CINXE.COM
Calcul vectorial - Revizia istoricului
<?xml version="1.0"?> <feed xmlns="http://www.w3.org/2005/Atom" xml:lang="ro"> <id>https://ro.wikibooks.org/w/index.php?action=history&feed=atom&title=Calcul_vectorial</id> <title>Calcul vectorial - Revizia istoricului</title> <link rel="self" type="application/atom+xml" href="https://ro.wikibooks.org/w/index.php?action=history&feed=atom&title=Calcul_vectorial"/> <link rel="alternate" type="text/html" href="https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&action=history"/> <updated>2024-12-01T03:27:40Z</updated> <subtitle>Istoricul versiunilor pentru această pagină din wiki</subtitle> <generator>MediaWiki 1.44.0-wmf.5</generator> <entry> <id>https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=30783&oldid=prev</id> <title>Strainu: Robot: Înlocuiesc diacritice pentru corectarea diacriticelor</title> <link rel="alternate" type="text/html" href="https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=30783&oldid=prev"/> <updated>2015-12-12T20:22:06Z</updated> <summary type="html"><p>Robot: Înlocuiesc diacritice pentru <a href="https://en.wikipedia.org/wiki/corectarea_diacriticelor" class="extiw" title="wikipedia:corectarea diacriticelor">corectarea diacriticelor</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="ro"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Versiunea anterioară</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Versiunea de la data 12 decembrie 2015 20:22</td> </tr><tr> <td colspan="2" class="diff-lineno">Linia 1:</td> <td colspan="2" class="diff-lineno">Linia 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Calculul vectorial''' este un domeniu al matematicii care se ocupă cu studiul <del style="font-weight: bold; text-decoration: none;">operaţiilor</del> cu vectori și <del style="font-weight: bold; text-decoration: none;">aplicaţiile</del> acestora în geometrie, fizică și în alte domenii.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Calculul vectorial''' este un domeniu al matematicii care se ocupă cu studiul <ins style="font-weight: bold; text-decoration: none;">operațiilor</ins> cu vectori și <ins style="font-weight: bold; text-decoration: none;">aplicațiile</ins> acestora în geometrie, fizică și în alte domenii.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Cuprins ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Cuprins ==</div></td> </tr> </table></summary> <author><name>Strainu</name></author> </entry> <entry> <id>https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29615&oldid=prev</id> <title>Nicolae Coman: completări (corectat automat)</title> <link rel="alternate" type="text/html" href="https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29615&oldid=prev"/> <updated>2015-11-06T07:20:19Z</updated> <summary type="html"><p>completări (<a href="/w/index.php?title=WP:DVN&amp;action=edit&amp;redlink=1" class="new" title="WP:DVN (pagină inexistentă)">corectat automat</a>)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="ro"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Versiunea anterioară</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Versiunea de la data 6 noiembrie 2015 07:20</td> </tr><tr> <td colspan="2" class="diff-lineno">Linia 1:</td> <td colspan="2" class="diff-lineno">Linia 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Calculul vectorial''' este un domeniu al matematicii care se ocupă cu studiul operaţiilor cu vectori <del style="font-weight: bold; text-decoration: none;">şi</del> aplicaţiile acestora în geometrie, fizică <del style="font-weight: bold; text-decoration: none;">şi</del> în alte domenii.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Calculul vectorial''' este un domeniu al matematicii care se ocupă cu studiul operaţiilor cu vectori <ins style="font-weight: bold; text-decoration: none;">și</ins> aplicaţiile acestora în geometrie, fizică <ins style="font-weight: bold; text-decoration: none;">și</ins> în alte domenii.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Cuprins ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Cuprins ==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Linia 5:</td> <td colspan="2" class="diff-lineno">Linia 5:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Produs_scalar|Produs scalar]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Produs_scalar|Produs scalar]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Produs_vectorial|Produs vectorial]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Produs_vectorial|Produs vectorial]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Coordonate_cilindrice_și_sferice|Coordonate cilindrice și sferice]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Categorie:Matematică]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Categorie:Matematică]]</div></td> </tr> </table></summary> <author><name>Nicolae Coman</name></author> </entry> <entry> <id>https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29611&oldid=prev</id> <title>Nicolae Coman: categ</title> <link rel="alternate" type="text/html" href="https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29611&oldid=prev"/> <updated>2015-11-05T14:35:19Z</updated> <summary type="html"><p>categ</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="ro"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Versiunea anterioară</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Versiunea de la data 5 noiembrie 2015 14:35</td> </tr><tr> <td colspan="2" class="diff-lineno">Linia 5:</td> <td colspan="2" class="diff-lineno">Linia 5:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Produs_scalar|Produs scalar]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Produs_scalar|Produs scalar]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Produs_vectorial|Produs vectorial]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Produs_vectorial|Produs vectorial]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Categorie:Matematică]]</div></td> </tr> </table></summary> <author><name>Nicolae Coman</name></author> </entry> <entry> <id>https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29609&oldid=prev</id> <title>Nicolae Coman: completări (corectat automat)</title> <link rel="alternate" type="text/html" href="https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29609&oldid=prev"/> <updated>2015-11-05T14:31:36Z</updated> <summary type="html"><p>completări (<a href="/w/index.php?title=WP:DVN&amp;action=edit&amp;redlink=1" class="new" title="WP:DVN (pagină inexistentă)">corectat automat</a>)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="ro"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Versiunea anterioară</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Versiunea de la data 5 noiembrie 2015 14:31</td> </tr><tr> <td colspan="2" class="diff-lineno">Linia 4:</td> <td colspan="2" class="diff-lineno">Linia 4:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Vectori|Vectori]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Vectori|Vectori]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Produs_scalar|Produs scalar]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Produs_scalar|Produs scalar]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Produs_vectorial|Produs vectorial]]</div></td> </tr> <!-- diff cache key rowikibooks:diff:1.41:old-29608:rev-29609:wikidiff2=table:1.14.1:ff290eae --> </table></summary> <author><name>Nicolae Coman</name></author> </entry> <entry> <id>https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29608&oldid=prev</id> <title>Nicolae Coman: mutare conţinut şi creare cuprins</title> <link rel="alternate" type="text/html" href="https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29608&oldid=prev"/> <updated>2015-11-05T14:30:10Z</updated> <summary type="html"><p>mutare conţinut şi creare cuprins</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="ro"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Versiunea anterioară</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Versiunea de la data 5 noiembrie 2015 14:30</td> </tr><tr> <td colspan="2" class="diff-lineno">Linia 1:</td> <td colspan="2" class="diff-lineno">Linia 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Fișier:Coord system CA 0.svg|thumb|right|250px|Reprezentarea grafică a unui punct de coordonate &lt;math&gt; x,y,z &lt;/math&gt;]]</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Calculul vectorial''' este un domeniu al matematicii care se ocupă cu studiul operaţiilor cu vectori şi aplicaţiile acestora în geometrie, fizică şi în alte domenii.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Calculul vectorial''' este un domeniu al matematicii care se ocupă cu studiul operaţiilor cu vectori şi aplicaţiile acestora în geometrie, fizică şi în alte domenii.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== Cuprins ==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Un punct &lt;math&gt;P&lt;/math&gt; din plan poate fi reprezentat printr-o pereche de numere reale &lt;math&gt;(a_1, a_2),&lt;/math&gt; unde &lt;math&gt;a_1, a_2&lt;/math&gt; sunt '''coordonatele carteziene''' ale lui &lt;math&gt;P.&lt;/math&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Vectori|Vectori]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [[Calcul vectorial/Produs_scalar|Produs scalar]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Dacă &lt;math&gt;O&lt;/math&gt; este originea axelor de coordonate &lt;math&gt;Ox, \; Oy&lt;/math&gt;, &lt;math&gt;a_1, \; a_2&lt;/math&gt; se mai numesc şi componentele vectorului &lt;math&gt;\overrightarrow {OP}.&lt;/math&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Se mai notează şi &lt;math&gt;a_1=x, \; a_2=y&lt;/math&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>În spaţiu, în locul expresiei "''punctul'' &lt;math&gt;P&lt;/math&gt; ''de coordonate'' &lt;math&gt;a_1, a_2, a_3&lt;/math&gt;" se va spune mai simplu "''punctul'' &lt;math&gt;a_1, a_2, a_3.&lt;/math&gt;"</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;a_1&lt;/math&gt; se mai numeşte şi coordonata x, &lt;math&gt;a_2&lt;/math&gt; coordonata y, iar &lt;math&gt;a_3&lt;/math&gt; coordonata z.</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Se va nota prin &lt;math&gt;\mathbb R^n&lt;/math&gt; mulţimea ''n''-uplurilor &lt;math&gt;(x_1, x_2, \cdots , x_n)&lt;/math&gt; cu &lt;math&gt;x_i \in \mathbb R, \; \forall i=\overline {1, n}.&lt;/math&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>== Adunarea vectorilor şi înmulţirea acestora cu scalari ==</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Operaţia de adunare poate fi extinsă de pe &lt;math&gt;\mathbb R&lt;/math&gt; pe &lt;math&gt;\mathbb R^2&lt;/math&gt; şi &lt;math&gt;\mathbb R^3.&lt;/math&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Astfel, pe &lt;math&gt;\mathbb R^3&lt;/math&gt; se defineşte suma tripletelor &lt;math&gt;(a_1, a_2, a_3)&lt;/math&gt; şi &lt;math&gt;(b_1, b_2, b_3)&lt;/math&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>::&lt;math&gt;(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1+b_1, a_2+b_2, a_3+b_3). &lt;/math&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Elementul &lt;math&gt;(0,0,0)&lt;/math&gt; este numit '''elementul zero''' (sau chiar '''zero''') al lui &lt;math&gt;\mathbb R^3.&lt;/math&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Dându-se punctul &lt;math&gt;(a_1, a_2, a_3),&lt;/math&gt; elementul &lt;math&gt;(-a_1, -a_2, -a_3)&lt;/math&gt; este numit '''inversul''' sau '''negativul''' şi se poate scrie:</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>::&lt;math&gt;(a_1, a_2, a_3) + (-b_1, -b_2, -b_3) \overset {def}{=} (a_1, a_2, a_3) - (b_1, b_2, b_3). &lt;/math&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Un vector adunat cu inversul acestuia ne dau zero:</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>::&lt;math&gt;(a_1, a_2, a_3) + (-a_1, -a_2, -a_3)=(0,0,0).&lt;/math&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>O altă operaţie pe &lt;math&gt;\mathbb R^3&lt;/math&gt; este ''înmulţirea unui vector cu un scalar'', unde prin scalar se înţelege număr real.</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Astfel, dându-se un scalar &lt;math&gt;\alpha \in \mathbb R&lt;/math&gt; şi un vector &lt;math&gt;(a_1, a_2, a_3) \in \mathbb R^3,&lt;/math&gt; se defineşte '''produsul scalar''' prin:</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>::&lt;math&gt;\alpha \cdot (a_1, a_2, a_3) \overset {def}{=} (\alpha \cdot a_1, \alpha \cdot a_2, \alpha \cdot a_3). &lt;/math&gt;</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Adunarea şi înmulţirea cu scalari a vectorilor din &lt;math&gt;\mathbb R^3&lt;/math&gt; satisfac proprietăţile:</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>(i) &amp;nbsp; &lt;math&gt; \; (\alpha \beta) (a_1, a_2, a_3) = \alpha [\beta (a_1, a_2, a_3)]&lt;/math&gt; (asociativitate)</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>(ii) &amp;nbsp; &lt;math&gt; \; (\alpha + \beta) (a_1, a_2, a_3) = \alpha (a_1, a_2, a_3) + \beta (a_1, a_2, a_3)]&lt;/math&gt; (distributivitate)</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>(iii) &amp;nbsp; &lt;math&gt; \; \alpha [(a_1, a_2, a_3) + (b_1, b_2, b_3)]= \alpha (a_1, a_2, a_3) + \alpha (b_1, b_2, b_3)]&lt;/math&gt; (distributivitate)</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>(iv) &amp;nbsp; &lt;math&gt; \alpha \cdot (0,0,0) = (0,0,0) &lt;/math&gt; (element nul)</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>(v) &amp;nbsp; &lt;math&gt; 0 \cdot (a_1, a_2,a_3) = (0,0,0) &lt;/math&gt; (element nul)</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>(vi) &amp;nbsp; &lt;math&gt; 1 \cdot (a_1, a_2,a_3) = (a_1, a_2,a_3). &lt;/math&gt; (element unitate)</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> </table></summary> <author><name>Nicolae Coman</name></author> </entry> <entry> <id>https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29605&oldid=prev</id> <title>Nicolae Coman: introducere imagine</title> <link rel="alternate" type="text/html" href="https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29605&oldid=prev"/> <updated>2015-11-05T11:18:01Z</updated> <summary type="html"><p>introducere imagine</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="ro"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Versiunea anterioară</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Versiunea de la data 5 noiembrie 2015 11:18</td> </tr><tr> <td colspan="2" class="diff-lineno">Linia 1:</td> <td colspan="2" class="diff-lineno">Linia 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Fișier:Coord system CA 0.svg|thumb|right|250px|Reprezentarea grafică a unui punct de coordonate &lt;math&gt; x,y,z &lt;/math&gt;]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Calculul vectorial''' este un domeniu al matematicii care se ocupă cu studiul operaţiilor cu vectori şi aplicaţiile acestora în geometrie, fizică şi în alte domenii.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Calculul vectorial''' este un domeniu al matematicii care se ocupă cu studiul operaţiilor cu vectori şi aplicaţiile acestora în geometrie, fizică şi în alte domenii.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table></summary> <author><name>Nicolae Coman</name></author> </entry> <entry> <id>https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29604&oldid=prev</id> <title>Nicolae Coman: continuare editare (corectat automat)</title> <link rel="alternate" type="text/html" href="https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29604&oldid=prev"/> <updated>2015-11-05T11:12:28Z</updated> <summary type="html"><p>continuare editare (<a href="/w/index.php?title=WP:DVN&amp;action=edit&amp;redlink=1" class="new" title="WP:DVN (pagină inexistentă)">corectat automat</a>)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="ro"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Versiunea anterioară</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Versiunea de la data 5 noiembrie 2015 11:12</td> </tr><tr> <td colspan="2" class="diff-lineno">Linia 30:</td> <td colspan="2" class="diff-lineno">Linia 30:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>::&lt;math&gt;\alpha \cdot (a_1, a_2, a_3) \overset {def}{=} (\alpha \cdot a_1, \alpha \cdot a_2, \alpha \cdot a_3). &lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>::&lt;math&gt;\alpha \cdot (a_1, a_2, a_3) \overset {def}{=} (\alpha \cdot a_1, \alpha \cdot a_2, \alpha \cdot a_3). &lt;/math&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Adunarea şi înmulţirea cu scalari a vectorilor din &lt;math&gt;\mathbb R^3&lt;/math&gt; satisfac proprietăţile:</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>(i) &amp;nbsp; &lt;math&gt; \; (\alpha \beta) (a_1, a_2, a_3) = \alpha [\beta (a_1, a_2, a_3)]&lt;/math&gt; (asociativitate)</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>(ii) &amp;nbsp; &lt;math&gt; \; (\alpha + \beta) (a_1, a_2, a_3) = \alpha (a_1, a_2, a_3) + \beta (a_1, a_2, a_3)]&lt;/math&gt; (distributivitate)</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>(iii) &amp;nbsp; &lt;math&gt; \; \alpha [(a_1, a_2, a_3) + (b_1, b_2, b_3)]= \alpha (a_1, a_2, a_3) + \alpha (b_1, b_2, b_3)]&lt;/math&gt; (distributivitate)</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>(iv) &amp;nbsp; &lt;math&gt; \alpha \cdot (0,0,0) = (0,0,0) &lt;/math&gt; (element nul)</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>(v) &amp;nbsp; &lt;math&gt; 0 \cdot (a_1, a_2,a_3) = (0,0,0) &lt;/math&gt; (element nul)</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>(vi) &amp;nbsp; &lt;math&gt; 1 \cdot (a_1, a_2,a_3) = (a_1, a_2,a_3). &lt;/math&gt; (element unitate)</div></td> </tr> </table></summary> <author><name>Nicolae Coman</name></author> </entry> <entry> <id>https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29603&oldid=prev</id> <title>Nicolae Coman: continuare editare (corectat automat)</title> <link rel="alternate" type="text/html" href="https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29603&oldid=prev"/> <updated>2015-11-05T11:10:56Z</updated> <summary type="html"><p>continuare editare (<a href="/w/index.php?title=WP:DVN&amp;action=edit&amp;redlink=1" class="new" title="WP:DVN (pagină inexistentă)">corectat automat</a>)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="ro"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Versiunea anterioară</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Versiunea de la data 5 noiembrie 2015 11:10</td> </tr><tr> <td colspan="2" class="diff-lineno">Linia 21:</td> <td colspan="2" class="diff-lineno">Linia 21:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>::&lt;math&gt;(a_1, a_2, a_3) + (-b_1, -b_2, -b_3) \overset {def}{=} (a_1, a_2, a_3) - (b_1, b_2, b_3). &lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>::&lt;math&gt;(a_1, a_2, a_3) + (-b_1, -b_2, -b_3) \overset {def}{=} (a_1, a_2, a_3) - (b_1, b_2, b_3). &lt;/math&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Un vector adunat cu inversul acestuia ne dau zero:</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>::&lt;math&gt;(a_1, a_2, a_3) + (-a_1, -a_2, -a_3)=(0,0,0).&lt;/math&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>O altă operaţie pe &lt;math&gt;\mathbb R^3&lt;/math&gt; este ''înmulţirea unui vector cu un scalar'', unde prin scalar se înţelege număr real.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Astfel, dându-se un scalar &lt;math&gt;\alpha \in \mathbb R&lt;/math&gt; şi un vector &lt;math&gt;(a_1, a_2, a_3) \in \mathbb R^3,&lt;/math&gt; se defineşte '''produsul scalar''' prin:</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>::&lt;math&gt;\alpha \cdot (a_1, a_2, a_3) \overset {def}{=} (\alpha \cdot a_1, \alpha \cdot a_2, \alpha \cdot a_3). &lt;/math&gt;</div></td> </tr> </table></summary> <author><name>Nicolae Coman</name></author> </entry> <entry> <id>https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29602&oldid=prev</id> <title>Nicolae Coman: introducere capitol nou (corectat automat)</title> <link rel="alternate" type="text/html" href="https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29602&oldid=prev"/> <updated>2015-11-05T11:09:53Z</updated> <summary type="html"><p>introducere capitol nou (<a href="/w/index.php?title=WP:DVN&amp;action=edit&amp;redlink=1" class="new" title="WP:DVN (pagină inexistentă)">corectat automat</a>)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="ro"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Versiunea anterioară</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Versiunea de la data 5 noiembrie 2015 11:09</td> </tr><tr> <td colspan="2" class="diff-lineno">Linia 10:</td> <td colspan="2" class="diff-lineno">Linia 10:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Se va nota prin &lt;math&gt;\mathbb R^n&lt;/math&gt; mulţimea ''n''-uplurilor &lt;math&gt;(x_1, x_2, \cdots , x_n)&lt;/math&gt; cu &lt;math&gt;x_i \in \mathbb R, \; \forall i=\overline {1, n}.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Se va nota prin &lt;math&gt;\mathbb R^n&lt;/math&gt; mulţimea ''n''-uplurilor &lt;math&gt;(x_1, x_2, \cdots , x_n)&lt;/math&gt; cu &lt;math&gt;x_i \in \mathbb R, \; \forall i=\overline {1, n}.&lt;/math&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== Adunarea vectorilor şi înmulţirea acestora cu scalari ==</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Operaţia de adunare poate fi extinsă de pe &lt;math&gt;\mathbb R&lt;/math&gt; pe &lt;math&gt;\mathbb R^2&lt;/math&gt; şi &lt;math&gt;\mathbb R^3.&lt;/math&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Astfel, pe &lt;math&gt;\mathbb R^3&lt;/math&gt; se defineşte suma tripletelor &lt;math&gt;(a_1, a_2, a_3)&lt;/math&gt; şi &lt;math&gt;(b_1, b_2, b_3)&lt;/math&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>::&lt;math&gt;(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1+b_1, a_2+b_2, a_3+b_3). &lt;/math&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Elementul &lt;math&gt;(0,0,0)&lt;/math&gt; este numit '''elementul zero''' (sau chiar '''zero''') al lui &lt;math&gt;\mathbb R^3.&lt;/math&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Dându-se punctul &lt;math&gt;(a_1, a_2, a_3),&lt;/math&gt; elementul &lt;math&gt;(-a_1, -a_2, -a_3)&lt;/math&gt; este numit '''inversul''' sau '''negativul''' şi se poate scrie:</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>::&lt;math&gt;(a_1, a_2, a_3) + (-b_1, -b_2, -b_3) \overset {def}{=} (a_1, a_2, a_3) - (b_1, b_2, b_3). &lt;/math&gt;</div></td> </tr> <!-- diff cache key rowikibooks:diff:1.41:old-29600:rev-29602:wikidiff2=table:1.14.1:ff290eae --> </table></summary> <author><name>Nicolae Coman</name></author> </entry> <entry> <id>https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29600&oldid=prev</id> <title>Nicolae Coman: completări (corectat automat)</title> <link rel="alternate" type="text/html" href="https://ro.wikibooks.org/w/index.php?title=Calcul_vectorial&diff=29600&oldid=prev"/> <updated>2015-11-05T11:07:40Z</updated> <summary type="html"><p>completări (<a href="/w/index.php?title=WP:DVN&amp;action=edit&amp;redlink=1" class="new" title="WP:DVN (pagină inexistentă)">corectat automat</a>)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="ro"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Versiunea anterioară</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Versiunea de la data 5 noiembrie 2015 11:07</td> </tr><tr> <td colspan="2" class="diff-lineno">Linia 1:</td> <td colspan="2" class="diff-lineno">Linia 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Calculul vectorial''' este un domeniu al matematicii care se ocupă cu studiul operaţiilor cu vectori şi aplicaţiile acestora în geometrie, fizică şi în alte domenii.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Un punct &lt;math&gt;P&lt;/math&gt; din plan poate fi reprezentat printr-o pereche de numere reale &lt;math&gt;(a_1, a_2),&lt;/math&gt; unde &lt;math&gt;a_1, a_2&lt;/math&gt; sunt '''coordonatele carteziene''' ale lui &lt;math&gt;P.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Un punct &lt;math&gt;P&lt;/math&gt; din plan poate fi reprezentat printr-o pereche de numere reale &lt;math&gt;(a_1, a_2),&lt;/math&gt; unde &lt;math&gt;a_1, a_2&lt;/math&gt; sunt '''coordonatele carteziene''' ale lui &lt;math&gt;P.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <!-- diff cache key rowikibooks:diff:1.41:old-29599:rev-29600:wikidiff2=table:1.14.1:ff290eae --> </table></summary> <author><name>Nicolae Coman</name></author> </entry> </feed>