CINXE.COM

Geodesic - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Geodesic - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"b3ec80ac-b035-4030-b631-91f300197ae0","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Geodesic","wgTitle":"Geodesic","wgCurRevisionId":1283307559,"wgRevisionId":1283307559,"wgArticleId":91096,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","All articles with unsourced statements","Articles with unsourced statements from May 2018","Articles to be expanded from June 2014","All articles to be expanded","Pages displaying short descriptions of redirect targets via Module:Annotated link","Commons category link is on Wikidata","Articles lacking in-text citations from July 2014","All articles lacking in-text citations","Differential geometry","Geodesic (mathematics)"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Geodesic","wgRelevantArticleId":91096,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q213488","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGELevelingUpEnabledForUser":false}; RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.22"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Klein_quartic_with_closed_geodesics.svg/1200px-Klein_quartic_with_closed_geodesics.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1171"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Klein_quartic_with_closed_geodesics.svg/800px-Klein_quartic_with_closed_geodesics.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="781"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Klein_quartic_with_closed_geodesics.svg/640px-Klein_quartic_with_closed_geodesics.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="624"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Geodesic - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Geodesic"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Geodesic&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Geodesic"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="auth.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Geodesic rootpage-Geodesic skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Geodesic" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Geodesic" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Geodesic" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Geodesic" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Introduction" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Introduction"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Introduction</span> </div> </a> <button aria-controls="toc-Introduction-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Introduction subsection</span> </button> <ul id="toc-Introduction-sublist" class="vector-toc-list"> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Triangles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Triangles"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Triangles</span> </div> </a> <ul id="toc-Triangles-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Metric_geometry" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Metric_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Metric geometry</span> </div> </a> <ul id="toc-Metric_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Riemannian_geometry" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Riemannian_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Riemannian geometry</span> </div> </a> <button aria-controls="toc-Riemannian_geometry-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Riemannian geometry subsection</span> </button> <ul id="toc-Riemannian_geometry-sublist" class="vector-toc-list"> <li id="toc-Calculus_of_variations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Calculus_of_variations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Calculus of variations</span> </div> </a> <ul id="toc-Calculus_of_variations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Affine_geodesics" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Affine_geodesics"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Affine geodesics</span> </div> </a> <button aria-controls="toc-Affine_geodesics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Affine geodesics subsection</span> </button> <ul id="toc-Affine_geodesics-sublist" class="vector-toc-list"> <li id="toc-Existence_and_uniqueness" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Existence_and_uniqueness"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Existence and uniqueness</span> </div> </a> <ul id="toc-Existence_and_uniqueness-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geodesic_flow" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geodesic_flow"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Geodesic flow</span> </div> </a> <ul id="toc-Geodesic_flow-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geodesic_spray" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geodesic_spray"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Geodesic spray</span> </div> </a> <ul id="toc-Geodesic_spray-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Affine_and_projective_geodesics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Affine_and_projective_geodesics"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Affine and projective geodesics</span> </div> </a> <ul id="toc-Affine_and_projective_geodesics-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Computational_methods" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Computational_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Computational methods</span> </div> </a> <ul id="toc-Computational_methods-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ribbon_test" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ribbon_test"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Ribbon test</span> </div> </a> <ul id="toc-Ribbon_test-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples_of_applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples_of_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Examples of applications</span> </div> </a> <button aria-controls="toc-Examples_of_applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples of applications subsection</span> </button> <ul id="toc-Examples_of_applications-sublist" class="vector-toc-list"> <li id="toc-Topology_and_geometric_group_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Topology_and_geometric_group_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Topology and geometric group theory</span> </div> </a> <ul id="toc-Topology_and_geometric_group_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Probability,_statistics_and_machine_learning" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability,_statistics_and_machine_learning"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Probability, statistics and machine learning</span> </div> </a> <ul id="toc-Probability,_statistics_and_machine_learning-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Physics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Physics"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Physics</span> </div> </a> <ul id="toc-Physics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Biology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Biology"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Biology</span> </div> </a> <ul id="toc-Biology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Engineering" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Engineering"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.5</span> <span>Engineering</span> </div> </a> <ul id="toc-Engineering-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Geodesic</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 42 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-42" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">42 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AE%D8%B7_%D9%85%D8%AA%D9%82%D8%A7%D8%B5%D8%B1" title="خط متقاصر – Arabic" lang="ar" hreflang="ar" data-title="خط متقاصر" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AD%E0%A7%82%E0%A6%AE%E0%A6%BF%E0%A6%A4%E0%A6%BF%E0%A6%95_%E0%A6%AC%E0%A6%95%E0%A7%8D%E0%A6%B0%E0%A6%B0%E0%A7%87%E0%A6%96%E0%A6%BE" title="ভূমিতিক বক্ররেখা – Bangla" lang="bn" hreflang="bn" data-title="ভূমিতিক বক্ররেখা" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Geod%C3%A8sica" title="Geodèsica – Catalan" lang="ca" hreflang="ca" data-title="Geodèsica" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%B4%D0%B5%D0%B7%D0%B8%D0%BB%D0%BB%D0%B5_%D0%B9%C4%95%D1%80" title="Геодезилле йĕр – Chuvash" lang="cv" hreflang="cv" data-title="Геодезилле йĕр" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Geodetika" title="Geodetika – Czech" lang="cs" hreflang="cs" data-title="Geodetika" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Geod%C3%A4te" title="Geodäte – German" lang="de" hreflang="de" data-title="Geodäte" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Geodeetiline_joon" title="Geodeetiline joon – Estonian" lang="et" hreflang="et" data-title="Geodeetiline joon" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%93%CE%B5%CF%89%CE%B4%CE%B1%CE%B9%CF%83%CE%B9%CE%B1%CE%BA%CE%AE" title="Γεωδαισιακή – Greek" lang="el" hreflang="el" data-title="Γεωδαισιακή" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/L%C3%ADnea_geod%C3%A9sica" title="Línea geodésica – Spanish" lang="es" hreflang="es" data-title="Línea geodésica" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Geodezia_linio" title="Geodezia linio – Esperanto" lang="eo" hreflang="eo" data-title="Geodezia linio" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%DA%98%D8%A6%D9%88%D8%AF%D8%B2%DB%8C%DA%A9" title="ژئودزیک – Persian" lang="fa" hreflang="fa" data-title="ژئودزیک" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/G%C3%A9od%C3%A9sique" title="Géodésique – French" lang="fr" hreflang="fr" data-title="Géodésique" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Geodasach" title="Geodasach – Irish" lang="ga" hreflang="ga" data-title="Geodasach" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Xeod%C3%A9sica" title="Xeodésica – Galician" lang="gl" hreflang="gl" data-title="Xeodésica" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%B8%A1%EC%A7%80%EC%84%A0" title="측지선 – Korean" lang="ko" hreflang="ko" data-title="측지선" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B3%D5%A5%D5%B8%D5%A4%D5%A5%D5%A6%D5%AB%D5%AF_%D5%A3%D5%AE%D5%A5%D6%80" title="Գեոդեզիկ գծեր – Armenian" lang="hy" hreflang="hy" data-title="Գեոդեզիկ գծեր" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Geodesik" title="Geodesik – Indonesian" lang="id" hreflang="id" data-title="Geodesik" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Geodetica" title="Geodetica – Italian" lang="it" hreflang="it" data-title="Geodetica" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A1%D7%99%D7%9C%D7%94_%D7%92%D7%90%D7%95%D7%93%D7%96%D7%99%D7%AA" title="מסילה גאודזית – Hebrew" lang="he" hreflang="he" data-title="מסילה גאודזית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%B4%D0%B5%D0%B7%D0%B8%D1%8F%D0%BB%D1%8B%D2%9B_%D1%81%D1%8B%D0%B7%D1%8B%D2%9B%D1%82%D0%B0%D1%80" title="Геодезиялық сызықтар – Kazakh" lang="kk" hreflang="kk" data-title="Геодезиялық сызықтар" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Geodetesch_Linn" title="Geodetesch Linn – Luxembourgish" lang="lb" hreflang="lb" data-title="Geodetesch Linn" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luxembourgish" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Geodezin%C4%97_kreiv%C4%97" title="Geodezinė kreivė – Lithuanian" lang="lt" hreflang="lt" data-title="Geodezinė kreivė" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Geodetikus_vonalak" title="Geodetikus vonalak – Hungarian" lang="hu" hreflang="hu" data-title="Geodetikus vonalak" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Geodeet_(wiskunde)" title="Geodeet (wiskunde) – Dutch" lang="nl" hreflang="nl" data-title="Geodeet (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%B8%AC%E5%9C%B0%E7%B7%9A" title="測地線 – Japanese" lang="ja" hreflang="ja" data-title="測地線" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Geodetisk_kurve" title="Geodetisk kurve – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Geodetisk kurve" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Geodetisk_kurve" title="Geodetisk kurve – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Geodetisk kurve" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Geodezik_chiziq" title="Geodezik chiziq – Uzbek" lang="uz" hreflang="uz" data-title="Geodezik chiziq" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Linia_geodezyjna" title="Linia geodezyjna – Polish" lang="pl" hreflang="pl" data-title="Linia geodezyjna" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Geod%C3%A9sica" title="Geodésica – Portuguese" lang="pt" hreflang="pt" data-title="Geodésica" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Geodezic%C4%83" title="Geodezică – Romanian" lang="ro" hreflang="ro" data-title="Geodezică" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%B4%D0%B5%D0%B7%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F" title="Геодезическая – Russian" lang="ru" hreflang="ru" data-title="Геодезическая" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Geodesic" title="Geodesic – Simple English" lang="en-simple" hreflang="en-simple" data-title="Geodesic" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Geodetka" title="Geodetka – Slovenian" lang="sl" hreflang="sl" data-title="Geodetka" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%B4%D0%B5%D0%B7%D0%B8%D1%98%D1%81%D0%BA%D0%B0_%D0%BB%D0%B8%D0%BD%D0%B8%D1%98%D0%B0" title="Геодезијска линија – Serbian" lang="sr" hreflang="sr" data-title="Геодезијска линија" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Geodezijska_linija" title="Geodezijska linija – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Geodezijska linija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Geodeesi" title="Geodeesi – Finnish" lang="fi" hreflang="fi" data-title="Geodeesi" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Jeodezik" title="Jeodezik – Turkish" lang="tr" hreflang="tr" data-title="Jeodezik" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%B4%D0%B5%D0%B7%D0%B8%D1%87%D0%BD%D0%B0_%D0%BB%D1%96%D0%BD%D1%96%D1%8F" title="Геодезична лінія – Ukrainian" lang="uk" hreflang="uk" data-title="Геодезична лінія" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/%C4%90%C6%B0%E1%BB%9Dng_tr%E1%BA%AFc_%C4%91%E1%BB%8Ba" title="Đường trắc địa – Vietnamese" lang="vi" hreflang="vi" data-title="Đường trắc địa" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E6%B8%AC%E5%9C%B0%E7%B7%9A" title="測地線 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="測地線" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%B5%8B%E5%9C%B0%E7%BA%BF" title="测地线 – Chinese" lang="zh" hreflang="zh" data-title="测地线" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q213488#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Geodesic" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Geodesic" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Geodesic"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Geodesic&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Geodesic&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Geodesic"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Geodesic&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Geodesic&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Geodesic" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Geodesic" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Geodesic&amp;oldid=1283307559" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Geodesic&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Geodesic&amp;id=1283307559&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGeodesic"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGeodesic"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Geodesic&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Geodesic&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Geodesic_(mathematics)" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/Geodesic" hreflang="en"><span>Wikiquote</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://en.wikiversity.org/wiki/PlanetPhysics/Geodesic" hreflang="en"><span>Wikiversity</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q213488" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Straight path on a curved surface or a Riemannian manifold</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about geodesics in general. For geodesics in general relativity, see <a href="/wiki/Geodesic_(general_relativity)" class="mw-redirect" title="Geodesic (general relativity)">Geodesic (general relativity)</a>. For the study of Earth's shape, see <a href="/wiki/Geodesy" title="Geodesy">Geodesy</a>. For the application on Earth, see <a href="/wiki/Earth_geodesic" class="mw-redirect" title="Earth geodesic">Earth geodesic</a>. For other uses, see <a href="/wiki/Geodesic_(disambiguation)" class="mw-disambig" title="Geodesic (disambiguation)">Geodesic (disambiguation)</a>.</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Klein_quartic_with_closed_geodesics.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Klein_quartic_with_closed_geodesics.svg/220px-Klein_quartic_with_closed_geodesics.svg.png" decoding="async" width="220" height="215" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Klein_quartic_with_closed_geodesics.svg/330px-Klein_quartic_with_closed_geodesics.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Klein_quartic_with_closed_geodesics.svg/440px-Klein_quartic_with_closed_geodesics.svg.png 2x" data-file-width="2060" data-file-height="2010" /></a><figcaption><a href="/wiki/Klein_quartic" title="Klein quartic">Klein quartic</a> with 28 geodesics <small>(marked by 7 colors and 4 patterns)</small></figcaption></figure> <p>In <a href="/wiki/Geometry" title="Geometry">geometry</a>, a <b>geodesic</b> (<span class="rt-commentedText nowrap"><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="/ˌ/: secondary stress follows">ˌ</span><span title="/dʒ/: &#39;j&#39; in &#39;jam&#39;">dʒ</span><span title="/iː/: &#39;ee&#39; in &#39;fleece&#39;">iː</span><span title="/./: syllable break">.</span><span title="/ə/: &#39;a&#39; in &#39;about&#39;">ə</span><span title="/ˈ/: primary stress follows">ˈ</span><span title="&#39;d&#39; in &#39;dye&#39;">d</span><span title="/ɛ/: &#39;e&#39; in &#39;dress&#39;">ɛ</span><span title="&#39;s&#39; in &#39;sigh&#39;">s</span><span title="/ɪ/: &#39;i&#39; in &#39;kit&#39;">ɪ</span><span title="&#39;k&#39; in &#39;kind&#39;">k</span></span>,<span class="wrap"> </span>-<span style="border-bottom:1px dotted"><span title="/oʊ/: &#39;o&#39; in &#39;code&#39;">oʊ</span></span>-,<span class="wrap"> </span>-<span style="border-bottom:1px dotted"><span title="/ˈ/: primary stress follows">ˈ</span><span title="&#39;d&#39; in &#39;dye&#39;">d</span><span title="/iː/: &#39;ee&#39; in &#39;fleece&#39;">iː</span><span title="&#39;s&#39; in &#39;sigh&#39;">s</span><span title="/ɪ/: &#39;i&#39; in &#39;kit&#39;">ɪ</span><span title="&#39;k&#39; in &#39;kind&#39;">k</span></span>,<span class="wrap"> </span>-<span style="border-bottom:1px dotted"><span title="&#39;z&#39; in &#39;zoom&#39;">z</span><span title="/ɪ/: &#39;i&#39; in &#39;kit&#39;">ɪ</span><span title="&#39;k&#39; in &#39;kind&#39;">k</span></span>/</a></span></span>)<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> is a <a href="/wiki/Curve" title="Curve">curve</a> representing in some sense the locally<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> shortest<sup id="cite_ref-pseudo_4-0" class="reference"><a href="#cite_note-pseudo-4"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> path (<a href="/wiki/Arc_(geometry)" class="mw-redirect" title="Arc (geometry)">arc</a>) between two points in a <a href="/wiki/Differential_geometry_of_surfaces" title="Differential geometry of surfaces">surface</a>, or more generally in a <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a>. The term also has meaning in any <a href="/wiki/Differentiable_manifold" title="Differentiable manifold">differentiable manifold</a> with a <a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">connection</a>. It is a generalization of the notion of a "<a href="/wiki/Line_(geometry)" title="Line (geometry)">straight line</a>". </p><p>The noun <i><a href="https://en.wiktionary.org/wiki/geodesic" class="extiw" title="wikt:geodesic">geodesic</a></i> and the adjective <i><a href="https://en.wiktionary.org/wiki/geodetic" class="extiw" title="wikt:geodetic">geodetic</a></i> come from <i><a href="/wiki/Geodesy" title="Geodesy">geodesy</a></i>, the science of measuring the size and shape of <a href="/wiki/Earth" title="Earth">Earth</a>, though many of the underlying principles can be applied to any <a href="/wiki/Ellipsoidal_geodesic" class="mw-redirect" title="Ellipsoidal geodesic">ellipsoidal</a> geometry. In the original sense, a geodesic was the shortest route between two points on the Earth's <a href="/wiki/Planetary_surface" title="Planetary surface">surface</a>. For a <a href="/wiki/Spherical_Earth" title="Spherical Earth">spherical Earth</a>, it is a <a href="/wiki/Line_segment" title="Line segment">segment</a> of a <a href="/wiki/Great_circle" title="Great circle">great circle</a> (see also <a href="/wiki/Great-circle_distance" title="Great-circle distance">great-circle distance</a>). The term has since been generalized to more abstract mathematical spaces; for example, in <a href="/wiki/Graph_theory" title="Graph theory">graph theory</a>, one might consider a <a href="/wiki/Distance_(graph_theory)" title="Distance (graph theory)">geodesic</a> between two <a href="/wiki/Vertex_(graph_theory)" title="Vertex (graph theory)">vertices</a>/nodes of a <a href="/wiki/Graph_(discrete_mathematics)" title="Graph (discrete mathematics)">graph</a>. </p><p>In a <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a> or submanifold, geodesics are characterised by the property of having vanishing <a href="/wiki/Geodesic_curvature" title="Geodesic curvature">geodesic curvature</a>. More generally, in the presence of an <a href="/wiki/Affine_connection" title="Affine connection">affine connection</a>, a geodesic is defined to be a curve whose <a href="/wiki/Tangent_space" title="Tangent space">tangent vectors</a> remain parallel if they are <a href="/wiki/Parallel_transport" title="Parallel transport">transported</a> along it. Applying this to the <a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a> of a <a href="/wiki/Riemannian_metric" class="mw-redirect" title="Riemannian metric">Riemannian metric</a> recovers the previous notion. </p><p>Geodesics are of particular importance in <a href="/wiki/General_relativity" title="General relativity">general relativity</a>. Timelike <a href="/wiki/Geodesics_in_general_relativity" title="Geodesics in general relativity">geodesics in general relativity</a> describe the motion of <a href="/wiki/Free_fall" title="Free fall">free falling</a> <a href="/wiki/Test_particles" class="mw-redirect" title="Test particles">test particles</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Introduction">Introduction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=1" title="Edit section: Introduction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A locally shortest path between two given points in a curved space, assumed<sup id="cite_ref-pseudo_4-1" class="reference"><a href="#cite_note-pseudo-4"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> to be a <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a>, can be defined by using the <a href="/wiki/Equation" title="Equation">equation</a> for the <a href="/wiki/Arc_length" title="Arc length">length</a> of a <a href="/wiki/Curve" title="Curve">curve</a> (a function <i>f</i> from an <a href="/wiki/Open_interval" class="mw-redirect" title="Open interval">open interval</a> of <b><a href="/wiki/Real_number_line" class="mw-redirect" title="Real number line">R</a></b> to the space), and then minimizing this length between the points using the <a href="/wiki/Calculus_of_variations" title="Calculus of variations">calculus of variations</a>. This has some minor technical problems because there is an infinite-dimensional space of different ways to parameterize the shortest path. It is simpler to restrict the set of curves to those that are parameterized "with constant speed" 1, meaning that the distance from <i>f</i>(<i>s</i>) to <i>f</i>(<i>t</i>) along the curve equals |<i>s</i>&#8722;<i>t</i>|. Equivalently, a different quantity may be used, termed the energy of the curve; minimizing the energy leads to the same equations for a geodesic (here "constant velocity" is a consequence of minimization).<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2018)">citation needed</span></a></i>&#93;</sup> Intuitively, one can understand this second formulation by noting that an <a href="/wiki/Elastic_band" class="mw-redirect" title="Elastic band">elastic band</a> stretched between two points will contract its width, and in so doing will minimize its energy. The resulting shape of the band is a geodesic. </p><p>It is possible that several different curves between two points minimize the distance, as is the case for two diametrically opposite points on a sphere. In such a case, any of these curves is a geodesic. </p><p>A contiguous segment of a geodesic is again a geodesic. </p><p>In general, geodesics are not the same as "shortest curves" between two points, though the two concepts are closely related. The difference is that geodesics are only <i>locally</i> the shortest distance between points, and are parameterized with "constant speed". Going the "long way round" on a <a href="/wiki/Great_circle" title="Great circle">great circle</a> between two points on a sphere is a geodesic but not the shortest path between the points. The map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\to t^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\to t^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cae66039269f72a16ad4cf708b56b7f45d67d9cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.348ex; height:2.676ex;" alt="{\displaystyle t\to t^{2}}" /></span> from the unit interval on the real number line to itself gives the shortest path between 0 and 1, but is not a geodesic because the velocity of the corresponding motion of a point is not constant. </p><p>Geodesics are commonly seen in the study of <a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a> and more generally <a href="/wiki/Metric_geometry" class="mw-redirect" title="Metric geometry">metric geometry</a>. In <a href="/wiki/General_relativity" title="General relativity">general relativity</a>, geodesics in <a href="/wiki/Spacetime" title="Spacetime">spacetime</a> describe the motion of <a href="/wiki/Point_particle" title="Point particle">point particles</a> under the influence of gravity alone. In particular, the path taken by a falling rock, an orbiting <a href="/wiki/Satellite" title="Satellite">satellite</a>, or the shape of a <a href="/wiki/Planetary_orbit" class="mw-redirect" title="Planetary orbit">planetary orbit</a> are all geodesics<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>c<span class="cite-bracket">&#93;</span></a></sup> in curved spacetime. More generally, the topic of <a href="/wiki/Sub-Riemannian_geometry" class="mw-redirect" title="Sub-Riemannian geometry">sub-Riemannian geometry</a> deals with the paths that objects may take when they are not free, and their movement is constrained in various ways. </p><p>This article presents the mathematical formalism involved in defining, finding, and proving the existence of geodesics, in the case of <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifolds</a>. The article <a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a> discusses the more general case of a <a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">pseudo-Riemannian manifold</a> and <a href="/wiki/Geodesic_(general_relativity)" class="mw-redirect" title="Geodesic (general relativity)">geodesic (general relativity)</a> discusses the special case of general relativity in greater detail. </p> <div class="mw-heading mw-heading3"><h3 id="Examples">Examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=2" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Transpolar_geodesic_on_a_triaxial_ellipsoid_case_A.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Transpolar_geodesic_on_a_triaxial_ellipsoid_case_A.svg/250px-Transpolar_geodesic_on_a_triaxial_ellipsoid_case_A.svg.png" decoding="async" width="220" height="202" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Transpolar_geodesic_on_a_triaxial_ellipsoid_case_A.svg/330px-Transpolar_geodesic_on_a_triaxial_ellipsoid_case_A.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Transpolar_geodesic_on_a_triaxial_ellipsoid_case_A.svg/500px-Transpolar_geodesic_on_a_triaxial_ellipsoid_case_A.svg.png 2x" data-file-width="512" data-file-height="469" /></a><figcaption> A <a href="/wiki/Geodesics_on_a_triaxial_ellipsoid" class="mw-redirect" title="Geodesics on a triaxial ellipsoid">geodesic on a triaxial ellipsoid</a>.</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Insect_on_a_torus_tracing_out_a_non-trivial_geodesic.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Insect_on_a_torus_tracing_out_a_non-trivial_geodesic.gif/250px-Insect_on_a_torus_tracing_out_a_non-trivial_geodesic.gif" decoding="async" width="220" height="218" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Insect_on_a_torus_tracing_out_a_non-trivial_geodesic.gif/330px-Insect_on_a_torus_tracing_out_a_non-trivial_geodesic.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/6/6a/Insect_on_a_torus_tracing_out_a_non-trivial_geodesic.gif 2x" data-file-width="364" data-file-height="360" /></a><figcaption>If an insect is placed on a surface and continually walks "forward", by definition it will trace out a geodesic.</figcaption></figure> <p>The most familiar examples are the straight lines in <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a>. On a <a href="/wiki/Sphere" title="Sphere">sphere</a>, the images of geodesics are the <a href="/wiki/Great_circle" title="Great circle">great circles</a>. The shortest path from point <i>A</i> to point <i>B</i> on a sphere is given by the shorter <a href="/wiki/Arc_(geometry)" class="mw-redirect" title="Arc (geometry)">arc</a> of the great circle passing through <i>A</i> and <i>B</i>. If <i>A</i> and <i>B</i> are <a href="/wiki/Antipodal_point" title="Antipodal point">antipodal points</a>, then there are <i>infinitely many</i> shortest paths between them. <a href="/wiki/Geodesics_on_an_ellipsoid" title="Geodesics on an ellipsoid">Geodesics on an ellipsoid</a> behave in a more complicated way than on a sphere; in particular, they are not closed in general (see figure). </p> <div class="mw-heading mw-heading3"><h3 id="Triangles">Triangles<span class="anchor" id="Triangle"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=3" title="Edit section: Triangles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Gauss%E2%80%93Bonnet_theorem#For_triangles" title="Gauss–Bonnet theorem">Gauss–Bonnet theorem §&#160;For triangles</a>, and <a href="/wiki/Toponogov%27s_theorem" title="Toponogov&#39;s theorem">Toponogov's theorem</a></div> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Spherical_triangle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Spherical_triangle.svg/220px-Spherical_triangle.svg.png" decoding="async" width="220" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Spherical_triangle.svg/330px-Spherical_triangle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Spherical_triangle.svg/440px-Spherical_triangle.svg.png 2x" data-file-width="356" data-file-height="358" /></a><figcaption><span class="anchor" id="Triangle"></span>A geodesic triangle on the sphere.</figcaption></figure> <p>A <b>geodesic triangle</b> is formed by the geodesics joining each pair out of three points on a given surface. On the sphere, the geodesics are <a href="/wiki/Great_circle" title="Great circle">great circle</a> arcs, forming a <a href="/wiki/Spherical_triangle" class="mw-redirect" title="Spherical triangle">spherical triangle</a>. </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:End_of_universe.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/98/End_of_universe.jpg/250px-End_of_universe.jpg" decoding="async" width="220" height="198" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/98/End_of_universe.jpg/330px-End_of_universe.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/98/End_of_universe.jpg/500px-End_of_universe.jpg 2x" data-file-width="557" data-file-height="501" /></a><figcaption>Geodesic triangles in spaces of positive (top), negative (middle) and zero (bottom) curvature.</figcaption></figure> <div class="mw-heading mw-heading2"><h2 id="Metric_geometry">Metric geometry</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=4" title="Edit section: Metric geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Metric_geometry" class="mw-redirect" title="Metric geometry">metric geometry</a>, a geodesic is a curve which is everywhere <a href="/wiki/Locally" class="mw-redirect" title="Locally">locally</a> a <a href="/wiki/Distance" title="Distance">distance</a> minimizer. More precisely, a <a href="/wiki/Curve" title="Curve">curve</a> <span class="nowrap"><i>γ</i>&#160;: <i>I</i> → <i>M</i></span> from an interval <i>I</i> of the reals to the <a href="/wiki/Metric_space" title="Metric space">metric space</a> <i>M</i> is a <b>geodesic</b> if there is a <a href="/wiki/Mathematical_constant" title="Mathematical constant">constant</a> <span class="nowrap"><i>v</i> ≥ 0</span> such that for any <span class="nowrap"><i>t</i> ∈ <i>I</i></span> there is a neighborhood <i>J</i> of <i>t</i> in <i>I</i> such that for any <span class="nowrap"><i>t</i><sub>1</sub>, <i>t</i><sub>2</sub> ∈ <i>J</i></span> we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(\gamma (t_{1}),\gamma (t_{2}))=v\left|t_{1}-t_{2}\right|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>v</mi> <mrow> <mo>|</mo> <mrow> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(\gamma (t_{1}),\gamma (t_{2}))=v\left|t_{1}-t_{2}\right|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b56a4e4454cc0827d267bae9a964c33585e768fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.559ex; height:2.843ex;" alt="{\displaystyle d(\gamma (t_{1}),\gamma (t_{2}))=v\left|t_{1}-t_{2}\right|.}" /></span></dd></dl> <p>This generalizes the notion of geodesic for Riemannian manifolds. However, in metric geometry the geodesic considered is often equipped with <a href="/wiki/Curve#Lengths_of_curves" title="Curve">natural parameterization</a>, i.e. in the above identity <i>v</i>&#160;=&#160;1 and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(\gamma (t_{1}),\gamma (t_{2}))=\left|t_{1}-t_{2}\right|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(\gamma (t_{1}),\gamma (t_{2}))=\left|t_{1}-t_{2}\right|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11287438f7e92605867ca1c2db5038c59ee15413" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.044ex; height:2.843ex;" alt="{\displaystyle d(\gamma (t_{1}),\gamma (t_{2}))=\left|t_{1}-t_{2}\right|.}" /></span></dd></dl> <p>If the last equality is satisfied for all <span class="nowrap"><i>t</i><sub>1</sub>, <i>t</i><sub>2</sub> ∈ <i>I</i></span>, the geodesic is called a <b>minimizing geodesic</b> or <b>shortest path</b>. </p><p>In general, a metric space may have no geodesics, except constant curves. At the other extreme, any two points in a <a href="/wiki/Length_metric_space" class="mw-redirect" title="Length metric space">length metric space</a> are joined by a minimizing sequence of <a href="/wiki/Rectifiable_path" class="mw-redirect" title="Rectifiable path">rectifiable paths</a>, although this minimizing sequence need not converge to a geodesic. The <a href="/wiki/Hopf%E2%80%93Rinow_theorem#Variations_and_generalizations" title="Hopf–Rinow theorem">metric Hopf-Rinow theorem</a> provides situations where a length space is automatically a geodesic space. </p><p>Common examples of geodesic metric spaces that are often not manifolds include <a href="/wiki/Metric_graph" class="mw-redirect" title="Metric graph">metric graphs</a>, (locally compact) metric <a href="/wiki/Polyhedral_complex" title="Polyhedral complex">polyhedral complexes</a>, infinite-dimensional <a href="/wiki/Pre-Hilbert_space" class="mw-redirect" title="Pre-Hilbert space">pre-Hilbert spaces</a>, and <a href="/wiki/Real_tree" title="Real tree">real trees</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Riemannian_geometry">Riemannian geometry</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=5" title="Edit section: Riemannian geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}" /></span> with <a href="/wiki/Metric_tensor" title="Metric tensor">metric tensor</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}" /></span>, the length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}" /></span> of a continuously differentiable curve <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma :[a,b]\to M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> <mo>:</mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma :[a,b]\to M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5c2d8d0dd04be91ac24d40469cc8b8ad0c7057d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.811ex; height:2.843ex;" alt="{\displaystyle \gamma :[a,b]\to M}" /></span> is defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(\gamma )=\int _{a}^{b}{\sqrt {g_{\gamma (t)}({\dot {\gamma }}(t),{\dot {\gamma }}(t))}}\,dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222b;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </msqrt> </mrow> <mspace width="thinmathspace"></mspace> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(\gamma )=\int _{a}^{b}{\sqrt {g_{\gamma (t)}({\dot {\gamma }}(t),{\dot {\gamma }}(t))}}\,dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ae9ca89dad76e2b809679f1fd0583994e787b25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.728ex; height:6.343ex;" alt="{\displaystyle L(\gamma )=\int _{a}^{b}{\sqrt {g_{\gamma (t)}({\dot {\gamma }}(t),{\dot {\gamma }}(t))}}\,dt.}" /></span></dd></dl> <p>The distance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(p,q)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(p,q)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb7f759b2db30abcd9b048d406e829f2024b8f18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.298ex; height:2.843ex;" alt="{\displaystyle d(p,q)}" /></span> between two points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}" /></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}" /></span> is defined as the <a href="/wiki/Infimum" class="mw-redirect" title="Infimum">infimum</a> of the length taken over all continuous, piecewise continuously differentiable curves <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma :[a,b]\to M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> <mo>:</mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma :[a,b]\to M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5c2d8d0dd04be91ac24d40469cc8b8ad0c7057d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.811ex; height:2.843ex;" alt="{\displaystyle \gamma :[a,b]\to M}" /></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (a)=p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (a)=p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dfb27806aabe71d32f9bc23a4a626244a654cf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.569ex; height:2.843ex;" alt="{\displaystyle \gamma (a)=p}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (b)=q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (b)=q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d02ea030202865572f0dc7722fe335f3bfd5b15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.237ex; height:2.843ex;" alt="{\displaystyle \gamma (b)=q}" /></span>. In Riemannian geometry, all geodesics are locally distance-minimizing paths, but the converse is not true. In fact, only paths that are both locally distance minimizing and parameterized proportionately to arc-length are geodesics. </p><p>Another equivalent way of defining geodesics on a Riemannian manifold, is to define them as the minima of the following <a href="/wiki/Action_(physics)" title="Action (physics)">action</a> or <a href="/wiki/Energy_functional" class="mw-redirect" title="Energy functional">energy functional</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E(\gamma )={\frac {1}{2}}\int _{a}^{b}g_{\gamma (t)}({\dot {\gamma }}(t),{\dot {\gamma }}(t))\,dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">(</mo> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mo>&#x222b;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace"></mspace> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E(\gamma )={\frac {1}{2}}\int _{a}^{b}g_{\gamma (t)}({\dot {\gamma }}(t),{\dot {\gamma }}(t))\,dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fa0302001ee3cc35e8c1c29dc02b8b2d085dc47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.982ex; height:6.343ex;" alt="{\displaystyle E(\gamma )={\frac {1}{2}}\int _{a}^{b}g_{\gamma (t)}({\dot {\gamma }}(t),{\dot {\gamma }}(t))\,dt.}" /></span></dd></dl> <p>All minima of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}" /></span> are also minima of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}" /></span>, but <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}" /></span> is a bigger set since paths that are minima of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}" /></span> can be arbitrarily re-parameterized (without changing their length), while minima of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}" /></span> cannot. For a piecewise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd24bae0d7570018e828e19851902c09c618af91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.852ex; height:2.676ex;" alt="{\displaystyle C^{1}}" /></span> curve (more generally, a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W^{1,2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W^{1,2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a91c3dff0f80d3d454321241b8ed27d83f5c4418" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.841ex; height:2.676ex;" alt="{\displaystyle W^{1,2}}" /></span> curve), the <a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz inequality</a> gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(\gamma )^{2}\leq 2(b-a)E(\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <mi>&#x3b3;<!-- γ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2264;<!-- ≤ --></mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mi>E</mi> <mo stretchy="false">(</mo> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(\gamma )^{2}\leq 2(b-a)E(\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d848cf7d9065e25f5cefdc17acedf4c876ee3bf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.694ex; height:3.176ex;" alt="{\displaystyle L(\gamma )^{2}\leq 2(b-a)E(\gamma )}" /></span></dd></dl> <p>with equality if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(\gamma ',\gamma ')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <msup> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2032;</mo> </msup> <mo>,</mo> <msup> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(\gamma ',\gamma ')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96c86ff43d9ae3744e396df327237cc77750eab3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.888ex; height:3.009ex;" alt="{\displaystyle g(\gamma &#39;,\gamma &#39;)}" /></span> is equal to a constant a.e.; the path should be travelled at constant speed. It happens that minimizers of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E(\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">(</mo> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E(\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30d353d6e056e9968060a8aba14e65cad99f070b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.847ex; height:2.843ex;" alt="{\displaystyle E(\gamma )}" /></span> also minimize <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e65cf162a092b3d18163f0191345f4cf6e69b4db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.654ex; height:2.843ex;" alt="{\displaystyle L(\gamma )}" /></span>, because they turn out to be affinely parameterized, and the inequality is an equality. The usefulness of this approach is that the problem of seeking minimizers of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}" /></span> is a more robust variational problem. Indeed, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E(\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">(</mo> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E(\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30d353d6e056e9968060a8aba14e65cad99f070b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.847ex; height:2.843ex;" alt="{\displaystyle E(\gamma )}" /></span> is a "convex function" of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }" /></span>, so that within each isotopy class of "reasonable functions", one ought to expect existence, uniqueness, and regularity of minimizers. In contrast, "minimizers" of the functional <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e65cf162a092b3d18163f0191345f4cf6e69b4db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.654ex; height:2.843ex;" alt="{\displaystyle L(\gamma )}" /></span> are generally not very regular, because arbitrary reparameterizations are allowed. </p><p>The <a href="/wiki/Euler%E2%80%93Lagrange_equation" title="Euler–Lagrange equation">Euler–Lagrange equations</a> of motion for the functional <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}" /></span> are then given in local coordinates by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d^{2}x^{\lambda }}{dt^{2}}}+\Gamma _{\mu \nu }^{\lambda }{\frac {dx^{\mu }}{dt}}{\frac {dx^{\nu }}{dt}}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bb;<!-- λ --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <msubsup> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bb;<!-- λ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d^{2}x^{\lambda }}{dt^{2}}}+\Gamma _{\mu \nu }^{\lambda }{\frac {dx^{\mu }}{dt}}{\frac {dx^{\nu }}{dt}}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a18d97f24fcf5cc3e95f49644e096b9742dd2aa0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:26.015ex; height:6.009ex;" alt="{\displaystyle {\frac {d^{2}x^{\lambda }}{dt^{2}}}+\Gamma _{\mu \nu }^{\lambda }{\frac {dx^{\mu }}{dt}}{\frac {dx^{\nu }}{dt}}=0,}" /></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma _{\mu \nu }^{\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bb;<!-- λ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma _{\mu \nu }^{\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2ed711a5120b51b00a8bb4bdd696b6f38655ee2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.547ex; height:3.176ex;" alt="{\displaystyle \Gamma _{\mu \nu }^{\lambda }}" /></span> are the <a href="/wiki/Christoffel_symbols" title="Christoffel symbols">Christoffel symbols</a> of the metric. This is the <b>geodesic equation</b>, discussed <a href="#Affine_geodesics">below</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Calculus_of_variations">Calculus of variations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=6" title="Edit section: Calculus of variations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Techniques of the classical <a href="/wiki/Calculus_of_variations" title="Calculus of variations">calculus of variations</a> can be applied to examine the energy functional <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}" /></span>. The <a href="/wiki/First_variation" title="First variation">first variation</a> of energy is defined in local coordinates by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta E(\gamma )(\varphi )=\left.{\frac {\partial }{\partial t}}\right|_{t=0}E(\gamma +t\varphi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b4;<!-- δ --></mi> <mi>E</mi> <mo stretchy="false">(</mo> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>&#x3c6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mi>E</mi> <mo stretchy="false">(</mo> <mi>&#x3b3;<!-- γ --></mi> <mo>+</mo> <mi>t</mi> <mi>&#x3c6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta E(\gamma )(\varphi )=\left.{\frac {\partial }{\partial t}}\right|_{t=0}E(\gamma +t\varphi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37ab1157c6fecbaf96ca0d505e3fbbf1319233d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.585ex; height:6.009ex;" alt="{\displaystyle \delta E(\gamma )(\varphi )=\left.{\frac {\partial }{\partial t}}\right|_{t=0}E(\gamma +t\varphi ).}" /></span></dd></dl> <p>The <a href="/wiki/Critical_point_(mathematics)" title="Critical point (mathematics)">critical points</a> of the first variation are precisely the geodesics. The <a href="/w/index.php?title=Second_variation&amp;action=edit&amp;redlink=1" class="new" title="Second variation (page does not exist)">second variation</a> is defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta ^{2}E(\gamma )(\varphi ,\psi )=\left.{\frac {\partial ^{2}}{\partial s\,\partial t}}\right|_{s=t=0}E(\gamma +t\varphi +s\psi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x3b4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>E</mi> <mo stretchy="false">(</mo> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>&#x3c6;<!-- φ --></mi> <mo>,</mo> <mi>&#x3c8;<!-- ψ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>s</mi> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>=</mo> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mi>E</mi> <mo stretchy="false">(</mo> <mi>&#x3b3;<!-- γ --></mi> <mo>+</mo> <mi>t</mi> <mi>&#x3c6;<!-- φ --></mi> <mo>+</mo> <mi>s</mi> <mi>&#x3c8;<!-- ψ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta ^{2}E(\gamma )(\varphi ,\psi )=\left.{\frac {\partial ^{2}}{\partial s\,\partial t}}\right|_{s=t=0}E(\gamma +t\varphi +s\psi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3791963dc218251f64e22f4efec4f3bbb9709338" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:43.481ex; height:6.509ex;" alt="{\displaystyle \delta ^{2}E(\gamma )(\varphi ,\psi )=\left.{\frac {\partial ^{2}}{\partial s\,\partial t}}\right|_{s=t=0}E(\gamma +t\varphi +s\psi ).}" /></span></dd></dl> <p>In an appropriate sense, zeros of the second variation along a geodesic <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }" /></span> arise along <a href="/wiki/Jacobi_field" title="Jacobi field">Jacobi fields</a>. Jacobi fields are thus regarded as variations through geodesics. </p><p>By applying variational techniques from <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a>, one can also regard <a href="/wiki/Geodesics_as_Hamiltonian_flows" title="Geodesics as Hamiltonian flows">geodesics as Hamiltonian flows</a>. They are solutions of the associated <a href="/wiki/Hamilton_equation" class="mw-redirect" title="Hamilton equation">Hamilton equations</a>, with <a href="/wiki/Pseudo_Riemannian_metric" class="mw-redirect" title="Pseudo Riemannian metric">(pseudo-)Riemannian metric</a> taken as <a href="/wiki/Hamiltonian_mechanics" title="Hamiltonian mechanics">Hamiltonian</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Affine_geodesics">Affine geodesics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=7" title="Edit section: Affine geodesics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Geodesics_in_general_relativity" title="Geodesics in general relativity">Geodesics in general relativity</a></div> <p>A <b>geodesic</b> on a <a href="/wiki/Differentiable_manifold" title="Differentiable manifold">smooth manifold</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}" /></span> with an <a href="/wiki/Affine_connection" title="Affine connection">affine connection</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3d0e93b78c50237f9ea83d027e4ebbdaef354b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \nabla }" /></span> is defined as a <a href="/wiki/Curve" title="Curve">curve</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54fa4a5d64e164410e4a18106677bebefe1a1f1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.911ex; height:2.843ex;" alt="{\displaystyle \gamma (t)}" /></span> such that <a href="/wiki/Parallel_transport" title="Parallel transport">parallel transport</a> along the curve preserves the tangent vector to the curve, so </p> <style data-mw-deduplicate="TemplateStyles:r1266403038">.mw-parser-output table.numblk{border-collapse:collapse;border:none;margin-top:0;margin-right:0;margin-bottom:0}.mw-parser-output table.numblk>tbody>tr>td{vertical-align:middle;padding:0}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2){width:99%}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table{border-collapse:collapse;margin:0;border:none;width:100%}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td:first-child,.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td:last-child{padding:0 0.4ex}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td:nth-child(2){width:100%;padding:0}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:last-child>td{padding:0}.mw-parser-output table.numblk>tbody>tr>td:last-child{font-weight:bold}.mw-parser-output table.numblk.numblk-raw-n>tbody>tr>td:last-child{font-weight:unset}.mw-parser-output table.numblk>tbody>tr>td:last-child::before{content:"("}.mw-parser-output table.numblk>tbody>tr>td:last-child::after{content:")"}.mw-parser-output table.numblk.numblk-raw-n>tbody>tr>td:last-child::before,.mw-parser-output table.numblk.numblk-raw-n>tbody>tr>td:last-child::after{content:none}.mw-parser-output table.numblk>tbody>tr>td{border:none}.mw-parser-output table.numblk.numblk-border>tbody>tr>td{border:thin solid}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td{border:none}.mw-parser-output table.numblk.numblk-border>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td{border:thin solid}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:last-child>td{border-left:none;border-right:none;border-bottom:none}.mw-parser-output table.numblk.numblk-border>tbody>tr>td:nth-child(2)>table>tbody>tr:last-child>td{border-left:thin solid;border-right:thin solid;border-bottom:thin solid}.mw-parser-output table.numblk:target{color:var(--color-base,#202122);background-color:#cfe8fd}@media screen{html.skin-theme-clientpref-night .mw-parser-output table.numblk:target{color:var(--color-base,#eaecf0);background-color:#301702}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output table.numblk:target{color:var(--color-base,#eaecf0);background-color:#301702}}</style><table role="presentation" class="numblk" style="margin-left: 1.6em;"><tbody><tr><td class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla _{\dot {\gamma }}{\dot {\gamma }}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla _{\dot {\gamma }}{\dot {\gamma }}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/998d786a63d948705e7212f53917b10213171b02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:8.584ex; height:3.176ex;" alt="{\displaystyle \nabla _{\dot {\gamma }}{\dot {\gamma }}=0}" /></span></td> <td></td> <td class="nowrap"><span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span></td></tr></tbody></table> <p>at each point along the curve, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\gamma }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\gamma }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c250a2cd0b68db26e9663686345f6cee8074d5f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.676ex;" alt="{\displaystyle {\dot {\gamma }}}" /></span> is the derivative with respect to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}" /></span>. More precisely, in order to define the covariant derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\gamma }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\gamma }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c250a2cd0b68db26e9663686345f6cee8074d5f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.676ex;" alt="{\displaystyle {\dot {\gamma }}}" /></span> it is necessary first to extend <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\gamma }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\gamma }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c250a2cd0b68db26e9663686345f6cee8074d5f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.676ex;" alt="{\displaystyle {\dot {\gamma }}}" /></span> to a continuously differentiable <a href="/wiki/Vector_field" title="Vector field">vector field</a> in an <a href="/wiki/Open_set" title="Open set">open set</a>. However, the resulting value of (<b><a href="#math_1">1</a></b>) is independent of the choice of extension. </p><p>Using <a href="/wiki/Local_coordinates" title="Local coordinates">local coordinates</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}" /></span>, we can write the <b>geodesic equation</b> (using the <a href="/wiki/Summation_convention" class="mw-redirect" title="Summation convention">summation convention</a>) as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d^{2}\gamma ^{\lambda }}{dt^{2}}}+\Gamma _{\mu \nu }^{\lambda }{\frac {d\gamma ^{\mu }}{dt}}{\frac {d\gamma ^{\nu }}{dt}}=0\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bb;<!-- λ --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <msubsup> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bb;<!-- λ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bd;<!-- ν --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> <mtext>&#xa0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d^{2}\gamma ^{\lambda }}{dt^{2}}}+\Gamma _{\mu \nu }^{\lambda }{\frac {d\gamma ^{\mu }}{dt}}{\frac {d\gamma ^{\nu }}{dt}}=0\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18bad7ac47f0475ca9ec38a077a1e69adc8e10d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:26.446ex; height:6.176ex;" alt="{\displaystyle {\frac {d^{2}\gamma ^{\lambda }}{dt^{2}}}+\Gamma _{\mu \nu }^{\lambda }{\frac {d\gamma ^{\mu }}{dt}}{\frac {d\gamma ^{\nu }}{dt}}=0\ ,}" /></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ^{\mu }=x^{\mu }\circ \gamma (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> </mrow> </msup> <mo>&#x2218;<!-- ∘ --></mo> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ^{\mu }=x^{\mu }\circ \gamma (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89889b02694dae9b5f264b3d005100d8063d2890" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.261ex; height:2.843ex;" alt="{\displaystyle \gamma ^{\mu }=x^{\mu }\circ \gamma (t)}" /></span> are the coordinates of the curve <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54fa4a5d64e164410e4a18106677bebefe1a1f1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.911ex; height:2.843ex;" alt="{\displaystyle \gamma (t)}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma _{\mu \nu }^{\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bc;<!-- μ --></mi> <mi>&#x3bd;<!-- ν --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bb;<!-- λ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma _{\mu \nu }^{\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2ed711a5120b51b00a8bb4bdd696b6f38655ee2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.547ex; height:3.176ex;" alt="{\displaystyle \Gamma _{\mu \nu }^{\lambda }}" /></span> are the <a href="/wiki/Christoffel_symbol" class="mw-redirect" title="Christoffel symbol">Christoffel symbols</a> of the connection <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3d0e93b78c50237f9ea83d027e4ebbdaef354b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \nabla }" /></span>. This is an <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary differential equation</a> for the coordinates. It has a unique solution, given an initial position and an initial velocity. Therefore, from the point of view of <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a>, geodesics can be thought of as trajectories of <a href="/wiki/Free_particle" title="Free particle">free particles</a> in a manifold. Indeed, the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla _{\dot {\gamma }}{\dot {\gamma }}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla _{\dot {\gamma }}{\dot {\gamma }}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/998d786a63d948705e7212f53917b10213171b02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:8.584ex; height:3.176ex;" alt="{\displaystyle \nabla _{\dot {\gamma }}{\dot {\gamma }}=0}" /></span> means that the <a href="/wiki/Acceleration_(differential_geometry)" title="Acceleration (differential geometry)">acceleration vector</a> of the curve has no components in the direction of the surface (and therefore it is perpendicular to the tangent plane of the surface at each point of the curve). So, the motion is completely determined by the bending of the surface. This is also the idea of general relativity where particles move on geodesics and the bending is caused by gravity. </p> <div class="mw-heading mw-heading3"><h3 id="Existence_and_uniqueness">Existence and uniqueness</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=8" title="Edit section: Existence and uniqueness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <i>local existence and uniqueness theorem</i> for geodesics states that geodesics on a smooth manifold with an <a href="/wiki/Affine_connection" title="Affine connection">affine connection</a> exist, and are unique. More precisely: </p> <dl><dd>For any point <i>p</i> in <i>M</i> and for any vector <i>V</i> in <i>T<sub>p</sub>M</i> (the <a href="/wiki/Tangent_space" title="Tangent space">tangent space</a> to <i>M</i> at <i>p</i>) there exists a unique geodesic <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65da7961fee8269d576e5d06e838bf8695fc5179" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.649ex; height:2.176ex;" alt="{\displaystyle \gamma \,}" /></span>&#160;: <i>I</i> &#8594; <i>M</i> such that <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (0)=p\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>p</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (0)=p\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04dd0f3aedbf7f138571de442c02f5d10fc4a2ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.889ex; height:2.843ex;" alt="{\displaystyle \gamma (0)=p\,}" /></span> and</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\gamma }}(0)=V,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>V</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\gamma }}(0)=V,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce8f1fe7c7944140a317a9f37a43ebaabb9d0994" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.767ex; height:2.843ex;" alt="{\displaystyle {\dot {\gamma }}(0)=V,}" /></span></dd></dl></dd> <dd>where <i>I</i> is a maximal <a href="/wiki/Open_interval" class="mw-redirect" title="Open interval">open interval</a> in <b>R</b> containing 0.</dd></dl> <p>The proof of this theorem follows from the theory of <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary differential equations</a>, by noticing that the geodesic equation is a second-order ODE. Existence and uniqueness then follow from the <a href="/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem" title="Picard–Lindelöf theorem">Picard&#8211;Lindelöf theorem</a> for the solutions of ODEs with prescribed initial conditions. γ depends <a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function">smoothly</a> on both <i>p</i> and&#160;<i>V</i>. </p><p>In general, <i>I</i> may not be all of <b>R</b> as for example for an open disc in <b>R</b><sup>2</sup>. Any <span class="texhtml mvar" style="font-style:italic;">γ</span> extends to all of <span class="texhtml mvar" style="font-style:italic;">ℝ</span> if and only if <span class="texhtml mvar" style="font-style:italic;">M</span> is <a href="/wiki/Geodesic_manifold" class="mw-redirect" title="Geodesic manifold">geodesically complete</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Geodesic_flow">Geodesic flow<span class="anchor" id="Flow"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=9" title="Edit section: Geodesic flow"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b>Geodesic <a href="/wiki/Flow_(mathematics)" title="Flow (mathematics)">flow</a></b> is a local <b>R</b>-<a href="/wiki/Group_action_(mathematics)" class="mw-redirect" title="Group action (mathematics)">action</a> on the <a href="/wiki/Tangent_bundle" title="Tangent bundle">tangent bundle</a> <i>TM</i> of a manifold <i>M</i> defined in the following way </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G^{t}(V)={\dot {\gamma }}_{V}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G^{t}(V)={\dot {\gamma }}_{V}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ba0cb3eb1fec6233de4124531c25c1b57652f09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.755ex; height:3.009ex;" alt="{\displaystyle G^{t}(V)={\dot {\gamma }}_{V}(t)}" /></span></dd></dl> <p>where <i>t</i>&#160;∈&#160;<b>R</b>, <i>V</i>&#160;∈&#160;<i>TM</i> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{V}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{V}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e564896baedd0fbdb5645daa0e467d4c7efb412" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.7ex; height:2.176ex;" alt="{\displaystyle \gamma _{V}}" /></span> denotes the geodesic with initial data <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\gamma }}_{V}(0)=V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b3;<!-- γ --></mi> <mo>&#x2d9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\gamma }}_{V}(0)=V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/903b229c4679111a13875213b13b0c2b9c3262e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.616ex; height:2.843ex;" alt="{\displaystyle {\dot {\gamma }}_{V}(0)=V}" /></span>. Thus, <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G^{t}(V)=\exp(tV)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G^{t}(V)=\exp(tV)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b655902cadaf052c0ac81b65ca6b83c8d98a4ca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.336ex; height:3.009ex;" alt="{\displaystyle G^{t}(V)=\exp(tV)}" /></span> is the <a href="/wiki/Exponential_map_(Riemannian_geometry)" title="Exponential map (Riemannian geometry)">exponential map</a> of the vector </i>tV<i>. A closed orbit of the geodesic flow corresponds to a <a href="/wiki/Closed_geodesic" title="Closed geodesic">closed geodesic</a> on&#160;</i>M<i>.</i> </p><p>On a (pseudo-)Riemannian manifold, the geodesic flow is identified with a <a href="/wiki/Hamiltonian_flow" class="mw-redirect" title="Hamiltonian flow">Hamiltonian flow</a> on the cotangent bundle. The <a href="/wiki/Hamiltonian_mechanics" title="Hamiltonian mechanics">Hamiltonian</a> is then given by the inverse of the (pseudo-)Riemannian metric, evaluated against the <a href="/wiki/Canonical_one-form" class="mw-redirect" title="Canonical one-form">canonical one-form</a>. In particular the flow preserves the (pseudo-)Riemannian metric <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}" /></span>, i.e. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(G^{t}(V),G^{t}(V))=g(V,V).\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>.</mo> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(G^{t}(V),G^{t}(V))=g(V,V).\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a9387876b13605e6f4f5e98ce29f38347920b82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.124ex; height:3.009ex;" alt="{\displaystyle g(G^{t}(V),G^{t}(V))=g(V,V).\,}" /></span></dd></dl> <p>In particular, when <i>V</i> is a unit vector, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{V}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{V}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e564896baedd0fbdb5645daa0e467d4c7efb412" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.7ex; height:2.176ex;" alt="{\displaystyle \gamma _{V}}" /></span> remains unit speed throughout, so the geodesic flow is tangent to the <a href="/wiki/Unit_tangent_bundle" title="Unit tangent bundle">unit tangent bundle</a>. <a href="/wiki/Liouville%27s_theorem_(Hamiltonian)" title="Liouville&#39;s theorem (Hamiltonian)">Liouville's theorem</a> implies invariance of a kinematic measure on the unit tangent bundle. </p> <div class="mw-heading mw-heading3"><h3 id="Geodesic_spray">Geodesic spray</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=10" title="Edit section: Geodesic spray"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Spray_(mathematics)#Geodesic" title="Spray (mathematics)">Spray (mathematics) §&#160;Geodesic</a></div> <p>The geodesic flow defines a family of curves in the <a href="/wiki/Tangent_bundle" title="Tangent bundle">tangent bundle</a>. The derivatives of these curves define a <a href="/wiki/Vector_field" title="Vector field">vector field</a> on the <a href="/wiki/Total_space" class="mw-redirect" title="Total space">total space</a> of the tangent bundle, known as the <b>geodesic <a href="/wiki/Spray_(mathematics)" title="Spray (mathematics)">spray</a></b>. </p><p>More precisely, an affine connection gives rise to a splitting of the <a href="/wiki/Double_tangent_bundle" title="Double tangent bundle">double tangent bundle</a> TT<i>M</i> into <a href="/wiki/Horizontal_bundle" class="mw-redirect" title="Horizontal bundle">horizontal</a> and <a href="/wiki/Vertical_bundle" class="mw-redirect" title="Vertical bundle">vertical bundles</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle TTM=H\oplus V.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mi>T</mi> <mi>M</mi> <mo>=</mo> <mi>H</mi> <mo>&#x2295;<!-- ⊕ --></mo> <mi>V</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle TTM=H\oplus V.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/334c0c4fde35c86a0328b5d4e2e3022b0003d502" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:16.151ex; height:2.343ex;" alt="{\displaystyle TTM=H\oplus V.}" /></span></dd></dl> <p>The geodesic spray is the unique horizontal vector field <i>W</i> satisfying </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi _{*}W_{v}=v\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x3c0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>=</mo> <mi>v</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi _{*}W_{v}=v\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f0c75ac8678799b53cb17ce904bb310f9144ad6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.216ex; height:2.509ex;" alt="{\displaystyle \pi _{*}W_{v}=v\,}" /></span></dd></dl> <p>at each point <i>v</i>&#160;∈&#160;T<i>M</i>; here <span class="texhtml mvar" style="font-style:italic;">π</span><sub>∗</sub>&#160;:&#160;TT<i>M</i>&#160;→&#160;T<i>M</i> denotes the <a href="/wiki/Pushforward_(differential)" title="Pushforward (differential)">pushforward (differential)</a> along the projection <span class="texhtml mvar" style="font-style:italic;">π</span>&#160;:&#160;T<i>M</i>&#160;→&#160;<i>M</i> associated to the tangent bundle. </p><p>More generally, the same construction allows one to construct a vector field for any <a href="/wiki/Ehresmann_connection" title="Ehresmann connection">Ehresmann connection</a> on the tangent bundle. For the resulting vector field to be a spray (on the deleted tangent bundle T<i>M</i>&#160;\&#160;{0}) it is enough that the connection be equivariant under positive rescalings: it need not be linear. That is, (cf. <a href="/wiki/Ehresmann_connection#Vector_bundles_and_covariant_derivatives" title="Ehresmann connection">Ehresmann connection#Vector bundles and covariant derivatives</a>) it is enough that the horizontal distribution satisfy </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{\lambda X}=d(S_{\lambda })_{X}H_{X}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bb;<!-- λ --></mi> <mi>X</mi> </mrow> </msub> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bb;<!-- λ --></mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{\lambda X}=d(S_{\lambda })_{X}H_{X}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/808d3f4094599f4cb669dac4d360039fa3fc379b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.844ex; height:2.843ex;" alt="{\displaystyle H_{\lambda X}=d(S_{\lambda })_{X}H_{X}\,}" /></span></dd></dl> <p>for every <i>X</i>&#160;∈&#160;T<i>M</i>&#160;\&#160;{0} and λ&#160;&gt;&#160;0. Here <i>d</i>(<i>S</i><sub>λ</sub>) is the <a href="/wiki/Pushforward_(differential)" title="Pushforward (differential)">pushforward</a> along the scalar homothety <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{\lambda }:X\mapsto \lambda X.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x3bb;<!-- λ --></mi> </mrow> </msub> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x21a6;<!-- ↦ --></mo> <mi>&#x3bb;<!-- λ --></mi> <mi>X</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{\lambda }:X\mapsto \lambda X.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5429ef549abb15665109e613f45595cfd87978b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.129ex; height:2.509ex;" alt="{\displaystyle S_{\lambda }:X\mapsto \lambda X.}" /></span> A particular case of a non-linear connection arising in this manner is that associated to a <a href="/wiki/Finsler_manifold" title="Finsler manifold">Finsler manifold</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Affine_and_projective_geodesics">Affine and projective geodesics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=11" title="Edit section: Affine and projective geodesics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Equation (<b><a href="#math_1">1</a></b>) is invariant under affine reparameterizations; that is, parameterizations of the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\mapsto at+b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo stretchy="false">&#x21a6;<!-- ↦ --></mo> <mi>a</mi> <mi>t</mi> <mo>+</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\mapsto at+b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd2fda512d4d28d7d6fd88e0f4375677ff59c0c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.361ex; height:2.343ex;" alt="{\displaystyle t\mapsto at+b}" /></span></dd></dl> <p>where <i>a</i> and <i>b</i> are constant real numbers. Thus apart from specifying a certain class of embedded curves, the geodesic equation also determines a preferred class of parameterizations on each of the curves. Accordingly, solutions of (<b><a href="#math_1">1</a></b>) are called geodesics with <b>affine parameter</b>. </p><p>An affine connection is <i>determined by</i> its family of affinely parameterized geodesics, up to <a href="/wiki/Torsion_tensor" title="Torsion tensor">torsion</a> (<a href="#CITEREFSpivak1999">Spivak 1999</a>, Chapter 6, Addendum I). The torsion itself does not, in fact, affect the family of geodesics, since the geodesic equation depends only on the symmetric part of the connection. More precisely, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla ,{\bar {\nabla }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla ,{\bar {\nabla }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/401c936af8fa2f02701289eb7fb27fd86e74cbda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.906ex; height:2.843ex;" alt="{\displaystyle \nabla ,{\bar {\nabla }}}" /></span> are two connections such that the difference tensor </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(X,Y)=\nabla _{X}Y-{\bar {\nabla }}_{X}Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>Y</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(X,Y)=\nabla _{X}Y-{\bar {\nabla }}_{X}Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73a0284ec3aa869ef64bb4b57a3fc06073179636" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.143ex; height:3.009ex;" alt="{\displaystyle D(X,Y)=\nabla _{X}Y-{\bar {\nabla }}_{X}Y}" /></span></dd></dl> <p>is <a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">skew-symmetric</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3d0e93b78c50237f9ea83d027e4ebbdaef354b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \nabla }" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {\nabla }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {\nabla }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72c8395cfd87dab30d574e954445752b3bafc2c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.509ex;" alt="{\displaystyle {\bar {\nabla }}}" /></span> have the same geodesics, with the same affine parameterizations. Furthermore, there is a unique connection having the same geodesics as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3d0e93b78c50237f9ea83d027e4ebbdaef354b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \nabla }" /></span>, but with vanishing torsion. </p><p>Geodesics without a particular parameterization are described by a <a href="/wiki/Projective_connection" title="Projective connection">projective connection</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Computational_methods">Computational methods</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=12" title="Edit section: Computational methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Efficient solvers for the minimal geodesic problem on surfaces have been proposed by Mitchell,<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Kimmel,<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Crane,<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> and others. </p> <div class="mw-heading mw-heading2"><h2 id="Ribbon_test">Ribbon test</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=13" title="Edit section: Ribbon test"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1273380762/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner span:not(.skin-invert-image):not(.skin-invert):not(.bg-transparent) img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner span:not(.skin-invert-image):not(.skin-invert):not(.bg-transparent) img{background-color:white}}</style> <p>A ribbon "test" is a way of finding a geodesic on a physical surface.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> The idea is to fit a bit of paper around a straight line (a ribbon) onto a curved surface as closely as possible without stretching or squishing the ribbon (without changing its internal geometry). </p><p>For example, when a ribbon is wound as a ring around a cone, the ribbon would not lie on the cone's surface but stick out, so that circle is not a geodesic on the cone. If the ribbon is adjusted so that all its parts touch the cone's surface, it would give an approximation to a geodesic. </p><p>Mathematically the ribbon test can be formulated as finding a mapping <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:N(\ell )\to S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>N</mi> <mo stretchy="false">(</mo> <mi>&#x2113;<!-- ℓ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:N(\ell )\to S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69b0fb1f3ce903c3368a80fe809c8b1a6e9d6de0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.172ex; height:2.843ex;" alt="{\displaystyle f:N(\ell )\to S}" /></span> of a <a href="/wiki/Neighborhood_(mathematics)" class="mw-redirect" title="Neighborhood (mathematics)">neighborhood</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}" /></span> of a line <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x2113;<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }" /></span> in a plane into a surface <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}" /></span> so that the mapping <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}" /></span> "doesn't change the distances around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x2113;<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }" /></span> by much"; that is, at the distance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b5;<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30c89172e5b88edbd45d3e2772c7f5e562e5173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle \varepsilon }" /></span> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/829091f745070b9eb97a80244129025440a1cfac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.693ex; height:2.176ex;" alt="{\displaystyle l}" /></span> we have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{N}-f^{*}(g_{S})=O(\varepsilon ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>&#x3b5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{N}-f^{*}(g_{S})=O(\varepsilon ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0813580dcdb64027dc21fe46c233d0b86989f5fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.045ex; height:3.176ex;" alt="{\displaystyle g_{N}-f^{*}(g_{S})=O(\varepsilon ^{2})}" /></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54e484cdd4542405ed69cbc921f9f39cddbe9e46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.8ex; height:2.009ex;" alt="{\displaystyle g_{N}}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{S}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{S}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdab3e338698b6e41fb3889764ea6f3e2302acf5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.401ex; height:2.009ex;" alt="{\displaystyle g_{S}}" /></span> are <a href="/wiki/Metric_tensor" title="Metric tensor">metrics</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}" /></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Examples_of_applications">Examples of applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=14" title="Edit section: Examples of applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Expand_section plainlinks metadata ambox mbox-small-left ambox-content" role="presentation"><tbody><tr><td class="mbox-image"><span typeof="mw:File"><a href="/wiki/File:Wiki_letter_w_cropped.svg" class="mw-file-description"><img alt="[icon]" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/20px-Wiki_letter_w_cropped.svg.png" decoding="async" width="20" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/40px-Wiki_letter_w_cropped.svg.png 1.5x" data-file-width="44" data-file-height="31" /></a></span></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs expansion</b>. You can help by <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Geodesic&amp;action=edit&amp;section=">adding to it</a>. <span class="date-container"><i>(<span class="date">June 2014</span>)</i></span></div></td></tr></tbody></table> <p>While geometric in nature, the idea of a shortest path is so general that it easily finds extensive use in nearly all sciences, and in some other disciplines as well. </p> <div class="mw-heading mw-heading3"><h3 id="Topology_and_geometric_group_theory">Topology and geometric group theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=15" title="Edit section: Topology and geometric group theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>In a surface with negative <a href="/wiki/Euler_characteristic" title="Euler characteristic">Euler characteristic</a>, any (free) homotopy class determines a unique (closed) geodesic for a <a href="/wiki/Hyperbolic_surface" class="mw-redirect" title="Hyperbolic surface">hyperbolic</a> metric. These geodesics contribute significantly to the geometric understanding of the action of <a href="/wiki/Mapping_class_group_of_a_surface" title="Mapping class group of a surface">mapping classes</a>.</li> <li><a href="/wiki/Geodesic_metric_space" class="mw-redirect" title="Geodesic metric space">Geodesic metric spaces</a> and <a href="/wiki/Length_space" class="mw-redirect" title="Length space">length spaces</a> behave particularly well with isometric <a href="/wiki/Group_action" title="Group action">group actions</a> (<a href="/wiki/%C5%A0varc%E2%80%93Milnor_lemma" title="Švarc–Milnor lemma">Švarc-Milnor lemma</a>, <a href="/wiki/Hopf%E2%80%93Rinow_theorem#Variations_and_generalizations" title="Hopf–Rinow theorem">Hopf-Rinow theorem</a>, <a href="/wiki/Quasi-isometry#Quasigeodesics_and_the_Morse_lemma" title="Quasi-isometry">Morse lemma</a>...). They are often an adequate framework for generalizing results from Riemannian geometry to constructions that reflect the geometry of a group. For instance, <a href="/wiki/Hyperbolic_metric_space" title="Hyperbolic metric space">Gromov-hyperbolicity</a> can be understood in terms of geodesic triangle thinness, and <a href="/wiki/CAT(k)_space" title="CAT(k) space">CAT(0)</a> can be stated in terms of angles between geodesics.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Probability,_statistics_and_machine_learning"><span id="Probability.2C_statistics_and_machine_learning"></span>Probability, statistics and machine learning</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=16" title="Edit section: Probability, statistics and machine learning"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Optimal_transport" class="mw-redirect" title="Optimal transport">Optimal transport</a> can be understood as the problem of finding geodesic paths in spaces of measures.</li> <li>In <a href="/wiki/Information_geometry" title="Information geometry">information geometry</a>, <a href="/wiki/Divergence_(statistics)" title="Divergence (statistics)">divergences</a> such as the <a href="/wiki/Kullback%E2%80%93Leibler_divergence" title="Kullback–Leibler divergence">Kullback-Leibler divergence</a> play a role analogous to that of a Riemannian metric, allowing analogies for <a href="/wiki/Metric_connection" title="Metric connection">connections</a> and geodesics.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Physics">Physics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=17" title="Edit section: Physics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>In <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a>, <a href="/wiki/Trajectory" title="Trajectory">trajectories</a> minimize an energy according to the <a href="/wiki/Hamilton%E2%80%93Jacobi_equation" title="Hamilton–Jacobi equation">Hamilton-Jacobi equation</a>, which can be regarded as a similar idea to geodesics. In some special cases, <a href="/wiki/Geodesics_as_Hamiltonian_flows" title="Geodesics as Hamiltonian flows">the two notions actually coincide</a>.</li> <li><a href="/wiki/Theory_of_relativity" title="Theory of relativity">Relativity theory</a> models <a href="/wiki/Spacetime" title="Spacetime">spacetime</a> as a <a href="/wiki/Lorentzian_manifold" class="mw-redirect" title="Lorentzian manifold">Lorentzian manifold</a>, where light follows Lorentzian geodesics.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Biology">Biology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=18" title="Edit section: Biology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The study of how the <a href="/wiki/Nervous_system" title="Nervous system">nervous system</a> optimizes muscular movement may be approached by endowing a <a href="/wiki/Configuration_space_(physics)" title="Configuration space (physics)">configuration space</a> of the body with a <a href="/wiki/Riemannian_metric" class="mw-redirect" title="Riemannian metric">Riemannian metric</a> that measures the effort, so that the problem can be stated in terms of geodesy.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Geodesic_distance" class="mw-redirect" title="Geodesic distance">Geodesic distance</a> is often used to measure the length of paths for signal propagation in neurons.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup></li> <li>The structures of geodesics in large molecules plays a role in the study of <a href="/wiki/Protein_folds" class="mw-redirect" title="Protein folds">protein folds</a>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Engineering">Engineering</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=19" title="Edit section: Engineering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Geodesics serve as the basis to calculate: </p> <ul><li>geodesic airframes; see <a href="/wiki/Geodesic_airframe" class="mw-redirect" title="Geodesic airframe">geodesic airframe</a> or <a href="/wiki/Geodetic_airframe" title="Geodetic airframe">geodetic airframe</a></li> <li>geodesic structures – for example <a href="/wiki/Geodesic_domes" class="mw-redirect" title="Geodesic domes">geodesic domes</a></li> <li>horizontal distances on or near Earth; see <a href="/wiki/Earth_geodesics" class="mw-redirect" title="Earth geodesics">Earth geodesics</a></li> <li>mapping images on surfaces, for rendering; see <a href="/wiki/UV_mapping" title="UV mapping">UV mapping</a></li> <li>robot <a href="/wiki/Motion_planning" title="Motion planning">motion planning</a> (e.g., when painting car parts); see <a href="/wiki/Shortest_path_problem" title="Shortest path problem">Shortest path problem</a></li> <li>geodesic shortest path (GSP) correction over <a href="/wiki/Poisson_surface_reconstruction" class="mw-redirect" title="Poisson surface reconstruction">Poisson surface reconstruction</a> (e.g. in <a href="/wiki/Digital_dentistry" title="Digital dentistry">digital dentistry</a>); without GSP reconstruction often results in self-intersections within the surface</li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=20" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/Introduction_to_the_mathematics_of_general_relativity" title="Introduction to the mathematics of general relativity">Introduction to the mathematics of general relativity</a></li> <li><a href="/wiki/Clairaut%27s_relation" class="mw-redirect" title="Clairaut&#39;s relation">Clairaut's relation</a>&#160;– Formula in classical differential geometry<span style="display:none" class="category-annotation-with-redirected-description">Pages displaying short descriptions of redirect targets</span></li> <li><a href="/wiki/Differentiable_curve" title="Differentiable curve">Differentiable curve</a>&#160;– Study of curves from a differential point of view</li> <li><a href="/wiki/Differential_geometry_of_surfaces" title="Differential geometry of surfaces">Differential geometry of surfaces</a></li> <li><a href="/wiki/Geodesic_circle" title="Geodesic circle">Geodesic circle</a></li> <li><a href="/wiki/Hopf%E2%80%93Rinow_theorem" title="Hopf–Rinow theorem">Hopf&#8211;Rinow theorem</a>&#160;– Gives equivalent statements about the geodesic completeness of Riemannian manifolds</li> <li><a href="/wiki/Intrinsic_metric" title="Intrinsic metric">Intrinsic metric</a>&#160;– Concept in geometry/topology</li> <li><a href="/wiki/Isotropic_line" title="Isotropic line">Isotropic line</a>&#160;– Line along which a quadratic form applied to any two points' displacement is zero</li> <li><a href="/wiki/Jacobi_field" title="Jacobi field">Jacobi field</a></li> <li><a href="/wiki/Morse_theory" title="Morse theory">Morse theory</a>&#160;– Analyzes the topology of a manifold by studying differentiable functions on that manifold</li> <li><a href="/wiki/Zoll_surface" title="Zoll surface">Zoll surface</a>&#160;– Surface homeomorphic to a sphere</li> <li><a href="/wiki/The_spider_and_the_fly_problem" title="The spider and the fly problem">The spider and the fly problem</a>&#160;– Recreational geodesics problem</li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=21" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">For two points on a sphere that are not antipodes, there are two great circle arcs of different lengths connecting them, both of which are geodesics.</span> </li> <li id="cite_note-pseudo-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-pseudo_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pseudo_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">For a <a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">pseudo-Riemannian manifold</a>, e.g., a <a href="/wiki/Lorentzian_manifold" class="mw-redirect" title="Lorentzian manifold">Lorentzian manifold</a>, the definition is more complicated.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">The path is a local maximum of the interval <i>k</i> rather than a local minimum.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=22" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626" /><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20200316193343/https://www.lexico.com/definition/geodesic">"geodesic"</a>. <i><a href="/wiki/Lexico" title="Lexico">Lexico</a> UK English Dictionary</i>. <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. Archived from <a rel="nofollow" class="external text" href="http://www.lexico.com/definition/geodesic">the original</a> on 2020-03-16.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=geodesic&amp;rft.btitle=Lexico+UK+English+Dictionary&amp;rft.pub=Oxford+University+Press&amp;rft_id=http%3A%2F%2Fwww.lexico.com%2Fdefinition%2Fgeodesic&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span> </span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.merriam-webster.com/dictionary/geodesic">"geodesic"</a>. <i><a href="/wiki/Merriam-Webster" title="Merriam-Webster">Merriam-Webster.com Dictionary</a></i>. Merriam-Webster.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Merriam-Webster.com+Dictionary&amp;rft.atitle=geodesic&amp;rft_id=https%3A%2F%2Fwww.merriam-webster.com%2Fdictionary%2Fgeodesic&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFMitchellMountPapadimitriou1987" class="citation journal cs1">Mitchell, J.; Mount, D.; Papadimitriou, C. (1987). <a rel="nofollow" class="external text" href="https://epubs.siam.org/doi/10.1137/0216045">"The Discrete Geodesic Problem"</a>. <i><a href="/wiki/SIAM_Journal_on_Computing" title="SIAM Journal on Computing">SIAM Journal on Computing</a></i>. <b>16</b> (4): <span class="nowrap">647–</span>668. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2F0216045">10.1137/0216045</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SIAM+Journal+on+Computing&amp;rft.atitle=The+Discrete+Geodesic+Problem&amp;rft.volume=16&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E647-%3C%2Fspan%3E668&amp;rft.date=1987&amp;rft_id=info%3Adoi%2F10.1137%2F0216045&amp;rft.aulast=Mitchell&amp;rft.aufirst=J.&amp;rft.au=Mount%2C+D.&amp;rft.au=Papadimitriou%2C+C.&amp;rft_id=https%3A%2F%2Fepubs.siam.org%2Fdoi%2F10.1137%2F0216045&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKimmelSethian1998" class="citation journal cs1">Kimmel, R.; Sethian, J. A. (1998). <a rel="nofollow" class="external text" href="https://www.pnas.org/content/pnas/95/15/8431.full.pdf">"Computing Geodesic Paths on Manifolds"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Proceedings_of_the_National_Academy_of_Sciences" class="mw-redirect" title="Proceedings of the National Academy of Sciences">Proceedings of the National Academy of Sciences</a></i>. <b>95</b> (15): <span class="nowrap">8431–</span>8435. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998PNAS...95.8431K">1998PNAS...95.8431K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.95.15.8431">10.1073/pnas.95.15.8431</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC21092">21092</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9671694">9671694</a>. <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20221009/https://www.pnas.org/content/pnas/95/15/8431.full.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2022-10-09.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences&amp;rft.atitle=Computing+Geodesic+Paths+on+Manifolds&amp;rft.volume=95&amp;rft.issue=15&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E8431-%3C%2Fspan%3E8435&amp;rft.date=1998&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC21092%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F9671694&amp;rft_id=info%3Adoi%2F10.1073%2Fpnas.95.15.8431&amp;rft_id=info%3Abibcode%2F1998PNAS...95.8431K&amp;rft.aulast=Kimmel&amp;rft.aufirst=R.&amp;rft.au=Sethian%2C+J.+A.&amp;rft_id=https%3A%2F%2Fwww.pnas.org%2Fcontent%2Fpnas%2F95%2F15%2F8431.full.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFCraneWeischedelWardetzky2017" class="citation journal cs1">Crane, K.; Weischedel, C.; Wardetzky, M. (2017). <a rel="nofollow" class="external text" href="https://dl.acm.org/doi/10.1145/3131280">"The Heat Method for Distance Computation"</a>. <i><a href="/wiki/Communications_of_the_ACM" title="Communications of the ACM">Communications of the ACM</a></i>. <b>60</b> (11): <span class="nowrap">90–</span>99. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F3131280">10.1145/3131280</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7078650">7078650</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+of+the+ACM&amp;rft.atitle=The+Heat+Method+for+Distance+Computation&amp;rft.volume=60&amp;rft.issue=11&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E90-%3C%2Fspan%3E99&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.1145%2F3131280&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7078650%23id-name%3DS2CID&amp;rft.aulast=Crane&amp;rft.aufirst=K.&amp;rft.au=Weischedel%2C+C.&amp;rft.au=Wardetzky%2C+M.&amp;rft_id=https%3A%2F%2Fdl.acm.org%2Fdoi%2F10.1145%2F3131280&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFVsauce2017" class="citation audio-visual cs1">Vsauce (2017-11-02). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=Xc4xYacTu-E"><i>Which Way Is Down?</i></a><span class="reference-accessdate">. Retrieved <span class="nowrap">2025-03-26</span></span> &#8211; via YouTube.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Which+Way+Is+Down%3F&amp;rft.date=2017-11-02&amp;rft.au=Vsauce&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXc4xYacTu-E&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFNeilsonNeilsonBye2015" class="citation journal cs1">Neilson, Peter D.; Neilson, Megan D.; Bye, Robin T. (2015-12-01). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0167945715300208">"A Riemannian geometry theory of human movement: The geodesic synergy hypothesis"</a>. <i>Human Movement Science</i>. <b>44</b>: <span class="nowrap">42–</span>72. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.humov.2015.08.010">10.1016/j.humov.2015.08.010</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0167-9457">0167-9457</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26302481">26302481</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Human+Movement+Science&amp;rft.atitle=A+Riemannian+geometry+theory+of+human+movement%3A+The+geodesic+synergy+hypothesis&amp;rft.volume=44&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E42-%3C%2Fspan%3E72&amp;rft.date=2015-12-01&amp;rft.issn=0167-9457&amp;rft_id=info%3Apmid%2F26302481&amp;rft_id=info%3Adoi%2F10.1016%2Fj.humov.2015.08.010&amp;rft.aulast=Neilson&amp;rft.aufirst=Peter+D.&amp;rft.au=Neilson%2C+Megan+D.&amp;rft.au=Bye%2C+Robin+T.&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0167945715300208&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBeshkovTiesinga2022" class="citation journal cs1">Beshkov, Kosio; Tiesinga, Paul (2022-02-01). <a rel="nofollow" class="external text" href="https://link.springer.com/article/10.1007/s00422-021-00906-5">"Geodesic-based distance reveals nonlinear topological features in neural activity from mouse visual cortex"</a>. <i>Biological Cybernetics</i>. <b>116</b> (1): <span class="nowrap">53–</span>68. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00422-021-00906-5">10.1007/s00422-021-00906-5</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1432-0770">1432-0770</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34816322">34816322</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biological+Cybernetics&amp;rft.atitle=Geodesic-based+distance+reveals+nonlinear+topological+features+in+neural+activity+from+mouse+visual+cortex&amp;rft.volume=116&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E53-%3C%2Fspan%3E68&amp;rft.date=2022-02-01&amp;rft.issn=1432-0770&amp;rft_id=info%3Apmid%2F34816322&amp;rft_id=info%3Adoi%2F10.1007%2Fs00422-021-00906-5&amp;rft.aulast=Beshkov&amp;rft.aufirst=Kosio&amp;rft.au=Tiesinga%2C+Paul&amp;rft_id=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs00422-021-00906-5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFZanottiGuerra2003" class="citation journal cs1">Zanotti, Giuseppe; Guerra, Concettina (2003-01-16). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S001457930203853X">"Is tensegrity a unifying concept of protein folds?"</a>. <i>FEBS Letters</i>. <b>534</b> (1): <span class="nowrap">7–</span>10. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003FEBSL.534....7Z">2003FEBSL.534....7Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0014-5793%2802%2903853-X">10.1016/S0014-5793(02)03853-X</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0014-5793">0014-5793</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12527354">12527354</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=FEBS+Letters&amp;rft.atitle=Is+tensegrity+a+unifying+concept+of+protein+folds%3F&amp;rft.volume=534&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E7-%3C%2Fspan%3E10&amp;rft.date=2003-01-16&amp;rft_id=info%3Adoi%2F10.1016%2FS0014-5793%2802%2903853-X&amp;rft.issn=0014-5793&amp;rft_id=info%3Apmid%2F12527354&amp;rft_id=info%3Abibcode%2F2003FEBSL.534....7Z&amp;rft.aulast=Zanotti&amp;rft.aufirst=Giuseppe&amp;rft.au=Guerra%2C+Concettina&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS001457930203853X&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span></span> </li> </ol></div></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFSpivak1999" class="citation cs2"><a href="/wiki/Michael_Spivak" title="Michael Spivak">Spivak, Michael</a> (1999), <i>A Comprehensive introduction to differential geometry (Volume 2)</i>, Houston, TX: Publish or Perish, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-914098-71-3" title="Special:BookSources/978-0-914098-71-3"><bdi>978-0-914098-71-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Comprehensive+introduction+to+differential+geometry+%28Volume+2%29&amp;rft.place=Houston%2C+TX&amp;rft.pub=Publish+or+Perish&amp;rft.date=1999&amp;rft.isbn=978-0-914098-71-3&amp;rft.aulast=Spivak&amp;rft.aufirst=Michael&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/40px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/60px-Commons-logo.svg.png 1.5x" data-file-width="1024" data-file-height="1376" /></a></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Geodesic_(mathematics)" class="extiw" title="commons:Category:Geodesic (mathematics)">Geodesic (mathematics)</a></span>.</div></div> </div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=23" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444" /><table class="box-More_footnotes_needed plainlinks metadata ambox ambox-style ambox-More_footnotes_needed" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/40px-Text_document_with_red_question_mark.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/60px-Text_document_with_red_question_mark.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/80px-Text_document_with_red_question_mark.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article includes a list of <a href="/wiki/Wikipedia:Citing_sources#General_references" title="Wikipedia:Citing sources">general references</a>, but <b>it lacks sufficient corresponding <a href="/wiki/Wikipedia:Citing_sources#Inline_citations" title="Wikipedia:Citing sources">inline citations</a></b>.<span class="hide-when-compact"> Please help to <a href="/wiki/Wikipedia:WikiProject_Reliability" title="Wikipedia:WikiProject Reliability">improve</a> this article by <a href="/wiki/Wikipedia:When_to_cite" title="Wikipedia:When to cite">introducing</a> more precise citations.</span> <span class="date-container"><i>(<span class="date">July 2014</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFAdlerBazinSchiffer1975" class="citation cs2">Adler, Ronald; Bazin, Maurice; Schiffer, Menahem (1975), <i>Introduction to General Relativity</i> (2nd&#160;ed.), New York: <a href="/wiki/McGraw-Hill" class="mw-redirect" title="McGraw-Hill">McGraw-Hill</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-000423-8" title="Special:BookSources/978-0-07-000423-8"><bdi>978-0-07-000423-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+General+Relativity&amp;rft.place=New+York&amp;rft.edition=2nd&amp;rft.pub=McGraw-Hill&amp;rft.date=1975&amp;rft.isbn=978-0-07-000423-8&amp;rft.aulast=Adler&amp;rft.aufirst=Ronald&amp;rft.au=Bazin%2C+Maurice&amp;rft.au=Schiffer%2C+Menahem&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span>. <i>See chapter 2</i>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFAbrahamMarsden1978" class="citation cs2"><a href="/wiki/Ralph_Abraham_(mathematician)" title="Ralph Abraham (mathematician)">Abraham, Ralph H.</a>; <a href="/wiki/Jerrold_E._Marsden" title="Jerrold E. Marsden">Marsden, Jerrold E.</a> (1978), <i>Foundations of mechanics</i>, London: Benjamin-Cummings, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8053-0102-1" title="Special:BookSources/978-0-8053-0102-1"><bdi>978-0-8053-0102-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+mechanics&amp;rft.place=London&amp;rft.pub=Benjamin-Cummings&amp;rft.date=1978&amp;rft.isbn=978-0-8053-0102-1&amp;rft.aulast=Abraham&amp;rft.aufirst=Ralph+H.&amp;rft.au=Marsden%2C+Jerrold+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span>. <i>See section 2.7</i>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFJost2002" class="citation cs2">Jost, Jürgen (2002), <i>Riemannian Geometry and Geometric Analysis</i>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-42627-1" title="Special:BookSources/978-3-540-42627-1"><bdi>978-3-540-42627-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Riemannian+Geometry+and+Geometric+Analysis&amp;rft.place=Berlin%2C+New+York&amp;rft.pub=Springer-Verlag&amp;rft.date=2002&amp;rft.isbn=978-3-540-42627-1&amp;rft.aulast=Jost&amp;rft.aufirst=J%C3%BCrgen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span>. <i>See section 1.4</i>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKobayashiNomizu1996" class="citation cs2">Kobayashi, Shoshichi; Nomizu, Katsumi (1996), <i>Foundations of Differential Geometry</i>, vol.&#160;1 (New&#160;ed.), Wiley-Interscience, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-15733-3" title="Special:BookSources/0-471-15733-3"><bdi>0-471-15733-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Differential+Geometry&amp;rft.edition=New&amp;rft.pub=Wiley-Interscience&amp;rft.date=1996&amp;rft.isbn=0-471-15733-3&amp;rft.aulast=Kobayashi&amp;rft.aufirst=Shoshichi&amp;rft.au=Nomizu%2C+Katsumi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFLandauLifshitz1975" class="citation cs2"><a href="/wiki/Lev_Landau" title="Lev Landau">Landau, L. D.</a>; <a href="/wiki/Evgeny_Lifshitz" title="Evgeny Lifshitz">Lifshitz, E. M.</a> (1975), <i>Classical Theory of Fields</i>, Oxford: Pergamon, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-018176-9" title="Special:BookSources/978-0-08-018176-9"><bdi>978-0-08-018176-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Classical+Theory+of+Fields&amp;rft.place=Oxford&amp;rft.pub=Pergamon&amp;rft.date=1975&amp;rft.isbn=978-0-08-018176-9&amp;rft.aulast=Landau&amp;rft.aufirst=L.+D.&amp;rft.au=Lifshitz%2C+E.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span>. <i>See section 87</i>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFMisnerThorneWheeler1973" class="citation cs2"><a href="/wiki/Charles_W._Misner" title="Charles W. Misner">Misner, Charles W.</a>; <a href="/wiki/Kip_Thorne" title="Kip Thorne">Thorne, Kip</a>; <a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">Wheeler, John Archibald</a> (1973), <a href="/wiki/Gravitation_(book)" title="Gravitation (book)"><i>Gravitation</i></a>, W. H. Freeman, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7167-0344-0" title="Special:BookSources/978-0-7167-0344-0"><bdi>978-0-7167-0344-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gravitation&amp;rft.pub=W.+H.+Freeman&amp;rft.date=1973&amp;rft.isbn=978-0-7167-0344-0&amp;rft.aulast=Misner&amp;rft.aufirst=Charles+W.&amp;rft.au=Thorne%2C+Kip&amp;rft.au=Wheeler%2C+John+Archibald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFOrtín2004" class="citation cs2">Ortín, Tomás (2004), <i>Gravity and strings</i>, <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-82475-0" title="Special:BookSources/978-0-521-82475-0"><bdi>978-0-521-82475-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gravity+and+strings&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2004&amp;rft.isbn=978-0-521-82475-0&amp;rft.aulast=Ort%C3%ADn&amp;rft.aufirst=Tom%C3%A1s&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span>. Note especially pages 7 and 10.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFVolkov2001" class="citation cs2">Volkov, Yu.A. (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Geodesic_line">"Geodesic line"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Geodesic+line&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.aulast=Volkov&amp;rft.aufirst=Yu.A.&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DGeodesic_line&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFWeinberg1972" class="citation cs2"><a href="/wiki/Steven_Weinberg" title="Steven Weinberg">Weinberg, Steven</a> (1972), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/gravitationcosmo00stev_0"><i>Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity</i></a></span>, New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-92567-5" title="Special:BookSources/978-0-471-92567-5"><bdi>978-0-471-92567-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gravitation+and+Cosmology%3A+Principles+and+Applications+of+the+General+Theory+of+Relativity&amp;rft.place=New+York&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1972&amp;rft.isbn=978-0-471-92567-5&amp;rft.aulast=Weinberg&amp;rft.aufirst=Steven&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgravitationcosmo00stev_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGeodesic" class="Z3988"></span>. <i>See chapter 3</i>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geodesic&amp;action=edit&amp;section=24" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735" /><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409" /> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikiquote-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/40px-Wikiquote-logo.svg.png" decoding="async" width="34" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/60px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/120px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></a></span></div> <div class="side-box-text plainlist">Wikiquote has quotations related to <i><b><a href="https://en.wikiquote.org/wiki/Special:Search/Geodesic" class="extiw" title="q:Special:Search/Geodesic">Geodesic</a></b></i>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://www.cmsim.eu/papers_pdf/january_2012_papers/25_CMSIM_2012_Pokorny_1_281-298.pdf">Geodesics Revisited</a> &#8212; Introduction to geodesics including two ways of derivation of the equation of geodesic with applications in geometry (geodesic on a sphere and on a <a href="/wiki/Torus" title="Torus">torus</a>), mechanics (<a href="/wiki/Brachistochrone" class="mw-redirect" title="Brachistochrone">brachistochrone</a>) and optics (light beam in inhomogeneous medium).</li> <li><a rel="nofollow" class="external text" href="http://www.map.mpim-bonn.mpg.de/Totally_geodesic_submanifold">Totally geodesic submanifold</a> at the Manifold Atlas</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Riemannian_geometry_(Glossary)125" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Riemannian_geometry" title="Template:Riemannian geometry"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Riemannian_geometry" title="Template talk:Riemannian geometry"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Riemannian_geometry" title="Special:EditPage/Template:Riemannian geometry"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Riemannian_geometry_(Glossary)125" style="font-size:114%;margin:0 4em"><a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a> (<a href="/wiki/Glossary_of_Riemannian_and_metric_geometry" title="Glossary of Riemannian and metric geometry">Glossary</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Curvature_of_Riemannian_manifolds" title="Curvature of Riemannian manifolds">Curvature</a> <ul><li><a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">tensor</a></li> <li><a href="/wiki/Scalar_curvature" title="Scalar curvature">Scalar</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci</a></li> <li><a href="/wiki/Sectional_curvature" title="Sectional curvature">Sectional</a></li></ul></li> <li><a href="/wiki/Exponential_map_(Riemannian_geometry)" title="Exponential map (Riemannian geometry)">Exponential map</a></li> <li><a class="mw-selflink selflink">Geodesic</a></li> <li><a href="/wiki/Inner_product_space" title="Inner product space">Inner product</a></li> <li><a href="/wiki/Metric_tensor" title="Metric tensor">Metric tensor</a> <ul><li><a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a></li> <li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Metric_signature" title="Metric signature">Signature</a></li> <li><a href="/wiki/Raising_and_lowering_indices" title="Raising and lowering indices">Raising and lowering indices</a>/<a href="/wiki/Musical_isomorphism" title="Musical isomorphism">Musical isomorphism</a></li></ul></li> <li><a href="/wiki/Parallel_transport" title="Parallel transport">Parallel transport</a></li> <li><a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a></li> <li><a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">Pseudo-Riemannian manifold</a></li> <li><a href="/wiki/Riemannian_volume_form" class="mw-redirect" title="Riemannian volume form">Riemannian volume form</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of manifolds</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hermitian_manifold" title="Hermitian manifold">Hermitian</a></li> <li><a href="/wiki/Hyperbolic_manifold" title="Hyperbolic manifold">Hyperbolic</a></li> <li><a href="/wiki/K%C3%A4hler_manifold" title="Kähler manifold">Kähler</a></li> <li><a href="/wiki/Kenmotsu_manifold" title="Kenmotsu manifold">Kenmotsu</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Main results</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fundamental_theorem_of_Riemannian_geometry" title="Fundamental theorem of Riemannian geometry">Fundamental theorem of Riemannian geometry</a></li> <li><a href="/wiki/Gauss%27s_lemma_(Riemannian_geometry)" title="Gauss&#39;s lemma (Riemannian geometry)">Gauss's lemma</a></li> <li><a href="/wiki/Gauss%E2%80%93Bonnet_theorem" title="Gauss–Bonnet theorem">Gauss–Bonnet theorem</a></li> <li><a href="/wiki/Hopf%E2%80%93Rinow_theorem" title="Hopf–Rinow theorem">Hopf–Rinow theorem</a></li> <li><a href="/wiki/Nash_embedding_theorem" class="mw-redirect" title="Nash embedding theorem">Nash embedding theorem</a></li> <li><a href="/wiki/Ricci_flow" title="Ricci flow">Ricci flow</a></li> <li><a href="/wiki/Schur%27s_lemma_(Riemannian_geometry)" title="Schur&#39;s lemma (Riemannian geometry)">Schur's lemma</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Generalizations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Finsler_manifold" title="Finsler manifold">Finsler</a></li> <li><a href="/wiki/Hilbert_manifold" title="Hilbert manifold">Hilbert</a></li> <li><a href="/wiki/Sub-Riemannian_manifold" title="Sub-Riemannian manifold">Sub-Riemannian</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/General_relativity" title="General relativity">General relativity</a></li> <li><a href="/wiki/Geometrization_conjecture" title="Geometrization conjecture">Geometrization conjecture</a></li> <li><a href="/wiki/Poincar%C3%A9_conjecture" title="Poincaré conjecture">Poincaré conjecture</a></li> <li><a href="/wiki/Uniformization_theorem" title="Uniformization theorem">Uniformization theorem</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235" /></div><div role="navigation" class="navbox" aria-labelledby="Manifolds_(Glossary,_List,_Category)274" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231" /><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Manifolds" title="Template:Manifolds"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Manifolds" title="Template talk:Manifolds"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Manifolds" title="Special:EditPage/Template:Manifolds"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Manifolds_(Glossary,_List,_Category)274" style="font-size:114%;margin:0 4em"><a href="/wiki/Manifold" title="Manifold">Manifolds</a> (<a href="/wiki/Glossary_of_differential_geometry_and_topology" title="Glossary of differential geometry and topology">Glossary</a>, <a href="/wiki/List_of_manifolds" title="List of manifolds">List</a>, <a href="/wiki/Category:Manifolds" title="Category:Manifolds">Category</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Topological_manifold" title="Topological manifold">Topological manifold</a> <ul><li><a href="/wiki/Atlas_(topology)" title="Atlas (topology)">Atlas</a></li></ul></li> <li><a href="/wiki/Differentiable_manifold" title="Differentiable manifold">Differentiable/Smooth manifold</a> <ul><li><a href="/wiki/Differential_structure" title="Differential structure">Differential structure</a></li> <li><a href="/wiki/Smooth_structure" title="Smooth structure">Smooth atlas</a></li></ul></li> <li><a href="/wiki/Submanifold" title="Submanifold">Submanifold</a></li> <li><a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a></li> <li><a href="/wiki/Smoothness" title="Smoothness">Smooth map</a></li> <li><a href="/wiki/Submersion_(mathematics)" title="Submersion (mathematics)">Submersion</a></li> <li><a href="/wiki/Pushforward_(differential)" title="Pushforward (differential)">Pushforward</a></li> <li><a href="/wiki/Tangent_space" title="Tangent space">Tangent space</a></li> <li><a href="/wiki/Differential_form" title="Differential form">Differential form</a></li> <li><a href="/wiki/Vector_field" title="Vector field">Vector field</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Main results <span style="font-size: 85%;"><a href="/wiki/Category:Theorems_in_differential_geometry" title="Category:Theorems in differential geometry">(list)</a></span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Atiyah%E2%80%93Singer_index_theorem" title="Atiyah–Singer index theorem">Atiyah–Singer index</a></li> <li><a href="/wiki/Darboux%27s_theorem" title="Darboux&#39;s theorem">Darboux's</a></li> <li><a href="/wiki/De_Rham_cohomology#De_Rham&#39;s_theorem" title="De Rham cohomology">De Rham's</a></li> <li><a href="/wiki/Frobenius_theorem_(differential_topology)" title="Frobenius theorem (differential topology)">Frobenius</a></li> <li><a href="/wiki/Generalized_Stokes_theorem" title="Generalized Stokes theorem">Generalized Stokes</a></li> <li><a href="/wiki/Hopf%E2%80%93Rinow_theorem" title="Hopf–Rinow theorem">Hopf–Rinow</a></li> <li><a href="/wiki/Noether%27s_theorem" title="Noether&#39;s theorem">Noether's</a></li> <li><a href="/wiki/Sard%27s_theorem" title="Sard&#39;s theorem">Sard's</a></li> <li><a href="/wiki/Whitney_embedding_theorem" title="Whitney embedding theorem">Whitney embedding</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Smoothness" title="Smoothness">Maps</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Differentiable_curve" title="Differentiable curve">Curve</a></li> <li><a href="/wiki/Diffeomorphism" title="Diffeomorphism">Diffeomorphism</a> <ul><li><a href="/wiki/Local_diffeomorphism" title="Local diffeomorphism">Local</a></li></ul></li> <li><a class="mw-selflink selflink">Geodesic</a></li> <li><a href="/wiki/Exponential_map_(Riemannian_geometry)" title="Exponential map (Riemannian geometry)">Exponential map</a> <ul><li><a href="/wiki/Exponential_map_(Lie_theory)" title="Exponential map (Lie theory)">in Lie theory</a></li></ul></li> <li><a href="/wiki/Foliation" title="Foliation">Foliation</a></li> <li><a href="/wiki/Immersion_(mathematics)" title="Immersion (mathematics)">Immersion</a></li> <li><a href="/wiki/Integral_curve" title="Integral curve">Integral curve</a></li> <li><a href="/wiki/Lie_derivative" title="Lie derivative">Lie derivative</a></li> <li><a href="/wiki/Section_(fiber_bundle)" title="Section (fiber bundle)">Section</a></li> <li><a href="/wiki/Submersion_(mathematics)" title="Submersion (mathematics)">Submersion</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of<br />manifolds</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Closed_manifold" title="Closed manifold">Closed</a></li> <li><a href="/wiki/Collapsing_manifold" title="Collapsing manifold">Collapsing</a></li> <li><a href="/wiki/Complete_manifold" title="Complete manifold">Complete</a></li> <li>(<a href="/wiki/Almost_complex_manifold" title="Almost complex manifold">Almost</a>)&#160;<a href="/wiki/Complex_manifold" title="Complex manifold">Complex</a></li> <li>(<a href="/wiki/Almost-contact_manifold" title="Almost-contact manifold">Almost</a>)&#160;<a href="/wiki/Contact_manifold" class="mw-redirect" title="Contact manifold">Contact</a></li> <li><a href="/wiki/Fibered_manifold" title="Fibered manifold">Fibered</a></li> <li><a href="/wiki/Finsler_manifold" title="Finsler manifold">Finsler</a></li> <li>(<a href="/wiki/Almost_flat_manifold" title="Almost flat manifold">Almost</a>)&#160;<a href="/wiki/Flat_manifold" title="Flat manifold">Flat</a></li> <li><a href="/wiki/G-structure_on_a_manifold" title="G-structure on a manifold">G-structure</a></li> <li><a href="/wiki/Hadamard_manifold" title="Hadamard manifold">Hadamard</a></li> <li><a href="/wiki/Hermitian_manifold" title="Hermitian manifold">Hermitian</a></li> <li><a href="/wiki/Hyperbolic_manifold" title="Hyperbolic manifold">Hyperbolic</a></li> <li><a href="/wiki/K%C3%A4hler_manifold" title="Kähler manifold">Kähler</a></li> <li><a href="/wiki/Kenmotsu_manifold" title="Kenmotsu manifold">Kenmotsu</a></li> <li><a href="/wiki/Lie_group" title="Lie group">Lie group</a> <ul><li><a href="/wiki/Lie_group%E2%80%93Lie_algebra_correspondence" title="Lie group–Lie algebra correspondence">Lie algebra</a></li></ul></li> <li><a href="/wiki/Manifold_with_boundary" class="mw-redirect" title="Manifold with boundary">Manifold with boundary</a></li> <li><a href="/wiki/Nilmanifold" title="Nilmanifold">Nilmanifold</a></li> <li><a href="/wiki/Orientability" title="Orientability">Oriented</a></li> <li><a href="/wiki/Parallelizable_manifold" title="Parallelizable manifold">Parallelizable</a></li> <li><a href="/wiki/Poisson_manifold" title="Poisson manifold">Poisson</a></li> <li><a href="/wiki/Prime_manifold" title="Prime manifold">Prime</a></li> <li><a href="/wiki/Quaternionic_manifold" title="Quaternionic manifold">Quaternionic</a></li> <li><a href="/wiki/Hypercomplex_manifold" title="Hypercomplex manifold">Hypercomplex</a></li> <li>(<a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">Pseudo−</a>,&#160;<a href="/wiki/Sub-Riemannian_manifold" title="Sub-Riemannian manifold">Sub−</a>)&#160;<a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian</a></li> <li><a href="/wiki/Rizza_manifold" title="Rizza manifold">Rizza</a></li> <li>(<a href="/wiki/Almost_symplectic_manifold" title="Almost symplectic manifold">Almost</a>)&#160;<a href="/wiki/Symplectic_manifold" title="Symplectic manifold">Symplectic</a></li> <li><a href="/wiki/Tame_manifold" title="Tame manifold">Tame</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Tensor" title="Tensor">Tensors</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Vectors</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Distribution_(differential_geometry)" title="Distribution (differential geometry)">Distribution</a></li> <li><a href="/wiki/Lie_bracket_of_vector_fields" title="Lie bracket of vector fields">Lie bracket</a></li> <li><a href="/wiki/Pushforward_(differential)" title="Pushforward (differential)">Pushforward</a></li> <li><a href="/wiki/Tangent_space" title="Tangent space">Tangent space</a> <ul><li><a href="/wiki/Tangent_bundle" title="Tangent bundle">bundle</a></li></ul></li> <li><a href="/wiki/Torsion_tensor" title="Torsion tensor">Torsion</a></li> <li><a href="/wiki/Vector_field" title="Vector field">Vector field</a></li> <li><a href="/wiki/Vector_flow" title="Vector flow">Vector flow</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Covectors</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Closed_and_exact_differential_forms" title="Closed and exact differential forms">Closed/Exact</a></li> <li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Cotangent_space" title="Cotangent space">Cotangent space</a> <ul><li><a href="/wiki/Cotangent_bundle" title="Cotangent bundle">bundle</a></li></ul></li> <li><a href="/wiki/De_Rham_cohomology" title="De Rham cohomology">De Rham cohomology</a></li> <li><a href="/wiki/Differential_form" title="Differential form">Differential form</a> <ul><li><a href="/wiki/Vector-valued_differential_form" title="Vector-valued differential form">Vector-valued</a></li></ul></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Interior_product" title="Interior product">Interior product</a></li> <li><a href="/wiki/Pullback_(differential_geometry)" title="Pullback (differential geometry)">Pullback</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a> <ul><li><a href="/wiki/Ricci_flow" title="Ricci flow">flow</a></li></ul></li> <li><a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">Riemann curvature tensor</a></li> <li><a href="/wiki/Tensor_field" title="Tensor field">Tensor field</a> <ul><li><a href="/wiki/Tensor_density" title="Tensor density">density</a></li></ul></li> <li><a href="/wiki/Volume_form" title="Volume form">Volume form</a></li> <li><a href="/wiki/Wedge_product" class="mw-redirect" title="Wedge product">Wedge product</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Fiber_bundle" title="Fiber bundle">Bundles</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjoint_bundle" title="Adjoint bundle">Adjoint</a></li> <li><a href="/wiki/Affine_bundle" title="Affine bundle">Affine</a></li> <li><a href="/wiki/Associated_bundle" title="Associated bundle">Associated</a></li> <li><a href="/wiki/Cotangent_bundle" title="Cotangent bundle">Cotangent</a></li> <li><a href="/wiki/Dual_bundle" title="Dual bundle">Dual</a></li> <li><a href="/wiki/Fiber_bundle" title="Fiber bundle">Fiber</a></li> <li>(<a href="/wiki/Cofibration" title="Cofibration">Co</a>)&#160;<a href="/wiki/Fibration" title="Fibration">Fibration</a></li> <li><a href="/wiki/Jet_bundle" title="Jet bundle">Jet</a></li> <li><a href="/wiki/Lie_algebra_bundle" title="Lie algebra bundle">Lie algebra</a></li> <li>(<a href="/wiki/Stable_normal_bundle" title="Stable normal bundle">Stable</a>)&#160;<a href="/wiki/Normal_bundle" title="Normal bundle">Normal</a></li> <li><a href="/wiki/Principal_bundle" title="Principal bundle">Principal</a></li> <li><a href="/wiki/Spinor_bundle" title="Spinor bundle">Spinor</a></li> <li><a href="/wiki/Subbundle" title="Subbundle">Subbundle</a></li> <li><a href="/wiki/Tangent_bundle" title="Tangent bundle">Tangent</a></li> <li><a href="/wiki/Tensor_bundle" title="Tensor bundle">Tensor</a></li> <li><a href="/wiki/Vector_bundle" title="Vector bundle">Vector</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">Connections</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_connection" title="Affine connection">Affine</a></li> <li><a href="/wiki/Cartan_connection" title="Cartan connection">Cartan</a></li> <li><a href="/wiki/Ehresmann_connection" title="Ehresmann connection">Ehresmann</a></li> <li><a href="/wiki/Connection_form" title="Connection form">Form</a></li> <li><a href="/wiki/Connection_(fibred_manifold)" title="Connection (fibred manifold)">Generalized</a></li> <li><a href="/wiki/Koszul_connection" class="mw-redirect" title="Koszul connection">Koszul</a></li> <li><a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita</a></li> <li><a href="/wiki/Connection_(principal_bundle)" title="Connection (principal bundle)">Principal</a></li> <li><a href="/wiki/Connection_(vector_bundle)" title="Connection (vector bundle)">Vector</a></li> <li><a href="/wiki/Parallel_transport" title="Parallel transport">Parallel transport</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classification_of_manifolds" title="Classification of manifolds">Classification of manifolds</a></li> <li><a href="/wiki/Gauge_theory_(mathematics)" title="Gauge theory (mathematics)">Gauge theory</a></li> <li><a href="/wiki/History_of_manifolds_and_varieties" title="History of manifolds and varieties">History</a></li> <li><a href="/wiki/Morse_theory" title="Morse theory">Morse theory</a></li> <li><a href="/wiki/Moving_frame" title="Moving frame">Moving frame</a></li> <li><a href="/wiki/Singularity_theory" title="Singularity theory">Singularity theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Generalizations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_manifold" title="Banach manifold">Banach manifold</a></li> <li><a href="/wiki/Diffeology" title="Diffeology">Diffeology</a></li> <li><a href="/wiki/Diffiety" title="Diffiety">Diffiety</a></li> <li><a href="/wiki/Fr%C3%A9chet_manifold" title="Fréchet manifold">Fréchet manifold</a></li> <li><a href="/wiki/K-theory" title="K-theory">K-theory</a></li> <li><a href="/wiki/Orbifold" title="Orbifold">Orbifold</a></li> <li><a href="/wiki/Secondary_calculus_and_cohomological_physics" title="Secondary calculus and cohomological physics">Secondary calculus</a> <ul><li><a href="/wiki/Differential_calculus_over_commutative_algebras" title="Differential calculus over commutative algebras">over commutative algebras</a></li></ul></li> <li><a href="/wiki/Sheaf_(mathematics)" title="Sheaf (mathematics)">Sheaf</a></li> <li><a href="/wiki/Stratifold" title="Stratifold">Stratifold</a></li> <li><a href="/wiki/Supermanifold" title="Supermanifold">Supermanifold</a></li> <li><a href="/wiki/Stratified_space" title="Stratified space">Stratified space</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235" /></div><div role="navigation" class="navbox" aria-labelledby="Tensors176" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231" /><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Tensors" title="Template:Tensors"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Tensors" title="Template talk:Tensors"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Tensors" title="Special:EditPage/Template:Tensors"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Tensors176" style="font-size:114%;margin:0 4em"><a href="/wiki/Tensor" title="Tensor">Tensors</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i><a href="/wiki/Glossary_of_tensor_theory" title="Glossary of tensor theory">Glossary of tensor theory</a></i></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Scope</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Mathematics" title="Mathematics">Mathematics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Coordinate_system" title="Coordinate system">Coordinate system</a></li> <li><a href="/wiki/Differential_geometry" title="Differential geometry">Differential geometry</a></li> <li><a href="/wiki/Dyadics" title="Dyadics">Dyadic algebra</a></li> <li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a></li> <li><a href="/wiki/Exterior_calculus" class="mw-redirect" title="Exterior calculus">Exterior calculus</a></li> <li><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></li> <li><a href="/wiki/Tensor_algebra" title="Tensor algebra">Tensor algebra</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><div class="hlist"><ul><li><a href="/wiki/Physics" title="Physics">Physics</a></li><li><a href="/wiki/Engineering" title="Engineering">Engineering</a></li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Computer_vision" title="Computer vision">Computer vision</a></li> <li><a href="/wiki/Continuum_mechanics" title="Continuum mechanics">Continuum mechanics</a></li> <li><a href="/wiki/Electromagnetism" title="Electromagnetism">Electromagnetism</a></li> <li><a href="/wiki/General_relativity" title="General relativity">General relativity</a></li> <li><a href="/wiki/Transport_phenomena" title="Transport phenomena">Transport phenomena</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_index_notation" title="Abstract index notation">Abstract index notation</a></li> <li><a href="/wiki/Einstein_notation" title="Einstein notation">Einstein notation</a></li> <li><a href="/wiki/Index_notation" title="Index notation">Index notation</a></li> <li><a href="/wiki/Multi-index_notation" title="Multi-index notation">Multi-index notation</a></li> <li><a href="/wiki/Penrose_graphical_notation" title="Penrose graphical notation">Penrose graphical notation</a></li> <li><a href="/wiki/Ricci_calculus" title="Ricci calculus">Ricci calculus</a></li> <li><a href="/wiki/Tetrad_(index_notation)" class="mw-redirect" title="Tetrad (index notation)">Tetrad (index notation)</a></li> <li><a href="/wiki/Van_der_Waerden_notation" title="Van der Waerden notation">Van der Waerden notation</a></li> <li><a href="/wiki/Voigt_notation" title="Voigt notation">Voigt notation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Tensor<br />definitions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Tensor_(intrinsic_definition)" title="Tensor (intrinsic definition)">Tensor (intrinsic definition)</a></li> <li><a href="/wiki/Tensor_field" title="Tensor field">Tensor field</a></li> <li><a href="/wiki/Tensor_density" title="Tensor density">Tensor density</a></li> <li><a href="/wiki/Tensors_in_curvilinear_coordinates" title="Tensors in curvilinear coordinates">Tensors in curvilinear coordinates</a></li> <li><a href="/wiki/Mixed_tensor" title="Mixed tensor">Mixed tensor</a></li> <li><a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">Antisymmetric tensor</a></li> <li><a href="/wiki/Symmetric_tensor" title="Symmetric tensor">Symmetric tensor</a></li> <li><a href="/wiki/Tensor_operator" title="Tensor operator">Tensor operator</a></li> <li><a href="/wiki/Tensor_bundle" title="Tensor bundle">Tensor bundle</a></li> <li><a href="/wiki/Two-point_tensor" title="Two-point tensor">Two-point tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Exterior_covariant_derivative" title="Exterior covariant derivative">Exterior covariant derivative</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">Exterior product</a></li> <li><a href="/wiki/Hodge_star_operator" title="Hodge star operator">Hodge star operator</a></li> <li><a href="/wiki/Lie_derivative" title="Lie derivative">Lie derivative</a></li> <li><a href="/wiki/Raising_and_lowering_indices" title="Raising and lowering indices">Raising and lowering indices</a></li> <li><a href="/wiki/Symmetrization" title="Symmetrization">Symmetrization</a></li> <li><a href="/wiki/Tensor_contraction" title="Tensor contraction">Tensor contraction</a></li> <li><a href="/wiki/Tensor_product" title="Tensor product">Tensor product</a></li> <li><a href="/wiki/Transpose" title="Transpose">Transpose</a> (2nd-order tensors)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related<br />abstractions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_connection" title="Affine connection">Affine connection</a></li> <li><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a></li> <li><a href="/wiki/Cartan_formalism_(physics)" class="mw-redirect" title="Cartan formalism (physics)">Cartan formalism (physics)</a></li> <li><a href="/wiki/Connection_form" title="Connection form">Connection form</a></li> <li><a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">Covariance and contravariance of vectors</a></li> <li><a href="/wiki/Differential_form" title="Differential form">Differential form</a></li> <li><a href="/wiki/Dimension" title="Dimension">Dimension</a></li> <li><a href="/wiki/Exterior_form" class="mw-redirect" title="Exterior form">Exterior form</a></li> <li><a href="/wiki/Fiber_bundle" title="Fiber bundle">Fiber bundle</a></li> <li><a class="mw-selflink selflink">Geodesic</a></li> <li><a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrix</a></li> <li><a href="/wiki/Multivector" title="Multivector">Multivector</a></li> <li><a href="/wiki/Pseudotensor" title="Pseudotensor">Pseudotensor</a></li> <li><a href="/wiki/Spinor" title="Spinor">Spinor</a></li> <li><a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">Vector</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notable tensors</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Mathematics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a></li> <li><a href="/wiki/Levi-Civita_symbol" title="Levi-Civita symbol">Levi-Civita symbol</a></li> <li><a href="/wiki/Metric_tensor" title="Metric tensor">Metric tensor</a></li> <li><a href="/wiki/Nonmetricity_tensor" title="Nonmetricity tensor">Nonmetricity tensor</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a></li> <li><a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">Riemann curvature tensor</a></li> <li><a href="/wiki/Torsion_tensor" title="Torsion tensor">Torsion tensor</a></li> <li><a href="/wiki/Weyl_tensor" title="Weyl tensor">Weyl tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Physics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Moment_of_inertia#Inertia_tensor" title="Moment of inertia">Moment of inertia</a></li> <li><a href="/wiki/Angular_momentum#Angular_momentum_in_relativistic_mechanics" title="Angular momentum">Angular momentum tensor</a></li> <li><a href="/wiki/Spin_tensor" title="Spin tensor">Spin tensor</a></li> <li><a href="/wiki/Cauchy_stress_tensor" title="Cauchy stress tensor">Cauchy stress tensor</a></li> <li><a href="/wiki/Stress%E2%80%93energy_tensor" title="Stress–energy tensor">stress–energy tensor</a></li> <li><a href="/wiki/Einstein_tensor" title="Einstein tensor">Einstein tensor</a></li> <li><a href="/wiki/Electromagnetic_tensor" title="Electromagnetic tensor">EM tensor</a></li> <li><a href="/wiki/Gluon_field_strength_tensor" title="Gluon field strength tensor">Gluon field strength tensor</a></li> <li><a href="/wiki/Metric_tensor_(general_relativity)" title="Metric tensor (general relativity)">Metric tensor (GR)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Mathematician" title="Mathematician">Mathematicians</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/Elwin_Bruno_Christoffel" title="Elwin Bruno Christoffel">Elwin Bruno Christoffel</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a></li> <li><a href="/wiki/Hermann_Grassmann" title="Hermann Grassmann">Hermann Grassmann</a></li> <li><a href="/wiki/Tullio_Levi-Civita" title="Tullio Levi-Civita">Tullio Levi-Civita</a></li> <li><a href="/wiki/Gregorio_Ricci-Curbastro" title="Gregorio Ricci-Curbastro">Gregorio Ricci-Curbastro</a></li> <li><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a></li> <li><a href="/wiki/Jan_Arnoldus_Schouten" title="Jan Arnoldus Schouten">Jan Arnoldus Schouten</a></li> <li><a href="/wiki/Woldemar_Voigt" title="Woldemar Voigt">Woldemar Voigt</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235" /></div><div role="navigation" class="navbox authority-control" aria-label="Navbox580" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q213488#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4156669-5">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85053967">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.nli.org.il/en/authorities/987007562985805171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐77c4b9db66‐mkccl Cached time: 20250403134324 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.785 seconds Real time usage: 1.201 seconds Preprocessor visited node count: 4946/1000000 Post‐expand include size: 123713/2097152 bytes Template argument size: 4487/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 12/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 104666/5000000 bytes Lua time usage: 0.461/10.000 seconds Lua memory usage: 26366613/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 825.970 1 -total 22.96% 189.615 10 Template:Annotated_link 10.19% 84.204 5 Template:Navbox 9.40% 77.672 2 Template:Refn 8.34% 68.896 1 Template:Cite_dictionary 8.03% 66.319 1 Template:Short_description 7.72% 63.756 1 Template:Riemannian_geometry 5.51% 45.478 2 Template:Reflist 5.31% 43.853 9 Template:Citation 5.25% 43.355 2 Template:Sister_project --> <!-- Saved in parser cache with key enwiki:pcache:91096:|#|:idhash:canonical and timestamp 20250403134324 and revision id 1283307559. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://auth.wikimedia.org/loginwiki/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Geodesic&amp;oldid=1283307559">https://en.wikipedia.org/w/index.php?title=Geodesic&amp;oldid=1283307559</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Differential_geometry" title="Category:Differential geometry">Differential geometry</a></li><li><a href="/wiki/Category:Geodesic_(mathematics)" title="Category:Geodesic (mathematics)">Geodesic (mathematics)</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_May_2018" title="Category:Articles with unsourced statements from May 2018">Articles with unsourced statements from May 2018</a></li><li><a href="/wiki/Category:Articles_to_be_expanded_from_June_2014" title="Category:Articles to be expanded from June 2014">Articles to be expanded from June 2014</a></li><li><a href="/wiki/Category:All_articles_to_be_expanded" title="Category:All articles to be expanded">All articles to be expanded</a></li><li><a href="/wiki/Category:Pages_displaying_short_descriptions_of_redirect_targets_via_Module:Annotated_link" title="Category:Pages displaying short descriptions of redirect targets via Module:Annotated link">Pages displaying short descriptions of redirect targets via Module:Annotated link</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li><li><a href="/wiki/Category:Articles_lacking_in-text_citations_from_July_2014" title="Category:Articles lacking in-text citations from July 2014">Articles lacking in-text citations from July 2014</a></li><li><a href="/wiki/Category:All_articles_lacking_in-text_citations" title="Category:All articles lacking in-text citations">All articles lacking in-text citations</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 31 March 2025, at 18:06<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Geodesic&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://www.wikimedia.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" lang="en" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Geodesic</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>42 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="mw-portlet mw-portlet-dock-bottom emptyPortlet" id="p-dock-bottom"> <ul> </ul> </div> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-65849d9b94-zv6vq","wgBackendResponseTime":202,"wgPageParseReport":{"limitreport":{"cputime":"0.785","walltime":"1.201","ppvisitednodes":{"value":4946,"limit":1000000},"postexpandincludesize":{"value":123713,"limit":2097152},"templateargumentsize":{"value":4487,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":12,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":104666,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 825.970 1 -total"," 22.96% 189.615 10 Template:Annotated_link"," 10.19% 84.204 5 Template:Navbox"," 9.40% 77.672 2 Template:Refn"," 8.34% 68.896 1 Template:Cite_dictionary"," 8.03% 66.319 1 Template:Short_description"," 7.72% 63.756 1 Template:Riemannian_geometry"," 5.51% 45.478 2 Template:Reflist"," 5.31% 43.853 9 Template:Citation"," 5.25% 43.355 2 Template:Sister_project"]},"scribunto":{"limitreport-timeusage":{"value":"0.461","limit":"10.000"},"limitreport-memusage":{"value":26366613,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAbrahamMarsden1978\"] = 1,\n [\"CITEREFAdlerBazinSchiffer1975\"] = 1,\n [\"CITEREFBeshkovTiesinga2022\"] = 1,\n [\"CITEREFCraneWeischedelWardetzky2017\"] = 1,\n [\"CITEREFJost2002\"] = 1,\n [\"CITEREFKimmelSethian1998\"] = 1,\n [\"CITEREFKobayashiNomizu1996\"] = 1,\n [\"CITEREFLandauLifshitz1975\"] = 1,\n [\"CITEREFMisnerThorneWheeler1973\"] = 1,\n [\"CITEREFMitchellMountPapadimitriou1987\"] = 1,\n [\"CITEREFNeilsonNeilsonBye2015\"] = 1,\n [\"CITEREFOrtín2004\"] = 1,\n [\"CITEREFSpivak1999\"] = 1,\n [\"CITEREFVolkov\"] = 1,\n [\"CITEREFVsauce2017\"] = 1,\n [\"CITEREFWeinberg1972\"] = 1,\n [\"CITEREFZanottiGuerra2003\"] = 1,\n [\"Flow\"] = 1,\n [\"Triangle\"] = 2,\n}\ntemplate_list = table#1 {\n [\"About\"] = 1,\n [\"Anchor\"] = 3,\n [\"Annotated link\"] = 10,\n [\"Authority control\"] = 1,\n [\"Citation\"] = 9,\n [\"Citation needed\"] = 1,\n [\"Cite AV media\"] = 1,\n [\"Cite Merriam-Webster\"] = 1,\n [\"Cite dictionary\"] = 1,\n [\"Cite journal\"] = 6,\n [\"Commons category\"] = 1,\n [\"Div col\"] = 1,\n [\"Div col end\"] = 1,\n [\"Efn\"] = 4,\n [\"EquationNote\"] = 3,\n [\"EquationRef\"] = 1,\n [\"Expand section\"] = 1,\n [\"Further\"] = 1,\n [\"Harv\"] = 1,\n [\"IPAc-en\"] = 1,\n [\"Manifolds\"] = 1,\n [\"More footnotes\"] = 1,\n [\"Multiple image\"] = 1,\n [\"Mvar\"] = 3,\n [\"Notelist\"] = 1,\n [\"Nowrap\"] = 5,\n [\"NumBlk\"] = 1,\n [\"Pi\"] = 2,\n [\"Reflist\"] = 1,\n [\"Refn\"] = 2,\n [\"Riemannian geometry\"] = 1,\n [\"See also\"] = 2,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n [\"Tensors\"] = 1,\n [\"Wikiquote\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-77c4b9db66-mkccl","timestamp":"20250403134324","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Geodesic","url":"https:\/\/en.wikipedia.org\/wiki\/Geodesic","sameAs":"http:\/\/www.wikidata.org\/entity\/Q213488","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q213488","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-09-25T06:17:08Z","dateModified":"2025-03-31T18:06:23Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/d\/dd\/Klein_quartic_with_closed_geodesics.svg","headline":"straight path on a curved surface or a Riemannian manifold"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10