CINXE.COM
Search results for: design device
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: design device</title> <meta name="description" content="Search results for: design device"> <meta name="keywords" content="design device"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="design device" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="design device"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13964</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: design device</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13964</span> Product Design and Development of Wearable Assistant Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao-Jun%20Hong">Hao-Jun Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Tang%20Huang"> Jung-Tang Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The world is gradually becoming an aging society, and with the lack of laboring forces, this phenomenon is affecting the nation’s economy growth. Although nursing centers are booming in recent years, the lack of medical resources are yet to be resolved, thus creating an innovative wearable medical device could be a vital solution. This research is focused on the design and development of a wearable device which obtains a more precise heart failure measurement than products on the market. The method used by the device is based on the sensor fusion and big data algorithm. From the test result, the modified structure of wearable device can significantly decrease the MA (Motion Artifact) and provide users a more cozy and accurate physical monitor experience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20failure" title=" heart failure"> heart failure</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20artifact" title=" motion artifact"> motion artifact</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20fusion" title=" sensor fusion"> sensor fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20medical%20device" title=" wearable medical device"> wearable medical device</a> </p> <a href="https://publications.waset.org/abstracts/59226/product-design-and-development-of-wearable-assistant-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13963</span> Design of a Compact Herriott Cell for Heat Flux Measurement Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20G.%20Ram%C3%ADrez-Chavarr%C3%ADa">R. G. Ramírez-Chavarría</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S%C3%A1nchez-P%C3%A9rez"> C. Sánchez-Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Argueta-D%C3%ADaz"> V. Argueta-Díaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present the design of an optical device based on a Herriott multi-pass cell fabricated on a small sized acrylic slab for heat flux measurements using the deflection of a laser beam propagating inside the cell. The beam deflection is produced by the heat flux conducted to the acrylic slab due to a gradient in the refractive index. The use of a long path cell as the sensitive element in this measurement device, gives the possibility of high sensitivity within a small size device. We present the optical design as well as some experimental results in order to validate the device’s operation principle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20flux" title="heat flux">heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=Herriott%20cell" title=" Herriott cell"> Herriott cell</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20beam%20deflection" title=" optical beam deflection"> optical beam deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/31146/design-of-a-compact-herriott-cell-for-heat-flux-measurement-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13962</span> Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Min%20Kim">Sung-Min Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon-Hong%20Park"> Joon-Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyuk%20Choi"> Hyuk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the anti-splash device located under the P/V valve and new concept design models using the CFD. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-splash device is fitted to improve and prevent this problem in the shipbuilding industry, but the oil outflow accidents are still reported by ship owners. Thus, 4 types of new design model are presented by this study, and then comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the anti-splash device. Therefore, the flow and velocity are grasped by transient analysis, and then it decided optimum model and design parameters to develop model. Later, it is needed to develop an anti-splash device by flow test to get certification and verification using experiment equipments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-splash%20device" title="anti-splash device">anti-splash device</a>, <a href="https://publications.waset.org/abstracts/search?q=P%2FV%20valve" title=" P/V valve"> P/V valve</a>, <a href="https://publications.waset.org/abstracts/search?q=sloshing" title=" sloshing"> sloshing</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/15181/improvement-of-performance-of-anti-splash-device-for-cargo-oil-tank-vent-pipe-using-cfd-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">634</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13961</span> An Approach on the Design of a Solar Cell Characterization Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Mayer">Christoph Mayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominik%20Holzmann"> Dominik Holzmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a compact, portable and easy to handle solar cell characterization device. The presented device reduces the effort and cost of single solar cell characterization to a minimum. It enables realistic characterization of cells under sunlight within minutes. In the field of photovoltaic research the common way to characterize a single solar cell or a module is, to measure the current voltage curve. With this characteristic the performance and the degradation rate can be defined which are important for the consumer or developer. The paper consists of the system design description, a summary of the measurement results and an outline for further developments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title="solar cell">solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaics" title=" photovoltaics"> photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=PV" title=" PV"> PV</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a> </p> <a href="https://publications.waset.org/abstracts/39321/an-approach-on-the-design-of-a-solar-cell-characterization-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13960</span> SCR-Stacking Structure with High Holding Voltage for IO and Power Clamp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Young%20Kim">Hyun Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung%20Kwang%20Lee"> Chung Kwang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Hee%20Cho">Han Hee Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Woon%20Cho"> Sang Woon Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Seo%20Koo"> Yong Seo Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed a novel SCR (Silicon Controlled Rectifier) - based ESD (Electrostatic Discharge) protection device for I/O and power clamp. The proposed device has a higher holding voltage characteristic than conventional SCR. These characteristics enable to have latch-up immunity under normal operating conditions as well as superior full chip ESD protection. The proposed device was analyzed to figure out electrical characteristics and tolerance robustness in term of individual design parameters (D1, D2, D3). They are investigated by using the Synopsys TCAD simulator. As a result of simulation, holding voltage increased with different design parameters. The holding voltage of the proposed device changes from 3.3V to 7.9V. Also, N-Stack structure ESD device with the high holding voltage is proposed. In the simulation results, 2-stack has holding voltage of 6.8V and 3-stack has holding voltage of 10.5V. The simulation results show that holding voltage of stacking structure can be larger than the operation voltage of high-voltage application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESD" title="ESD">ESD</a>, <a href="https://publications.waset.org/abstracts/search?q=SCR" title=" SCR"> SCR</a>, <a href="https://publications.waset.org/abstracts/search?q=holding%20voltage" title=" holding voltage"> holding voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=stack" title=" stack"> stack</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20clamp" title=" power clamp"> power clamp</a> </p> <a href="https://publications.waset.org/abstracts/30148/scr-stacking-structure-with-high-holding-voltage-for-io-and-power-clamp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13959</span> Impact of Legs Geometry on the Efficiency of Thermoelectric Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angel%20Fabian%20Mijangos">Angel Fabian Mijangos</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Alvarez%20Quintana"> Jaime Alvarez Quintana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Key concepts like waste heat recycling or waste heat recovery are the basic ideas in thermoelectricity so as to the design the newest solid state sources of energy for a stable supply of electricity and environmental protection. According to several theoretical predictions; at device level, the geometry and configuration of the thermoelectric legs are crucial in the thermoelectric performance of the thermoelectric modules. Thus, in this work, it has studied the geometry effect of legs on the thermoelectric figure of merit ZT of the device. First, asymmetrical legs are proposed in order to reduce the overall thermal conductance of the device so as to increase the temperature gradient in the legs, as well as by harnessing the Thomson effect, which is generally neglected in conventional symmetrical thermoelectric legs. It has been developed a novel design of a thermoelectric module having asymmetrical legs, and by first time it has been validated experimentally its thermoelectric performance by realizing a proof-of-concept device which shows to have almost twofold the thermoelectric figure of merit as compared to conventional one. Moreover, it has been also varied the length of thermoelectric legs in order to analyze its effect on the thermoelectric performance of the device. Along with this, it has studied the impact of contact resistance in these systems. Experimental results show that device architecture can improve up to twofold the thermoelectric performance of the device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetrical%20legs" title="asymmetrical legs">asymmetrical legs</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20recovery" title=" heat recovery"> heat recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20recycling" title=" heat recycling"> heat recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20module" title=" thermoelectric module"> thermoelectric module</a>, <a href="https://publications.waset.org/abstracts/search?q=Thompson%20effect" title=" Thompson effect"> Thompson effect</a> </p> <a href="https://publications.waset.org/abstracts/71339/impact-of-legs-geometry-on-the-efficiency-of-thermoelectric-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13958</span> A Study on Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation and Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Woo%20Kim">Min-Woo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ok-Kyun%20Na"> Ok-Kyun Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Ho%20Byun"> Jun-Ho Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Hwan%20Park"> Jong-Hwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Hwa%20Yang"> Seung-Hwa Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon-Hong%20Park"> Joon-Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Chul%20Park"> Young-Chul Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the Anti-Splash Device located under the P/V Valve and new concept design models using the CFD analysis and Artificial Neural Network. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-Splash Device is fitted to improve and prevent this problem in the shipbuilding industry. But the oil outflow accidents are still reported by ship owners. Thus, four types of new design model are presented by study. Then, comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the Anti-Splash Device. Therefore, the flow and velocity are grasped by transient analysis. And then it decided optimum model and design parameters to develop model. Later, it needs to develop an Anti-Splash Device by Flow Test to get certification and verification using experiment equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-splash%20device" title="anti-splash device">anti-splash device</a>, <a href="https://publications.waset.org/abstracts/search?q=P%2FV%20valve" title=" P/V valve"> P/V valve</a>, <a href="https://publications.waset.org/abstracts/search?q=sloshing" title=" sloshing"> sloshing</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a> </p> <a href="https://publications.waset.org/abstracts/5073/a-study-on-improvement-of-performance-of-anti-splash-device-for-cargo-oil-tank-vent-pipe-using-cfd-simulation-and-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13957</span> Design and Construction of Models of Sun Tracker or Sun Tracking System for Light Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Azarmjoo">Mohsen Azarmjoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasaman%20Azarmjoo"> Yasaman Azarmjoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Alikhani%20Koopaei"> Zahra Alikhani Koopaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article introduces devices that can transfer sunlight to buildings that do not have access to direct sunlight during the day. The transmission and reflection of sunlight are done through the movement of movable mirrors. The focus of this article is on two models of sun tracker systems designed and built by the Macad team. In fact, this article will reveal the distinction between the two Macad devices and the previously built competitor device. What distinguishes the devices built by the Macad team from the competitor's device is the different mode of operation and the difference in the location of the sensors. Given that the devices have the same results, the Macad team has tried to reduce the defects of the competitor's device as much as possible. The special feature of the second type of device built by the Macad team has enabled buildings with different construction positions to use sun tracking systems. This article will also discuss diagrams of the path of sunlight transmission and more details of the device. It is worth mentioning that fixed mirrors are also placed next to the main devices. So that the light shining on the first device is reflected to these mirrors, this light is guided within the light receiver space and is transferred to the different parts around by steel sheets built in the light receiver space, and finally, these spaces benefit from sunlight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=mechatronic%20device" title=" mechatronic device"> mechatronic device</a>, <a href="https://publications.waset.org/abstracts/search?q=sun%20tracker%20system" title=" sun tracker system"> sun tracker system</a>, <a href="https://publications.waset.org/abstracts/search?q=sun%20tracker" title=" sun tracker"> sun tracker</a>, <a href="https://publications.waset.org/abstracts/search?q=sunlight" title=" sunlight"> sunlight</a> </p> <a href="https://publications.waset.org/abstracts/176681/design-and-construction-of-models-of-sun-tracker-or-sun-tracking-system-for-light-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13956</span> Effect of Halo Protection Device on the Aerodynamic Performance of Formula Racecar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Lin">Mark Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Periklis%20Papadopoulos"> Periklis Papadopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the aerodynamics of the formula racecar when a ‘halo’ driver-protection device is added to the chassis. The halo protection device was introduced at the start of the 2018 racing season as a safety measure against foreign object impacts that a driver may encounter when driving an open-wheel racecar. In the one-year since its introduction, the device has received wide acclaim for protecting the driver on two separate occasions. The benefit of such a safety device certainly cannot be disputed. However, by adding the halo device to a car, it changes the airflow around the vehicle, and most notably, to the engine air-intake and the rear wing. These negative effects in the air supply to the engine, and equally to the downforce created by the rear wing are studied in this paper using numerical technique, and the resulting CFD outputs are presented and discussed. Comparing racecar design prior to and after the introduction of the halo device, it is shown that the design of the air intake and the rear wing has not followed suit since the addition of the halo device. The reduction of engine intake mass flow due to the halo device is computed and presented for various speeds the car may be going. Because of the location of the halo device in relation to the air intake, airflow is directed away from the engine, making the engine perform less than optimal. The reduction is quantified in this paper to show the correspondence to reduce the engine output when compared to a similar car without the halo device. This paper shows that through aerodynamic arguments, the engine in a halo car will not receive unobstructed, clean airflow that a non-halo car does. Another negative effect is on the downforce created by the rear wing. Because the amount of downforce created by the rear wing is influenced by every component that comes before it, when a halo device is added upstream to the rear wing, airflow is obstructed, and less is available for making downforce. This reduction in downforce is especially dramatic as the speed is increased. This paper presents a graph of downforce over a range of speeds for a car with and without the halo device. Acknowledging that although driver safety is paramount, the negative effect of this safety device on the performance of the car should still be well understood so that any possible redesign to mitigate these negative effects can be taken into account in next year’s rules regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20aerodynamics" title="automotive aerodynamics">automotive aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=halo%20device" title=" halo device"> halo device</a>, <a href="https://publications.waset.org/abstracts/search?q=downforce.%20engine%20intake" title=" downforce. engine intake"> downforce. engine intake</a> </p> <a href="https://publications.waset.org/abstracts/116953/effect-of-halo-protection-device-on-the-aerodynamic-performance-of-formula-racecar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13955</span> Highly-Efficient Photoreaction Using Microfluidic Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shigenori%20Togashi">Shigenori Togashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yukako%20Asano"> Yukako Asano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We developed an effective microfluidic device for photoreactions with low reflectance and good heat conductance. The performance of this microfluidic device was tested by carrying out a photoreactive synthesis of benzopinacol and acetone from benzophenone and 2-propanol. The yield reached 36% with an irradiation time of 469.2 s and was improved by more than 30% when compared to the values obtained by the batch method. Therefore, the microfluidic device was found to be effective for improving the yields of photoreactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20device" title="microfluidic device">microfluidic device</a>, <a href="https://publications.waset.org/abstracts/search?q=photoreaction" title=" photoreaction"> photoreaction</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20aluminum%20oxide" title=" black aluminum oxide"> black aluminum oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=benzophenone" title=" benzophenone"> benzophenone</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20improvement" title=" yield improvement"> yield improvement</a> </p> <a href="https://publications.waset.org/abstracts/7922/highly-efficient-photoreaction-using-microfluidic-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13954</span> Rehabilitative Walking: The Development of a Robotic Walking Training Device Using Functional Electrical Stimulation for Treating Spinal Cord Injuries and Lower-Limb Paralysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chung%20Hyun%20Goh">Chung Hyun Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=Armin%20Yazdanshenas"> Armin Yazdanshenas</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Neil%20Dong"> X. Neil Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Tai%20Wang"> Yong Tai Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical rehabilitation is a necessary step in regaining lower body function after a partial paralysis caused by a spinal cord injury or a stroke. The purpose of this paper is to present the development and optimization of a training device that accurately recreates the motions in a gait cycle with the goal of rehabilitation for individuals with incomplete spinal cord injuries or who are victims of a stroke. A functional electrical stimulator was used in conjunction with the training device to stimulate muscle groups pertaining to rehabilitative walking. The feasibility and reliability of the design are presented. To validate the design functionality, motion analyses of the knee and ankle gait paths were made using motion capture systems. Key results indicate that the robotic walking training device provides a viable mode of physical rehabilitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20electrical%20stimulation" title="functional electrical stimulation">functional electrical stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitative%20walking" title=" rehabilitative walking"> rehabilitative walking</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20walking%20training%20device" title=" robotic walking training device"> robotic walking training device</a>, <a href="https://publications.waset.org/abstracts/search?q=spinal%20cord%20injuries" title=" spinal cord injuries"> spinal cord injuries</a> </p> <a href="https://publications.waset.org/abstracts/127966/rehabilitative-walking-the-development-of-a-robotic-walking-training-device-using-functional-electrical-stimulation-for-treating-spinal-cord-injuries-and-lower-limb-paralysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13953</span> Design and Construction of a Device to Facilitate the Stretching of a Plantiflexors Muscles in the Therapy of Rehabilitation for Patients with Spastic Hemiplegia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nathalia%20Andrea%20Calderon%20Lesmes">Nathalia Andrea Calderon Lesmes</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Barragan%20Parada"> Eduardo Barragan Parada</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Fernando%20Villegas%20Bermudez"> Diego Fernando Villegas Bermudez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spasticity in the plantiflexor muscles as a product of stroke (CVA-Cerebrovascular accident) restricts the mobility and independence of the affected people. Commonly, physiotherapists are in charge of manually performing the rehabilitation therapy known as Sustained Mechanical Stretching, rotating the affected foot of the patient in the sagittal plane. However, this causes a physical wear on the professional because it is a fatiguing movement. In this article, a mechanical device is developed to implement this rehabilitation therapy more efficiently. The device consists of a worm-crown mechanism that is driven by a crank to gradually rotate a platform in the sagittal plane of the affected foot, in order to achieve dorsiflexion. The device has a range of sagittal rotation up to 150° and has velcro located on the footplate that secures the foot. The design of this device was modeled by using CAD software and was checked structurally with a general purpose finite element software to be sure that the device is safe for human use. As a measurement system, a goniometer is used in the lateral part of the device and load cells are used to measure the force in order to determine the opposing torque exerted by the muscle. Load cells sensitivity is 1.8 ± 0.002 and has a repeatability of 0.03. Validation of the effectiveness of the device is measured by reducing the opposition torque and increasing mobility for a given patient. In this way, with a more efficient therapy, an improvement in the recovery of the patient's mobility and therefore in their quality of life can be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomechanics" title="biomechanics">biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20device" title=" mechanical device"> mechanical device</a>, <a href="https://publications.waset.org/abstracts/search?q=plantiflexor%20muscles" title=" plantiflexor muscles"> plantiflexor muscles</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=spastic%20hemiplegia" title=" spastic hemiplegia"> spastic hemiplegia</a>, <a href="https://publications.waset.org/abstracts/search?q=sustained%20mechanical%20stretching" title=" sustained mechanical stretching"> sustained mechanical stretching</a> </p> <a href="https://publications.waset.org/abstracts/92967/design-and-construction-of-a-device-to-facilitate-the-stretching-of-a-plantiflexors-muscles-in-the-therapy-of-rehabilitation-for-patients-with-spastic-hemiplegia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13952</span> Photoplethysmography-Based Device Designing for Cardiovascular System Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Botman">S. Botman</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Borchevkin"> D. Borchevkin</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Petrov"> V. Petrov</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Bogdanov"> E. Bogdanov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Patrushev"> M. Patrushev</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Shusharina"> N. Shusharina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we report the development of the device for diagnostics of cardiovascular system state and associated automated workstation for large-scale medical measurement data collection and analysis. It was shown that optimal design for the monitoring device is wristband as it represents engineering trade-off between accuracy and usability. The monitoring device is based on the infrared reflective photoplethysmographic sensor, which allows collecting multiple physiological parameters, such as heart rate and pulsing wave characteristics. Developed device use BLE interface for medical and supplementary data transmission to the coupled mobile phone, which process it and send it to the doctor's automated workstation. Results of this experimental model approbation confirmed the applicability of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20diseases" title="cardiovascular diseases">cardiovascular diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20monitoring%20systems" title=" health monitoring systems"> health monitoring systems</a>, <a href="https://publications.waset.org/abstracts/search?q=photoplethysmography" title=" photoplethysmography"> photoplethysmography</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20wave" title=" pulse wave"> pulse wave</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20diagnostics" title=" remote diagnostics"> remote diagnostics</a> </p> <a href="https://publications.waset.org/abstracts/29151/photoplethysmography-based-device-designing-for-cardiovascular-system-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13951</span> Equipment Design for Lunar Lander Landing-Impact Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohuan%20Li">Xiaohuan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wangmin%20Yi"> Wangmin Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinghui%20Wu"> Xinghui Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to verify the performance of lunar lander structure, landing-impact test is urgently needed. Moreover, the test equipment is necessary for the test. The functions and the key points of the equipment is presented to satisfy the requirements of the test,and the design scheme is proposed. The composition, the major function and the critical parts’ design of the equipment are introduced. By the load test of releasing device and single-beam hoist, and the compatibility test of landing-impact testing system, the rationality and reliability of the equipment is proved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landing-impact%20test" title="landing-impact test">landing-impact test</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20lander" title=" lunar lander"> lunar lander</a>, <a href="https://publications.waset.org/abstracts/search?q=releasing%20device" title=" releasing device"> releasing device</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20equipment" title=" test equipment"> test equipment</a> </p> <a href="https://publications.waset.org/abstracts/10548/equipment-design-for-lunar-lander-landing-impact-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13950</span> Replacement Time and Number of Preventive Maintenance Actions for Second-Hand Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Liang%20Chang">Wen Liang Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the optimal replacement time and number of preventive maintenance (PM) actions were investigated for a second-hand device. Suppose that a user intends to use a second-hand device for manufacturing products, and that the device is replaced with a new one. Any device failure is rectified through minimal repair, thereby incurring a fixed repair cost to the user. If the new device fails within the FRW period, minimal repair is performed at no cost to the user. After the FRW expires, a failed device is repaired and the cost of repair is incurred by the user. In this study, two profit models were developed, and the optimal replacement time and number of PM actions were determined to maximize profits. Finally, the influence of the optimal replacement time and number of PM actions were elaborated on, using numerical examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=second-hand%20device" title="second-hand device">second-hand device</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20maintenance" title=" preventive maintenance"> preventive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement%20time" title=" replacement time"> replacement time</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20failure" title=" device failure"> device failure</a> </p> <a href="https://publications.waset.org/abstracts/9223/replacement-time-and-number-of-preventive-maintenance-actions-for-second-hand-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13949</span> Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Kayode%20Ogunlade">Isaac Kayode Ogunlade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20acquisition%20system" title="data acquisition system">data acquisition system</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20device" title=" design device"> design device</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20development" title=" weather development"> weather development</a>, <a href="https://publications.waset.org/abstracts/search?q=predict%20precipitation%20and%20%28FUTA%29%20standard%20device" title=" predict precipitation and (FUTA) standard device"> predict precipitation and (FUTA) standard device</a> </p> <a href="https://publications.waset.org/abstracts/149813/design-of-a-standard-weather-data-acquisition-device-for-the-federal-university-of-technology-akure-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13948</span> Design and Manufacture Detection System for Patient's Unwanted Movements during Radiology and CT Scan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anita%20Yaghobi">Anita Yaghobi</a>, <a href="https://publications.waset.org/abstracts/search?q=Homayoun%20Ebrahimian"> Homayoun Ebrahimian </a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important tools that can help orthopedic doctors for diagnose diseases is imaging scan. Imaging techniques can help physicians in see different parts of the body, including the bones, muscles, tendons, nerves, and cartilage. During CT scan, a patient must be in the same position from the start to the end of radiation treatment. Patient movements are usually monitored by the technologists through the closed circuit television (CCTV) during scan. If the patient makes a small movement, it is difficult to be noticed by them. In the present work, a simple patient movement monitoring device is fabricated to monitor the patient movement. It uses an electronic sensing device. It continuously monitors the patient’s position while the CT scan is in process. The device has been retrospectively tested on 51 patients whose movement and distance were measured. The results show that 25 patients moved 1 cm to 2.5 cm from their initial position during the CT scan. Hence, the device can potentially be used to control and monitor patient movement during CT scan and Radiography. In addition, an audible alarm situated at the control panel of the control room is provided with this device to alert the technologists. It is an inexpensive, compact device which can be used in any CT scan machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT%20scan" title="CT scan">CT scan</a>, <a href="https://publications.waset.org/abstracts/search?q=radiology" title=" radiology"> radiology</a>, <a href="https://publications.waset.org/abstracts/search?q=X%20Ray" title=" X Ray"> X Ray</a>, <a href="https://publications.waset.org/abstracts/search?q=unwanted%20movement" title=" unwanted movement"> unwanted movement</a> </p> <a href="https://publications.waset.org/abstracts/32893/design-and-manufacture-detection-system-for-patients-unwanted-movements-during-radiology-and-ct-scan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13947</span> A Review on the Re-Usage of Single-Use Medical Devices </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucas%20B.%20Naves">Lucas B. Naves</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Jos%C3%A9%20Abreu"> Maria José Abreu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reprocessing single-use device has attracted interesting on the medical environment over the last decades. The reprocessing technique was sought in order to reduce the cost of purchasing the new medical device, which can achieve almost double of the price of the reprocessed product. In this manuscript, we have done a literature review, aiming the reuse of medical device that was firstly designed for single use only, but has become, more and more, effective on its reprocessing procedure. We also show the regulation, the countries which allows this procedure, the classification of these device and also the most important issue concerning the re-utilization of medical device, how to minimizing the risk of gram positive and negative bacteria, avoid cross-contamination, hepatitis B (HBV), and C (HCV) virus, and also human immunodeficiency virus (HIV). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reusing" title="reusing">reusing</a>, <a href="https://publications.waset.org/abstracts/search?q=reprocessing" title=" reprocessing"> reprocessing</a>, <a href="https://publications.waset.org/abstracts/search?q=single-use%20medical%20device" title=" single-use medical device"> single-use medical device</a>, <a href="https://publications.waset.org/abstracts/search?q=HIV" title=" HIV"> HIV</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20B%20and%20C" title=" hepatitis B and C"> hepatitis B and C</a> </p> <a href="https://publications.waset.org/abstracts/47910/a-review-on-the-re-usage-of-single-use-medical-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13946</span> Design and Analysis of an Electro Thermally Symmetrical Actuated Microgripper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Foroughi">Sh. Foroughi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Karamzadeh"> V. Karamzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Packirisamy"> M. Packirisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents design and analysis of an electrothermally symmetrical actuated microgripper applicable for performing micro assembly or biological cell manipulation. Integration of micro-optics with microdevice leads to achieve extremely precise control over the operation of the device. Geometry, material, actuation, control, accuracy in measurement and temperature distribution are important factors which have to be taken into account for designing the efficient microgripper device. In this work, analyses of four different geometries are performed by means of COMSOL Multiphysics 5.2 with implementing Finite Element Methods. Then, temperature distribution along the fingertip, displacement of gripper site as well as optical efficiency vs. displacement and electrical potential are illustrated. Results show in addition to the industrial application of this device, the usage of that as a cell manipulator is possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro%20thermal%20actuator" title="electro thermal actuator">electro thermal actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=microgripper" title=" microgripper"> microgripper</a>, <a href="https://publications.waset.org/abstracts/search?q=MOEMS" title=" MOEMS"> MOEMS</a> </p> <a href="https://publications.waset.org/abstracts/83289/design-and-analysis-of-an-electro-thermally-symmetrical-actuated-microgripper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13945</span> Design of a Lumbar Interspinous Process Fixation Device for Minimizing Soft Tissue Removal and Operation Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minhyuk%20Heo">Minhyuk Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihwan%20Yun"> Jihwan Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Seonghun%20Park"> Seonghun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been reported that intervertebral fusion surgery, which removes most of the ligaments and muscles of the spine, increases the degenerative disease in adjacent spinal segments. Therefore, it is required to develop a lumbar interspinous process fixation device that minimizes the risks and side effects from the surgery. The objective of the current study is to design an interspinous process fixation device with simple structures in order to minimize soft tissue removal and operation time during intervertebral fusion surgery. For the design concepts of a lumbar fixation device, the principle of the ratchet was first applied on the joining parts of the device in order to shorten the operation time. The coil spring structure was selected for connecting parts between the spinous processes so that a normal range of motion in spinal segments is preserved and degenerative spinal diseases are not developed in the adjacent spinal segments. The stiffness of the spring was determined not to interrupt the motion of a lumbar spine. The designed value of the spring stiffness allows the upper part of the spring to move ~10° which is higher than the range of flexion and extension for normal lumbar spine (6°-8°), when a moment of 10Nm is applied on the upper face of L1. A finite element (FE) model composed of L1 to L5 lumbar spines was generated to verify the mechanical integrity and the dynamic stability of the designed lumbar fixation device and to further optimize the lumbar fixation device. The FE model generated above produced the same pressure value on intervertebral disc and dynamic behavior as the normal intact model reported in the literature. The consistent results from this comparison validates the accuracy in the modeling of the current FE model. Currently, we are trying to generate an abnormal model with defects in one or more components of the normal FE model above. Then, the mechanical integrity and the dynamic stability of the designed lumbar fixation device will be analyzed after being installed in the abnormal model and then the lumbar fixation device will be further optimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lumbar%20interspinous%20process%20fixation%20device" title="lumbar interspinous process fixation device">lumbar interspinous process fixation device</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbar%20spine" title=" lumbar spine"> lumbar spine</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematics" title=" kinematics"> kinematics</a> </p> <a href="https://publications.waset.org/abstracts/60372/design-of-a-lumbar-interspinous-process-fixation-device-for-minimizing-soft-tissue-removal-and-operation-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13944</span> Forensic Challenges in Source Device Identification for Digital Videos</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Aminu%20Bagiwa">Mustapha Aminu Bagiwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ainuddin%20Wahid%20Abdul%20Wahab"> Ainuddin Wahid Abdul Wahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Yamani%20Idna%20Idris"> Mohd Yamani Idna Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=Suleman%20Khan"> Suleman Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Video source device identification has become a problem of concern in numerous domains especially in multimedia security and digital investigation. This is because videos are now used as evidence in legal proceedings. Source device identification aim at identifying the source of digital devices using the content they produced. However, due to affordable processing tools and the influx in digital content generating devices, source device identification is still a major problem within the digital forensic community. In this paper, we discuss source device identification for digital videos by identifying techniques that were proposed in the literature for model or specific device identification. This is aimed at identifying salient open challenges for future research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20forgery" title="video forgery">video forgery</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20camcorder" title=" source camcorder"> source camcorder</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20identification" title=" device identification"> device identification</a>, <a href="https://publications.waset.org/abstracts/search?q=forgery%20detection" title=" forgery detection "> forgery detection </a> </p> <a href="https://publications.waset.org/abstracts/21641/forensic-challenges-in-source-device-identification-for-digital-videos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">631</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13943</span> Analysis of Gas Disturbance Characteristics in Lunar Sample Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lv%20Shizeng">Lv Shizeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Xiao"> Han Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Yi"> Zhang Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding%20Wenjing"> Ding Wenjing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lunar sample storage device is mainly used for the preparation of the lunar samples, observation, physical analysis and other work. The lunar samples and operating equipment are placed directly inside the storage device. The inside of the storage device is a high purity nitrogen environment to ensure that the sample is not contaminated by the Earth's environment. In order to ensure that the water and oxygen indicators in the storage device meet the sample requirements, a dynamic gas cycle is required between the storage device and the external purification equipment. However, the internal gas disturbance in the storage device can affect the operation of the sample. In this paper, the storage device model is established, and the tetrahedral mesh is established by Tetra/Mixed method. The influence of different inlet position and gas flow on the internal flow field disturbance is calculated, and the disturbed flow area should be avoided during the sampling operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lunar%20samples" title="lunar samples">lunar samples</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20disturbance" title=" gas disturbance"> gas disturbance</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20device" title=" storage device"> storage device</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20analysis" title=" characteristic analysis"> characteristic analysis</a> </p> <a href="https://publications.waset.org/abstracts/69595/analysis-of-gas-disturbance-characteristics-in-lunar-sample-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13942</span> Integrating Ergonomics at Design Stage in Development of Continuous Passive Motion Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20S.%20Harne">Mahesh S. Harne</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20V.%20Deshmukh"> Sunil V. Deshmukh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A continuous passive motion machine improves and helps the patient to restore range of motion in various physiotherapy activities. The paper presents a concept for portable CPM. The device is used for various joint for upper and lower body extremities. The device is designed so that the active and passive motion is incorporated. During development, the physiotherapist and patient need is integrated with designer aspects. Various tools such as Analytical Higher Hierarchy process (AHP) and Quality Function Deployment (QFD) is used to integrate the need at the design stage. With market survey of various commercial CPM the gaps are identified, and efforts are made to fill the gaps with ergonomic need. Indian anthropomorphic dimension is referred. The device is modular to best suit for all the anthropomorphic need of different human. Experimentation is carried under the observation of physiotherapist and doctor on volunteer patient. We reported better results are compare to conventional CPM with comfort and less pain. We concluded that the concept will be helpful to reduces therapy cost and wide utility of device for various joint and physiotherapy exercise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20passive%20motion%20machine" title="continuous passive motion machine">continuous passive motion machine</a>, <a href="https://publications.waset.org/abstracts/search?q=ergonomics" title=" ergonomics"> ergonomics</a>, <a href="https://publications.waset.org/abstracts/search?q=physiotherapy" title=" physiotherapy"> physiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20function%20deployment" title=" quality function deployment"> quality function deployment</a> </p> <a href="https://publications.waset.org/abstracts/86244/integrating-ergonomics-at-design-stage-in-development-of-continuous-passive-motion-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13941</span> Spiking Behavior in Memristors with Shared Top Electrode Configuration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Manoj%20Kumar">B. Manoj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Malavika"> C. Malavika</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20S.%20Kannan"> E. S. Kannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the switching behavior of two vertically aligned memristors connected by a shared top electrode, a configuration that significantly deviates from the conventional single oxide layer sandwiched between two electrodes. The device is fabricated by bridging copper electrodes with mechanically exfoliated van der Waals metal (specifically tantalum disulfide and tantalum diselenide). The device demonstrates threshold-switching behavior in its I-V characteristics. When the input voltage signal is ramped with voltages below the threshold, the output current shows spiking behavior, resembling integrated and firing actions without extra circuitry. We also investigated the self-reset behavior of the device. Using a continuous constant voltage bias, we activated the device to the firing state. After removing the bias and reapplying it shortly afterward, the current returned to its initial state. This indicates that the device can spontaneously return to its resting state. The outcome of this investigation offers a fresh perspective on memristor-based device design and an efficient method to construct hardware for neuromorphic computing systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated%20and%20firing" title="integrated and firing">integrated and firing</a>, <a href="https://publications.waset.org/abstracts/search?q=memristor" title=" memristor"> memristor</a>, <a href="https://publications.waset.org/abstracts/search?q=spiking%20behavior" title=" spiking behavior"> spiking behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20switching" title=" threshold switching"> threshold switching</a> </p> <a href="https://publications.waset.org/abstracts/183438/spiking-behavior-in-memristors-with-shared-top-electrode-configuration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13940</span> Ubiquitous Collaborative Mobile Learning (UCML): A Flexible Instructional Design Model for Social Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hameed%20Olalekan%20Bolaji">Hameed Olalekan Bolaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The digital natives are driving the trends of literacy in the use of electronic devices for learning purposes. This has reconfigured the context of learning in the exploration of knowledge in a social learning environment. This study explores the impact of Ubiquitous Collaborative Mobile Learning (UCML) instructional design model in a quantitative designed-based research approach. The UCML model was a synergetic blend of four models that are relevant to the design of instructional content for a social learning environment. The UCML model serves as the treatment and instructions were transmitted via mobile device based on the principle of ‘bring your own device’ (BYOD) to promote social learning. Three research questions and two hypotheses were raised to guide the conduct of this study. A researcher-designed questionnaire was used to collate data and the it was subjected to reliability of Cronbach Alpha which yielded 0.91. Descriptive statistics of mean and standard deviation were used to answer research questions while inferential statistics of independent sample t-test was used to analyze the hypotheses. The findings reveal that the UCML model was adequately evolved and it promotes social learning its design principles through the use of mobile devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collaboration" title="collaboration">collaboration</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20device" title=" mobile device"> mobile device</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20learning" title=" social learning"> social learning</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous" title=" ubiquitous"> ubiquitous</a> </p> <a href="https://publications.waset.org/abstracts/122820/ubiquitous-collaborative-mobile-learning-ucml-a-flexible-instructional-design-model-for-social-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13939</span> Detecting and Disabling Digital Cameras Using D3CIP Algorithm Based on Image Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Vignesh">S. Vignesh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Rangasamy"> K. S. Rangasamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the device capable of detecting and disabling digital cameras. The system locates the camera and then neutralizes it. Every digital camera has an image sensor known as a CCD, which is retro-reflective and sends light back directly to its original source at the same angle. The device shines infrared LED light, which is invisible to the human eye, at a distance of about 20 feet. It then collects video of these reflections with a camcorder. Then the video of the reflections is transferred to a computer connected to the device, where it is sent through image processing algorithms that pick out infrared light bouncing back. Once the camera is detected, the device would project an invisible infrared laser into the camera's lens, thereby overexposing the photo and rendering it useless. Low levels of infrared laser neutralize digital cameras but are neither a health danger to humans nor a physical damage to cameras. We also discuss the simplified design of the above device that can used in theatres to prevent piracy. The domains being covered here are optics and image processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CCD" title="CCD">CCD</a>, <a href="https://publications.waset.org/abstracts/search?q=optics" title=" optics"> optics</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=D3CIP" title=" D3CIP"> D3CIP</a> </p> <a href="https://publications.waset.org/abstracts/1736/detecting-and-disabling-digital-cameras-using-d3cip-algorithm-based-on-image-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13938</span> Design and Simulation of Low Threshold Nanowire Photonic Crystal Surface Emitting Lasers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balthazar%20Temu">Balthazar Temu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Yan"> Zhao Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogdan-Petrin%20Ratiu"> Bogdan-Petrin Ratiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Soon%20Oh"> Sang Soon Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Li"> Qiang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanowire based Photonic Crystal Surface Emitting Lasers (PCSELs) reported in the literature have been designed using a triangular, square or honeycomb patterns. The triangular and square pattern PCSELs have limited degrees of freedom in tuning the design parameters which hinders the ability to design high quality factor (Q-factor) devices. Nanowire based PCSELs designed using triangular and square patterns have been reported with the lasing thresholds of 130 kW/〖cm〗^2 and 7 kW/〖cm〗^2 respectively. On the other hand the honeycomb pattern gives more degrees of freedom in tuning the design parameters, which can allow one to design high Q-factor devices. A deformed honeycomb pattern device was reported with lasing threshold of 6.25 W/〖cm〗^2 corresponding to a simulated Q-factor of 5.84X〖10〗^5.Despite this achievement, the design principles which can lead to realization of even higher Q-factor honeycomb pattern PCSELs have not yet been investigated. In this work we show that through deforming the honeycomb pattern and tuning the heigh and lattice constants of the nanowires, it is possible to achieve even higher Q-factor devices. Considering three different band edge modes, we investigate how the resonance wavelength changes as the device is deformed, which is useful in designing high Q-factor devices in different wavelength bands. We eventually establish the design and simulation of honeycomb PCSELs operating around the wavelength of 960nm , in the O and the C band with Q-factors up to 7X〖10〗^7. We also investigate the Q-factors of undeformed device, and establish that the mode at the band edge close to 960nm can attain highest Q-factor of all the modes when the device is undeformed and the Q-factor degrades as the device is deformed. This work is a stepping stone towards the fabrication of very high Q-factor, nanowire based honey comb PCSELs, which are expected to have very low lasing threshold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=designing%20nanowire%20PCSEL" title="designing nanowire PCSEL">designing nanowire PCSEL</a>, <a href="https://publications.waset.org/abstracts/search?q=designing%20PCSEL%20on%20silicon%20substrates" title=" designing PCSEL on silicon substrates"> designing PCSEL on silicon substrates</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20threshold%20nanowire%20laser" title=" low threshold nanowire laser"> low threshold nanowire laser</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20of%20photonic%20crystal%20lasers" title=" simulation of photonic crystal lasers"> simulation of photonic crystal lasers</a> </p> <a href="https://publications.waset.org/abstracts/193552/design-and-simulation-of-low-threshold-nanowire-photonic-crystal-surface-emitting-lasers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13937</span> Geometric Design to Improve the Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ghodbane">H. Ghodbane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Taleb"> A. A. Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Kraa"> O. Kraa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents geometric design of induction heating system. The objective of this design is to improve the temperature distribution in the load. The study of such a device requires the use of models or modeling representation, physical, mathematical, and numerical. This modeling is the basis of the understanding, the design, and optimization of these systems. The optimization technique is to find values of variables that maximize or minimize the objective function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20design%20system" title=" geometric design system"> geometric design system</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20increase" title=" temperature increase"> temperature increase</a> </p> <a href="https://publications.waset.org/abstracts/1847/geometric-design-to-improve-the-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13936</span> SCR-Based Advanced ESD Protection Device for Low Voltage Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Bae%20Song">Bo Bae Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Seok%20Lee"> Byung Seok Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20young%20Kim"> Hyun young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung%20Kwang%20Lee"> Chung Kwang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Seo%20Koo"> Yong Seo Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposed a silicon controller rectifier (SCR) based ESD protection device to protect low voltage ESD for integrated circuit. The proposed ESD protection device has low trigger voltage and high holding voltage compared with conventional SCR-based ESD protection devices. The proposed ESD protection circuit is verified and compared by TCAD simulation. This paper verified effective low voltage ESD characteristics with low trigger voltage of 5.79V and high holding voltage of 3.5V through optimization depending on design variables (D1, D2, D3, and D4). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESD" title="ESD">ESD</a>, <a href="https://publications.waset.org/abstracts/search?q=SCR" title=" SCR"> SCR</a>, <a href="https://publications.waset.org/abstracts/search?q=holding%20voltage" title=" holding voltage"> holding voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=latch-up" title=" latch-up"> latch-up</a> </p> <a href="https://publications.waset.org/abstracts/21774/scr-based-advanced-esd-protection-device-for-low-voltage-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13935</span> Designing and Analyzing Sensor and Actuator of a Nano/Micro-System for Fatigue and Fracture Characterization of Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Zamani%20Kouhpanji">Mohammad Reza Zamani Kouhpanji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a MEMS/NEMS device for fatigue and fracture characterization of nanomaterials. This device can apply static loads, cyclic loads, and their combinations in nanomechanical experiments. It is based on the electromagnetic force induced between paired parallel wires carrying electrical currents. Using this concept, the actuator and sensor parts of the device were designed and analyzed while considering the practical limitations. Since the PWCC device only uses two wires for actuation part and sensing part, its fabrication process is extremely easier than the available MEMS/NEMS devices. The total gain and phase shift of the MEMS/NEMS device were calculated and investigated. Furthermore, the maximum gain and sensitivity of the MEMS/NEMS device were studied to demonstrate the capability and usability of the device for wide range of nanomaterials samples. This device can be readily integrated into SEM/TEM instruments to provide real time study of the mechanical behaviors of nanomaterials as well as their fatigue and fracture properties, softening or hardening behaviors, and initiation and propagation of nanocracks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sensors%20and%20actuators" title="sensors and actuators">sensors and actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%2FNEMS%20devices" title=" MEMS/NEMS devices"> MEMS/NEMS devices</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20and%20fracture%20nanomechanical%20testing%20device" title=" fatigue and fracture nanomechanical testing device"> fatigue and fracture nanomechanical testing device</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20and%20cyclic%20nanomechanical%20testing%20device" title=" static and cyclic nanomechanical testing device"> static and cyclic nanomechanical testing device</a> </p> <a href="https://publications.waset.org/abstracts/78711/designing-and-analyzing-sensor-and-actuator-of-a-nanomicro-system-for-fatigue-and-fracture-characterization-of-nanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=design%20device&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=design%20device&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=design%20device&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=design%20device&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=design%20device&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=design%20device&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=design%20device&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=design%20device&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=design%20device&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=design%20device&page=465">465</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=design%20device&page=466">466</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=design%20device&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>