CINXE.COM
Glossary of calculus - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-not-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Glossary of calculus - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-not-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat": "dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"f21e4192-b339-40f1-a9a0-532b29ad17f6","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Glossary_of_calculus","wgTitle":"Glossary of calculus","wgCurRevisionId":1259307342,"wgRevisionId":1259307342,"wgArticleId":53252845,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 location test","CS1: long volume value","CS1 French-language sources (fr)","Webarchive template wayback links","CS1 Hungarian-language sources (hu)","Wikipedia articles needing page number citations from November 2024","All articles with unsourced statements","Articles with unsourced statements from March 2017","Articles with unsourced statements from June 2016","Articles with short description","Short description is different from Wikidata", "Pages using sidebar with the child parameter","Wikipedia glossaries using description lists","Fields of mathematics","Glossaries of mathematics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Glossary_of_calculus","wgRelevantArticleId":53252845,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":90000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage", "wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q30680459","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"}; RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.6"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Glossary of calculus - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Glossary_of_calculus"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Glossary_of_calculus&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Glossary_of_calculus"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Glossary_of_calculus rootpage-Glossary_of_calculus skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Glossary+of+calculus" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Glossary+of+calculus" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Glossary+of+calculus" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Glossary+of+calculus" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Glossary of calculus</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="This article exist only in this language. Add the article for other languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-0" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">Add languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> <div class="after-portlet after-portlet-lang"><span class="uls-after-portlet-link"></span><span class="wb-langlinks-add wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q30680459#sitelinks-wikipedia" title="Add interlanguage links" class="wbc-editpage">Add links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Glossary_of_calculus" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Glossary_of_calculus" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Glossary_of_calculus"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Glossary_of_calculus&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Glossary_of_calculus&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Glossary_of_calculus"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Glossary_of_calculus&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Glossary_of_calculus&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Glossary_of_calculus" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Glossary_of_calculus" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Glossary_of_calculus&oldid=1259307342" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Glossary_of_calculus&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Glossary_of_calculus&id=1259307342&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlQ%C4%B1sald%C4%B1c%C4%B1s%C4%B1&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGlossary_of_calculus"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrKodu&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGlossary_of_calculus"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Glossary_of_calculus&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Glossary_of_calculus&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q30680459" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p> <i>Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.</i> </p><p>This <b>glossary of calculus</b> is a list of definitions about <b><a href="/wiki/Calculus" title="Calculus">calculus</a></b>, its sub-disciplines, and related fields. </p> <div class="noprint" style="text-align:center;"><div role="navigation" id="toc" class="toc plainlinks" aria-labelledby="tocheading" style="margin-left:auto;margin-right:auto; text-align:left;"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><div class="hlist"> <div id="toctitle" class="toctitle" style="text-align:center;display:inline-block;"><span id="tocheading" style="font-weight:bold;">Contents: </span></div> <div style="margin:auto; display:inline-block;"> <ul><li><a href="#A">A</a></li> <li><a href="#B">B</a></li> <li><a href="#C">C</a></li> <li><a href="#D">D</a></li> <li><a href="#E">E</a></li> <li><a href="#F">F</a></li> <li><a href="#G">G</a></li> <li><a href="#H">H</a></li> <li><a href="#I">I</a></li> <li><a href="#J">J</a></li> <li>K</li> <li><a href="#L">L</a></li> <li><a href="#M">M</a></li> <li><a href="#N">N</a></li> <li><a href="#O">O</a></li> <li><a href="#P">P</a></li> <li><a href="#Q">Q</a></li> <li><a href="#R">R</a></li> <li><a href="#S">S</a></li> <li><a href="#T">T</a></li> <li><a href="#U">U</a></li> <li><a href="#V">V</a></li> <li><a href="#W">W</a></li> <li>X</li> <li>Y</li> <li>Z</li> <li><a href="#See_also">See also</a></li> <li><a href="#References">References</a></li></ul> </div></div></div></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist"><tbody><tr><td class="sidebar-pretitle">Part of a series of articles about</td></tr><tr><th class="sidebar-title-with-pretitle" style="padding-bottom:0.25em;"><a href="/wiki/Calculus" title="Calculus">Calculus</a></th></tr><tr><td class="sidebar-image"><big><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17d063dc86a53a2efb1fe86f4a5d47d498652766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.228ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}"></span></big></td></tr><tr><td class="sidebar-above" style="padding:0.15em 0.25em 0.3em;font-weight:normal;"> <ul><li><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">Fundamental theorem</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Limit_of_a_function" title="Limit of a function">Limits</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuity</a></li></ul> </div><div class="hlist"> <ul><li><a href="/wiki/Rolle%27s_theorem" title="Rolle's theorem">Rolle's theorem</a></li> <li><a href="/wiki/Mean_value_theorem" title="Mean value theorem">Mean value theorem</a></li> <li><a href="/wiki/Inverse_function_theorem" title="Inverse function theorem">Inverse function theorem</a></li></ul> </div></td></tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base);display:block;margin-top:0.65em;"><span style="font-size:120%"><a href="/wiki/Differential_calculus" title="Differential calculus">Differential</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><th class="sidebar-heading"> Definitions</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Derivative" title="Derivative">Derivative</a> (<a href="/wiki/Generalizations_of_the_derivative" title="Generalizations of the derivative">generalizations</a>)</li> <li><a href="/wiki/Differential_(mathematics)" title="Differential (mathematics)">Differential</a> <ul><li><a href="/wiki/Differential_(infinitesimal)" class="mw-redirect" title="Differential (infinitesimal)">infinitesimal</a></li> <li><a href="/wiki/Differential_of_a_function" title="Differential of a function">of a function</a></li> <li><a href="/wiki/Differential_of_a_function#Differentials_in_several_variables" title="Differential of a function">total</a></li></ul></li></ul></td> </tr><tr><th class="sidebar-heading"> Concepts</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Differentiation notation</a></li> <li><a href="/wiki/Second_derivative" title="Second derivative">Second derivative</a></li> <li><a href="/wiki/Implicit_function" title="Implicit function">Implicit differentiation</a></li> <li><a href="/wiki/Logarithmic_differentiation" title="Logarithmic differentiation">Logarithmic differentiation</a></li> <li><a href="/wiki/Related_rates" title="Related rates">Related rates</a></li> <li><a href="/wiki/Taylor%27s_theorem" title="Taylor's theorem">Taylor's theorem</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Differentiation_rules" title="Differentiation rules">Rules and identities</a></th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Sum_rule_in_differentiation" class="mw-redirect" title="Sum rule in differentiation">Sum</a></li> <li><a href="/wiki/Product_rule" title="Product rule">Product</a></li> <li><a href="/wiki/Chain_rule" title="Chain rule">Chain</a></li> <li><a href="/wiki/Power_rule" title="Power rule">Power</a></li> <li><a href="/wiki/Quotient_rule" title="Quotient rule">Quotient</a></li> <li><a href="/wiki/L%27H%C3%B4pital%27s_rule" title="L'Hôpital's rule">L'Hôpital's rule</a></li> <li><a href="/wiki/Inverse_function_rule" title="Inverse function rule">Inverse</a></li> <li><a href="/wiki/General_Leibniz_rule" title="General Leibniz rule">General Leibniz</a></li> <li><a href="/wiki/Fa%C3%A0_di_Bruno%27s_formula" title="Faà di Bruno's formula">Faà di Bruno's formula</a></li> <li><a href="/wiki/Reynolds_transport_theorem" title="Reynolds transport theorem">Reynolds</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Integral" title="Integral">Integral</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Lists_of_integrals" title="Lists of integrals">Lists of integrals</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transform</a></li> <li><a href="/wiki/Leibniz_integral_rule" title="Leibniz integral rule">Leibniz integral rule</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Definitions</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Antiderivative" title="Antiderivative">Antiderivative</a></li> <li><a href="/wiki/Integral" title="Integral">Integral</a> (<a href="/wiki/Improper_integral" title="Improper integral">improper</a>)</li> <li><a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a></li> <li><a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integration</a></li> <li><a href="/wiki/Contour_integration" title="Contour integration">Contour integration</a></li> <li><a href="/wiki/Integral_of_inverse_functions" title="Integral of inverse functions">Integral of inverse functions</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Integration by</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Integration_by_parts" title="Integration by parts">Parts</a></li> <li><a href="/wiki/Disc_integration" title="Disc integration">Discs</a></li> <li><a href="/wiki/Shell_integration" title="Shell integration">Cylindrical shells</a></li> <li><a href="/wiki/Integration_by_substitution" title="Integration by substitution">Substitution</a> (<a href="/wiki/Trigonometric_substitution" title="Trigonometric substitution">trigonometric</a>, <a href="/wiki/Tangent_half-angle_substitution" title="Tangent half-angle substitution">tangent half-angle</a>, <a href="/wiki/Euler_substitution" title="Euler substitution">Euler</a>)</li> <li><a href="/wiki/Integration_using_Euler%27s_formula" title="Integration using Euler's formula">Euler's formula</a></li> <li><a href="/wiki/Partial_fractions_in_integration" class="mw-redirect" title="Partial fractions in integration">Partial fractions</a> (<a href="/wiki/Heaviside_cover-up_method" title="Heaviside cover-up method">Heaviside's method</a>)</li> <li><a href="/wiki/Order_of_integration_(calculus)" title="Order of integration (calculus)">Changing order</a></li> <li><a href="/wiki/Integration_by_reduction_formulae" title="Integration by reduction formulae">Reduction formulae</a></li> <li><a href="/wiki/Leibniz_integral_rule#Evaluating_definite_integrals" title="Leibniz integral rule">Differentiating under the integral sign</a></li> <li><a href="/wiki/Risch_algorithm" title="Risch algorithm">Risch algorithm</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Series_(mathematics)" title="Series (mathematics)">Series</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Geometric_series" title="Geometric series">Geometric</a> (<a href="/wiki/Arithmetico%E2%80%93geometric_sequence" class="mw-redirect" title="Arithmetico–geometric sequence">arithmetico-geometric</a>)</li> <li><a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">Harmonic</a></li> <li><a href="/wiki/Alternating_series" title="Alternating series">Alternating</a></li> <li><a href="/wiki/Power_series" title="Power series">Power</a></li> <li><a href="/wiki/Binomial_series" title="Binomial series">Binomial</a></li> <li><a href="/wiki/Taylor_series" title="Taylor series">Taylor</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Convergence_tests" title="Convergence tests">Convergence tests</a></th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Term_test" class="mw-redirect" title="Term test">Summand limit (term test)</a></li> <li><a href="/wiki/Ratio_test" title="Ratio test">Ratio</a></li> <li><a href="/wiki/Root_test" title="Root test">Root</a></li> <li><a href="/wiki/Integral_test_for_convergence" title="Integral test for convergence">Integral</a></li> <li><a href="/wiki/Direct_comparison_test" title="Direct comparison test">Direct comparison</a></li> <li><br /><a href="/wiki/Limit_comparison_test" title="Limit comparison test">Limit comparison</a></li> <li><a href="/wiki/Alternating_series_test" title="Alternating series test">Alternating series</a></li> <li><a href="/wiki/Cauchy_condensation_test" title="Cauchy condensation test">Cauchy condensation</a></li> <li><a href="/wiki/Dirichlet%27s_test" title="Dirichlet's test">Dirichlet</a></li> <li><a href="/wiki/Abel%27s_test" title="Abel's test">Abel</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Vector_calculus" title="Vector calculus">Vector</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Gradient" title="Gradient">Gradient</a></li> <li><a href="/wiki/Divergence" title="Divergence">Divergence</a></li> <li><a href="/wiki/Curl_(mathematics)" title="Curl (mathematics)">Curl</a></li> <li><a href="/wiki/Laplace_operator" title="Laplace operator">Laplacian</a></li> <li><a href="/wiki/Directional_derivative" title="Directional derivative">Directional derivative</a></li> <li><a href="/wiki/Vector_calculus_identities" title="Vector calculus identities">Identities</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Theorems</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Gradient_theorem" title="Gradient theorem">Gradient</a></li> <li><a href="/wiki/Green%27s_theorem" title="Green's theorem">Green's</a></li> <li><a href="/wiki/Stokes%27_theorem" title="Stokes' theorem">Stokes'</a></li> <li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Divergence</a></li> <li><a href="/wiki/Generalized_Stokes_theorem" title="Generalized Stokes theorem">generalized Stokes</a></li> <li><a href="/wiki/Helmholtz_decomposition" title="Helmholtz decomposition">Helmholtz decomposition</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%"><a href="/wiki/Multivariable_calculus" title="Multivariable calculus">Multivariable</a></span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><th class="sidebar-heading"> Formalisms</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior</a></li> <li><a href="/wiki/Geometric_calculus" title="Geometric calculus">Geometric</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Definitions</th></tr><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Multiple_integral" title="Multiple integral">Multiple integral</a></li> <li><a href="/wiki/Line_integral" title="Line integral">Line integral</a></li> <li><a href="/wiki/Surface_integral" title="Surface integral">Surface integral</a></li> <li><a href="/wiki/Volume_integral" title="Volume integral">Volume integral</a></li> <li><a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian</a></li> <li><a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content-with-subgroup"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%">Advanced</span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"><table class="sidebar-subgroup"><tbody><tr><td class="sidebar-content hlist"> <ul><li><a href="/wiki/Calculus_on_Euclidean_space" title="Calculus on Euclidean space">Calculus on Euclidean space</a></li> <li><a href="/wiki/Generalized_function" title="Generalized function">Generalized functions</a></li> <li><a href="/wiki/Limit_of_distributions" title="Limit of distributions">Limit of distributions</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%">Specialized</span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Fractional_calculus" title="Fractional calculus">Fractional</a></li> <li><a href="/wiki/Malliavin_calculus" title="Malliavin calculus">Malliavin</a></li> <li><a href="/wiki/Stochastic_calculus" title="Stochastic calculus">Stochastic</a></li> <li><a href="/wiki/Calculus_of_variations" title="Calculus of variations">Variations</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><span style="font-size:120%">Miscellanea</span></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Precalculus" title="Precalculus">Precalculus</a></li> <li><a href="/wiki/History_of_calculus" title="History of calculus">History</a></li> <li><a class="mw-selflink selflink">Glossary</a></li> <li><a href="/wiki/List_of_calculus_topics" title="List of calculus topics">List of topics</a></li> <li><a href="/wiki/Integration_Bee" title="Integration Bee">Integration Bee</a></li> <li><a href="/wiki/Mathematical_analysis" title="Mathematical analysis">Mathematical analysis</a></li> <li><a href="/wiki/Nonstandard_analysis" title="Nonstandard analysis">Nonstandard analysis</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Calculus" title="Template:Calculus"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Calculus" title="Template talk:Calculus"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Calculus" title="Special:EditPage/Template:Calculus"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="A">A</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=1" title="Edit section: A"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1228772891">.mw-parser-output .glossary dt{margin-top:0.4em}.mw-parser-output .glossary dt+dt{margin-top:-0.2em}.mw-parser-output .glossary .templatequote{margin-top:0;margin-bottom:-0.5em}</style> <dl class="glossary"> <dt id="abel's_test"><dfn><a href="/wiki/Abel%27s_test" title="Abel's test">Abel's test</a></dfn></dt> <dd>A method of testing for the <a href="/wiki/Convergent_series" title="Convergent series">convergence</a> of an <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">infinite series</a>.</dd> <dt id="absolute_convergence"><dfn><a href="/wiki/Absolute_convergence" title="Absolute convergence">absolute convergence</a></dfn></dt> <dd>An <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">infinite series</a> of numbers is said to <b>converge absolutely</b> (or to be <b>absolutely convergent</b>) if the sum of the <a href="/wiki/Absolute_value" title="Absolute value">absolute values</a> of the summands is finite. More precisely, a real or complex series <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \sum _{n=0}^{\infty }a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \sum _{n=0}^{\infty }a_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e82e9cba73339069c69edf3d9e3553754ea73080" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.608ex; height:3.176ex;" alt="{\displaystyle \textstyle \sum _{n=0}^{\infty }a_{n}}"></span> is said to <b>converge absolutely</b> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \sum _{n=0}^{\infty }\left|a_{n}\right|=L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow> <mo>|</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>|</mo> </mrow> <mo>=</mo> <mi>L</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \sum _{n=0}^{\infty }\left|a_{n}\right|=L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6b0869fe4d41a583b5abefcc70e358004978183" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.583ex; height:3.176ex;" alt="{\displaystyle \textstyle \sum _{n=0}^{\infty }\left|a_{n}\right|=L}"></span> for some real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>L</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cda6bb9fb712344826da560f9cee7f13da48cfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle \textstyle L}"></span>. Similarly, an <a href="/wiki/Improper_integral" title="Improper integral">improper integral</a> of a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \int _{0}^{\infty }f(x)\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \int _{0}^{\infty }f(x)\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91df6d76bfaef17c8351fd26bb3dae444a117b37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.127ex; height:3.176ex;" alt="{\displaystyle \textstyle \int _{0}^{\infty }f(x)\,dx}"></span>, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \int _{0}^{\infty }\left|f(x)\right|dx=L.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mrow> <mo>|</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>L</mi> <mo>.</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \int _{0}^{\infty }\left|f(x)\right|dx=L.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc2311c86069ed781d51780751952f16bf8c97ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.749ex; height:3.176ex;" alt="{\displaystyle \textstyle \int _{0}^{\infty }\left|f(x)\right|dx=L.}"></span></dd> <dt id="absolute_maximum"><dfn><a href="/wiki/Maxima_and_minima" class="mw-redirect" title="Maxima and minima">absolute maximum</a></dfn></dt> <dd>The highest value a function attains.</dd> <dt id="absolute_minimum"><dfn><a href="/wiki/Maxima_and_minima" class="mw-redirect" title="Maxima and minima">absolute minimum</a></dfn></dt> <dd>The lowest value a function attains.</dd> <dt id="absolute_value"><dfn><a href="/wiki/Absolute_value" title="Absolute value">absolute value</a></dfn></dt> <dd>The <b>absolute value</b> or <b>modulus</b> <span class="texhtml">|<i>x</i>|</span> of a <a href="/wiki/Real_number" title="Real number">real number</a> <span class="texhtml mvar" style="font-style:italic;">x</span> is the <a href="/wiki/Non-negative" class="mw-redirect" title="Non-negative">non-negative</a> value of <span class="texhtml mvar" style="font-style:italic;">x</span> without regard to its <a href="/wiki/Sign_(mathematics)" title="Sign (mathematics)">sign</a>. Namely, <span class="texhtml">|<i>x</i>| = <i>x</i></span> for a <a href="/wiki/Positive_number" class="mw-redirect" title="Positive number">positive</a> <span class="texhtml mvar" style="font-style:italic;">x</span>, <span class="texhtml">|<i>x</i>| = −<i>x</i></span> for a <a href="/wiki/Negative_number" title="Negative number">negative</a> <span class="texhtml mvar" style="font-style:italic;">x</span> (in which case <span class="texhtml">−<i>x</i></span> is positive), and <span class="texhtml">|0| = 0</span>. For example, the absolute value of 3 is 3, and the absolute value of −3 is also 3. The absolute value of a number may be thought of as its <a href="/wiki/Distance" title="Distance">distance</a> from zero.</dd> <dt id="alternating_series"><dfn><a href="/wiki/Alternating_series" title="Alternating series">alternating series</a></dfn></dt> <dd>An <a href="/wiki/Infinite_series" class="mw-redirect" title="Infinite series">infinite series</a> whose terms alternate between positive and negative.</dd> <dt id="alternating_series_test"><dfn><a href="/wiki/Alternating_series_test" title="Alternating series test">alternating series test</a></dfn></dt> <dd>Is the method used to prove that an <a href="/wiki/Alternating_series" title="Alternating series">alternating series</a> with terms that decrease in absolute value is a <a href="/wiki/Convergent_series" title="Convergent series">convergent series</a>. The test was used by <a href="/wiki/Gottfried_Leibniz" class="mw-redirect" title="Gottfried Leibniz">Gottfried Leibniz</a> and is sometimes known as <b>Leibniz's test</b>, <b>Leibniz's rule</b>, or the <b>Leibniz criterion</b>.</dd> <dt id="annulus"><dfn><a href="/wiki/Annulus_(mathematics)" title="Annulus (mathematics)">annulus</a></dfn></dt> <dd>A ring-shaped object, a region bounded by two <a href="/wiki/Concentric_circles" class="mw-redirect" title="Concentric circles">concentric circles</a>.</dd> <dt id="antiderivative"><dfn><a href="/wiki/Antiderivative" title="Antiderivative">antiderivative</a></dfn></dt> <dd>An <b>antiderivative</b>, <b>primitive function</b>, <b>primitive integral</b> or <b>indefinite integral</b><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>Note 1<span class="cite-bracket">]</span></a></sup> of a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> <span class="texhtml"><i>f</i></span> is a differentiable function <span class="texhtml"><i>F</i></span> whose <a href="/wiki/Derivative" title="Derivative">derivative</a> is equal to the original function <span class="texhtml"><i>f</i></span>. This can be stated symbolically as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F'=f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F'=f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c10131b70a7b0b4c39667f5386b14c449a5217e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.877ex; height:2.843ex;" alt="{\displaystyle F'=f}"></span>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> The process of solving for antiderivatives is called <b>antidifferentiation</b> (or <b>indefinite integration</b>) and its opposite operation is called differentiation, which is the process of finding a derivative.</dd> <dt id="arcsin"><dfn><a href="/wiki/Inverse_trigonometric_functions" title="Inverse trigonometric functions">arcsin</a></dfn></dt> <dd></dd> <dt id="area_under_a_curve"><dfn><a href="/wiki/Area_under_a_curve" class="mw-redirect" title="Area under a curve">area under a curve</a></dfn></dt> <dd></dd> <dt id="asymptote"><dfn><a href="/wiki/Asymptote" title="Asymptote">asymptote</a></dfn></dt> <dd>In <a href="/wiki/Analytic_geometry" title="Analytic geometry">analytic geometry</a>, an <b>asymptote</b> of a <a href="/wiki/Curve" title="Curve">curve</a> is a line such that the distance between the curve and the line approaches zero as one or both of the <i>x</i> or <i>y</i> coordinates <a href="/wiki/Limit_of_a_function#Limits_at_infinity" title="Limit of a function">tends to infinity</a>. Some sources include the requirement that the curve may not cross the line infinitely often, but this is unusual for modern authors.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> In <a href="/wiki/Projective_geometry" title="Projective geometry">projective geometry</a> and related contexts, an asymptote of a curve is a line which is <a href="/wiki/Tangent" title="Tangent">tangent</a> to the curve at a <a href="/wiki/Point_at_infinity" title="Point at infinity">point at infinity</a>.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></dd> <dt id="automatic_differentiation"><dfn><a href="/wiki/Automatic_differentiation" title="Automatic differentiation">automatic differentiation</a></dfn></dt> <dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a> and <a href="/wiki/Computer_algebra" title="Computer algebra">computer algebra</a>, <b>automatic differentiation</b> (<b>AD</b>), also called <b>algorithmic differentiation</b> or <b>computational differentiation</b>,<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-baydin2018automatic_8-0" class="reference"><a href="#cite_note-baydin2018automatic-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> is a set of techniques to numerically evaluate the <a href="/wiki/Derivative" title="Derivative">derivative</a> of a function specified by a computer program. AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the <a href="/wiki/Chain_rule" title="Chain rule">chain rule</a> repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.</dd> <dt id="average_rate_of_change"><dfn><a href="/wiki/Rate_(mathematics)#rate_of_change" title="Rate (mathematics)">average rate of change</a></dfn></dt> <dd></dd> </dl> <div class="mw-heading mw-heading2"><h2 id="B">B</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=2" title="Edit section: B"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="binomial_coefficient"><dfn><a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficient</a></dfn></dt> <dd>Any of the positive <a href="/wiki/Integer" title="Integer">integers</a> that occurs as a <a href="/wiki/Coefficient" title="Coefficient">coefficient</a> in the <a href="/wiki/Binomial_theorem" title="Binomial theorem">binomial theorem</a> is a <b>binomial coefficient</b>. Commonly, a binomial coefficient is indexed by a pair of integers <span class="texhtml"><i>n</i> ≥ <i>k</i> ≥ 0</span> and is written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tbinom {n}{k}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tbinom {n}{k}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39c7822635a8fa426d00ca72733ea1bd6fe90b01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.763ex; height:3.176ex;" alt="{\displaystyle {\tbinom {n}{k}}.}"></span> It is the <a href="/wiki/Coefficient" title="Coefficient">coefficient</a> of the <span class="texhtml"><i>x</i><sup><i>k</i></sup></span> term in the <a href="/wiki/Polynomial_expansion" title="Polynomial expansion">polynomial expansion</a> of the <a href="/wiki/Binomial_(polynomial)" title="Binomial (polynomial)">binomial</a> <a href="/wiki/Exponentiation" title="Exponentiation">power</a> <span class="texhtml">(1 + <i>x</i>)<sup><i>n</i></sup></span>, and it is given by the formula <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\binom {n}{k}}={\frac {n!}{k!(n-k)!}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mi>k</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\binom {n}{k}}={\frac {n!}{k!(n-k)!}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2457a7ef3c77831e34e06a1fe17a80b84a03181" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.158ex; height:6.343ex;" alt="{\displaystyle {\binom {n}{k}}={\frac {n!}{k!(n-k)!}}.}"></span></dd></dl></dd></dl> <dt id="binomial_theorem'''_(or_'''binomial_expansion)"><dfn><a href="/wiki/Binomial_theorem" title="Binomial theorem">binomial theorem</a><b> (or </b><a href="/wiki/Binomial_expansion" class="mw-redirect" title="Binomial expansion">binomial expansion</a>)</dfn></dt> <dd> Describes the algebraic expansion of <a href="/wiki/Exponentiation" title="Exponentiation">powers</a> of a <a href="/wiki/Binomial_(polynomial)" title="Binomial (polynomial)">binomial</a>.</dd> <dt id="bounded_function"><dfn><a href="/wiki/Bounded_function" title="Bounded function">bounded function</a></dfn></dt> <dd>A <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> <i>f</i> defined on some <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> <i>X</i> with <a href="/wiki/Real_number" title="Real number">real</a> or <a href="/wiki/Complex_number" title="Complex number">complex</a> values is called <b>bounded</b>, if the set of its values is <a href="/wiki/Bounded_set" title="Bounded set">bounded</a>. In other words, <a href="/wiki/There_exists" class="mw-redirect" title="There exists">there exists</a> a real number <i>M</i> such that <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(x)|\leq M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>≤<!-- ≤ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(x)|\leq M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfc8ec4d3c57aa126bee5459febb9832b99cbcc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.252ex; height:2.843ex;" alt="{\displaystyle |f(x)|\leq M}"></span></dd></dl> <a href="/wiki/For_all" class="mw-redirect" title="For all">for all</a> <i>x</i> in <i>X</i>. A function that is <i>not</i> bounded is said to be <b>unbounded</b>. Sometimes, if <i>f</i>(<i>x</i>) ≤ <i>A</i> for all <i>x</i> in <i>X</i>, then the function is said to be <b>bounded above</b> by <i>A</i>. On the other hand, if <i>f</i>(<i>x</i>) ≥ <i>B</i> for all <i>x</i> in <i>X</i>, then the function is said to be <b>bounded below</b> by <i>B</i>.</dd> <dt id="bounded_sequence"><dfn><a href="/wiki/Bounded_function#bounded_sequence" title="Bounded function">bounded sequence</a></dfn></dt> <dd> .</dd> <div class="mw-heading mw-heading2"><h2 id="C">C</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=3" title="Edit section: C"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="calculus"><dfn><a href="/wiki/Calculus" title="Calculus">calculus</a></dfn></dt> <dd>(From <a href="/wiki/Latin" title="Latin">Latin</a> <i>calculus</i>, literally 'small pebble', used for counting and calculations, as on an <a href="/wiki/Abacus" title="Abacus">abacus</a>)<sup id="cite_ref-oxdic_9-0" class="reference"><a href="#cite_note-oxdic-9"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> is the <a href="/wiki/Mathematics" title="Mathematics">mathematical</a> study of continuous change, in the same way that <a href="/wiki/Geometry" title="Geometry">geometry</a> is the study of shape and <a href="/wiki/Algebra" title="Algebra">algebra</a> is the study of generalizations of <a href="/wiki/Arithmetic_operations" class="mw-redirect" title="Arithmetic operations">arithmetic operations</a>.</dd> <dt id="cavalieri's_principle"><dfn><a href="/wiki/Cavalieri%27s_principle" title="Cavalieri's principle">Cavalieri's principle</a></dfn></dt> <dd> <b>Cavalieri's principle</b>, a modern implementation of the <b>method of indivisibles</b>, named after <a href="/wiki/Bonaventura_Cavalieri" title="Bonaventura Cavalieri">Bonaventura Cavalieri</a>, is as follows:<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> <ul><li><b>2-dimensional case</b>: Suppose two regions in a plane are included between two parallel lines in that plane. If every line parallel to these two lines intersects both regions in line segments of equal length, then the two regions have equal areas.</li> <li><b>3-dimensional case</b>: Suppose two regions in three-space (solids) are included between two parallel planes. If every plane parallel to these two planes intersects both regions in <a href="/wiki/Cross_section_(geometry)" title="Cross section (geometry)">cross-sections</a> of equal area, then the two regions have equal volumes.</li></ul></dd> <dt id="chain_rule"><dfn><a href="/wiki/Chain_rule" title="Chain rule">chain rule</a></dfn></dt> <dd>The <b>chain rule</b> is a <a href="/wiki/Formula" title="Formula">formula</a> for computing the <a href="/wiki/Derivative" title="Derivative">derivative</a> of the <a href="/wiki/Function_composition" title="Function composition">composition</a> of two or more <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a>. That is, if <i>f</i> and <i>g</i> are functions, then the chain rule expresses the derivative of their composition <span class="texhtml"><i>f</i> <span style="font-size:120%">∘</span> <i>g</i></span> (the function which maps <i>x</i> to <i>f</i>(<i>g</i>(<i>x</i>)) ) in terms of the derivatives of <i>f</i> and <i>g</i> and the <a href="/wiki/Pointwise_product" class="mw-redirect" title="Pointwise product">product of functions</a> as follows: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f\circ g)'=(f'\circ g)\cdot g'.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>∘<!-- ∘ --></mo> <mi>g</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>∘<!-- ∘ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f\circ g)'=(f'\circ g)\cdot g'.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb55cd5448d4bed6da3b79283d92eec2ab9bb95d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.436ex; height:3.009ex;" alt="{\displaystyle (f\circ g)'=(f'\circ g)\cdot g'.}"></span></dd></dl> This may equivalently be expressed in terms of the variable. Let <span class="texhtml"><i>F</i> = <i>f</i> <span style="font-size:120%">∘</span> <i>g</i></span>, or equivalently, <span class="texhtml"><i>F</i>(<i>x</i>) = <i>f</i>(<i>g</i>(<i>x</i>))</span> for all <i>x</i>. Then one can also write <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F'(x)=f'(g(x))g'(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F'(x)=f'(g(x))g'(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63b54293b9ca115caa553c556cc7faa6a022888a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.395ex; height:3.009ex;" alt="{\displaystyle F'(x)=f'(g(x))g'(x).}"></span></dd></dl> The chain rule may be written in <a href="/wiki/Leibniz%27s_notation" title="Leibniz's notation">Leibniz's notation</a> in the following way. If a variable <i>z</i> depends on the variable <i>y</i>, which itself depends on the variable <i>x</i>, so that <i>y</i> and <i>z</i> are therefore <a href="/wiki/Dependent_variable" class="mw-redirect" title="Dependent variable">dependent variables</a>, then <i>z</i>, via the intermediate variable of <i>y</i>, depends on <i>x</i> as well. The chain rule then states, <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dz}{dx}}={\frac {dz}{dy}}\cdot {\frac {dy}{dx}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>z</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>z</mi> </mrow> <mrow> <mi>d</mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dz}{dx}}={\frac {dz}{dy}}\cdot {\frac {dy}{dx}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1dfc1ad15251bd965f3737d0b8fa8b67ef3cccb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:15.395ex; height:5.843ex;" alt="{\displaystyle {\frac {dz}{dx}}={\frac {dz}{dy}}\cdot {\frac {dy}{dx}}.}"></span></dd></dl> The two versions of the chain rule are related; if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=f(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=f(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adb9c017b827a30228c8fb0349f8ac153e5236ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.43ex; height:2.843ex;" alt="{\displaystyle z=f(y)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=g(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=g(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26c08f8fd3471dad5e2c45c2f753ffd7c9aba4ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.509ex; height:2.843ex;" alt="{\displaystyle y=g(x)}"></span>, then <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dz}{dx}}={\frac {dz}{dy}}\cdot {\frac {dy}{dx}}=f'(y)g'(x)=f'(g(x))g'(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>z</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>z</mi> </mrow> <mrow> <mi>d</mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dz}{dx}}={\frac {dz}{dy}}\cdot {\frac {dy}{dx}}=f'(y)g'(x)=f'(g(x))g'(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/075ea30eb4897a37e57bd9ac7bd6a097a1f42167" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:44.516ex; height:5.843ex;" alt="{\displaystyle {\frac {dz}{dx}}={\frac {dz}{dy}}\cdot {\frac {dy}{dx}}=f'(y)g'(x)=f'(g(x))g'(x).}"></span></dd></dl> In <a href="/wiki/Integral" title="Integral">integration</a>, the counterpart to the chain rule is the <a href="/wiki/Substitution_rule" class="mw-redirect" title="Substitution rule">substitution rule</a>.</dd> <dt id="change_of_variables"><dfn><a href="/wiki/Change_of_variables" title="Change of variables">change of variables</a></dfn></dt> <dd> Is a basic technique used to simplify problems in which the original <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variables</a> are replaced with <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a> of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem.</dd> <dt id="cofunction"><dfn><a href="/wiki/Cofunction" title="Cofunction">cofunction</a></dfn></dt> <dd>A <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> <i>f</i> is <b>cofunction</b> of a function <i>g</i> if <i>f</i>(<i>A</i>) = <i>g</i>(<i>B</i>) whenever <i>A</i> and <i>B</i> are <a href="/wiki/Complementary_angles" class="mw-redirect" title="Complementary angles">complementary angles</a>.<sup id="cite_ref-Hall_1909_11-0" class="reference"><a href="#cite_note-Hall_1909-11"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> This definition typically applies to <a href="/wiki/Trigonometric_functions" title="Trigonometric functions">trigonometric functions</a>.<sup id="cite_ref-Aufmann_Nation_2014_12-0" class="reference"><a href="#cite_note-Aufmann_Nation_2014-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Bales_2012_13-0" class="reference"><a href="#cite_note-Bales_2012-13"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> The prefix "co-" can be found already in <a href="/wiki/Edmund_Gunter" title="Edmund Gunter">Edmund Gunter</a>'s <i>Canon triangulorum</i> (1620).<sup id="cite_ref-Gunter_1620_14-0" class="reference"><a href="#cite_note-Gunter_1620-14"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Roegel_2010_15-0" class="reference"><a href="#cite_note-Roegel_2010-15"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup></dd> <dt id="concave_function"><dfn><a href="/wiki/Concave_function" title="Concave function">concave function</a></dfn></dt> <dd> Is the <a href="/wiki/Additive_inverse" title="Additive inverse">negative</a> of a <a href="/wiki/Convex_function" title="Convex function">convex function</a>. A concave function is also <a href="/wiki/Synonym" title="Synonym">synonymously</a> called <b>concave downwards</b>, <b>concave down</b>, <b>convex upwards</b>, <b>convex cap</b> or <b>upper convex</b>.</dd> <dt id="constant_of_integration"><dfn><a href="/wiki/Constant_of_integration" title="Constant of integration">constant of integration</a></dfn></dt> <dd>The <a href="/wiki/Indefinite_integral" class="mw-redirect" title="Indefinite integral">indefinite integral</a> of a given function (i.e., the <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> of all <a href="/wiki/Antiderivative" title="Antiderivative">antiderivatives</a> of the function) on a <a href="/wiki/Connected_set" class="mw-redirect" title="Connected set">connected domain</a> is only defined <a href="/wiki/Up_to" title="Up to">up to</a> an additive constant, the <b>constant of integration</b>.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> This constant expresses an ambiguity inherent in the construction of antiderivatives. If a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> is defined on an <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">interval</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71a82805d469cdfa7856c11d6ee756acd1dc7174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.88ex; height:2.843ex;" alt="{\displaystyle F(x)}"></span> is an antiderivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>, then the set of <i>all</i> antiderivatives of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> is given by the functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x)+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x)+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84bfd7719983cec6643eb997d3aa006ad1c3bf26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.486ex; height:2.843ex;" alt="{\displaystyle F(x)+C}"></span>, where <i>C</i> is an arbitrary constant (meaning that <i>any</i> value for <i>C</i> makes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x)+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x)+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84bfd7719983cec6643eb997d3aa006ad1c3bf26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.486ex; height:2.843ex;" alt="{\displaystyle F(x)+C}"></span> a valid antiderivative). The constant of integration is sometimes omitted in <a href="/wiki/Lists_of_integrals" title="Lists of integrals">lists of integrals</a> for simplicity.</dd> <dt id="continuous_function"><dfn><a href="/wiki/Continuous_function" title="Continuous function">continuous function</a></dfn></dt> <dd>Is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> for which sufficiently small changes in the input result in arbitrarily small changes in the output. Otherwise, a function is said to be a <i>discontinuous</i> function. A continuous function with a continuous <a href="/wiki/Inverse_function" title="Inverse function">inverse function</a> is called a <a href="/wiki/Homeomorphism" title="Homeomorphism">homeomorphism</a>.</dd> <dt id="continuously_differentiable"><dfn><a href="/wiki/Differentiable_function#Differentiability_classes" title="Differentiable function">continuously differentiable</a></dfn></dt> <dd>A function <i>f</i> is said to be <i>continuously differentiable</i> if the derivative <i>f<span class="nowrap" style="padding-left:0.15em;">′</span></i>(<i>x</i>) exists and is itself a continuous function.</dd> <dt id="contour_integration"><dfn><a href="/wiki/Methods_of_contour_integration" class="mw-redirect" title="Methods of contour integration">contour integration</a></dfn></dt> <dd>In the mathematical field of <a href="/wiki/Complex_analysis" title="Complex analysis">complex analysis</a>, <b>contour integration</b> is a method of evaluating certain <a href="/wiki/Integral" title="Integral">integrals</a> along paths in the complex plane.<sup id="cite_ref-Stalker_18-0" class="reference"><a href="#cite_note-Stalker-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Bak_19-0" class="reference"><a href="#cite_note-Bak-19"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Krantz_20-0" class="reference"><a href="#cite_note-Krantz-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup></dd> <dt id="convergence_tests"><dfn><a href="/wiki/Convergence_test" class="mw-redirect" title="Convergence test">convergence tests</a></dfn></dt> <dd>Are methods of testing for the <a href="/wiki/Convergent_series" title="Convergent series">convergence</a>, <a href="/wiki/Conditional_convergence" title="Conditional convergence">conditional convergence</a>, <a href="/wiki/Absolute_convergence" title="Absolute convergence">absolute convergence</a>, <a href="/wiki/Interval_of_convergence" class="mw-redirect" title="Interval of convergence">interval of convergence</a> or divergence of an <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">infinite series</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }a_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbf33b91e1eb05d0530e73e355823f3c07821381" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:6.19ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }a_{n}}"></span>.</dd> <dt id="convergent_series"><dfn><a href="/wiki/Convergent_series" title="Convergent series">convergent series</a></dfn></dt> <dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">series</a> is the <a href="/wiki/Summation" title="Summation">sum</a> of the terms of an <a href="/wiki/Infinite_sequence" class="mw-redirect" title="Infinite sequence">infinite sequence</a> of numbers. Given an infinite sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(a_{1},\ a_{2},\ a_{3},\dots \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(a_{1},\ a_{2},\ a_{3},\dots \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da1a7105fe28981ce02d106be4ab12e093be5f59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.648ex; height:2.843ex;" alt="{\displaystyle \left(a_{1},\ a_{2},\ a_{3},\dots \right)}"></span>, the <i>n</i>th <a href="/wiki/Partial_sum" class="mw-redirect" title="Partial sum">partial sum</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f049ac28d4ac8097b625f9d71c1f22b2ebd1bc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.643ex; height:2.509ex;" alt="{\displaystyle S_{n}}"></span> is the sum of the first <i>n</i> terms of the sequence, that is, <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{n}=\sum _{k=1}^{n}a_{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{n}=\sum _{k=1}^{n}a_{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e782ba72c493a2b78b1c14eec13fc58140febeff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.449ex; height:6.843ex;" alt="{\displaystyle S_{n}=\sum _{k=1}^{n}a_{k}.}"></span></dd></dl> A series is <b>convergent</b> if the sequence of its partial sums <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{S_{1},\ S_{2},\ S_{3},\dots \right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{S_{1},\ S_{2},\ S_{3},\dots \right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89250263c344e97cc83f572e346064e5fbed19f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.749ex; height:2.843ex;" alt="{\displaystyle \left\{S_{1},\ S_{2},\ S_{3},\dots \right\}}"></span> tends to a <a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">limit</a>; that means that the partial sums become closer and closer to a given number when the number of their terms increases. More precisely, a series converges, if there exists a number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ℓ<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span> such that for any arbitrarily small positive number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ε<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30c89172e5b88edbd45d3e2772c7f5e562e5173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle \varepsilon }"></span>, there is a (sufficiently large) <a href="/wiki/Integer" title="Integer">integer</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> such that for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq \ N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mtext> </mtext> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geq \ N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7963de0d41caf7e03362087d13e04db9eac57b52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.137ex; height:2.343ex;" alt="{\displaystyle n\geq \ N}"></span>, <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|S_{n}-\ell \right\vert \leq \ \varepsilon .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>ℓ<!-- ℓ --></mi> </mrow> <mo>|</mo> </mrow> <mo>≤<!-- ≤ --></mo> <mtext> </mtext> <mi>ε<!-- ε --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|S_{n}-\ell \right\vert \leq \ \varepsilon .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a11ae7f0b6f3f6bd68713334ff444ea123f8fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.157ex; height:2.843ex;" alt="{\displaystyle \left|S_{n}-\ell \right\vert \leq \ \varepsilon .}"></span></dd></dl> If the series is convergent, the number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ℓ<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span> (necessarily unique) is called the <b>sum of the series</b>. Any series that is not convergent is said to be <a href="/wiki/Divergent_series" title="Divergent series">divergent</a>.</dd> <dt id="convex_function"><dfn><a href="/wiki/Convex_function" title="Convex function">convex function</a></dfn></dt> <dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a <a href="/wiki/Real-valued_function" title="Real-valued function">real-valued function</a> defined on an <a href="/wiki/Interval_(mathematics)#Multi-dimensional_intervals" title="Interval (mathematics)"><i>n</i>-dimensional interval</a> is called <b>convex</b> (or <b>convex downward</b> or <b>concave upward</b>) if the <a href="/wiki/Line_segment" title="Line segment">line segment</a> between any two points on the <a href="/wiki/Graph_of_a_function" title="Graph of a function">graph of the function</a> lies above or on the graph, in a <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> (or more generally a <a href="/wiki/Vector_space" title="Vector space">vector space</a>) of at least two dimensions. Equivalently, a function is convex if its <a href="/wiki/Epigraph_(mathematics)" title="Epigraph (mathematics)">epigraph</a> (the set of points on or above the graph of the function) is a <a href="/wiki/Convex_set" title="Convex set">convex set</a>. For a twice differentiable function of a single variable, if the second derivative is always greater than or equal to zero for its entire domain then the function is convex.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> Well-known examples of convex functions include the <a href="/wiki/Quadratic_function" title="Quadratic function">quadratic function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf0bf28fd28f45d07e1ceb909ce333c18c558c93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.384ex; height:2.676ex;" alt="{\displaystyle x^{2}}"></span> and the <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/841c0d168e64191c45a45e54c7e447defd17ec6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.256ex; height:2.343ex;" alt="{\displaystyle e^{x}}"></span>.</dd> <dt id="cramer's_rule"><dfn><a href="/wiki/Cramer%27s_rule" title="Cramer's rule">Cramer's rule</a></dfn></dt> <dd> In <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>, <b>Cramer's rule</b> is an explicit formula for the solution of a <a href="/wiki/System_of_linear_equations" title="System of linear equations">system of linear equations</a> with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the <a href="/wiki/Determinant" title="Determinant">determinants</a> of the (square) coefficient <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a> and of matrices obtained from it by replacing one column by the column vector of right-hand-sides of the equations. It is named after <a href="/wiki/Gabriel_Cramer" title="Gabriel Cramer">Gabriel Cramer</a> (1704–1752), who published the rule for an arbitrary number of unknowns in 1750,<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> although <a href="/wiki/Colin_Maclaurin" title="Colin Maclaurin">Colin Maclaurin</a> also published special cases of the rule in 1748<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> (and possibly knew of it as early as 1729).<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup></dd> <dt id="critical_point"><dfn><a href="/wiki/Critical_point_(mathematics)" title="Critical point (mathematics)">critical point</a></dfn></dt> <dd>A <b>critical point</b> or <b>stationary point</b> of a <a href="/wiki/Differentiable_function" title="Differentiable function">differentiable function</a> of a <a href="/wiki/Function_of_a_real_variable" title="Function of a real variable">real</a> or <a href="/wiki/Complex_variable" class="mw-redirect" title="Complex variable">complex variable</a> is any value in its <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a> where its <a href="/wiki/Derivative" title="Derivative">derivative</a> is 0.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup></dd> <dt id="curve"><dfn><a href="/wiki/Curve" title="Curve">curve</a></dfn></dt> <dd>A <b>curve</b> (also called a <b>curved line</b> in older texts) is, generally speaking, an object similar to a <a href="/wiki/Line_(geometry)" title="Line (geometry)">line</a> but that need not be <a href="/wiki/Linearity" title="Linearity">straight</a>.</dd> <dt id="curve_sketching"><dfn><a href="/wiki/Curve_sketching" title="Curve sketching">curve sketching</a></dfn></dt> <dd>In <a href="/wiki/Geometry" title="Geometry">geometry</a>, <b>curve sketching</b> (or <b>curve tracing</b>) includes techniques that can be used to produce a rough idea of overall shape of a <a href="/wiki/Plane_curve" title="Plane curve">plane curve</a> given its equation without computing the large numbers of points required for a detailed plot. It is an application of the theory of curves to find their main features. Here input is an equation. In <a href="/wiki/Digital_geometry" title="Digital geometry">digital geometry</a> it is a method of drawing a curve pixel by pixel. Here input is an array (digital image).</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="D">D</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=4" title="Edit section: D"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="damped_sine_wave"><dfn><a href="/wiki/Damped_sine_wave" class="mw-redirect" title="Damped sine wave">damped sine wave</a></dfn></dt> <dd>Is a <a href="/wiki/Sine_wave" title="Sine wave">sinusoidal function</a> whose amplitude approaches zero as time increases.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup></dd> <dt id="degree_of_a_polynomial"><dfn><a href="/wiki/Degree_of_a_polynomial" title="Degree of a polynomial">degree of a polynomial</a></dfn></dt> <dd>Is the highest degree of its <a href="/wiki/Monomial" title="Monomial">monomials</a> (individual terms) with non-zero coefficients. The <a href="/wiki/Degree_of_a_monomial" class="mw-redirect" title="Degree of a monomial">degree of a term</a> is the sum of the exponents of the <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variables</a> that appear in it, and thus is a non-negative integer.</dd> <dt id="derivative"><dfn><a href="/wiki/Derivative" title="Derivative">derivative</a></dfn></dt> <dd>The <b>derivative</b> of a <a href="/wiki/Function_of_a_real_variable" title="Function of a real variable">function of a real variable</a> measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of <a href="/wiki/Calculus" title="Calculus">calculus</a>. For example, the derivative of the position of a moving object with respect to <a href="/wiki/Time" title="Time">time</a> is the object's <a href="/wiki/Velocity" title="Velocity">velocity</a>: this measures how quickly the position of the object changes when time advances.</dd> <dt id="derivative_test"><dfn><a href="/wiki/Derivative_test" title="Derivative test">derivative test</a></dfn></dt> <dd>A <b>derivative test</b> uses the <a href="/wiki/Derivative" title="Derivative">derivatives</a> of a function to locate the <a href="/wiki/Stationary_point" title="Stationary point">critical points</a> of a function and determine whether each point is a <a href="/wiki/Local_maximum" class="mw-redirect" title="Local maximum">local maximum</a>, a <a href="/wiki/Local_minimum" class="mw-redirect" title="Local minimum">local minimum</a>, or a <a href="/wiki/Saddle_point" title="Saddle point">saddle point</a>. Derivative tests can also give information about the <a href="/wiki/Concave_function" title="Concave function">concavity</a> of a function.</dd> <dt id="differentiable_function"><dfn><a href="/wiki/Differentiable_function" title="Differentiable function">differentiable function</a></dfn></dt> <dd>A <b>differentiable function</b> of one <a href="/wiki/Real_number" title="Real number">real</a> variable is a function whose <a href="/wiki/Derivative" title="Derivative">derivative</a> exists at each point in its <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a>. As a result, the <a href="/wiki/Graph_of_a_function" title="Graph of a function">graph</a> of a differentiable function must have a (non-<a href="/wiki/Vertical_tangent" title="Vertical tangent">vertical</a>) <a href="/wiki/Tangent_line" class="mw-redirect" title="Tangent line">tangent line</a> at each point in its domain, be relatively smooth, and cannot contain any breaks, bends, or <a href="/wiki/Cusp_(singularity)" title="Cusp (singularity)">cusps</a>.</dd> <dt id="differential_(infinitesimal)"><dfn><a href="/wiki/Differential_(infinitesimal)" class="mw-redirect" title="Differential (infinitesimal)">differential (infinitesimal)</a></dfn></dt> <dd>The term <b>differential</b> is used in <a href="/wiki/Calculus" title="Calculus">calculus</a> to refer to an <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a> (infinitely small) change in some <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">varying quantity</a>. For example, if <i>x</i> is a <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a>, then a change in the value of <i>x</i> is often denoted Δ<i>x</i> (pronounced <i><a href="/wiki/Delta_(Greek)" class="mw-redirect" title="Delta (Greek)">delta</a> x</i>). The differential <i>dx</i> represents an infinitely small change in the variable <i>x</i>. The idea of an infinitely small or infinitely slow change is extremely useful intuitively, and there are a number of ways to make the notion mathematically precise. Using calculus, it is possible to relate the infinitely small changes of various variables to each other mathematically using <a href="/wiki/Derivative" title="Derivative">derivatives</a>. If <i>y</i> is a function of <i>x</i>, then the differential <i>dy</i> of <i>y</i> is related to <i>dx</i> by the formula <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dy={\frac {dy}{dx}}\,dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dy={\frac {dy}{dx}}\,dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8690f9df1066aadc3c2999e8633a040038558df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:12.431ex; height:5.509ex;" alt="{\displaystyle dy={\frac {dy}{dx}}\,dx,}"></span></dd></dl> where <i>dy</i>/<i>dx</i> denotes the <a href="/wiki/Derivative" title="Derivative">derivative</a> of <i>y</i> with respect to <i>x</i>. This formula summarizes the intuitive idea that the derivative of <i>y</i> with respect to <i>x</i> is the limit of the ratio of differences Δ<i>y</i>/Δ<i>x</i> as Δ<i>x</i> becomes infinitesimal.</dd> <dt id="differential_calculus"><dfn><a href="/wiki/Differential_calculus" title="Differential calculus">differential calculus</a></dfn></dt> <dd>Is a subfield of calculus<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> concerned with the study of the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being <a href="/wiki/Integral_calculus" class="mw-redirect" title="Integral calculus">integral calculus</a>, the study of the area beneath a curve.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup></dd> <dt id="differential_equation"><dfn><a href="/wiki/Differential_equation" title="Differential equation">differential equation</a></dfn></dt> <dd>Is a <a href="/wiki/Mathematics" title="Mathematics">mathematical</a> <a href="/wiki/Equation" title="Equation">equation</a> that relates some <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> with its <a href="/wiki/Derivative" title="Derivative">derivatives</a>. In applications, the functions usually represent physical quantities, the derivatives represent their rates of change, and the equation defines a relationship between the two.</dd> <dt id="differential_operator"><dfn><a href="/wiki/Differential_operator" title="Differential operator">differential operator</a></dfn></dt> <dd>.</dd> <dt id="differential_of_a_function"><dfn><a href="/wiki/Differential_of_a_function" title="Differential of a function">differential of a function</a></dfn></dt> <dd>In <a href="/wiki/Calculus" title="Calculus">calculus</a>, the <b>differential</b> represents the <a href="/wiki/Principal_part#Calculus" title="Principal part">principal part</a> of the change in a function <i>y</i> = <i>f</i>(<i>x</i>) with respect to changes in the independent variable. The differential <i>dy</i> is defined by <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dy=f'(x)\,dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>y</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dy=f'(x)\,dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f133dae980e28d3d9865a0fef74cf9632c26d3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.194ex; height:3.009ex;" alt="{\displaystyle dy=f'(x)\,dx,}"></span></dd></dl> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0cd7d7c75340e779d82658e19d1720ce84ab127" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.144ex; height:3.009ex;" alt="{\displaystyle f'(x)}"></span> is the <a href="/wiki/Derivative" title="Derivative">derivative</a> of <i>f</i> with respect to <i>x</i>, and <i>dx</i> is an additional real <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a> (so that <i>dy</i> is a function of <i>x</i> and <i>dx</i>). The notation is such that the equation <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dy={\frac {dy}{dx}}\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dy={\frac {dy}{dx}}\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4af882e478e7345731264e1984ccdbc067af8df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.784ex; height:5.509ex;" alt="{\displaystyle dy={\frac {dy}{dx}}\,dx}"></span></dd></dl> holds, where the derivative is represented in the <a href="/wiki/Leibniz_notation" class="mw-redirect" title="Leibniz notation">Leibniz notation</a> <i>dy</i>/<i>dx</i>, and this is consistent with regarding the derivative as the quotient of the differentials. One also writes <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle df(x)=f'(x)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle df(x)=f'(x)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1036d9e3de8d36ab7126d94f2e0603458b3307b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.456ex; height:3.009ex;" alt="{\displaystyle df(x)=f'(x)\,dx.}"></span></dd></dl> The precise meaning of the variables <i>dy</i> and <i>dx</i> depends on the context of the application and the required level of mathematical rigor. The domain of these variables may take on a particular geometrical significance if the differential is regarded as a particular <a href="/wiki/Differential_form" title="Differential form">differential form</a>, or analytical significance if the differential is regarded as a <a href="/wiki/Linear_approximation" title="Linear approximation">linear approximation</a> to the increment of a function. Traditionally, the variables <i>dx</i> and <i>dy</i> are considered to be very small (<a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a>), and this interpretation is made rigorous in <a href="/wiki/Non-standard_analysis" class="mw-redirect" title="Non-standard analysis">non-standard analysis</a>.</dd> <dt id="differentiation_rules"><dfn><a href="/wiki/Differentiation_rules" title="Differentiation rules">differentiation rules</a></dfn></dt> <dd>.</dd> <dt id="direct_comparison_test"><dfn><a href="/wiki/Direct_comparison_test" title="Direct comparison test">direct comparison test</a></dfn></dt> <dd>A convergence test in which an infinite series or an improper integral is compared to one with known convergence properties.</dd> <dt id="dirichlet's_test"><dfn><a href="/wiki/Dirichlet%27s_test" title="Dirichlet's test">Dirichlet's test</a></dfn></dt> <dd>Is a method of testing for the <a href="/wiki/Convergent_series" title="Convergent series">convergence</a> of a <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">series</a>. It is named after its author <a href="/wiki/Peter_Gustav_Lejeune_Dirichlet" title="Peter Gustav Lejeune Dirichlet">Peter Gustav Lejeune Dirichlet</a>, and was published posthumously in the <i><a href="/wiki/Journal_de_Math%C3%A9matiques_Pures_et_Appliqu%C3%A9es" title="Journal de Mathématiques Pures et Appliquées">Journal de Mathématiques Pures et Appliquées</a></i> in 1862.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> The test states that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{a_{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{a_{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/339d461b497fb8f8670bb29308fe09f0e7bfd34a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.773ex; height:2.843ex;" alt="{\displaystyle \{a_{n}\}}"></span> is a <a href="/wiki/Sequence" title="Sequence">sequence</a> of <a href="/wiki/Real_number" title="Real number">real numbers</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{b_{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{b_{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cad2485b9672375982ec521a53ee5a4104001a15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.541ex; height:2.843ex;" alt="{\displaystyle \{b_{n}\}}"></span> a sequence of <a href="/wiki/Complex_number" title="Complex number">complex numbers</a> satisfying <dl><dd><ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{n+1}\leq a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{n+1}\leq a_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02713e1514bdb8004c9c47d119dafbb2d0499179" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.096ex; height:2.343ex;" alt="{\displaystyle a_{n+1}\leq a_{n}}"></span></li></ul></dd></dl> <dl><dd><ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\rightarrow \infty }a_{n}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\rightarrow \infty }a_{n}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d7b1e35359928f755f4b2e11910157bf977816d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.369ex; height:3.676ex;" alt="{\displaystyle \lim _{n\rightarrow \infty }a_{n}=0}"></span></li></ul></dd></dl> <dl><dd><ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\sum _{n=1}^{N}b_{n}\right|\leq M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo>≤<!-- ≤ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\sum _{n=1}^{N}b_{n}\right|\leq M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17ad87aaef6dc6c7f3a52c1dfcd5b7c7fbddbe2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:12.792ex; height:7.509ex;" alt="{\displaystyle \left|\sum _{n=1}^{N}b_{n}\right|\leq M}"></span> for every positive integer <i>N</i></li></ul></dd></dl> where <i>M</i> is some constant, then the series <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }a_{n}b_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }a_{n}b_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1da4118b971026424454fb80f2458ef9b4cac33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:8.406ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }a_{n}b_{n}}"></span></dd></dl> converges.</dd> <dt id="disc_integration"><dfn><a href="/wiki/Disc_integration" title="Disc integration">disc integration</a></dfn></dt> <dd>Also known in <a href="/wiki/Integral_calculus" class="mw-redirect" title="Integral calculus">integral calculus</a> as the <b>disc method</b>, is a means of calculating the <a href="/wiki/Volume" title="Volume">volume</a> of a <a href="/wiki/Solid_of_revolution" title="Solid of revolution">solid of revolution</a> of a solid-state material when <a href="/wiki/Integral" title="Integral">integrating</a> along an axis "parallel" to the <a href="/wiki/Axis_of_revolution" class="mw-redirect" title="Axis of revolution">axis of revolution</a>.</dd> <dt id="divergent_series"><dfn><a href="/wiki/Divergent_series" title="Divergent series">divergent series</a></dfn></dt> <dd>Is an <a href="/wiki/Infinite_series" class="mw-redirect" title="Infinite series">infinite series</a> that is not <a href="/wiki/Convergent_series" title="Convergent series">convergent</a>, meaning that the infinite <a href="/wiki/Sequence" title="Sequence">sequence</a> of the <a href="/wiki/Partial_sum" class="mw-redirect" title="Partial sum">partial sums</a> of the series does not have a finite <a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">limit</a>.</dd> <dt id="discontinuity"><dfn><a href="/wiki/Discontinuity_(mathematics)" class="mw-redirect" title="Discontinuity (mathematics)">discontinuity</a></dfn></dt> <dd><a href="/wiki/Continuous_function" title="Continuous function">Continuous functions</a> are of utmost importance in <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, functions and applications. However, not all <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a> are continuous. If a function is not continuous at a point in its <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a>, one says that it has a <b>discontinuity</b> there. The set of all points of discontinuity of a function may be a <a href="/wiki/Discrete_set" class="mw-redirect" title="Discrete set">discrete set</a>, a <a href="/wiki/Dense_set" title="Dense set">dense set</a>, or even the entire domain of the function.</dd> <dt id="dot_product"><dfn><a href="/wiki/Dot_product" title="Dot product">dot product</a></dfn></dt> <dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>dot product</b> or <b>scalar product</b><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>note 1<span class="cite-bracket">]</span></a></sup> is an <a href="/wiki/Algebraic_operation" title="Algebraic operation">algebraic operation</a> that takes two equal-length sequences of numbers (usually <a href="/wiki/Coordinate_vector" title="Coordinate vector">coordinate vectors</a>) and returns a single number. In <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a>, the dot product of the <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a> of two <a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">vectors</a> is widely used and often called "the" <b>inner product</b> (or rarely <b>projection product</b>) of Euclidean space even though it is not the only inner product that can be defined on Euclidean space; see also <a href="/wiki/Inner_product_space" title="Inner product space">inner product space</a>.</dd> <dt id="double_integral"><dfn><a href="/wiki/Double_integral" class="mw-redirect" title="Double integral">double integral</a></dfn></dt> <dd>The <b>multiple integral</b> is a <a href="/wiki/Definite_integral" class="mw-redirect" title="Definite integral">definite integral</a> of a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> of more than one real <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a>, for example, <span class="texhtml"><i>f</i>(<i>x</i>, <i>y</i>)</span> or <span class="texhtml"><i>f</i>(<i>x</i>, <i>y</i>, <i>z</i>)</span>. Integrals of a function of two variables over a region in <span class="texhtml"><b>R</b><sup>2</sup></span> are called <a href="/wiki/Double_integrals" class="mw-redirect" title="Double integrals">double integrals</a>, and integrals of a function of three variables over a region of <span class="texhtml"><b>R</b><sup>3</sup></span> are called <a href="/wiki/Triple_integrals" class="mw-redirect" title="Triple integrals">triple integrals</a>.<sup id="cite_ref-Stewart_35-0" class="reference"><a href="#cite_note-Stewart-35"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup></dd> </dl> <div class="mw-heading mw-heading2"><h2 id="E">E</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=5" title="Edit section: E"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="e_(mathematical_constant)"><dfn><a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)">e (mathematical constant)</a></dfn></dt> <dd>The number <b><span class="texhtml mvar" style="font-style:italic;">e</span></b> is a <a href="/wiki/Mathematical_constant" title="Mathematical constant">mathematical constant</a> that is the base of the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a>: the unique number whose natural logarithm is equal to one. It is approximately equal to <b>2.71828</b>,<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> and is the <a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">limit</a> of <span class="texhtml">(1 + 1/<i>n</i>)<sup><i>n</i></sup></span> as <span class="texhtml mvar" style="font-style:italic;">n</span> approaches <a href="/wiki/Infinity" title="Infinity">infinity</a>, an expression that arises in the study of <a href="/wiki/Compound_interest" title="Compound interest">compound interest</a>. It can also be calculated as the sum of the infinite <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">series</a><sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=\displaystyle \sum \limits _{n=0}^{\infty }{\dfrac {1}{n!}}={\frac {1}{1}}+{\frac {1}{1}}+{\frac {1}{1\cdot 2}}+{\frac {1}{1\cdot 2\cdot 3}}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>1</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>1</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=\displaystyle \sum \limits _{n=0}^{\infty }{\dfrac {1}{n!}}={\frac {1}{1}}+{\frac {1}{1}}+{\frac {1}{1\cdot 2}}+{\frac {1}{1\cdot 2\cdot 3}}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/534a55992d112b62c1163de47b1dd9268f20153a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:44.504ex; height:6.843ex;" alt="{\displaystyle e=\displaystyle \sum \limits _{n=0}^{\infty }{\dfrac {1}{n!}}={\frac {1}{1}}+{\frac {1}{1}}+{\frac {1}{1\cdot 2}}+{\frac {1}{1\cdot 2\cdot 3}}+\cdots }"></span></dd></dl></dd></dl> <dt id="elliptic_integral"><dfn><a href="/wiki/Elliptic_integral" title="Elliptic integral">elliptic integral</a></dfn></dt> <dd>In <a href="/wiki/Integral_calculus" class="mw-redirect" title="Integral calculus">integral calculus</a>, <b>elliptic integrals</b> originally arose in connection with the problem of giving the <a href="/wiki/Arc_length" title="Arc length">arc length</a> of an <a href="/wiki/Ellipse" title="Ellipse">ellipse</a>. They were first studied by <a href="/wiki/Giulio_Carlo_de%27_Toschi_di_Fagnano" title="Giulio Carlo de' Toschi di Fagnano">Giulio Fagnano</a> and <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> (<abbr title="circa">c.</abbr><span style="white-space:nowrap;"> 1750</span>). Modern mathematics defines an "elliptic integral" as any <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> <span class="texhtml"><i>f</i></span> which can be expressed in the form <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\int _{c}^{x}R\left(t,{\sqrt {P(t)}}\right)\,dt,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mi>R</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>P</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\int _{c}^{x}R\left(t,{\sqrt {P(t)}}\right)\,dt,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/066d7c985940c1aa0b4458a9ce2abafe1c3c6fcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:28.535ex; height:5.843ex;" alt="{\displaystyle f(x)=\int _{c}^{x}R\left(t,{\sqrt {P(t)}}\right)\,dt,}"></span></dd></dl> where <span class="texhtml"><i>R</i></span> is a <a href="/wiki/Rational_function" title="Rational function">rational function</a> of its two arguments, <span class="texhtml"><i>P</i></span> is a <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> of degree 3 or 4 with no repeated roots, and <span class="texhtml"><i>c</i></span> is a constant..</dd> <dt id="essential_discontinuity"><dfn><a href="/wiki/Classification_of_discontinuities#Essential_discontinuity" title="Classification of discontinuities">essential discontinuity</a></dfn></dt> <dd>For an essential discontinuity, only one of the two one-sided limits needs not exist or be infinite. Consider the function <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\begin{cases}\sin {\frac {5}{x-1}}&{\mbox{ for }}x<1\\0&{\mbox{ for }}x=1\\{\frac {1}{x-1}}&{\mbox{ for }}x>1\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> for </mtext> </mstyle> </mrow> <mi>x</mi> <mo><</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> for </mtext> </mstyle> </mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> for </mtext> </mstyle> </mrow> <mi>x</mi> <mo>></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)={\begin{cases}\sin {\frac {5}{x-1}}&{\mbox{ for }}x<1\\0&{\mbox{ for }}x=1\\{\frac {1}{x-1}}&{\mbox{ for }}x>1\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b55cbb95006aa9cec84fe74b94c6882e0570ee5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:29.313ex; height:10.176ex;" alt="{\displaystyle f(x)={\begin{cases}\sin {\frac {5}{x-1}}&{\mbox{ for }}x<1\\0&{\mbox{ for }}x=1\\{\frac {1}{x-1}}&{\mbox{ for }}x>1\end{cases}}}"></span></dd></dl> Then, the point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle x_{0}\;=\;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thickmathspace" /> <mo>=</mo> <mspace width="thickmathspace" /> <mn>1</mn> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle x_{0}\;=\;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0734fed27aaad5439e2e56e7d2a7d20ebb2a9c71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.163ex; height:2.009ex;" alt="{\displaystyle \scriptstyle x_{0}\;=\;1}"></span> is an <i>essential discontinuity</i>. In this case, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle L^{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle L^{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d01d94927d7928caa2d568c0e8381ed1171346" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.321ex; height:2.009ex;" alt="{\displaystyle \scriptstyle L^{-}}"></span> doesn't exist and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle L^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle L^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fa48b6e6c408920e1b58a0fccabb7a6542e5754" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.321ex; height:2.009ex;" alt="{\displaystyle \scriptstyle L^{+}}"></span> is infinite – thus satisfying twice the conditions of essential discontinuity. So <i>x</i><sub>0</sub> is an <i>essential discontinuity</i>, <i>infinite discontinuity</i>, or <i>discontinuity of the second kind</i>. (This is distinct from the term <i><a href="/wiki/Essential_singularity" title="Essential singularity">essential singularity</a></i> which is often used when studying <a href="/wiki/Complex_analysis" title="Complex analysis">functions of complex variables</a>.</dd> <dt id="euler_method"><dfn><a href="/wiki/Euler_method" title="Euler method">Euler method</a></dfn></dt> <dd>Euler's method is a numerical method to solve first order first degree differential equation with a given initial value. It is the most basic <a href="/wiki/Explicit_and_implicit_methods" title="Explicit and implicit methods">explicit method</a> for <a href="/wiki/Numerical_ordinary_differential_equations" class="mw-redirect" title="Numerical ordinary differential equations">numerical integration of ordinary differential equations</a> and is the simplest <a href="/wiki/Runge%E2%80%93Kutta_method" class="mw-redirect" title="Runge–Kutta method">Runge–Kutta method</a>. The Euler method is named after <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a>, who treated it in his book <i><a href="/wiki/Institutionum_calculi_integralis" class="mw-redirect" title="Institutionum calculi integralis">Institutionum calculi integralis</a></i> (published 1768–1870).<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup></dd> <dt id="exponential_function"><dfn><a href="/wiki/Exponential_function" title="Exponential function">exponential function</a></dfn></dt> <dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, an <b>exponential function</b> is a function of the form <style data-mw-deduplicate="TemplateStyles:r996643573">.mw-parser-output .block-indent{padding-left:3em;padding-right:0;overflow:hidden}</style><div class="block-indent"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=ab^{x},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=ab^{x},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8f7e0207f9410fd16506b8cab68b31b78c4d219" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.563ex; height:2.843ex;" alt="{\displaystyle f(x)=ab^{x},}"></span></div> <p>where <span class="texhtml mvar" style="font-style:italic;">b</span> is a positive real number, and in which the argument <span class="texhtml"><i>x</i></span> occurs as an exponent. For real numbers <span class="texhtml mvar" style="font-style:italic;">c</span> and <span class="texhtml mvar" style="font-style:italic;">d,</span> a function of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=ab^{cx+d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mi>d</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=ab^{cx+d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ee482ef884c8151184d4bc75c2188e650c7eb96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.766ex; height:3.176ex;" alt="{\displaystyle f(x)=ab^{cx+d}}"></span> is also an exponential function, as it can be rewritten as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ab^{cx+d}=\left(ab^{d}\right)\left(b^{c}\right)^{x}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mi>d</mi> </mrow> </msup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ab^{cx+d}=\left(ab^{d}\right)\left(b^{c}\right)^{x}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07197937aa9e72da60331fdccca784b145755967" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.755ex; height:3.343ex;" alt="{\displaystyle ab^{cx+d}=\left(ab^{d}\right)\left(b^{c}\right)^{x}.}"></span></dd></dl></dd> <dt id="extreme_value_theorem"><dfn><a href="/wiki/Extreme_value_theorem" title="Extreme value theorem">extreme value theorem</a></dfn></dt> <dd>States that if a real-valued <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> <i>f</i> is <a href="/wiki/Continuous_function" title="Continuous function">continuous</a> on the <a href="/wiki/Bounded_interval#Classification_of_intervals" class="mw-redirect" title="Bounded interval">closed</a> interval [<i>a</i>,<i>b</i>], then <i>f</i> must attain a <a href="/wiki/Maximum" class="mw-redirect" title="Maximum">maximum</a> and a <a href="/wiki/Minimum" class="mw-redirect" title="Minimum">minimum</a>, each at least once. That is, there exist numbers <i>c</i> and <i>d</i> in [<i>a</i>,<i>b</i>] such that: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(c)\geq f(x)\geq f(d)\quad {\text{for all }}x\in [a,b].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for all </mtext> </mrow> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(c)\geq f(x)\geq f(d)\quad {\text{for all }}x\in [a,b].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ccc399772dc99e3a3970432b84382c0ffda9560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.111ex; height:2.843ex;" alt="{\displaystyle f(c)\geq f(x)\geq f(d)\quad {\text{for all }}x\in [a,b].}"></span></dd></dl> A related theorem is <b>the boundedness theorem</b> which states that a continuous function <i>f</i> in the closed interval [<i>a</i>,<i>b</i>] is <a href="/wiki/Bounded_function" title="Bounded function">bounded</a> on that interval. That is, there exist real numbers <i>m</i> and <i>M</i> such that: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m<f(x)<M\quad {\text{for all }}x\in [a,b].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo><</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo><</mo> <mi>M</mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for all </mtext> </mrow> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m<f(x)<M\quad {\text{for all }}x\in [a,b].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bea84dcd500745a81c211a93cc3b650db8ea98d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.195ex; height:2.843ex;" alt="{\displaystyle m<f(x)<M\quad {\text{for all }}x\in [a,b].}"></span></dd></dl> The extreme value theorem enriches the boundedness theorem by saying that not only is the function bounded, but it also attains its least upper bound as its maximum and its greatest lower bound as its minimum.</dd> <dt id="extremum"><dfn><a href="/wiki/Maxima_and_minima" class="mw-redirect" title="Maxima and minima">extremum</a></dfn></dt> <dd>In <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, the <b>maxima and minima</b> (the respective plurals of <b>maximum</b> and <b>minimum</b>) of a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a>, known collectively as <b>extrema</b> (the plural of <b>extremum</b>), are the largest and smallest value of the function, either within a given range (the <b>local</b> or <b>relative</b> extrema) or on the entire <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain of a function</a> (the <b>global</b> or <b>absolute</b> extrema).<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Pierre de Fermat</a> was one of the first mathematicians to propose a general technique, <a href="/wiki/Adequality" title="Adequality">adequality</a>, for finding the maxima and minima of functions. As defined in <a href="/wiki/Set_theory" title="Set theory">set theory</a>, the maximum and minimum of a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> are the <a href="/wiki/Greatest_and_least_elements" class="mw-redirect" title="Greatest and least elements">greatest and least elements</a> in the set, respectively. Unbounded infinite sets, such as the set of <a href="/wiki/Real_number" title="Real number">real numbers</a>, have no minimum or maximum.</dd> <div class="mw-heading mw-heading2"><h2 id="F">F</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=6" title="Edit section: F"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="faà_di_bruno's_formula"><dfn><a href="/wiki/Fa%C3%A0_di_Bruno%27s_formula" title="Faà di Bruno's formula">Faà di Bruno's formula</a></dfn></dt> <dd>Is an identity in <a href="/wiki/Mathematics" title="Mathematics">mathematics</a> generalizing the <a href="/wiki/Chain_rule" title="Chain rule">chain rule</a> to higher derivatives, named after <a href="/wiki/Francesco_Fa%C3%A0_di_Bruno" title="Francesco Faà di Bruno">Francesco Faà di Bruno</a> (<a href="#CITEREFFaà_di_Bruno1855">1855</a>, <a href="#CITEREFFaà_di_Bruno1857">1857</a>), though he was not the first to state or prove the formula. In 1800, more than 50 years before Faà di Bruno, the French mathematician <a href="/wiki/Louis_Fran%C3%A7ois_Antoine_Arbogast" title="Louis François Antoine Arbogast">Louis François Antoine Arbogast</a> stated the formula in a calculus textbook,<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> considered the first published reference on the subject.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> Perhaps the most well-known form of Faà di Bruno's formula says that <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {d^{n} \over dx^{n}}f(g(x))=\sum {\frac {n!}{m_{1}!\,1!^{m_{1}}\,m_{2}!\,2!^{m_{2}}\,\cdots \,m_{n}!\,n!^{m_{n}}}}\cdot f^{(m_{1}+\cdots +m_{n})}(g(x))\cdot \prod _{j=1}^{n}\left(g^{(j)}(x)\right)^{m_{j}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>!</mo> <mspace width="thinmathspace" /> <mn>1</mn> <msup> <mo>!</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>!</mo> <mspace width="thinmathspace" /> <mn>2</mn> <msup> <mo>!</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mspace width="thinmathspace" /> <mo>⋯<!-- ⋯ --></mo> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>!</mo> <mspace width="thinmathspace" /> <mi>n</mi> <msup> <mo>!</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {d^{n} \over dx^{n}}f(g(x))=\sum {\frac {n!}{m_{1}!\,1!^{m_{1}}\,m_{2}!\,2!^{m_{2}}\,\cdots \,m_{n}!\,n!^{m_{n}}}}\cdot f^{(m_{1}+\cdots +m_{n})}(g(x))\cdot \prod _{j=1}^{n}\left(g^{(j)}(x)\right)^{m_{j}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bef53bf2898c47370c394592ed95a17ced35a04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:87.175ex; height:7.176ex;" alt="{\displaystyle {d^{n} \over dx^{n}}f(g(x))=\sum {\frac {n!}{m_{1}!\,1!^{m_{1}}\,m_{2}!\,2!^{m_{2}}\,\cdots \,m_{n}!\,n!^{m_{n}}}}\cdot f^{(m_{1}+\cdots +m_{n})}(g(x))\cdot \prod _{j=1}^{n}\left(g^{(j)}(x)\right)^{m_{j}},}"></span></dd></dl> where the sum is over all <i>n</i>-<a href="/wiki/Tuple" title="Tuple">tuples</a> of nonnegative integers (<i>m</i><sub>1</sub>, …, <i>m</i><sub><i>n</i></sub>) satisfying the constraint <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\cdot m_{1}+2\cdot m_{2}+3\cdot m_{3}+\cdots +n\cdot m_{n}=n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mi>n</mi> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\cdot m_{1}+2\cdot m_{2}+3\cdot m_{3}+\cdots +n\cdot m_{n}=n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2386ea9ee11ffa7f538a1d45e3595cd66c38e885" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:43.366ex; height:2.509ex;" alt="{\displaystyle 1\cdot m_{1}+2\cdot m_{2}+3\cdot m_{3}+\cdots +n\cdot m_{n}=n.}"></span></dd></dl> Sometimes, to give it a memorable pattern, it is written in a way in which the coefficients that have the combinatorial interpretation discussed below are less explicit: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {d^{n} \over dx^{n}}f(g(x))=\sum {\frac {n!}{m_{1}!\,m_{2}!\,\cdots \,m_{n}!}}\cdot f^{(m_{1}+\cdots +m_{n})}(g(x))\cdot \prod _{j=1}^{n}\left({\frac {g^{(j)}(x)}{j!}}\right)^{m_{j}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>!</mo> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>!</mo> <mspace width="thinmathspace" /> <mo>⋯<!-- ⋯ --></mo> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>j</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {d^{n} \over dx^{n}}f(g(x))=\sum {\frac {n!}{m_{1}!\,m_{2}!\,\cdots \,m_{n}!}}\cdot f^{(m_{1}+\cdots +m_{n})}(g(x))\cdot \prod _{j=1}^{n}\left({\frac {g^{(j)}(x)}{j!}}\right)^{m_{j}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/115a3532fcb90d6c323e14a5a4fdd8f5eef065af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:74.443ex; height:7.676ex;" alt="{\displaystyle {d^{n} \over dx^{n}}f(g(x))=\sum {\frac {n!}{m_{1}!\,m_{2}!\,\cdots \,m_{n}!}}\cdot f^{(m_{1}+\cdots +m_{n})}(g(x))\cdot \prod _{j=1}^{n}\left({\frac {g^{(j)}(x)}{j!}}\right)^{m_{j}}.}"></span></dd></dl> Combining the terms with the same value of <i>m</i><sub>1</sub> + <i>m</i><sub>2</sub> + ... + <i>m</i><sub><i>n</i></sub> = <i>k</i> and noticing that <i>m</i><sub> <i>j</i></sub> has to be zero for <i>j</i> > <i>n</i> − <i>k</i> + 1 leads to a somewhat simpler formula expressed in terms of <a href="/wiki/Bell_polynomial" class="mw-redirect" title="Bell polynomial">Bell polynomials</a> <i>B</i><sub><i>n</i>,<i>k</i></sub>(<i>x</i><sub>1</sub>,...,<i>x</i><sub><i>n</i>−<i>k</i>+1</sub>): <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {d^{n} \over dx^{n}}f(g(x))=\sum _{k=1}^{n}f^{(k)}(g(x))\cdot B_{n,k}\left(g'(x),g''(x),\dots ,g^{(n-k+1)}(x)\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msup> <mi>g</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {d^{n} \over dx^{n}}f(g(x))=\sum _{k=1}^{n}f^{(k)}(g(x))\cdot B_{n,k}\left(g'(x),g''(x),\dots ,g^{(n-k+1)}(x)\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5e9078bc352969d6e2aed7629d56dbbdfca0209" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:66.247ex; height:6.843ex;" alt="{\displaystyle {d^{n} \over dx^{n}}f(g(x))=\sum _{k=1}^{n}f^{(k)}(g(x))\cdot B_{n,k}\left(g'(x),g''(x),\dots ,g^{(n-k+1)}(x)\right).}"></span></dd></dl></dd></dl> <dt id="first-degree_polynomial"><dfn><a href="/wiki/Degree_of_a_polynomial" title="Degree of a polynomial">first-degree polynomial</a></dfn></dt> <dd></dd> <dt id="first_derivative_test"><dfn><a href="/wiki/Derivative_test#First-derivative_test" title="Derivative test">first derivative test</a></dfn></dt> <dd>The first derivative test examines a function's <a href="/wiki/Monotonic_function" title="Monotonic function">monotonic</a> properties (where the function is increasing or decreasing) focusing on a particular point in its domain. If the function "switches" from increasing to decreasing at the point, then the function will achieve a highest value at that point. Similarly, if the function "switches" from decreasing to increasing at the point, then it will achieve a least value at that point. If the function fails to "switch", and remains increasing or remains decreasing, then no highest or least value is achieved.</dd> <dt id="fractional_calculus"><dfn><a href="/wiki/Fractional_calculus" title="Fractional calculus">Fractional calculus</a></dfn></dt> <dd>Is a branch of <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a> that studies the several different possibilities of defining <a href="/wiki/Real_number" title="Real number">real number</a> powers or <a href="/wiki/Complex_number" title="Complex number">complex number</a> powers of the <a href="/wiki/Derivative" title="Derivative">differentiation operator</a> <span class="texhtml mvar" style="font-style:italic;">D</span> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Df(x)={\dfrac {d}{dx}}f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mstyle> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Df(x)={\dfrac {d}{dx}}f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/512629e0b77e80cae8d8ae9bb7494d9be2e5b8cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.24ex; height:5.509ex;" alt="{\displaystyle Df(x)={\dfrac {d}{dx}}f(x)}"></span>,</dd></dl> and of the integration operator <span class="texhtml mvar" style="font-style:italic;">J</span> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Jf(x)=\int _{0}^{x}\!\!\!\!f(s){ds}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>s</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Jf(x)=\int _{0}^{x}\!\!\!\!f(s){ds}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b0c95e0ce73c7f2a4b46f7361c7d4bfed960fad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:17.947ex; height:5.843ex;" alt="{\displaystyle Jf(x)=\int _{0}^{x}\!\!\!\!f(s){ds}}"></span>,<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>Note 2<span class="cite-bracket">]</span></a></sup></dd></dl> and developing a <a href="/wiki/Calculus" title="Calculus">calculus</a> for such operators generalizing the classical one. In this context, the term <i>powers</i> refers to iterative application of a linear operator to a function, in some analogy to <a href="/wiki/Function_composition" title="Function composition">function composition</a> acting on a variable, i.e. <span class="texhtml"><i>f</i> <sup><small>∘2</small></sup>(<i>x</i>) = <i>f</i> ∘ <i>f</i> (<i>x</i>) = <i>f</i> ( <i>f</i> (<i>x</i>) )</span>.</dd> <dt id="frustum"><dfn><a href="/wiki/Frustum" title="Frustum">frustum</a></dfn></dt> <dd>In <a href="/wiki/Geometry" title="Geometry">geometry</a>, a <b>frustum</b> (plural: <i>frusta</i> or <i>frustums</i>) is the portion of a <a href="/wiki/Polyhedron" title="Polyhedron">solid</a> (normally a <a href="/wiki/Cone_(geometry)" class="mw-redirect" title="Cone (geometry)">cone</a> or <a href="/wiki/Pyramid_(geometry)" title="Pyramid (geometry)">pyramid</a>) that lies between one or two <a href="/wiki/Parallel_planes" class="mw-redirect" title="Parallel planes">parallel planes</a> cutting it. A <b>right frustum</b> is a parallel <a href="/wiki/Truncation_(geometry)" title="Truncation (geometry)">truncation</a> of a <a href="/wiki/Right_pyramid" class="mw-redirect" title="Right pyramid">right pyramid</a> or right cone.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup></dd> <dt id="function"><dfn><a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a></dfn></dt> <dd>Is a process or a relation that associates each element <span class="texhtml mvar" style="font-style:italic;">x</span> of a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> <span class="texhtml mvar" style="font-style:italic;">X</span>, the <i><a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a></i> of the function, to a single element <span class="texhtml mvar" style="font-style:italic;">y</span> of another set <span class="texhtml mvar" style="font-style:italic;">Y</span> (possibly the same set), the <i>codomain</i> of the function. If the function is called <span class="texhtml mvar" style="font-style:italic;">f</span>, this relation is denoted <span class="texhtml"><i>y</i> = <i>f</i><span class="nowrap"> </span>(<i>x</i>)</span> (read <span class="texhtml mvar" style="font-style:italic;">f</span> of <span class="texhtml mvar" style="font-style:italic;">x</span>), the element <span class="texhtml mvar" style="font-style:italic;">x</span> is the <i><a href="/wiki/Argument_of_a_function" title="Argument of a function">argument</a></i> or <i>input</i> of the function, and <span class="texhtml mvar" style="font-style:italic;">y</span> is the <i>value of the function</i>, the <i>output</i>, or the <i>image</i> of <span class="texhtml mvar" style="font-style:italic;">x</span> by <span class="texhtml mvar" style="font-style:italic;">f</span>.<sup id="cite_ref-MacLane_46-0" class="reference"><a href="#cite_note-MacLane-46"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> The symbol that is used for representing the input is the <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a> of the function (one often says that <span class="texhtml mvar" style="font-style:italic;">f</span> is a function of the variable <span class="texhtml mvar" style="font-style:italic;">x</span>).</dd> <dt id="function_composition"><dfn><a href="/wiki/Function_composition" title="Function composition">function composition</a></dfn></dt> <dd>Is an operation that takes two <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a> <span class="texhtml"><i>f</i></span> and <span class="texhtml"><i>g</i></span> and produces a function <span class="texhtml"><i>h</i></span> such that <span class="texhtml"><i>h</i>(<i>x</i>) = <i>g</i>(<i>f</i>(<i>x</i>))</span>. In this operation, the function <span class="texhtml"><i>g</i></span> is <a href="/wiki/Function_application" title="Function application">applied</a> to the result of applying the function <span class="texhtml"><i>f</i></span> to <span class="texhtml"><i>x</i></span>. That is, the functions <span class="texhtml"><i>f</i> : <i>X</i> → <i>Y</i></span> and <span class="texhtml"><i>g</i> : <i>Y</i> → <i>Z</i></span> are <b>composed</b> to yield a function that maps <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>X</i></span> to <span class="texhtml"><i>g</i>(<i>f</i>(<i>x</i>))</span> in <span class="texhtml"><i>Z</i></span>.</dd> <dt id="fundamental_theorem_of_calculus"><dfn><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">fundamental theorem of calculus</a></dfn></dt> <dd>The <b>fundamental theorem of calculus</b> is a <a href="/wiki/Theorem" title="Theorem">theorem</a> that links the concept of <a href="/wiki/Derivative" title="Derivative">differentiating</a> a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> with the concept of <a href="/wiki/Integral" title="Integral">integrating</a> a function. The first part of the theorem, sometimes called the <b>first fundamental theorem of calculus</b>, states that one of the <a href="/wiki/Antiderivative" title="Antiderivative">antiderivatives</a> (also called <i>indefinite integral</i>), say <i>F</i>, of some function <i>f</i> may be obtained as the integral of <i>f</i> with a variable bound of integration. This implies the existence of <a href="/wiki/Antiderivative" title="Antiderivative">antiderivatives</a> for <a href="/wiki/Continuous_function" title="Continuous function">continuous functions</a>.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> Conversely, the second part of the theorem, sometimes called the <b>second fundamental theorem of calculus</b>, states that the integral of a function <i>f</i> over some interval can be computed by using any one, say <i>F</i>, of its infinitely many <a href="/wiki/Antiderivative" title="Antiderivative">antiderivatives</a>. This part of the theorem has key practical applications, because explicitly finding the antiderivative of a function by <a href="/wiki/Symbolic_integration" title="Symbolic integration">symbolic integration</a> avoids <a href="/wiki/Numerical_integration" title="Numerical integration">numerical integration</a> to compute integrals. This provides generally a better numerical accuracy.</dd> <div class="mw-heading mw-heading2"><h2 id="G">G</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=7" title="Edit section: G"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="general_leibniz_rule"><dfn><a href="/wiki/General_Leibniz_rule" title="General Leibniz rule">general Leibniz rule</a></dfn></dt> <dd>The <b>general Leibniz rule</b>,<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> named after <a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a>, generalizes the <a href="/wiki/Product_rule" title="Product rule">product rule</a> (which is also known as "Leibniz's rule"). It states that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-times <a href="/wiki/Differentiable_function" title="Differentiable function">differentiable functions</a>, then the product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle fg}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle fg}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06bac4638bb56f14688118ce88c188c7a021eb29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.395ex; height:2.509ex;" alt="{\displaystyle fg}"></span> is also <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-times differentiable and its <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>th derivative is given by <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (fg)^{(n)}=\sum _{k=0}^{n}{n \choose k}f^{(n-k)}g^{(k)},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mi>g</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (fg)^{(n)}=\sum _{k=0}^{n}{n \choose k}f^{(n-k)}g^{(k)},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b5fbf529aa458b37f32e4cf1839132d83af06e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:28.445ex; height:7.009ex;" alt="{\displaystyle (fg)^{(n)}=\sum _{k=0}^{n}{n \choose k}f^{(n-k)}g^{(k)},}"></span></dd></dl> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {n \choose k}={n! \over k!(n-k)!}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mi>k</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {n \choose k}={n! \over k!(n-k)!}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ed1bdd61047e98b30df11a23956723badc802bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.511ex; height:6.343ex;" alt="{\displaystyle {n \choose k}={n! \over k!(n-k)!}}"></span> is the <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficient</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(0)}\equiv f.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>≡<!-- ≡ --></mo> <mi>f</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(0)}\equiv f.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2330050abc564f048e15651f273829cbc00cfee9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.678ex; height:3.176ex;" alt="{\displaystyle f^{(0)}\equiv f.}"></span> This can be proved by using the product rule and <a href="/wiki/Mathematical_induction" title="Mathematical induction">mathematical induction</a>.</dd> <dt id="global_maximum"><dfn><a href="/wiki/Maxima_and_minima" class="mw-redirect" title="Maxima and minima">global maximum</a></dfn></dt> <dd>In <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, the <b>maxima and minima</b> (the respective plurals of <b>maximum</b> and <b>minimum</b>) of a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a>, known collectively as <b>extrema</b> (the plural of <b>extremum</b>), are the largest and smallest value of the function, either within a given range (the <b>local</b> or <b>relative</b> extrema) or on the entire <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain of a function</a> (the <b>global</b> or <b>absolute</b> extrema).<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Pierre de Fermat</a> was one of the first mathematicians to propose a general technique, <a href="/wiki/Adequality" title="Adequality">adequality</a>, for finding the maxima and minima of functions. As defined in <a href="/wiki/Set_theory" title="Set theory">set theory</a>, the maximum and minimum of a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> are the <a href="/wiki/Greatest_and_least_elements" class="mw-redirect" title="Greatest and least elements">greatest and least elements</a> in the set, respectively. Unbounded infinite sets, such as the set of <a href="/wiki/Real_number" title="Real number">real numbers</a>, have no minimum or maximum.</dd> <dt id="global_minimum"><dfn><a href="/wiki/Maxima_and_minima" class="mw-redirect" title="Maxima and minima">global minimum</a></dfn></dt> <dd>In <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, the <b>maxima and minima</b> (the respective plurals of <b>maximum</b> and <b>minimum</b>) of a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a>, known collectively as <b>extrema</b> (the plural of <b>extremum</b>), are the largest and smallest value of the function, either within a given range (the <b>local</b> or <b>relative</b> extrema) or on the entire <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain of a function</a> (the <b>global</b> or <b>absolute</b> extrema).<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Pierre de Fermat</a> was one of the first mathematicians to propose a general technique, <a href="/wiki/Adequality" title="Adequality">adequality</a>, for finding the maxima and minima of functions. As defined in <a href="/wiki/Set_theory" title="Set theory">set theory</a>, the maximum and minimum of a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> are the <a href="/wiki/Greatest_and_least_elements" class="mw-redirect" title="Greatest and least elements">greatest and least elements</a> in the set, respectively. Unbounded infinite sets, such as the set of <a href="/wiki/Real_number" title="Real number">real numbers</a>, have no minimum or maximum.</dd> <dt id="golden_spiral"><dfn><a href="/wiki/Golden_spiral" title="Golden spiral">golden spiral</a></dfn></dt> <dd>In <a href="/wiki/Geometry" title="Geometry">geometry</a>, a <b>golden spiral</b> is a <a href="/wiki/Logarithmic_spiral" title="Logarithmic spiral">logarithmic spiral</a> whose growth factor is <span class="texhtml"><a href="/wiki/Phi" title="Phi">φ</a></span>, the <a href="/wiki/Golden_ratio" title="Golden ratio">golden ratio</a>.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> That is, a golden spiral gets wider (or further from its origin) by a factor of <span class="texhtml">φ</span> for every quarter turn it makes.</dd> <dt id="gradient"><dfn><a href="/wiki/Gradient" title="Gradient">gradient</a></dfn></dt> <dd>Is a multi-variable generalization of the <a href="/wiki/Derivative" title="Derivative">derivative</a>. While a derivative can be defined on functions of a single variable, for <a href="/wiki/Function_of_several_variables" class="mw-redirect" title="Function of several variables">functions of several variables</a>, the gradient takes its place. The gradient is a <a href="/wiki/Vector-valued_function" title="Vector-valued function">vector-valued function</a>, as opposed to a derivative, which is <a href="/wiki/Scalar-valued_function" class="mw-redirect" title="Scalar-valued function">scalar-valued</a>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="H">H</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=8" title="Edit section: H"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="harmonic_progression"><dfn><a href="/wiki/Harmonic_progression_(mathematics)" title="Harmonic progression (mathematics)">harmonic progression</a></dfn></dt> <dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a <b>harmonic progression</b> (or <b>harmonic sequence</b>) is a progression formed by taking the reciprocals of an <a href="/wiki/Arithmetic_progression" title="Arithmetic progression">arithmetic progression</a>. It is a <a href="/wiki/Sequence" title="Sequence">sequence</a> of the form <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{a}},\ {\frac {1}{a+d}}\ ,{\frac {1}{a+2d}}\ ,{\frac {1}{a+3d}}\ ,\cdots ,{\frac {1}{a+kd}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <mo>,</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <mo>+</mo> <mi>d</mi> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <mo>+</mo> <mn>2</mn> <mi>d</mi> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <mo>+</mo> <mn>3</mn> <mi>d</mi> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>,</mo> <mo>⋯<!-- ⋯ --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <mo>+</mo> <mi>k</mi> <mi>d</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{a}},\ {\frac {1}{a+d}}\ ,{\frac {1}{a+2d}}\ ,{\frac {1}{a+3d}}\ ,\cdots ,{\frac {1}{a+kd}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb3d0a8448a2b942e3b1886a90ce71ea096c4a7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:41.34ex; height:5.509ex;" alt="{\displaystyle {\frac {1}{a}},\ {\frac {1}{a+d}}\ ,{\frac {1}{a+2d}}\ ,{\frac {1}{a+3d}}\ ,\cdots ,{\frac {1}{a+kd}},}"></span></dd></dl> where −a/<i>d</i> is not a <a href="/wiki/Natural_number" title="Natural number">natural number</a> and <i>k</i> <b>is</b> a natural number. Equivalently, a sequence is a harmonic progression when each term is the <a href="/wiki/Harmonic_mean" title="Harmonic mean">harmonic mean</a> of the neighboring terms. It is not possible for a harmonic progression (other than the trivial case where <i>a</i> = 1 and <i>k</i> = 0) to sum to an <a href="/wiki/Integer" title="Integer">integer</a>. The reason is that, necessarily, at least one denominator of the progression will be divisible by a <a href="/wiki/Prime_number" title="Prime number">prime number</a> that does not divide any other denominator.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup></dd> <dt id="higher_derivative"><dfn><a href="/wiki/Derivative#Higher_derivatives" title="Derivative">higher derivative</a></dfn></dt> <dd>Let <span class="texhtml"><i>f</i></span> be a differentiable function, and let <span class="texhtml"><i>f</i> ′</span> be its derivative. The derivative of <span class="texhtml"><i>f</i> ′</span> (if it has one) is written <span class="texhtml"><i>f</i> ′′</span> and is called the <i><a href="/wiki/Second_derivative" title="Second derivative">second derivative</a> of <span class="texhtml">f</span></i>. Similarly, the derivative of the second derivative, if it exists, is written <span class="texhtml"><i>f</i> ′′′</span> and is called the <i><a href="/wiki/Third_derivative" title="Third derivative">third derivative</a> of <span class="texhtml">f</span></i>. Continuing this process, one can define, if it exists, the <span class="texhtml"><i>n</i></span>th derivative as the derivative of the <span class="texhtml">(<i>n</i>-1)</span>th derivative. These repeated derivatives are called <i>higher-order derivatives</i>. The <span class="texhtml"><i>n</i></span>th derivative is also called the <b>derivative of order <span class="texhtml"><i>n</i></span></b>.</dd> <dt id="homogeneous_linear_differential_equation"><dfn><a href="/wiki/Homogeneous_differential_equation" title="Homogeneous differential equation">homogeneous linear differential equation</a></dfn></dt> <dd>A <a href="/wiki/Differential_equation" title="Differential equation">differential equation</a> can be <b>homogeneous</b> in either of two respects. A <a href="/wiki/First_order_differential_equation" class="mw-redirect" title="First order differential equation">first order differential equation</a> is said to be homogeneous if it may be written <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x,y)dy=g(x,y)dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>y</mi> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x,y)dy=g(x,y)dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4b0be82f9ea4a314c2c3adad396acb548c7adb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.714ex; height:2.843ex;" alt="{\displaystyle f(x,y)dy=g(x,y)dx,}"></span></dd></dl> where <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> are <a href="/wiki/Homogeneous_function" title="Homogeneous function">homogeneous functions</a> of the same degree of <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span>. In this case, the change of variable <span class="texhtml"><i>y</i> = <i>ux</i></span> leads to an equation of the form <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dx}{x}}=h(u)du,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>=</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>u</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dx}{x}}=h(u)du,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/655ac39b47bf14555c0efeb383326d24ac558657" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.151ex; height:5.343ex;" alt="{\displaystyle {\frac {dx}{x}}=h(u)du,}"></span></dd></dl> which is easy to solve by <a href="/wiki/Integral" title="Integral">integration</a> of the two members. Otherwise, a differential equation is homogeneous if it is a homogeneous function of the unknown function and its derivatives. In the case of <a href="/wiki/Linear_differential_equation" title="Linear differential equation">linear differential equations</a>, this means that there are no constant terms. The solutions of any linear <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary differential equation</a> of any order may be deduced by integration from the solution of the homogeneous equation obtained by removing the constant term.</dd> <dt id="hyperbolic_function"><dfn><a href="/wiki/Hyperbolic_function" class="mw-redirect" title="Hyperbolic function">hyperbolic function</a></dfn></dt> <dd><b>Hyperbolic functions</b> are analogs of the ordinary <a href="/wiki/Trigonometric_function" class="mw-redirect" title="Trigonometric function">trigonometric</a>, or <a href="/wiki/Unit_circle" title="Unit circle">circular</a>, functions.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="I">I</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=9" title="Edit section: I"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="identity_function"><dfn><a href="/wiki/Identity_function" title="Identity function">identity function</a></dfn></dt> <dd>Also called an <b>identity relation</b> or <b>identity map</b> or <b>identity transformation</b>, is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> that always returns the same value that was used as its argument. In <a href="/wiki/Equation" title="Equation">equations</a>, the function is given by <span class="texhtml"><i>f</i>(<i>x</i>) = <i>x</i></span>.</dd> <dt id="imaginary_number"><dfn><a href="/wiki/Imaginary_number" title="Imaginary number">imaginary number</a></dfn></dt> <dd>Is a <a href="/wiki/Complex_number" title="Complex number">complex number</a> that can be written as a <a href="/wiki/Real_number" title="Real number">real number</a> multiplied by the <a href="/wiki/Imaginary_unit" title="Imaginary unit">imaginary unit</a> <span class="texhtml mvar" style="font-style:italic;">i</span>,<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>note 2<span class="cite-bracket">]</span></a></sup> which is defined by its property <span class="texhtml"><i>i</i><sup>2</sup> = −1</span>.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Square_(algebra)" title="Square (algebra)">square</a> of an imaginary number <span class="texhtml mvar" style="font-style:italic;">bi</span> is <span class="texhtml">−<i>b</i><sup>2</sup></span>. For example, <span class="texhtml">5<i>i</i></span> is an imaginary number, and its square is <span class="texhtml">−25</span>. Zero is considered to be both real and imaginary.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup></dd> <dt id="implicit_function"><dfn><a href="/wiki/Implicit_function" title="Implicit function">implicit function</a></dfn></dt> <dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, an implicit equation is a <a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">relation</a> of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(x_{1},\ldots ,x_{n})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(x_{1},\ldots ,x_{n})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2da5e7cf8f171a3430f3a4a66679be85e22dcbc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.945ex; height:2.843ex;" alt="{\displaystyle R(x_{1},\ldots ,x_{n})=0}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> of several variables (often a <a href="/wiki/Polynomial" title="Polynomial">polynomial</a>). For example, the implicit equation of the <a href="/wiki/Unit_circle" title="Unit circle">unit circle</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+y^{2}-1=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+y^{2}-1=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ee594b8851d760d0e2d44aba714907aca657b8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.703ex; height:3.009ex;" alt="{\displaystyle x^{2}+y^{2}-1=0}"></span>. An <b>implicit function</b> is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> that is defined implicitly by an implicit equation, by associating one of the variables (the <a href="/wiki/Value_(mathematics)" title="Value (mathematics)">value</a>) with the others (the <a href="/wiki/Argument_of_a_function" title="Argument of a function">arguments</a>).<sup id="cite_ref-Chiang_60-0" class="reference"><a href="#cite_note-Chiang-60"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 204–206">: 204–206 </span></sup> Thus, an implicit function for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> in the context of the <a href="/wiki/Unit_circle" title="Unit circle">unit circle</a> is defined implicitly by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+f(x)^{2}-1=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+f(x)^{2}-1=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6c01bd908dc53c2263a66c8b118de726665a1b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.96ex; height:3.176ex;" alt="{\displaystyle x^{2}+f(x)^{2}-1=0}"></span>. This implicit equation defines <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> as a function of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1\leq x\leq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>x</mi> <mo>≤<!-- ≤ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1\leq x\leq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c07d30937eb8028698054698012f2d76caad7fe4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.66ex; height:2.343ex;" alt="{\displaystyle -1\leq x\leq 1}"></span> and one considers only non-negative (or non-positive) values for the values of the function. The <a href="/wiki/Implicit_function_theorem" title="Implicit function theorem">implicit function theorem</a> provides conditions under which some kinds of relations define an implicit function, namely relations defined as the <a href="/wiki/Indicator_function" title="Indicator function">indicator function</a> of the <a href="/wiki/Zero_set" class="mw-redirect" title="Zero set">zero set</a> of some <a href="/wiki/Continuously_differentiable" class="mw-redirect" title="Continuously differentiable">continuously differentiable</a> <a href="/wiki/Multivariable_calculus" title="Multivariable calculus">multivariate</a> function.</dd> <dt id="improper_fraction"><dfn><a href="/wiki/Improper_fraction" class="mw-redirect" title="Improper fraction">improper fraction</a></dfn></dt> <dd>Common fractions can be classified as either proper or improper. When the numerator and the denominator are both positive, the fraction is called proper if the numerator is less than the denominator, and improper otherwise.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> In general, a common fraction is said to be a proper fraction if the <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> of the fraction is strictly less than one—that is, if the fraction is greater than −1 and less than 1.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> It is said to be an improper fraction, or sometimes top-heavy fraction,<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> if the absolute value of the fraction is greater than or equal to 1. Examples of proper fractions are 2/3, –3/4, and 4/9; examples of improper fractions are 9/4, –4/3, and 3/3.</dd> <dt id="improper_integral"><dfn><a href="/wiki/Improper_integral" title="Improper integral">improper integral</a></dfn></dt> <dd>In <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, an improper integral is the <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limit</a> of a <a href="/wiki/Definite_integral" class="mw-redirect" title="Definite integral">definite integral</a> as an endpoint of the interval(s) of integration approaches either a specified <a href="/wiki/Real_number" title="Real number">real number</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26c105004f30c27aa7c2a9c601550a4183b1f21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.676ex;" alt="{\displaystyle \infty }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle -\infty }"></span>, or in some instances as both endpoints approach limits. Such an integral is often written symbolically just like a standard definite integral, in some cases with <i>infinity</i> as a limit of integration. Specifically, an improper integral is a limit of the form: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{b\to \infty }\int _{a}^{b}f(x)\,dx,\qquad \lim _{a\to -\infty }\int _{a}^{b}f(x)\,dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> <mspace width="2em" /> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{b\to \infty }\int _{a}^{b}f(x)\,dx,\qquad \lim _{a\to -\infty }\int _{a}^{b}f(x)\,dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c6ee8f1ea309bed84da5b0455d98662ec4bd2e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.804ex; height:6.343ex;" alt="{\displaystyle \lim _{b\to \infty }\int _{a}^{b}f(x)\,dx,\qquad \lim _{a\to -\infty }\int _{a}^{b}f(x)\,dx,}"></span></dd></dl> or <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{c\to b^{-}}\int _{a}^{c}f(x)\,dx,\quad \lim _{c\to a^{+}}\int _{c}^{b}f(x)\,dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> </mrow> </munder> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> <mspace width="1em" /> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{c\to b^{-}}\int _{a}^{c}f(x)\,dx,\quad \lim _{c\to a^{+}}\int _{c}^{b}f(x)\,dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15ee4275fcc67f68715da0be89d3f7bf976e9be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:35.752ex; height:6.343ex;" alt="{\displaystyle \lim _{c\to b^{-}}\int _{a}^{c}f(x)\,dx,\quad \lim _{c\to a^{+}}\int _{c}^{b}f(x)\,dx,}"></span></dd></dl> in which one takes a limit in one or the other (or sometimes both) endpoints (<a href="#CITEREFApostol1967">Apostol 1967</a>, §10.23).</dd> <dt id="inflection_point"><dfn><a href="/wiki/Inflection_point" title="Inflection point">inflection point</a></dfn></dt> <dd>In <a href="/wiki/Differential_calculus" title="Differential calculus">differential calculus</a>, an <b>inflection point</b>, <b>point of inflection</b>, <b>flex</b>, or <b>inflection</b> (British English: <b>inflexion</b>) is a point on a <a href="/wiki/Continuous_function" title="Continuous function">continuous</a> <a href="/wiki/Plane_curve" title="Plane curve">plane curve</a> at which the curve changes from being <a href="/wiki/Concave_function" title="Concave function">concave</a> (concave downward) to <a href="/wiki/Convex_function" title="Convex function">convex</a> (concave upward), or vice versa.</dd> <dt id="instantaneous_rate_of_change"><dfn><a href="/wiki/Derivative" title="Derivative">instantaneous rate of change</a></dfn></dt> <dd>The derivative of a function of a single variable at a chosen input value, when it exists, is the <a href="/wiki/Slope" title="Slope">slope</a> of the <a href="/wiki/Tangent" title="Tangent">tangent line</a> to the <a href="/wiki/Graph_of_a_function" title="Graph of a function">graph of the function</a> at that point. The tangent line is the best <a href="/wiki/Linear_approximation" title="Linear approximation">linear approximation</a> of the function near that input value. For this reason, the derivative is often described as the "instantaneous rate of change", the ratio of the instantaneous change in the dependent variable to that of the independent variable. .</dd> <dt id="instantaneous_velocity"><dfn><a href="/wiki/Velocity#Instantaneous_velocity" title="Velocity">instantaneous velocity</a></dfn></dt> <dd>If we consider <span class="texhtml"><i><b>v</b></i></span> as velocity and <span class="texhtml"><i><b>x</b></i></span> as the displacement (change in position) vector, then we can express the (instantaneous) velocity of a particle or object, at any particular time <span class="texhtml"><i>t</i></span>, as the <a href="/wiki/Derivative" title="Derivative">derivative</a> of the position with respect to time: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {x}}}{\Delta t}}={\frac {d{\boldsymbol {x}}}{d{\mathit {t}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">t</mi> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {x}}}{\Delta t}}={\frac {d{\boldsymbol {x}}}{d{\mathit {t}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98326656eb93e2b598177b2a80ff949240888f99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:20.864ex; height:5.676ex;" alt="{\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {x}}}{\Delta t}}={\frac {d{\boldsymbol {x}}}{d{\mathit {t}}}}.}"></span></dd></dl> From this derivative equation, in the one-dimensional case it can be seen that the area under a velocity vs. time (<span class="texhtml"><i><b>v</b></i></span> vs. <span class="texhtml"><i>t</i></span> graph) is the displacement, <span class="texhtml"><i><b>x</b></i></span>. In calculus terms, the <a href="/wiki/Integral" title="Integral">integral</a> of the velocity function <span class="texhtml"><i><b>v</b></i>(<i>t</i>)</span> is the displacement function <span class="texhtml"><i><b>x</b></i>(<i>t</i>)</span>. In the figure, this corresponds to the yellow area under the curve labeled <span class="texhtml"><i><b>s</b></i></span> (<span class="texhtml"><i><b>s</b></i></span> being an alternative notation for displacement). <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {x}}=\int {\boldsymbol {v}}\ d{\mathit {t}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo>=</mo> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mtext> </mtext> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">t</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {x}}=\int {\boldsymbol {v}}\ d{\mathit {t}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfc65107366d82be9fb36c9d2c13a1bb91405838" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.745ex; height:5.676ex;" alt="{\displaystyle {\boldsymbol {x}}=\int {\boldsymbol {v}}\ d{\mathit {t}}.}"></span></dd></dl> Since the derivative of the position with respect to time gives the change in position (in <a href="/wiki/Metre" title="Metre">metres</a>) divided by the change in time (in <a href="/wiki/Second" title="Second">seconds</a>), velocity is measured in <a href="/wiki/Metre_per_second" title="Metre per second">metres per second</a> (m/s). Although the concept of an instantaneous velocity might at first seem counter-intuitive, it may be thought of as the velocity that the object would continue to travel at if it stopped accelerating at that moment. .</dd> <dt id="integral"><dfn><a href="/wiki/Integral" title="Integral">integral</a></dfn></dt> <dd>An integral assigns numbers to functions in a way that can describe displacement, area, volume, and other concepts that arise by combining <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a> data. Integration is one of the two main operations of calculus, with its inverse operation, <a href="/wiki/Derivative" title="Derivative">differentiation</a>, being the other. .</dd> <dt id="integral_symbol"><dfn><a href="/wiki/Integral_symbol" title="Integral symbol">integral symbol</a></dfn></dt> <dd>The integral symbol: <dl><dd><span style="font-size:200%">∫</span> (<a href="/wiki/Unicode" title="Unicode">Unicode</a>), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle \int }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \displaystyle \int }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e594c389846abbae8442b2c57a4dd70533071047" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:2.194ex; height:5.676ex;" alt="{\displaystyle \displaystyle \int }"></span> (<a href="/wiki/LaTeX" title="LaTeX">LaTeX</a>)</dd></dl> is used to denote <a href="/wiki/Integral" title="Integral">integrals</a> and <a href="/wiki/Antiderivatives" class="mw-redirect" title="Antiderivatives">antiderivatives</a> in <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>. .</dd> <dt id="integrand"><dfn><a href="/wiki/Integrand" class="mw-redirect" title="Integrand">integrand</a></dfn></dt> <dd>The function to be integrated in an integral.</dd> <dt id="integration_by_parts"><dfn><a href="/wiki/Integration_by_parts" title="Integration by parts">integration by parts</a></dfn></dt> <dd>In calculus, and more generally in <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, <b>integration by parts</b> or <b>partial integration</b> is a process that finds the <a href="/wiki/Integral_(mathematics)" class="mw-redirect" title="Integral (mathematics)">integral</a> of a <a href="/wiki/Product_(mathematics)" title="Product (mathematics)">product</a> of functions in terms of the integral of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be readily derived by integrating the <a href="/wiki/Product_rule" title="Product rule">product rule</a> of <a href="/wiki/Derivative" title="Derivative">differentiation</a>. If <span class="texhtml"><i>u</i> = <i>u</i>(<i>x</i>)</span> and <span class="texhtml"><i>du</i> = <i>u<span class="nowrap" style="padding-left:0.05em;">′</span></i>(<i>x</i>) <i>dx</i></span>, while <span class="texhtml"><i>v</i> = <i>v</i>(<i>x</i>)</span> and <span class="texhtml"><i>dv</i> = <i>v<span class="nowrap" style="padding-left:0.05em;">′</span></i>(<i>x</i>) <i>dx</i></span>, then integration by parts states that: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\int _{a}^{b}u(x)v'(x)\,dx&={\Big [}u(x)v(x){\Big ]}_{a}^{b}-\int _{a}^{b}u'(x)v(x)\,dx\\&=u(b)v(b)-u(a)v(a)-\int _{a}^{b}u'(x)v(x)\,dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>u</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>v</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">[</mo> </mrow> </mrow> <mi>u</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>v</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mo>−<!-- − --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <msup> <mi>u</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>v</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mi>v</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mi>v</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <msup> <mi>u</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>v</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\int _{a}^{b}u(x)v'(x)\,dx&={\Big [}u(x)v(x){\Big ]}_{a}^{b}-\int _{a}^{b}u'(x)v(x)\,dx\\&=u(b)v(b)-u(a)v(a)-\int _{a}^{b}u'(x)v(x)\,dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5198e7dca933740bd3c1b7dbbfc484d39c18427d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:58.42ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}\int _{a}^{b}u(x)v'(x)\,dx&={\Big [}u(x)v(x){\Big ]}_{a}^{b}-\int _{a}^{b}u'(x)v(x)\,dx\\&=u(b)v(b)-u(a)v(a)-\int _{a}^{b}u'(x)v(x)\,dx\end{aligned}}}"></span></dd></dl> or more compactly: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int u\,dv=uv-\int v\,du.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mi>u</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>v</mi> <mo>=</mo> <mi>u</mi> <mi>v</mi> <mo>−<!-- − --></mo> <mo>∫<!-- ∫ --></mo> <mi>v</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>u</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int u\,dv=uv-\int v\,du.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7543879c4840a6b9d2a9ae0846cd7b30360d59b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.325ex; height:5.676ex;" alt="{\displaystyle \int u\,dv=uv-\int v\,du.}"></span></dd></dl> Mathematician <a href="/wiki/Brook_Taylor" title="Brook Taylor">Brook Taylor</a> discovered integration by parts, first publishing the idea in <a href="/wiki/1715_in_science" title="1715 in science">1715</a>.<sup id="cite_ref-Brook_Taylor_biography,_St._Andrews_66-0" class="reference"><a href="#cite_note-Brook_Taylor_biography,_St._Andrews-66"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Brook_Taylor_biography,_Stetson_67-0" class="reference"><a href="#cite_note-Brook_Taylor_biography,_Stetson-67"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> More general formulations of integration by parts exist for the <a href="/wiki/Riemann%E2%80%93Stieltjes_integral#Properties_and_relation_to_the_Riemann_integral" title="Riemann–Stieltjes integral">Riemann–Stieltjes</a> and <a href="/wiki/Lebesgue%E2%80%93Stieltjes_integral#Integration_by_parts" class="mw-redirect" title="Lebesgue–Stieltjes integral">Lebesgue–Stieltjes integrals</a>. The discrete analogue for sequences is called <a href="/wiki/Summation_by_parts" title="Summation by parts">summation by parts</a>. .</dd> <dt id="integration_by_substitution"><dfn><a href="/wiki/Integration_by_substitution" title="Integration by substitution">integration by substitution</a></dfn></dt> <dd>Also known as <i>u</i>-substitution, is a method for solving <a href="/wiki/Integral" title="Integral">integrals</a>. Using the <a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">fundamental theorem of calculus</a> often requires finding an <a href="/wiki/Antiderivative" title="Antiderivative">antiderivative</a>. For this and other reasons, integration by substitution is an important tool in mathematics. It is the counterpart to the <a href="/wiki/Chain_rule" title="Chain rule">chain rule</a> for <a href="/wiki/Derivative" title="Derivative">differentiation</a>. .</dd> <dt id="intermediate_value_theorem"><dfn><a href="/wiki/Intermediate_value_theorem" title="Intermediate value theorem">intermediate value theorem</a></dfn></dt> <dd>In <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, the intermediate value theorem states that if a <a href="/wiki/Continuous_function" title="Continuous function">continuous function</a>, <i>f</i>, with an <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">interval</a>, [<i>a</i>, <i>b</i>], as its <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a>, takes values <i>f</i>(<i>a</i>) and <i>f</i>(<i>b</i>) at each end of the interval, then it also takes any value between <i>f</i>(<i>a</i>) and <i>f</i>(<i>b</i>) at some point within the interval. This has two important <a href="/wiki/Corollary" title="Corollary">corollaries</a>: <ol><li>If a continuous function has values of opposite sign inside an interval, then it has a root in that interval (<b>Bolzano's theorem</b>).<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a> of a continuous function over an interval is itself an interval. .</li></ol></dd> <dt id="inverse_trigonometric_functions"><dfn><a href="/wiki/Inverse_trigonometric_functions" title="Inverse trigonometric functions">inverse trigonometric functions</a></dfn></dt> <dd>(Also called arcus functions,<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> antitrigonometric functions<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> or cyclometric functions<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup>) are the <a href="/wiki/Inverse_function" title="Inverse function">inverse functions</a> of the <a href="/wiki/Trigonometric_functions" title="Trigonometric functions">trigonometric functions</a> (with suitably restricted <a href="/wiki/Domain_of_a_function" title="Domain of a function">domains</a>). Specifically, they are the inverses of the <a href="/wiki/Sine" class="mw-redirect" title="Sine">sine</a>, <a href="/wiki/Cosine" class="mw-redirect" title="Cosine">cosine</a>, <a href="/wiki/Tangent_(trigonometry)" class="mw-redirect" title="Tangent (trigonometry)">tangent</a>, <a href="/wiki/Cotangent" class="mw-redirect" title="Cotangent">cotangent</a>, <a href="/wiki/Secant_(trigonometry)" class="mw-redirect" title="Secant (trigonometry)">secant</a>, and <a href="/wiki/Cosecant" class="mw-redirect" title="Cosecant">cosecant</a> functions, and are used to obtain an angle from any of the angle's trigonometric ratios.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="J">J</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=10" title="Edit section: J"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="jump_discontinuity"><dfn><a href="/wiki/Classification_of_discontinuities#Jump_discontinuity" title="Classification of discontinuities">jump discontinuity</a></dfn></dt> <dd>Consider the function <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\begin{cases}x^{2}&{\mbox{ for }}x<1\\0&{\mbox{ for }}x=1\\2-(x-1)^{2}&{\mbox{ for }}x>1\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> for </mtext> </mstyle> </mrow> <mi>x</mi> <mo><</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> for </mtext> </mstyle> </mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> for </mtext> </mstyle> </mrow> <mi>x</mi> <mo>></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)={\begin{cases}x^{2}&{\mbox{ for }}x<1\\0&{\mbox{ for }}x=1\\2-(x-1)^{2}&{\mbox{ for }}x>1\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32713a375739d98e9d9258ed8eeb193419e0ec84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:34.393ex; height:8.843ex;" alt="{\displaystyle f(x)={\begin{cases}x^{2}&{\mbox{ for }}x<1\\0&{\mbox{ for }}x=1\\2-(x-1)^{2}&{\mbox{ for }}x>1\end{cases}}}"></span></dd></dl> Then, the point <span class="texhtml"><i>x</i><sub>0</sub></span> = 1 is a <i>jump discontinuity</i>. In this case, a single limit does not exist because the one-sided limits, <span class="texhtml"><i>L</i><sup>−</sup></span> and <span class="texhtml"><i>L</i><sup>+</sup></span>, exist and are finite, but are not equal: since, <span class="texhtml"><i>L</i><sup>−</sup></span> ≠ <span class="texhtml"><i>L</i><sup>+</sup></span>, the limit <span class="texhtml"><i>L</i></span> does not exist. Then, <span class="texhtml"><i>x</i><sub>0</sub></span> is called a <i>jump discontinuity</i>, <i>step discontinuity</i>, or <i>discontinuity of the first kind</i>. For this type of discontinuity, the function <span class="texhtml"><i>f</i></span> may have any value at <span class="texhtml"><i>x</i><sub>0</sub></span>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="L">L</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=11" title="Edit section: L"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="lebesgue_integration"><dfn><a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integration</a></dfn></dt> <dd>In mathematics, the <a href="/wiki/Integral" title="Integral">integral</a> of a non-negative <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> of a single variable can be regarded, in the simplest case, as the <a href="/wiki/Area" title="Area">area</a> between the <a href="/wiki/Graph_of_a_function" title="Graph of a function">graph</a> of that function and the <span class="texhtml"><i>x</i></span>-axis. The <b>Lebesgue integral</b> extends the integral to a larger class of functions. It also extends the <a href="/wiki/Domain_of_a_function" title="Domain of a function">domains</a> on which these functions can be defined.</dd> <dt id="l'hôpital's_rule"><dfn><a href="/wiki/L%27H%C3%B4pital%27s_rule" title="L'Hôpital's rule">L'Hôpital's rule</a></dfn></dt> <dd><b>L'Hôpital's rule</b> or <b>L'Hospital's rule</b> uses <a href="/wiki/Derivative" title="Derivative">derivatives</a> to help evaluate <a href="/wiki/Limit_of_a_function" title="Limit of a function">limits</a> involving <a href="/wiki/Indeterminate_form" title="Indeterminate form">indeterminate forms</a>. Application (or repeated application) of the rule often converts an indeterminate form to an expression that can be evaluated by substitution, allowing easier evaluation of the limit. The rule is named after the 17th-century <a href="/wiki/France" title="France">French</a> <a href="/wiki/Mathematician" title="Mathematician">mathematician</a> <a href="/wiki/Guillaume_de_l%27H%C3%B4pital" title="Guillaume de l'Hôpital">Guillaume de l'Hôpital</a>. Although the contribution of the rule is often attributed to L'Hôpital, the theorem was first introduced to L'Hôpital in 1694 by the Swiss mathematician <a href="/wiki/Johann_Bernoulli" title="Johann Bernoulli">Johann Bernoulli</a>. L'Hôpital's rule states that for functions <span class="texhtml"><var style="padding-right: 1px;">f</var></span> and <span class="texhtml"><var style="padding-right: 1px;">g</var></span> which are <a href="/wiki/Differentiable_function" title="Differentiable function">differentiable</a> on an open <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">interval</a> <span class="texhtml"><var style="padding-right: 1px;">I</var></span> except possibly at a point <span class="texhtml"><var style="padding-right: 1px;">c</var></span> contained in <span class="texhtml"><var style="padding-right: 1px;">I</var></span>, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}g(x)=0{\text{ or }}\pm \infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> or </mtext> </mrow> <mo>±<!-- ± --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}g(x)=0{\text{ or }}\pm \infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d45752c4c4c55ffb31e1cc7b15e0729f73097d11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.443ex; height:3.843ex;" alt="{\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}g(x)=0{\text{ or }}\pm \infty ,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g'(x)\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g'(x)\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f022fde7dae42ed7a4bf38125e329293ac4d5ce5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.203ex; height:3.009ex;" alt="{\displaystyle g'(x)\neq 0}"></span> for all <span class="texhtml"><var style="padding-right: 1px;">x</var></span> in <span class="texhtml"><var style="padding-right: 1px;">I</var></span> with <span class="texhtml"><var style="padding-right: 1px;">x</var> ≠ <var style="padding-right: 1px;">c</var></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{x\to c}{\frac {f'(x)}{g'(x)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{x\to c}{\frac {f'(x)}{g'(x)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9186ac40d31fd1b92d69283a5a91702a30dbc034" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:9.663ex; height:6.509ex;" alt="{\displaystyle \lim _{x\to c}{\frac {f'(x)}{g'(x)}}}"></span> exists, then <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d7785840386a94cc10bf59bffa7fe39cc946c43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.344ex; height:6.509ex;" alt="{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}.}"></span></dd></dl> The differentiation of the numerator and denominator often simplifies the quotient or converts it to a limit that can be evaluated directly.</dd> <dt id="limit_comparison_test"><dfn><a href="/wiki/Limit_comparison_test" title="Limit comparison test">limit comparison test</a></dfn></dt> <dd>The limit comparison test allows one to determine the convergence of one series based on the convergence of another.</dd> <dt id="limit_of_a_function"><dfn><a href="/wiki/Limit_of_a_function" title="Limit of a function">limit of a function</a></dfn></dt> <dd>.</dd> <dt id="limits_of_integration"><dfn><a href="/wiki/Limits_of_integration" title="Limits of integration">limits of integration</a></dfn></dt> <dd>.</dd> <dt id="linear_combination"><dfn><a href="/wiki/Linear_combination" title="Linear combination">linear combination</a></dfn></dt> <dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a linear combination is an <a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">expression</a> constructed from a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of <i>x</i> and <i>y</i> would be any expression of the form <i>ax</i> + <i>by</i>, where <i>a</i> and <i>b</i> are constants).<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> The concept of linear combinations is central to <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a> and related fields of mathematics.</dd> <dt id="linear_equation"><dfn><a href="/wiki/Linear_equation" title="Linear equation">linear equation</a></dfn></dt> <dd>A linear equation is an equation relating two or more variables to each other in the form of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}x_{1}+\cdots +a_{n}x_{n}+b=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>+</mo> <mi>b</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}x_{1}+\cdots +a_{n}x_{n}+b=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d95216163a96c7ec2c25539daf889dbe01c816ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:26.814ex; height:2.509ex;" alt="{\displaystyle a_{1}x_{1}+\cdots +a_{n}x_{n}+b=0,}"></span> with the highest power of each variable being 1.</dd> <dt id="linear_system"><dfn><a href="/wiki/Linear_system" title="Linear system">linear system</a></dfn></dt> <dd>.</dd> <dt id="list_of_integrals"><dfn><a href="/wiki/List_of_integrals" class="mw-redirect" title="List of integrals">list of integrals</a></dfn></dt> <dd>.</dd> <dt id="logarithm"><dfn><a href="/wiki/Logarithm" title="Logarithm">logarithm</a></dfn></dt> <dd>.</dd> <dt id="logarithmic_differentiation"><dfn><a href="/wiki/Logarithmic_differentiation" title="Logarithmic differentiation">logarithmic differentiation</a></dfn></dt> <dd>.</dd> <dt id="lower_bound"><dfn><a href="/wiki/Upper_and_lower_bounds#Bounds_of_functions" title="Upper and lower bounds">lower bound</a></dfn></dt> <dd>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="M">M</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=12" title="Edit section: M"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="mean_value_theorem"><dfn><a href="/wiki/Mean_value_theorem" title="Mean value theorem">mean value theorem</a></dfn></dt> <dd>.</dd> <dt id="monotonic_function"><dfn><a href="/wiki/Monotonic_function#Monotonicity_in_calculus_and_analysis" title="Monotonic function">monotonic function</a></dfn></dt> <dd>.</dd> <dt id="multiple_integral"><dfn><a href="/wiki/Multiple_integral" title="Multiple integral">multiple integral</a></dfn></dt> <dd>.</dd> <dt id="multiplicative_calculus"><dfn>Multiplicative calculus</dfn></dt> <dd>.</dd> <dt id="multivariable_calculus"><dfn><a href="/wiki/Multivariable_calculus" title="Multivariable calculus">multivariable calculus</a></dfn></dt> <dd>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="N">N</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=13" title="Edit section: N"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="natural_logarithm"><dfn><a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a></dfn></dt> <dd>The <b>natural logarithm</b> of a number is its <a href="/wiki/Logarithm" title="Logarithm">logarithm</a> to the <a href="/wiki/Base_(exponentiation)" title="Base (exponentiation)">base</a> of the <a href="/wiki/Mathematical_constant" title="Mathematical constant">mathematical constant</a> <a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)"><i>e</i></a>, where <i>e</i> is an <a href="/wiki/Irrational_number" title="Irrational number">irrational</a> and <a href="/wiki/Transcendental_number" title="Transcendental number">transcendental</a> number approximately equal to <span class="nowrap"><span data-sort-value="7000271828182845899♠"></span>2.718<span style="margin-left:.25em;">281</span><span style="margin-left:.25em;">828</span><span style="margin-left:.25em;">459</span></span>. The natural logarithm of <i>x</i> is generally written as <span class="nowrap">ln <i>x</i></span>, <span class="nowrap">log<sub><i>e</i></sub> <i>x</i></span>, or sometimes, if the base <i>e</i> is implicit, simply <span class="nowrap">log <i>x</i></span>.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Parentheses" class="mw-redirect" title="Parentheses">Parentheses</a> are sometimes added for clarity, giving ln(<i>x</i>), log<sub><i>e</i></sub>(<i>x</i>) or log(<i>x</i>). This is done in particular when the argument to the logarithm is not a single symbol, to prevent ambiguity.</dd> <dt id="non-newtonian_calculus"><dfn><a href="/w/index.php?title=Non-Newtonian_calculus&action=edit&redlink=1" class="new" title="Non-Newtonian calculus (page does not exist)">non-Newtonian calculus</a></dfn></dt> <dd>.</dd> <dt id="nonstandard_calculus"><dfn><a href="/wiki/Nonstandard_calculus" title="Nonstandard calculus">nonstandard calculus</a></dfn></dt> <dd>.</dd> <dt id="notation_for_differentiation"><dfn><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">notation for differentiation</a></dfn></dt> <dd>.</dd> <dt id="numerical_integration"><dfn><a href="/wiki/Numerical_integration" title="Numerical integration">numerical integration</a></dfn></dt> <dd>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="O">O</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=14" title="Edit section: O"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="one-sided_limit"><dfn><a href="/wiki/One-sided_limit" title="One-sided limit">one-sided limit</a></dfn></dt> <dd>.</dd> <dt id="ordinary_differential_equation"><dfn><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary differential equation</a></dfn></dt> <dd>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="P">P</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=15" title="Edit section: P"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="pappus's_centroid_theorem"><dfn><a href="/wiki/Pappus%27s_centroid_theorem" title="Pappus's centroid theorem">Pappus's centroid theorem</a></dfn></dt> <dd>(Also known as the <b>Guldinus theorem</b>, <b>Pappus–Guldinus theorem</b> or <b>Pappus's theorem</b>) is either of two related <a href="/wiki/Theorem" title="Theorem">theorems</a> dealing with the <a href="/wiki/Surface_area" title="Surface area">surface areas</a> and <a href="/wiki/Volume" title="Volume">volumes</a> of <a href="/wiki/Surface_of_revolution" title="Surface of revolution">surfaces</a> and <a href="/wiki/Solid_of_revolution" title="Solid of revolution">solids</a> of revolution.</dd> <dt id="parabola"><dfn><a href="/wiki/Parabola" title="Parabola">parabola</a></dfn></dt> <dd>Is a <a href="/wiki/Plane_curve" title="Plane curve">plane curve</a> that is <a href="/wiki/Reflection_symmetry" title="Reflection symmetry">mirror-symmetrical</a> and is approximately U-<a href="/wiki/Shape" title="Shape">shaped</a>. It fits several superficially different other <a href="/wiki/Mathematics" title="Mathematics">mathematical</a> descriptions, which can all be proved to define exactly the same curves.</dd> <dt id="paraboloid"><dfn><a href="/wiki/Paraboloid" title="Paraboloid">paraboloid</a></dfn></dt> <dd>.</dd> <dt id="partial_derivative"><dfn><a href="/wiki/Partial_derivative" title="Partial derivative">partial derivative</a></dfn></dt> <dd>.</dd> <dt id="partial_differential_equation"><dfn><a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equation</a></dfn></dt> <dd>.</dd> <dt id="partial_fraction_decomposition"><dfn><a href="/wiki/Partial_fraction_decomposition" title="Partial fraction decomposition">partial fraction decomposition</a></dfn></dt> <dd>.</dd> <dt id="particular_solution"><dfn><a href="/wiki/Particular_solution" class="mw-redirect" title="Particular solution">particular solution</a></dfn></dt> <dd>.</dd> <dt id="piecewise-defined_function"><dfn><a href="/wiki/Piecewise" class="mw-redirect" title="Piecewise">piecewise-defined function</a></dfn></dt> <dd>A function defined by multiple sub-functions that apply to certain intervals of the function's domain.</dd> <dt id="position_vector"><dfn><a href="/wiki/Position_(vector)" class="mw-redirect" title="Position (vector)">position vector</a></dfn></dt> <dd>.</dd> <dt id="power_rule"><dfn><a href="/wiki/Power_rule" title="Power rule">power rule</a></dfn></dt> <dd>.</dd> <dt id="product_integral"><dfn><a href="/wiki/Product_integral" title="Product integral">product integral</a></dfn></dt> <dd>.</dd> <dt id="product_rule"><dfn><a href="/wiki/Product_rule" title="Product rule">product rule</a></dfn></dt> <dd>.</dd> <dt id="proper_fraction"><dfn><a href="/wiki/Proper_fraction" class="mw-redirect" title="Proper fraction">proper fraction</a></dfn></dt> <dd>.</dd> <dt id="proper_rational_function"><dfn><a href="/wiki/Proper_rational_function" class="mw-redirect" title="Proper rational function">proper rational function</a></dfn></dt> <dd>.</dd> <dt id="pythagorean_theorem"><dfn><a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a></dfn></dt> <dd>.</dd> <dt id="pythagorean_trigonometric_identity"><dfn><a href="/wiki/Pythagorean_trigonometric_identity" title="Pythagorean trigonometric identity">Pythagorean trigonometric identity</a></dfn></dt> <dd>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="Q">Q</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=16" title="Edit section: Q"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="quadratic_function"><dfn><a href="/wiki/Quadratic_function" title="Quadratic function">quadratic function</a></dfn></dt> <dd>In <a href="/wiki/Algebra" title="Algebra">algebra</a>, a <b>quadratic function</b>, a <b>quadratic polynomial</b>, a <b>polynomial of degree 2</b>, or simply a <b>quadratic</b>, is a <a href="/wiki/Polynomial_function" class="mw-redirect" title="Polynomial function">polynomial function</a> with one or more variables in which the highest-degree term is of the second degree. For example, a quadratic function in three variables <i>x</i>, <i>y,</i> and <i>z</i> contains exclusively terms <i>x</i><sup>2</sup>, <i>y</i><sup>2</sup>, <i>z</i><sup>2</sup>, <i>xy</i>, <i>xz</i>, <i>yz</i>, <i>x</i>, <i>y</i>, <i>z</i>, and a constant: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x,y,z)=ax^{2}+by^{2}+cz^{2}+dxy+exz+fyz+gx+hy+iz+j,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>c</mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>d</mi> <mi>x</mi> <mi>y</mi> <mo>+</mo> <mi>e</mi> <mi>x</mi> <mi>z</mi> <mo>+</mo> <mi>f</mi> <mi>y</mi> <mi>z</mi> <mo>+</mo> <mi>g</mi> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mi>y</mi> <mo>+</mo> <mi>i</mi> <mi>z</mi> <mo>+</mo> <mi>j</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x,y,z)=ax^{2}+by^{2}+cz^{2}+dxy+exz+fyz+gx+hy+iz+j,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27b2570145a686a65d4317f8e7e58c95213a7e39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:66.529ex; height:3.176ex;" alt="{\displaystyle f(x,y,z)=ax^{2}+by^{2}+cz^{2}+dxy+exz+fyz+gx+hy+iz+j,}"></span></dd></dl> with at least one of the <a href="/wiki/Coefficient" title="Coefficient">coefficients</a> <i>a, b, c, d, e,</i> or <i>f</i> of the second-degree terms being non-zero. A <i>univariate</i> (single-variable) quadratic function has the form<sup id="cite_ref-wolfram_82-0" class="reference"><a href="#cite_note-wolfram-82"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=ax^{2}+bx+c,\quad a\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mo>,</mo> <mspace width="1em" /> <mi>a</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=ax^{2}+bx+c,\quad a\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60f6deb5a9c814c726d2185ccaca925726f564d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.992ex; height:3.176ex;" alt="{\displaystyle f(x)=ax^{2}+bx+c,\quad a\neq 0}"></span></dd></dl> in the single variable <i>x</i>. The <a href="/wiki/Graph_of_a_function" title="Graph of a function">graph</a> of a univariate quadratic function is a <a href="/wiki/Parabola" title="Parabola">parabola</a> whose axis of symmetry is parallel to the <span class="texhtml"><i>y</i></span>-axis, as shown at right. If the quadratic function is set equal to zero, then the result is a <a href="/wiki/Quadratic_equation" title="Quadratic equation">quadratic equation</a>. The solutions to the univariate equation are called the <a href="/wiki/Root_of_a_function" class="mw-redirect" title="Root of a function">roots</a> of the univariate function. The bivariate case in terms of variables <i>x</i> and <i>y</i> has the form <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x,y)=ax^{2}+by^{2}+cxy+dx+ey+f\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mi>x</mi> <mi>y</mi> <mo>+</mo> <mi>d</mi> <mi>x</mi> <mo>+</mo> <mi>e</mi> <mi>y</mi> <mo>+</mo> <mi>f</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x,y)=ax^{2}+by^{2}+cxy+dx+ey+f\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc22169897f4341363e969b77360efb72bd277ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:40.676ex; height:3.176ex;" alt="{\displaystyle f(x,y)=ax^{2}+by^{2}+cxy+dx+ey+f\,\!}"></span></dd></dl> with at least one of <i>a, b, c</i> not equal to zero, and an equation setting this function equal to zero gives rise to a <a href="/wiki/Conic_section" title="Conic section">conic section</a> (a <a href="/wiki/Circle" title="Circle">circle</a> or other <a href="/wiki/Ellipse" title="Ellipse">ellipse</a>, a <a href="/wiki/Parabola" title="Parabola">parabola</a>, or a <a href="/wiki/Hyperbola" title="Hyperbola">hyperbola</a>). In general there can be an arbitrarily large number of variables, in which case the resulting <a href="/wiki/Surface_(geometry)" class="mw-redirect" title="Surface (geometry)">surface</a> is called a <a href="/wiki/Quadric" title="Quadric">quadric</a>, but the highest degree term must be of degree 2, such as <i>x</i><sup>2</sup>, <i>xy</i>, <i>yz</i>, etc.</dd> <dt id="quadratic_polynomial"><dfn><a href="/wiki/Quadratic_polynomial" class="mw-redirect" title="Quadratic polynomial">quadratic polynomial</a></dfn></dt> <dd>.</dd> <dt id="quotient_rule"><dfn><a href="/wiki/Quotient_rule" title="Quotient rule">quotient rule</a></dfn></dt> <dd>A formula for finding the derivative of a function that is the ratio of two functions.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="R">R</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=17" title="Edit section: R"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="radian"><dfn><a href="/wiki/Radian" title="Radian">radian</a></dfn></dt> <dd>Is the <a href="/wiki/International_System_of_Units" title="International System of Units">SI unit</a> for measuring <a href="/wiki/Angle" title="Angle">angles</a>, and is the standard unit of angular measure used in many areas of <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>. The length of an arc of a <a href="/wiki/Unit_circle" title="Unit circle">unit circle</a> is numerically equal to the measurement in radians of the <a href="/wiki/Angle" title="Angle">angle</a> that it <a href="https://en.wiktionary.org/wiki/subtend" class="extiw" title="wikt:subtend">subtends</a>; one radian is just under 57.3 <a href="/wiki/Degree_(angle)" title="Degree (angle)">degrees</a> (expansion at <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A072097" class="extiw" title="oeis:A072097">A072097</a></span>). The unit was formerly an <a href="/wiki/SI_supplementary_unit" class="mw-redirect" title="SI supplementary unit">SI supplementary unit</a>, but this category was abolished in 1995 and the radian is now considered an <a href="/wiki/SI_derived_unit" title="SI derived unit">SI derived unit</a>.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> Separately, the SI unit of <a href="/wiki/Solid_angle" title="Solid angle">solid angle</a> measurement is the <a href="/wiki/Steradian" title="Steradian">steradian</a> .</dd> <dt id="ratio_test"><dfn><a href="/wiki/Ratio_test" title="Ratio test">ratio test</a></dfn></dt> <dd>.</dd> <dt id="reciprocal_function"><dfn><a href="/wiki/Reciprocal_function" class="mw-redirect" title="Reciprocal function">reciprocal function</a></dfn></dt> <dd>.</dd> <dt id="reciprocal_rule"><dfn><a href="/wiki/Reciprocal_rule" title="Reciprocal rule">reciprocal rule</a></dfn></dt> <dd>.</dd> <dt id="riemann_integral"><dfn><a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a></dfn></dt> <dd>.</dd> <dt id="related_rates"><dfn><a href="/wiki/Related_rates" title="Related rates">related rates</a></dfn></dt> <dd>.</dd> <dt id="removable_discontinuity"><dfn><a href="/wiki/Classification_of_discontinuities#Removable_discontinuity" title="Classification of discontinuities">removable discontinuity</a></dfn></dt> <dd>.</dd> <dt id="rolle's_theorem"><dfn><a href="/wiki/Rolle%27s_theorem" title="Rolle's theorem">Rolle's theorem</a></dfn></dt> <dd>.</dd> <dt id="root_test"><dfn><a href="/wiki/Root_test" title="Root test">root test</a></dfn></dt> <dd>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="S">S</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=18" title="Edit section: S"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="scalar"><dfn><a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">scalar</a></dfn></dt> <dd>.</dd> <dt id="secant_line"><dfn><a href="/wiki/Secant_line" title="Secant line">secant line</a></dfn></dt> <dd>.</dd> <dt id="second-degree_polynomial"><dfn><a href="/wiki/Second-degree_polynomial" class="mw-redirect" title="Second-degree polynomial">second-degree polynomial</a></dfn></dt> <dd>.</dd> <dt id="second_derivative"><dfn><a href="/wiki/Second_derivative" title="Second derivative">second derivative</a></dfn></dt> <dd>.</dd> <dt id="second_derivative_test"><dfn><a href="/wiki/Second_derivative#Second_derivative_test" title="Second derivative">second derivative test</a></dfn></dt> <dd>.</dd> <dt id="second-order_differential_equation"><dfn><a href="/wiki/Differential_equation#Equation_order" title="Differential equation">second-order differential equation</a></dfn></dt> <dd>.</dd> <dt id="series"><dfn><a href="/wiki/Series_(mathematics)" title="Series (mathematics)">series</a></dfn></dt> <dd>.</dd> <dt id="shell_integration"><dfn><a href="/wiki/Shell_integration" title="Shell integration">shell integration</a></dfn></dt> <dd>.</dd> <dt id="simpson's_rule"><dfn><a href="/wiki/Simpson%27s_rule" title="Simpson's rule">Simpson's rule</a></dfn></dt> <dd>.</dd> <dt id="sine"><dfn><a href="/wiki/Sine" class="mw-redirect" title="Sine">sine</a></dfn></dt> <dd>.</dd> <dt id="sine_wave"><dfn><a href="/wiki/Sine_wave" title="Sine wave">sine wave</a></dfn></dt> <dd>.</dd> <dt id="slope_field"><dfn><a href="/wiki/Slope_field" title="Slope field">slope field</a></dfn></dt> <dd>.</dd> <dt id="squeeze_theorem"><dfn><a href="/wiki/Squeeze_theorem" title="Squeeze theorem">squeeze theorem</a></dfn></dt> <dd>.</dd> <dt id="sum_rule_in_differentiation"><dfn><a href="/wiki/Sum_rule_in_differentiation" class="mw-redirect" title="Sum rule in differentiation">sum rule in differentiation</a></dfn></dt> <dd>.</dd> <dt id="sum_rule_in_integration"><dfn><a href="/wiki/Sum_rule_in_integration" class="mw-redirect" title="Sum rule in integration">sum rule in integration</a></dfn></dt> <dd>.</dd> <dt id="summation"><dfn><a href="/wiki/Summation" title="Summation">summation</a></dfn></dt> <dd>.</dd> <dt id="supplementary_angle"><dfn><a href="/wiki/Supplementary_angle" class="mw-redirect" title="Supplementary angle">supplementary angle</a></dfn></dt> <dd>.</dd> <dt id="surface_area"><dfn><a href="/wiki/Surface_area" title="Surface area">surface area</a></dfn></dt> <dd>.</dd> <dt id="system_of_linear_equations"><dfn><a href="/wiki/System_of_linear_equations" title="System of linear equations">system of linear equations</a></dfn></dt> <dd>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="T">T</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=19" title="Edit section: T"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="table_of_integrals"><dfn><a href="/wiki/List_of_integrals" class="mw-redirect" title="List of integrals">table of integrals</a></dfn></dt> <dd>.</dd> <dt id="taylor_series"><dfn><a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a></dfn></dt> <dd>.</dd> <dt id="taylor's_theorem"><dfn><a href="/wiki/Taylor%27s_theorem" title="Taylor's theorem">Taylor's theorem</a></dfn></dt> <dd>.</dd> <dt id="tangent"><dfn><a href="/wiki/Tangent" title="Tangent">tangent</a></dfn></dt> <dd>.</dd> <dt id="third-degree_polynomial"><dfn><a href="/wiki/Degree_of_a_polynomial" title="Degree of a polynomial">third-degree polynomial</a></dfn></dt> <dd>.</dd> <dt id="third_derivative"><dfn><a href="/wiki/Third_derivative" title="Third derivative">third derivative</a></dfn></dt> <dd>.</dd> <dt id="toroid"><dfn><a href="/wiki/Toroid" title="Toroid">toroid</a></dfn></dt> <dd>.</dd> <dt id="total_differential"><dfn><a href="/wiki/Total_differential" class="mw-redirect" title="Total differential">total differential</a></dfn></dt> <dd>.</dd> <dt id="trigonometric_functions"><dfn><a href="/wiki/Trigonometric_functions" title="Trigonometric functions">trigonometric functions</a></dfn></dt> <dd>.</dd> <dt id="trigonometric_identities"><dfn><a href="/wiki/List_of_trigonometric_identities" title="List of trigonometric identities">trigonometric identities</a></dfn></dt> <dd>.</dd> <dt id="trigonometric_integral"><dfn><a href="/wiki/Trigonometric_integral" title="Trigonometric integral">trigonometric integral</a></dfn></dt> <dd>.</dd> <dt id="trigonometric_substitution"><dfn><a href="/wiki/Trigonometric_substitution" title="Trigonometric substitution">trigonometric substitution</a></dfn></dt> <dd>.</dd> <dt id="trigonometry"><dfn><a href="/wiki/Trigonometry" title="Trigonometry">trigonometry</a></dfn></dt> <dd>.</dd> <dt id="triple_integral"><dfn><a href="/wiki/Triple_integral" class="mw-redirect" title="Triple integral">triple integral</a></dfn></dt> <dd>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="U">U</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=20" title="Edit section: U"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="upper_bound"><dfn><a href="/wiki/Upper_and_lower_bounds#Bounds_of_functions" title="Upper and lower bounds">upper bound</a></dfn></dt> <dd>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="V">V</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=21" title="Edit section: V"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="variable"><dfn><a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a></dfn></dt> <dd>.</dd> <dt id="vector"><dfn><a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">vector</a></dfn></dt> <dd>.</dd> <dt id="vector_calculus"><dfn><a href="/wiki/Vector_calculus" title="Vector calculus">vector calculus</a></dfn></dt> <dd>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="W">W</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=22" title="Edit section: W"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="washer"><dfn><a href="/wiki/Disc_integration#Washer_method" title="Disc integration">washer</a></dfn></dt> <dd>.</dd> <dt id="washer_method"><dfn><a href="/wiki/Disc_integration#Washer_method" title="Disc integration">washer method</a></dfn></dt> <dd>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=23" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Outline_of_calculus" title="Outline of calculus">Outline of calculus</a></li> <li><a href="/wiki/Glossary_of_areas_of_mathematics" title="Glossary of areas of mathematics">Glossary of areas of mathematics</a></li> <li><a href="/wiki/Glossary_of_astronomy" title="Glossary of astronomy">Glossary of astronomy</a></li> <li><a href="/wiki/Glossary_of_biology" title="Glossary of biology">Glossary of biology</a></li> <li><a href="/wiki/Glossary_of_botanical_terms" title="Glossary of botanical terms">Glossary of botany</a></li> <li><a href="/wiki/Glossary_of_chemistry_terms" title="Glossary of chemistry terms">Glossary of chemistry</a></li> <li><a href="/wiki/Glossary_of_ecology" title="Glossary of ecology">Glossary of ecology</a></li> <li><a href="/wiki/Glossary_of_engineering" title="Glossary of engineering">Glossary of engineering</a></li> <li><a href="/wiki/Glossary_of_physics" title="Glossary of physics">Glossary of physics</a></li> <li><a href="/wiki/Glossary_of_probability_and_statistics" title="Glossary of probability and statistics">Glossary of probability and statistics</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=24" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFStewart2008" class="citation book cs1"><a href="/wiki/James_Stewart_(mathematician)" title="James Stewart (mathematician)">Stewart, James</a> (2008). <a rel="nofollow" class="external text" href="https://archive.org/details/calculusearlytra00stew_1"><i>Calculus: Early Transcendentals</i></a> (6th ed.). <a href="/wiki/Brooks/Cole" class="mw-redirect" title="Brooks/Cole">Brooks/Cole</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-495-01166-8" title="Special:BookSources/978-0-495-01166-8"><bdi>978-0-495-01166-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus%3A+Early+Transcendentals&rft.edition=6th&rft.pub=Brooks%2FCole&rft.date=2008&rft.isbn=978-0-495-01166-8&rft.aulast=Stewart&rft.aufirst=James&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcalculusearlytra00stew_1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarsonEdwards2009" class="citation book cs1"><a href="/wiki/Ron_Larson_(mathematician)" class="mw-redirect" title="Ron Larson (mathematician)">Larson, Ron</a>; Edwards, Bruce H. (2009). <i>Calculus</i> (9th ed.). <a href="/wiki/Brooks/Cole" class="mw-redirect" title="Brooks/Cole">Brooks/Cole</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-547-16702-2" title="Special:BookSources/978-0-547-16702-2"><bdi>978-0-547-16702-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus&rft.edition=9th&rft.pub=Brooks%2FCole&rft.date=2009&rft.isbn=978-0-547-16702-2&rft.aulast=Larson&rft.aufirst=Ron&rft.au=Edwards%2C+Bruce+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://web.archive.org/web/*/http://rowdy.msudenver.edu/~talmanl/PDFs/APCalculus/OnAsymptotes.pdf">"Asymptotes" by Louis A. Talman</a></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliamson1899" class="citation cs2">Williamson, Benjamin (1899), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=znsXAAAAYAAJ&pg=241">"Asymptotes"</a>, <i>An elementary treatise on the differential calculus</i></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Asymptotes&rft.btitle=An+elementary+treatise+on+the+differential+calculus&rft.date=1899&rft.aulast=Williamson&rft.aufirst=Benjamin&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DznsXAAAAYAAJ%26pg%3D241&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNunemacher1999" class="citation cs2">Nunemacher, Jeffrey (1999), "Asymptotes, Cubic Curves, and the Projective Plane", <i>Mathematics Magazine</i>, <b>72</b> (3): 183–192, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.502.72">10.1.1.502.72</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2690881">10.2307/2690881</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2690881">2690881</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+Magazine&rft.atitle=Asymptotes%2C+Cubic+Curves%2C+and+the+Projective+Plane&rft.volume=72&rft.issue=3&rft.pages=183-192&rft.date=1999&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.502.72%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2690881%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2690881&rft.aulast=Nunemacher&rft.aufirst=Jeffrey&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeidinger2010" class="citation journal cs1">Neidinger, Richard D. (2010). <a rel="nofollow" class="external text" href="http://academics.davidson.edu/math/neidinger/SIAMRev74362.pdf">"Introduction to Automatic Differentiation and MATLAB Object-Oriented Programming"</a> <span class="cs1-format">(PDF)</span>. <i>SIAM Review</i>. <b>52</b> (3): 545–563. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2F080743627">10.1137/080743627</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17134969">17134969</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=SIAM+Review&rft.atitle=Introduction+to+Automatic+Differentiation+and+MATLAB+Object-Oriented+Programming&rft.volume=52&rft.issue=3&rft.pages=545-563&rft.date=2010&rft_id=info%3Adoi%2F10.1137%2F080743627&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17134969%23id-name%3DS2CID&rft.aulast=Neidinger&rft.aufirst=Richard+D.&rft_id=http%3A%2F%2Facademics.davidson.edu%2Fmath%2Fneidinger%2FSIAMRev74362.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-baydin2018automatic-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-baydin2018automatic_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaydinPearlmutterRadulSiskind2018" class="citation journal cs1">Baydin, Atilim Gunes; Pearlmutter, Barak; Radul, Alexey Andreyevich; Siskind, Jeffrey (2018). <a rel="nofollow" class="external text" href="http://jmlr.org/papers/v18/17-468.html">"Automatic differentiation in machine learning: a survey"</a>. <i>Journal of Machine Learning Research</i>. <b>18</b>: 1–43.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Machine+Learning+Research&rft.atitle=Automatic+differentiation+in+machine+learning%3A+a+survey&rft.volume=18&rft.pages=1-43&rft.date=2018&rft.aulast=Baydin&rft.aufirst=Atilim+Gunes&rft.au=Pearlmutter%2C+Barak&rft.au=Radul%2C+Alexey+Andreyevich&rft.au=Siskind%2C+Jeffrey&rft_id=http%3A%2F%2Fjmlr.org%2Fpapers%2Fv18%2F17-468.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-oxdic-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-oxdic_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130430073245/http://oxforddictionaries.com/us/definition/american_english/calculus">"Calculus"</a>. <i>OxfordDictionaries</i>. Archived from <a rel="nofollow" class="external text" href="http://www.oxforddictionaries.com/us/definition/american_english/calculus">the original</a> on April 30, 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">15 September</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=OxfordDictionaries&rft.atitle=Calculus&rft_id=http%3A%2F%2Fwww.oxforddictionaries.com%2Fus%2Fdefinition%2Famerican_english%2Fcalculus&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEves1991" class="citation journal cs1">Eves, Howard (March 1991). "Two Surprising Theorems on Cavalieri Congruence". <i>The College Mathematics Journal</i>. <b>22</b> (2): 118–124. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F07468342.1991.11973367">10.1080/07468342.1991.11973367</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+College+Mathematics+Journal&rft.atitle=Two+Surprising+Theorems+on+Cavalieri+Congruence&rft.volume=22&rft.issue=2&rft.pages=118-124&rft.date=1991-03&rft_id=info%3Adoi%2F10.1080%2F07468342.1991.11973367&rft.aulast=Eves&rft.aufirst=Howard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Hall_1909-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hall_1909_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHallFrink1909" class="citation book cs1 cs1-prop-location-test cs1-prop-long-vol">Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Chapter II. The Acute Angle [10] Functions of complementary angles". Written at Ann Arbor, Michigan, USA. <a rel="nofollow" class="external text" href="https://archive.org/stream/planetrigonometr00hallrich#page/n26/mode/1up"><i>Trigonometry</i></a>. Vol. Part I: Plane Trigonometry. New York, USA: <a href="/wiki/Henry_Holt_and_Company" title="Henry Holt and Company">Henry Holt and Company</a> / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA. pp. 11–12<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-08-12</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+II.+The+Acute+Angle+%5B10%5D+Functions+of+complementary+angles&rft.btitle=Trigonometry&rft.place=New+York%2C+USA&rft.pages=11-12&rft.pub=Henry+Holt+and+Company+%2F+Norwood+Press+%2F+J.+S.+Cushing+Co.+-+Berwick+%26+Smith+Co.%2C+Norwood%2C+Massachusetts%2C+USA&rft.date=1909-01&rft.aulast=Hall&rft.aufirst=Arthur+Graham&rft.au=Frink%2C+Fred+Goodrich&rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fplanetrigonometr00hallrich%23page%2Fn26%2Fmode%2F1up&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Aufmann_Nation_2014-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-Aufmann_Nation_2014_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAufmannNation2014" class="citation book cs1">Aufmann, Richard; Nation, Richard (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JEDAAgAAQBAJ&pg=PA528"><i>Algebra and Trigonometry</i></a> (8 ed.). <a href="/wiki/Cengage_Learning" class="mw-redirect" title="Cengage Learning">Cengage Learning</a>. p. 528. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-128596583-3" title="Special:BookSources/978-128596583-3"><bdi>978-128596583-3</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-07-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebra+and+Trigonometry&rft.pages=528&rft.edition=8&rft.pub=Cengage+Learning&rft.date=2014&rft.isbn=978-128596583-3&rft.aulast=Aufmann&rft.aufirst=Richard&rft.au=Nation%2C+Richard&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJEDAAgAAQBAJ%26pg%3DPA528&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Bales_2012-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bales_2012_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBales2012" class="citation web cs1">Bales, John W. (2012) [2001]. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170730201433/http://jwbales.home.mindspring.com/precal/part5/part5.1.html">"5.1 The Elementary Identities"</a>. <i>Precalculus</i>. Archived from <a rel="nofollow" class="external text" href="http://jwbales.home.mindspring.com/precal/part5/part5.1.html">the original</a> on 2017-07-30<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-07-30</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Precalculus&rft.atitle=5.1+The+Elementary+Identities&rft.date=2012&rft.aulast=Bales&rft.aufirst=John+W.&rft_id=http%3A%2F%2Fjwbales.home.mindspring.com%2Fprecal%2Fpart5%2Fpart5.1.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Gunter_1620-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gunter_1620_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGunter1620" class="citation book cs1"><a href="/wiki/Edmund_Gunter" title="Edmund Gunter">Gunter, Edmund</a> (1620). <i>Canon triangulorum</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Canon+triangulorum&rft.date=1620&rft.aulast=Gunter&rft.aufirst=Edmund&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Roegel_2010-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-Roegel_2010_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoegel2010" class="citation web cs1">Roegel, Denis, ed. (2010-12-06). <a rel="nofollow" class="external text" href="https://hal.inria.fr/inria-00543938/document">"A reconstruction of Gunter's Canon triangulorum (1620)"</a> (Research report). HAL. inria-00543938. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170728192238/https://hal.inria.fr/inria-00543938/document">Archived</a> from the original on 2017-07-28<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-07-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=A+reconstruction+of+Gunter%27s+Canon+triangulorum+%281620%29&rft.pub=HAL&rft.date=2010-12-06&rft_id=https%3A%2F%2Fhal.inria.fr%2Finria-00543938%2Fdocument&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStewart2008" class="citation book cs1"><a href="/wiki/James_Stewart_(mathematician)" title="James Stewart (mathematician)">Stewart, James</a> (2008). <a rel="nofollow" class="external text" href="https://archive.org/details/calculusearlytra00stew_1"><i>Calculus: Early Transcendentals</i></a> (6th ed.). <a href="/wiki/Brooks/Cole" class="mw-redirect" title="Brooks/Cole">Brooks/Cole</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-495-01166-8" title="Special:BookSources/978-0-495-01166-8"><bdi>978-0-495-01166-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus%3A+Early+Transcendentals&rft.edition=6th&rft.pub=Brooks%2FCole&rft.date=2008&rft.isbn=978-0-495-01166-8&rft.aulast=Stewart&rft.aufirst=James&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcalculusearlytra00stew_1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarsonEdwards2009" class="citation book cs1"><a href="/wiki/Ron_Larson_(mathematician)" class="mw-redirect" title="Ron Larson (mathematician)">Larson, Ron</a>; Edwards, Bruce H. (2009). <i>Calculus</i> (9th ed.). <a href="/wiki/Brooks/Cole" class="mw-redirect" title="Brooks/Cole">Brooks/Cole</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-547-16702-2" title="Special:BookSources/978-0-547-16702-2"><bdi>978-0-547-16702-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus&rft.edition=9th&rft.pub=Brooks%2FCole&rft.date=2009&rft.isbn=978-0-547-16702-2&rft.aulast=Larson&rft.aufirst=Ron&rft.au=Edwards%2C+Bruce+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Stalker-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-Stalker_18-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStalker1998" class="citation book cs1">Stalker, John (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yl3GIXd3dFIC&q=%22calculus+of+residues%22&pg=PP12"><i>Complex Analysis: Fundamentals of the Classical Theory of Functions</i></a>. Springer. p. 77. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8176-4038-X" title="Special:BookSources/0-8176-4038-X"><bdi>0-8176-4038-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Complex+Analysis%3A+Fundamentals+of+the+Classical+Theory+of+Functions&rft.pages=77&rft.pub=Springer&rft.date=1998&rft.isbn=0-8176-4038-X&rft.aulast=Stalker&rft.aufirst=John&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dyl3GIXd3dFIC%26q%3D%2522calculus%2Bof%2Bresidues%2522%26pg%3DPP12&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Bak-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bak_19-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBakNewman1997" class="citation book cs1">Bak, Joseph; Newman, Donald J. (1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JX2YSgfZwbYC&q=%22contour+integral%22&pg=PA130">"Chapters 11 & 12"</a>. <i>Complex Analysis</i>. Springer. pp. 130–156. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-94756-6" title="Special:BookSources/0-387-94756-6"><bdi>0-387-94756-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapters+11+%26+12&rft.btitle=Complex+Analysis&rft.pages=130-156&rft.pub=Springer&rft.date=1997&rft.isbn=0-387-94756-6&rft.aulast=Bak&rft.aufirst=Joseph&rft.au=Newman%2C+Donald+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJX2YSgfZwbYC%26q%3D%2522contour%2Bintegral%2522%26pg%3DPA130&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Krantz-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-Krantz_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrantz1999" class="citation book cs1">Krantz, Steven George (1999). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=aYU2AdF_0dIC&q=Calculus++Residues+inauthor:krantz&pg=PT13">"Chapter 2"</a>. <i>Handbook of Complex Variables</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8176-4011-8" title="Special:BookSources/0-8176-4011-8"><bdi>0-8176-4011-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+2&rft.btitle=Handbook+of+Complex+Variables&rft.pub=Springer&rft.date=1999&rft.isbn=0-8176-4011-8&rft.aulast=Krantz&rft.aufirst=Steven+George&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DaYU2AdF_0dIC%26q%3DCalculus%2B%2BResidues%2Binauthor%3Akrantz%26pg%3DPT13&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.stat.cmu.edu/~larry/=stat705/Lecture2.pdf">"Lecture Notes 2"</a> <span class="cs1-format">(PDF)</span>. <i>www.stat.cmu.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">3 March</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.stat.cmu.edu&rft.atitle=Lecture+Notes+2&rft_id=http%3A%2F%2Fwww.stat.cmu.edu%2F~larry%2F%3Dstat705%2FLecture2.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCramer,_Gabriel1750" class="citation web cs1 cs1-prop-foreign-lang-source">Cramer, Gabriel (1750). <a rel="nofollow" class="external text" href="https://www.europeana.eu/resolve/record/03486/E71FE3799CEC1F8E2B76962513829D2E36B63015">"Introduction à l'Analyse des lignes Courbes algébriques"</a> (in French). Geneva: Europeana. pp. 656–659<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-05-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Introduction+%C3%A0+l%27Analyse+des+lignes+Courbes+alg%C3%A9briques&rft.place=Geneva&rft.pages=656-659&rft.pub=Europeana&rft.date=1750&rft.au=Cramer%2C+Gabriel&rft_id=https%3A%2F%2Fwww.europeana.eu%2Fresolve%2Frecord%2F03486%2FE71FE3799CEC1F8E2B76962513829D2E36B63015&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKosinski2001" class="citation journal cs1">Kosinski, A. A. (2001). "Cramer's Rule is due to Cramer". <i>Mathematics Magazine</i>. <b>74</b> (4): 310–312. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2691101">10.2307/2691101</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2691101">2691101</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+Magazine&rft.atitle=Cramer%27s+Rule+is+due+to+Cramer&rft.volume=74&rft.issue=4&rft.pages=310-312&rft.date=2001&rft_id=info%3Adoi%2F10.2307%2F2691101&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2691101%23id-name%3DJSTOR&rft.aulast=Kosinski&rft.aufirst=A.+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMacLaurin1748" class="citation book cs1">MacLaurin, Colin (1748). <a rel="nofollow" class="external text" href="https://archive.org/details/atreatisealgebr03maclgoog"><i>A Treatise of Algebra, in Three Parts</i></a>. Printed for A. Millar & J. Nourse.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Treatise+of+Algebra%2C+in+Three+Parts.&rft.pub=Printed+for+A.+Millar+%26+J.+Nourse&rft.date=1748&rft.aulast=MacLaurin&rft.aufirst=Colin&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fatreatisealgebr03maclgoog&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoyer1968" class="citation book cs1"><a href="/wiki/Carl_Benjamin_Boyer" title="Carl Benjamin Boyer">Boyer, Carl B.</a> (1968). <i>A History of Mathematics</i> (2nd ed.). Wiley. p. 431.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+History+of+Mathematics&rft.pages=431&rft.edition=2nd&rft.pub=Wiley&rft.date=1968&rft.aulast=Boyer&rft.aufirst=Carl+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatz2004" class="citation book cs1">Katz, Victor (2004). <i>A History of Mathematics</i> (Brief ed.). Pearson Education. pp. 378–379.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+History+of+Mathematics&rft.pages=378-379&rft.edition=Brief&rft.pub=Pearson+Education&rft.date=2004&rft.aulast=Katz&rft.aufirst=Victor&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHedman1999" class="citation journal cs1">Hedman, Bruce A. (1999). <a rel="nofollow" class="external text" href="http://professorhedman.com/Cramers.Rule.pdf">"An Earlier Date for "Cramer's Rule"<span class="cs1-kern-right"></span>"</a> <span class="cs1-format">(PDF)</span>. <i>Historia Mathematica</i>. <b>26</b> (4): 365–368. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fhmat.1999.2247">10.1006/hmat.1999.2247</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121056843">121056843</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Historia+Mathematica&rft.atitle=An+Earlier+Date+for+%22Cramer%27s+Rule%22&rft.volume=26&rft.issue=4&rft.pages=365-368&rft.date=1999&rft_id=info%3Adoi%2F10.1006%2Fhmat.1999.2247&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121056843%23id-name%3DS2CID&rft.aulast=Hedman&rft.aufirst=Bruce+A.&rft_id=http%3A%2F%2Fprofessorhedman.com%2FCramers.Rule.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStewart2008" class="citation book cs1"><a href="/wiki/James_Stewart_(mathematician)" title="James Stewart (mathematician)">Stewart, James</a> (2008). <a rel="nofollow" class="external text" href="https://archive.org/details/calculusearlytra00stew_1"><i>Calculus: Early Transcendentals</i></a> (6th ed.). <a href="/wiki/Brooks/Cole" class="mw-redirect" title="Brooks/Cole">Brooks/Cole</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-495-01166-8" title="Special:BookSources/978-0-495-01166-8"><bdi>978-0-495-01166-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus%3A+Early+Transcendentals&rft.edition=6th&rft.pub=Brooks%2FCole&rft.date=2008&rft.isbn=978-0-495-01166-8&rft.aulast=Stewart&rft.aufirst=James&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcalculusearlytra00stew_1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarsonEdwards2009" class="citation book cs1"><a href="/wiki/Ron_Larson_(mathematician)" class="mw-redirect" title="Ron Larson (mathematician)">Larson, Ron</a>; Edwards, Bruce H. (2009). <i>Calculus</i> (9th ed.). <a href="/wiki/Brooks/Cole" class="mw-redirect" title="Brooks/Cole">Brooks/Cole</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-547-16702-2" title="Special:BookSources/978-0-547-16702-2"><bdi>978-0-547-16702-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus&rft.edition=9th&rft.pub=Brooks%2FCole&rft.date=2009&rft.isbn=978-0-547-16702-2&rft.aulast=Larson&rft.aufirst=Ron&rft.au=Edwards%2C+Bruce+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text">Douglas C. Giancoli (2000). [<i>Physics for Scientists and Engineers with Modern Physics (3rd Edition)</i>]. Prentice Hall. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-13-021517-1" title="Special:BookSources/0-13-021517-1">0-13-021517-1</a></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.merriam-webster.com/dictionary/differential%20calculus">"Definition of DIFFERENTIAL CALCULUS"</a>. <i>www.merriam-webster.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2018-09-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.merriam-webster.com&rft.atitle=Definition+of+DIFFERENTIAL+CALCULUS&rft_id=https%3A%2F%2Fwww.merriam-webster.com%2Fdictionary%2Fdifferential%2520calculus&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.merriam-webster.com/dictionary/integral%20calculus">"Integral Calculus - Definition of Integral calculus by Merriam-Webster"</a>. <i>www.merriam-webster.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2018-05-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.merriam-webster.com&rft.atitle=Integral+Calculus+-+Definition+of+Integral+calculus+by+Merriam-Webster&rft_id=https%3A%2F%2Fwww.merriam-webster.com%2Fdictionary%2Fintegral%2520calculus&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><i>Démonstration d’un théorème d’Abel.</i> Journal de mathématiques pures et appliquées 2nd series, tome 7 (1862), <a rel="nofollow" class="external text" href="http://portail.mathdoc.fr/JMPA/afficher_notice.php?id=JMPA_1862_2_7_A43_0">p. 253-255</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110721011902/http://portail.mathdoc.fr/JMPA/afficher_notice.php?id=JMPA_1862_2_7_A43_0">Archived</a> 2011-07-21 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</span> </li> <li id="cite_note-Stewart-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-Stewart_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStewart2008" class="citation book cs1"><a href="/wiki/James_Stewart_(mathematician)" title="James Stewart (mathematician)">Stewart, James</a> (2008). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/calculusearlytra00stew_1"><i>Calculus: Early Transcendentals</i></a></span> (6th ed.). Brooks Cole Cengage Learning. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-495-01166-8" title="Special:BookSources/978-0-495-01166-8"><bdi>978-0-495-01166-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus%3A+Early+Transcendentals&rft.edition=6th&rft.pub=Brooks+Cole+Cengage+Learning&rft.date=2008&rft.isbn=978-0-495-01166-8&rft.aulast=Stewart&rft.aufirst=James&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcalculusearlytra00stew_1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><a href="/wiki/Oxford_English_Dictionary" title="Oxford English Dictionary">Oxford English Dictionary</a>, 2nd ed.: <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131006101640/http://oxforddictionaries.com/definition/english/natural-logarithm">natural logarithm</a></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><a href="/wiki/Encyclopedic_Dictionary_of_Mathematics" title="Encyclopedic Dictionary of Mathematics">Encyclopedic Dictionary of Mathematics</a> 142.D</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><a href="#CITEREFButcher2003">Butcher 2003</a>, p. 45; <a href="#CITEREFHairerNørsettWanner1993">Hairer, Nørsett & Wanner 1993</a>, p. 35</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStewart2008" class="citation book cs1"><a href="/wiki/James_Stewart_(mathematician)" title="James Stewart (mathematician)">Stewart, James</a> (2008). <a rel="nofollow" class="external text" href="https://archive.org/details/calculusearlytra00stew_1"><i>Calculus: Early Transcendentals</i></a> (6th ed.). <a href="/wiki/Brooks/Cole" class="mw-redirect" title="Brooks/Cole">Brooks/Cole</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-495-01166-8" title="Special:BookSources/978-0-495-01166-8"><bdi>978-0-495-01166-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus%3A+Early+Transcendentals&rft.edition=6th&rft.pub=Brooks%2FCole&rft.date=2008&rft.isbn=978-0-495-01166-8&rft.aulast=Stewart&rft.aufirst=James&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcalculusearlytra00stew_1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarsonEdwards2009" class="citation book cs1"><a href="/wiki/Ron_Larson_(mathematician)" class="mw-redirect" title="Ron Larson (mathematician)">Larson, Ron</a>; Edwards, Bruce H. (2009). <i>Calculus</i> (9th ed.). <a href="/wiki/Brooks/Cole" class="mw-redirect" title="Brooks/Cole">Brooks/Cole</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-547-16702-2" title="Special:BookSources/978-0-547-16702-2"><bdi>978-0-547-16702-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus&rft.edition=9th&rft.pub=Brooks%2FCole&rft.date=2009&rft.isbn=978-0-547-16702-2&rft.aulast=Larson&rft.aufirst=Ron&rft.au=Edwards%2C+Bruce+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomasWeirHass2010" class="citation book cs1"><a href="/wiki/George_B._Thomas" title="George B. Thomas">Thomas, George B.</a>; Weir, Maurice D.; <a href="/wiki/Joel_Hass" title="Joel Hass">Hass, Joel</a> (2010). <i>Thomas' Calculus: Early Transcendentals</i> (12th ed.). <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-321-58876-0" title="Special:BookSources/978-0-321-58876-0"><bdi>978-0-321-58876-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Thomas%27+Calculus%3A+Early+Transcendentals&rft.edition=12th&rft.pub=Addison-Wesley&rft.date=2010&rft.isbn=978-0-321-58876-0&rft.aulast=Thomas&rft.aufirst=George+B.&rft.au=Weir%2C+Maurice+D.&rft.au=Hass%2C+Joel&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text">(<a href="#CITEREFArbogast1800">Arbogast 1800</a>).</span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text">According to <a href="#CITEREFCraik2005">Craik (2005</a>, pp. 120–122): see also the analysis of Arbogast's work by <a href="#CITEREFJohnson2002">Johnson (2002</a>, p. 230).</span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text">William F. Kern, James R. Bland, <i>Solid Mensuration with proofs</i>, 1938, p. 67</span> </li> <li id="cite_note-MacLane-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-MacLane_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMacLaneBirkhoff1967" class="citation book cs1"><a href="/wiki/Saunders_MacLane" class="mw-redirect" title="Saunders MacLane">MacLane, Saunders</a>; <a href="/wiki/Garrett_Birkhoff" title="Garrett Birkhoff">Birkhoff, Garrett</a> (1967). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/algebra00macl"><i>Algebra</i></a></span> (First ed.). New York: Macmillan. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/algebra00macl/page/1">1–13</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebra&rft.place=New+York&rft.pages=1-13&rft.edition=First&rft.pub=Macmillan&rft.date=1967&rft.aulast=MacLane&rft.aufirst=Saunders&rft.au=Birkhoff%2C+Garrett&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Falgebra00macl&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpivak1980" class="citation cs2">Spivak, Michael (1980), <i>Calculus</i> (2nd ed.), Houston, Texas: Publish or Perish Inc.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus&rft.place=Houston%2C+Texas&rft.edition=2nd&rft.pub=Publish+or+Perish+Inc.&rft.date=1980&rft.aulast=Spivak&rft.aufirst=Michael&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOlver2000" class="citation book cs1">Olver, Peter J. (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=sI2bAxgLMXYC&pg=PA318"><i>Applications of Lie Groups to Differential Equations</i></a>. Springer. pp. 318–319. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780387950006" title="Special:BookSources/9780387950006"><bdi>9780387950006</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Applications+of+Lie+Groups+to+Differential+Equations&rft.pages=318-319&rft.pub=Springer&rft.date=2000&rft.isbn=9780387950006&rft.aulast=Olver&rft.aufirst=Peter+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DsI2bAxgLMXYC%26pg%3DPA318&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStewart2008" class="citation book cs1"><a href="/wiki/James_Stewart_(mathematician)" title="James Stewart (mathematician)">Stewart, James</a> (2008). <a rel="nofollow" class="external text" href="https://archive.org/details/calculusearlytra00stew_1"><i>Calculus: Early Transcendentals</i></a> (6th ed.). <a href="/wiki/Brooks/Cole" class="mw-redirect" title="Brooks/Cole">Brooks/Cole</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-495-01166-8" title="Special:BookSources/978-0-495-01166-8"><bdi>978-0-495-01166-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus%3A+Early+Transcendentals&rft.edition=6th&rft.pub=Brooks%2FCole&rft.date=2008&rft.isbn=978-0-495-01166-8&rft.aulast=Stewart&rft.aufirst=James&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcalculusearlytra00stew_1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarsonEdwards2009" class="citation book cs1"><a href="/wiki/Ron_Larson_(mathematician)" class="mw-redirect" title="Ron Larson (mathematician)">Larson, Ron</a>; Edwards, Bruce H. (2009). <i>Calculus</i> (9th ed.). <a href="/wiki/Brooks/Cole" class="mw-redirect" title="Brooks/Cole">Brooks/Cole</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-547-16702-2" title="Special:BookSources/978-0-547-16702-2"><bdi>978-0-547-16702-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus&rft.edition=9th&rft.pub=Brooks%2FCole&rft.date=2009&rft.isbn=978-0-547-16702-2&rft.aulast=Larson&rft.aufirst=Ron&rft.au=Edwards%2C+Bruce+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomasWeirHass2010" class="citation book cs1"><a href="/wiki/George_B._Thomas" title="George B. Thomas">Thomas, George B.</a>; Weir, Maurice D.; <a href="/wiki/Joel_Hass" title="Joel Hass">Hass, Joel</a> (2010). <i>Thomas' Calculus: Early Transcendentals</i> (12th ed.). <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-321-58876-0" title="Special:BookSources/978-0-321-58876-0"><bdi>978-0-321-58876-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Thomas%27+Calculus%3A+Early+Transcendentals&rft.edition=12th&rft.pub=Addison-Wesley&rft.date=2010&rft.isbn=978-0-321-58876-0&rft.aulast=Thomas&rft.aufirst=George+B.&rft.au=Weir%2C+Maurice+D.&rft.au=Hass%2C+Joel&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStewart2008" class="citation book cs1"><a href="/wiki/James_Stewart_(mathematician)" title="James Stewart (mathematician)">Stewart, James</a> (2008). <a rel="nofollow" class="external text" href="https://archive.org/details/calculusearlytra00stew_1"><i>Calculus: Early Transcendentals</i></a> (6th ed.). <a href="/wiki/Brooks/Cole" class="mw-redirect" title="Brooks/Cole">Brooks/Cole</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-495-01166-8" title="Special:BookSources/978-0-495-01166-8"><bdi>978-0-495-01166-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus%3A+Early+Transcendentals&rft.edition=6th&rft.pub=Brooks%2FCole&rft.date=2008&rft.isbn=978-0-495-01166-8&rft.aulast=Stewart&rft.aufirst=James&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcalculusearlytra00stew_1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarsonEdwards2009" class="citation book cs1"><a href="/wiki/Ron_Larson_(mathematician)" class="mw-redirect" title="Ron Larson (mathematician)">Larson, Ron</a>; Edwards, Bruce H. (2009). <i>Calculus</i> (9th ed.). <a href="/wiki/Brooks/Cole" class="mw-redirect" title="Brooks/Cole">Brooks/Cole</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-547-16702-2" title="Special:BookSources/978-0-547-16702-2"><bdi>978-0-547-16702-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus&rft.edition=9th&rft.pub=Brooks%2FCole&rft.date=2009&rft.isbn=978-0-547-16702-2&rft.aulast=Larson&rft.aufirst=Ron&rft.au=Edwards%2C+Bruce+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomasWeirHass2010" class="citation book cs1"><a href="/wiki/George_B._Thomas" title="George B. Thomas">Thomas, George B.</a>; Weir, Maurice D.; <a href="/wiki/Joel_Hass" title="Joel Hass">Hass, Joel</a> (2010). <i>Thomas' Calculus: Early Transcendentals</i> (12th ed.). <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-321-58876-0" title="Special:BookSources/978-0-321-58876-0"><bdi>978-0-321-58876-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Thomas%27+Calculus%3A+Early+Transcendentals&rft.edition=12th&rft.pub=Addison-Wesley&rft.date=2010&rft.isbn=978-0-321-58876-0&rft.aulast=Thomas&rft.aufirst=George+B.&rft.au=Weir%2C+Maurice+D.&rft.au=Hass%2C+Joel&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text">Chang, Yu-sung, "<a rel="nofollow" class="external text" href="http://demonstrations.wolfram.com/GoldenSpiral/">Golden Spiral</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190728084311/http://demonstrations.wolfram.com/GoldenSpiral/">Archived</a> 2019-07-28 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>", <a href="/wiki/The_Wolfram_Demonstrations_Project" class="mw-redirect" title="The Wolfram Demonstrations Project">The Wolfram Demonstrations Project</a>.</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFErdős1932" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Paul_Erd%C5%91s" title="Paul Erdős">Erdős, P.</a> (1932), <a rel="nofollow" class="external text" href="https://www.renyi.hu/~p_erdos/1932-02.pdf">"Egy Kürschák-féle elemi számelméleti tétel általánosítása"</a> [Generalization of an elementary number-theoretic theorem of Kürschák] <span class="cs1-format">(PDF)</span>, <i>Mat. Fiz. Lapok</i> (in Hungarian), <b>39</b>: 17–24</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mat.+Fiz.+Lapok&rft.atitle=Egy+K%C3%BCrsch%C3%A1k-f%C3%A9le+elemi+sz%C3%A1melm%C3%A9leti+t%C3%A9tel+%C3%A1ltal%C3%A1nos%C3%ADt%C3%A1sa&rft.volume=39&rft.pages=17-24&rft.date=1932&rft.aulast=Erd%C5%91s&rft.aufirst=P.&rft_id=https%3A%2F%2Fwww.renyi.hu%2F~p_erdos%2F1932-02.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span>. As cited by <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGraham2013" class="citation cs2"><a href="/wiki/Ronald_Graham" title="Ronald Graham">Graham, Ronald L.</a> (2013), "Paul Erdős and Egyptian fractions", <i>Erdős centennial</i>, Bolyai Soc. Math. Stud., vol. 25, János Bolyai Math. Soc., Budapest, pp. 289–309, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-39286-3_9">10.1007/978-3-642-39286-3_9</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-39285-6" title="Special:BookSources/978-3-642-39285-6"><bdi>978-3-642-39285-6</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3203600">3203600</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Paul+Erd%C5%91s+and+Egyptian+fractions&rft.btitle=Erd%C5%91s+centennial&rft.series=Bolyai+Soc.+Math.+Stud.&rft.pages=289-309&rft.pub=J%C3%A1nos+Bolyai+Math.+Soc.%2C+Budapest&rft.date=2013&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3203600%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-3-642-39286-3_9&rft.isbn=978-3-642-39285-6&rft.aulast=Graham&rft.aufirst=Ronald+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span>.</span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUno_Ingard1988" class="citation book cs1">Uno Ingard, K. (1988). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=SGVfGIewvxkC&pg=PA38">"Chapter 2"</a>. <i>Fundamentals of Waves and Oscillations</i>. Cambridge University Press. p. 38. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-33957-X" title="Special:BookSources/0-521-33957-X"><bdi>0-521-33957-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+2&rft.btitle=Fundamentals+of+Waves+and+Oscillations&rft.pages=38&rft.pub=Cambridge+University+Press&rft.date=1988&rft.isbn=0-521-33957-X&rft.aulast=Uno+Ingard&rft.aufirst=K.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSGVfGIewvxkC%26pg%3DPA38&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSinha2008" class="citation book cs1">Sinha, K.C. (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=mqdzqbPYiAUC&pg=SA11-PA2"><i>A Text Book of Mathematics Class XI</i></a> (Second ed.). Rastogi Publications. p. 11.2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-81-7133-912-9" title="Special:BookSources/978-81-7133-912-9"><bdi>978-81-7133-912-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Text+Book+of+Mathematics+Class+XI&rft.pages=11.2&rft.edition=Second&rft.pub=Rastogi+Publications&rft.date=2008&rft.isbn=978-81-7133-912-9&rft.aulast=Sinha&rft.aufirst=K.C.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DmqdzqbPYiAUC%26pg%3DSA11-PA2&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Chiang-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-Chiang_60-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChiang1984" class="citation book cs1"><a href="/wiki/Alpha_Chiang" title="Alpha Chiang">Chiang, Alpha C.</a> (1984). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6gcoAQAAMAAJ"><i>Fundamental Methods of Mathematical Economics</i></a> (Third ed.). New York: McGraw-Hill. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-07-010813-7" title="Special:BookSources/0-07-010813-7"><bdi>0-07-010813-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamental+Methods+of+Mathematical+Economics&rft.place=New+York&rft.edition=Third&rft.pub=McGraw-Hill&rft.date=1984&rft.isbn=0-07-010813-7&rft.aulast=Chiang&rft.aufirst=Alpha+C.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6gcoAQAAMAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.worldwidewords.org/qa/qa-vul1.htm">"World Wide Words: Vulgar fractions"</a>. <i>World Wide Words</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2014-10-30</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=World+Wide+Words&rft.atitle=World+Wide+Words%3A+Vulgar+fractions&rft_id=http%3A%2F%2Fwww.worldwidewords.org%2Fqa%2Fqa-vul1.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Improper_Fraction"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/ImproperFraction.html">"Improper Fraction"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Improper+Fraction&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FImproperFraction.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaurel2004" class="citation web cs1">Laurel (31 March 2004). <a rel="nofollow" class="external text" href="http://mathforum.org/library/drmath/view/65128.html">"Math Forum – Ask Dr. Math:Can Negative Fractions Also Be Proper or Improper?"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2014-10-30</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Math+Forum+%E2%80%93+Ask+Dr.+Math%3ACan+Negative+Fractions+Also+Be+Proper+or+Improper%3F&rft.date=2004-03-31&rft.au=Laurel&rft_id=http%3A%2F%2Fmathforum.org%2Flibrary%2Fdrmath%2Fview%2F65128.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120415053421/http://www.necompact.org/ea/gle_support/Math/resources_number/prop_fraction.htm">"New England Compact Math Resources"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.necompact.org/ea/gle_support/Math/resources_number/prop_fraction.htm">the original</a> on 2012-04-15<span class="reference-accessdate">. Retrieved <span class="nowrap">2019-06-16</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=New+England+Compact+Math+Resources&rft_id=http%3A%2F%2Fwww.necompact.org%2Fea%2Fgle_support%2FMath%2Fresources_number%2Fprop_fraction.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreer1986" class="citation book cs1">Greer, A. (1986). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wX2dxeDahAwC&pg=PA5"><i>New comprehensive mathematics for 'O' level</i></a> (2nd ed., reprinted. ed.). Cheltenham: Thornes. p. 5. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-85950-159-0" title="Special:BookSources/978-0-85950-159-0"><bdi>978-0-85950-159-0</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">2014-07-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=New+comprehensive+mathematics+for+%27O%27+level&rft.place=Cheltenham&rft.pages=5&rft.edition=2nd+ed.%2C+reprinted.&rft.pub=Thornes&rft.date=1986&rft.isbn=978-0-85950-159-0&rft.aulast=Greer&rft.aufirst=A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DwX2dxeDahAwC%26pg%3DPA5&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Brook_Taylor_biography,_St._Andrews-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-Brook_Taylor_biography,_St._Andrews_66-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Taylor.html">"Brook Taylor"</a>. <i>History.MCS.St-Andrews.ac.uk</i><span class="reference-accessdate">. Retrieved <span class="nowrap">May 25,</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=History.MCS.St-Andrews.ac.uk&rft.atitle=Brook+Taylor&rft_id=http%3A%2F%2Fwww-history.mcs.st-andrews.ac.uk%2FBiographies%2FTaylor.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-Brook_Taylor_biography,_Stetson-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-Brook_Taylor_biography,_Stetson_67-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180103003304/http://www2.stetson.edu/~efriedma/periodictable/html/Tl.html">"Brook Taylor"</a>. <i>Stetson.edu</i>. Archived from <a rel="nofollow" class="external text" href="https://www2.stetson.edu/~efriedma/periodictable/html/Tl.html">the original</a> on January 3, 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">May 25,</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Stetson.edu&rft.atitle=Brook+Taylor&rft_id=https%3A%2F%2Fwww2.stetson.edu%2F~efriedma%2Fperiodictable%2Fhtml%2FTl.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Bolzano's_Theorem"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/BolzanosTheorem.html">"Bolzano's Theorem"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Bolzano%27s+Theorem&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FBolzanosTheorem.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaczanowski1978" class="citation journal cs1">Taczanowski, Stefan (October 1978). "On the optimization of some geometric parameters in 14 MeV neutron activation analysis". <i>Nuclear Instruments and Methods</i>. <b>155</b> (3): 543–546. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1978NucIM.155..543T">1978NucIM.155..543T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0029-554X%2878%2990541-4">10.1016/0029-554X(78)90541-4</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nuclear+Instruments+and+Methods&rft.atitle=On+the+optimization+of+some+geometric+parameters+in+14+MeV+neutron+activation+analysis&rft.volume=155&rft.issue=3&rft.pages=543-546&rft.date=1978-10&rft_id=info%3Adoi%2F10.1016%2F0029-554X%2878%2990541-4&rft_id=info%3Abibcode%2F1978NucIM.155..543T&rft.aulast=Taczanowski&rft.aufirst=Stefan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text">Hazewinkel, Michiel (1994) [1987]. Encyclopaedia of Mathematics (unabridged reprint ed.). Kluwer Academic Publishers / Springer Science & Business Media. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-155608010-4" title="Special:BookSources/978-155608010-4">978-155608010-4</a>.<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (November 2024)">page needed</span></a></i>]</sup></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text">Ebner, Dieter (2005-07-25). Preparatory Course in Mathematics (PDF) (6 ed.). Department of Physics, University of Konstanz. Archived (PDF) from the original on 2017-07-26. Retrieved 2017-07-26.<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (November 2024)">page needed</span></a></i>]</sup></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text">Mejlbro, Leif (2010-11-11). Stability, Riemann Surfaces, Conformal Mappings - Complex Functions Theory (PDF) (1 ed.). Ventus Publishing ApS / Bookboon. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-87-7681-702-2" title="Special:BookSources/978-87-7681-702-2">978-87-7681-702-2</a>. Archived (PDF) from the original on 2017-07-26. Retrieved 2017-07-26.<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (November 2024)">page needed</span></a></i>]</sup></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text">Durán, Mario (2012). Mathematical methods for wave propagation in science and engineering. 1: Fundamentals (1 ed.). Ediciones UC. p. 88. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-956141314-6" title="Special:BookSources/978-956141314-6">978-956141314-6</a>.<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (November 2024)">page needed</span></a></i>]</sup></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text">Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Chapter II. The Acute Angle [14] Inverse trigonometric functions". Written at Ann Arbor, Michigan, USA. Trigonometry. Part I: Plane Trigonometry. New York, USA: Henry Holt and Company / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA. p. 15. Retrieved 2017-08-12. […] α = arcsin m: It is frequently read "arc-sinem" or "anti-sine m," since two mutually inverse functions are said each to be the anti-function of the other. […] A similar symbolic relation holds for the other trigonometric functions. […] This notation is universally used in Europe and is fast gaining ground in this country. A less desirable symbol, α = sin-1m, is still found in English and American texts. The notation α = inv sin m is perhaps better still on account of its general applicability. […]</span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text">Klein, Christian Felix (1924) [1902]. Elementarmathematik vom höheren Standpunkt aus: Arithmetik, Algebra, Analysis (in German). 1 (3rd ed.). Berlin: J. Springer.</span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text">Klein, Christian Felix (2004) [1932]. Elementary Mathematics from an Advanced Standpoint: Arithmetic, Algebra, Analysis. Translated by Hedrick, E. R.; Noble, C. A. (Translation of 3rd German ed.). Dover Publications, Inc. / The Macmillan Company. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-48643480-3" title="Special:BookSources/978-0-48643480-3">978-0-48643480-3</a>. Retrieved 2017-08-13.</span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text">Dörrie, Heinrich (1965). Triumph der Mathematik. Translated by Antin, David. Dover Publications. p. 69. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-61348-2" title="Special:BookSources/978-0-486-61348-2">978-0-486-61348-2</a>.</span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLay2006" class="citation book cs1">Lay, David C. (2006). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/studyguidetoline0000layd"><i>Linear Algebra and Its Applications</i></a></span> (3rd ed.). <a href="/wiki/Addison%E2%80%93Wesley" class="mw-redirect" title="Addison–Wesley">Addison–Wesley</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-321-28713-4" title="Special:BookSources/0-321-28713-4"><bdi>0-321-28713-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Linear+Algebra+and+Its+Applications&rft.edition=3rd&rft.pub=Addison%E2%80%93Wesley&rft.date=2006&rft.isbn=0-321-28713-4&rft.aulast=Lay&rft.aufirst=David+C.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fstudyguidetoline0000layd&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrang2006" class="citation book cs1"><a href="/wiki/Gilbert_Strang" title="Gilbert Strang">Strang, Gilbert</a> (2006). <i>Linear Algebra and Its Applications</i> (4th ed.). <a href="/wiki/Brooks_Cole" class="mw-redirect" title="Brooks Cole">Brooks Cole</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-03-010567-6" title="Special:BookSources/0-03-010567-6"><bdi>0-03-010567-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Linear+Algebra+and+Its+Applications&rft.edition=4th&rft.pub=Brooks+Cole&rft.date=2006&rft.isbn=0-03-010567-6&rft.aulast=Strang&rft.aufirst=Gilbert&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAxler2002" class="citation book cs1">Axler, Sheldon (2002). <i>Linear Algebra Done Right</i> (2nd ed.). <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-98258-2" title="Special:BookSources/0-387-98258-2"><bdi>0-387-98258-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Linear+Algebra+Done+Right&rft.edition=2nd&rft.pub=Springer&rft.date=2002&rft.isbn=0-387-98258-2&rft.aulast=Axler&rft.aufirst=Sheldon&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMortimer2005" class="citation book cs1">Mortimer, Robert G. (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nGoSv5tmATsC"><i>Mathematics for physical chemistry</i></a> (3rd ed.). <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a>. p. 9. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-12-508347-5" title="Special:BookSources/0-12-508347-5"><bdi>0-12-508347-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics+for+physical+chemistry&rft.pages=9&rft.edition=3rd&rft.pub=Academic+Press&rft.date=2005&rft.isbn=0-12-508347-5&rft.aulast=Mortimer&rft.aufirst=Robert+G.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DnGoSv5tmATsC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nGoSv5tmATsC&pg=PA9">Extract of page 9</a></span> </li> <li id="cite_note-wolfram-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-wolfram_82-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/QuadraticEquation.html">"Quadratic Equation -- from Wolfram MathWorld"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">January 6,</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Quadratic+Equation+--+from+Wolfram+MathWorld&rft_id=http%3A%2F%2Fmathworld.wolfram.com%2FQuadraticEquation.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.bipm.org/en/CGPM/db/20/8/">"Resolution 8 of the CGPM at its 20th Meeting (1995)"</a>. <a href="/wiki/Bureau_International_des_Poids_et_Mesures" class="mw-redirect" title="Bureau International des Poids et Mesures">Bureau International des Poids et Mesures</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2014-09-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Resolution+8+of+the+CGPM+at+its+20th+Meeting+%281995%29&rft.pub=Bureau+International+des+Poids+et+Mesures&rft_id=http%3A%2F%2Fwww.bipm.org%2Fen%2FCGPM%2Fdb%2F20%2F8%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading3"><h3 id="Works_cited">Works cited</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=25" title="Edit section: Works cited"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApostol1967" class="citation cs2"><a href="/wiki/Tom_M._Apostol" title="Tom M. Apostol">Apostol, T</a> (1967), <i>Calculus, Vol. 1</i> (2nd ed.), Jon Wiley & Sons</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus%2C+Vol.+1&rft.edition=2nd&rft.pub=Jon+Wiley+%26+Sons&rft.date=1967&rft.aulast=Apostol&rft.aufirst=T&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArbogast1800" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Louis_Fran%C3%A7ois_Antoine_Arbogast" title="Louis François Antoine Arbogast">Arbogast, L. F. A.</a> (1800), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=YoPq8uCy5Y8C"><i>Du calcul des derivations</i></a> [<i>On the calculus of derivatives</i>] (in French), Strasbourg: Levrault, pp. xxiii+404</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Du+calcul+des+derivations&rft.place=Strasbourg&rft.pages=xxiii%2B404&rft.pub=Levrault&rft.date=1800&rft.aulast=Arbogast&rft.aufirst=L.+F.+A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DYoPq8uCy5Y8C&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFButcher2003" class="citation book cs1"><a href="/wiki/John_C._Butcher" title="John C. Butcher">Butcher, John C.</a> (2003). <i>Numerical Methods for Ordinary Differential Equations</i>. New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">John Wiley & Sons</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-96758-3" title="Special:BookSources/978-0-471-96758-3"><bdi>978-0-471-96758-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Numerical+Methods+for+Ordinary+Differential+Equations&rft.place=New+York&rft.pub=John+Wiley+%26+Sons&rft.date=2003&rft.isbn=978-0-471-96758-3&rft.aulast=Butcher&rft.aufirst=John+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCraik2005" class="citation cs2">Craik, Alex D. D. (February 2005), "Prehistory of Faà di Bruno's Formula", <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a></i>, <b>112</b> (2): 217–234, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F30037410">10.2307/30037410</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/30037410">30037410</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2121322">2121322</a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:1088.01008">1088.01008</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=Prehistory+of+Fa%C3%A0+di+Bruno%27s+Formula&rft.volume=112&rft.issue=2&rft.pages=217-234&rft.date=2005-02&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1088.01008%23id-name%3DZbl&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2121322%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F30037410%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F30037410&rft.aulast=Craik&rft.aufirst=Alex+D.+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHairerNørsettWanner1993" class="citation book cs1">Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993). <i>Solving ordinary differential equations I: Nonstiff problems</i>. Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-56670-0" title="Special:BookSources/978-3-540-56670-0"><bdi>978-3-540-56670-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Solving+ordinary+differential+equations+I%3A+Nonstiff+problems&rft.place=Berlin%2C+New+York&rft.pub=Springer-Verlag&rft.date=1993&rft.isbn=978-3-540-56670-0&rft.aulast=Hairer&rft.aufirst=Ernst&rft.au=N%C3%B8rsett%2C+Syvert+Paul&rft.au=Wanner%2C+Gerhard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnson2002" class="citation cs2">Johnson, Warren P. (March 2002), <a rel="nofollow" class="external text" href="https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Johnson217-234.pdf">"The Curious History of Faà di Bruno's Formula"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a></i>, <b>109</b> (3): 217–234, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.109.4135">10.1.1.109.4135</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2695352">10.2307/2695352</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2695352">2695352</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1903577">1903577</a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:1024.01010">1024.01010</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=The+Curious+History+of+Fa%C3%A0+di+Bruno%27s+Formula&rft.volume=109&rft.issue=3&rft.pages=217-234&rft.date=2002-03&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1024.01010%23id-name%3DZbl&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2695352%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2695352&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.109.4135%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1903577%23id-name%3DMR&rft.aulast=Johnson&rft.aufirst=Warren+P.&rft_id=https%3A%2F%2Fwww.maa.org%2Fsites%2Fdefault%2Ffiles%2Fpdf%2Fupload_library%2F22%2FFord%2FJohnson217-234.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+calculus" class="Z3988"></span>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_calculus&action=edit&section=26" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">The term <i>scalar product</i> is often also used more generally to mean a <a href="/wiki/Symmetric_bilinear_form" title="Symmetric bilinear form">symmetric bilinear form</a>, for example for a <a href="/wiki/Pseudo-Euclidean_space" title="Pseudo-Euclidean space">pseudo-Euclidean space</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2017)">citation needed</span></a></i>]</sup></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><i>j</i> is usually used in Engineering contexts where <i>i</i> has other meanings (such as electrical current)</span> </li> </ol></div></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Antiderivatives are also called <b>general integrals</b>, and sometimes <b>integrals</b>. The latter term is generic, and refers not only to indefinite integrals (antiderivatives), but also to <a href="/wiki/Definite_integral" class="mw-redirect" title="Definite integral">definite integrals</a>. When the word <i>integral</i> is used without additional specification, the reader is supposed to deduce from the context whether it refers to a definite or indefinite integral. Some authors define the indefinite integral of a function as the set of its infinitely many possible antiderivatives. Others define it as an arbitrarily selected element of that set. Wikipedia adopts the latter approach.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2016)">citation needed</span></a></i>]</sup></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text">The symbol <span class="texhtml mvar" style="font-style:italic;">J</span> is commonly used instead of the intuitive <span class="texhtml mvar" style="font-style:italic;">I</span> in order to avoid confusion with other concepts identified by similar <span class="texhtml mvar" style="font-style:italic;">I</span>–like <a href="/wiki/Glyph" title="Glyph">glyphs</a>, e.g. <a href="/wiki/Identity_(mathematics)" title="Identity (mathematics)">identities</a>.</span> </li> </ol></div></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-lower-alpha"> </div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Glossaries_of_science_and_engineering" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Glossaries_of_science_and_engineering" title="Template:Glossaries of science and engineering"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Glossaries_of_science_and_engineering" title="Template talk:Glossaries of science and engineering"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Glossaries_of_science_and_engineering" title="Special:EditPage/Template:Glossaries of science and engineering"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Glossaries_of_science_and_engineering" style="font-size:114%;margin:0 4em">Glossaries of <a href="/wiki/Science" title="Science">science</a> and <a href="/wiki/Engineering" title="Engineering">engineering</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Glossary_of_aerospace_engineering" title="Glossary of aerospace engineering">Aerospace engineering</a></li> <li><a href="/wiki/Glossary_of_agriculture" title="Glossary of agriculture">Agriculture</a></li> <li><a href="/wiki/Glossary_of_archaeology" title="Glossary of archaeology">Archaeology</a></li> <li><a href="/wiki/Glossary_of_architecture" title="Glossary of architecture">Architecture</a></li> <li><a href="/wiki/Glossary_of_artificial_intelligence" title="Glossary of artificial intelligence">Artificial intelligence</a></li> <li><a href="/wiki/Glossary_of_astronomy" title="Glossary of astronomy">Astronomy</a></li> <li><a href="/wiki/Glossary_of_biology" title="Glossary of biology">Biology</a></li> <li><a href="/wiki/Glossary_of_botanical_terms" title="Glossary of botanical terms">Botany</a></li> <li><a class="mw-selflink selflink">Calculus</a></li> <li><a href="/wiki/Glossary_of_cell_biology" class="mw-redirect" title="Glossary of cell biology">Cell biology</a></li> <li><a href="/wiki/Glossary_of_chemistry_terms" title="Glossary of chemistry terms">Chemistry</a></li> <li><a href="/wiki/Glossary_of_civil_engineering" title="Glossary of civil engineering">Civil engineering</a></li> <li><a href="/wiki/Glossary_of_clinical_research" title="Glossary of clinical research">Clinical research</a></li> <li><a href="/wiki/Glossary_of_computer_hardware_terms" title="Glossary of computer hardware terms">Computer hardware</a></li> <li><a href="/wiki/Glossary_of_computer_science" title="Glossary of computer science">Computer science</a></li> <li><a href="/wiki/Glossary_of_developmental_biology" title="Glossary of developmental biology">Developmental and reproductive biology</a></li> <li><a href="/wiki/Glossary_of_ecology" title="Glossary of ecology">Ecology</a></li> <li><a href="/wiki/Glossary_of_economics" title="Glossary of economics">Economics</a></li> <li><a href="/wiki/Glossary_of_electrical_and_electronics_engineering" title="Glossary of electrical and electronics engineering">Electrical and electronics engineering</a></li> <li>Engineering <ul><li><a href="/wiki/Glossary_of_engineering:_A%E2%80%93L" title="Glossary of engineering: A–L">A–L</a></li> <li><a href="/wiki/Glossary_of_engineering:_M%E2%80%93Z" title="Glossary of engineering: M–Z">M–Z</a></li></ul></li> <li><a href="/wiki/Glossary_of_entomology_terms" title="Glossary of entomology terms">Entomology</a></li> <li><a href="/wiki/Glossary_of_environmental_science" title="Glossary of environmental science">Environmental science</a></li> <li><a href="/wiki/Glossary_of_genetics_and_evolutionary_biology" title="Glossary of genetics and evolutionary biology">Genetics and evolutionary biology</a></li> <li>Cellular and molecular biology <ul><li><a href="/wiki/Glossary_of_cellular_and_molecular_biology_(0%E2%80%93L)" title="Glossary of cellular and molecular biology (0–L)">0–L</a></li> <li><a href="/wiki/Glossary_of_cellular_and_molecular_biology_(M%E2%80%93Z)" title="Glossary of cellular and molecular biology (M–Z)">M–Z</a></li></ul></li> <li>Geography <ul><li><a href="/wiki/Glossary_of_geography_terms_(A%E2%80%93M)" title="Glossary of geography terms (A–M)">A–M</a></li> <li><a href="/wiki/Glossary_of_geography_terms_(N%E2%80%93Z)" title="Glossary of geography terms (N–Z)">N–Z</a></li> <li><a href="/wiki/Glossary_of_Arabic_toponyms" title="Glossary of Arabic toponyms">Arabic toponyms</a></li> <li><a href="/wiki/Glossary_of_Hebrew_toponyms" title="Glossary of Hebrew toponyms">Hebrew toponyms</a></li> <li><a href="/wiki/Oikonyms_in_Western_and_South_Asia" title="Oikonyms in Western and South Asia">Western and South Asia</a></li></ul></li> <li><a href="/wiki/Glossary_of_geology" title="Glossary of geology">Geology</a></li> <li><a href="/wiki/Glossary_of_ichthyology" title="Glossary of ichthyology">Ichthyology</a></li> <li><a href="/wiki/Glossary_of_machine_vision" title="Glossary of machine vision">Machine vision</a></li> <li><a href="/wiki/Glossary_of_areas_of_mathematics" title="Glossary of areas of mathematics">Mathematics</a></li> <li><a href="/wiki/Glossary_of_mechanical_engineering" title="Glossary of mechanical engineering">Mechanical engineering</a></li> <li><a href="/wiki/Glossary_of_medicine" title="Glossary of medicine">Medicine</a></li> <li><a href="/wiki/Glossary_of_meteorology" title="Glossary of meteorology">Meteorology</a></li> <li><a href="/wiki/Glossary_of_mycology" title="Glossary of mycology">Mycology</a></li> <li><a href="/wiki/Glossary_of_nanotechnology" title="Glossary of nanotechnology">Nanotechnology</a></li> <li><a href="/wiki/Glossary_of_bird_terms" title="Glossary of bird terms">Ornithology</a></li> <li><a href="/wiki/Glossary_of_physics" title="Glossary of physics">Physics</a></li> <li><a href="/wiki/Glossary_of_probability_and_statistics" title="Glossary of probability and statistics">Probability and statistics</a></li> <li><a href="/wiki/Glossary_of_psychiatry" title="Glossary of psychiatry">Psychiatry</a></li> <li><a href="/wiki/Glossary_of_quantum_computing" title="Glossary of quantum computing">Quantum computing</a></li> <li><a href="/wiki/Glossary_of_robotics" title="Glossary of robotics">Robotics</a></li> <li><a href="/wiki/Glossary_of_scientific_naming" title="Glossary of scientific naming">Scientific naming</a></li> <li><a href="/wiki/Glossary_of_structural_engineering" title="Glossary of structural engineering">Structural engineering</a></li> <li><a href="/wiki/Glossary_of_virology" title="Glossary of virology">Virology</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Integrals" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Integrals" title="Template:Integrals"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Integrals" title="Template talk:Integrals"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Integrals" title="Special:EditPage/Template:Integrals"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Integrals" style="font-size:114%;margin:0 4em"><a href="/wiki/Integral" title="Integral">Integrals</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of <br /> integrals</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a></li> <li><a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integral</a></li> <li><a href="/wiki/Burkill_integral" title="Burkill integral">Burkill integral</a></li> <li><a href="/wiki/Bochner_integral" title="Bochner integral">Bochner integral</a></li> <li><a href="/wiki/Daniell_integral" title="Daniell integral">Daniell integral</a></li> <li><a href="/wiki/Darboux_integral" title="Darboux integral">Darboux integral</a></li> <li><a href="/wiki/Henstock%E2%80%93Kurzweil_integral" title="Henstock–Kurzweil integral">Henstock–Kurzweil integral</a></li> <li><a href="/wiki/Haar_measure" title="Haar measure">Haar integral</a></li> <li><a href="/wiki/Hellinger_integral" title="Hellinger integral">Hellinger integral</a></li> <li><a href="/wiki/Khinchin_integral" title="Khinchin integral">Khinchin integral</a></li> <li><a href="/wiki/Kolmogorov_integral" title="Kolmogorov integral">Kolmogorov integral</a></li> <li><a href="/wiki/Lebesgue%E2%80%93Stieltjes_integration" title="Lebesgue–Stieltjes integration">Lebesgue–Stieltjes integral</a></li> <li><a href="/wiki/Pettis_integral" title="Pettis integral">Pettis integral</a></li> <li><a href="/wiki/Pfeffer_integral" title="Pfeffer integral">Pfeffer integral</a></li> <li><a href="/wiki/Riemann%E2%80%93Stieltjes_integral" title="Riemann–Stieltjes integral">Riemann–Stieltjes integral</a></li> <li><a href="/wiki/Regulated_integral" title="Regulated integral">Regulated integral</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Integration <br /> techniques</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Integration_by_substitution" title="Integration by substitution">Substitution</a> <ul><li><a href="/wiki/Trigonometric_substitution" title="Trigonometric substitution">Trigonometric</a></li> <li><a href="/wiki/Euler_substitution" title="Euler substitution">Euler</a></li> <li><a href="/wiki/Weierstrass_substitution" class="mw-redirect" title="Weierstrass substitution">Weierstrass</a></li></ul></li> <li><a href="/wiki/Integration_by_parts" title="Integration by parts">By parts</a></li> <li><a href="/wiki/Integration_by_partial_fractions" class="mw-redirect" title="Integration by partial fractions">Partial fractions</a></li> <li><a href="/wiki/Integration_using_Euler%27s_formula" title="Integration using Euler's formula">Euler's formula</a></li> <li><a href="/wiki/Integral_of_inverse_functions" title="Integral of inverse functions">Inverse functions</a></li> <li><a href="/wiki/Order_of_integration_(calculus)" title="Order of integration (calculus)">Changing order</a></li> <li><a href="/wiki/Integration_by_reduction_formulae" title="Integration by reduction formulae">Reduction formulas</a></li> <li><a href="/wiki/Integration_using_parametric_derivatives" title="Integration using parametric derivatives">Parametric derivatives</a></li> <li><a href="/wiki/Leibniz_integral_rule#Evaluating_definite_integrals" title="Leibniz integral rule">Differentiation under the integral sign</a></li> <li><a href="/wiki/Laplace_transform#Evaluating_improper_integrals" title="Laplace transform">Laplace transform</a></li> <li><a href="/wiki/Contour_integration" title="Contour integration">Contour integration</a></li> <li><a href="/wiki/Laplace%27s_method" title="Laplace's method">Laplace's method</a></li> <li><a href="/wiki/Numerical_integration" title="Numerical integration">Numerical integration</a> <ul><li><a href="/wiki/Simpson%27s_rule" title="Simpson's rule">Simpson's rule</a></li> <li><a href="/wiki/Trapezoidal_rule" title="Trapezoidal rule">Trapezoidal rule</a></li></ul></li> <li><a href="/wiki/Risch_algorithm" title="Risch algorithm">Risch algorithm</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Improper_integral" title="Improper integral">Improper integrals</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gaussian_integral" title="Gaussian integral">Gaussian integral</a></li> <li><a href="/wiki/Dirichlet_integral" title="Dirichlet integral">Dirichlet integral</a></li> <li>Fermi–Dirac integral <ul><li><a href="/wiki/Complete_Fermi%E2%80%93Dirac_integral" title="Complete Fermi–Dirac integral">complete</a></li> <li><a href="/wiki/Incomplete_Fermi%E2%80%93Dirac_integral" title="Incomplete Fermi–Dirac integral">incomplete</a></li></ul></li> <li><a href="/wiki/Bose%E2%80%93Einstein_integral" class="mw-redirect" title="Bose–Einstein integral">Bose–Einstein integral</a></li> <li><a href="/wiki/Frullani_integral" title="Frullani integral">Frullani integral</a></li> <li><a href="/wiki/Common_integrals_in_quantum_field_theory" title="Common integrals in quantum field theory">Common integrals in quantum field theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Stochastic_integral" class="mw-redirect" title="Stochastic integral">Stochastic integrals</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/It%C3%B4_calculus" title="Itô calculus">Itô integral</a></li> <li><a href="/wiki/Russo%E2%80%93Vallois_integral" title="Russo–Vallois integral">Russo–Vallois integral</a></li> <li><a href="/wiki/Stratonovich_integral" title="Stratonovich integral">Stratonovich integral</a></li> <li><a href="/wiki/Skorokhod_integral" title="Skorokhod integral">Skorokhod integral</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Miscellaneous</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Basel_problem" title="Basel problem">Basel problem</a></li> <li><a href="/wiki/Euler%E2%80%93Maclaurin_formula" title="Euler–Maclaurin formula">Euler–Maclaurin formula</a></li> <li><a href="/wiki/Gabriel%27s_horn" title="Gabriel's horn">Gabriel's horn</a></li> <li><a href="/wiki/Integration_Bee" title="Integration Bee">Integration Bee</a></li> <li><a href="/wiki/Proof_that_22/7_exceeds_%CF%80" title="Proof that 22/7 exceeds π">Proof that 22/7 exceeds π</a></li> <li>Volumes <ul><li><a href="/wiki/Disc_integration" title="Disc integration">Washers</a></li> <li><a href="/wiki/Shell_integration" title="Shell integration">Shells</a></li></ul></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Infinitesimals" style="padding:3px"><table class="nowraplinks mw-collapsible expanded navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Infinitesimals" title="Template:Infinitesimals"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Infinitesimals" title="Template talk:Infinitesimals"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Infinitesimals" title="Special:EditPage/Template:Infinitesimals"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Infinitesimals" style="font-size:114%;margin:0 4em"><a href="/wiki/Infinitesimal" title="Infinitesimal">Infinitesimals</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">History</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adequality" title="Adequality">Adequality</a></li> <li><a href="/wiki/Leibniz%27s_notation" title="Leibniz's notation">Leibniz's notation</a></li> <li><a href="/wiki/Integral_symbol" title="Integral symbol">Integral symbol</a></li> <li><a href="/wiki/Criticism_of_nonstandard_analysis" title="Criticism of nonstandard analysis">Criticism of nonstandard analysis</a></li> <li><i><a href="/wiki/The_Analyst" title="The Analyst">The Analyst</a></i></li> <li><i><a href="/wiki/The_Method_of_Mechanical_Theorems" title="The Method of Mechanical Theorems">The Method of Mechanical Theorems</a></i></li> <li><a href="/wiki/Cavalieri%27s_principle" title="Cavalieri's principle">Cavalieri's principle</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="6" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:German_integral.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b5/German_integral.gif/50px-German_integral.gif" decoding="async" width="50" height="92" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b5/German_integral.gif/75px-German_integral.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/b/b5/German_integral.gif 2x" data-file-width="84" data-file-height="155" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related branches</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nonstandard_analysis" title="Nonstandard analysis">Nonstandard analysis</a></li> <li><a href="/wiki/Nonstandard_calculus" title="Nonstandard calculus">Nonstandard calculus</a></li> <li><a href="/wiki/Internal_set_theory" title="Internal set theory">Internal set theory</a></li> <li><a href="/wiki/Synthetic_differential_geometry" title="Synthetic differential geometry">Synthetic differential geometry</a></li> <li><a href="/wiki/Smooth_infinitesimal_analysis" title="Smooth infinitesimal analysis">Smooth infinitesimal analysis</a></li> <li><a href="/wiki/Constructive_nonstandard_analysis" title="Constructive nonstandard analysis">Constructive nonstandard analysis</a></li> <li><a href="/wiki/Infinitesimal_strain_theory" title="Infinitesimal strain theory">Infinitesimal strain theory (physics)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Formalizations</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Differential_(mathematics)" title="Differential (mathematics)">Differentials</a></li> <li><a href="/wiki/Hyperreal_number" title="Hyperreal number">Hyperreal numbers</a></li> <li><a href="/wiki/Dual_number" title="Dual number">Dual numbers</a></li> <li><a href="/wiki/Surreal_number" title="Surreal number">Surreal numbers</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Individual concepts</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Standard_part_function" title="Standard part function">Standard part function</a></li> <li><a href="/wiki/Transfer_principle" title="Transfer principle">Transfer principle</a></li> <li><a href="/wiki/Hyperinteger" title="Hyperinteger">Hyperinteger</a></li> <li><a href="/wiki/Increment_theorem" title="Increment theorem">Increment theorem</a></li> <li><a href="/wiki/Monad_(nonstandard_analysis)" title="Monad (nonstandard analysis)">Monad</a></li> <li><a href="/wiki/Internal_set" title="Internal set">Internal set</a></li> <li><a href="/wiki/Levi-Civita_field" title="Levi-Civita field">Levi-Civita field</a></li> <li><a href="/wiki/Hyperfinite_set" title="Hyperfinite set">Hyperfinite set</a></li> <li><a href="/wiki/Law_of_continuity" title="Law of continuity">Law of continuity</a></li> <li><a href="/wiki/Overspill" title="Overspill">Overspill</a></li> <li><a href="/wiki/Microcontinuity" title="Microcontinuity">Microcontinuity</a></li> <li><a href="/wiki/Transcendental_law_of_homogeneity" title="Transcendental law of homogeneity">Transcendental law of homogeneity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mathematicians</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a></li> <li><a href="/wiki/Abraham_Robinson" title="Abraham Robinson">Abraham Robinson</a></li> <li><a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Pierre de Fermat</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Textbooks</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0;font-style:italic;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Analyse_des_Infiniment_Petits_pour_l%27Intelligence_des_Lignes_Courbes" title="Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes">Analyse des Infiniment Petits</a></li> <li><a href="/wiki/Elementary_Calculus:_An_Infinitesimal_Approach" title="Elementary Calculus: An Infinitesimal Approach">Elementary Calculus</a></li> <li><a href="/wiki/Cours_d%27Analyse" title="Cours d'Analyse">Cours d'Analyse</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Calculus" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Calculus_topics" title="Template:Calculus topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Calculus_topics" title="Template talk:Calculus topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Calculus_topics" title="Special:EditPage/Template:Calculus topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Calculus" style="font-size:114%;margin:0 4em"><a href="/wiki/Calculus" title="Calculus">Calculus</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Precalculus" title="Precalculus">Precalculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Binomial_theorem" title="Binomial theorem">Binomial theorem</a></li> <li><a href="/wiki/Concave_function" title="Concave function">Concave function</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuous function</a></li> <li><a href="/wiki/Factorial" title="Factorial">Factorial</a></li> <li><a href="/wiki/Finite_difference" title="Finite difference">Finite difference</a></li> <li><a href="/wiki/Free_variables_and_bound_variables" title="Free variables and bound variables">Free variables and bound variables</a></li> <li><a href="/wiki/Graph_of_a_function" title="Graph of a function">Graph of a function</a></li> <li><a href="/wiki/Linear_function" title="Linear function">Linear function</a></li> <li><a href="/wiki/Radian" title="Radian">Radian</a></li> <li><a href="/wiki/Rolle%27s_theorem" title="Rolle's theorem">Rolle's theorem</a></li> <li><a href="/wiki/Secant_line" title="Secant line">Secant</a></li> <li><a href="/wiki/Slope" title="Slope">Slope</a></li> <li><a href="/wiki/Tangent" title="Tangent">Tangent</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">Limits</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Indeterminate_form" title="Indeterminate form">Indeterminate form</a></li> <li><a href="/wiki/Limit_of_a_function" title="Limit of a function">Limit of a function</a> <ul><li><a href="/wiki/One-sided_limit" title="One-sided limit">One-sided limit</a></li></ul></li> <li><a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">Limit of a sequence</a></li> <li><a href="/wiki/Order_of_approximation" title="Order of approximation">Order of approximation</a></li> <li><a href="/wiki/(%CE%B5,_%CE%B4)-definition_of_limit" class="mw-redirect" title="(ε, δ)-definition of limit">(ε, δ)-definition of limit</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Differential_calculus" title="Differential calculus">Differential calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Derivative" title="Derivative">Derivative</a></li> <li><a href="/wiki/Second_derivative" title="Second derivative">Second derivative</a></li> <li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Differential_(mathematics)" title="Differential (mathematics)">Differential</a></li> <li><a href="/wiki/Differential_operator" title="Differential operator">Differential operator</a></li> <li><a href="/wiki/Mean_value_theorem" title="Mean value theorem">Mean value theorem</a></li> <li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Notation</a> <ul><li><a href="/wiki/Leibniz%27s_notation" title="Leibniz's notation">Leibniz's notation</a></li> <li><a href="/wiki/Newton%27s_notation_for_differentiation" class="mw-redirect" title="Newton's notation for differentiation">Newton's notation</a></li></ul></li> <li><a href="/wiki/Differentiation_rules" title="Differentiation rules">Rules of differentiation</a> <ul><li><a href="/wiki/Linearity_of_differentiation" title="Linearity of differentiation">linearity</a></li> <li><a href="/wiki/Power_rule" title="Power rule">Power</a></li> <li><a href="/wiki/Sum_rule_in_differentiation" class="mw-redirect" title="Sum rule in differentiation">Sum</a></li> <li><a href="/wiki/Chain_rule" title="Chain rule">Chain</a></li> <li><a href="/wiki/L%27H%C3%B4pital%27s_rule" title="L'Hôpital's rule">L'Hôpital's</a></li> <li><a href="/wiki/Product_rule" title="Product rule">Product</a> <ul><li><a href="/wiki/General_Leibniz_rule" title="General Leibniz rule">General Leibniz's rule</a></li></ul></li> <li><a href="/wiki/Quotient_rule" title="Quotient rule">Quotient</a></li></ul></li> <li>Other techniques <ul><li><a href="/wiki/Implicit_differentiation" class="mw-redirect" title="Implicit differentiation">Implicit differentiation</a></li> <li><a href="/wiki/Inverse_functions_and_differentiation" class="mw-redirect" title="Inverse functions and differentiation">Inverse functions and differentiation</a></li> <li><a href="/wiki/Logarithmic_derivative" title="Logarithmic derivative">Logarithmic derivative</a></li> <li><a href="/wiki/Related_rates" title="Related rates">Related rates</a></li></ul></li> <li><a href="/wiki/Stationary_point" title="Stationary point">Stationary points</a> <ul><li><a href="/wiki/First_derivative_test" class="mw-redirect" title="First derivative test">First derivative test</a></li> <li><a href="/wiki/Second_derivative_test" class="mw-redirect" title="Second derivative test">Second derivative test</a></li> <li><a href="/wiki/Extreme_value_theorem" title="Extreme value theorem">Extreme value theorem</a></li> <li><a href="/wiki/Maximum_and_minimum" title="Maximum and minimum">Maximum and minimum</a></li></ul></li> <li>Further applications <ul><li><a href="/wiki/Newton%27s_method" title="Newton's method">Newton's method</a></li> <li><a href="/wiki/Taylor%27s_theorem" title="Taylor's theorem">Taylor's theorem</a></li></ul></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Differential equation</a> <ul><li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">Ordinary differential equation</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial differential equation</a></li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic differential equation</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Integral_calculus" class="mw-redirect" title="Integral calculus">Integral calculus</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Antiderivative" title="Antiderivative">Antiderivative</a></li> <li><a href="/wiki/Arc_length" title="Arc length">Arc length</a></li> <li><a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a></li> <li><a href="/wiki/Integral#Properties" title="Integral">Basic properties</a></li> <li><a href="/wiki/Constant_of_integration" title="Constant of integration">Constant of integration</a></li> <li><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">Fundamental theorem of calculus</a> <ul><li><a href="/wiki/Leibniz_integral_rule" title="Leibniz integral rule">Differentiating under the integral sign</a></li></ul></li> <li><a href="/wiki/Integration_by_parts" title="Integration by parts">Integration by parts</a></li> <li><a href="/wiki/Integration_by_substitution" title="Integration by substitution">Integration by substitution</a> <ul><li><a href="/wiki/Trigonometric_substitution" title="Trigonometric substitution">trigonometric</a></li> <li><a href="/wiki/Euler_substitution" title="Euler substitution">Euler</a></li> <li><a href="/wiki/Tangent_half-angle_substitution" title="Tangent half-angle substitution">Tangent half-angle substitution</a></li></ul></li> <li><a href="/wiki/Partial_fractions_in_integration" class="mw-redirect" title="Partial fractions in integration">Partial fractions in integration</a> <ul><li><a href="/wiki/Quadratic_integral" title="Quadratic integral">Quadratic integral</a></li></ul></li> <li><a href="/wiki/Trapezoidal_rule" title="Trapezoidal rule">Trapezoidal rule</a></li> <li>Volumes <ul><li><a href="/wiki/Disc_integration" title="Disc integration">Washer method</a></li> <li><a href="/wiki/Shell_integration" title="Shell integration">Shell method</a></li></ul></li> <li><a href="/wiki/Integral_equation" title="Integral equation">Integral equation</a></li> <li><a href="/wiki/Integro-differential_equation" title="Integro-differential equation">Integro-differential equation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Vector_calculus" title="Vector calculus">Vector calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Derivatives <ul><li><a href="/wiki/Curl_(mathematics)" title="Curl (mathematics)">Curl</a></li> <li><a href="/wiki/Directional_derivative" title="Directional derivative">Directional derivative</a></li> <li><a href="/wiki/Divergence" title="Divergence">Divergence</a></li> <li><a href="/wiki/Gradient" title="Gradient">Gradient</a></li> <li><a href="/wiki/Laplace_operator" title="Laplace operator">Laplacian</a></li></ul></li> <li>Basic theorems <ul><li><a href="/wiki/Fundamental_Theorem_of_Line_Integrals" class="mw-redirect" title="Fundamental Theorem of Line Integrals">Line integrals</a></li> <li><a href="/wiki/Green%27s_theorem" title="Green's theorem">Green's</a></li> <li><a href="/wiki/Stokes%27_theorem" title="Stokes' theorem">Stokes'</a></li> <li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Gauss'</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Multivariable_calculus" title="Multivariable calculus">Multivariable calculus</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Divergence theorem</a></li> <li><a href="/wiki/Geometric_calculus" title="Geometric calculus">Geometric</a></li> <li><a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian matrix</a></li> <li><a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian matrix and determinant</a></li> <li><a href="/wiki/Lagrange_multiplier" title="Lagrange multiplier">Lagrange multiplier</a></li> <li><a href="/wiki/Line_integral" title="Line integral">Line integral</a></li> <li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix</a></li> <li><a href="/wiki/Multiple_integral" title="Multiple integral">Multiple integral</a></li> <li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Surface_integral" title="Surface integral">Surface integral</a></li> <li><a href="/wiki/Volume_integral" title="Volume integral">Volume integral</a></li> <li>Advanced topics <ul><li><a href="/wiki/Differential_form" title="Differential form">Differential forms</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Generalized_Stokes%27_theorem" class="mw-redirect" title="Generalized Stokes' theorem">Generalized Stokes' theorem</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sequences and series</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arithmetico-geometric_sequence" title="Arithmetico-geometric sequence">Arithmetico-geometric sequence</a></li> <li>Types of series <ul><li><a href="/wiki/Alternating_series" title="Alternating series">Alternating</a></li> <li><a href="/wiki/Binomial_series" title="Binomial series">Binomial</a></li> <li><a href="/wiki/Fourier_series" title="Fourier series">Fourier</a></li> <li><a href="/wiki/Geometric_series" title="Geometric series">Geometric</a></li> <li><a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">Harmonic</a></li> <li><a href="/wiki/Infinite_series" class="mw-redirect" title="Infinite series">Infinite</a></li> <li><a href="/wiki/Power_series" title="Power series">Power</a> <ul><li><a href="/wiki/Maclaurin_series" class="mw-redirect" title="Maclaurin series">Maclaurin</a></li> <li><a href="/wiki/Taylor_series" title="Taylor series">Taylor</a></li></ul></li> <li><a href="/wiki/Telescoping_series" title="Telescoping series">Telescoping</a></li></ul></li> <li>Tests of convergence <ul><li><a href="/wiki/Abel%27s_test" title="Abel's test">Abel's</a></li> <li><a href="/wiki/Alternating_series_test" title="Alternating series test">Alternating series</a></li> <li><a href="/wiki/Cauchy_condensation_test" title="Cauchy condensation test">Cauchy condensation</a></li> <li><a href="/wiki/Direct_comparison_test" title="Direct comparison test">Direct comparison</a></li> <li><a href="/wiki/Dirichlet%27s_test" title="Dirichlet's test">Dirichlet's</a></li> <li><a href="/wiki/Integral_test_for_convergence" title="Integral test for convergence">Integral</a></li> <li><a href="/wiki/Limit_comparison_test" title="Limit comparison test">Limit comparison</a></li> <li><a href="/wiki/Ratio_test" title="Ratio test">Ratio</a></li> <li><a href="/wiki/Root_test" title="Root test">Root</a></li> <li><a href="/wiki/Term_test" class="mw-redirect" title="Term test">Term</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Special functions<br />and numbers</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bernoulli_number" title="Bernoulli number">Bernoulli numbers</a></li> <li><a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)">e (mathematical constant)</a></li> <li><a href="/wiki/Exponential_function" title="Exponential function">Exponential function</a></li> <li><a href="/wiki/Natural_logarithm" title="Natural logarithm">Natural logarithm</a></li> <li><a href="/wiki/Stirling%27s_approximation" title="Stirling's approximation">Stirling's approximation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_calculus" title="History of calculus">History of calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adequality" title="Adequality">Adequality</a></li> <li><a href="/wiki/Brook_Taylor" title="Brook Taylor">Brook Taylor</a></li> <li><a href="/wiki/Colin_Maclaurin" title="Colin Maclaurin">Colin Maclaurin</a></li> <li><a href="/wiki/Generality_of_algebra" title="Generality of algebra">Generality of algebra</a></li> <li><a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a></li> <li><a href="/wiki/Infinitesimal" title="Infinitesimal">Infinitesimal</a></li> <li><a href="/wiki/Infinitesimal_calculus" class="mw-redirect" title="Infinitesimal calculus">Infinitesimal calculus</a></li> <li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a></li> <li><a href="/wiki/Fluxion" title="Fluxion">Fluxion</a></li> <li><a href="/wiki/Law_of_Continuity" class="mw-redirect" title="Law of Continuity">Law of Continuity</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><i><a href="/wiki/Method_of_Fluxions" title="Method of Fluxions">Method of Fluxions</a></i></li> <li><i><a href="/wiki/The_Method_of_Mechanical_Theorems" title="The Method of Mechanical Theorems">The Method of Mechanical Theorems</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Lists</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Integrals" scope="row" class="navbox-group" style="width:1%;text-align:left"><a href="/wiki/Lists_of_integrals" title="Lists of integrals">Integrals</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_integrals_of_rational_functions" title="List of integrals of rational functions">rational functions</a></li> <li><a href="/wiki/List_of_integrals_of_irrational_functions" title="List of integrals of irrational functions">irrational functions</a></li> <li><a href="/wiki/List_of_integrals_of_exponential_functions" title="List of integrals of exponential functions">exponential functions</a></li> <li><a href="/wiki/List_of_integrals_of_logarithmic_functions" title="List of integrals of logarithmic functions">logarithmic functions</a></li> <li><a href="/wiki/List_of_integrals_of_hyperbolic_functions" title="List of integrals of hyperbolic functions">hyperbolic functions</a> <ul><li><a href="/wiki/List_of_integrals_of_inverse_hyperbolic_functions" title="List of integrals of inverse hyperbolic functions">inverse</a></li></ul></li> <li><a href="/wiki/List_of_integrals_of_trigonometric_functions" title="List of integrals of trigonometric functions">trigonometric functions</a> <ul><li><a href="/wiki/List_of_integrals_of_inverse_trigonometric_functions" title="List of integrals of inverse trigonometric functions">inverse</a></li> <li><a href="/wiki/Integral_of_the_secant_function" title="Integral of the secant function">Secant</a></li> <li><a href="/wiki/Integral_of_secant_cubed" title="Integral of secant cubed">Secant cubed</a></li></ul></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_limits" title="List of limits">List of limits</a></li> <li><a href="/wiki/Differentiation_rules" title="Differentiation rules">List of derivatives</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Miscellaneous topics</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Complex calculus <ul><li><a href="/wiki/Contour_integral" class="mw-redirect" title="Contour integral">Contour integral</a></li></ul></li> <li>Differential geometry <ul><li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Curvature" title="Curvature">Curvature</a></li> <li><a href="/wiki/Differential_geometry_of_curves" class="mw-redirect" title="Differential geometry of curves">of curves</a></li> <li><a href="/wiki/Differential_geometry_of_surfaces" title="Differential geometry of surfaces">of surfaces</a></li> <li><a href="/wiki/Tensor" title="Tensor">Tensor</a></li></ul></li> <li><a href="/wiki/Euler%E2%80%93Maclaurin_formula" title="Euler–Maclaurin formula">Euler–Maclaurin formula</a></li> <li><a href="/wiki/Gabriel%27s_horn" title="Gabriel's horn">Gabriel's horn</a></li> <li><a href="/wiki/Integration_Bee" title="Integration Bee">Integration Bee</a></li> <li><a href="/wiki/Proof_that_22/7_exceeds_%CF%80" title="Proof that 22/7 exceeds π">Proof that 22/7 exceeds π</a></li> <li><a href="/wiki/Regiomontanus%27_angle_maximization_problem" title="Regiomontanus' angle maximization problem">Regiomontanus' angle maximization problem</a></li> <li><a href="/wiki/Steinmetz_solid" title="Steinmetz solid">Steinmetz solid</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐65c9bb7d57‐xtbpl Cached time: 20241206075657 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, no‐toc] CPU time usage: 1.798 seconds Real time usage: 2.228 seconds Preprocessor visited node count: 24146/1000000 Post‐expand include size: 343222/2097152 bytes Template argument size: 83436/2097152 bytes Highest expansion depth: 19/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 383449/5000000 bytes Lua time usage: 0.902/10.000 seconds Lua memory usage: 11731170/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1665.588 1 -total 33.80% 562.925 4 Template:Reflist 23.83% 396.858 184 Template:Defn 20.72% 345.037 184 Template:Term 14.52% 241.842 37 Template:Cite_book 6.13% 102.075 1 Template:Calculus 5.68% 94.550 91 Template:Math 5.24% 87.232 1 Template:Short_description 4.88% 81.269 6 Template:Fix 4.45% 74.193 2 Template:Harv --> <!-- Saved in parser cache with key enwiki:pcache:53252845:|#|:idhash:canonical and timestamp 20241206075657 and revision id 1259307342. Rendering was triggered because: unknown --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Glossary_of_calculus&oldid=1259307342">https://en.wikipedia.org/w/index.php?title=Glossary_of_calculus&oldid=1259307342</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Fields_of_mathematics" title="Category:Fields of mathematics">Fields of mathematics</a></li><li><a href="/wiki/Category:Glossaries_of_mathematics" title="Category:Glossaries of mathematics">Glossaries of mathematics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_location_test" title="Category:CS1 location test">CS1 location test</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:CS1_Hungarian-language_sources_(hu)" title="Category:CS1 Hungarian-language sources (hu)">CS1 Hungarian-language sources (hu)</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_page_number_citations_from_November_2024" title="Category:Wikipedia articles needing page number citations from November 2024">Wikipedia articles needing page number citations from November 2024</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_March_2017" title="Category:Articles with unsourced statements from March 2017">Articles with unsourced statements from March 2017</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_June_2016" title="Category:Articles with unsourced statements from June 2016">Articles with unsourced statements from June 2016</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Pages_using_sidebar_with_the_child_parameter" title="Category:Pages using sidebar with the child parameter">Pages using sidebar with the child parameter</a></li><li><a href="/wiki/Category:Wikipedia_glossaries_using_description_lists" title="Category:Wikipedia glossaries using description lists">Wikipedia glossaries using description lists</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 24 November 2024, at 13:00<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Glossary_of_calculus&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-59b954b7fb-wptrg","wgBackendResponseTime":226,"wgPageParseReport":{"limitreport":{"cputime":"1.798","walltime":"2.228","ppvisitednodes":{"value":24146,"limit":1000000},"postexpandincludesize":{"value":343222,"limit":2097152},"templateargumentsize":{"value":83436,"limit":2097152},"expansiondepth":{"value":19,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":383449,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1665.588 1 -total"," 33.80% 562.925 4 Template:Reflist"," 23.83% 396.858 184 Template:Defn"," 20.72% 345.037 184 Template:Term"," 14.52% 241.842 37 Template:Cite_book"," 6.13% 102.075 1 Template:Calculus"," 5.68% 94.550 91 Template:Math"," 5.24% 87.232 1 Template:Short_description"," 4.88% 81.269 6 Template:Fix"," 4.45% 74.193 2 Template:Harv"]},"scribunto":{"limitreport-timeusage":{"value":"0.902","limit":"10.000"},"limitreport-memusage":{"value":11731170,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFApostol1967\"] = 1,\n [\"CITEREFArbogast1800\"] = 1,\n [\"CITEREFAufmannNation2014\"] = 1,\n [\"CITEREFAxler2002\"] = 1,\n [\"CITEREFBakNewman1997\"] = 1,\n [\"CITEREFBales2012\"] = 1,\n [\"CITEREFBaydinPearlmutterRadulSiskind2018\"] = 1,\n [\"CITEREFBoyer1968\"] = 1,\n [\"CITEREFButcher2003\"] = 1,\n [\"CITEREFChiang1984\"] = 1,\n [\"CITEREFCraik2005\"] = 1,\n [\"CITEREFCramer,_Gabriel1750\"] = 1,\n [\"CITEREFErdős1932\"] = 1,\n [\"CITEREFEves1991\"] = 1,\n [\"CITEREFGraham2013\"] = 1,\n [\"CITEREFGreer1986\"] = 1,\n [\"CITEREFGunter1620\"] = 1,\n [\"CITEREFHairerNørsettWanner1993\"] = 1,\n [\"CITEREFHallFrink1909\"] = 1,\n [\"CITEREFHedman1999\"] = 1,\n [\"CITEREFJohnson2002\"] = 1,\n [\"CITEREFKatz2004\"] = 1,\n [\"CITEREFKosinski2001\"] = 1,\n [\"CITEREFKrantz1999\"] = 1,\n [\"CITEREFLarsonEdwards2009\"] = 6,\n [\"CITEREFLaurel2004\"] = 1,\n [\"CITEREFLay2006\"] = 1,\n [\"CITEREFMacLaneBirkhoff1967\"] = 1,\n [\"CITEREFMacLaurin1748\"] = 1,\n [\"CITEREFMortimer2005\"] = 1,\n [\"CITEREFNeidinger2010\"] = 1,\n [\"CITEREFNunemacher1999\"] = 1,\n [\"CITEREFOlver2000\"] = 1,\n [\"CITEREFRoegel2010\"] = 1,\n [\"CITEREFSinha2008\"] = 1,\n [\"CITEREFSpivak1980\"] = 1,\n [\"CITEREFStalker1998\"] = 1,\n [\"CITEREFStewart2008\"] = 7,\n [\"CITEREFStrang2006\"] = 1,\n [\"CITEREFTaczanowski1978\"] = 1,\n [\"CITEREFThomasWeirHass2010\"] = 3,\n [\"CITEREFUno_Ingard1988\"] = 1,\n [\"CITEREFWilliamson1899\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 8,\n [\"=\"] = 2,\n [\"Block indent\"] = 1,\n [\"Calculus\"] = 1,\n [\"Calculus topics\"] = 1,\n [\"Circa\"] = 1,\n [\"Citation\"] = 9,\n [\"Citation needed\"] = 2,\n [\"Cite book\"] = 37,\n [\"Cite journal\"] = 6,\n [\"Cite web\"] = 14,\n [\"Compact ToC\"] = 1,\n [\"Defn\"] = 184,\n [\"Glossaries of science and engineering\"] = 1,\n [\"Glossary\"] = 22,\n [\"Glossary end\"] = 22,\n [\"Harv\"] = 2,\n [\"Harvnb\"] = 2,\n [\"Harvs\"] = 1,\n [\"Harvtxt\"] = 2,\n [\"ISBN\"] = 6,\n [\"Infinitesimals\"] = 1,\n [\"Integral\"] = 1,\n [\"Large\"] = 2,\n [\"Math\"] = 91,\n [\"MathWorld\"] = 2,\n [\"Mvar\"] = 33,\n [\"Nowrap\"] = 3,\n [\"OEIS2C\"] = 1,\n [\"Pn\"] = 4,\n [\"Prime\"] = 3,\n [\"Reflist\"] = 4,\n [\"Rp\"] = 1,\n [\"Short description\"] = 1,\n [\"Space\"] = 1,\n [\"Ssup\"] = 1,\n [\"Term\"] = 184,\n [\"Val\"] = 1,\n [\"Var\"] = 9,\n [\"Webarchive\"] = 2,\n [\"\\\\Delta t\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-api-ext.codfw.main-65c9bb7d57-xtbpl","timestamp":"20241206075657","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Glossary of calculus","url":"https:\/\/en.wikipedia.org\/wiki\/Glossary_of_calculus","sameAs":"http:\/\/www.wikidata.org\/entity\/Q30680459","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q30680459","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2017-02-20T19:35:48Z","dateModified":"2024-11-24T13:00:36Z","headline":"List of definitions of terms and concepts related to calculus"}</script> </body> </html>