CINXE.COM
Search results for: quantum machine learning
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: quantum machine learning</title> <meta name="description" content="Search results for: quantum machine learning"> <meta name="keywords" content="quantum machine learning"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="quantum machine learning" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="quantum machine learning"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9087</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: quantum machine learning</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9087</span> Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20Tancara">Diego Tancara</a>, <a href="https://publications.waset.org/abstracts/search?q=Raul%20Coto"> Raul Coto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariel%20Norambuena"> Ariel Norambuena</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoseein%20T.%20Dinani"> Hoseein T. Dinani</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Fanchini"> Felipe Fanchini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum" title="quantum">quantum</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=kernel" title=" kernel"> kernel</a>, <a href="https://publications.waset.org/abstracts/search?q=non-markovianity" title=" non-markovianity"> non-markovianity</a> </p> <a href="https://publications.waset.org/abstracts/165769/quantum-kernel-based-regressor-for-prediction-of-non-markovianity-of-open-quantum-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9086</span> Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadia%20Nasrin%20Tisha">Sadia Nasrin Tisha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushfika%20Sharmin%20Rahman"> Mushfika Sharmin Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Orduz"> Javier Orduz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning" title="quantum machine learning">quantum machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=QSVM" title=" QSVM"> QSVM</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20product%20state" title=" matrix product state"> matrix product state</a> </p> <a href="https://publications.waset.org/abstracts/171382/empowering-a-new-frontier-in-heart-disease-detection-unleashing-quantum-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9085</span> Deep Reinforcement Learning Model Using Parameterised Quantum Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lokes%20Parvatha%20Kumaran%20S.">Lokes Parvatha Kumaran S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakthi%20Jay%20Mahenthar%20C."> Sakthi Jay Mahenthar C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sathyaprakash%20P."> Sathyaprakash P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayakumar%20V."> Jayakumar V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Shobanadevi%20A."> Shobanadevi A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning" title=" quantum machine learning"> quantum machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20quantum%20circuit" title=" variational quantum circuit"> variational quantum circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title=" deep reinforcement learning"> deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20information%20encoding%20scheme" title=" quantum information encoding scheme"> quantum information encoding scheme</a> </p> <a href="https://publications.waset.org/abstracts/152629/deep-reinforcement-learning-model-using-parameterised-quantum-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9084</span> Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Om%20Viroje">Om Viroje</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning" title="quantum machine learning">quantum machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20encoding" title=" data encoding"> data encoding</a>, <a href="https://publications.waset.org/abstracts/search?q=amplitude%20encoding" title=" amplitude encoding"> amplitude encoding</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20encoding" title=" phase encoding"> phase encoding</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20resilience" title=" noise resilience"> noise resilience</a> </p> <a href="https://publications.waset.org/abstracts/193480/optimizing-quantum-machine-learning-with-amplitude-and-phase-encoding-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9083</span> Quantum Statistical Machine Learning and Quantum Time Series</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Alzeley">Omar Alzeley</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Utev"> Sergey Utev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20techniques" title=" simulation techniques"> simulation techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20probability" title=" quantum probability"> quantum probability</a>, <a href="https://publications.waset.org/abstracts/search?q=tensor%20product" title=" tensor product"> tensor product</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a> </p> <a href="https://publications.waset.org/abstracts/52720/quantum-statistical-machine-learning-and-quantum-time-series" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9082</span> Colored Image Classification Using Quantum Convolutional Neural Networks Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farina%20Riaz">Farina Riaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Abdulla"> Shahab Abdulla</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinjoy%20Ganguly"> Srinjoy Ganguly</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajime%20Suzuki"> Hajime Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravinesh%20C.%20Deo"> Ravinesh C. Deo</a>, <a href="https://publications.waset.org/abstracts/search?q=Susan%20Hopkins"> Susan Hopkins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CIFAR-10" title="CIFAR-10">CIFAR-10</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20convolutional%20neural%20networks" title=" quantum convolutional neural networks"> quantum convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20deep%20learning" title=" quantum deep learning"> quantum deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning" title=" quantum machine learning"> quantum machine learning</a> </p> <a href="https://publications.waset.org/abstracts/157250/colored-image-classification-using-quantum-convolutional-neural-networks-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9081</span> A Review of Machine Learning for Big Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devatha%20Kalyan%20Kumar">Devatha Kalyan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aravindraj%20D."> Aravindraj D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadathulla%20A."> Sadathulla A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20learning" title="active learning">active learning</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/72161/a-review-of-machine-learning-for-big-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9080</span> Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nishant%20Rodrigues">Nishant Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Spanedda"> Nicole Spanedda</a>, <a href="https://publications.waset.org/abstracts/search?q=Chilukuri%20K.%20Mohan"> Chilukuri K. Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arindam%20Chakraborty"> Arindam Chakraborty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20energy%20calculations" title="quantum energy calculations">quantum energy calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20orbitals" title=" atomic orbitals"> atomic orbitals</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-repulsion%20integrals" title=" electron-repulsion integrals"> electron-repulsion integrals</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble%20machine%20learning" title=" ensemble machine learning"> ensemble machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forests" title=" random forests"> random forests</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a> </p> <a href="https://publications.waset.org/abstracts/167152/accelerating-quantum-chemistry-calculations-machine-learning-for-efficient-evaluation-of-electron-repulsion-integrals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9079</span> Autonomous Quantum Competitive Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Zidan">Mohammed A. Zidan</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Sagheer"> Alaa Sagheer</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Metwally"> Nasser Metwally</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Real-time learning is an important goal that most of artificial intelligence researches try to achieve it. There are a lot of problems and applications which require low cost learning such as learn a robot to be able to classify and recognize patterns in real time and real-time recall. In this contribution, we suggest a model of quantum competitive learning based on a series of quantum gates and additional operator. The proposed model enables to recognize any incomplete patterns, where we can increase the probability of recognizing the pattern at the expense of the undesired ones. Moreover, these undesired ones could be utilized as new patterns for the system. The proposed model is much better compared with classical approaches and more powerful than the current quantum competitive learning approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=competitive%20learning" title="competitive learning">competitive learning</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20gates" title=" quantum gates"> quantum gates</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20gates" title=" quantum gates"> quantum gates</a>, <a href="https://publications.waset.org/abstracts/search?q=winner-take-all" title=" winner-take-all"> winner-take-all</a> </p> <a href="https://publications.waset.org/abstracts/25398/autonomous-quantum-competitive-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9078</span> Reinforcement Learning the Born Rule from Photon Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20S.%20Piera">Rodrigo S. Piera</a>, <a href="https://publications.waset.org/abstracts/search?q=Jailson%20Sales%20Ara%C2%B4ujo"> Jailson Sales Ara´ujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20B.%20Lemos"> Gabriela B. Lemos</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20B.%20Weiss"> Matthew B. Weiss</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20B.%20DeBrota"> John B. DeBrota</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20H.%20Aguilar"> Gabriel H. Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacques%20L.%20Pienaar"> Jacques L. Pienaar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Born rule was historically viewed as an independent axiom of quantum mechanics until Gleason derived it in 1957 by assuming the Hilbert space structure of quantum measurements [1]. In subsequent decades there have been diverse proposals to derive the Born rule starting from even more basic assumptions [2]. In this work, we demonstrate that a simple reinforcement-learning algorithm, having no pre-programmed assumptions about quantum theory, will nevertheless converge to a behaviour pattern that accords with the Born rule, when tasked with predicting the output of a quantum optical implementation of a symmetric informationally-complete measurement (SIC). Our findings support a hypothesis due to QBism (the subjective Bayesian approach to quantum theory), which states that the Born rule can be thought of as a normative rule for making decisions in a quantum world [3]. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20Bayesianism" title="quantum Bayesianism">quantum Bayesianism</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20theory" title=" quantum theory"> quantum theory</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20information" title=" quantum information"> quantum information</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20measurement" title=" quantum measurement"> quantum measurement</a> </p> <a href="https://publications.waset.org/abstracts/175290/reinforcement-learning-the-born-rule-from-photon-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9077</span> Modern Machine Learning Conniptions for Automatic Speech Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Jagadeesh%20Kumar">S. Jagadeesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This expose presents a luculent of recent machine learning practices as employed in the modern and as pertinent to prospective automatic speech recognition schemes. The aspiration is to promote additional traverse ablution among the machine learning and automatic speech recognition factions that have transpired in the precedent. The manuscript is structured according to the chief machine learning archetypes that are furthermore trendy by now or have latency for building momentous hand-outs to automatic speech recognition expertise. The standards offered and convoluted in this article embraces adaptive and multi-task learning, active learning, Bayesian learning, discriminative learning, generative learning, supervised and unsupervised learning. These learning archetypes are aggravated and conferred in the perspective of automatic speech recognition tools and functions. This manuscript bequeaths and surveys topical advances of deep learning and learning with sparse depictions; further limelight is on their incessant significance in the evolution of automatic speech recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20speech%20recognition" title="automatic speech recognition">automatic speech recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning%20methods" title=" deep learning methods"> deep learning methods</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20archetypes" title=" machine learning archetypes"> machine learning archetypes</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20learning" title=" Bayesian learning"> Bayesian learning</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20and%20unsupervised%20learning" title=" supervised and unsupervised learning"> supervised and unsupervised learning</a> </p> <a href="https://publications.waset.org/abstracts/71467/modern-machine-learning-conniptions-for-automatic-speech-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9076</span> Tongue Image Retrieval Based Using Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20FAROOQ">Ahmad FAROOQ</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinfeng%20Zhang"> Xinfeng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Sabah"> Fahad Sabah</a>, <a href="https://publications.waset.org/abstracts/search?q=Raheem%20Sarwar"> Raheem Sarwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Traditional Chinese Medicine, tongue diagnosis is a vital inspection tool (TCM). In this study, we explore the potential of machine learning in tongue diagnosis. It begins with the cataloguing of the various classifications and characteristics of the human tongue. We infer 24 kinds of tongues from the material and coating of the tongue, and we identify 21 attributes of the tongue. The next step is to apply machine learning methods to the tongue dataset. We use the Weka machine learning platform to conduct the experiment for performance analysis. The 457 instances of the tongue dataset are used to test the performance of five different machine learning methods, including SVM, Random Forests, Decision Trees, and Naive Bayes. Based on accuracy and Area under the ROC Curve, the Support Vector Machine algorithm was shown to be the most effective for tongue diagnosis (AUC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20imaging" title="medical imaging">medical imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20retrieval" title=" image retrieval"> image retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=tongue" title=" tongue"> tongue</a> </p> <a href="https://publications.waset.org/abstracts/176849/tongue-image-retrieval-based-using-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9075</span> Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Leach">Jennifer Leach</a>, <a href="https://publications.waset.org/abstracts/search?q=Umashanger%20Thayasivam"> Umashanger Thayasivam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20science" title="data science">data science</a>, <a href="https://publications.waset.org/abstracts/search?q=fraud%20detection" title=" fraud detection"> fraud detection</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20learning" title=" supervised learning"> supervised learning</a> </p> <a href="https://publications.waset.org/abstracts/149142/optimize-data-evaluation-metrics-for-fraud-detection-using-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9074</span> Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20Stodt">Jan Stodt</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Reich"> Christoph Reich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=audit" title="audit">audit</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=assessment" title=" assessment"> assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=metrics" title=" metrics"> metrics</a> </p> <a href="https://publications.waset.org/abstracts/126161/machine-learning-development-audit-framework-assessment-and-inspection-of-risk-and-quality-of-data-model-and-development-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9073</span> Introducing Quantum-Weijsberg Algebras by Redefining Quantum-MV Algebras: Characterization, Properties, and Other Important Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lavinia%20Ciungu">Lavinia Ciungu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decades, developing algebras related to the logical foundations of quantum mechanics became a central topic of research. Generally known as quantum structures, these algebras serve as models for the formalism of quantum mechanics. In this work, we introduce the notion of quantum-Wajsberg algebras by redefining the quantum-MV algebras starting from involutive BE algebras. We give a characterization of quantum-Wajsberg algebras, investigate their properties, and show that, in general, quantum-Wajsberg algebras are not (commutative) quantum-B algebras. We also define the ∨-commutative quantum-Wajsberg algebras and study their properties. Furthermore, we prove that any Wajsberg algebra (bounded ∨-commutative BCK algebra) is a quantum-Wajsberg algebra, and we give a condition for a quantum-Wajsberg algebra to be a Wajsberg algebra. We prove that Wajsberg algebras are both quantum-Wajsberg algebras and commutative quantum-B algebras. We establish the connection between quantum-Wajsberg algebras and quantum-MV algebras, proving that the quantum-Wajsberg algebras are term equivalent to quantum-MV algebras. We show that, in general, the quantum-Wajsberg algebras are not commutative quantum-B algebras and if a quantum-Wajsberg algebra is self-distributive, then the corresponding quantum-MV algebra is an MV algebra. Our study could be a starting point for the development of other implicative counterparts of certain existing algebraic quantum structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum-Wajsberg%20algebra" title="quantum-Wajsberg algebra">quantum-Wajsberg algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum-MV%20algebra" title=" quantum-MV algebra"> quantum-MV algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=MV%20algebra" title=" MV algebra"> MV algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=Wajsberg%20algebra" title=" Wajsberg algebra"> Wajsberg algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=BE%20algebra" title=" BE algebra"> BE algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum-B%20algebra" title=" quantum-B algebra"> quantum-B algebra</a> </p> <a href="https://publications.waset.org/abstracts/192449/introducing-quantum-weijsberg-algebras-by-redefining-quantum-mv-algebras-characterization-properties-and-other-important-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9072</span> Enabling Non-invasive Diagnosis of Thyroid Nodules with High Specificity and Sensitivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sai%20Maniveer%20Adapa">Sai Maniveer Adapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sai%20Guptha%20Perla"> Sai Guptha Perla</a>, <a href="https://publications.waset.org/abstracts/search?q=Adithya%20Reddy%20P."> Adithya Reddy P.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thyroid nodules can often be diagnosed with ultrasound imaging, although differentiating between benign and malignant nodules can be challenging for medical professionals. This work suggests a novel approach to increase the precision of thyroid nodule identification by combining machine learning and deep learning. The new approach first extracts information from the ultrasound pictures using a deep learning method known as a convolutional autoencoder. A support vector machine, a type of machine learning model, is then trained using these features. With an accuracy of 92.52%, the support vector machine can differentiate between benign and malignant nodules. This innovative technique may decrease the need for pointless biopsies and increase the accuracy of thyroid nodule detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thyroid%20tumor%20diagnosis" title="thyroid tumor diagnosis">thyroid tumor diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20images" title=" ultrasound images"> ultrasound images</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20auto-encoder" title=" convolutional auto-encoder"> convolutional auto-encoder</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/182971/enabling-non-invasive-diagnosis-of-thyroid-nodules-with-high-specificity-and-sensitivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9071</span> A Deep Learning Approach to Subsection Identification in Electronic Health Records</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nitin%20Shravan">Nitin Shravan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudarsun%20Santhiappan"> Sudarsun Santhiappan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Sivaselvan"> B. Sivaselvan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20clinical%20classification" title=" semantic clinical classification"> semantic clinical classification</a>, <a href="https://publications.waset.org/abstracts/search?q=subsection%20identification" title=" subsection identification"> subsection identification</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20classification" title=" text classification"> text classification</a> </p> <a href="https://publications.waset.org/abstracts/109176/a-deep-learning-approach-to-subsection-identification-in-electronic-health-records" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9070</span> Detect QOS Attacks Using Machine Learning Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christodoulou%20Christos">Christodoulou Christos</a>, <a href="https://publications.waset.org/abstracts/search?q=Politis%20Anastasios"> Politis Anastasios</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large majority of users favoured to wireless LAN connection since it was so simple to use. A wireless network can be the target of numerous attacks. Class hijacking is a well-known attack that is fairly simple to execute and has significant repercussions on users. The statistical flow analysis based on machine learning (ML) techniques is a promising categorization methodology. In a given dataset, which in the context of this paper is a collection of components representing frames belonging to various flows, machine learning (ML) can offer a technique for identifying and characterizing structural patterns. It is possible to classify individual packets using these patterns. It is possible to identify fraudulent conduct, such as class hijacking, and take necessary action as a result. In this study, we explore a way to use machine learning approaches to thwart this attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20lan" title="wireless lan">wireless lan</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20service" title=" quality of service"> quality of service</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=class%20hijacking" title=" class hijacking"> class hijacking</a>, <a href="https://publications.waset.org/abstracts/search?q=EDCA%20remapping" title=" EDCA remapping"> EDCA remapping</a> </p> <a href="https://publications.waset.org/abstracts/184408/detect-qos-attacks-using-machine-learning-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9069</span> Deleterious SNP’s Detection Using Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Zidoum">Hamza Zidoum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the impact of human genetic variation on the function of human proteins using machine-learning algorithms. Single-Nucleotide Polymorphism represents the most common form of human genome variation. We focus on the single amino-acid polymorphism located in the coding region as they can affect the protein function leading to pathologic phenotypic change. We use several supervised Machine Learning methods to identify structural properties correlated with increased risk of the missense mutation being damaging. SVM associated with Principal Component Analysis give the best performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-nucleotide%20polymorphism" title="single-nucleotide polymorphism">single-nucleotide polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a> </p> <a href="https://publications.waset.org/abstracts/45046/deleterious-snps-detection-using-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9068</span> A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20Neunzig">Christian Neunzig</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Fahle"> Simon Fahle</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%BCrgen%20Schulz"> Jürgen Schulz</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20M%C3%B6ller"> Matthias Möller</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernd%20Kuhlenk%C3%B6tter"> Bernd Kuhlenkötter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20quality" title=" predictive quality"> predictive quality</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulics" title=" hydraulics"> hydraulics</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20learning" title=" supervised learning"> supervised learning</a> </p> <a href="https://publications.waset.org/abstracts/143537/a-machine-learning-approach-for-the-leakage-classification-in-the-hydraulic-final-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9067</span> Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azene%20Zenebe">Azene Zenebe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep-learning" title="deep-learning">deep-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber%20security" title=" cyber security"> cyber security</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber%20threat%20modeling" title=" cyber threat modeling"> cyber threat modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=tree-based%20machine%20learning" title=" tree-based machine learning"> tree-based machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=function-based%20machine%20learning" title=" function-based machine learning"> function-based machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20science" title=" data science"> data science</a> </p> <a href="https://publications.waset.org/abstracts/148566/assessing-the-effectiveness-of-machine-learning-algorithms-for-cyber-threat-intelligence-discovery-from-the-darknet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9066</span> Optimization of Machine Learning Regression Results: An Application on Health Expenditures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Songul%20Cinaroglu">Songul Cinaroglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=lasso%20regression" title=" lasso regression"> lasso regression</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest%20regression" title=" random forest regression"> random forest regression</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20regression" title=" support vector regression"> support vector regression</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparameter%20tuning" title=" hyperparameter tuning"> hyperparameter tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20expenditure" title=" health expenditure"> health expenditure</a> </p> <a href="https://publications.waset.org/abstracts/97629/optimization-of-machine-learning-regression-results-an-application-on-health-expenditures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9065</span> Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sam%20Khozama">Sam Khozama</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Mayya"> Ali M. Mayya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20prediction" title=" cancer prediction"> cancer prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=fusion" title=" fusion"> fusion</a> </p> <a href="https://publications.waset.org/abstracts/155602/breast-cancer-prediction-using-score-level-fusion-of-machine-learning-and-deep-learning-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9064</span> Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Liu">Vincent Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=30-day%20readmission" title=" 30-day readmission"> 30-day readmission</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic" title=" metaheuristic"> metaheuristic</a> </p> <a href="https://publications.waset.org/abstracts/181586/using-greywolf-optimized-machine-learning-algorithms-to-improve-accuracy-for-predicting-hospital-readmission-for-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9063</span> Machine Learning Techniques to Develop Traffic Accident Frequency Prediction Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Aguiar">Rodrigo Aguiar</a>, <a href="https://publications.waset.org/abstracts/search?q=Adelino%20Ferreira"> Adelino Ferreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Road traffic accidents are the leading cause of unnatural death and injuries worldwide, representing a significant problem of road safety. In this context, the use of artificial intelligence with advanced machine learning techniques has gained prominence as a promising approach to predict traffic accidents. This article investigates the application of machine learning algorithms to develop traffic accident frequency prediction models. Models are evaluated based on performance metrics, making it possible to do a comparative analysis with traditional prediction approaches. The results suggest that machine learning can provide a powerful tool for accident prediction, which will contribute to making more informed decisions regarding road safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20of%20accidents" title=" frequency of accidents"> frequency of accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20safety" title=" road safety"> road safety</a> </p> <a href="https://publications.waset.org/abstracts/178875/machine-learning-techniques-to-develop-traffic-accident-frequency-prediction-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9062</span> A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seongjun%20Kim">Seongjun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanghoon%20Shim"> Sanghoon Shim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwooung%20Kim"> Jinwooung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehwan%20Jung"> Jaehwan Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Ah%20Kim"> Sung-Ah Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apartment%20housing" title="apartment housing">apartment housing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20prediction" title=" performance prediction"> performance prediction</a> </p> <a href="https://publications.waset.org/abstracts/80644/a-study-on-performance-prediction-in-early-design-stage-of-apartment-housing-using-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9061</span> Development of Fake News Model Using Machine Learning through Natural Language Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ahmed">Sajjad Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Knut%20Hinkelmann"> Knut Hinkelmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Corradini"> Flavio Corradini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fake%20news%20detection" title="fake news detection">fake news detection</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20techniques." title=" classification techniques. "> classification techniques. </a> </p> <a href="https://publications.waset.org/abstracts/127894/development-of-fake-news-model-using-machine-learning-through-natural-language-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9060</span> Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Roncero-Parra">Carlos Roncero-Parra</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfonso%20Parre%C3%B1o-Torres"> Alfonso Parreño-Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Mateo%20Sotos"> Jorge Mateo Sotos</a>, <a href="https://publications.waset.org/abstracts/search?q=Alejandro%20L.%20Borja"> Alejandro L. Borja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alzheimer" title="alzheimer">alzheimer</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a> </p> <a href="https://publications.waset.org/abstracts/165522/electroencephalogram-based-alzheimer-disease-classification-using-machine-and-deep-learning-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9059</span> A Machine Learning Decision Support Framework for Industrial Engineering Purposes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anli%20Du%20Preez">Anli Du Preez</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Bekker"> James Bekker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Data%20analytics" title="Data analytics">Data analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=Industrial%20engineering" title=" Industrial engineering"> Industrial engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=Machine%20learning" title=" Machine learning"> Machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Value%20creation" title=" Value creation"> Value creation</a> </p> <a href="https://publications.waset.org/abstracts/116912/a-machine-learning-decision-support-framework-for-industrial-engineering-purposes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9058</span> Evaluating the Implementation of Machine Learning Techniques in the South African Built Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Adekunle">Peter Adekunle</a>, <a href="https://publications.waset.org/abstracts/search?q=Clinton%20Aigbavboa"> Clinton Aigbavboa</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Ikuabe"> Matthew Ikuabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Opeoluwa%20Akinradewo"> Opeoluwa Akinradewo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The future of machine learning (ML) in building may seem like a distant idea that will take decades to materialize, but it is actually far closer than previously believed. In reality, the built environment has been progressively increasing interest in machine learning. Although it could appear to be a very technical, impersonal approach, it can really make things more personable. Instead of eliminating humans out of the equation, machine learning allows people do their real work more efficiently. It is therefore vital to evaluate the factors influencing the implementation and challenges of implementing machine learning techniques in the South African built environment. The study's design was one of a survey. In South Africa, construction workers and professionals were given a total of one hundred fifty (150) questionnaires, of which one hundred and twenty-four (124) were returned and deemed eligible for study. Utilizing percentage, mean item scores, standard deviation, and Kruskal-Wallis, the collected data was analyzed. The results demonstrate that the top factors influencing the adoption of machine learning are knowledge level and a lack of understanding of its potential benefits. While lack of collaboration among stakeholders and lack of tools and services are the key hurdles to the deployment of machine learning within the South African built environment. The study came to the conclusion that ML adoption should be promoted in order to increase safety, productivity, and service quality within the built environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation" title=" implementation"> implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=built%20environment" title=" built environment"> built environment</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20stakeholders" title=" construction stakeholders"> construction stakeholders</a> </p> <a href="https://publications.waset.org/abstracts/157567/evaluating-the-implementation-of-machine-learning-techniques-in-the-south-african-built-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning&page=302">302</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning&page=303">303</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>