CINXE.COM

Search results for: Givi Kupatadze

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Givi Kupatadze</title> <meta name="description" content="Search results for: Givi Kupatadze"> <meta name="keywords" content="Givi Kupatadze"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Givi Kupatadze" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Givi Kupatadze"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Givi Kupatadze</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Compromising Relevance for Elegance: A Danger of Dominant Growth Models for Backward Economies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Givi%20Kupatadze">Givi Kupatadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Backward economies are facing a challenge of achieving sustainable high economic growth rate. Dominant growth models represent a roadmap in framing economic development strategy. This paper examines a relevance of the dominant growth models for backward economies. Cobb-Douglas production function, the Harrod-Domar model of economic growth, the Solow growth model and general formula of gross domestic product are examined to undertake a comprehensive study of the dominant growth models. Deductive research method allows to uncover major weaknesses of the dominant growth models and to come up with practical implications for economic development strategy. The key finding of the paper shows, contrary to what used to be taught by textbooks of economics, that constant returns to scale property of the dominant growth models are a mere coincidence and its generalization over space and time can be regarded as one of the most unfortunate mistakes in the whole field of political economy. The major suggestion of the paper for backward economies is that understanding and considering taxonomy of economic activities based on increasing and diminishing returns to scale represent a cornerstone of successful economic development strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backward%20economies" title="backward economies">backward economies</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20returns%20to%20scale" title=" constant returns to scale"> constant returns to scale</a>, <a href="https://publications.waset.org/abstracts/search?q=dominant%20growth%20models" title=" dominant growth models"> dominant growth models</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomy%20of%20economic%20activities" title=" taxonomy of economic activities"> taxonomy of economic activities</a> </p> <a href="https://publications.waset.org/abstracts/54835/compromising-relevance-for-elegance-a-danger-of-dominant-growth-models-for-backward-economies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Nanosilver Containing Biodegradable Bionanocomposites for Antimicrobial Application: Design, Preparation and Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nino%20Kupatadze">Nino Kupatadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Shorena%20Tskhadadze"> Shorena Tskhadadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Mzevinar%20Bedinashvili"> Mzevinar Bedinashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Tugushi"> David Tugushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramaz%20Katsarava"> Ramaz Katsarava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surgical device-associated infection and biofilm formation are some of the major problems in biomedicine for today. The losing protection ability of conventional antimicrobial-drugs leads to the challenges in the current antibiotic therapy, the most serious of which is antibiotic resistance. Our strategy to overcome the biofilm formation consists in coating devices with polymeric film containing nanosilver(AgNPs) as a bactericidal agent. Such bionanocomposites are also promising as wound dressing materials. For this purpose, we have developed a new generation of AgNPs containing polymeric composites in which amino acid based biodegradable poly(ester amide)s (PEAs) were served as both matrices and AgNPs stabilizers. The AgNPs were formed by photochemical (daylight) reduction of AgNO3 in ethanol solution. The formation of AgNPs was monitored by coloring the solution in brownish-red and appearance of the absorption maximum at 420-430 nm in UV spectrum. Comparative studies of PEAs with polyvinylpyrrolidone (PVP) as particle stabilizers were carried out. It was found that PVP is better stabilizer in terms of particles yield and stability. Therefore, in subsequent experiments blends of PEAs and PVP were used as stabilizers for fabricating AgNPs. As expected, PVP increased the stabilizing effect and this apparently observed in the UV spectrum of the samples after 7 h daylight irradiation: for pure PVP λmax = 430 nm, D = 2.03, for pure PEA λmax= 420 nm, D = 0.65, and for the blend of PVP and PEA λmax = 435 nm, D = 1.88. Further study of the obtained nanobiocomposites is in progress now. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title="biodegradation">biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=bionanocompositions" title=" bionanocompositions"> bionanocompositions</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosilver" title=" nanosilver"> nanosilver</a> </p> <a href="https://publications.waset.org/abstracts/67409/nanosilver-containing-biodegradable-bionanocomposites-for-antimicrobial-application-design-preparation-and-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> A Numerical Study of the Tidal Currents in the Persian Gulf and Oman Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Sadat%20Sharifi">Fatemeh Sadat Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Bidokhti"> A. A. Bidokhti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ezam"> M. Ezam</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ahmadi%20Givi"> F. Ahmadi Givi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the tidal oscillation and its speed to create a general pattern in seas. The purpose of the analysis is to find out the amplitude and phase for several important tidal components. Therefore, Regional Ocean Models (ROMS) was rendered to consider the correlation and accuracy of this pattern. Finding tidal harmonic components allows us to predict tide at this region. Better prediction of these tides, making standard platform, making suitable wave breakers, helping coastal building, navigation, fisheries, port management and tsunami research. Result shows a fair accuracy in the SSH. It reveals tidal currents are highest in Hormuz Strait and the narrow and shallow region between Kish Island. To investigate flow patterns of the region, the results of limited size model of FVCOM were utilized. Many features of the present day view of ocean circulation have some precedent in tidal and long- wave studies. Tidal waves are categorized to be among the long waves. So that tidal currents studies have indeed effects in subsequent studies of sea and ocean circulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barotropic%20tide" title="barotropic tide">barotropic tide</a>, <a href="https://publications.waset.org/abstracts/search?q=FVCOM" title=" FVCOM"> FVCOM</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title=" numerical model"> numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=OTPS" title=" OTPS"> OTPS</a>, <a href="https://publications.waset.org/abstracts/search?q=ROMS" title=" ROMS"> ROMS</a> </p> <a href="https://publications.waset.org/abstracts/77495/a-numerical-study-of-the-tidal-currents-in-the-persian-gulf-and-oman-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> The Research of Water Levels in the Zhinvali Water Reservoir and Results of Field Research on the Debris Flow Tributaries of the River Tetri Aragvi Flowing in It</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Givi%20Gavardashvili">Givi Gavardashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduard%20Kukhalashvili"> Eduard Kukhalashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamriko%20Supatashvili"> Tamriko Supatashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20Natroshvili"> Giorgi Natroshvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantine%20Bziava"> Konstantine Bziava</a>, <a href="https://publications.waset.org/abstracts/search?q=Irma%20Qufarashvili"> Irma Qufarashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the article to research water levels in the Zhinvali water reservoirs by field and theoretical research and using GPS and GIS technologies has been established dynamic of water reservoirs changes in the suitable coordinates and has been made water reservoir maps and is lined in the 3D format. By using of GPS coordinates and digital maps has been established water horizons of Zhinvali water reservoir in the absolute marks and has been calculated water levels volume. To forecast the filling of the Zhinvali water reservoir by solid sediment in 2018 conducted field experimental researches in the catchment basin of river Tetri (White) Aragvi. It has been established main hydrological and hydraulic parameters of the active erosion-debris flow tributaries of river Tetri Aragvi. It has been calculated erosion coefficient considering the degradation of the slope. By calculation is determined, that in the river Tetri Aragvi catchment basin the value of 1% maximum discharge changes Q1% = 70,0 – 550,0 m3/sec, and erosion coefficient - E = 0,73 - 1,62, with suitable fifth class of erosion and intensity 50-100 tone/hectare in the year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhinvali%20soil%20dam" title="Zhinvali soil dam">Zhinvali soil dam</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reservoirs" title=" water reservoirs"> water reservoirs</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20levels" title=" water levels"> water levels</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=debris%20flow" title=" debris flow"> debris flow</a> </p> <a href="https://publications.waset.org/abstracts/104072/the-research-of-water-levels-in-the-zhinvali-water-reservoir-and-results-of-field-research-on-the-debris-flow-tributaries-of-the-river-tetri-aragvi-flowing-in-it" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> The Role of QX-314 and Capsaicin in Producing Long-Lasting Local Anesthesia in the Animal Model of Trigeminal Neuralgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezzati%20Givi%20M.">Ezzati Givi M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezzatigivi%20N."> Ezzatigivi N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Eimani%20H."> Eimani H.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trigeminal Neuralgia (TN) consists of painful attacks often triggered with general activities, which cause impairment and disability. The first line of treatment consists of pharmacotherapy. However, the occurrence of many side-effects limits its application. Acute pain relief is crucial for titrating oral drugs and making time for neurosurgical intervention. This study aimed to examine the long-term anesthetic effect of QX-314 and capsaicin in trigeminal neuralgia using an animal model. TN was stimulated by surgical constriction of the infraorbital nerve in rats. After seven days, anesthesia infiltration was done, and the duration of mechanical allodynia was compared. Thirty-five male Wistar rats were randomly divided into seven groups as follows: control (normal saline); lidocaine (2%); QX314 (30 mM); lidocaine (2%)+QX314 (15 mM); lidocaine (2%)+QX314 (22 mM); lidocaine (2%)+QX314 (30 mM); and lidocaine (2%)+QX314 (30 mM) +capsaicin (1μg). QX314 in combination with lidocaine significantly increased the duration of anesthesia, which was dose-dependent. The combination of lidocaine+QX314+capsaicin could significantly increase the duration of anesthesia in trigeminal neuralgia. In the present study, we demonstrated that the combination of QX-314 with lidocaine and capsaicin produced a long-lasting, reversible local anesthesia and was superior to lidocaine alone in the fields of the duration of trigeminal neuropathic pain blockage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trigeminal%20neuralgia" title="trigeminal neuralgia">trigeminal neuralgia</a>, <a href="https://publications.waset.org/abstracts/search?q=capsaicin" title=" capsaicin"> capsaicin</a>, <a href="https://publications.waset.org/abstracts/search?q=lidocaine" title=" lidocaine"> lidocaine</a>, <a href="https://publications.waset.org/abstracts/search?q=long-lasting" title=" long-lasting"> long-lasting</a> </p> <a href="https://publications.waset.org/abstracts/149111/the-role-of-qx-314-and-capsaicin-in-producing-long-lasting-local-anesthesia-in-the-animal-model-of-trigeminal-neuralgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Effect of a Synthetic Platinum-Based Complex on Autophagy Induction in Leydig TM3 Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezzati%20Givi%20M.">Ezzati Givi M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoveizi%20E."> Hoveizi E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Nezhad%20Marani%20N."> Nezhad Marani N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Platinum-based anticancer therapeutics are the most widely used drugs in clinical chemotherapy but have major limitations and various side effects in clinical applications. Gonadotoxicity and sterility is one of the most common complications for cancer survivors, which seem to be drug-specific and dose-related. Therefore, many efforts have been dedicated to discovering a new structure of platinum-based anticancer agents with improved therapeutic index, fewer side effects. In this regard, new Pt(II)-phosphane complexes containing heterocyclic thionate ligands (PCTL) have been synthesized, which show more potent antitumor activities in comparison to cisplatin. Cisplatin, the best leading metal-based antitumor drug in the field, induces testicular toxicity on Leydig and Sertoli cells leading to serious side effects such as azoospermia and infertility. Therefore in the present study, we aimed to investigate the cytotoxicity effect of PCTL on mice TM4 Sertoli cells with particular emphasis on the role of autophagy in comparison to cisplatin. In this study, an MTT assay was performed to evaluate the IC50 of PCTL and to analyze the TM3 Leydig cell's viability. Cells morphology was evaluated via invert microscope and Changing in morphology for nuclei swelling or autophagic vacuoles formation were assessed by DAPI and MDC staining. Testosterone production in the culture medium was measured using an ELISA kit. Finally, the expression of Autophagy-related genes, Atg5, Beclin1 and p62, were analyzed by qPCR. Based on the obtained results by MTT, the IC50 value of PCTL was 50 μM in TM3 cells and cytotoxic effects was in a dose- and time-dependent manner. Cells morphological changes investigated by inverted microscopy, DAPI, and MDC staining which showed the cytotoxic concentrations of PCTL was significantly higher than cisplatin in the treated TM3 Leydig cells. The results of PCR showed a lack of expression of the p62, Atg5 and Beclin1 gene in TM3 cells treated with PCTL in comparison to cisplatin and control groups. It should be noted that the effects of 25 μM PCTL concentration on TM3 cells have been associated with increased testosterone production and secretion, which requires further study to explain the possible causes and involved molecular mechanisms. The results of the study showed that the PCTL had less-lethal effects on TM3 cells in comparison to cisplatin and probably did not induce autophagy in TM3 cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=platinum-based%20anticancer%20agents" title="platinum-based anticancer agents">platinum-based anticancer agents</a>, <a href="https://publications.waset.org/abstracts/search?q=cisplatin" title=" cisplatin"> cisplatin</a>, <a href="https://publications.waset.org/abstracts/search?q=Leydig%20TM3%20cells" title=" Leydig TM3 cells"> Leydig TM3 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=autophagy" title=" autophagy"> autophagy</a> </p> <a href="https://publications.waset.org/abstracts/149103/effect-of-a-synthetic-platinum-based-complex-on-autophagy-induction-in-leydig-tm3-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Antimicrobial Nanocompositions Made of Amino Acid Based Biodegradable Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nino%20Kupatadze">Nino Kupatadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Mzevinar%20Bedinashvili"> Mzevinar Bedinashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Memanishvili"> Tamar Memanishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Manana%20Gurielidze"> Manana Gurielidze</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Tugushi"> David Tugushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramaz%20Katsarava"> Ramaz Katsarava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacteria easily colonize the surfaces of tissues, surgical devices (implants, orthopedics, catheters, etc.), and instruments causing surgical device related infections. Therefore, the battle against bacteria and the prevention of surgical devices from biofilm formation is one of the main challenges of biomedicine today. Our strategy to the solution of this problem consists in using antimicrobial polymeric coatings as effective “shields” to protect surfaces from bacteria’s colonization and biofilm formation. As one of the most promising approaches look be the use of antimicrobial bioerodible polymeric nanocomposites containing silver nanoparticles (AgNPs). We assume that the combination of an erodible polymer with a strong bactericide should put obstacles to bacteria to occupy the surface and to form biofilm. It has to be noted that this kind of nanocomposites are also promising as wound dressing materials to treat infected superficial wounds. Various synthetic and natural polymers were used for creating biocomposites containing AgNPs as both particles' stabilizers and matrices forming elastic films at surfaces. One of the most effective systems to fabricate AgNPs is an ethanol solution of polyvinylpyrrolidone(PVP) with dissolved AgNO3–ethanol serves as a AgNO3 reductant and PVP as AgNPs stabilizer (through the interaction of nanoparticles with nitrogen atom of the amide group). Though PVP is biocompatible and film-forming polymer, it is not a good candidate to design either "biofilm shield" or wound dressing material because of a high solubility in water – though the solubility of PVP provides the desirable release of AgNPs from the matrix, but the coating is easily washable away from the surfaces. More promising as matrices look water insoluble but bioerodible polymers that can provide the release of AgNPs and form long-lasting coatings at the surfaces. For creating bioerodible water-insoluble antimicrobial coatings containing AgNPs, we selected amino acid based biodegradable polymers(AABBPs)–poly(ester amide)s, poly(ester urea)s, their copolymers containing amide and related groups capable to stabilize AgNPs. Among a huge variety of AABBPs reported we selected the polymers soluble in ethanol. For preparing AgNPs containing nanocompositions AABBPs and AgNO3 were dissolved in ethanol and subjected to photochemical reduction using daylight-irradiation. The formation of AgNPs was observed visually by coloring the solutions in brownish-red. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscopy(TEM), and dynamic light scattering(DLS). According to the UV and TEM data, the photochemical reduction resulted presumably in spherical AgNPs with rather high contribution of the particles below 10 nm that are known as responsible for the antimicrobial activity. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within 50 nm. The in vitro antimicrobial activity study of the new nanocomposite material is in progress now. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title=" biodegradable"> biodegradable</a> </p> <a href="https://publications.waset.org/abstracts/36847/antimicrobial-nanocompositions-made-of-amino-acid-based-biodegradable-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Amino Acid Based Biodegradable Poly (Ester-Amide)s and Their Potential Biomedical Applications as Drug Delivery Containers and Antibacterial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nino%20Kupatadze">Nino Kupatadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Memanishvili"> Tamar Memanishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Natia%20Ochkhikidze"> Natia Ochkhikidze</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Tugushi"> David Tugushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaal%20Kokaia"> Zaal Kokaia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramaz%20Katsarava"> Ramaz Katsarava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amino acid-based Biodegradable poly(ester-amide)s (PEAs) have gained considerable interest as a promising materials for numerous biomedical applications. These polymers reveal a high biocompatibility and easily form small particles suitable for delivery various biological, as well as elastic bio-erodible films serving as matrices for constructing antibacterial coatings. In the present work we have demonstrated a potential of the PEAs for two applications: 1. cell therapy for stroke as vehicles for delivery and sustained release of growth factors, 2. bactericidal coating as prevention biofilm and applicable in infected wound management. Stroke remains the main cause of adult disability with limited treatment options. Although stem cell therapy is a promising strategy, it still requires improvement of cell survival, differentiation and tissue modulation. .Recently, microspheres (MPs) made of biodegradable polymers have gained significant attention for providing necessary support of transplanted cells. To investigate this strategy in the cell therapy of stroke, MPs loaded with transcription factors Wnt3A/BMP4 were prepared. These proteins have been shown to mediate the maturation of the cortical neurons. We have suggested that implantation of these materials could create a suitable microenvironment for implanted cells. Particles with spherical shape, porous surface, and 5-40 m in size (monitored by scanning electron microscopy) were made on the basis of the original PEA composed of adipic acid, L-phenylalanine and 1,4-butanediol. After 4 months transplantation of MPs in rodent brain, no inflammation was observed. Additionally, factors were successfully released from MPs and affected neuronal cell differentiation in in vitro. The in vivo study using loaded MPs is in progress. Another severe problem in biomedicine is prevention of surgical devices from biofilm formation. Antimicrobial polymeric coatings are most effective “shields” to protect surfaces/devices from biofilm formation. Among matrices for constructing the coatings preference should be given to bio-erodible polymers. Such types of coatings will play a role of “unstable seating” that will not allow bacteria to occupy the surface. In other words, bio-erodible coatings would be discomfort shelter for bacteria that along with releasing “killers of bacteria” should prevent the formation of biofilm. For this purpose, we selected an original biodegradable PEA composed of L-leucine, 1,6-hexanediol and sebacic acid as a bio-erodible matrix, and nanosilver (AgNPs) as a bactericidal agent (“killer of bacteria”). Such nanocomposite material is also promising in treatment of superficial wound and ulcer. The solubility of the PEA in ethanol allows to reduce AgNO3 to NPs directly in the solution, where the solvent served as a reductive agent, and the PEA served as NPs stabilizer. The photochemical reduction was selected as a basic method to form NPs. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscope (TEM), and dynamic light scattering (DLS). According to the UV-data and TEM data the photochemical reduction resulted in spherical AgNPs with wide particle size distribution with a high contribution of the particles below 10 nm that are known as responsible for bactericidal activity of AgNPs. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within ca. 50 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20polymers" title="biodegradable polymers">biodegradable polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=microparticles" title=" microparticles"> microparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy" title=" stem cell therapy"> stem cell therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke "> stroke </a> </p> <a href="https://publications.waset.org/abstracts/27393/amino-acid-based-biodegradable-poly-ester-amides-and-their-potential-biomedical-applications-as-drug-delivery-containers-and-antibacterial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10