan Ground Granulate Blast Furnace Slag (GGBS) on the compressive strength development of self-consolidating concrete (SCC) and normal concrete (NC) was performed. For this purpose, Portland cement type I was replaced with GGBS in various Portions. For NC and SCC Mixes, 10*10*10 cubic cm specimens were tested in 7, 28 and 91 days. It must be stated that in this research water to cement ratio was 0.44, cement used in cubic meter was 418 Kg/m³ and Superplasticizer (SP) Type III used in SCC based on Poly-Carboxylic acid. The results of experiments have shown that increasing GGBS Percentages in both types of concrete reduce Compressive strength in early ages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=GGBS" title=" GGBS"> GGBS</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20concrete" title=" normal concrete"> normal concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=self-consolidating%20concrete" title=" self-consolidating concrete"> self-consolidating concrete</a> </p> <a href="https://publications.waset.org/abstracts/28853/compressive-strength-development-of-normal-concrete-and-self-consolidating-concrete-incorporated-with-ggbs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2796</span> Development of Impervious Concrete Using Micro Silica and GGBS as Cement Replacement Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rizwan%20Akram">Muhammad Rizwan Akram</a>, <a href="https://publications.waset.org/abstracts/search?q=Saim%20Raza"> Saim Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Hanif%20Chauhan"> Hamza Hanif Chauhan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the aim of research to evaluate the performance of ordinary Portland concretes containing cement replacement materials in both binary and ternary system. Blocks of concrete were prepared to have a constant water-binder ratio of 0.30. The test variables included the type and the amount of the supplementary cementious materials (SCMs) such as class of Silica Fume (SF) and ground granulated blast furnace slag (GGBS). Portland cement was replaced with Silica Fume (SF) upto 7.5% and GGBS up to a level of 50%. Then physical properties are assessed from the compressive strength and permeability tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title="silica fume">silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=GGBS" title=" GGBS"> GGBS</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability "> permeability </a> </p> <a href="https://publications.waset.org/abstracts/44752/development-of-impervious-concrete-using-micro-silica-and-ggbs-as-cement-replacement-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2795</span> Wood Ashes from Electrostatic Filter as a Replacement for the Fly Ashes in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr-Robert%20Lazik">Piotr-Robert Lazik</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20Garrecht"> Harald Garrecht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many concrete technologists are looking for a solution to replace Fly Ashes that would be unavailable in a few years as an element that occurs as a major component of many types of concrete. The importance of such component is clear - it saves cement and reduces the amount of CO<sub>2</sub> in the atmosphere that occurs during cement production. Wood Ashes from electrostatic filter can be used as a valuable substitute in concrete. The laboratory investigations showed that the wood ash concrete had a compressive strength comparable to coal fly ash concrete. These results indicate that wood ash can be used to manufacture normal concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wood%20ashes" title="wood ashes">wood ashes</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ashes" title=" fly ashes"> fly ashes</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20filter" title=" electric filter"> electric filter</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement" title=" replacement"> replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20technology" title=" concrete technology"> concrete technology</a> </p> <a href="https://publications.waset.org/abstracts/117423/wood-ashes-from-electrostatic-filter-as-a-replacement-for-the-fly-ashes-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2794</span> The Behavior of Self-Compacting Light Weight Concrete Produced by Magnetic Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moosa%20Mazloom">Moosa Mazloom</a>, <a href="https://publications.waset.org/abstracts/search?q=Hojjat%20Hatami"> Hojjat Hatami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this article is to access the optimal mix design of self-compacting light weight concrete. The effects of magnetic water, superplasticizer based on polycarboxylic-ether, and silica fume on characteristics of this type of concrete are studied. The workability of fresh concrete and the compressive strength of hardened concrete are considered here. For this purpose, nine mix designs were studied. The percentages of superplasticizer were 0.5, 1, and 2% of the weight of cement, and the percentages of silica fume were 0, 6, and 10% of the weight of cement. The water to cementitious ratios were 0.28, 0.32, and 0.36. The workability of concrete samples was analyzed by the devices such as slump flow, V-funnel, L box, U box, and Urimet with J ring. Then, the compressive strengths of the mixes at the ages of 3, 7, 28, and 90 days were obtained. The results show that by using magnetic water, the compressive strengths are improved at all the ages. In the concrete samples with ordinary water, more superplasticizer dosages were needed. Moreover, the combination of superplasticizer and magnetic water had positive effects on the mixes containing silica fume and they could flow easily. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20water" title="magnetic water">magnetic water</a>, <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20light%20weight%20concrete" title=" self-compacting light weight concrete"> self-compacting light weight concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=superplasticizer" title=" superplasticizer"> superplasticizer</a> </p> <a href="https://publications.waset.org/abstracts/44599/the-behavior-of-self-compacting-light-weight-concrete-produced-by-magnetic-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2793</span> Polystyrene Paste as a Substitute for a Portland Cement: A Solution to the Nigerian Dilemma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lanre%20Oluwafemi%20Akinyemi">Lanre Oluwafemi Akinyemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reduction of limestone to cement in Nigeria is expensive and requires huge amounts of energy. This significantly affects the cost of cement. Concrete is heavy: a cubic foot of it weighs about 150 lbs. and a cubic yard is about 4000 lbs. Thus a ready-mix truck with 9 cubic yards is carrying 36,000 lbs excluding the weight of the truck itself, thereby accumulating cost for also manufacturers. Therein lies the need to find a substitute for cement by using the polystyrene paste that benefits both the manufactures and the consumers. Polystyrene Paste Constructional Cement (PPCC), a patented material obtained by dissolving Waste EPS in volatile organic solvent, has recently been identified as a suitable binder/cement for construction and building material production. This paper illustrates the procedures of a test experiment undertaken to determine the splitting tensile strength of PPCC mortar compared to that of OPC (Ordinary Portland Cement). Expanded polystyrene was dissolved in gasoline to form a paste referred to as Polystyrene Paste Constructional Cement (PPCC). Mortars of mix ratios 1:4, 1:5, 1:6, 1:7 (PPCC: fine aggregate) batched by volume were used to produce 50mm x 100mm cylindrical PPCC mortar splitting tensile strength specimens. The control experiment was done by creating another series of cylindrical OPC mortar splitting tensile strength specimens following the same mix ratio used earlier. The PPCC cylindrical splitting tensile strength specimens were left to air-set, and the ones made with Ordinary Portland Cement (OPC) were demoded after 24 hours and cured in water. The cylindrical PPCC splitting tensile strength specimens were tested at 28 days and compared with those of the Ordinary Portland cement splitting tensile strength specimens. The result shows that hence for this two mixes, PPCC exhibits a better binding property than the OPC. With this my new invention I recommend the use of PPCC as a substitute for a Portland cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polystyrene%20paste" title="polystyrene paste">polystyrene paste</a>, <a href="https://publications.waset.org/abstracts/search?q=Portland%20cement" title=" Portland cement"> Portland cement</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a> </p> <a href="https://publications.waset.org/abstracts/82175/polystyrene-paste-as-a-substitute-for-a-portland-cement-a-solution-to-the-nigerian-dilemma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2792</span> Prospective Use of Rice Husk Ash to Produce Concrete in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalyan%20Kumar%20Moulick">Kalyan Kumar Moulick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the author studied the possibilities of using Rice Husk Ash (RHA) available in India; to produce concrete. The effect of RHA on concrete discussed. Traditional uses of Rice Husk in India pointed out and the advantages of using RHA in making concrete highlighted. Suggestion provided regarding prospective application of RHA concrete in India which in turn will definitely reduce the cost of concrete and environmental friendly due to utilization of waste and replacement of Cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20replacement" title="cement replacement">cement replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20friendly" title=" environmental friendly"> environmental friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a> </p> <a href="https://publications.waset.org/abstracts/23437/prospective-use-of-rice-husk-ash-to-produce-concrete-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2791</span> Finite Element Analysis of the Ordinary Reinforced Concrete Bridge Piers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabin%20Raj%20Chaulagain">Nabin Raj Chaulagain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the concrete bridges in Nepal constructed during 90's and before are made up of low strength ordinary concrete which might be one of the reasons for damage in higher magnitude earthquake. Those bridges were designed by the outdated bridge codes which might not account the large seismic loads. This research investigates the seismic vulnerability of the existing single column ordinary concrete bridge pier by finite element modeling, using the software Seismostruct. The existing bridge pier capacity has been assessed using nonlinear pushover analysis and performance is compared after retrofitting those pier models with CFRP. Furthermore, the seismic evaluation was made by conducting cyclic loading test at different drift percentage. The performance analysis of bridge pier by nonlinear pushover analysis is further validated by energy dissipation phenomenon measured from the hysteric loop for each model of ordinary concrete piers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title="finite element modeling">finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20concrete%20bridge%20pier" title=" ordinary concrete bridge pier"> ordinary concrete bridge pier</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20analysis" title=" performance analysis"> performance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofitting" title=" retrofitting"> retrofitting</a> </p> <a href="https://publications.waset.org/abstracts/73406/finite-element-analysis-of-the-ordinary-reinforced-concrete-bridge-piers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2790</span> Getting to Know the Types of Concrete and its Production Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mokhtar%20Nikgoo">Mokhtar Nikgoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Definition of Concrete and Concreting: Concrete (in French: Béton) in a broad sense is any substance or combination that consists of a sticky substance with the property of cementation. In general, concrete refers to concrete made by Portland cement, which is produced by mixing fine and coarse aggregates, Portland cement and water. After enough time, this mixture turns into a stone-like substance. During the hardening or processing of the concrete, cement is chemically combined with water to form strong crystals that bind the aggregates together, a process called hydration. During this process, significant heat is released called hydration heat. Additionally, concrete shrinks slightly, especially as excess water evaporates, a phenomenon known as drying shrinkage. The process of hardening and the gradual increase in concrete strength that occurs with it does not end suddenly unless it is artificially interrupted. Instead, it decreases more over long periods of time, although, in practical applications, concrete is usually set after 28 days and is considered at full design strength. Concrete may be made from different types of cement as well as pozzolans, furnace slag, additives, additives, polymers, fibers, etc. It may also be used in the way it is made, heating, water vapor, autoclave, vacuum, hydraulic pressures and various condensers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=RCC" title=" RCC"> RCC</a>, <a href="https://publications.waset.org/abstracts/search?q=batching" title=" batching"> batching</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=Pozzolan" title=" Pozzolan"> Pozzolan</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20plan" title=" mixing plan"> mixing plan</a> </p> <a href="https://publications.waset.org/abstracts/174122/getting-to-know-the-types-of-concrete-and-its-production-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2789</span> Durability Study of Binary Blended High Performance Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vatsal%20Patel">Vatsal Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Niraj%20Shah"> Niraj Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of a laboratory study on the properties of binary blended High Performance cementitious systems containing blends of ordinary Portland cement (OPC), Porcelain Powder or Marble Powder blend proportions of 100:00, 95:05, 90:10, 85:15, 80:20 for OPC: Porcelain Powder/Marble Powder. Studies on the Engineering Properties of the cementitious concrete, namely compressive strength, flexural strength, sorptivity, rapid chloride penetration test and accelerated corrosion test have been performed and those of OPC concrete. The results show that the inclusion of Porcelain powder or Marble Powder as binary blended cement alters to a great degree the properties of the binder as well as the resulting concrete. In addition, the results show that the Porcelain powder with 85:15 proportions and Marble powder with 90:10 proportions as binary systems to produce high-performance concrete could potentially be used in the concrete construction industry particular in lowering down the volume of OPC used and lowering emission of CO2 produces during manufacturing of cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20corrosion" title="accelerated corrosion">accelerated corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20blended%20cementitious%20system" title=" binary blended cementitious system"> binary blended cementitious system</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20chloride%20penetration" title=" rapid chloride penetration"> rapid chloride penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=sorptivity" title=" sorptivity"> sorptivity</a> </p> <a href="https://publications.waset.org/abstracts/21368/durability-study-of-binary-blended-high-performance-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ordinary%20cement%20concrete&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ordinary%20cement%20concrete&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ordinary%20cement%20concrete&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ordinary%20cement%20concrete&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ordinary%20cement%20concrete&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ordinary%20cement%20concrete&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ordinary%20cement%20concrete&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ordinary%20cement%20concrete&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ordinary%20cement%20concrete&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ordinary%20cement%20concrete&page=93">93</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ordinary%20cement%20concrete&page=94">94</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ordinary%20cement%20concrete&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>