CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;27 of 27 results for author: <span class="mathjax">Lei, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/q-bio" aria-role="search"> Searching in archive <strong>q-bio</strong>. <a href="/search/?searchtype=author&amp;query=Lei%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lei, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lei%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lei, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.13516">arXiv:2503.13516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.13516">pdf</a>, <a href="https://arxiv.org/format/2503.13516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Tissues and Organs">q-bio.TO</span> </div> </div> <p class="title is-5 mathjax"> A tumor-immune model of chronic myeloid leukemia with optimal immunotherapeutic protocols </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Zhang%2C+H">Haifeng Zhang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Zhuge%2C+C">Changjing Zhuge</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.13516v1-abstract-short" style="display: inline;"> The interactions between tumor cells and the immune system play a crucial role in cancer evolution. In this study, we explore how these interactions influence cancer progression by modeling the relationships among naive T cells, effector T cells, and chronic myeloid leukemia cells. We examine the existence of equilibria, the asymptotic stability of the positive steady state, and the global stabili&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.13516v1-abstract-full').style.display = 'inline'; document.getElementById('2503.13516v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.13516v1-abstract-full" style="display: none;"> The interactions between tumor cells and the immune system play a crucial role in cancer evolution. In this study, we explore how these interactions influence cancer progression by modeling the relationships among naive T cells, effector T cells, and chronic myeloid leukemia cells. We examine the existence of equilibria, the asymptotic stability of the positive steady state, and the global stability of the tumor-free equilibrium. Additionally, we develop a partial differential equation to describe the conditions under which the concentration of cancer cells reaches a level that allows for effective control of cancer evolution. Finally, we apply our proposed model to investigate optimal treatment strategies that aim to minimize both the concentration of cancer cells at the end of treatment and the accumulation of tumor burden, as well as the cost associated with treatment during the intervention period. Our study reveals an optimal therapeutic protocol using optimal control theory. We perform numerical simulations to illustrate our theoretical results and to explore the dynamic behavior of the system and optimal therapeutic protocols. The simulations indicate that the optimal treatment strategy can be more effective than a constant treatment approach, even when applying the same treatment interval and total drug input. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.13516v1-abstract-full').style.display = 'none'; document.getElementById('2503.13516v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16684">arXiv:2407.16684</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16684">pdf</a>, <a href="https://arxiv.org/format/2407.16684">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> AutoRG-Brain: Grounded Report Generation for Brain MRI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jiayu Lei</a>, <a href="/search/q-bio?searchtype=author&amp;query=Zhang%2C+X">Xiaoman Zhang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wu%2C+C">Chaoyi Wu</a>, <a href="/search/q-bio?searchtype=author&amp;query=Dai%2C+L">Lisong Dai</a>, <a href="/search/q-bio?searchtype=author&amp;query=Zhang%2C+Y">Ya Zhang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Zhang%2C+Y">Yanyong Zhang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yanfeng Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Xie%2C+W">Weidi Xie</a>, <a href="/search/q-bio?searchtype=author&amp;query=Li%2C+Y">Yuehua Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16684v3-abstract-short" style="display: inline;"> Radiologists are tasked with interpreting a large number of images in a daily base, with the responsibility of generating corresponding reports. This demanding workload elevates the risk of human error, potentially leading to treatment delays, increased healthcare costs, revenue loss, and operational inefficiencies. To address these challenges, we initiate a series of work on grounded Automatic Re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16684v3-abstract-full').style.display = 'inline'; document.getElementById('2407.16684v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16684v3-abstract-full" style="display: none;"> Radiologists are tasked with interpreting a large number of images in a daily base, with the responsibility of generating corresponding reports. This demanding workload elevates the risk of human error, potentially leading to treatment delays, increased healthcare costs, revenue loss, and operational inefficiencies. To address these challenges, we initiate a series of work on grounded Automatic Report Generation (AutoRG), starting from the brain MRI interpretation system, which supports the delineation of brain structures, the localization of anomalies, and the generation of well-organized findings. We make contributions from the following aspects, first, on dataset construction, we release a comprehensive dataset encompassing segmentation masks of anomaly regions and manually authored reports, termed as RadGenome-Brain MRI. This data resource is intended to catalyze ongoing research and development in the field of AI-assisted report generation systems. Second, on system design, we propose AutoRG-Brain, the first brain MRI report generation system with pixel-level grounded visual clues. Third, for evaluation, we conduct quantitative assessments and human evaluations of brain structure segmentation, anomaly localization, and report generation tasks to provide evidence of its reliability and accuracy. This system has been integrated into real clinical scenarios, where radiologists were instructed to write reports based on our generated findings and anomaly segmentation masks. The results demonstrate that our system enhances the report-writing skills of junior doctors, aligning their performance more closely with senior doctors, thereby boosting overall productivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16684v3-abstract-full').style.display = 'none'; document.getElementById('2407.16684v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17090">arXiv:2406.17090</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17090">pdf</a>, <a href="https://arxiv.org/format/2406.17090">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Exploring Biomarker Relationships in Both Type 1 and Type 2 Diabetes Mellitus Through a Bayesian Network Analysis Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Sun%2C+Y">Yuyang Sun</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jingyu Lei</a>, <a href="/search/q-bio?searchtype=author&amp;query=Kosmas%2C+P">Panagiotis Kosmas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17090v1-abstract-short" style="display: inline;"> Understanding the complex relationships of biomarkers in diabetes is pivotal for advancing treatment strategies, a pressing need in diabetes research. This study applies Bayesian network structure learning to analyze the Shanghai Type 1 and Type 2 diabetes mellitus datasets, revealing complex relationships among key diabetes-related biomarkers. The constructed Bayesian network presented notable pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17090v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17090v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17090v1-abstract-full" style="display: none;"> Understanding the complex relationships of biomarkers in diabetes is pivotal for advancing treatment strategies, a pressing need in diabetes research. This study applies Bayesian network structure learning to analyze the Shanghai Type 1 and Type 2 diabetes mellitus datasets, revealing complex relationships among key diabetes-related biomarkers. The constructed Bayesian network presented notable predictive accuracy, particularly for Type 2 diabetes mellitus, with root mean squared error (RMSE) of 18.23 mg/dL, as validated through leave-one-domain experiments and Clarke error grid analysis. This study not only elucidates the intricate dynamics of diabetes through a deeper understanding of biomarker interplay but also underscores the significant potential of integrating data-driven and knowledge-driven methodologies in the realm of personalized diabetes management. Such an approach paves the way for more custom and effective treatment strategies, marking a notable advancement in the field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17090v1-abstract-full').style.display = 'none'; document.getElementById('2406.17090v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper is accepted by EMBC 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11761">arXiv:2404.11761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11761">pdf</a>, <a href="https://arxiv.org/format/2404.11761">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cell Behavior">q-bio.CB</span> </div> </div> <p class="title is-5 mathjax"> A computational scheme connecting gene regulatory network dynamics with heterogeneous stem cell regeneration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Li%2C+Y">Yakun Li</a>, <a href="/search/q-bio?searchtype=author&amp;query=Liang%2C+X">Xiyin Liang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11761v1-abstract-short" style="display: inline;"> Stem cell regeneration is a vital biological process in self-renewing tissues, governing development and tissue homeostasis. Gene regulatory network dynamics are pivotal in controlling stem cell regeneration and cell type transitions. However, integrating the quantitative dynamics of gene regulatory networks at the single-cell level with stem cell regeneration at the population level poses signifi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11761v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11761v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11761v1-abstract-full" style="display: none;"> Stem cell regeneration is a vital biological process in self-renewing tissues, governing development and tissue homeostasis. Gene regulatory network dynamics are pivotal in controlling stem cell regeneration and cell type transitions. However, integrating the quantitative dynamics of gene regulatory networks at the single-cell level with stem cell regeneration at the population level poses significant challenges. This study presents a computational framework connecting gene regulatory network dynamics with stem cell regeneration through a data-driven formulation of the inheritance function. The inheritance function captures epigenetic state transitions during cell division in heterogeneous stem cell populations. Our scheme allows the derivation of the inheritance function based on a hybrid model of cross-cell-cycle gene regulation network dynamics. The proposed scheme enables us to derive the inheritance function based on the hybrid model of cross-cell-cycle gene regulation network dynamics. By explicitly incorporating gene regulatory network structure, it replicates cross-cell-cycling gene regulation dynamics through individual-cell-based modeling. The numerical scheme holds the potential for extension to diverse gene regulatory networks, facilitating a deeper understanding of the connection between gene regulation dynamics and stem cell regeneration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11761v1-abstract-full').style.display = 'none'; document.getElementById('2404.11761v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11759">arXiv:2404.11759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11759">pdf</a>, <a href="https://arxiv.org/format/2404.11759">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> </div> </div> <p class="title is-5 mathjax"> Modelling infectious disease transmission dynamics in conference environments: An individual-based approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Liu%2C+X">Xue Liu</a>, <a href="/search/q-bio?searchtype=author&amp;query=Deng%2C+Y">Yue Deng</a>, <a href="/search/q-bio?searchtype=author&amp;query=Huang%2C+J">Jingying Huang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Zhang%2C+Y">Yuhong Zhang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11759v1-abstract-short" style="display: inline;"> The global public health landscape is perpetually challenged by the looming threat of infectious diseases. Central to addressing this concern is the imperative to prevent and manage disease transmission during pandemics, particularly in unique settings. This study addresses the transmission dynamics of infectious diseases within conference venues, presenting a computational model designed to simul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11759v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11759v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11759v1-abstract-full" style="display: none;"> The global public health landscape is perpetually challenged by the looming threat of infectious diseases. Central to addressing this concern is the imperative to prevent and manage disease transmission during pandemics, particularly in unique settings. This study addresses the transmission dynamics of infectious diseases within conference venues, presenting a computational model designed to simulate transmission processes within a condensed timeframe (one day), beginning with sporadic cases. Our model intricately captures the activities of individual attendees within the conference venue, encompassing meetings, rest intervals, and meal breaks. While meetings entail proximity seating, rest and lunch periods allow attendees to interact with diverse individuals. Moreover, the restroom environment poses an additional avenue for potential infection transmission. Employing an individual-based model, we meticulously replicated the transmission dynamics of infectious diseases, with a specific emphasis on close-contact interactions between infected and susceptible individuals. Through comprehensive analysis of model simulations, we elucidated the intricacies of disease transmission dynamics within conference settings and assessed the efficacy of control strategies to curb disease dissemination. Ultimately, our study proffers a numerical framework for assessing the risk of infectious disease transmission during short-duration conferences, furnishing conference organizers with valuable insights to inform the implementation of targeted prevention and control measures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11759v1-abstract-full').style.display = 'none'; document.getElementById('2404.11759v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages; 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06153">arXiv:2404.06153</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.06153">pdf</a>, <a href="https://arxiv.org/format/2404.06153">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Genomics">q-bio.GN</span> </div> </div> <p class="title is-5 mathjax"> scRDiT: Generating single-cell RNA-seq data by diffusion transformers and accelerating sampling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Dong%2C+S">Shengze Dong</a>, <a href="/search/q-bio?searchtype=author&amp;query=Cui%2C+Z">Zhuorui Cui</a>, <a href="/search/q-bio?searchtype=author&amp;query=Liu%2C+D">Ding Liu</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06153v1-abstract-short" style="display: inline;"> Motivation: Single-cell RNA sequencing (scRNA-seq) is a groundbreaking technology extensively utilized in biological research, facilitating the examination of gene expression at the individual cell level within a given tissue sample. While numerous tools have been developed for scRNA-seq data analysis, the challenge persists in capturing the distinct features of such data and replicating virtual d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06153v1-abstract-full').style.display = 'inline'; document.getElementById('2404.06153v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06153v1-abstract-full" style="display: none;"> Motivation: Single-cell RNA sequencing (scRNA-seq) is a groundbreaking technology extensively utilized in biological research, facilitating the examination of gene expression at the individual cell level within a given tissue sample. While numerous tools have been developed for scRNA-seq data analysis, the challenge persists in capturing the distinct features of such data and replicating virtual datasets that share analogous statistical properties. Results: Our study introduces a generative approach termed scRNA-seq Diffusion Transformer (scRDiT). This method generates virtual scRNA-seq data by leveraging a real dataset. The method is a neural network constructed based on Denoising Diffusion Probabilistic Models (DDPMs) and Diffusion Transformers (DiTs). This involves subjecting Gaussian noises to the real dataset through iterative noise-adding steps and ultimately restoring the noises to form scRNA-seq samples. This scheme allows us to learn data features from actual scRNA-seq samples during model training. Our experiments, conducted on two distinct scRNA-seq datasets, demonstrate superior performance. Additionally, the model sampling process is expedited by incorporating Denoising Diffusion Implicit Models (DDIM). scRDiT presents a unified methodology empowering users to train neural network models with their unique scRNA-seq datasets, enabling the generation of numerous high-quality scRNA-seq samples. Availability and implementation: https://github.com/DongShengze/scRDiT <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06153v1-abstract-full').style.display = 'none'; document.getElementById('2404.06153v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.08064">arXiv:2309.08064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.08064">pdf</a>, <a href="https://arxiv.org/format/2309.08064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Mathematical modeling of heterogeneous stem cell regeneration: from cell division to Waddington&#39;s epigenetic landscape </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.08064v3-abstract-short" style="display: inline;"> Stem cell regeneration is a crucial biological process for most self-renewing tissues during the development and maintenance of tissue homeostasis. In developing the mathematical models of stem cell regeneration and tissue development, cell division is the core process connecting different scale biological processes and leading to changes in cell population number and the epigenetic state of cells&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08064v3-abstract-full').style.display = 'inline'; document.getElementById('2309.08064v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.08064v3-abstract-full" style="display: none;"> Stem cell regeneration is a crucial biological process for most self-renewing tissues during the development and maintenance of tissue homeostasis. In developing the mathematical models of stem cell regeneration and tissue development, cell division is the core process connecting different scale biological processes and leading to changes in cell population number and the epigenetic state of cells. This chapter focuses on the primary strategies for modeling cell division in biological systems. The Lagrange coordinate modeling approach considers gene network dynamics within each cell and random changes in cell states and model parameters during cell division. In contrast, the Euler coordinate modeling approach formulates the evolution of cell population numbers with the same epigenetic state via a differential-integral equation. These strategies focus on different scale dynamics, respectively, and result in two methods of modeling Waddington&#39;s epigenetic landscape: the Fokker-Planck equation and the differential-integral equation approaches. The differential-integral equation approach formulates the evolution of cell population density based on simple assumptions in cell proliferation, apoptosis, differentiation, and epigenetic state transitions during cell division. Moreover, machine learning methods can establish low-dimensional macroscopic measurements of a cell based on single-cell RNA sequencing data. The low dimensional measurements can quantify the epigenetic state of cells and become connections between static single-cell RNA sequencing data with dynamic equations for tissue development processes. The differential-integral equation presented in this chapter provides a reasonable approach to understanding the complex biological processes of tissue development and tumor progression. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08064v3-abstract-full').style.display = 'none'; document.getElementById('2309.08064v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46pages, 1 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07356">arXiv:2309.07356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.07356">pdf</a>, <a href="https://arxiv.org/format/2309.07356">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cell Behavior">q-bio.CB</span> </div> </div> <p class="title is-5 mathjax"> Dynamics of cell-type transition mediated by epigenetic modifications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Huang%2C+R">Rongsheng Huang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Situ%2C+Q">Qiaojun Situ</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07356v1-abstract-short" style="display: inline;"> Maintaining tissue homeostasis requires appropriate regulation of stem cell differentiation. The Waddington landscape posits that gene circuits in a cell form a potential landscape of different cell types, wherein cells follow attractors of the probability landscape to develop into distinct cell types. However, how adult stem cells achieve a delicate balance between self-renewal and differentiatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07356v1-abstract-full').style.display = 'inline'; document.getElementById('2309.07356v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07356v1-abstract-full" style="display: none;"> Maintaining tissue homeostasis requires appropriate regulation of stem cell differentiation. The Waddington landscape posits that gene circuits in a cell form a potential landscape of different cell types, wherein cells follow attractors of the probability landscape to develop into distinct cell types. However, how adult stem cells achieve a delicate balance between self-renewal and differentiation remains unclear. We propose that random inheritance of epigenetic states plays a pivotal role in stem cell differentiation and present a hybrid model of stem cell differentiation induced by epigenetic modifications. Our comprehensive model integrates gene regulation networks, epigenetic state inheritance, and cell regeneration, encompassing multi-scale dynamics ranging from transcription regulation to cell population. Through model simulations, we demonstrate that random inheritance of epigenetic states during cell divisions can spontaneously induce cell differentiation, dedifferentiation, and transdifferentiation. Furthermore, we investigate the influences of interfering with epigenetic modifications and introducing additional transcription factors on the probabilities of dedifferentiation and transdifferentiation, revealing the underlying mechanism of cell reprogramming. This \textit{in silico} model provides valuable insights into the intricate mechanism governing stem cell differentiation and cell reprogramming and offers a promising path to enhance the field of regenerative medicine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07356v1-abstract-full').style.display = 'none'; document.getElementById('2309.07356v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.12709">arXiv:2202.12709</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.12709">pdf</a>, <a href="https://arxiv.org/format/2202.12709">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Activate index: an integrated index to reveal disrupted brain network organizations of major depressive disorder patients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Fu%2C+Y">Yu Fu</a>, <a href="/search/q-bio?searchtype=author&amp;query=Huang%2C+Y">Yanyan Huang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Niu%2C+M">Meng Niu</a>, <a href="/search/q-bio?searchtype=author&amp;query=Xue%2C+L">Le Xue</a>, <a href="/search/q-bio?searchtype=author&amp;query=Dong%2C+S">Shunjie Dong</a>, <a href="/search/q-bio?searchtype=author&amp;query=Guo%2C+S">Shunlin Guo</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Junqiang Lei</a>, <a href="/search/q-bio?searchtype=author&amp;query=Zhuo%2C+C">Cheng Zhuo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.12709v1-abstract-short" style="display: inline;"> Altered functional brain networks have been a typical manifestation that distinguishes major depressive disorder (MDD) patients from healthy control (HC) subjects in functional magnetic resonance imaging (fMRI) studies. Recently, rich club and diverse club metrics have been proposed for network or network neuroscience analyses. The rich club defines a set of nodes that tend to be the hubs of speci&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.12709v1-abstract-full').style.display = 'inline'; document.getElementById('2202.12709v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.12709v1-abstract-full" style="display: none;"> Altered functional brain networks have been a typical manifestation that distinguishes major depressive disorder (MDD) patients from healthy control (HC) subjects in functional magnetic resonance imaging (fMRI) studies. Recently, rich club and diverse club metrics have been proposed for network or network neuroscience analyses. The rich club defines a set of nodes that tend to be the hubs of specific communities, and the diverse club defines the nodes that span more communities and have edges diversely distributed across different communities. Considering the heterogeneity of rich clubs and diverse clubs, combining them and on the basis to derive a novel indicator may reveal new evidence of brain functional integration and separation, which might provide new insights into MDD. This study for the first time discussed the differences between MDD and HC using both rich club and diverse club metrics and found the complementarity of them in analyzing brain networks. Besides, a novel index, termed &#34;active index&#34;, has been proposed in this study. The active index defines a group of nodes that tend to be diversely distributed across communities while avoiding being a hub of a community. Experimental results demonstrate the superiority of active index in analyzing MDD brain mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.12709v1-abstract-full').style.display = 'none'; document.getElementById('2202.12709v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.06130">arXiv:2106.06130</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.06130">pdf</a>, <a href="https://arxiv.org/format/2106.06130">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42256-021-00438-4">10.1038/s42256-021-00438-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for Property Prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Fang%2C+X">Xiaomin Fang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Liu%2C+L">Lihang Liu</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jieqiong Lei</a>, <a href="/search/q-bio?searchtype=author&amp;query=He%2C+D">Donglong He</a>, <a href="/search/q-bio?searchtype=author&amp;query=Zhang%2C+S">Shanzhuo Zhang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Zhou%2C+J">Jingbo Zhou</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+F">Fan Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wu%2C+H">Hua Wu</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+H">Haifeng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.06130v4-abstract-short" style="display: inline;"> Effective molecular representation learning is of great importance to facilitate molecular property prediction, which is a fundamental task for the drug and material industry. Recent advances in graph neural networks (GNNs) have shown great promise in applying GNNs for molecular representation learning. Moreover, a few recent studies have also demonstrated successful applications of self-supervise&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06130v4-abstract-full').style.display = 'inline'; document.getElementById('2106.06130v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.06130v4-abstract-full" style="display: none;"> Effective molecular representation learning is of great importance to facilitate molecular property prediction, which is a fundamental task for the drug and material industry. Recent advances in graph neural networks (GNNs) have shown great promise in applying GNNs for molecular representation learning. Moreover, a few recent studies have also demonstrated successful applications of self-supervised learning methods to pre-train the GNNs to overcome the problem of insufficient labeled molecules. However, existing GNNs and pre-training strategies usually treat molecules as topological graph data without fully utilizing the molecular geometry information. Whereas, the three-dimensional (3D) spatial structure of a molecule, a.k.a molecular geometry, is one of the most critical factors for determining molecular physical, chemical, and biological properties. To this end, we propose a novel Geometry Enhanced Molecular representation learning method (GEM) for Chemical Representation Learning (ChemRL). At first, we design a geometry-based GNN architecture that simultaneously models atoms, bonds, and bond angles in a molecule. To be specific, we devised double graphs for a molecule: The first one encodes the atom-bond relations; The second one encodes bond-angle relations. Moreover, on top of the devised GNN architecture, we propose several novel geometry-level self-supervised learning strategies to learn spatial knowledge by utilizing the local and global molecular 3D structures. We compare ChemRL-GEM with various state-of-the-art (SOTA) baselines on different molecular benchmarks and exhibit that ChemRL-GEM can significantly outperform all baselines in both regression and classification tasks. For example, the experimental results show an overall improvement of 8.8% on average compared to SOTA baselines on the regression tasks, demonstrating the superiority of the proposed method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06130v4-abstract-full').style.display = 'none'; document.getElementById('2106.06130v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Machine Intelligence, 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Machine Intelligence, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.04540">arXiv:2106.04540</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.04540">pdf</a>, <a href="https://arxiv.org/format/2106.04540">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> Object Based Attention Through Internal Gating </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jordan Lei</a>, <a href="/search/q-bio?searchtype=author&amp;query=Benjamin%2C+A+S">Ari S. Benjamin</a>, <a href="/search/q-bio?searchtype=author&amp;query=Kording%2C+K+P">Konrad P. Kording</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.04540v1-abstract-short" style="display: inline;"> Object-based attention is a key component of the visual system, relevant for perception, learning, and memory. Neurons tuned to features of attended objects tend to be more active than those associated with non-attended objects. There is a rich set of models of this phenomenon in computational neuroscience. However, there is currently a divide between models that successfully match physiological d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04540v1-abstract-full').style.display = 'inline'; document.getElementById('2106.04540v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.04540v1-abstract-full" style="display: none;"> Object-based attention is a key component of the visual system, relevant for perception, learning, and memory. Neurons tuned to features of attended objects tend to be more active than those associated with non-attended objects. There is a rich set of models of this phenomenon in computational neuroscience. However, there is currently a divide between models that successfully match physiological data but can only deal with extremely simple problems and models of attention used in computer vision. For example, attention in the brain is known to depend on top-down processing, whereas self-attention in deep learning does not. Here, we propose an artificial neural network model of object-based attention that captures the way in which attention is both top-down and recurrent. Our attention model works well both on simple test stimuli, such as those using images of handwritten digits, and on more complex stimuli, such as natural images drawn from the COCO dataset. We find that our model replicates a range of findings from neuroscience, including attention-invariant tuning, inhibition of return, and attention-mediated scaling of activity. Understanding object based attention is both computationally interesting and a key problem for computational neuroscience. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04540v1-abstract-full').style.display = 'none'; document.getElementById('2106.04540v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.07985">arXiv:2004.07985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.07985">pdf</a>, <a href="https://arxiv.org/format/2004.07985">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cell Behavior">q-bio.CB</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0217979220502884">10.1142/S0217979220502884 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Using single-cell entropy to describe the dynamics of reprogramming and differentiation of induced pluripotent stem cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Ye%2C+Y">Yusong Ye</a>, <a href="/search/q-bio?searchtype=author&amp;query=Yang%2C+Z">Zhuoqin Yang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.07985v1-abstract-short" style="display: inline;"> Induced pluripotent stem cells (iPSCs) provide a great model to study the process of reprogramming and differentiation of stem cells. Single-cell RNA sequencing (scRNA-seq) enables us to investigate the reprogramming process at single-cell level. Here, we introduce single-cell entropy (scEntropy) as a macroscopic variable to quantify the cellular transcriptome from scRNA-seq data during reprogramm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07985v1-abstract-full').style.display = 'inline'; document.getElementById('2004.07985v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.07985v1-abstract-full" style="display: none;"> Induced pluripotent stem cells (iPSCs) provide a great model to study the process of reprogramming and differentiation of stem cells. Single-cell RNA sequencing (scRNA-seq) enables us to investigate the reprogramming process at single-cell level. Here, we introduce single-cell entropy (scEntropy) as a macroscopic variable to quantify the cellular transcriptome from scRNA-seq data during reprogramming and differentiation of iPSCs. scEntropy measures the relative order parameter of genomic transcriptions at single cell level during the cell fate change process, which shows increasing during differentiation, and decreasing upon reprogramming. Moreover, based on the scEntropy dynamics, we construct a phenomenological stochastic differential equation model and the corresponding Fokker-Plank equation for cell state transitions during iPSC differentiation, which provide insights to infer cell fates changes and stem cell differentiation. This study is the first to introduce the novel concept of scEntropy to the biological process of iPSC, and suggests that the scEntropy can provide a suitable quantify to describe cell fate transition in differentiation and reprogramming of stem cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07985v1-abstract-full').style.display = 'none'; document.getElementById('2004.07985v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.06401">arXiv:2002.06401</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.06401">pdf</a>, <a href="https://arxiv.org/ps/2002.06401">ps</a>, <a href="https://arxiv.org/format/2002.06401">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Genomics">q-bio.GN</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1089/cmb.2019.0413">10.1089/cmb.2019.0413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DNA methylation heterogeneity induced by collaborations between enhancers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Ye%2C+Y">Yusong Ye</a>, <a href="/search/q-bio?searchtype=author&amp;query=Yang%2C+Z">Zhuoqin Yang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.06401v1-abstract-short" style="display: inline;"> During mammalian embryo development, reprogramming of DNA methylation plays important roles in the erasure of parental epigenetic memory and the establishment of na茂ve pluripogent cells. Multiple enzymes that regulate the processes of methylation and demethylation work together to shape the pattern of genome-scale DNA methylation and guid the process of cell differentiation. Recent availability of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.06401v1-abstract-full').style.display = 'inline'; document.getElementById('2002.06401v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.06401v1-abstract-full" style="display: none;"> During mammalian embryo development, reprogramming of DNA methylation plays important roles in the erasure of parental epigenetic memory and the establishment of na茂ve pluripogent cells. Multiple enzymes that regulate the processes of methylation and demethylation work together to shape the pattern of genome-scale DNA methylation and guid the process of cell differentiation. Recent availability of methylome information from single-cell whole genome bisulfite sequencing (scBS-seq) provides an opportunity to study DNA methylation dynamics in the whole genome in individual cells, which reveal the heterogeneous methylation distributions of enhancers in embryo stem cells (ESCs). In this study, we developed a computational model of enhancer methylation inheritance to study the dynamics of genome-scale DNA methylation reprogramming during exit from pluripotency. The model enables us to track genome-scale DNA methylation reprogramming at single-cell level during the embryo development process, and reproduce the DNA methylation heterogeneity reported by scBS-seq. Model simulations show that DNA methylation heterogeneity is an intrinsic property driven by cell division along the development process, and the collaboration between neighboring enhancers is required for heterogeneous methylation. Our study suggest that the mechanism of genome-scale oscillation proposed by Rulands et al. (2018) might not necessary to the DNA methylation during exit from pluripotency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.06401v1-abstract-full').style.display = 'none'; document.getElementById('2002.06401v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Computational Biology, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.06391">arXiv:2002.06391</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.06391">pdf</a>, <a href="https://arxiv.org/format/2002.06391">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S1793048020500010">10.1142/S1793048020500010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-cell entropy to quantify the cellular transcription from single-cell RNA-seq data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Liu%2C+J">Jingxin Liu</a>, <a href="/search/q-bio?searchtype=author&amp;query=Song%2C+Y">You Song</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.06391v1-abstract-short" style="display: inline;"> We present the use of single-cell entropy (scEntropy) to measure the order of the cellular transcriptome profile from single-cell RNA-seq data, which leads to a method of unsupervised cell type classification through scEntropy followed by the Gaussian mixture model (scEGMM). scEntropy is straightforward in defining an intrinsic transcriptional state of a cell. scEGMM is a coherent method of cell t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.06391v1-abstract-full').style.display = 'inline'; document.getElementById('2002.06391v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.06391v1-abstract-full" style="display: none;"> We present the use of single-cell entropy (scEntropy) to measure the order of the cellular transcriptome profile from single-cell RNA-seq data, which leads to a method of unsupervised cell type classification through scEntropy followed by the Gaussian mixture model (scEGMM). scEntropy is straightforward in defining an intrinsic transcriptional state of a cell. scEGMM is a coherent method of cell type classification that includes no parameters and no clustering; however, it is comparable to existing machine learning-based methods in benchmarking studies and facilitates biological interpretation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.06391v1-abstract-full').style.display = 'none'; document.getElementById('2002.06391v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Biophysical Reviews and Letters, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.05531">arXiv:1911.05531</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.05531">pdf</a>, <a href="https://arxiv.org/format/1911.05531">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Accurate Protein Structure Prediction by Embeddings and Deep Learning Representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Drori%2C+I">Iddo Drori</a>, <a href="/search/q-bio?searchtype=author&amp;query=Thaker%2C+D">Darshan Thaker</a>, <a href="/search/q-bio?searchtype=author&amp;query=Srivatsa%2C+A">Arjun Srivatsa</a>, <a href="/search/q-bio?searchtype=author&amp;query=Jeong%2C+D">Daniel Jeong</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wang%2C+Y">Yueqi Wang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Nan%2C+L">Linyong Nan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wu%2C+F">Fan Wu</a>, <a href="/search/q-bio?searchtype=author&amp;query=Leggas%2C+D">Dimitri Leggas</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinhao Lei</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lu%2C+W">Weiyi Lu</a>, <a href="/search/q-bio?searchtype=author&amp;query=Fu%2C+W">Weilong Fu</a>, <a href="/search/q-bio?searchtype=author&amp;query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/q-bio?searchtype=author&amp;query=Karri%2C+S">Sashank Karri</a>, <a href="/search/q-bio?searchtype=author&amp;query=Kannan%2C+A">Anand Kannan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Moretti%2C+A">Antonio Moretti</a>, <a href="/search/q-bio?searchtype=author&amp;query=AlQuraishi%2C+M">Mohammed AlQuraishi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Keasar%2C+C">Chen Keasar</a>, <a href="/search/q-bio?searchtype=author&amp;query=Pe%27er%2C+I">Itsik Pe&#39;er</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.05531v1-abstract-short" style="display: inline;"> Proteins are the major building blocks of life, and actuators of almost all chemical and biophysical events in living organisms. Their native structures in turn enable their biological functions which have a fundamental role in drug design. This motivates predicting the structure of a protein from its sequence of amino acids, a fundamental problem in computational biology. In this work, we demonst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.05531v1-abstract-full').style.display = 'inline'; document.getElementById('1911.05531v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.05531v1-abstract-full" style="display: none;"> Proteins are the major building blocks of life, and actuators of almost all chemical and biophysical events in living organisms. Their native structures in turn enable their biological functions which have a fundamental role in drug design. This motivates predicting the structure of a protein from its sequence of amino acids, a fundamental problem in computational biology. In this work, we demonstrate state-of-the-art protein structure prediction (PSP) results using embeddings and deep learning models for prediction of backbone atom distance matrices and torsion angles. We recover 3D coordinates of backbone atoms and reconstruct full atom protein by optimization. We create a new gold standard dataset of proteins which is comprehensive and easy to use. Our dataset consists of amino acid sequences, Q8 secondary structures, position specific scoring matrices, multiple sequence alignment co-evolutionary features, backbone atom distance matrices, torsion angles, and 3D coordinates. We evaluate the quality of our structure prediction by RMSD on the latest Critical Assessment of Techniques for Protein Structure Prediction (CASP) test data and demonstrate competitive results with the winning teams and AlphaFold in CASP13 and supersede the results of the winning teams in CASP12. We make our data, models, and code publicly available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.05531v1-abstract-full').style.display = 'none'; document.getElementById('1911.05531v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Machine Learning in Computational Biology, 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.07048">arXiv:1908.07048</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.07048">pdf</a>, <a href="https://arxiv.org/format/1908.07048">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cell Behavior">q-bio.CB</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11425-019-1629-7">10.1007/s11425-019-1629-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolutionary dynamics of cancer: from epigenetic regulation to cell population dynamics -- mathematical model framework, applications, and open problems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.07048v1-abstract-short" style="display: inline;"> Predictive modeling of the evolutionary dynamics of cancer is a challenge issue in computational cancer biology. In this paper, we propose a general mathematical model framework for the evolutionary dynamics of cancer with plasticity and heterogeneity in cancer cells. Cancer is a group of diseases involving abnormal cell growth, during which abnormal regulations in stem cell regeneration are essen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07048v1-abstract-full').style.display = 'inline'; document.getElementById('1908.07048v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.07048v1-abstract-full" style="display: none;"> Predictive modeling of the evolutionary dynamics of cancer is a challenge issue in computational cancer biology. In this paper, we propose a general mathematical model framework for the evolutionary dynamics of cancer with plasticity and heterogeneity in cancer cells. Cancer is a group of diseases involving abnormal cell growth, during which abnormal regulations in stem cell regeneration are essential for the dynamics of cancer development. In general, the dynamics of stem cell regeneration can be simplified as a $\mathrm{G_0}$ phase cell cycle model, which lead to a delay differentiation equation. When cell heterogeneity and plasticity are considered, we establish a differential-integral equation based on the random transition of epigenetic states of stem cells during cell division. The proposed model highlights cell heterogeneity and plasticity, and connects the heterogeneity with cell-to-cell variance in cellular behaviors, e.g. proliferation, apoptosis, and differentiation/senescence, and can be extended to include gene mutation-induced tumor development. Hybrid computations models are developed based on the mathematical model framework, and are applied to the process of inflammation-induced tumorigenesis and tumor relapse after CAR-T therapy. Finally, we give rise to several mathematical problems related to the proposed differential-integral equation. Answers to these problems are crucial for the understanding of the evolutionary dynamics of cancer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07048v1-abstract-full').style.display = 'none'; document.getElementById('1908.07048v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.11448">arXiv:1903.11448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.11448">pdf</a>, <a href="https://arxiv.org/format/1903.11448">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cell Behavior">q-bio.CB</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jtbi.2020.110196">10.1016/j.jtbi.2020.110196 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A general mathematical framework for understanding the behavior of heterogeneous stem cell regeneration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.11448v2-abstract-short" style="display: inline;"> Stem cell heterogeneity is essential for the homeostasis in tissue development. This paper established a general formulation for understanding the dynamics of stem cell regeneration with cell heterogeneity and random transitions of epigenetic states. The model generalizes the classical G0 cell cycle model, and incorporates the epigenetic states of stem cells that are represented by a continuous mu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.11448v2-abstract-full').style.display = 'inline'; document.getElementById('1903.11448v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.11448v2-abstract-full" style="display: none;"> Stem cell heterogeneity is essential for the homeostasis in tissue development. This paper established a general formulation for understanding the dynamics of stem cell regeneration with cell heterogeneity and random transitions of epigenetic states. The model generalizes the classical G0 cell cycle model, and incorporates the epigenetic states of stem cells that are represented by a continuous multidimensional variable and the kinetic rates of cell behaviors, including proliferation, differentiation, and apoptosis, that are dependent on their epigenetic states. Moreover, the random transition of epigenetic states is represented by an inheritance probability that can be described as a conditional beta distribution. This model can be extended to investigate gene mutation-induced tumor development. The proposed formula is a generalized formula that helps us to understand various dynamic processes of stem cell regeneration, including tissue development, degeneration, and abnormal growth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.11448v2-abstract-full').style.display = 'none'; document.getElementById('1903.11448v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Theoretical Biology, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.00621">arXiv:1504.00621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.00621">pdf</a>, <a href="https://arxiv.org/format/1504.00621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Subcellular Processes">q-bio.SC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3934/mbe.2018023">10.3934/mbe.2018023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> aa-tRNA competition is crucial for the effective translation efficiency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Xia%2C+W">Wenjun Xia</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.00621v1-abstract-short" style="display: inline;"> Translation is a central biological process by which proteins are synthesized from genetic information contained within mRNAs. Here we study the kinetics of translation at molecular level through a stochastic simulation model. The model explicitly include RNA sequences, ribosome dynamics, tRNA pool and biochemical reactions in the translation elongation. The results show that the translation effic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.00621v1-abstract-full').style.display = 'inline'; document.getElementById('1504.00621v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.00621v1-abstract-full" style="display: none;"> Translation is a central biological process by which proteins are synthesized from genetic information contained within mRNAs. Here we study the kinetics of translation at molecular level through a stochastic simulation model. The model explicitly include RNA sequences, ribosome dynamics, tRNA pool and biochemical reactions in the translation elongation. The results show that the translation efficiency is mainly limited by the available ribosome number, translation initiation and the translation elongation time. The elongation time is log-normal distribution with mean and variance determined by both the codon saturation and the process of aa-tRNA selection at each codon binding. Moreover, our simulations show that the translation accuracy exponentially decreases with the sequence length. These results suggest that aa-tRNA competition is crucial for both translation elongation, translation efficiency and the accuracy, which in turn determined the effective protein production rate of correct proteins. Our results improve the dynamical equation of protein production with a delay differential equation which is dependent on sequence informations through both the effective production rate and the distribution of elongation time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.00621v1-abstract-full').style.display = 'none'; document.getElementById('1504.00621v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.08274">arXiv:1503.08274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.08274">pdf</a>, <a href="https://arxiv.org/format/1503.08274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> </div> </div> <p class="title is-5 mathjax"> PDCD5 interacts with p53 and functions as a regulator of p53 dynamics in the DNA damage response </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Zhuge%2C+C">Changjing Zhuge</a>, <a href="/search/q-bio?searchtype=author&amp;query=Sun%2C+X">Xiaojuan Sun</a>, <a href="/search/q-bio?searchtype=author&amp;query=Chen%2C+Y">Yingyu Chen</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.08274v1-abstract-short" style="display: inline;"> The tumor suppressor p53 plays a central role in cell fate decisions after DNA damage. Programmed Cell Death 5 (PDCD5) is known to interact with the p53 pathway to promote cell apoptosis. Recombinant human PDCD5 can significantly sensitize different cancers to chemotherapies. In the present paper, we construct a computational model that includes PDCD5 interactions in the p53 signaling network and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08274v1-abstract-full').style.display = 'inline'; document.getElementById('1503.08274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.08274v1-abstract-full" style="display: none;"> The tumor suppressor p53 plays a central role in cell fate decisions after DNA damage. Programmed Cell Death 5 (PDCD5) is known to interact with the p53 pathway to promote cell apoptosis. Recombinant human PDCD5 can significantly sensitize different cancers to chemotherapies. In the present paper, we construct a computational model that includes PDCD5 interactions in the p53 signaling network and study the effects of PDCD5 on p53-mediated cell fate decisions during the DNA damage response. Our results revealed that PDCD5 functions as a co-activator of p53 that regulates p53-dependent cell fate decisions via the mediation of p53 dynamics. The effects of PDCD5 are dose-dependent such that p53 can display either sustained or pulsed dynamics at different PDCD5 levels. Moreover, PDCD5 regulates caspase-3 activation via two mechanisms during the two phases of sustained and pulsed p53 dynamics. This study provides insights regarding how PDCD5 functions as a regulator of the p53 pathway and might be helpful for increasing our understanding of the molecular mechanisms by which PDCD5 can be used to treat cancers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08274v1-abstract-full').style.display = 'none'; document.getElementById('1503.08274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.08261">arXiv:1503.08261</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.08261">pdf</a>, <a href="https://arxiv.org/format/1503.08261">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> </div> </div> <p class="title is-5 mathjax"> Bifurcation analysis and potential landscape of the p53-Mdm2 oscillator regulated by the co-activator PDCD5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Bi%2C+Y">Yuanhong Bi</a>, <a href="/search/q-bio?searchtype=author&amp;query=Yang%2C+Z">Zhuoqin Yang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Zhuge%2C+C">Changjing Zhuge</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.08261v1-abstract-short" style="display: inline;"> Dynamics of p53 is known to play important roles in the regulation of cell fate decisions in response to various stresses, and PDCD5 functions as a co-activator of p53 to modulate the p53 dynamics. In the present paper, we investigate how p53 dynamics are modulated by PDCD5 during the DNA damage response using methods of bifurcation analysis and potential landscape. Our results reveal that p53 act&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08261v1-abstract-full').style.display = 'inline'; document.getElementById('1503.08261v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.08261v1-abstract-full" style="display: none;"> Dynamics of p53 is known to play important roles in the regulation of cell fate decisions in response to various stresses, and PDCD5 functions as a co-activator of p53 to modulate the p53 dynamics. In the present paper, we investigate how p53 dynamics are modulated by PDCD5 during the DNA damage response using methods of bifurcation analysis and potential landscape. Our results reveal that p53 activities can display rich dynamics under different PDCD5 levels, including monostability, bistability with two stable steady states, oscillations, and co-existence of a stable steady state and an oscillatory state. Physical properties of the p53 oscillations are further shown by the potential landscape, in which the potential force attracts the system state to the limit cycle attractor, and the curl flux force drives the coherent oscillation along the cyclic. We also investigate the effect of PDCD5 efficiency on inducing the p53 oscillations. We show that Hopf bifurcation is induced by increasing the PDCD5 efficiency, and the system dynamics show clear transition features in both barrier height and energy dissipation when the efficiency is close to the bifurcation point. This study provides a global picture of how PDCD5 regulates p53 dynamics via the interaction with the p53-Mdm2 oscillator and can be helpful in understanding the complicate p53 dynamics in a more complete p53 pathway. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08261v1-abstract-full').style.display = 'none'; document.getElementById('1503.08261v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.4524">arXiv:1104.4524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.4524">pdf</a>, <a href="https://arxiv.org/ps/1104.4524">ps</a>, <a href="https://arxiv.org/format/1104.4524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Stochastic Modeling in Systems Biology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.4524v1-abstract-short" style="display: inline;"> Many cellular behaviors are regulated by gene regulation networks, kinetics of which is one of the main subjects in the study of systems biology. Because of the low number molecules in these reacting systems, stochastic effects are significant. In recent years, stochasticity in modeling the kinetics of gene regulation networks have been drawing the attention of many researchers. This paper is a se&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.4524v1-abstract-full').style.display = 'inline'; document.getElementById('1104.4524v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.4524v1-abstract-full" style="display: none;"> Many cellular behaviors are regulated by gene regulation networks, kinetics of which is one of the main subjects in the study of systems biology. Because of the low number molecules in these reacting systems, stochastic effects are significant. In recent years, stochasticity in modeling the kinetics of gene regulation networks have been drawing the attention of many researchers. This paper is a self contained review trying to provide an overview of stochastic modeling. I will introduce the derivation of the main equations in modeling the biochemical systems with intrinsic noise (chemical master equation, Fokker-Plan equation, reaction rate equation, chemical Langevin equation), and will discuss the relations between these formulations. The mathematical formulations for systems with fluctuations in kinetic parameters are also discussed. Finally, I will introduce the exact stochastic simulation algorithm and the approximate explicit tau-leaping method for making numerical simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.4524v1-abstract-full').style.display = 'none'; document.getElementById('1104.4524v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1002.5024">arXiv:1002.5024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1002.5024">pdf</a>, <a href="https://arxiv.org/ps/1002.5024">ps</a>, <a href="https://arxiv.org/format/1002.5024">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/88/68004">10.1209/0295-5075/88/68004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elastic energy of proteins and the stages of protein folding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a>, <a href="/search/q-bio?searchtype=author&amp;query=Huang%2C+K">Kerson Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1002.5024v1-abstract-short" style="display: inline;"> We propose a universal elastic energy for proteins, which depends only on the radius of gyration $R_{g}$ and the residue number $N$. It is constructed using physical arguments based on the hydrophobic effect and hydrogen bonding. Adjustable parameters are fitted to data from the computer simulation of the folding of a set of proteins using the CSAW (conditioned self-avoiding walk) model. The ela&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.5024v1-abstract-full').style.display = 'inline'; document.getElementById('1002.5024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1002.5024v1-abstract-full" style="display: none;"> We propose a universal elastic energy for proteins, which depends only on the radius of gyration $R_{g}$ and the residue number $N$. It is constructed using physical arguments based on the hydrophobic effect and hydrogen bonding. Adjustable parameters are fitted to data from the computer simulation of the folding of a set of proteins using the CSAW (conditioned self-avoiding walk) model. The elastic energy gives rise to scaling relations of the form $R_{g}\sim N^谓$ in different regions. It shows three folding stages characterized by the progression with exponents $谓= 3/5, 3/7, 2/5$, which we identify as the unfolded stage, pre-globule, and molten globule, respectively. The pre-globule goes over to the molten globule via a break in behavior akin to a first-order phase transition, which is initiated by a sudden acceleration of hydrogen bonding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.5024v1-abstract-full').style.display = 'none'; document.getElementById('1002.5024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Europhys Lett, 88 (2009), 68004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1002.5013">arXiv:1002.5013</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1002.5013">pdf</a>, <a href="https://arxiv.org/format/1002.5013">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Protein Folding: A Perspective From Statistical Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a>, <a href="/search/q-bio?searchtype=author&amp;query=Huang%2C+K">Kerson Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1002.5013v1-abstract-short" style="display: inline;"> In this paper, we introduce an approach to the protein folding problem from the point of view of statistical physics. Protein folding is a stochastic process by which a polypeptide folds into its characteristic and functional 3D structure from random coil. The process involves an intricate interplay between global geometry and local structure, and each protein seems to present special problems.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.5013v1-abstract-full').style.display = 'inline'; document.getElementById('1002.5013v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1002.5013v1-abstract-full" style="display: none;"> In this paper, we introduce an approach to the protein folding problem from the point of view of statistical physics. Protein folding is a stochastic process by which a polypeptide folds into its characteristic and functional 3D structure from random coil. The process involves an intricate interplay between global geometry and local structure, and each protein seems to present special problems. We introduce CSAW (conditioned self-avoiding walk), a model of protein folding that combines the features of self-avoiding walk (SAW) and the Monte Carlo method. In this model, the unfolded protein chain is treated as a random coil described by SAW. Folding is induced by hydrophobic forces and other interactions, such as hydrogen bonding, which can be taken into account by imposing conditions on SAW. Conceptually, the mathematical basis is a generalized Langevin equation. To illustrate the flexibility and capabilities of the model, we consider several examples, including helix formation, elastic properties, and the transition in the folding of myoglobin. From the CSAW simulation and physical arguments, we find a universal elastic energy for proteins, which depends only on the radius of gyration $R_{g}$ and the residue number $N$. The elastic energy gives rise to scaling laws $R_{g}\sim N^谓$ in different regions with exponents $谓=3/5,3/7,2/5$, consistent with the observed unfolded stage, pre-globule, and molten globule, respectively. These results indicate that CSAW can serve as a theoretical laboratory to study universal principles in protein folding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.5013v1-abstract-full').style.display = 'none'; document.getElementById('1002.5013v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Protein Folding, Eric C. Walters ed. NOVA Publishers, 2010, pp. 579-604 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0711.0846">arXiv:0711.0846</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0711.0846">pdf</a>, <a href="https://arxiv.org/ps/0711.0846">ps</a>, <a href="https://arxiv.org/format/0711.0846">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> A Unified Model of $伪$-Helix/$尾$-Sheet/Random-Coil Transition in Proteins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Hong%2C+L">Liu Hong</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">JinZhi Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0711.0846v1-abstract-short" style="display: inline;"> The theory of transition between $伪$-helix, $尾$-sheet and random coil conformation of a protein is discussed through a simple model, that includes both short and long-range interactions. Besides the bonding parameter and helical initiation factor in Zimm-Bragg model, three new parameters are introduced to describe beta structure: the local constraint factor for a single residue to be contained i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0711.0846v1-abstract-full').style.display = 'inline'; document.getElementById('0711.0846v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0711.0846v1-abstract-full" style="display: none;"> The theory of transition between $伪$-helix, $尾$-sheet and random coil conformation of a protein is discussed through a simple model, that includes both short and long-range interactions. Besides the bonding parameter and helical initiation factor in Zimm-Bragg model, three new parameters are introduced to describe beta structure: the local constraint factor for a single residue to be contained in a $尾$-strand, the long-range bonding parameter that accounts for the interaction between a pair of bonded $尾$-strands, and a correction factor for the initiation of a $尾$-sheet. Either increasing local constraint factor or long-range bonding parameter can cause a transition from $伪$-helix or random coil conformation to $尾$-sheet conformation. The sharpness of transition depends on the competition between short and long-range interactions. Other effective factors, such as the chain length and temperature, are also discussed. In this model, the entropy due to different ways to group $尾$-strands into different $尾$-sheets gives rise to significant contribution to partition function, and makes major differences between beta structure and helical structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0711.0846v1-abstract-full').style.display = 'none'; document.getElementById('0711.0846v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/q-bio/0605049">arXiv:q-bio/0605049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/q-bio/0605049">pdf</a>, <a href="https://arxiv.org/ps/q-bio/0605049">ps</a>, <a href="https://arxiv.org/format/q-bio/0605049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cell Behavior">q-bio.CB</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.96.198102">10.1103/PhysRevLett.96.198102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sequential recruitment and combinatorial assembling of multiprotein complexes in transcriptional activation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Lemaire%2C+V">Vincent Lemaire</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lee%2C+C+F">Chiu Fan Lee</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jinzhi Lei</a>, <a href="/search/q-bio?searchtype=author&amp;query=Metivier%2C+R">Raphael Metivier</a>, <a href="/search/q-bio?searchtype=author&amp;query=Glass%2C+L">Leon Glass</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="q-bio/0605049v1-abstract-short" style="display: inline;"> In human cells, estrogenic signals induce cyclical association and dissociation of specific proteins with the DNA in order to activate transcription of estrogen-responsive genes. These oscillations can be modeled by assuming a large number of sequential reactions represented by linear kinetics with random kinetic rates. Application of the model to experimental data predicts robust binding sequen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('q-bio/0605049v1-abstract-full').style.display = 'inline'; document.getElementById('q-bio/0605049v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="q-bio/0605049v1-abstract-full" style="display: none;"> In human cells, estrogenic signals induce cyclical association and dissociation of specific proteins with the DNA in order to activate transcription of estrogen-responsive genes. These oscillations can be modeled by assuming a large number of sequential reactions represented by linear kinetics with random kinetic rates. Application of the model to experimental data predicts robust binding sequences in which proteins associate with the DNA at several different phases of the oscillation. Our methods circumvent the need to derive detailed kinetic graphs, and are applicable to other oscillatory biological processes involving a large number of sequential steps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('q-bio/0605049v1-abstract-full').style.display = 'none'; document.getElementById('q-bio/0605049v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 96, 198102 (2006) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0104437">arXiv:cond-mat/0104437</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0104437">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0104437">ps</a>, <a href="https://arxiv.org/format/cond-mat/0104437">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Biology">q-bio</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0253-6102/38/1/113">10.1088/0253-6102/38/1/113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral Representation Theory for Dielectric Behavior of Nonspherical Cell Suspensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Huang%2C+J+P">J. P. Huang</a>, <a href="/search/q-bio?searchtype=author&amp;query=Yu%2C+K+W">K. W. Yu</a>, <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jun Lei</a>, <a href="/search/q-bio?searchtype=author&amp;query=Sun%2C+H">Hong Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0104437v1-abstract-short" style="display: inline;"> Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, while the high-frequency one was independent of it. The cell shape effect was simulated by an ellipsoidal cell model but the comparison between theory and experiment was far from being&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0104437v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0104437v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0104437v1-abstract-full" style="display: none;"> Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, while the high-frequency one was independent of it. The cell shape effect was simulated by an ellipsoidal cell model but the comparison between theory and experiment was far from being satisfactory. Prompted by the discrepancy, we proposed the use of spectral representation to analyze more realistic cell models. We adopted a shell-spheroidal model to analyze the effects of the cell membrane. It is found that the dielectric property of the cell membrane has only a minor effect on the dispersion magnitude ratio and the characteristic frequency ratio. We further included the effect of rotation of dipole induced by an external electric field, and solved the dipole-rotation spheroidal model in the spectral representation. Good agreement between theory and experiment has been obtained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0104437v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0104437v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 eps figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Comm. Theor. Phys. 38, 113 (2002) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0103506">arXiv:cond-mat/0103506</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0103506">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0103506">ps</a>, <a href="https://arxiv.org/format/cond-mat/0103506">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Biology">q-bio</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/13/15/302">10.1088/0953-8984/13/15/302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dielectric Behavior of Nonspherical Cell Suspensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&amp;query=Lei%2C+J">Jun Lei</a>, <a href="/search/q-bio?searchtype=author&amp;query=Wan%2C+J+T+K">Jones T. K. Wan</a>, <a href="/search/q-bio?searchtype=author&amp;query=Yu%2C+K+W">K. W. Yu</a>, <a href="/search/q-bio?searchtype=author&amp;query=Sun%2C+H">Hong Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0103506v1-abstract-short" style="display: inline;"> Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, whereas the high-frequency one was independent of it. The cell shape effect was qualitatively simulated by an ellipsoidal cell model. However, the comparison between theory and experime&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0103506v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0103506v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0103506v1-abstract-full" style="display: none;"> Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, whereas the high-frequency one was independent of it. The cell shape effect was qualitatively simulated by an ellipsoidal cell model. However, the comparison between theory and experiment was far from being satisfactory. In an attempt to close up the gap between theory and experiment, we considered the more realistic cells of spherocylinders, i.e., circular cylinders with two hemispherical caps at both ends. We have formulated a Green function formalism for calculating the spectral representation of cells of finite length. The Green function can be reduced because of the azimuthal symmetry of the cell. This simplification enables us to calculate the dispersion spectrum and hence access the effect of cell structure on the dielectric behavior of cell suspensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0103506v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0103506v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preliminary results have been reported in the 2001 March Meeting of the American Physical Society. Accepted for publications in J. Phys.: Condens. Matter</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 13, 3583 (2001). </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10