CINXE.COM

Search results for: Post Occupancy Evaluation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Post Occupancy Evaluation</title> <meta name="description" content="Search results for: Post Occupancy Evaluation"> <meta name="keywords" content="Post Occupancy Evaluation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Post Occupancy Evaluation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Post Occupancy Evaluation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10403</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Post Occupancy Evaluation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10403</span> Research on Renovation of Existing Interior Space Based on Post Occupancy Evaluation: A Case Study of the Atrium Space of Zhejiang University Library in Hangzhou </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qin%20Dai">Qin Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The renovation of existing interior space is big issue for architects in today’s China. However the traditional way of space renovation in China mostly focuses on the object itself, and the method also focuses on subjective level without the support of specific data. This research focuses the application of renovation of existing interior space based on post occupancy evaluation by a case study of a typical interior space. The research hopes to give a more scientific method of interior space renovation for architects and help promoting and guiding renovation practice. This research studies the post occupancy evaluation of the atrium space of Zhejiang University Library including subjective satisfaction and physical environmental satisfaction. The result provides necessary data support to conclude the design principles and strategies of renovation. Then the research uses simulation software to verify the availability of the strategy given based on the study. In conclusion, the research summarizes the application process of design methods of renovation of existing interior space based on the post-occupancy evaluation, and testifies to the practical significance of the renovation of existing interior space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=existing%20interior%20space" title="existing interior space">existing interior space</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20environmental%20satisfaction" title=" physical environmental satisfaction"> physical environmental satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20occupancy%20evaluation" title=" post occupancy evaluation"> post occupancy evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=renovation%20of%20space" title=" renovation of space"> renovation of space</a>, <a href="https://publications.waset.org/abstracts/search?q=subjective%20satisfaction%20of%20space" title=" subjective satisfaction of space"> subjective satisfaction of space</a> </p> <a href="https://publications.waset.org/abstracts/67238/research-on-renovation-of-existing-interior-space-based-on-post-occupancy-evaluation-a-case-study-of-the-atrium-space-of-zhejiang-university-library-in-hangzhou" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10402</span> Technical, Functional, and Behavioural Aspects and Their Attributes in Survey Questionnaire for Post Occupancy Evaluation of Residential Hostels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meenal%20Kumar">Meenal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structure of a questionnaire becomes critical in gathering accurate feedback in a post-occupancy evaluation of a building. A survey instrument like this one consists of questions based on various aspects of a constructed facility. The questions and the qualities reflect the goals and determine the nature of the survey, which can be classified into several types. Therefore, a survey instrument uses appropriately described attributes. This ongoing research aims to provide an appropriate technique for framing the Questionnaire, taking into account the relevant aspects of the study and its defining features that analyze building performance from the user's perspective, which can further benefit the architects, planners, and designers in designing user-friendly spaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=post%20occupancy%20evaluations" title="post occupancy evaluations">post occupancy evaluations</a>, <a href="https://publications.waset.org/abstracts/search?q=satisfaction" title=" satisfaction"> satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=attributes" title=" attributes"> attributes</a>, <a href="https://publications.waset.org/abstracts/search?q=survey" title=" survey"> survey</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20performance%20evaluations" title=" building performance evaluations"> building performance evaluations</a> </p> <a href="https://publications.waset.org/abstracts/179070/technical-functional-and-behavioural-aspects-and-their-attributes-in-survey-questionnaire-for-post-occupancy-evaluation-of-residential-hostels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10401</span> Studying the Influence of Systematic Pre-Occupancy Data Collection through Post-Occupancy Evaluation: A Shift in the Architectural Design Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Abdelhamid">Noor Abdelhamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Donovan%20Nelson"> Donovan Nelson</a>, <a href="https://publications.waset.org/abstracts/search?q=Cara%20Prosser"> Cara Prosser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The architectural design process could be mapped out as a dialogue between designer and user that is constructed across multiple phases with the overarching goal of aligning design outcomes with user needs. Traditionally, this dialogue is bounded within a preliminary phase of determining factors that will direct the design intent, and a completion phase, of handing off the project to the client. Pre- and post-occupancy evaluations (P/POE’s) could provide an alternative process by extending this dialogue on both ends of the design process. The purpose of this research is to study the influence of systematic pre-occupancy data collection in achieving design goals by conducting post-occupancy evaluations of two case studies. In the context of this study, systematic pre-occupancy data collection is defined as the preliminary documentation of the existing conditions that helps portray stakeholders’ needs. When implemented, pre-occupancy occurs during the early phases of the architectural design process, utilizing the information to shape the design intent. Investigative POE’s are performed on two case studies with distinct early design approaches to understand how the current space is impacting user needs, establish design outcomes, and inform future strategies. The first case study underwent systematic pre-occupancy data collection and synthesis, while the other represents the traditional, uncoordinated practice of informally collecting data during an early design phase. POE’s target the dynamics between the building and its occupants by studying how spaces are serving the needs of the users. Data collection for this study consists of user surveys, audiovisual materials, and observations during regular site visits. Mixed methods of qualitative and quantitative analyses are synthesized to identify patterns in the data. The paper concludes by positioning value on both sides of the architectural design process: the integration of systematic pre-occupancy methods in the early phases and the reinforcement of a continued dialogue between building and design team after building completion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architecture" title="architecture">architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20process" title=" design process"> design process</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-occupancy%20data" title=" pre-occupancy data"> pre-occupancy data</a>, <a href="https://publications.waset.org/abstracts/search?q=post-occupancy%20evaluation" title=" post-occupancy evaluation"> post-occupancy evaluation</a> </p> <a href="https://publications.waset.org/abstracts/147499/studying-the-influence-of-systematic-pre-occupancy-data-collection-through-post-occupancy-evaluation-a-shift-in-the-architectural-design-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10400</span> Post Occupancy Evaluation in Higher Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balogun%20Azeez%20Olawale">Balogun Azeez Olawale</a>, <a href="https://publications.waset.org/abstracts/search?q=Azeez%20S.%20A."> Azeez S. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Post occupancy evaluation (POE) is a process of assessing building performance for its users and intended function during the occupation. User satisfaction impacts the performance of educational environments and their users: students, faculty, and staff. In addition, buildings are maintained and managed by teams that spend a large amount of time and capital on their long-term sustenance. By evaluating the feedback from users of higher education facilities, university planning departments are more prepared to understand the inputs for programming and future project planning. In addition, university buildings will be closer to meeting user and maintenance needs. This paper reports on a research team made up of academics, facility personnel, and users that have developed a plan to improve the quality of campus facilities through a POE exercise on a recently built project. This study utilized a process of focus group interviews representing the different users and subsequent surveys. The paper demonstrates both the theory and practice of POE in higher education and learning environment through the case example of four universities in Nigeria's POE exercise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=post%20occupancy%20evaluation" title="post occupancy evaluation">post occupancy evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20performance" title=" building performance"> building performance</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20analysis" title=" building analysis"> building analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20evaluation" title=" building evaluation"> building evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20assessment" title=" building assessment"> building assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=facility%20management" title=" facility management"> facility management</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20quality" title=" design quality"> design quality</a> </p> <a href="https://publications.waset.org/abstracts/149954/post-occupancy-evaluation-in-higher-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10399</span> A Proposal for Developing a Post Occupancy Evaluation Sustainability Assessment Tool for Refurbished Historic Government Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasnizan%20Aksah">Hasnizan Aksah</a>, <a href="https://publications.waset.org/abstracts/search?q=Adi%20Irfan%20Che%20Ani"> Adi Irfan Che Ani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Refurbished historic government buildings should perform as intended to support the organization’s goals that enhance occupant satisfaction. However, these buildings may have issues associated with functional performance evaluation. The aim of this study is to develop a Post Occupancy Evaluation (POE) sustainability assessment tool for functional performance evaluation of refurbished historic government buildings. Developing an assessment tool requires a strategic methodology for a logical and cohesive tool that incorporating relevant theories and practical experiences. In this study, mixed method approaches use to collect all necessary data to achieve the objectives of this study. The design of sampling involves are interviews and survey questionnaires to relevant professionals in order to evaluate the criteria and problem encircled in functional performance evaluation. Then, the involvement of expert panels is required in establishing the assessment tool. During the process of investigation on the functional performance criteria, it was discovered that is seen to be critical in aspects of comfort, safety, and services. The proposed assessment tool has a significant role in providing opportunities for the improvement of building performance especially on functional performance for the future historic government building refurbishment project. It is hoped that the tool developed from this study will give benefits to related professionals, public agencies, local municipality, and relevant interested parties in historic building management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refurbished%20historic%20government%20buildings" title="refurbished historic government buildings">refurbished historic government buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20performance" title=" functional performance"> functional performance</a>, <a href="https://publications.waset.org/abstracts/search?q=Post%20Occupancy%20Evaluation" title=" Post Occupancy Evaluation"> Post Occupancy Evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/94112/a-proposal-for-developing-a-post-occupancy-evaluation-sustainability-assessment-tool-for-refurbished-historic-government-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10398</span> Post-occupancy Evaluation of Greenway Based on Multi-source data : A Case Study of Jincheng Greenway in Chengdu</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qin%20Zhu">Qin Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the development concept of Park City, Tianfu Greenway system, as the basic and pre-configuration element of Chengdu Global Park construction, connects urban open space with linear and circular structures and undertakes and exerts the ecological, cultural and recreational functions of the park system. Chengdu greenway construction is in full swing. In the process of greenway planning and construction, the landscape effect of greenway on urban quality improvement is more valued, and the long-term impact of crowd experience on the sustainable development of greenway is often ignored. Therefore, it is very important to test the effectiveness of greenway construction from the perspective of users. Taking Jincheng Greenway in Chengdu as an example, this paper attempts to introduce multi-source data to construct a post-occupancy evaluation model of greenway and adopts behavior mapping method, questionnaire survey method, web text analysis and IPA analysis method to comprehensively evaluate the user 's behavior characteristics and satisfaction. According to the evaluation results, we can grasp the actual behavior rules and comprehensive needs of users so that the experience of building greenways can be fed back in time and provide guidance for the optimization and improvement of built greenways and the planning and construction of future greenways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-source%20data" title="multi-source data">multi-source data</a>, <a href="https://publications.waset.org/abstracts/search?q=greenway" title=" greenway"> greenway</a>, <a href="https://publications.waset.org/abstracts/search?q=IPA%20analysis" title=" IPA analysis"> IPA analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20-occupancy%20evaluation%20%28POE%29" title=" post -occupancy evaluation (POE)"> post -occupancy evaluation (POE)</a> </p> <a href="https://publications.waset.org/abstracts/173339/post-occupancy-evaluation-of-greenway-based-on-multi-source-data-a-case-study-of-jincheng-greenway-in-chengdu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10397</span> A Case Study on Post-Occupancy Evaluation of User Satisfaction in Higher Educational Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuanhong%20Zhao">Yuanhong Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingping%20Yang"> Qingping Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Fox"> Andrew Fox</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Zhang"> Tao Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Post-occupancy evaluation (POE) is a systematic approach to assess the actual building performance after the building has been occupied for some time. In this paper, a structured POE assessment was conducted using the building use survey (BUS) methodology in two higher educational buildings in the United Kingdom. This study aims to help close the building performance gap, provide optimized building operation suggestions, and to improve occupants’ satisfaction level. In this research, the questionnaire survey investigated the influences of environmental factors on user satisfaction from the main aspects of building overall design, thermal comfort, perceived control, indoor environment quality for noise, lighting, ventilation, and other non-environmental factors, such as the background information about age, sex, time in buildings, workgroup size, and so on. The results indicate that the occupant satisfaction level with the main aspects of building overall design, indoor environment quality, and thermal comfort in summer and winter on both two buildings, which is lower than the benchmark data. The feedback of this POE assessment has been reported to the building management team to allow managers to develop high-performance building operation plans. Finally, this research provided improvement suggestions to the building operation system to narrow down the performance gap and improve the user work experience satisfaction and productivity level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20performance%20assessment%20systems" title="building performance assessment systems">building performance assessment systems</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20educational%20buildings" title=" higher educational buildings"> higher educational buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=post-occupancy%20evaluation" title=" post-occupancy evaluation"> post-occupancy evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20satisfaction" title=" user satisfaction"> user satisfaction</a> </p> <a href="https://publications.waset.org/abstracts/130740/a-case-study-on-post-occupancy-evaluation-of-user-satisfaction-in-higher-educational-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10396</span> A Post-Occupancy Evaluation of Urban Landscape Greenway– A Case Study of the Taiyuan Greenway in Taichung City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Yu-Chen%20Chien">A. Yu-Chen Chien</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ying-Ju%20Su"> B. Ying-Ju Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Greenway is a type of linear park which links the planar parklands and connects the open spaces. In the urban environment, except for providing open spaces with recreational function as well as effectively improve the appearance of the surrounding environment, greenway and parkland also creates benefits to the social and psychological aspects of human. In 2014, the statistics of The Ministry of Home Affairs show that citizens in Taichung enjoy the green area at an average of 4.27 square kilometers per person. How to use the existing green space system effectively and enhance the quality of leisure life thus become the major issues today. The study here points out that greenway and parkland and other open spaces are closely related to the daily life of urban residents. Whether the operation could be executed in accordance with the design is our major concern. To explore the issue, we implemented the Post-Occupancy Evaluation of Taiyuan Greenway in Taichung City. In 1956, Taichung city carried out the urban plan according to Howard’s concept about “Garden City” and built the Taiyuan greenway to restrain the urban expansion. 50-year past, due to the population growth and new demands, the government started to reconstruct the program. It is a three stage modification project of “The Townspace Renaissance project in Taiwan” since 2009, of which the greenway construction is the main point. In this research, we mainly focus on the third stage of this program to investigate the user’s preference and degree of satisfaction based on the Post-Occupancy Evaluation about the finished, unfinished, and undergoing construction sectors as well as facilities. We collected and analyzed the data based on the questionnaires and explored the possible facts that might have affected the degree of satisfaction about the greenway modification project based on the chi-square test. We hope to inspect the purpose of the demonstration projects and provide reference to the Taichung government for the modification planning and the greenway design in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greenway" title="greenway">greenway</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape%20greenway" title=" landscape greenway"> landscape greenway</a>, <a href="https://publications.waset.org/abstracts/search?q=post-occupancy%20evaluation" title=" post-occupancy evaluation"> post-occupancy evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=Taichung%20city" title=" Taichung city"> Taichung city</a> </p> <a href="https://publications.waset.org/abstracts/20641/a-post-occupancy-evaluation-of-urban-landscape-greenway-a-case-study-of-the-taiyuan-greenway-in-taichung-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10395</span> Behavioral Mapping and Post-Occupancy Evaluation of Meeting-Point Design in an International Airport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meng-Cong%20Zheng">Meng-Cong Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Sheng%20Chen"> Yu-Sheng Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The meeting behavior is a pervasive kind of interaction, which often occurs between the passenger and the shuttle. However, the meeting point set up at the Taoyuan International Airport is too far from the entry-exit, often causing passengers to stop searching near the entry-exit. When the number of people waiting for the rush hour increases, it often results in chaos in the waiting area. This study tried to find out what is the key factor to promote the rapid finding of each other between the passengers and the pick-ups. Then we implemented several design proposals to improve the meeting behavior of passengers and pick-ups based on behavior mapping and post-occupancy evaluation to enhance their meeting efficiency in unfamiliar environments. The research base is the reception hall of the second terminal of Taoyuan International Airport. Behavioral observation and mapping are implemented on the entry of inbound passengers into the welcome space, including the crowd distribution of the people who rely on the separation wall in the waiting area, the behavior of meeting and the interaction between the inbound passengers and the pick-ups. Then we redesign the space planning and signage design based on post-occupancy evaluation to verify the effectiveness of space plan and signage design. This study found that passengers ignore existing meeting-point designs which are placed on distant pillars at both ends. The position of the screen affects the area where the receiver is stranded, causing the pick-ups to block the passenger&#39;s moving line. The pick-ups prefer to wait where it is easy to watch incoming passengers and where it is closest to the mode of transport they take when leaving. Large visitors tend to gather next to landmarks, and smaller groups have a wide waiting area in the lobby. The location of the meeting point chosen by the pick-ups is related to the view of the incoming passenger. Finally, this study proposes an improved design of the meeting point, setting the traffic information in it, so that most passengers can see the traffic information when they enter the country. At the same time, we also redesigned the pick-ups desk to improve the efficiency of passenger meeting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meeting%20point%20design" title="meeting point design">meeting point design</a>, <a href="https://publications.waset.org/abstracts/search?q=post-occupancy%20evaluation" title=" post-occupancy evaluation"> post-occupancy evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral%20mapping" title=" behavioral mapping"> behavioral mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20airport" title=" international airport"> international airport</a> </p> <a href="https://publications.waset.org/abstracts/99141/behavioral-mapping-and-post-occupancy-evaluation-of-meeting-point-design-in-an-international-airport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10394</span> Post Occupancy Evaluation of Thermal Comfort and User Satisfaction in a Green IT Commercial Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shraddha%20Jadhav">Shraddha Jadhav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We are entering a new age in the built environment where we expect our buildings to deliver far more than just a place to work or live. It is widely believed that sustainable building design strategies create improved occupants’ comfort & satisfaction with respect to thermal comfort & indoor environmental quality. Yet this belief remains a hypothesis with little empirical support. IT buildings cater to more than 3000 users at a time. Nowadays people spend 90% of the time inside offices. These sustainable IT office buildings should provide the occupants with maximum comfort for better work productivity. Such green rated buildings fulfill all the criteria at the designing stage, but do they really work as expected at the occupancy stage. The aim of this paper is to evaluate whether green IT buildings provide the required comfort level as expected at the design stage. Building Occupants are a rich source of information for evaluating their comfort level in the building and to find out the solutions for their discomfort. This can be achieved by carrying out Post Occupancy Evaluation after the building has been occupied for more than a year or two. The technique consists of qualitative methods like questionnaire surveys & observations and quantitative methods like field measurements, photographs. Post Occupancy Evaluation was carried out in a Green (Platinum rated) IT building in Pune. 30 samples per floor were identified for the questionnaire survey. The core questions access occupant satisfaction with thermal comfort in the work area and measures adopted for making it comfortable were identified. The Mean Radiant Temperature of the same samples was taken to compare the quantitative and qualitative results. The survey was used to evaluate the occupant thermal comfort in a green office building and identify areas needing improvement. The survey has been designed in reference to ASHRAE standard 55-2010 & ISHRAE 10001:2017 IEQ and was further refined to suit the user of the building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20office%20building" title="green office building">green office building</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20occupant" title=" building occupant"> building occupant</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=POE" title=" POE"> POE</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20satisfaction" title=" user satisfaction"> user satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=survey" title=" survey"> survey</a> </p> <a href="https://publications.waset.org/abstracts/167913/post-occupancy-evaluation-of-thermal-comfort-and-user-satisfaction-in-a-green-it-commercial-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10393</span> Post Occupancy Evaluation of the Green Office Building with Different Air-Conditioning Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziwei%20Huang">Ziwei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Ge"> Jian Ge</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Shen"> Jie Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiantao%20Weng"> Jiantao Weng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Retrofitting of existing buildings plays a critical role to achieve sustainable development. This is being considered as one of the approaches to achieving sustainability in the built environment. In order to evaluate the different air-conditioning systems effectiveness and user satisfaction of the existing building which had transformed into green building effectively and accurately. This article takes the green office building in Zhejiang province, China as an example, analyzing the energy consumption, occupant satisfaction and indoor environment quality (IEQ) from the perspective of the thermal environment. This building is special because it combines ground source heat pump system and Variable Refrigerant Flow (VRF) air-conditioning system. Results showed that the ground source heat pump system(EUIa≈25.6) consumes more energy than VRF(EUIb≈23.8). In terms of a satisfaction survey, the use of the VRF air-conditioning was more satisfactory in temperature. However, the ground source heat pump is more satisfied in air quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=post-occupancy%20evaluation" title="post-occupancy evaluation">post-occupancy evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20office%20building" title=" green office building"> green office building</a>, <a href="https://publications.waset.org/abstracts/search?q=air-conditioning%20systems" title=" air-conditioning systems"> air-conditioning systems</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20source%20heat%20pump%20system" title=" ground source heat pump system"> ground source heat pump system</a> </p> <a href="https://publications.waset.org/abstracts/88345/post-occupancy-evaluation-of-the-green-office-building-with-different-air-conditioning-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10392</span> A Reading Light That Can Adjust Indoor Light Intensity According to the Activity and Person for Improve Indoor Visual Comfort of Occupants and Tested using Post-occupancy Evaluation Techniques for Sri Lankan Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.T.P.%20De%20Silva">R.T.P. De Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Wijayasiriwardhane"> T. K. Wijayasiriwardhane</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Jayawardena"> B. Jayawardena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most people nowadays spend their time indoor environment. Because of that, a quality indoor environment needs for them. This study was conducted to identify how to improve indoor visual comfort using a personalized light system. Light intensity, light color, glare, and contrast are the main facts that affect visual comfort. The light intensity which needs to perform a task is changed according to the task. Using necessary light intensity and we can improve the visual comfort of occupants. The hue can affect the emotions of occupants. The preferred light colors and intensity change according to the occupant's age and gender. The research was conducted to identify is there any relationship between personalization and visual comfort. To validate this designed an Internet of Things-based reading light. This light can work according to the standard light levels and personalized light levels. It also can measure the current light intensity of the environment and maintain continuous light levels according to the task. The test was conducted by using 25 undergraduates, and 5school students, and 5 adults. The feedbacks are gathered using Post-occupancy evaluation (POE) techniques. Feedbacks are gathered in three steps, It was done without any light control, with standard light level, and with personalized light level Users had to spend 10 minutes under each condition. After finishing each step, collected their feedbacks. According to the result gathered, 94% of participants rated a personalized light system as comfort for them. The feedbacks show stay under continuous light level help to keep their concentrate. Future research can be conducted on how the color of indoor light can affect for indoor visual comfort of occupants using a personalized light system. Further proposed IoT based can improve to change the light colors according to the user's preference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20environment%20quality" title="indoor environment quality">indoor environment quality</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things%20based%20light%20system" title=" internet of things based light system"> internet of things based light system</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20occupancy%20evaluation" title=" post occupancy evaluation"> post occupancy evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20comfort" title=" visual comfort"> visual comfort</a> </p> <a href="https://publications.waset.org/abstracts/144243/a-reading-light-that-can-adjust-indoor-light-intensity-according-to-the-activity-and-person-for-improve-indoor-visual-comfort-of-occupants-and-tested-using-post-occupancy-evaluation-techniques-for-sri-lankan-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10391</span> A Post-Occupancy Evaluation of LEED-Certified Residential Communities Using Structural Equation Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Goodarzi">Mohsen Goodarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Berghorn"> George Berghorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the rapid growth in the number of green building and community development projects, the long-term performance of these projects has not yet been sufficiently evaluated from the users’ points of view. This is partially due to the lack of post-occupancy evaluation tools available for this type of project. In this study, a post-construction evaluation model is developed to evaluate the relationship between the perceived performance and satisfaction of residents in LEED-certified residential buildings and communities. To develop this evaluation model, a primary five-factor model was developed based on the existing models and residential satisfaction theories. Each factor of the model included several measures that were adopted from LEED certification systems such as LEED-BD+C New Construction, LEED-BD+C Multifamily Midrise, LEED-ND, as well as the UC Berkeley’s Center for the Built Environment survey tool. The model included four predictor variables (factors), including perceived building performance (8 measures), perceived infrastructure performance (9 measures), perceived neighborhood design (6 measures), and perceived economic performance (4 measures), and one dependent variable (factor), which was residential satisfaction (6 measures). An online survey was then conducted to collect the data from the residents of LEED-certified residential communities (n=192) and the validity of the model was tested through Confirmatory Factor Analysis (CFA). After modifying the CFA model, 26 measures, out of the initial 33 measures, were retained to enter into a Structural Equation Model (SEM) and to find the relationships between the perceived buildings performance, infrastructure performance, neighborhood design, economic performance and residential Satisfaction. The results of the SEM showed that the perceived building performance was the most influential factor in determining residential satisfaction in LEED-certified communities, followed by the perceived neighborhood design. On the other hand, perceived infrastructure performance and perceived economic performance did not show any significant relationship with residential satisfaction in these communities. This study can benefit green building researchers by providing a model for the evaluation of the long-term performance of these projects. It can also provide opportunities for green building practitioners to determine priorities for future residential development projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building" title="green building">green building</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20satisfaction" title=" residential satisfaction"> residential satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=perceived%20performance" title=" perceived performance"> perceived performance</a>, <a href="https://publications.waset.org/abstracts/search?q=confirmatory%20factor%20analysis" title=" confirmatory factor analysis"> confirmatory factor analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20modeling" title=" structural equation modeling"> structural equation modeling</a> </p> <a href="https://publications.waset.org/abstracts/141592/a-post-occupancy-evaluation-of-leed-certified-residential-communities-using-structural-equation-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10390</span> A Post-Occupancy Evaluation of the Impact of Indoor Environmental Quality on Health and Well-Being in Office Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suyeon%20Bae">Suyeon Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Abimbola%20Asojo"> Abimbola Asojo</a>, <a href="https://publications.waset.org/abstracts/search?q=Denise%20Guerin"> Denise Guerin</a>, <a href="https://publications.waset.org/abstracts/search?q=Caren%20Martin"> Caren Martin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Post-occupancy evaluations (POEs) have been recognized for documenting occupant well-being and responses to indoor environmental quality (IEQ) factors such as thermal, lighting, and acoustic conditions. Sustainable Post-Occupancy evaluation survey (SPOES) developed by an interdisciplinary team at a Midwest University provides an evidence-based quantitative analysis of occupants’ satisfaction in office, classroom, and residential spaces to help direct attention to successful areas and areas that need improvement in buildings. SPOES is a self-administered and Internet-based questionnaire completed by building occupants. In this study, employees in three different office buildings rated their satisfaction on a Likert-type scale about 12 IEQ criteria including thermal condition, indoor air quality, acoustic quality, daylighting, electric lighting, privacy, view conditions, furnishings, appearance, cleaning and maintenance, vibration and movement, and technology. Employees rated their level of satisfaction on a Likert-type scale from 1 (very dissatisfied) to 7 (very satisfied). They also rate the influence of their physical environment on their perception of their work performance and the impact of their primary workspaces on their health on a scale from 1 (hinders) to 7 (enhances). Building A is a three-story building that includes private and group offices, classrooms, and conference rooms and amounted to 55,000 square-feet for primary workplace (N=75). Building B, a six-story building, consisted of private offices, shared enclosed office, workstations, and open desk areas for employees and amounted to 14,193 square-feet (N=75). Building C is a three-story 56,000 square-feet building that included classrooms, therapy rooms, an outdoor playground, gym, restrooms, and training rooms for clinicians (N=76). The results indicated that 10 IEQs for Building A except acoustic quality and privacy showed statistically significant correlations on the impact of the primary workspace on health. In Building B, 11 IEQs except technology showed statistically significant correlations on the impact of the primary workspace on health. Building C had statistically significant correlations between all 12 IEQ and the employees’ perception of the impact of their primary workspace on their health in two-tailed correlations (P ≤ 0.05). Out of 33 statistically significant correlations, 25 correlations (76%) showed at least moderate relationship (r ≥ 0.35). For the three buildings, daylighting, furnishings, and indoor air quality IEQs ranked highest on the impact on health. IEQs about vibration and movement, view condition, and electric lighting ranked second, followed by IEQs about cleaning and maintenance and appearance. These results imply that 12 IEQs developed in SPOES are highly related to employees’ perception of how their primary workplaces impact their health. The IEQs in this study offer an opportunity for improving occupants’ well-being and the built environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=post-occupancy%20evaluation" title="post-occupancy evaluation">post-occupancy evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=built%20environment" title=" built environment"> built environment</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=well-being" title=" well-being"> well-being</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a> </p> <a href="https://publications.waset.org/abstracts/68109/a-post-occupancy-evaluation-of-the-impact-of-indoor-environmental-quality-on-health-and-well-being-in-office-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10389</span> Mapping Cultural Continuity and the Creation of a New Architectural Heritage in the 21st Century: The Case of Ksar Tafilelt, M’Zab Valley</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadjer%20Messabih">Hadjer Messabih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The M’zab architecture has preserved its identity that was able to endure for centuries conserving practically the same way of life and the same building techniques since the 11th century. Even more, the newly built ksar Tafilelt is also designed to meet the local tradition. In 1996, a community led project was initiated to build a “new ksar” named Tafilelt based on a traditional form of community-led cooperative housing. It is a unique experience in the field of community housing that reproduces traditional architectural patterns while addressing contemporary ways of life with their expected modern comfort. This research is based on the hypothesis that the process of producing ksar Tafilelt is culturally responsive to a conservative community that was characterized by certain values which were transmitted to this ksar manifesting as cultural continuity. It aims at investigating what type of cultural continuity manifests itself in the co-production of ksar Tafilelt and the way the settlement and its houses are produced and inhabited, as well as the new emerging values and adaptive transition in social relations. The research methodology is based on a combination of questionnaires, in depth interviews, photography, and site visit to record and demonstrate how these buildings respond to peoples’ needs. Post Occupancy Evaluation (POE) is also employed in order to understand the lessons that can be learned from this project. Finally, this study proves that the cultural continuity that was transmitted from the Ibadi community is sill manifested in ksar Tafilelt, which provided strong religious bonds and a strong sense of community. The research findings have resulted in a number of lessons and principles that can be learnt from the project of ksar Tafilelt which can inform future practices of housing provision and design in Algeria and other countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community-led%20cooperative%20housing" title="community-led cooperative housing">community-led cooperative housing</a>, <a href="https://publications.waset.org/abstracts/search?q=conservative%20community" title=" conservative community"> conservative community</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20continuity" title=" cultural continuity"> cultural continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20occupancy%20evaluation" title=" post occupancy evaluation"> post occupancy evaluation</a> </p> <a href="https://publications.waset.org/abstracts/119020/mapping-cultural-continuity-and-the-creation-of-a-new-architectural-heritage-in-the-21st-century-the-case-of-ksar-tafilelt-mzab-valley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10388</span> Simulating Human Behavior in (Un)Built Environments: Using an Actor Profiling Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadas%20Sopher">Hadas Sopher</a>, <a href="https://publications.waset.org/abstracts/search?q=Davide%20Schaumann"> Davide Schaumann</a>, <a href="https://publications.waset.org/abstracts/search?q=Yehuda%20E.%20Kalay"> Yehuda E. Kalay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses the shortcomings of architectural computation tools in representing human behavior in built environments, prior to construction and occupancy of those environments. Evaluating whether a design fits the needs of its future users is currently done solely post construction, or is based on the knowledge and intuition of the designer. This issue is of high importance when designing complex buildings such as hospitals, where the quality of treatment as well as patient and staff satisfaction are of major concern. Existing computational pre-occupancy human behavior evaluation methods are geared mainly to test ergonomic issues, such as wheelchair accessibility, emergency egress, etc. As such, they rely on Agent Based Modeling (ABM) techniques, which emphasize the individual user. Yet we know that most human activities are social, and involve a number of actors working together, which ABM methods cannot handle. Therefore, we present an event-based model that manages the interaction between multiple <em>Actors, Spaces, </em>and<em> Activities</em>, to describe dynamically how people use spaces. This approach requires expanding the computational representation of <em>Actors</em> beyond their physical description, to include psychological, social, cultural, and other parameters. The model presented in this paper includes cognitive abilities and rules that describe the response of actors to their physical and social surroundings, based on the actors&rsquo; internal status. The model has been applied in a simulation of hospital wards, and showed adaptability to a wide variety of situated behaviors and interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent%20based%20modeling" title="agent based modeling">agent based modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20design%20evaluation" title=" architectural design evaluation"> architectural design evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=event%20modeling" title=" event modeling"> event modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20behavior%20simulation" title=" human behavior simulation"> human behavior simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20cognition" title=" spatial cognition"> spatial cognition</a> </p> <a href="https://publications.waset.org/abstracts/62565/simulating-human-behavior-in-unbuilt-environments-using-an-actor-profiling-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10387</span> Uncertainty in Building Energy Performance Analysis at Different Stages of the Building’s Lifecycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Delzendeh">Elham Delzendeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Wu"> Song Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Al-Adhami"> Mustafa Al-Adhami</a>, <a href="https://publications.waset.org/abstracts/search?q=Rima%20Alaaeddine"> Rima Alaaeddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last 15 years, prediction of energy consumption has become a common practice and necessity at different stages of the building’s lifecycle, particularly, at the design and post-occupancy stages for planning and maintenance purposes. This is due to the ever-growing response of governments to address sustainability and reduction of CO₂ emission in the building sector. However, there is a level of uncertainty in the estimation of energy consumption in buildings. The accuracy of energy consumption predictions is directly related to the precision of the initial inputs used in the energy assessment process. In this study, multiple cases of large non-residential buildings at design, construction, and post-occupancy stages are investigated. The energy consumption process and inputs, and the actual and predicted energy consumption of the cases are analysed. The findings of this study have pointed out and evidenced various parameters that cause uncertainty in the prediction of energy consumption in buildings such as modelling, location data, and occupant behaviour. In addition, unavailability and insufficiency of energy-consumption-related inputs at different stages of the building’s lifecycle are classified and categorized. Understanding the roots of uncertainty in building energy analysis will help energy modellers and energy simulation software developers reach more accurate energy consumption predictions in buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20lifecycle" title="building lifecycle">building lifecycle</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20analysis" title=" energy analysis"> energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20performance" title=" energy performance"> energy performance</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/111629/uncertainty-in-building-energy-performance-analysis-at-different-stages-of-the-buildings-lifecycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10386</span> Assessment of the Occupancy’s Effect on Speech Intelligibility in Al-Madinah Holy Mosque</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wasim%20Orfali">Wasim Orfali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesham%20Tolba"> Hesham Tolba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates the acoustical characteristics of Al-Madinah Holy Mosque. Extensive field measurements were conducted in different locations of Al-Madinah Holy Mosque to characterize its acoustic characteristics. The acoustical characteristics are usually evaluated by the use of objective parameters in unoccupied rooms due to practical considerations. However, under normal conditions, the room occupancy can vary such characteristics due to the effect of the additional sound absorption present in the room or by the change in signal-to-noise ratio. Based on the acoustic measurements carried out in Al-Madinah Holy Mosque with and without occupancy, and the analysis of such measurements, the existence of acoustical deficiencies has been confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Madinah%20Holy%20Mosque" title="Al-Madinah Holy Mosque">Al-Madinah Holy Mosque</a>, <a href="https://publications.waset.org/abstracts/search?q=mosque%20acoustics" title=" mosque acoustics"> mosque acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20intelligibility" title=" speech intelligibility"> speech intelligibility</a>, <a href="https://publications.waset.org/abstracts/search?q=worship%20sound" title=" worship sound"> worship sound</a> </p> <a href="https://publications.waset.org/abstracts/97808/assessment-of-the-occupancys-effect-on-speech-intelligibility-in-al-madinah-holy-mosque" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10385</span> Finding the English Competency for Developing Public Health Village Volunteers at Ban Prasukchai in Chumpuang District, Nakhon Ratchasima Province in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittivate%20Boonyopakorn">Kittivate Boonyopakorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purposes of this study were to find the English competence of the public health volunteers and to develop the use of their English. The samples for the study were 41 public health village volunteers at Ban Prasukchai, in Thailand. The findings showed that the sum of all scores for the pre-test was 452, while the score for the post-test was 1,080. Therefore, the results of the experiment confirm that the post-test scores (1,080) significantly are higher than the pre-test (452). The mean score (N=41) for the pre-test was 11.02 while the mean score (N=41) for the post-test was 18.10. The standard deviation for the pre-test was 2.734; however, for the post-test it was 1.934. In addition to the experts-evaluated research tools, the results of the evaluation for the structured interviews (IOC) were 1 in value. The evaluation of congruence for the content with learning objectives (IOC) were 0.66 to 1.00 in value. The evaluation of congruence for the pre and post-test with learning objectives (IOC) are 1 in value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finding%20the%20English%20competency" title="finding the English competency">finding the English competency</a>, <a href="https://publications.waset.org/abstracts/search?q=developing%20public%20health" title=" developing public health"> developing public health</a>, <a href="https://publications.waset.org/abstracts/search?q=village%20volunteers" title=" village volunteers"> village volunteers</a> </p> <a href="https://publications.waset.org/abstracts/12341/finding-the-english-competency-for-developing-public-health-village-volunteers-at-ban-prasukchai-in-chumpuang-district-nakhon-ratchasima-province-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10384</span> Path Planning for Orchard Robot Using Occupancy Grid Map in 2D Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyam%20Raikwar">Satyam Raikwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Herlitzius"> Thomas Herlitzius</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Fehrmann"> Jens Fehrmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the autonomous navigation of orchard and field robots is an emerging technology of the mobile robotics in agriculture. One of the core aspects of autonomous navigation builds upon path planning, which is still a crucial issue. Generally, for simple representation, the path planning for a mobile robot is performed in a two-dimensional space, which creates a path between the start and goal point. This paper presents the automatic path planning approach for robots used in orchards and vineyards using occupancy grid maps with field consideration. The orchards and vineyards are usually structured environment and their topology is assumed to be constant over time; therefore, in this approach, an RGB image of a field is used as a working environment. These images undergone different image processing operations and then discretized into two-dimensional grid matrices. The individual grid or cell of these grid matrices represents the occupancy of the space, whether it is free or occupied. The grid matrix represents the robot workspace for motion and path planning. After the grid matrix is described, a probabilistic roadmap (PRM) path algorithm is used to create the obstacle-free path over these occupancy grids. The path created by this method was successfully verified in the test area. Furthermore, this approach is used in the navigation of the orchard robot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orchard%20robots" title="orchard robots">orchard robots</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20path%20planning" title=" automatic path planning"> automatic path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=occupancy%20grid" title=" occupancy grid"> occupancy grid</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20roadmap" title=" probabilistic roadmap"> probabilistic roadmap</a> </p> <a href="https://publications.waset.org/abstracts/110023/path-planning-for-orchard-robot-using-occupancy-grid-map-in-2d-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10383</span> Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manar%20Amayri">Manar Amayri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Kazimi"> Hussain Kazimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Quoc-Dung%20Ngo"> Quoc-Dung Ngo</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Ploix"> Stephane Ploix</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20methods" title=" Bayesian methods"> Bayesian methods</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20theory" title=" learning theory"> learning theory</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20networks" title=" sensor networks"> sensor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20modelling%20and%20knowledge%20based%20systems" title=" knowledge modelling and knowledge based systems"> knowledge modelling and knowledge based systems</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=buildings" title=" buildings"> buildings</a> </p> <a href="https://publications.waset.org/abstracts/84739/estimating-occupancy-in-residential-context-using-bayesian-networks-for-energy-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10382</span> Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antoni%20Ivanov">Antoni Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Dandanov"> Nikolay Dandanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Christoff"> Nicole Christoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Poulkov"> Vladimir Poulkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20spectrum%20access" title=" dynamic spectrum access"> dynamic spectrum access</a>, <a href="https://publications.waset.org/abstracts/search?q=GNU%20Radio" title=" GNU Radio"> GNU Radio</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing" title=" spectrum sensing"> spectrum sensing</a> </p> <a href="https://publications.waset.org/abstracts/81419/modern-spectrum-sensing-techniques-for-cognitive-radio-networks-practical-implementation-and-performance-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10381</span> Open Space Use in University Campuses with User Requirements Analysis: The Case of Eskişehir Osmangazi University Meşelik Campus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aysen%20Celen%20Ozturk">Aysen Celen Ozturk</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Dulger"> Hatice Dulger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> University may be defined as a teaching institution consisting of faculties, institutes, colleges, and units that have undergraduate and graduate education, scientific research and publications. It has scientific autonomy and public legal personality. Today, universities are not only the institutions in which students and lecturers experience education, training and scientific work. They also offer social, cultural and artistic activities that strengthen the link with the city. This also incorporates all city users into the campus borders. Thus, universities contribute to social and individual development of the country by providing science, art, socio-cultural development, communication and socialization with people of different cultural and social backgrounds. Moreover, universities provide an active social life, where the young population is the majority. This enables the sense of belonging to the users to develop, to increase the interaction between academicians and students, and to increase the learning / producing community by continuing academic sharing environments outside the classrooms. For this reason, besides academic spaces in university campuses, the users also need closed and open spaces where they can socialize, spend time together and relax. Public open spaces are the most important social spaces that individuals meet, express themselves and share. Individuals belonging to different socio-cultural structures and ethnic groups maintain their social experiences with the physical environment they are in, the outdoors, and their actions and sharing in these spaces. While university campuses are being designed for their individual and social development roles, user needs must be determined correctly and design should be realized in this direction. While considering that requirements may change over time, user satisfaction should be questioned at certain periods and new arrangements should be made in existing applications in the direction of current demands. This study aims to determine the user requirements through the case of Eskişehir Osmangazi University, Meşelik Campus / Turkey. Post Occupancy Evaluation (POE) questionnaire, cognitive mapping and deep interview methods are used in the research process. All these methods show that the students, academicians and other officials in the Meşelik Campus of Eskişehir Osmangazi University find way finding elements insufficient and are in need of efficient landscape design and social spaces. This study is important in terms of determining the needs of the users as a design input. This will help improving the quality of common space in Eskişehir Osmangazi University and in other similar universities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=university%20campuses" title="university campuses">university campuses</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20open%20space" title=" public open space"> public open space</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20requirement" title=" user requirement"> user requirement</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20occupancy%20evaluation" title=" post occupancy evaluation"> post occupancy evaluation</a> </p> <a href="https://publications.waset.org/abstracts/66296/open-space-use-in-university-campuses-with-user-requirements-analysis-the-case-of-eskisehir-osmangazi-university-meselik-campus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10380</span> Calibration of Residential Buildings Energy Simulations Using Real Data from an Extensive in situ Sensor Network – A Study of Energy Performance Gap</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathieu%20Bourdeau">Mathieu Bourdeau</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Basset"> Philippe Basset</a>, <a href="https://publications.waset.org/abstracts/search?q=Julien%20Waeytens"> Julien Waeytens</a>, <a href="https://publications.waset.org/abstracts/search?q=Elyes%20Nefzaoui"> Elyes Nefzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As residential buildings account for a third of the overall energy consumption and greenhouse gas emissions in Europe, building energy modeling is an essential tool to reach energy efficiency goals. In the energy modeling process, calibration is a mandatory step to obtain accurate and reliable energy simulations. Nevertheless, the comparison between simulation results and the actual building energy behavior often highlights a significant performance gap. The literature discusses different origins of energy performance gaps, from building design to building operation. Then, building operation description in energy models, especially energy usages and users’ behavior, plays an important role in the reliability of simulations but is also the most accessible target for post-occupancy energy management and optimization. Therefore, the present study aims to discuss results on the calibration ofresidential building energy models using real operation data. Data are collected through a sensor network of more than 180 sensors and advanced energy meters deployed in three collective residential buildings undergoing major retrofit actions. The sensor network is implemented at building scale and in an eight-apartment sample. Data are collected for over one year and half and coverbuilding energy behavior – thermal and electricity, indoor environment, inhabitants’ comfort, occupancy, occupants behavior and energy uses, and local weather. Building energy simulations are performed using a physics-based building energy modeling software (Pleaides software), where the buildings’features are implemented according to the buildingsthermal regulation code compliance study and the retrofit project technical files. Sensitivity analyses are performed to highlight the most energy-driving building features regarding each end-use. These features are then compared with the collected post-occupancy data. Energy-driving features are progressively replaced with field data for a step-by-step calibration of the energy model. Results of this study provide an analysis of energy performance gap on an existing residential case study under deep retrofit actions. It highlights the impact of the different building features on the energy behavior and the performance gap in this context, such as temperature setpoints, indoor occupancy, the building envelopeproperties but also domestic hot water usage or heat gains from electric appliances. The benefits of inputting field data from an extensive instrumentation campaign instead of standardized scenarios are also described. Finally, the exhaustive instrumentation solution provides useful insights on the needs, advantages, and shortcomings of the implemented sensor network for its replicability on a larger scale and for different use cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calibration" title="calibration">calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20modeling" title=" building energy modeling"> building energy modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20gap" title=" performance gap"> performance gap</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20network" title=" sensor network"> sensor network</a> </p> <a href="https://publications.waset.org/abstracts/145513/calibration-of-residential-buildings-energy-simulations-using-real-data-from-an-extensive-in-situ-sensor-network-a-study-of-energy-performance-gap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10379</span> Cephalometric Changes of Patient with Class II Division 1 [Malocclusion] Post Orthodontic Treatment with Growth Stimulation: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pricillia%20Priska%20Sianita">Pricillia Priska Sianita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An aesthetic facial profile is one of the goals in Orthodontics treatment. However, this is not easily achieved, especially in patients with Class II Division 1 malocclusion who have the clinical characteristics of convex profile and significant skeletal discrepancy due to mandibular growth deficiency. Malocclusion with skeletal problems require proper treatment timing for growth stimulation, and it must be done in early age and in need of good cooperation from the patient. If this is not done and the patient has passed the growth period, the ideal treatment is orthognathic surgery which is more complicated and more painful. The growth stimulation of skeletal malocclusion requires a careful cephalometric evaluation ranging from diagnosis to determine the parts that require stimulation to post-treatment evaluation to see the success achieved through changes in the measurement of the skeletal parameters shown in the cephalometric analysis. This case report aims to describe skeletal changes cephalometrically that were achieved through orthodontic treatment in growing period. Material and method: Lateral Cephalograms, pre-treatment, and post-treatment of cases of Class II Division 1 malocclusion is selected from a collection of cephalometric radiographic in a private clinic. The Cephalogram is then traced and measured for the skeletal parameters. The result is noted as skeletal condition data of pre-treatment and post-treatment. Furthermore, superimposition is done to see the changes achieved. The results show that growth stimulation through orthodontic treatment can solve the skeletal problem of Class II Division 1 malocclusion and the skeletal changes that occur can be verified through cephalometric analysis. The skeletal changes have an impact on the improvement of patient&#39;s facial profile. To sum up, the treatment timing on a skeletal malocclusion is very important to obtain satisfactory results for the improvement of the aesthetic facial profile, and skeletal changes can be verified through cephalometric evaluation of pre- and post-treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cephalometric%20evaluation" title="cephalometric evaluation">cephalometric evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=class%20II%20division%201%20malocclusion" title=" class II division 1 malocclusion"> class II division 1 malocclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20stimulation" title=" growth stimulation"> growth stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=skeletal%20changes" title=" skeletal changes"> skeletal changes</a>, <a href="https://publications.waset.org/abstracts/search?q=skeletal%20problems" title=" skeletal problems"> skeletal problems</a> </p> <a href="https://publications.waset.org/abstracts/64828/cephalometric-changes-of-patient-with-class-ii-division-1-malocclusion-post-orthodontic-treatment-with-growth-stimulation-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10378</span> Modelling Patient Condition-Based Demand for Managing Hospital Inventory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esha%20Saha">Esha Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradip%20Kumar%20Ray"> Pradip Kumar Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hospital inventory comprises of a large number and great variety of items for the proper treatment and care of patients, such as pharmaceuticals, medical equipment, surgical items, etc. Improper management of these items, i.e. stockouts, may lead to delay in treatment or other fatal consequences, even death of the patient. So, generally the hospitals tend to overstock items to avoid the risk of stockout which leads to unnecessary investment of money, difficulty in storing, more expiration and wastage, etc. Thus, in such challenging environment, it is necessary for hospitals to follow an inventory policy considering the stochasticity of demand in a hospital. Statistical analysis captures the correlation of patient condition based on bed occupancy with the patient demand which changes stochastically. Due to the dependency on bed occupancy, the markov model is developed that helps to map the changes in demand of hospital inventory based on the changes in the patient condition represented by the movements of bed occupancy states (acute care state, rehabilitative state and long-care state) during the length-of-stay of patient in a hospital. An inventory policy is developed for a hospital based on the fulfillment of patient demand with the objective of minimizing the frequency and quantity of placement of orders of inventoried items. The analytical structure of the model based on probability calculation is provided to show the optimal inventory-related decisions. A case-study is illustrated in this paper for the development of hospital inventory model based on patient demand for multiple inpatient pharmaceutical items. A sensitivity analysis is conducted to investigate the impact of inventory-related parameters on the developed optimal inventory policy. Therefore, the developed model and solution approach may help the hospital managers and pharmacists in managing the hospital inventory in case of stochastic demand of inpatient pharmaceutical items. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bed%20occupancy" title="bed occupancy">bed occupancy</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital%20inventory" title=" hospital inventory"> hospital inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20model" title=" markov model"> markov model</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20condition" title=" patient condition"> patient condition</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20items" title=" pharmaceutical items"> pharmaceutical items</a> </p> <a href="https://publications.waset.org/abstracts/50442/modelling-patient-condition-based-demand-for-managing-hospital-inventory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10377</span> An Efficient Subcarrier Scheduling Algorithm for Downlink OFDMA-Based Wireless Broadband Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassen%20Hamouda">Hassen Hamouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ouwais%20Kabaou"> Mohamed Ouwais Kabaou</a>, <a href="https://publications.waset.org/abstracts/search?q=Med%20Salim%20Bouhlel"> Med Salim Bouhlel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growth of wireless technology made opportunistic scheduling a widespread theme in recent research. Providing high system throughput without reducing fairness allocation is becoming a very challenging task. A suitable policy for resource allocation among users is of crucial importance. This study focuses on scheduling multiple streaming flows on the downlink of a WiMAX system based on orthogonal frequency division multiple access (OFDMA). In this paper, we take the first step in formulating and analyzing this problem scrupulously. As a result, we proposed a new scheduling scheme based on Round Robin (RR) Algorithm. Because of its non-opportunistic process, RR does not take in account radio conditions and consequently it affect both system throughput and multi-users diversity. Our contribution called MORRA (Modified Round Robin Opportunistic Algorithm) consists to propose a solution to this issue. MORRA not only exploits the concept of opportunistic scheduler but also takes into account other parameters in the allocation process. The first parameter is called courtesy coefficient (CC) and the second is called Buffer Occupancy (BO). Performance evaluation shows that this well-balanced scheme outperforms both RR and MaxSNR schedulers and demonstrate that choosing between system throughput and fairness is not required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OFDMA" title="OFDMA">OFDMA</a>, <a href="https://publications.waset.org/abstracts/search?q=opportunistic%20scheduling" title=" opportunistic scheduling"> opportunistic scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=fairness%20hierarchy" title=" fairness hierarchy"> fairness hierarchy</a>, <a href="https://publications.waset.org/abstracts/search?q=courtesy%20coefficient" title=" courtesy coefficient"> courtesy coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer%20occupancy" title=" buffer occupancy"> buffer occupancy</a> </p> <a href="https://publications.waset.org/abstracts/59645/an-efficient-subcarrier-scheduling-algorithm-for-downlink-ofdma-based-wireless-broadband-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10376</span> User Satisfaction Survey Based Facility Performance Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gopikrishnan%20Seshadhri">Gopikrishnan Seshadhri</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20M.%20Topkar"> V. M. Topkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Facility management post occupation is a facet that has gained tremendous ground in the recent times. While the efficiency of expenditure and utilization of all types of resources are monitored to ensure timely completion with minimum cost and acceptable quality during construction phase, value for money comes out only when the facility performs satisfactorily post occupation, meeting aspirations and expectations of users of the facility. It is more so for the public facilities. Due to the paradigm shift in focus to outcome based performance evaluation, user satisfaction obtained mainly through questionnaires has become the single important criterion in performance evaluation. Questionnaires presently being used to gauge user satisfaction being subjective, the feedback obtained do not necessarily reflect actual performance. Hence, there is a requirement of developing a survey instrument that can gauge user satisfaction as objectively as possible and truly reflects the ground reality. A near correct picture of actual performance of the built facility from the user point of view will enable facility managers to address pertinent issues. This paper brings out the need for an effective survey instrument that will elicit more objective user response. It also lists steps involved in formulation of such an instrument. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=facility%20performance%20evaluation" title="facility performance evaluation">facility performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=attributes" title=" attributes"> attributes</a>, <a href="https://publications.waset.org/abstracts/search?q=attribute%20descriptors" title=" attribute descriptors"> attribute descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20satisfaction%20surveys" title=" user satisfaction surveys"> user satisfaction surveys</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20methods" title=" statistical methods"> statistical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20indicators" title=" performance indicators"> performance indicators</a> </p> <a href="https://publications.waset.org/abstracts/2434/user-satisfaction-survey-based-facility-performance-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10375</span> The Scope and Effectiveness of Interactive Voice Response Technologies in Post-Operative Care</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zanib%20Nafees">Zanib Nafees</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Razaghizad"> Amir Razaghizad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibtisam%20Mahmoud"> Ibtisam Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Sharma"> Abhinav Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Renzo%20Cecere"> Renzo Cecere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> More than one million surgeries are performed each year in Canada, resulting in more than 100,000 associated serious adverse events (SAEs) per year. These are defined as unintended injuries or complications that adversely affect the well-being of patients. In recent years, there has been a proliferation of digital health interventions that have the potential to assist, monitor, and educate patients—facilitating self-care following post-operative discharge. Among digital health, interventions are interactive-voice response technologies (IVRs), which have been shown to be highly effective in certain medical settings. Although numerous IVR-based interventions have been developed, their effectiveness and utility remain unclear, notably in post-operative settings. To the best of our knowledge, no systematic or scoping reviews have evaluated this topic to date. Thus, the objective of this scoping review protocol is to systematically map and explore the literature and evidence describing and examining IVR tools, implementation, evaluation, outcome, and experience for post-operative patients. The focus will be primarily on the evaluation of baseline performance status, clinical assessment, treatment outcomes, and patient management, including self-management and self-monitoring. The objective of this scoping review is to assess the extent of the literature to direct future research efforts by identifying gaps and limitations in the literature and to highlight relevant determinants of positive outcomes in the emerging field of IVR monitoring for health outcomes in post-operative patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20healthcare%20technologies" title="digital healthcare technologies">digital healthcare technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=post-surgery" title=" post-surgery"> post-surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=interactive%20voice%20technology" title=" interactive voice technology"> interactive voice technology</a>, <a href="https://publications.waset.org/abstracts/search?q=interactive%20voice%20response" title=" interactive voice response"> interactive voice response</a> </p> <a href="https://publications.waset.org/abstracts/144355/the-scope-and-effectiveness-of-interactive-voice-response-technologies-in-post-operative-care" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10374</span> Green Building Risks: Limits on Environmental and Health Quality Metrics for Contractors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erica%20Cochran%20Hameen">Erica Cochran Hameen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bobuchi%20Ken-Opurum"> Bobuchi Ken-Opurum</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounica%20Guturu"> Mounica Guturu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The United Stated (U.S.) populous spends the majority of their time indoors in spaces where building codes and voluntary sustainability standards provide clear Indoor Environmental Quality (IEQ) metrics. The existing sustainable building standards and codes are aimed towards improving IEQ, health of occupants, and reducing the negative impacts of buildings on the environment. While they address the post-occupancy stage of buildings, there are fewer standards on the pre-occupancy stage thereby placing a large labor population in environments much less regulated. Construction personnel are often exposed to a variety of uncomfortable and unhealthy elements while on construction sites, primarily thermal, visual, acoustic, and air quality related. Construction site power generators, equipment, and machinery generate on average 9 decibels (dBA) above the U.S. OSHA regulations, creating uncomfortable noise levels. Research has shown that frequent exposure to high noise levels leads to chronic physiological issues and increases noise induced stress, yet beyond OSHA no other metric focuses directly on the impacts of noise on contractors’ well-being. Research has also associated natural light with higher productivity and attention span, and lower cases of fatigue in construction workers. However, daylight is not always available as construction workers often perform tasks in cramped spaces, dark areas, or at nighttime. In these instances, the use of artificial light is necessary, yet lighting standards for use during lengthy tasks and arduous activities is not specified. Additionally, ambient air, contaminants, and material off-gassing expelled at construction sites are one of the causes of serious health effects in construction workers. Coupled with extreme hot and cold temperatures for different climate zones, health and productivity can be seriously compromised. This research evaluates the impact of existing green building metrics on construction and risk management, by analyzing two codes and nine standards including LEED, WELL, and BREAM. These metrics were chosen based on the relevance to the U.S. construction industry. This research determined that less than 20% of the sustainability context within the standards and codes (texts) are related to the pre-occupancy building sector. The research also investigated the impact of construction personnel’s health and well-being on construction management through two surveys of project managers and on-site contractors’ perception of their work environment on productivity. To fully understand the risks of limited Environmental and Health Quality metrics for contractors (EHQ) this research evaluated the connection between EHQ factors such as inefficient lighting, on construction workers and investigated the correlation between various site coping strategies for comfort and productivity. Outcomes from this research are three-pronged. The first includes fostering a discussion about the existing conditions of EQH elements, i.e. thermal, lighting, ergonomic, acoustic, and air quality on the construction labor force. The second identifies gaps in sustainability standards and codes during the pre-occupancy stage of building construction from ground-breaking to substantial completion. The third identifies opportunities for improvements and mitigation strategies to improve EQH such as increased monitoring of effects on productivity and health of contractors and increased inclusion of the pre-occupancy stage in green building standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20contractors" title="construction contractors">construction contractors</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20and%20well-being" title=" health and well-being"> health and well-being</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20quality" title=" environmental quality"> environmental quality</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a> </p> <a href="https://publications.waset.org/abstracts/120311/green-building-risks-limits-on-environmental-and-health-quality-metrics-for-contractors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Post%20Occupancy%20Evaluation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Post%20Occupancy%20Evaluation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Post%20Occupancy%20Evaluation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Post%20Occupancy%20Evaluation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Post%20Occupancy%20Evaluation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Post%20Occupancy%20Evaluation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Post%20Occupancy%20Evaluation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Post%20Occupancy%20Evaluation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Post%20Occupancy%20Evaluation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Post%20Occupancy%20Evaluation&amp;page=346">346</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Post%20Occupancy%20Evaluation&amp;page=347">347</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Post%20Occupancy%20Evaluation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10