CINXE.COM
Search results for: tumor infiltrating lymphocytes
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tumor infiltrating lymphocytes</title> <meta name="description" content="Search results for: tumor infiltrating lymphocytes"> <meta name="keywords" content="tumor infiltrating lymphocytes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tumor infiltrating lymphocytes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tumor infiltrating lymphocytes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 890</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tumor infiltrating lymphocytes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">890</span> Evaluation of Tumor-Infiltrating Lymphocytes in Breast Carcinoma: Correlation with Molecular Subtypes and Clinicopathological Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arundhathi%20S.">Arundhathi S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Poongodi%20R."> Poongodi R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tumor-infiltrating lymphocytes (TILs) are indicative of the local immune response against tumor proliferation and metastasis. Emerging as a significant marker of immune reactivity, TILs are utilized to evaluate prognostic outcomes across various malignancies, including colon, ovarian, lung, bladder, and breast cancers. In breast cancer (BC), TILs are particularly relevant for assessing tumor response to therapy in both adjuvant and neoadjuvant settings, with a prominent role in triple-negative breast cancer (TNBC), where they have been associated with improved outcomes. As such, TILs are recognized as an independent marker of favorable prognosis in several tumor types, underscoring their potential as a tool in personalized cancer therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=intratumoral%20TIL" title=" intratumoral TIL"> intratumoral TIL</a>, <a href="https://publications.waset.org/abstracts/search?q=stromal%20TIL" title=" stromal TIL"> stromal TIL</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20infiltrating%20lymphocytes" title=" tumor infiltrating lymphocytes"> tumor infiltrating lymphocytes</a> </p> <a href="https://publications.waset.org/abstracts/194529/evaluation-of-tumor-infiltrating-lymphocytes-in-breast-carcinoma-correlation-with-molecular-subtypes-and-clinicopathological-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">889</span> Prognostic and Predictive Value of Tumor: Infiltrating Lymphocytes in Triple Negative Breast Cancer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wooseok%20Byon">Wooseok Byon</a>, <a href="https://publications.waset.org/abstracts/search?q=Eunyoung%20Kim"> Eunyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Junseong%20Kwon"> Junseong Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Joo%20Song"> Byung Joo Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Heun%20Park"> Chan Heun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background/Purpose: Previous preclinical and clinical data suggest that increased lymphocytic infiltration would be associated with good prognosis and benefit from immunogenic chemotherapy especially in triple-negative breast cancer (TNBC). We investigated a single-center experience of TNBC and relationship with lymphocytic infiltration. Methods: From January 2004 to December 2012, at the Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, we retrospectively reviewed 897 breast cancer patients-clinical outcomes, clinicopathological characteristics, breast cancer subtypes. And we reviewed lymphocytic infiltration of TNBC specimens by two pathologists. Statistical analysis of risk factors associated with recurrence was performed. Results: A total of 897 patients, 76 were TNBC (8.47%). Mean age of TNBC patients were 50.95 (SD10.42) years, mean follow-up periods was 40.06 months. We reviewed 49 slides, and there were 8 recurrent breast cancer patients (16.32%), and 4 patients were expired (8.16%). There were 9 lymphocytic predominant breast cancers (LPBC)-carcinomas with either intratumoral lymphocytes in >60% of tumor cell nests. 1 patient of LPBC was recurred and 8 were not. In multivariate logistic regression, the odds ratio of lymphocytic infiltration was 0.59 (p=0.643). Conclusion: In a single-center experience of TNBC, the lymphocytic infiltration in tumor cell nest might be a good trend on the prognosis but there was not statistically significant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tumor-infiltrating%20lymphocytes" title="tumor-infiltrating lymphocytes">tumor-infiltrating lymphocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=triple%20negative%20breast%20cancer" title=" triple negative breast cancer"> triple negative breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20and%20health%20sciences" title=" medical and health sciences"> medical and health sciences</a> </p> <a href="https://publications.waset.org/abstracts/18101/prognostic-and-predictive-value-of-tumor-infiltrating-lymphocytes-in-triple-negative-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">888</span> Artificial Intelligence Based Method in Identifying Tumour Infiltrating Lymphocytes of Triple Negative Breast Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurkhairul%20Bariyah%20Baharun">Nurkhairul Bariyah Baharun</a>, <a href="https://publications.waset.org/abstracts/search?q=Afzan%20Adam"> Afzan Adam</a>, <a href="https://publications.waset.org/abstracts/search?q=Reena%20Rahayu%20Md%20Zin"> Reena Rahayu Md Zin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tumor microenvironment (TME) in breast cancer is mainly composed of cancer cells, immune cells, and stromal cells. The interaction between cancer cells and their microenvironment plays an important role in tumor development, progression, and treatment response. The TME in breast cancer includes tumor-infiltrating lymphocytes (TILs) that are implicated in killing tumor cells. TILs can be found in tumor stroma (sTILs) and within the tumor (iTILs). TILs in triple negative breast cancer (TNBC) have been demonstrated to have prognostic and potentially predictive value. The international Immune-Oncology Biomarker Working Group (TIL-WG) had developed a guideline focus on the assessment of sTILs using hematoxylin and eosin (H&E)-stained slides. According to the guideline, the pathologists use “eye balling” method on the H&E stained- slide for sTILs assessment. This method has low precision, poor interobserver reproducibility, and is time-consuming for a comprehensive evaluation, besides only counted sTILs in their assessment. The TIL-WG has therefore recommended that any algorithm for computational assessment of TILs utilizing the guidelines provided to overcome the limitations of manual assessment, thus providing highly accurate and reliable TILs detection and classification for reproducible and quantitative measurement. This study is carried out to develop a TNBC digital whole slide image (WSI) dataset from H&E-stained slides and IHC (CD4+ and CD8+) stained slides. TNBC cases were retrieved from the database of the Department of Pathology, Hospital Canselor Tuanku Muhriz (HCTM). TNBC cases diagnosed between the year 2010 and 2021 with no history of other cancer and available block tissue were included in the study (n=58). Tissue blocks were sectioned approximately 4 µm for H&E and IHC stain. The H&E staining was performed according to a well-established protocol. Indirect IHC stain was also performed on the tissue sections using protocol from Diagnostic BioSystems PolyVue™ Plus Kit, USA. The slides were stained with rabbit monoclonal, CD8 antibody (SP16) and Rabbit monoclonal, CD4 antibody (EP204). The selected and quality-checked slides were then scanned using a high-resolution whole slide scanner (Pannoramic DESK II DW- slide scanner) to digitalize the tissue image with a pixel resolution of 20x magnification. A manual TILs (sTILs and iTILs) assessment was then carried out by the appointed pathologist (2 pathologists) for manual TILs scoring from the digital WSIs following the guideline developed by TIL-WG 2014, and the result displayed as the percentage of sTILs and iTILs per mm² stromal and tumour area on the tissue. Following this, we aimed to develop an automated digital image scoring framework that incorporates key elements of manual guidelines (including both sTILs and iTILs) using manually annotated data for robust and objective quantification of TILs in TNBC. From the study, we have developed a digital dataset of TNBC H&E and IHC (CD4+ and CD8+) stained slides. We hope that an automated based scoring method can provide quantitative and interpretable TILs scoring, which correlates with the manual pathologist-derived sTILs and iTILs scoring and thus has potential prognostic implications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20quantification" title="automated quantification">automated quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20pathology" title=" digital pathology"> digital pathology</a>, <a href="https://publications.waset.org/abstracts/search?q=triple%20negative%20breast%20cancer" title=" triple negative breast cancer"> triple negative breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=tumour%20infiltrating%20lymphocytes" title=" tumour infiltrating lymphocytes"> tumour infiltrating lymphocytes</a> </p> <a href="https://publications.waset.org/abstracts/153691/artificial-intelligence-based-method-in-identifying-tumour-infiltrating-lymphocytes-of-triple-negative-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">887</span> Breast Cancer Cellular Immunotherapies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Shokrolahi">Zahra Shokrolahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Atashzar"> Mohammad Reza Atashzar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goals of treating patients with breast cancer are to cure the disease, prolong survival, and improve quality of life. Immune cells in the tumor microenvironment have an important role in regulating tumor progression. The term of cellular immunotherapy refers to the administration of living cells to a patient; this type of immunotherapy can be active, such as a dendritic cell (DC) vaccine, in that the cells can stimulate an anti-tumour response in the patient, or the therapy can be passive, whereby the cells have intrinsic anti-tumour activity; this is known as adoptive cell transfer (ACT) and includes the use of autologous or allogeneic lymphocytes that may, or may not, be modified. The most important breast cancer cellular immunotherapies involving the use of T cells and natural killer (NK) cells in adoptive cell transfer, as well as dendritic cells vaccines. T cell-based therapies including tumour-infiltrating lymphocytes (TILs), engineered TCR-T cells, chimeric antigen receptor (CAR T cell), Gamma-delta (γδ) T cells, natural killer T (NKT) cells. NK cell-based therapies including lymphokine-activated killers (LAK), cytokine-induced killer (CIK) cells, CAR-NK cells. Adoptive cell therapy has some advantages and disadvantages some. TILs cell strictly directed against tumor-specific antigens but are inactive against tumor changes due to immunoediting. CIK cell have MHC-independent cytotoxic effect and also need concurrent high dose IL-2 administration. CAR T cell are MHC-independent; overcome tumor MHC molecule downregulation; potent in recognizing any cell surface antigen (protein, carbohydrate or glycolipid); applicable to a broad range of patients and T cell populations; production of large numbers of tumor-specific cells in a moderately short period of time. Meanwhile CAR T cells capable of targeting only cell surface antigens; lethal toxicity due to cytokine storm reported. Here we present the most popular cancer cellular immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials .To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer ">breast cancer </a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20therapy" title=" cell therapy "> cell therapy </a>, <a href="https://publications.waset.org/abstracts/search?q=CAR%20T%20cell" title=" CAR T cell "> CAR T cell </a>, <a href="https://publications.waset.org/abstracts/search?q=CIK%20cells" title=" CIK cells "> CIK cells </a> </p> <a href="https://publications.waset.org/abstracts/135914/breast-cancer-cellular-immunotherapies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">886</span> Identification of the Target Genes to Increase the Immunotherapy Response in Bladder Cancer Patients using Computational and Experimental Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Nasr">Sahar Nasr</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Li"> Lin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Wang"> Edwin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bladder cancer (BLCA) is known as the 13th cause of death among cancer patients worldwide, and ~575,000 new BLCA cases are diagnosed each year. Urothelial carcinoma (UC) is the most prevalent subtype among BLCA patients, which can be categorized into muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). Currently, various therapeutic options are available for UC patients, including (1) transurethral resection followed by intravesical instillation of chemotherapeutics or Bacillus Calmette-Guérin for NMIBC patients, (2) neoadjuvant platinum-based chemotherapy (NAC) plus radical cystectomy is the standard of care for localized MIBC patients, and (3) systematic chemotherapy for metastatic UC. However, conventional treatments may lead to several challenges for treating patients. As an illustration, some patients may suffer from recurrence of the disease after the first line of treatment. Recently, immune checkpoint therapy (ICT) has been introduced as an alternative treatment strategy for the first or second line of treatment in advanced or metastatic BLCA patients. Although ICT showed lucrative results for a fraction of BLCA patients, ~80% of patients were not responsive to it. Therefore, novel treatment methods are required to augment the ICI response rate within BLCA patients. It has been shown that the infiltration of T-cells into the tumor microenvironment (TME) is positively correlated with the response to ICT within cancerous patients. Therefore, the goal of this study is to enhance the infiltration of cytotoxic T-cells into TME through the identification of target genes within the tumor that are responsible for the non-T-cell inflamed TME and their inhibition. BLCA bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) and immune score for TCGA samples were used to determine the Pearson correlation score between the expression of different genes and immune score for each sample. The genes with strong negative correlations were selected (r < -0.2). Thereafter, the correlation between the expression of each gene and survival in BLCA patients was calculated using the TCGA data and Cox regression method. The genes that are common in both selected gene lists were chosen for further analysis. Afterward, BLCA bulk and single-cell RNA-sequencing data were ranked based on the expression of each selected gene and the top and bottom 25% samples were used for pathway enrichment analysis. If the pathways related to the T-cell infiltration (e.g., antigen presentation, interferon, or chemokine pathways) were enriched within the low-expression group, the gene was included for downstream analysis. Finally, the selected genes will be used to calculate the correlation between their expression and the infiltration rate of the activated CD+8 T-cells, natural killer cells and the activated dendric cells. A list of potential target genes has been identified and ranked based on the above-mentioned analysis and criteria. SUN-1 got the highest score within the gene list and other identified genes in the literature as benchmarks. In conclusion, inhibition of SUN1 may increase the tumor-infiltrating lymphocytes and the efficacy of ICI in BLCA patients. BLCA tumor cells with and without SUN-1 CRISPR/Cas9 knockout will be injected into the syngeneic mouse model to validate the predicted SUN-1 effect on increasing tumor-infiltrating lymphocytes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20analysis" title="data analysis">data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression%20analysis" title=" gene expression analysis"> gene expression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20identification" title=" gene identification"> gene identification</a>, <a href="https://publications.waset.org/abstracts/search?q=immunoinformatic" title=" immunoinformatic"> immunoinformatic</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20genomics" title=" functional genomics"> functional genomics</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptomics" title=" transcriptomics"> transcriptomics</a> </p> <a href="https://publications.waset.org/abstracts/143621/identification-of-the-target-genes-to-increase-the-immunotherapy-response-in-bladder-cancer-patients-using-computational-and-experimental-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">885</span> The Oxidative Damage Marker for Sodium Formate Exposure on Lymphocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malinee%20Pongsavee">Malinee Pongsavee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sodium formate is the chemical substance used for food additive. Catalase is the important antioxidative enzyme in protecting the cell from oxidative damage by reactive oxygen species (ROS). The resultant level of oxidative stress in sodium formatetreated lymphocytes was investigated. The sodium formate concentrations of 0.05, 0.1, 0.2, 0.4 and 0.6 mg/mL were treated in human lymphocytes for 12 hours. After 12 treated hours, catalase activity change was measured in sodium formate-treated lymphocytes. The results showed that the sodium formate concentrations of 0.4 and 0.6 mg/mL significantly decreased catalase activities in lymphocytes (P < 0.05). The change of catalase activity in sodium formate-treated lymphocytes may be the oxidative damage marker for detect sodium formate exposure in human. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sodium%20formate" title="sodium formate">sodium formate</a>, <a href="https://publications.waset.org/abstracts/search?q=catalase%20activity" title=" catalase activity"> catalase activity</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20damage%20marker" title=" oxidative damage marker"> oxidative damage marker</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/31219/the-oxidative-damage-marker-for-sodium-formate-exposure-on-lymphocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">884</span> Liver Transplantation after Downstaging with Electrochemotherapy of Large Hepatocellular Carcinoma and Portal Vein Tumor Thrombosis: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luciano%20Tarantino">Luciano Tarantino</a>, <a href="https://publications.waset.org/abstracts/search?q=Emanuele%20Balzano"> Emanuele Balzano</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurelio%20Nasto"> Aurelio Nasto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> S.R. 53 years. January 2009: HCV-related cirrhosis, Child-Pugh A5 class, EGDS no aesophageal Varices. No important comorbidities. Treated with PEG-IFN+Ribavirin (march-november 2009) with subsequent sustained virologic response. HCVRNA absent overtime. October 2016 :CT detected small HCC nodule in the VIII segment (diam.=12 mm). Treated with US guided RF-ablation. November 2016 CT: complete necrosis. Unfortunately, the patient dropped out US and CT follow-up controls.September 2018: asthenia and weight loss. CT showed a large tumor infiltrating V-VII-VI segments and complete PVTT of right portal vein and its branches . Surgical Consultation excluded indication to Liver resection and OLT . 23 october 2018: ECT of a large peri-hilar area of the tumor including the PVTT. 1 and 3 months post-treatment CT showed complete necrosis and retraction of the thrombus and residual viable tumor in the peripheral portion of the right lobe . Therefor, the patient was reevaluated for OLT and considered eligible in waiting list . March 2019: CT showed no perihilar or portal vein recurrence and distant progression in the right lobe . March 2019 : Trans-arterial-Radio-therapy (TARE) of the right lobe. Post-treatment CT demonstrated no perihilar or portal vein recurrence and extensive necrosis of the residual tumor . December 2019: CT demonstrated several recurrences of HCC infiltrating the VI and VII segment . Howewer no recurrence was observed at hepatic hilum and in portal vessels . Therefore, on February 2020 the patient received OLT. At 44 months follow-up, no complication or recurrence or liver disfunction have been observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hepatocellular%20carcinoma" title="hepatocellular carcinoma">hepatocellular carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=portal%20vein%20tumor%20thrombosis" title=" portal vein tumor thrombosis"> portal vein tumor thrombosis</a>, <a href="https://publications.waset.org/abstracts/search?q=interventional%20ultrasound" title=" interventional ultrasound"> interventional ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20tumor%20ablation" title=" liver tumor ablation"> liver tumor ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20transplantation" title=" liver transplantation"> liver transplantation</a> </p> <a href="https://publications.waset.org/abstracts/172797/liver-transplantation-after-downstaging-with-electrochemotherapy-of-large-hepatocellular-carcinoma-and-portal-vein-tumor-thrombosis-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">883</span> Identification of Functional T Cell Receptors Reactive to Tumor Antigens from the T Cell Repertoire of Healthy Donors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Quiros-Fernandez">Isaac Quiros-Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Angel%20Cid-Arregui"> Angel Cid-Arregui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tumor-reactive T cell receptors (TCRs) are being subject of intense investigation since they offer great potential in adoptive cell therapies against cancer. However, the identification of tumor-specific TCRs has proven challenging, for instance, due to the limited expansion capacity of tumor-infiltrating T cells (TILs) and the extremely low frequencies of tumor-reactive T cells in the repertoire of patients and healthy donors. We have developed an approach for rapid identification and characterization of neoepitope-reactive TCRs from the T cell repertoire of healthy donors. CD8 T cells isolated from multiple donors are subjected to a first sorting step after staining with HLA multimers carrying the peptide of interest. The isolated cells are expanded for two weeks, after which a second sorting is performed using the same peptide-HLA multimers. The cells isolated in this way are then processed for single-cell sequencing of their TCR alpha and beta chains. Newly identified TCRs are cloned in appropriate expression vectors for functional analysis on Jurkat, NK92, and primary CD8 T cells and tumor cells expressing the appropriate antigen. We have identified TCRs specifically binding HLA-A2 presenting epitopes of tumor antigens, which are capable of inducing TCR-mediated cell activation and cytotoxicity in target cancer cell lines. This method allows the identification of tumor-reactive TCRs in about two to three weeks, starting from peripheral blood samples of readily available healthy donors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=TCR" title=" TCR"> TCR</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20antigens" title=" tumor antigens"> tumor antigens</a>, <a href="https://publications.waset.org/abstracts/search?q=immunotherapy" title=" immunotherapy"> immunotherapy</a> </p> <a href="https://publications.waset.org/abstracts/153990/identification-of-functional-t-cell-receptors-reactive-to-tumor-antigens-from-the-t-cell-repertoire-of-healthy-donors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">882</span> Pathways and Mechanisms of Lymphocytes Emigration from Newborn Thymus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olena%20Grygorieva">Olena Grygorieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays mechanisms of thymocytes emigration from the thymus to the periphery are investigated actively. We have proposed a hypothesis of thymocytes’ migration from the thymus through lymphatic vessels during periodical short-term local edema. By morphological, hystochemical methods we have examined quantity of lymphocytes, epitelioreticulocytes, mast cells, blood and lymphatic vessels in morpho-functional areas of rats’ thymuses during the first week after birth in 4 hours interval. In newborn and beginning from 8 hour after birth every 12 hours specific density of the thymus, absolute quantity of microcirculatory vessels, especially of lymphatic ones, lymphcyte-epithelial index, quantity of mast cells and their degranulative forms increase. Structure of extracellular matrix, intrathymical microenvironment and lymphocytes’ adhesive properties change. Absolute quantity of small lymphocytes in thymic cortex changes wavy. All these changes are straightly expressed from 0 till 2, from 12 till 16, from 108 till 120 hours of postnatal life. During this periods paravasal lymphatic vessels are stuffed with lymphocytes, i.e. discrete migration of lymphocytes from the thymus occurs. After rapid edema reduction, quantity of lymphatic vessels decrease, they become empty. Therefore, in the thymus of newborn periodical short-term local edema is observed, on its top discrete migration of lymphocytes from the thymus occurs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lymphocytes" title="lymphocytes">lymphocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphatic%20vessels" title=" lymphatic vessels"> lymphatic vessels</a>, <a href="https://publications.waset.org/abstracts/search?q=mast%20cells" title=" mast cells"> mast cells</a>, <a href="https://publications.waset.org/abstracts/search?q=thymus" title=" thymus"> thymus</a> </p> <a href="https://publications.waset.org/abstracts/41730/pathways-and-mechanisms-of-lymphocytes-emigration-from-newborn-thymus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">881</span> Suggested Role for Neutrophil Extracellular Traps Formation in Ewing Sarcoma Immune Microenvironment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Shukrun">Rachel Shukrun</a>, <a href="https://publications.waset.org/abstracts/search?q=Szilvia%20Baron"> Szilvia Baron</a>, <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Fidel"> Victoria Fidel</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Shusterman"> Anna Shusterman</a>, <a href="https://publications.waset.org/abstracts/search?q=Osnat%20Sher"> Osnat Sher</a>, <a href="https://publications.waset.org/abstracts/search?q=Netanya%20Kollender"> Netanya Kollender</a>, <a href="https://publications.waset.org/abstracts/search?q=Dror%20Levin"> Dror Levin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yair%20Peled"> Yair Peled</a>, <a href="https://publications.waset.org/abstracts/search?q=Yair%20Gortzak"> Yair Gortzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoav%20Ben-Shahar"> Yoav Ben-Shahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Revital%20Caspi"> Revital Caspi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagi%20Gordon"> Sagi Gordon</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Manisterski"> Michal Manisterski</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronit%20Elhasid"> Ronit Elhasid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ewing sarcoma (EWS) is a highly aggressive cancer with a survival rate of 70–80% for patients with localized disease and under 30% for those with metastatic disease. Tumor-infiltrating neutrophils (TIN) can generate extracellular net-like DNA structures known as neutrophil extracellular traps (NETs). However, little is known about the presence and prognostic significance of tumor-infiltrating NETs in EWS. Herein, we investigated 46 patients diagnosed with EWS and treated in the Tel Aviv Medical Center between 2010 and 2021. TINs and NETs were identified in diagnostic biopsies of EWS by immunofluorescent. In addition, NETs were investigated in neutrophils isolated from peripheral blood samples of EWS patients at diagnosis and following neoadjuvant chemotherapy. The relationships between the presence of TINs and NETs, pathological and clinical features, and outcomes were analyzed. Our results demonstrate that TIN and NETs at diagnosis were higher in EWS patients with metastatic disease compared to those with local disease. High NETs formation at diagnosis predicted poor response to neo-adjuvant chemotherapy, relapse, and death from disease (P < .05). NETs formation in peripheral blood samples at diagnosis was significantly elevated among patients with EWS compared to pediatric controls and decreased significantly following neoadjuvant chemotherapy. In conclusion, NETs formation seems to have a role in the EWS immune microenvironment. Their presence can refine risk stratification, predict chemotherapy resistance and survival, and serve as a therapeutic target in patients with EWS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewing%20sarcoma" title="Ewing sarcoma">Ewing sarcoma</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20microenvironment" title=" tumor microenvironment"> tumor microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrophil" title=" neutrophil"> neutrophil</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrophil%20extracellular%20traps%20%28NETs%29" title=" neutrophil extracellular traps (NETs)"> neutrophil extracellular traps (NETs)</a>, <a href="https://publications.waset.org/abstracts/search?q=prognosis" title=" prognosis"> prognosis</a> </p> <a href="https://publications.waset.org/abstracts/177507/suggested-role-for-neutrophil-extracellular-traps-formation-in-ewing-sarcoma-immune-microenvironment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">880</span> Value of FOXP3 Expression in Prediction of Neoadjuvant Chemotherapy Effect in Triple Negative Breast Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badawia%20Ibrahim">Badawia Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Iman%20Hussein"> Iman Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Samar%20El%20Sheikh"> Samar El Sheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Abou%20Elkasem"> Fatma Abou Elkasem</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazem%20Abo%20Ismael"> Hazem Abo Ismael</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Response of breast carcinoma to neoadjuvant chemotherapy (NAC) varies regarding many factors including hormonal receptor status. Breast cancer is a heterogenous disease with different outcomes, hence a need arises for new markers predicting the outcome of NAC especially for the triple negative group when estrogen, progesterone receptors and Her2/neu are negative. FOXP3 is a promising target with unclear role. Aim: To examine the value of FOXP3 expression in locally advanced triple negative breast cancer tumoral cells as well as tumor infiltrating lymphocytes (TILs) and to elucidate its relation to the extent of NAC response. Material and Methods: Forty five cases of immunohistochemically confirmed to be triple negative breast carcinoma were evaluated for NAC (Doxorubicin, Cyclophosphamide AC x 4 cycles + Paclitaxel x 12 weeks, patients with ejection fraction less than 60% received Taxotere or Cyclophosphamide, Methotrexate, Fluorouracil CMF) response in both tumour and lymph nodes status according to Miller & Payne's and Sataloff's systems. FOXP3 expression in tumor as well as TILs evaluated in the pretherapy biopsies was correlated with NAC response in breast tumor and lymph nodes as well as other clinicopathological factors. Results: Breast tumour cells showed FOXP3 positive cytoplasmic expression in (42%) of cases. High FOXP3 expression percentage was detected in (47%) of cases. High infiltration by FOXP3+TILs was detected in (49%) of cases. Positive FOXP3 expression was associated with negative lymph node metastasis. High FOXP3 expression percentage and high infiltration by FOXP3+TILs were significantly associated with complete therapy response in axillary lymph nodes. High FOXP3 expression in tumour cells was associated with high infiltration by FOXP3+TILs. Conclusion: This result may provide evidence that FOXP3 marker is a good prognostic and predictive marker for triple negative breast cancer (TNBC) indicated for neoadjuvant chemotherapy and can be used for stratifications of TNBC cases indicated for NAC. As well, this study confirmed the fact that the tumour cells and the surrounding microenvironment interact with each other and the tumour microenvironment can influence the treatment outcomes of TNBC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=FOXP3%20expression" title=" FOXP3 expression"> FOXP3 expression</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20of%20neoadjuvant%20chemotherapy%20effect" title=" prediction of neoadjuvant chemotherapy effect"> prediction of neoadjuvant chemotherapy effect</a>, <a href="https://publications.waset.org/abstracts/search?q=triple%20negative" title=" triple negative "> triple negative </a> </p> <a href="https://publications.waset.org/abstracts/60312/value-of-foxp3-expression-in-prediction-of-neoadjuvant-chemotherapy-effect-in-triple-negative-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">879</span> Antigen-Presenting Cell Characteristics of Human γδ T Lymphocytes in Chronic Myeloid Leukemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piamsiri%20Sawaisorn">Piamsiri Sawaisorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Tienrat%20%20Tangchaikeeree"> Tienrat Tangchaikeeree</a>, <a href="https://publications.waset.org/abstracts/search?q=Waraporn%20Chan-On"> Waraporn Chan-On</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaniya%20Leepiyasakulchai"> Chaniya Leepiyasakulchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachanee%20Udomsangpetch"> Rachanee Udomsangpetch</a>, <a href="https://publications.waset.org/abstracts/search?q=Suradej%20Hongeng"> Suradej Hongeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulachart%20Jangpatarapongsa"> Kulachart Jangpatarapongsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human Vγ9Vδ2 T lymphocytes are regarded as promising effector cells for cancer immunotherapy since they have the ability to eliminate several tumor cells through non-peptide antigen recognition and non-major histocompatibility complex (MHC) restriction. An issue of recent interest is the capability to activate γδ T cells by use of a group of drugs, such as pamidronate, that cause accumulation of phosphoantigen which is recognized by γδ T cell receptors. Moreover, their antigen presenting cell-like phenotype and function have been confirmed in many clinical trials. In this study, Vγ9Vδ2 T cells derived from normal peripheral blood mononuclear cells were activated with pamidronate and the expanded Vγ9Vδ2 T cells can recognize and kill chronic myeloid leukemia (CML) cells treated with pamidronate through their cytotoxic activity. To support the strong role played by Vγ9Vδ2 T cells against cancer, we provide the evidence that Vγ9Vδ2 T cells activated with CML cell lysate antigen can efficiently express antigen presenting cell (APC) phenotype and function. In conclusion, pamidronate can be used in intentional activation of human Vγ9Vδ2 T cells and can increase the susceptibility of CML cells to cytotoxicity of Vγ9Vδ2 T cells. The activated Vγ9Vδ2 T cells by cancer cells lysate can show their APC characteristics, and so greatly increase the interest in exploring their therapeutic potential in hematologic malignancy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B3%CE%B4%20T%20lymphocytes" title="γδ T lymphocytes">γδ T lymphocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=antigen-presenting%20cells" title=" antigen-presenting cells"> antigen-presenting cells</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20myeloid%20leukemia" title=" chronic myeloid leukemia"> chronic myeloid leukemia</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=immunotherapy" title=" immunotherapy"> immunotherapy</a> </p> <a href="https://publications.waset.org/abstracts/103440/antigen-presenting-cell-characteristics-of-human-ghd-t-lymphocytes-in-chronic-myeloid-leukemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">878</span> PCR Based DNA Analysis in Detecting P53 Mutation in Human Breast Cancer (MDA-468)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debbarma%20Asis">Debbarma Asis</a>, <a href="https://publications.waset.org/abstracts/search?q=Guha%20Chandan"> Guha Chandan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tumor Protein-53 (P53) is one of the tumor suppressor proteins. P53 regulates the cell cycle that conserves stability by preventing genome mutation. It is named so as it runs as 53-kilodalton (kDa) protein on Polyacrylamide gel electrophoresis although the actual mass is 43.7 kDa. Experimental evidence has indicated that P53 cancer mutants loses tumor suppression activity and subsequently gain oncogenic activities to promote tumourigenesis. Tumor-specific DNA has recently been detected in the plasma of breast cancer patients. Detection of tumor-specific genetic materials in cancer patients may provide a unique and valuable tumor marker for diagnosis and prognosis. Commercially available MDA-468 breast cancer cell line was used for the proposed study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tumor%20protein%20%28P53%29" title="tumor protein (P53)">tumor protein (P53)</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20mutants" title=" cancer mutants"> cancer mutants</a>, <a href="https://publications.waset.org/abstracts/search?q=MDA-468" title=" MDA-468"> MDA-468</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20suppressor%20gene" title=" tumor suppressor gene"> tumor suppressor gene</a> </p> <a href="https://publications.waset.org/abstracts/43690/pcr-based-dna-analysis-in-detecting-p53-mutation-in-human-breast-cancer-mda-468" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">877</span> Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wittawat%20Wasusathien">Wittawat Wasusathien</a>, <a href="https://publications.waset.org/abstracts/search?q=Samran%20Santalunai"> Samran Santalunai</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanaset%20Thosdeekoraphat"> Thanaset Thosdeekoraphat</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanchai%20Thongsopa"> Chanchai Thongsopa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents breast cancer detection by observing the specific absorption rate (SAR) intensity for identification tumor location, the tumor is identified in coordinates (x,y,z) system. We examined the frequency between 4-8 GHz to look for the most appropriate frequency. Results are simulated in frequency 4-8 GHz, the model overview include normal breast with 50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB) bowtie antenna. The models are created and simulated in CST Microwave Studio. For this simulation, we changed antenna to 5 location around the breast, the tumor can be detected when an antenna is close to the tumor location, which the coordinate of maximum SAR is approximated the tumor location. For reliable, we experiment by random tumor location to 3 position in the same size of tumor and simulation the result again by varying the antenna position in 5 position again, and it also detectable the tumor position from the antenna that nearby tumor position by maximum value of SAR, which it can be detected the tumor with precision in all frequency between 4-8 GHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=specific%20absorption%20rate%20%28SAR%29" title="specific absorption rate (SAR)">specific absorption rate (SAR)</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20wideband%20%28UWB%29" title=" ultra wideband (UWB)"> ultra wideband (UWB)</a>, <a href="https://publications.waset.org/abstracts/search?q=coordinates" title=" coordinates"> coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20detection" title=" cancer detection"> cancer detection</a> </p> <a href="https://publications.waset.org/abstracts/10465/ultra-wideband-breast-cancer-detection-by-using-sar-for-indication-the-tumor-location" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">876</span> Studying the Anti-Cancer Effects of Thymoquinone on Tumor Cells Through Natural Killer Cells Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouf%20A.%20Aldarmahi">Nouf A. Aldarmahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrin%20I.%20Tarbiah"> Nesrin I. Tarbiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuha%20A.%20Alkhattabi"> Nuha A. Alkhattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20F.%20Alshaibi"> Huda F. Alshaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nigella sativa which is known as dark cumin is a well-known example for a widely applicable herbal medicine. Nigella sativa can be effective in a variety of diseases such as hypertension, diabetes, bronchitis, gastrointestinal upset, and cancer. The anticancer effect of Nigella sativa appeared to be mediated by immune-modulatory effect through stimulating human natural killer (NK) cells. This is a type of lymphocytes which is part of the innate immunity, also known as the first line of defense in the body against pathogens. This study investigated the effect of thymoquinone as a major component of Nigella sativa on the molecular cytotoxic pathway of NK cell and the role of thymoquinone therapeutic effect on NK cells. NK cells were cultured with breast tumor cells in different ways and cultured media was collected and the concentration of perforin, granzyme B and interferon-α were measured by ELISA. The cytotoxic effect of NK cells on breast tumor cells was enhanced in the presence of thymoquinone, with increased activity of perforin in NK cells. This improved anticancer effect of thymoquinone on breast cancer cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20cells" title=" cancer cells"> cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20killer%20cells" title=" natural killer cells"> natural killer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=thymoquinone" title=" thymoquinone"> thymoquinone</a> </p> <a href="https://publications.waset.org/abstracts/149104/studying-the-anti-cancer-effects-of-thymoquinone-on-tumor-cells-through-natural-killer-cells-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">875</span> Assessment of Platelet and Lymphocyte Interaction in Autoimmune Hyperthyroidism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ma%C5%82gorzata%20Tomczy%C5%84ska">Małgorzata Tomczyńska</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Saluk-Bijak"> Joanna Saluk-Bijak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Graves’ disease is a frequent organ-specific autoimmune thyroid disease, which characterized by the presence of different kind autoantibodies, that, in most cases, act as agonists of the thyrotropin receptor, leading to hyperthyroidism. Role of platelets and lymphocytes can be modulated in the pathophysiology of thyroid autoimmune diseases. Interference in the physiology of platelets can lead to enhanced activity of these cells. Activated platelets can bind to circulating lymphocytes and to affect lymphocyte adhesion. Platelets and lymphocytes can regulate mutual functions. Therefore, the activation of T lymphocytes, as well as blood platelets, is associated with the development of inflammation and oxidative stress within the target tissue. The present study was performed to investigate a platelet-lymphocyte relation by assessing the degree of their mutual aggregation in whole blood of patients with Graves’ disease. Also, the purpose of this study was to examine the impact of platelet interaction on lymphocyte migration capacity. Methods: 30 patients with Graves’ disease were recruited in the study. The matched 30 healthy subjects were served as the control group. Immunophenotyping of lymphocytes was carried out by flow cytometry method. A CytoSelect™ Cell Migration Assay Kit was used to evaluate lymphocyte migration and adhesion to blood platelets. Visual assessment of lymphocyte-platelet aggregate morphology was done using confocal microscope after magnetic cell isolation by Miltenyi Biotec. Results: The migration and functional responses of lymphocytes to blood platelets were greater in the group of Graves’ disease patients compared with healthy controls. The group of Graves’ disease patients exhibited a reduced T lymphocyte and a higher B cell count compared with controls. Based on microscopic analysis, more platelet-lymphocyte aggregates were found in patients than in control. Conclusions: Studies have shown that in Graves' disease, lymphocytes show increased platelet affinity, more strongly migrating toward them, and forming mutual cellular conglomerates. This may be due to the increased activation of blood platelets in this disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20platelets" title="blood platelets">blood platelets</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20migration" title=" cell migration"> cell migration</a>, <a href="https://publications.waset.org/abstracts/search?q=Graves%E2%80%99%20disease" title=" Graves’ disease"> Graves’ disease</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphocytes" title=" lymphocytes"> lymphocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphocyte-platelet%20aggregates" title=" lymphocyte-platelet aggregates"> lymphocyte-platelet aggregates</a> </p> <a href="https://publications.waset.org/abstracts/78333/assessment-of-platelet-and-lymphocyte-interaction-in-autoimmune-hyperthyroidism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">874</span> NK Cells Expansion Model from PBMC Led to a Decrease of CD4+ and an Increase of CD8+ and CD25+CD127- T-Reg Lymphocytes in Patients with Ovarian Neoplasia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Fernandes%20da%20Silva">Rodrigo Fernandes da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Maira%20Cardozo"> Daniela Maira Cardozo</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Cesar%20Martins%20Alves"> Paulo Cesar Martins Alves</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophie%20Fran%C3%A7oise%20Derchain"> Sophie Françoise Derchain</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Guimar%C3%A3es"> Fernando Guimarães</a> </p> <p class="card-text"><strong>Abstract:</strong></p> T-reg lymphocytes are important for the control of peripheral tolerance. They control the adaptive immune system and prevent autoimmunity through its suppressive action on CD4+ and CD8+ lymphocytes. The suppressive action also includes B lymphocytes, dendritic cells, monocytes/macrophages and recently, studies have shown that T-reg are also able to inhibit NK cells, therefore they exert their control of the immune response from innate to adaptive response. Most tumors express self-ligands, therefore it is believed that T-reg cells induce tolerance of the immune system, hindering the development of successful immunotherapies. T-reg cells have been linked to the suppression mechanisms of the immune response against tumors, including ovarian cancer. The goal of this study was to disclose the sub-population of the expanded CD3+ lymphocytes reported by previous studies, using the long-term culture model designed by Carlens et al 2001, to generate effector cell suspensions enriched with cytotoxic CD3-CD56+ NK cells, from PBMC of ovarian neoplasia patients. Methods and Results: Blood was collected from 12 patients with ovarian neoplasia after signed consent: 7 benign (Bng) and 5 malignant (Mlg). Mononuclear cells were separated by Ficoll-Paque gradient. Long-term culture was conducted by a 21 day culturing process with SCGM CellGro medium supplemented with anti-CD3 (10ng/ml, first 5 days), IL-2 (1000UI/ml) and FBS (10%). After 21 days of expansion, there was an increase in the population of CD3+ lymphocytes in the benign and malignant group. Within CD3+ population, there was a significant decrease in the population of CD4+ lymphocytes in the benign (median Bgn D-0=73.68%, D-21=21.05%) (p<0.05) and malignant (median Mlg D-0=64.00%, D-21=11.97%) (p < 0.01) group. Inversely, after 21 days of expansion, there was an increase in the population of CD8+ lymphocytes within the CD3+ population in the benign (median Bgn D-0=16.80%, D-21=38.56%) and malignant (median Mlg D-0=27.12%, D-21=72.58%) group. However, this increase was only significant on the malignant group (p<0.01). Within the CD3+CD4+ population, there was a significant increase (p < 0.05) in the population of T-reg lymphocytes in the benign (median Bgn D-0=9.84%, D-21=39.47%) and malignant (median Mlg D-0=3.56%, D-21=16.18%) group. Statistical analysis inter groups was performed by Kruskal-Wallis test and intra groups by Mann Whitney test. Conclusion: The CD4+ and CD8+ sub-population of CD3+ lymphocytes shifts with the culturing process. This might be due to the process of the immune system to produce a cytotoxic response. At the same time, T-reg lymphocytes increased within the CD4+ population, suggesting a modulation of the immune response towards cells of the immune system. The expansion of the T-reg population can hinder an immune response against cancer. Therefore, an immunotherapy using this expansion procedure should aim to halt the expansion of T-reg or its immunosuppresion capability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=regulatory%20T%20cells" title="regulatory T cells">regulatory T cells</a>, <a href="https://publications.waset.org/abstracts/search?q=CD8%2B%20T%20cells" title=" CD8+ T cells"> CD8+ T cells</a>, <a href="https://publications.waset.org/abstracts/search?q=CD4%2B%20T%20cells" title=" CD4+ T cells"> CD4+ T cells</a>, <a href="https://publications.waset.org/abstracts/search?q=NK%20cell%20expansion" title=" NK cell expansion"> NK cell expansion</a> </p> <a href="https://publications.waset.org/abstracts/17540/nk-cells-expansion-model-from-pbmc-led-to-a-decrease-of-cd4-and-an-increase-of-cd8-and-cd25cd127-t-reg-lymphocytes-in-patients-with-ovarian-neoplasia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">873</span> Connecting MRI Physics to Glioma Microenvironment: Comparing Simulated T2-Weighted MRI Models of Fixed and Expanding Extracellular Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pamela%20R.%20%20Jackson">Pamela R. Jackson</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Hawkins-Daarud"> Andrea Hawkins-Daarud</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassandra%20R.%20%20Rickertsen"> Cassandra R. Rickertsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamala%20Clark-Swanson"> Kamala Clark-Swanson</a>, <a href="https://publications.waset.org/abstracts/search?q=Scott%20A.%20%20Whitmire"> Scott A. Whitmire</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristin%20R.%20%20Swanson"> Kristin R. Swanson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioblastoma Multiforme (GBM), the most common primary brain tumor, often presents with hyperintensity on T2-weighted or T2-weighted fluid attenuated inversion recovery (T2/FLAIR) magnetic resonance imaging (MRI). This hyperintensity corresponds with vasogenic edema, however there are likely many infiltrating tumor cells within the hyperintensity as well. While MRIs do not directly indicate tumor cells, MRIs do reflect the microenvironmental water abnormalities caused by the presence of tumor cells and edema. The inherent heterogeneity and resulting MRI features of GBMs complicate assessing disease response. To understand how hyperintensity on T2/FLAIR MRI may correlate with edema in the extracellular space (ECS), a multi-compartmental MRI signal equation which takes into account tissue compartments and their associated volumes with input coming from a mathematical model of glioma growth that incorporates edema formation was explored. The reasonableness of two possible extracellular space schema was evaluated by varying the T2 of the edema compartment and calculating the possible resulting T2s in tumor and peripheral edema. In the mathematical model, gliomas were comprised of vasculature and three tumor cellular phenotypes: normoxic, hypoxic, and necrotic. Edema was characterized as fluid leaking from abnormal tumor vessels. Spatial maps of tumor cell density and edema for virtual tumors were simulated with different rates of proliferation and invasion and various ECS expansion schemes. These spatial maps were then passed into a multi-compartmental MRI signal model for generating simulated T2/FLAIR MR images. Individual compartments’ T2 values in the signal equation were either from literature or estimated and the T2 for edema specifically was varied over a wide range (200 ms – 9200 ms). T2 maps were calculated from simulated images. T2 values based on simulated images were evaluated for regions of interest (ROIs) in normal appearing white matter, tumor, and peripheral edema. The ROI T2 values were compared to T2 values reported in literature. The expanding scheme of extracellular space is had T2 values similar to the literature calculated values. The static scheme of extracellular space had a much lower T2 values and no matter what T2 was associated with edema, the intensities did not come close to literature values. Expanding the extracellular space is necessary to achieve simulated edema intensities commiserate with acquired MRIs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extracellular%20space" title="extracellular space">extracellular space</a>, <a href="https://publications.waset.org/abstracts/search?q=glioblastoma%20multiforme" title=" glioblastoma multiforme"> glioblastoma multiforme</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a> </p> <a href="https://publications.waset.org/abstracts/67871/connecting-mri-physics-to-glioma-microenvironment-comparing-simulated-t2-weighted-mri-models-of-fixed-and-expanding-extracellular-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">872</span> Liquid Biopsy and Screening Biomarkers in Glioma Grading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Abdu%20Qaseem%20Shamsan">Abdullah Abdu Qaseem Shamsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Gliomas represent the most frequent, heterogeneous group of tumors arising from glial cells, characterized by difficult monitoring, poor prognosis, and fatality. Tissue biopsy is an established procedure for tumor cell sampling that aids diagnosis, tumor grading, and prediction of prognosis. We studied and compared the levels of liquid biopsy markers in patients with different grades of glioma. Also, it tried to establish the potential association between glioma and specific blood groups antigen. Result: 78 patients were identified, among whom maximum percentage with glioblastoma possessed blood group O+ (53.8%). The second highest frequency had blood group A+ (20.4%), followed by B+ (9.0%) and A- (5.1%), and least with O-. Liquid biopsy biomarkers comprised of ALT, LDH, lymphocytes, Urea, Alkaline phosphatase, AST Neutrophils, and CRP. The levels of all the components increased significantly with the severity of glioma, with maximum levels seen in glioblastoma (grade IV), followed by grade III and grade II respectively. Conclusion: Gliomas possess significant clinical challenges due to their progression with heterogeneous nature and aggressive behavior. Liquid biopsy is a non-invasive approach which aids to establish the status of the patient and determine the tumor grade, therefore may show diagnostic and prognostic utility. Additionally, our study provides evidence to demonstrate the role of ABO blood group antigens in the development of glioma. However, future clinical research on liquid biopsy will improve the sensitivity and specificity of these tests and validate their clinical usefulness to guide treatment approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GBM%3A%20glioblastoma%20multiforme" title="GBM: glioblastoma multiforme">GBM: glioblastoma multiforme</a>, <a href="https://publications.waset.org/abstracts/search?q=CT%3A%20computed%20tomography" title=" CT: computed tomography"> CT: computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI%3A%20magnetic%20resonance%20imaging" title=" MRI: magnetic resonance imaging"> MRI: magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=ctRNA%3A%20circulating%20tumor%20RNA" title=" ctRNA: circulating tumor RNA"> ctRNA: circulating tumor RNA</a> </p> <a href="https://publications.waset.org/abstracts/185991/liquid-biopsy-and-screening-biomarkers-in-glioma-grading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">871</span> Clinical Evaluation of Neutrophil to Lymphocytes Ratio and Platelets to Lymphocytes Ratio in Immune Thrombocytopenic Purpura</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Arshad">Aisha Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Samina%20Naz%20Mukry"> Samina Naz Mukry</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Shamsi"> Tahir Shamsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Immune thrombocytopenia (ITP) is an autoimmune disorder. Besides platelets counts, immature platelets fraction (IPF) can be used as tool to predict megakaryocytic activity in ITP patients. The clinical biomarkers like Neutrophils to lymphocytes ratio (NLR) and platelet to lymphocytes ratio(PLR) predicts inflammation and can be used as prognostic markers.The present study was planned to assess the ratios in ITP and their utility in predicting prognosis after treatment. Methods: A total of 111 patients of ITP with same number of healthy individuals were included in this case control study during the period of January 2015 to December 2017.All the ITP patients were grouped according to guidelines of International working group of ITP. A 3cc blood was collected in EDTA tube and blood parameters were evaluated using Sysmex 1000 analyzer.The ratios were calculated by using absolute counts of Neutrophils,Lymphocytes and platelets.The significant (p=<0.05) difference between ITP patients and healthy control groups was determined by Kruskal wallis test, Dunn’s test and spearman’s correlation test was done using SPSS version 23. Results: The significantly raised total leucocytes counts (TLC) and IPF along with low platelets counts were observed in ITP patients as compared to healthy controls.In ITP groups,very low platelet count with median and IQR of 2(3.8)3x109/l with highest mean and IQR IPF 25.4(19.8)% was observed in newly diagnosed ITP group. The NLR was high with prognosis of disease as higher levels were observed in P-ITP. The PLR was significantly low in ND-ITP ,P-ITP, C-ITP, R-ITP and compared to controls with p=<0.001 as platelet were less in number in all ITP patients. Conclusion: The IPF can be used in evaluation of bone marrow response in ITP. The simple, reliable and calculated NLR and PLR ratios can be used in predicting prognosis and response to treatment in ITP and to some extend the severity of disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutrophils" title="neutrophils">neutrophils</a>, <a href="https://publications.waset.org/abstracts/search?q=platelets" title=" platelets"> platelets</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphocytes" title=" lymphocytes"> lymphocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=infection" title=" infection"> infection</a> </p> <a href="https://publications.waset.org/abstracts/154401/clinical-evaluation-of-neutrophil-to-lymphocytes-ratio-and-platelets-to-lymphocytes-ratio-in-immune-thrombocytopenic-purpura" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">870</span> Improved Approach to the Treatment of Resistant Breast Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lola%20T.%20Alimkhodjaeva">Lola T. Alimkhodjaeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Lola%20T.%20Zakirova"> Lola T. Zakirova</a>, <a href="https://publications.waset.org/abstracts/search?q=Soniya%20S.%20Ziyavidenova"> Soniya S. Ziyavidenova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Breast cancer (BC) is still one of the urgent oncology problems. The essential obstacle to the full anti-tumor therapy implementation is drug resistance development. Taking into account the fact that chemotherapy is main antitumor treatment in BC patients, the important task is to improve treatment results. Certain success in overcoming this situation has been associated with the use of methods of extracorporeal blood treatment (ECBT), plasmapheresis. Materials and Methods: We examined 129 women with resistant BC stages 3-4, aged between 56 to 62 years who had previously received 2 courses of CAF chemotherapy. All patients additionally underwent 2 courses of CAF chemotherapy but against the background ECBT with ultrasonic exposure. We studied the following parameters: 1. The highlights of peripheral blood before and after therapy. 2. The state of cellular immunity and identification of activation markers CD23 +, CD25 +, CD38 +, CD95 + on lymphocytes was performed using monoclonal antibodies. Evaluation of humoral immunity was determined by the level of main classes of immunoglobulins IgG, IgA, IgM in serum. 3. The degree of tumor regression was assessed by WHO recommended 4 gradations. (complete - 100%, partial - more than 50% of initial size, process stabilization–regression is less than 50% of initial size and tumor advance progressing). 4. Medical pathomorphism in the tumor was determined by Lavnikova. 5. The study of immediate and remote results, up to 3 years and more. Results and Discussion: After performing extracorporeal blood treatment anemia occurred in 38.9%, leukopenia in 36.8%, thrombocytopenia in 34.6%, hypolymphemia in 26.8%. Studies of immunoglobulin fractions in blood serum were able to establish a certain relationship between the classes of immunoglobulin A, G, M and their functions. The results showed that after treatment the values of main immunoglobulins in patients’ serum approximated to normal. Analysis of expression of activation markers CD25 + cells bearing receptors for IL-2 (IL-2Rα chain) and CD95 + lymphocytes that were mediated physiological apoptosis showed the tendency to increase, which apparently was due to activation of cellular immunity cytokines allocated by ultrasonic treatment. To carry out ECBT on the background of ultrasonic treatment improved the parameters of the immune system, which were expressed in stimulation of cellular immunity and correcting imbalances in humoral immunity. The key indicator of conducted treatment efficiency is the immediate result measured by the degree of tumor regression. After ECBT performance the complete regression was 10.3%, partial response - 55.5%, process stabilization - 34.5%, tumor advance progressing no observed. Morphological investigations of tumor determined therapeutic pathomorphism grade 2 in 15%, in 25% - grade 3 and therapeutic pathomorphism grade 4 in 60% of patients. One of the main criteria for the effect of conducted treatment is to study the remission terms in the postoperative period (up to 3 years or more). The remission terms up to 3 years with ECBT was 34.5%, 5-year survival was 54%. Carried out research suggests that a comprehensive study of immunological and clinical course of breast cancer allows the differentiated approach to the choice of methods for effective treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=immunoglobulins" title=" immunoglobulins"> immunoglobulins</a>, <a href="https://publications.waset.org/abstracts/search?q=extracorporeal%20blood%20treatment" title=" extracorporeal blood treatment"> extracorporeal blood treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=chemotherapy" title=" chemotherapy"> chemotherapy</a> </p> <a href="https://publications.waset.org/abstracts/65515/improved-approach-to-the-treatment-of-resistant-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">869</span> Facial Infiltrating Lipomatosis, a Rare Cause of Facial Asymmetry to Be Known: Case Report and Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shantanu%20Vyas">Shantanu Vyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Neerja%20Meena"> Neerja Meena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Facial infiltrating lipomatosis is a rare lipomatous lesion, first described by Slavin in 1983. It is a benign pseudotumor pathology. It corresponds to a non-encapsulated collection of mature adipocytes infiltrating the local tissue and hyperplasia of underlying bone leading to a craniofacial deformity. Very few cases have been reported in the literature. We report the case of a 19-year-old female patient, who was consulted for a swelling of the right hemiface progressively evolving since birth. Physical examination revealed facial asymmetry. On palpation, the mass was soft, painless, not compressible, not pulsatile, not fluctuating. In view of the asymptomatic nature and slow progression of the lesion, a lipomatous tumour, namely lipoma, was suggested. CT scan image shows a hyperplastic subcutaneous fat on the right hemiface. On the right jugal and temporal areas, there is a subcutaneous formation of fatty density, poorly limited, with no detectable peripheral capsule. It merges with the adjacent fat. In the bone window, there was a hyperplasia of underlying bone. Facial lipomatosis infiltration of the face is a benign pseudotumor pathology. As a result, it can be confused with other disorders, in particular, hemifacial hyperplasia. Combination of physical and radiological findings can establish the diagnosis. Surgical treatment is done for cosmetic purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmetic%20correction%20and%20facial%20assemetry" title="cosmetic correction and facial assemetry">cosmetic correction and facial assemetry</a>, <a href="https://publications.waset.org/abstracts/search?q=aesthetic%20results" title=" aesthetic results"> aesthetic results</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20infiltration" title=" facial infiltration"> facial infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=surgery" title=" surgery"> surgery</a> </p> <a href="https://publications.waset.org/abstracts/158993/facial-infiltrating-lipomatosis-a-rare-cause-of-facial-asymmetry-to-be-known-case-report-and-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">868</span> MicroRNA Expression Distinguishes Neutrophil Subtypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20I.%20You">R. I. You</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20L.%20Ho"> C. L. Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Dai"> M. S. Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Hung"> H. M. Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Yen"> S. F. Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Chen"> C. S. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Y.%20Chao"> T. Y. Chao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neutrophils are the most abundant innate immune cells to against invading microorganisms. Numerous data shown neutrophils have plasticity in response to physiological and pathological conditions. Tumor-associated neutrophils (TAN) exist in distinct types of tumor and play an important role in cancer biology. Different transcriptomic profiles of neutrophils in tumor and non-tumor samples have been identified. Several miRNAs have been recognized as regulators of gene expression in neutrophil, which may have key roles in neutrophil activation. However, the miRNAs expression patterns in TAN are not well known. To address this question, magnetic bead isolated neutrophils from tumor-bearing mice were used in this study. We analyzed production of reactive oxygen species (ROS) by luminol-dependent chemiluminescence assay. The expression of miRNAs targeting NADPH oxidase, ROS generation and autophagy was explored using quantitative real-time polymerase chain reaction. Our data suggest that tumor environment influence neutrophil develop to differential states of activation via miRNAs regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tumor-associated%20neutrophil" title="tumor-associated neutrophil">tumor-associated neutrophil</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNAs" title=" miRNAs"> miRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrophil" title=" neutrophil"> neutrophil</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS "> ROS </a> </p> <a href="https://publications.waset.org/abstracts/13682/microrna-expression-distinguishes-neutrophil-subtypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">867</span> Recent Advancement in Dendrimer Based Nanotechnology for the Treatment of Brain Tumor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nitin%20Dwivedi">Nitin Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jigna%20Shah"> Jigna Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain tumor is metastatic neoplasm of central nervous system, in most of cases it is life threatening disease with low survival rate. Despite of enormous efforts in the development of therapeutics and diagnostic tools, the treatment of brain tumors and gliomas remain a considerable challenge in the area of neuro-oncology. The most reason behind of this the presence of physiological barriers including blood brain barrier and blood brain tumor barrier, lead to insufficient reach ability of therapeutic agents at the site of tumor, result of inadequate destruction of gliomas. So there is an indeed need empowerment of brain tumor imaging for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional different generations of dendrimer offer an improved effort for potentiate drug delivery at the site of brain tumor and gliomas. So this article emphasizes the innovative dendrimer approaches in tumor targeting, tumor imaging and delivery of therapeutic agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20brain%20barrier" title="blood brain barrier">blood brain barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrimer" title=" dendrimer"> dendrimer</a>, <a href="https://publications.waset.org/abstracts/search?q=gliomas" title=" gliomas"> gliomas</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/30047/recent-advancement-in-dendrimer-based-nanotechnology-for-the-treatment-of-brain-tumor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">866</span> The Role of Immunologic Diamonds in Dealing with Mycobacterium Tuberculosis; Responses of Immune Cells in Affliction to the Respiratory Tuberculosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Mohammad%20Amin%20Mousavi%20Sagharchi">Seyyed Mohammad Amin Mousavi Sagharchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Javanroudi"> Elham Javanroudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Tuberculosis (TB) is a known disease with hidden features caused by Mycobacterium tuberculosis (MTB). This disease, which is one of the 10 deadliest in the world, has caused millions of deaths in recent decades. Furthermore, TB is responsible for infecting about 30% population of world. Like any infection, TB can activate the immune system by locating and colonization in the human body, especially in the alveoli. TB is granulomatosis, so MTB can absorb the host’s immune cells and other cells to form granuloma. Method: Different databases (e.g., PubMed) were recruited to prepare this paper and fulfill our goals to search and find effective papers and investigations. Results: Immune response to MTB is related to T cell killers and contains CD1, CD4, and CD8 T lymphocytes. CD1 lymphocytes can recognize glycolipids, which highly exist in the Mycobacterial fatty cell wall. CD4 lymphocytes and macrophages form granuloma, and it is the main line of immune response to Mycobacteria. On the other hand, CD8 cells have cytolytic function for directly killing MTB by secretion of granulysin. Other functions and secretion to the deal are interleukin-12 (IL-12) by induction of expression interferon-γ (INF-γ) for macrophages activation and creating a granuloma, and tumor necrosis factor (TNF) by promoting macrophage phagolysosomal fusion. Conclusion: Immune cells in battle with MTB are macrophages, dendritic cells (DCs), neutrophils, and natural killer (NK) cells. These immune cells can recognize the Mycobacterium by various receptors, including Toll-like receptors (TLRs), Nod-like receptors (NLRs), and C-type lectin receptors (CLRs) located in the cell surface. In human alveoli exist about 50 dendritic macrophages, which have close communication with other immune cells in the circulating system and epithelial cells to deal with Mycobacteria. Against immune cells, MTB handles some factors (e.g., cordfactor, O-Ag, lipoarabinomannan, sulfatides, and adenylate cyclase) and practical functions (e.g., inhibition of macrophages). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mycobacterium%20tuberculosis" title="mycobacterium tuberculosis">mycobacterium tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20responses" title=" immune responses"> immune responses</a>, <a href="https://publications.waset.org/abstracts/search?q=immunological%20mechanisms" title=" immunological mechanisms"> immunological mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20tuberculosis" title=" respiratory tuberculosis"> respiratory tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/165031/the-role-of-immunologic-diamonds-in-dealing-with-mycobacterium-tuberculosis-responses-of-immune-cells-in-affliction-to-the-respiratory-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">865</span> Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atanu%20K%20Samanta">Atanu K Samanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Asim%20Ali%20Khan"> Asim Ali Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20tumor" title="brain tumor">brain tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20diagnostic%20%28CAD%29%20system" title=" computer-aided diagnostic (CAD) system"> computer-aided diagnostic (CAD) system</a>, <a href="https://publications.waset.org/abstracts/search?q=gray-level%20co-occurrence%20matrix%20%28GLCM%29" title=" gray-level co-occurrence matrix (GLCM)"> gray-level co-occurrence matrix (GLCM)</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20segmentation" title=" tumor segmentation"> tumor segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set%20method" title=" level set method"> level set method</a> </p> <a href="https://publications.waset.org/abstracts/61237/computer-aided-diagnostic-system-for-detection-and-classification-of-a-brain-tumor-through-mri-using-level-set-based-segmentation-technique-and-ann-classifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">864</span> Chromosomal Damage in Human Lymphocytes by Ultraviolet Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Osorio%20Ospina">Felipe Osorio Ospina</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Adelaida%20Mejia%20Arango"> Maria Adelaida Mejia Arango</a>, <a href="https://publications.waset.org/abstracts/search?q=Esteban%20On%C3%A9simo%20Vallejo%20Agudelo"> Esteban Onésimo Vallejo Agudelo</a>, <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Luc%C3%ADa%20D%C3%A1vila%20Osorio"> Victoria Lucía Dávila Osorio</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Vargas%20Grisales"> Natalia Vargas Grisales</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Mar%C3%ADa%20Mart%C3%ADnez%20Sanchez"> Lina María Martínez Sanchez</a>, <a href="https://publications.waset.org/abstracts/search?q=Camilo%20Andr%C3%A9s%20Agudelo%20V%C3%A9lez"> Camilo Andrés Agudelo Vélez</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81ngela%20Maria%20Londo%C3%B1o%20Garc%C3%ADa"> Ángela Maria Londoño García</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Cristina%20Ortiz%20Trujillo"> Isabel Cristina Ortiz Trujillo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excessive exposure to ultraviolet radiation, has shown to be a risk factor for photodamage, alteration of the immune mechanisms to recognize malignant cells and cutaneous pro-inflamatorios States and skin cancers. Objective: Identify the time of exposure to ultraviolet radiation for the production of chromosomal damage in human lymphocytes. Methodology: We conducted an in vitro study serial, in which samples were taken from heparinized blood of healthy people, who do not submit exposure to agents that could induce chromosomal alterations. The samples were cultured in RPMI-1640 medium containing 10% fetal bovine serum, penicillin and streptomycin antibiotic. Subsequently, they were grouped and exposed to ultraviolet light for 1 to 20 seconds. At the end of the treatments, cytology samples were prepared, and it was colored with Giemsa (5%). Reading was carried out in an optical microscope and 100 metaphases analysed by treatment for posting chromosomal alterations. Each treatment was conducted at three separate times and each became two replicas. Results: We only presented chromosomal alterations in lymphocytes exposed to UV for a groups 1 to 3 seconds (p<0.05). Conclusions: Exposure to ultraviolet radiation generates visible damage in chromosomes from human lymphocytes observed in light microscopy, the highest rates of injury was observed between two and three seconds, and above this value, the reduction in the number of mitotic cells was evident. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20rays" title="ultraviolet rays">ultraviolet rays</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphocytes" title=" lymphocytes"> lymphocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome%20breakpoints" title=" chromosome breakpoints"> chromosome breakpoints</a>, <a href="https://publications.waset.org/abstracts/search?q=photodamage" title=" photodamage"> photodamage</a> </p> <a href="https://publications.waset.org/abstracts/14162/chromosomal-damage-in-human-lymphocytes-by-ultraviolet-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">863</span> Ultraviolet Radiation and Chromosomal Damage in Human Lymphocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Osorio%20Ospina">Felipe Osorio Ospina</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Adelaida%20Mejia%20Arango"> Maria Adelaida Mejia Arango</a>, <a href="https://publications.waset.org/abstracts/search?q=Esteban%20On%C3%A9simo%20Vallejo%20Agudelo"> Esteban Onésimo Vallejo Agudelo</a>, <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Luc%C3%ADa%20D%C3%A1vila%20Osorio"> Victoria Lucía Dávila Osorio</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Vargas%20Grisales"> Natalia Vargas Grisales</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Mar%C3%ADa%20Mart%C3%ADnez%20Sanchez"> Lina María Martínez Sanchez</a>, <a href="https://publications.waset.org/abstracts/search?q=Camilo%20Andr%C3%A9s%20Agudelo%20V%C3%A9lez"> Camilo Andrés Agudelo Vélez</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81ngela%20Maria%20Londo%C3%B1o%20Garc%C3%ADa"> Ángela Maria Londoño García</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Cristina%20Ortiz%20Trujillo"> Isabel Cristina Ortiz Trujillo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excessive exposure to ultraviolet radiation, has shown to be a risk factor for photodamage, alteration of the immune mechanisms to recognize malignant cells and cutaneous pro-inflamatorios states and skin cancers. Objective: To identify the time of exposure to ultraviolet radiation for the production of chromosomal damage in human lymphocytes. Methodology: We conducted an in vitro study serial, in which samples were taken from the heparinized blood of healthy people, who do not submit exposure to agents that could induce chromosomal alterations. The samples were cultured in RPMI-1640 medium containing 10% fetal bovine serum, penicillin, and streptomycin antibiotic. Subsequently, they were grouped and exposed to ultraviolet light for 1 to 20 seconds. At the end of the treatments, cytology samples were prepared, and it was colored with Giemsa (5%). Reading was carried out in an optical microscope and 100 metaphases analysed by treatment for posting chromosomal alterations. Each treatment was conducted at three separate times and each became two replicas. Results: We only presented chromosomal alterations in lymphocytes exposed to UV for groups 1 to 3 seconds (p < 0.05). Conclusions: Exposure to ultraviolet radiation generates visible damage in chromosomes from human lymphocytes observed in light microscopy, the highest rates of injury was observed between two and three seconds, and above this value, the reduction in the number of mitotic cells was evident. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromosome%20breakpoints" title="chromosome breakpoints">chromosome breakpoints</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphocytes" title=" lymphocytes"> lymphocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=photodamage" title=" photodamage"> photodamage</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20rays" title=" ultraviolet rays"> ultraviolet rays</a> </p> <a href="https://publications.waset.org/abstracts/26760/ultraviolet-radiation-and-chromosomal-damage-in-human-lymphocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">862</span> Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fumihiro%20Ima">Fumihiro Ima</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Watanabe"> Shinichi Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Shingo%20Maeda"> Shingo Maeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruna%20Imai"> Haruna Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Niimi"> Hiroki Niimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is important to know growth rate of brain tumors before surgery because it influences treatment planning including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without administration of contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients and WHO grade 4 in 2 patients), meningioma WHO grade1 in 2 patients and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW-signals than that in low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW-signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amides" title="amides">amides</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tumors" title=" brain tumors"> brain tumors</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20proliferation" title=" cell proliferation"> cell proliferation</a> </p> <a href="https://publications.waset.org/abstracts/157244/clinical-applications-of-amide-proton-transfer-magnetic-resonance-imaging-detection-of-brain-tumor-proliferative-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">861</span> Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fumihiro%20Imai">Fumihiro Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Watanabe"> Shinichi Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Shingo%20Maeda"> Shingo Maeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruna%20Imai"> Haruna Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Niimi"> Hiroki Niimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is important to know the growth rate of brain tumors before surgery because it influences treatment planning, including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without the administration of a contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after a clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients, and WHO grade 4 in 2 patients), meningioma WHO grade 1 in 2 patients, and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW signals than that low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amides" title="amides">amides</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tumors" title=" brain tumors"> brain tumors</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20proliferation" title=" cell proliferation"> cell proliferation</a> </p> <a href="https://publications.waset.org/abstracts/164452/clinical-applications-of-amide-proton-transfer-magnetic-resonance-imaging-detection-of-brain-tumor-proliferative-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20infiltrating%20lymphocytes&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20infiltrating%20lymphocytes&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20infiltrating%20lymphocytes&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20infiltrating%20lymphocytes&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20infiltrating%20lymphocytes&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20infiltrating%20lymphocytes&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20infiltrating%20lymphocytes&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20infiltrating%20lymphocytes&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20infiltrating%20lymphocytes&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20infiltrating%20lymphocytes&page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20infiltrating%20lymphocytes&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20infiltrating%20lymphocytes&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>