CINXE.COM
Search results for: elliptic curve
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: elliptic curve</title> <meta name="description" content="Search results for: elliptic curve"> <meta name="keywords" content="elliptic curve"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="elliptic curve" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="elliptic curve"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1113</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: elliptic curve</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1113</span> A Study of General Attacks on Elliptic Curve Discrete Logarithm Problem over Prime Field and Binary Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tun%20Myat%20Aung">Tun Myat Aung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%20Ni%20Hla"> Ni Ni Hla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper begins by describing basic properties of finite field and elliptic curve cryptography over prime field and binary field. Then we discuss the discrete logarithm problem for elliptic curves and its properties. We study the general common attacks on elliptic curve discrete logarithm problem such as the Baby Step, Giant Step method, Pollard’s rho method and Pohlig-Hellman method, and describe in detail experiments of these attacks over prime field and binary field. The paper finishes by describing expected running time of the attacks and suggesting strong elliptic curves that are not susceptible to these attacks.c <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20logarithm%20problem" title="discrete logarithm problem">discrete logarithm problem</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20attacks" title=" general attacks"> general attacks</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve" title=" elliptic curve"> elliptic curve</a>, <a href="https://publications.waset.org/abstracts/search?q=prime%20field" title=" prime field"> prime field</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20field" title=" binary field"> binary field</a> </p> <a href="https://publications.waset.org/abstracts/82212/a-study-of-general-attacks-on-elliptic-curve-discrete-logarithm-problem-over-prime-field-and-binary-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1112</span> An Attack on the Lucas Based El-Gamal Cryptosystem in the Elliptic Curve Group Over Finite Field Using Greater Common Divisor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee%20Feng%20Koo">Lee Feng Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tze%20Jin%20Wong"> Tze Jin Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Pang%20Hung%20Yiu"> Pang Hung Yiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nik%20Mohd%20Asri%20Nik%20Long"> Nik Mohd Asri Nik Long</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Greater common divisor (GCD) attack is an attack that relies on the polynomial structure of the cryptosystem. This attack required two plaintexts differ from a fixed number and encrypted under same modulus. This paper reports a security reaction of Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field under GCD attack. Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field was exposed mathematically to the GCD attack using GCD and Dickson polynomial. The result shows that the cryptanalyst is able to get the plaintext without decryption by using GCD attack. Thus, the study concluded that it is highly perilous when two plaintexts have a slight difference from a fixed number in the same Elliptic curve group over finite field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decryption" title="decryption">decryption</a>, <a href="https://publications.waset.org/abstracts/search?q=encryption" title=" encryption"> encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve" title=" elliptic curve"> elliptic curve</a>, <a href="https://publications.waset.org/abstracts/search?q=greater%20common%20divisor" title=" greater common divisor"> greater common divisor</a> </p> <a href="https://publications.waset.org/abstracts/97382/an-attack-on-the-lucas-based-el-gamal-cryptosystem-in-the-elliptic-curve-group-over-finite-field-using-greater-common-divisor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1111</span> Arithmetic Operations Based on Double Base Number Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Sanjayani">K. Sanjayani</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Saraswathy"> C. Saraswathy</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sreenivasan"> S. Sreenivasan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sudhahar"> S. Sudhahar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Suganya"> D. Suganya</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Neelukumari"> K. S. Neelukumari</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Vijayarangan"> N. Vijayarangan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Double Base Number System (DBNS) is an imminent system of representing a number using two bases namely 2 and 3, which has its application in Elliptic Curve Cryptography (ECC) and Digital Signature Algorithm (DSA).The previous binary method representation included only base 2. DBNS uses an approximation algorithm namely, Greedy Algorithm. By using this algorithm, the number of digits required to represent a larger number is less when compared to the standard binary method that uses base 2 algorithms. Hence, the computational speed is increased and time being reduced. The standard binary method uses binary digits 0 and 1 to represent a number whereas the DBNS method uses binary digit 1 alone to represent any number (canonical form). The greedy algorithm uses two ways to represent the number, one is by using only the positive summands and the other is by using both positive and negative summands. In this paper, arithmetic operations are used for elliptic curve cryptography. Elliptic curve discrete logarithm problem is the foundation for most of the day to day elliptic curve cryptography. This appears to be a momentous hard slog compared to digital logarithm problem. In elliptic curve digital signature algorithm, the key generation requires 160 bit of data by usage of standard binary representation. Whereas, the number of bits required generating the key can be reduced with the help of double base number representation. In this paper, a new technique is proposed to generate key during encryption and extraction of key in decryption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryptography" title="cryptography">cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20base%20number%20system" title=" double base number system"> double base number system</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve%20cryptography" title=" elliptic curve cryptography"> elliptic curve cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve%20digital%20signature%20algorithm" title=" elliptic curve digital signature algorithm"> elliptic curve digital signature algorithm</a> </p> <a href="https://publications.waset.org/abstracts/1760/arithmetic-operations-based-on-double-base-number-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1110</span> Implementation of Integer Sub-Decomposition Method on Elliptic Curves with J-Invariant 1728</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Noor%20Farwina%20Anwar">Siti Noor Farwina Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hailiza%20Kamarulhaili"> Hailiza Kamarulhaili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present the idea of implementing the Integer Sub-Decomposition (ISD) method on elliptic curves with j-invariant 1728. The ISD method was proposed in 2013 to compute scalar multiplication in elliptic curves, which remains to be the most expensive operation in Elliptic Curve Cryptography (ECC). However, the original ISD method only works on integer number field and solve integer scalar multiplication. By extending the method into the complex quadratic field, we are able to solve complex multiplication and implement the ISD method on elliptic curves with j-invariant 1728. The curve with j-invariant 1728 has a unique discriminant of the imaginary quadratic field. This unique discriminant of quadratic field yields a unique efficiently computable endomorphism, which later able to speed up the computations on this curve. However, the ISD method needs three endomorphisms to be accomplished. Hence, we choose all three endomorphisms to be from the same imaginary quadratic field as the curve itself, where the first endomorphism is the unique endomorphism yield from the discriminant of the imaginary quadratic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiently%20computable%20endomorphism" title="efficiently computable endomorphism">efficiently computable endomorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20scalar%20multiplication" title=" elliptic scalar multiplication"> elliptic scalar multiplication</a>, <a href="https://publications.waset.org/abstracts/search?q=j-invariant%201728" title=" j-invariant 1728"> j-invariant 1728</a>, <a href="https://publications.waset.org/abstracts/search?q=quadratic%20field" title=" quadratic field"> quadratic field</a> </p> <a href="https://publications.waset.org/abstracts/89234/implementation-of-integer-sub-decomposition-method-on-elliptic-curves-with-j-invariant-1728" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1109</span> Improved of Elliptic Curves Cryptography over a Ring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhakim%20Chillali">Abdelhakim Chillali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Tadmori"> Abdelhamid Tadmori</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Ziane"> Muhammed Ziane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article we will study the elliptic curve defined over the ring An and we define the mathematical operations of ECC, which provides a high security and advantage for wireless applications compared to other asymmetric key cryptosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curves" title="elliptic curves">elliptic curves</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20ring" title=" finite ring"> finite ring</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=study" title=" study"> study</a> </p> <a href="https://publications.waset.org/abstracts/24042/improved-of-elliptic-curves-cryptography-over-a-ring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1108</span> Alternative Key Exchange Algorithm Based on Elliptic Curve Digital Signature Algorithm Certificate and Usage in Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Andreasyan">A. Andreasyan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Connors"> C. Connors</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Elliptic Curve Digital Signature algorithm-based X509v3 certificates are becoming more popular due to their short public and private key sizes. Moreover, these certificates can be stored in Internet of Things (IoT) devices, with limited resources, using less memory and transmitted in network security protocols, such as Internet Key Exchange (IKE), Transport Layer Security (TLS) and Secure Shell (SSH) with less bandwidth. The proposed method gives another advantage, in that it increases the performance of the above-mentioned protocols in terms of key exchange by saving one scalar multiplication operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryptography" title="cryptography">cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve%20digital%20signature%20algorithm" title=" elliptic curve digital signature algorithm"> elliptic curve digital signature algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20exchange" title=" key exchange"> key exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20security%20protocol" title=" network security protocol"> network security protocol</a> </p> <a href="https://publications.waset.org/abstracts/120384/alternative-key-exchange-algorithm-based-on-elliptic-curve-digital-signature-algorithm-certificate-and-usage-in-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1107</span> Implementation of Elliptic Curve Cryptography Encryption Engine on a FPGA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Khairi%20Ishak">Mohamad Khairi Ishak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional public key crypto systems such as RSA (Ron Rivest, Adi Shamir and Leonard Adleman), DSA (Digital Signature Algorithm), and Elgamal are no longer efficient to be implemented in the small, memory constrained devices. Elliptic Curve Cryptography (ECC), which allows smaller key length as compared to conventional public key crypto systems, has thus become a very attractive choice for many applications. This paper describes implementation of an elliptic curve cryptography (ECC) encryption engine on a FPGA. The system has been implemented in 2 different key sizes, which are 131 bits and 163 bits. Area and timing analysis are provided for both key sizes for comparison. The crypto system, which has been implemented on Altera鈥檚 EPF10K200SBC600-1, has a hardware size of 5945/9984 and 6913/9984 of logic cells for 131 bits implementation and 163 bits implementation respectively. The crypto system operates up to 43 MHz, and performs point multiplication operation in 11.3 ms for 131 bits implementation and 14.9 ms for 163 bits implementation. In terms of speed, our crypto system is about 8 times faster than the software implementation of the same system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve%20cryptography" title="elliptic curve cryptography">elliptic curve cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA" title=" FPGA"> FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20sizes" title=" key sizes"> key sizes</a>, <a href="https://publications.waset.org/abstracts/search?q=memory" title=" memory "> memory </a> </p> <a href="https://publications.waset.org/abstracts/13762/implementation-of-elliptic-curve-cryptography-encryption-engine-on-a-fpga" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1106</span> Cryptanalysis of ID-Based Deniable Authentication Protocol Based On Diffie-Hellman Problem on Elliptic Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun-Jun%20Yoon">Eun-Jun Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deniable authentication protocol is a new security authentication mechanism which can enable a receiver to identify the true source of a given message, but not to prove the identity of the sender to a third party. In 2013, Kar proposed a secure ID-based deniable authentication protocol whose security is based on computational infeasibility of solving Elliptic Curve Diffie-Hellman Problem (ECDHP). Kar claimed that the proposed protocol achieves properties of deniable authentication, mutual authentication, and message confidentiality. However, this paper points out that Kar's protocol still suffers from sender spoofing attack and message modification attack unlike its claims. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deniable%20authentication" title="deniable authentication">deniable authentication</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve%20cryptography" title=" elliptic curve cryptography"> elliptic curve cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=Diffie-Hellman%20problem" title=" Diffie-Hellman problem"> Diffie-Hellman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptanalysis" title=" cryptanalysis"> cryptanalysis</a> </p> <a href="https://publications.waset.org/abstracts/33884/cryptanalysis-of-id-based-deniable-authentication-protocol-based-on-diffie-hellman-problem-on-elliptic-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1105</span> A Lightweight Authentication and Key Exchange Protocol Design for Smart Homes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhifu%20Li">Zhifu Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Li"> Lei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanting%20Zhou"> Wanting Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanhang%20He"> Yuanhang He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposed a lightweight certificate-less authentication and key exchange protocol (Light-CL-PKC) based on elliptic curve cryptography and the Chinese Remainder Theorem for smart home scenarios. Light-CL-PKC can efficiently reduce the computational cost of both sides of authentication by forgoing time-consuming bilinear pair operations and making full use of point-addition and point-multiplication operations on elliptic curves. The authentication and key exchange processes in this system are also completed in a a single round of communication between the two parties. The analysis result demonstrates that it can significantly minimize the communication overhead of more than 32.14% compared with the referenced protocols, while the runtime for both authentication and key exchange have also been significantly reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authentication" title="authentication">authentication</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20exchange" title=" key exchange"> key exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=certificateless%20public%20key%20cryptography" title=" certificateless public key cryptography"> certificateless public key cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve%20cryptography" title=" elliptic curve cryptography"> elliptic curve cryptography</a> </p> <a href="https://publications.waset.org/abstracts/164480/a-lightweight-authentication-and-key-exchange-protocol-design-for-smart-homes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1104</span> Fingerprint Image Encryption Using a 2D Chaotic Map and Elliptic Curve Cryptography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20S.%20Bandara">D. M. S. Bandara</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunqi%20Lei"> Yunqi Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Luo"> Ye Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fingerprints are suitable as long-term markers of human identity since they provide detailed and unique individual features which are difficult to alter and durable over life time. In this paper, we propose an algorithm to encrypt and decrypt fingerprint images by using a specially designed Elliptic Curve Cryptography (ECC) procedure based on block ciphers. In addition, to increase the confusing effect of fingerprint encryption, we also utilize a chaotic-behaved method called Arnold Cat Map (ACM) for a 2D scrambling of pixel locations in our method. Experimental results are carried out with various types of efficiency and security analyses. As a result, we demonstrate that the proposed fingerprint encryption/decryption algorithm is advantageous in several different aspects including efficiency, security and flexibility. In particular, using this algorithm, we achieve a margin of about 0.1% in the test of Number of Pixel Changing Rate (NPCR) values comparing to the-state-of-the-art performances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arnold%20cat%20map" title="arnold cat map">arnold cat map</a>, <a href="https://publications.waset.org/abstracts/search?q=biometric%20encryption" title=" biometric encryption"> biometric encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20cipher" title=" block cipher"> block cipher</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve%20cryptography" title=" elliptic curve cryptography"> elliptic curve cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint%20encryption" title=" fingerprint encryption"> fingerprint encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=Koblitz%E2%80%99s%20%20encoding" title=" Koblitz鈥檚 encoding"> Koblitz鈥檚 encoding</a> </p> <a href="https://publications.waset.org/abstracts/96251/fingerprint-image-encryption-using-a-2d-chaotic-map-and-elliptic-curve-cryptography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1103</span> Study of Bifurcation Curve with Aspect Ratio at Low Reynolds Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20K.%20Singh">Amit K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhankar%20Sen"> Subhankar Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bifurcation curve of separation in steady two-dimensional viscous flow past an elliptic cylinder is studied by varying the angle of incidence (伪) with different aspect ratio (ratio of minor to major axis). The solutions are based on numerical investigation, using finite element analysis, of the Navier-Stokes equations for incompressible flow. Results are presented for Reynolds number up to 50 and angle of incidence varies from 0掳 to 90掳. Range of aspect ratio (Ar) is from 0.1 to 1 (in steps of 0.1) and flow is considered as unbounded flow. Bifurcation curve represents the locus of Reynolds numbers (Res) at which flow detaches or separates from the surface of the body at a given 伪 and Ar. In earlier studies, effect of Ar on laminar separation curve or bifurcation curve is limited for Ar = 0.1, 0.2, 0.5 and 0.8. Some results are also available at 伪 = 90掳 and 45掳. The present study attempts to provide a systematic data and clear understanding on the effect of Ar at bifurcation curve and its point of maxima. In addition, issues regarding location of separation angle and maximum ratio of coefficient of lift to drag are studied. We found that nature of curve, separation angle and maximum ratio of lift to drag changes considerably with respect to change in Ar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title="aspect ratio">aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcation%20curve" title=" bifurcation curve"> bifurcation curve</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20cylinder" title=" elliptic cylinder"> elliptic cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=GMRES" title=" GMRES"> GMRES</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilized%20finite-element" title=" stabilized finite-element"> stabilized finite-element</a> </p> <a href="https://publications.waset.org/abstracts/40551/study-of-bifurcation-curve-with-aspect-ratio-at-low-reynolds-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1102</span> Performance Analysis of Elliptic Curve Cryptography Using Onion Routing to Enhance the Privacy and Anonymity in Grid Computing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Parveen%20Begam">H. Parveen Begam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Maluk%20Mohamed"> M. A. Maluk Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grid computing is an environment that allows sharing and coordinated use of diverse resources in dynamic, heterogeneous and distributed environment using Virtual Organization (VO). Security is a critical issue due to the open nature of the wireless channels in the grid computing which requires three fundamental services: authentication, authorization, and encryption. The privacy and anonymity are considered as an important factor while communicating over publicly spanned network like web. To ensure a high level of security we explored an extension of onion routing, which has been used with dynamic token exchange along with protection of privacy and anonymity of individual identity. To improve the performance of encrypting the layers, the elliptic curve cryptography is used. Compared to traditional cryptosystems like RSA (Rivest-Shamir-Adelman), ECC (Elliptic Curve Cryptosystem) offers equivalent security with smaller key sizes which result in faster computations, lower power consumption, as well as memory and bandwidth savings. This paper presents the estimation of the performance improvements of onion routing using ECC as well as the comparison graph between performance level of RSA and ECC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grid%20computing" title="grid computing">grid computing</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy" title=" privacy"> privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=anonymity" title=" anonymity"> anonymity</a>, <a href="https://publications.waset.org/abstracts/search?q=onion%20routing" title=" onion routing"> onion routing</a>, <a href="https://publications.waset.org/abstracts/search?q=ECC" title=" ECC"> ECC</a>, <a href="https://publications.waset.org/abstracts/search?q=RSA" title=" RSA"> RSA</a> </p> <a href="https://publications.waset.org/abstracts/28834/performance-analysis-of-elliptic-curve-cryptography-using-onion-routing-to-enhance-the-privacy-and-anonymity-in-grid-computing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1101</span> Solving 94-Bit ECDLP with 70 Computers in Parallel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shunsuke%20Miyoshi">Shunsuke Miyoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuyuki%20Nogami"> Yasuyuki Nogami</a>, <a href="https://publications.waset.org/abstracts/search?q=Takuya%20Kusaka"> Takuya Kusaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Nariyoshi%20Yamai"> Nariyoshi Yamai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elliptic curve discrete logarithm problem (ECDLP) is one of problems on which the security of pairing-based cryptography is based. This paper considers Pollard's rho method to evaluate the security of ECDLP on Barreto-Naehrig (BN) curve that is an efficient pairing-friendly curve. Some techniques are proposed to make the rho method efficient. Especially, the group structure on BN curve, distinguished point method, and Montgomery trick are well-known techniques. This paper applies these techniques and shows its optimization. According to the experimental results for which a large-scale parallel system with MySQL is applied, 94-bit ECDLP was solved about 28 hours by parallelizing 71 computers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pollard%27s%20rho%20method" title="Pollard's rho method">Pollard's rho method</a>, <a href="https://publications.waset.org/abstracts/search?q=BN%20curve" title=" BN curve"> BN curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Montgomery%20multiplication" title=" Montgomery multiplication"> Montgomery multiplication</a> </p> <a href="https://publications.waset.org/abstracts/28038/solving-94-bit-ecdlp-with-70-computers-in-parallel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1100</span> A Design of Elliptic Curve Cryptography Processor based on SM2 over GF(p)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiji%20Hu">Shiji Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Li"> Lei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanting%20Zhou"> Wanting Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=DaoHong%20Yang"> DaoHong Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The data encryption, is the foundation of today鈥檚 communication. On this basis, how to improve the speed of data encryption and decryption is always a problem that scholars work for. In this paper, we proposed an elliptic curve crypto processor architecture based on SM2 prime field. In terms of hardware implementation, we optimized the algorithms in different stages of the structure. In finite field modulo operation, we proposed an optimized improvement of Karatsuba-Ofman multiplication algorithm, and shorten the critical path through pipeline structure in the algorithm implementation. Based on SM2 recommended prime field, a fast modular reduction algorithm is used to reduce 512-bit wide data obtained from the multiplication unit. The radix-4 extended Euclidean algorithm was used to realize the conversion between affine coordinate system and Jacobi projective coordinate system. In the parallel scheduling of point operations on elliptic curves, we proposed a three-level parallel structure of point addition and point double based on the Jacobian projective coordinate system. Combined with the scalar multiplication algorithm, we added mutual pre-operation to the point addition and double point operation to improve the efficiency of the scalar point multiplication. The proposed ECC hardware architecture was verified and implemented on Xilinx Virtex-7 and ZYNQ-7 platforms, and each 256-bit scalar multiplication operation took 0.275ms. The performance for handling scalar multiplication is 32 times that of CPU(dual-core ARM Cortex-A9). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elliptic%20curve%20cryptosystems" title="Elliptic curve cryptosystems">Elliptic curve cryptosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=SM2" title=" SM2"> SM2</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20multiplication" title=" modular multiplication"> modular multiplication</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20multiplication." title=" point multiplication."> point multiplication.</a> </p> <a href="https://publications.waset.org/abstracts/164598/a-design-of-elliptic-curve-cryptography-processor-based-on-sm2-over-gfp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1099</span> BAN Logic Proof of E-passport Authentication Protocol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safa%20Saoudi">Safa Saoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Souheib%20Yousfi"> Souheib Yousfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Riadh%20Robbana"> Riadh Robbana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> E-passport is a relatively new electronic document which maintains the passport features and provides better security. It deploys new technologies such as biometrics and Radio Frequency identification (RFID). The international civil aviation organization (ICAO) and the European union define mechanisms and protocols to provide security but their solutions present many threats. In this paper, a new mechanism is presented to strengthen e-passport security and authentication process. We propose a new protocol based on Elliptic curve, identity based encryption and shared secret between entities. Authentication in our contribution is formally proved with BAN Logic verification language. This proposal aims to provide a secure data storage and authentication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-passport" title="e-passport">e-passport</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve%20cryptography" title=" elliptic curve cryptography"> elliptic curve cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=identity%20based%20encryption" title=" identity based encryption"> identity based encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=shared%20secret" title=" shared secret"> shared secret</a>, <a href="https://publications.waset.org/abstracts/search?q=BAN%20Logic" title=" BAN Logic"> BAN Logic</a> </p> <a href="https://publications.waset.org/abstracts/25381/ban-logic-proof-of-e-passport-authentication-protocol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1098</span> Integrating the Modbus SCADA Communication Protocol with Elliptic Curve Cryptography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Despoina%20Chochtoula">Despoina Chochtoula</a>, <a href="https://publications.waset.org/abstracts/search?q=Aristidis%20Ilias"> Aristidis Ilias</a>, <a href="https://publications.waset.org/abstracts/search?q=Yannis%20Stamatiou"> Yannis Stamatiou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modbus is a protocol that enables the communication among devices which are connected to the same network. This protocol is, often, deployed in connecting sensor and monitoring units to central supervisory servers in Supervisory Control and Data Acquisition, or SCADA, systems. These systems monitor critical infrastructures, such as factories, power generation stations, nuclear power reactors etc. in order to detect malfunctions and ignite alerts and corrective actions. However, due to their criticality, SCADA systems are vulnerable to attacks that range from simple eavesdropping on operation parameters, exchanged messages, and valuable infrastructure information to malicious modification of vital infrastructure data towards infliction of damage. Thus, the SCADA research community has been active over strengthening SCADA systems with suitable data protection mechanisms based, to a large extend, on cryptographic methods for data encryption, device authentication, and message integrity protection. However, due to the limited computation power of many SCADA sensor and embedded devices, the usual public key cryptographic methods are not appropriate due to their high computational requirements. As an alternative, Elliptic Curve Cryptography has been proposed, which requires smaller key sizes and, thus, less demanding cryptographic operations. Until now, however, no such implementation has been proposed in the SCADA literature, to the best of our knowledge. In order to fill this gap, our methodology was focused on integrating Modbus, a frequently used SCADA communication protocol, with Elliptic Curve based cryptography and develop a server/client application to demonstrate the proof of concept. For the implementation we deployed two C language libraries, which were suitably modify in order to be successfully integrated: libmodbus (https://github.com/stephane/libmodbus) and ecc-lib https://www.ceid.upatras.gr/webpages/faculty/zaro/software/ecc-lib/). The first library provides a C implementation of the Modbus/TCP protocol while the second one offers the functionality to develop cryptographic protocols based on Elliptic Curve Cryptography. These two libraries were combined, after suitable modifications and enhancements, in order to give a modified version of the Modbus/TCP protocol focusing on the security of the data exchanged among the devices and the supervisory servers. The mechanisms we implemented include key generation, key exchange/sharing, message authentication, data integrity check, and encryption/decryption of data. The key generation and key exchange protocols were implemented with the use of Elliptic Curve Cryptography primitives. The keys established by each device are saved in their local memory and are retained during the whole communication session and are used in encrypting and decrypting exchanged messages as well as certifying entities and the integrity of the messages. Finally, the modified library was compiled for the Android environment in order to run the server application as an Android app. The client program runs on a regular computer. The communication between these two entities is an example of the successful establishment of an Elliptic Curve Cryptography based, secure Modbus wireless communication session between a portable device acting as a supervisor station and a monitoring computer. Our first performance measurements are, also, very promising and demonstrate the feasibility of embedding Elliptic Curve Cryptography into SCADA systems, filling in a gap in the relevant scientific literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve%20cryptography" title="elliptic curve cryptography">elliptic curve cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=ICT%20security" title=" ICT security"> ICT security</a>, <a href="https://publications.waset.org/abstracts/search?q=modbus%20protocol" title=" modbus protocol"> modbus protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=TCP%2FIP%20protocol" title=" TCP/IP protocol"> TCP/IP protocol</a> </p> <a href="https://publications.waset.org/abstracts/72732/integrating-the-modbus-scada-communication-protocol-with-elliptic-curve-cryptography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1097</span> Exact Solutions of K(N,N)-Type Equations Using Jacobi Elliptic Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edamana%20Krishnan">Edamana Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Al-Ghafri"> Khalil Al-Ghafri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, modified K(n,n) and K(n+1,n+1) equations have been solved using mapping methods which give a variety of solutions in terms of Jacobi elliptic functions. The solutions when m approaches 0 and 1, with m as the modulus of the JEFs have also been deduced. The role of constraint conditions has been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=travelling%20wave%20solutions" title="travelling wave solutions">travelling wave solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=solitary%20wave%20solutions" title=" solitary wave solutions"> solitary wave solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=compactons" title=" compactons"> compactons</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacobi%20elliptic%20functions" title=" Jacobi elliptic functions"> Jacobi elliptic functions</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping%20methods" title=" mapping methods"> mapping methods</a> </p> <a href="https://publications.waset.org/abstracts/59011/exact-solutions-of-knn-type-equations-using-jacobi-elliptic-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1096</span> Nonlinear Static Analysis of Laminated Composite Hollow Beams with Super-Elliptic Cross-Sections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Akgun">G. Akgun</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Algul"> I. Algul</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kurtaran"> H. Kurtaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper geometrically nonlinear static behavior of laminated composite hollow super-elliptic beams is investigated using generalized differential quadrature method. Super-elliptic beam can have both oval and elliptic cross-sections by adjusting parameters in super-ellipse formulation (also known as Lamé curves). Equilibrium equations of super-elliptic beam are obtained using the virtual work principle. Geometric nonlinearity is taken into account using von-Kármán nonlinear strain-displacement relations. Spatial derivatives in strains are expressed with the generalized differential quadrature method. Transverse shear effect is considered through the first-order shear deformation theory. Static equilibrium equations are solved using Newton-Raphson method. Several composite super-elliptic beam problems are solved with the proposed method. Effects of layer orientations of composite material, boundary conditions, ovality and ellipticity on bending behavior are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20differential%20quadrature" title="generalized differential quadrature">generalized differential quadrature</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20nonlinearity" title=" geometric nonlinearity"> geometric nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20composite" title=" laminated composite"> laminated composite</a>, <a href="https://publications.waset.org/abstracts/search?q=super-elliptic%20cross-section" title=" super-elliptic cross-section"> super-elliptic cross-section</a> </p> <a href="https://publications.waset.org/abstracts/74966/nonlinear-static-analysis-of-laminated-composite-hollow-beams-with-super-elliptic-cross-sections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1095</span> Passive Control of Elliptic Jet by Using Triangular and Truncated Tabs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saif%20Akram">Saif Akram</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Rathakrishnan"> E. Rathakrishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mixing promoting efficiency of two identical sharp and truncated vertex triangular tabs offering geometrical blockage of 2.5% each, placed at the exit of a Mach 1.5 elliptic nozzle was studied experimentally. The effectiveness of both the tabs in enhancing the mixing of jets with the ambient air are determined by measuring the Pitot pressure along the jet axis and the jet spread in both the minor and major axes of the elliptic nozzle, covering marginally overexpanded to moderately underexpanded levels at the nozzle exit. The results reveal that both the tabs enhance mixing characteristics of the uncontrolled elliptic jet when placed at minor axis. A core length reduction of 67% is achieved at NPR 3 which is the overexpanded state. Similarly, the core length is reduced by about 67%, 50% and 57% at NPRs of 4, 5 and 6 (underexpanded states) respectively. However, unlike the considerable increment in mixing promoting efficiency by the use of truncated vertex tabs for axisymmetric jets, the effect is not much pronounced for the case of supersonic elliptic jets. The CPD plots for both the cases almost overlap, especially when tabs are placed at minor axis, at all the pressure conditions. While, when the tabs are used at major axis, in the case of overexpanded condition, the sharp vertex triangular tabs act as a better mixing enhancer for the supersonic elliptic jets. For the jet controlled with truncated vertex triangular tabs, the core length reductions are of the same order as those for the sharp vertex triangular tabs. The jet mixing is hardly influenced by the tip effect in case of supersonic elliptic jet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elliptic%20jet" title="elliptic jet">elliptic jet</a>, <a href="https://publications.waset.org/abstracts/search?q=tabs" title=" tabs"> tabs</a>, <a href="https://publications.waset.org/abstracts/search?q=truncated" title=" truncated"> truncated</a>, <a href="https://publications.waset.org/abstracts/search?q=triangular" title=" triangular"> triangular</a> </p> <a href="https://publications.waset.org/abstracts/38593/passive-control-of-elliptic-jet-by-using-triangular-and-truncated-tabs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1094</span> An Analysis of Non-Elliptic Curve Based Primality Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20Wong">William Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakaria%20Alomari"> Zakaria Alomari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hon%20Ching%20Lai"> Hon Ching Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhida%20Li"> Zhida Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern-day information security depends on implementing Diffie-Hellman, which requires the generation of prime numbers. Because the number of primes is infinite, it is impractical to store prime numbers for use, and therefore, primality tests are indispensable in modern-day information security. A primality test is a test to determine whether a number is prime or composite. There are two types of primality tests, which are deterministic tests and probabilistic tests. Deterministic tests are adopting algorithms that provide a definite answer whether a given number is prime or composite. While in probabilistic tests, a probabilistic result would be provided, there is a degree of uncertainty. In this paper, we review three probabilistic tests: the Fermat Primality Test, the Miller-Rabin Test, and the Baillie-PSW Test, as well as one deterministic test, the Agrawal-Kayal-Saxena (AKS) Test. Furthermore, we do an analysis of these tests. All of the reviews discussed are not based on the Elliptic Curve. The analysis demonstrates that, in the majority of real-world scenarios, the Baillie- PSW test鈥檚 favorability stems from its typical operational complexity of O(log 3n) and its capacity to deliver accurate results for numbers below 2^64. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=primality%20tests" title="primality tests">primality tests</a>, <a href="https://publications.waset.org/abstracts/search?q=Fermat%E2%80%99s%20primality%20test" title=" Fermat鈥檚 primality test"> Fermat鈥檚 primality test</a>, <a href="https://publications.waset.org/abstracts/search?q=Miller-Rabin%20primality%20test" title=" Miller-Rabin primality test"> Miller-Rabin primality test</a>, <a href="https://publications.waset.org/abstracts/search?q=Baillie-PSW%20primality%20test" title=" Baillie-PSW primality test"> Baillie-PSW primality test</a>, <a href="https://publications.waset.org/abstracts/search?q=AKS%20primality%20test" title=" AKS primality test"> AKS primality test</a> </p> <a href="https://publications.waset.org/abstracts/173827/an-analysis-of-non-elliptic-curve-based-primality-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1093</span> Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L%C3%ADvia%20B.%20Meirelles">L铆via B. Meirelles</a>, <a href="https://publications.waset.org/abstracts/search?q=Erika%20C.%20A.%20N.%20Chrisman"> Erika C. A. N. Chrisman</a>, <a href="https://publications.waset.org/abstracts/search?q=Fl%C3%A1via%20B.%20de%20Andrade"> Fl谩via B. de Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=Lilian%20C.%20M.%20de%20Oliveira"> Lilian C. M. de Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation%20curve" title="distillation curve">distillation curve</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20distillation" title=" petroleum distillation"> petroleum distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=true%20boiling%20point%20curve" title=" true boiling point curve"> true boiling point curve</a> </p> <a href="https://publications.waset.org/abstracts/68293/comparison-of-the-distillation-curve-obtained-experimentally-with-the-curve-extrapolated-by-a-commercial-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1092</span> Scalable Systolic Multiplier over Binary Extension Fields Based on Two-Level Karatsuba Decomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiou-Yng%20Lee">Chiou-Yng Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Yo%20Lee"> Wen-Yo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chieh-Tsai%20Wu"> Chieh-Tsai Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Chen%20Yang"> Cheng-Chen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shifted polynomial basis (SPB) is a variation of polynomial basis representation. SPB has potential for efficient bit-level and digit-level implementations of multiplication over binary extension fields with subquadratic space complexity. For efficient implementation of pairing computation with large finite fields, this paper presents a new SPB multiplication algorithm based on Karatsuba schemes, and used that to derive a novel scalable multiplier architecture. Analytical results show that the proposed multiplier provides a trade-off between space and time complexities. Our proposed multiplier is modular, regular, and suitable for very-large-scale integration (VLSI) implementations. It involves less area complexity compared to the multipliers based on traditional decomposition methods. It is therefore, more suitable for efficient hardware implementation of pairing based cryptography and elliptic curve cryptography (ECC) in constraint driven applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digit-serial%20systolic%20multiplier" title="digit-serial systolic multiplier">digit-serial systolic multiplier</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve%20cryptography%20%28ECC%29" title=" elliptic curve cryptography (ECC)"> elliptic curve cryptography (ECC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Karatsuba%20algorithm%20%28KA%29" title=" Karatsuba algorithm (KA)"> Karatsuba algorithm (KA)</a>, <a href="https://publications.waset.org/abstracts/search?q=shifted%20polynomial%20basis%20%28SPB%29" title=" shifted polynomial basis (SPB)"> shifted polynomial basis (SPB)</a>, <a href="https://publications.waset.org/abstracts/search?q=pairing%20computation" title=" pairing computation"> pairing computation</a> </p> <a href="https://publications.waset.org/abstracts/8169/scalable-systolic-multiplier-over-binary-extension-fields-based-on-two-level-karatsuba-decomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1091</span> The Application of Variable Coefficient Jacobian elliptic Function Method to Differential-Difference Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao-Qing%20Dai">Chao-Qing Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern nonlinear science and textile engineering, nonlinear differential-difference equations are often used to describe some nonlinear phenomena. In this paper, we extend the variable coefficient Jacobian elliptic function method, which was used to find new exact travelling wave solutions of nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, we derive two series of Jacobian elliptic function solutions of the discrete sine-Gordon equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20sine-Gordon%20equation" title="discrete sine-Gordon equation">discrete sine-Gordon equation</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20coefficient%20Jacobian%20elliptic%20function%20method" title=" variable coefficient Jacobian elliptic function method"> variable coefficient Jacobian elliptic function method</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=equation" title=" equation"> equation</a> </p> <a href="https://publications.waset.org/abstracts/12987/the-application-of-variable-coefficient-jacobian-elliptic-function-method-to-differential-difference-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">668</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1090</span> Investigating Smoothness: An In-Depth Study of Extremely Degenerate Elliptic Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Ullah">Zahid Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Atlas%20Khan"> Atlas Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presented research is dedicated to an extensive examination of the regularity properties associated with a specific class of equations, namely extremely degenerate elliptic equations. This study holds significance in unraveling the complexities inherent in these equations and understanding the smoothness of their solutions. The focus is on analyzing the regularity of results, aiming to contribute to the broader field of mathematical theory. By delving into the intricacies of extremely degenerate elliptic equations, the research seeks to advance our understanding beyond conventional analyses, addressing challenges posed by degeneracy and pushing the boundaries of classical analytical methods. The motivation for this exploration lies in the practical applicability of mathematical models, particularly in real-world scenarios where physical phenomena exhibit characteristics that challenge traditional mathematical modeling. The research aspires to fill gaps in the current understanding of regularity properties within solutions to extremely degenerate elliptic equations, ultimately contributing to both theoretical foundations and practical applications in diverse scientific fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=investigating%20smoothness" title="investigating smoothness">investigating smoothness</a>, <a href="https://publications.waset.org/abstracts/search?q=extremely%20degenerate%20elliptic%20equations" title=" extremely degenerate elliptic equations"> extremely degenerate elliptic equations</a>, <a href="https://publications.waset.org/abstracts/search?q=regularity%20properties" title=" regularity properties"> regularity properties</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20analysis" title=" mathematical analysis"> mathematical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=complexity%20solutions" title=" complexity solutions"> complexity solutions</a> </p> <a href="https://publications.waset.org/abstracts/181742/investigating-smoothness-an-in-depth-study-of-extremely-degenerate-elliptic-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1089</span> Efficient Internal Generator Based on Random Selection of an Elliptic Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Benssalah">Mustapha Benssalah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Djeddou"> Mustapha Djeddou</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Drouiche"> Karim Drouiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The random number generation (RNG) presents a significant importance for the security and the privacy of numerous applications, such as RFID technology and smart cards. Since, the quality of the generated bit sequences is paramount that a weak internal generator for example, can directly cause the entire application to be insecure, and thus it makes no sense to employ strong algorithms for the application. In this paper, we propose a new pseudo random number generator (PRNG), suitable for cryptosystems ECC-based, constructed by randomly selecting points from several elliptic curves randomly selected. The main contribution of this work is the increasing of the generator internal states by extending the set of its output realizations to several curves auto-selected. The quality and the statistical characteristics of the proposed PRNG are validated using the Chi-square goodness of fit test and the empirical Special Publication 800-22 statistical test suite issued by NIST. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PRNG" title="PRNG">PRNG</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptosystem" title=" cryptosystem"> cryptosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=ECC" title=" ECC"> ECC</a> </p> <a href="https://publications.waset.org/abstracts/23607/efficient-internal-generator-based-on-random-selection-of-an-elliptic-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1088</span> Exploring the Applications of Modular Forms in Cryptography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berhane%20Tewelday%20Weldhiwot">Berhane Tewelday Weldhiwot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates the pivotal role of modular forms in modern cryptographic systems, particularly focusing on their applications in secure communications and data integrity. Modular forms, which are complex analytic functions with rich arithmetic properties, have gained prominence due to their connections to number theory and algebraic geometry. This study begins by outlining the fundamental concepts of modular forms and their historical development, followed by a detailed examination of their applications in cryptographic protocols such as elliptic curve cryptography and zero-knowledge proofs. By employing techniques from analytic number theory, the research delves into how modular forms can enhance the efficiency and security of cryptographic algorithms. The findings suggest that leveraging modular forms not only improves computational performance but also fortifies security measures against emerging threats in digital communication. This work aims to contribute to the ongoing discourse on integrating advanced mathematical theories into practical applications, ultimately fostering innovation in cryptographic methodologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modular%20forms" title="modular forms">modular forms</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curves" title=" elliptic curves"> elliptic curves</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20theory" title=" mathematical theory"> mathematical theory</a> </p> <a href="https://publications.waset.org/abstracts/192634/exploring-the-applications-of-modular-forms-in-cryptography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">16</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1087</span> Hohmann Transfer and Bi-Elliptic Hohmann Transfer in TRAPPIST-1 System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20L.%20Nisperuza">Jorge L. Nisperuza</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilson%20Sandoval"> Wilson Sandoval</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward.%20A.%20Gil"> Edward. A. Gil</a>, <a href="https://publications.waset.org/abstracts/search?q=Johan%20A.%20Jimenez"> Johan A. Jimenez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In orbital mechanics, an active research topic is the calculation of interplanetary trajectories efficient in terms of energy and time. In this sense, this work concerns the calculation of the orbital elements for sending interplanetary probes in the extrasolar system TRAPPIST-1. Specifically, using the mathematical expressions of the circular and elliptical trajectory parameters, expressions for the flight time and the orbital transfer rate increase between orbits, the orbital parameters and the graphs of the trajectories of Hohmann and Hohmann bi-elliptic for sending a probe from the innermost planet to all the other planets of the studied system, are obtained. The relationship between the orbital transfer rate increments and the relationship between the flight times for the two transfer types is found. The results show that, for all cases under consideration, the Hohmann transfer results to be the least energy and temporary cost, a result according to the theory associated with Hohmann and Hohmann bi-elliptic transfers. Saving in the increase of the speed reaches up to 87% was found, and it happens for the transference between the two innermost planets, whereas the time of flight increases by a factor of up to 6.6 if one makes use of the bi-elliptic transfer, this for the case of sending a probe from the innermost planet to the outermost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi-elliptic%20Hohmann%20transfer" title="bi-elliptic Hohmann transfer">bi-elliptic Hohmann transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=exoplanet" title=" exoplanet"> exoplanet</a>, <a href="https://publications.waset.org/abstracts/search?q=extrasolar%20system" title=" extrasolar system"> extrasolar system</a>, <a href="https://publications.waset.org/abstracts/search?q=Hohmann%20transfer" title=" Hohmann transfer"> Hohmann transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=TRAPPIST-1" title=" TRAPPIST-1"> TRAPPIST-1</a> </p> <a href="https://publications.waset.org/abstracts/98728/hohmann-transfer-and-bi-elliptic-hohmann-transfer-in-trappist-1-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1086</span> Exact Solutions of Discrete Sine-Gordon Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao-Qing%20Dai">Chao-Qing Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two families of exact travelling solutions for the discrete sine-Gordon equation are constructed based on the variable-coefficient Jacobian elliptic function method and different transformations. When the modulus of Jacobian elliptic function solutions tends to 1, soliton solutions can be obtained. Some soliton solutions degenerate into the known solutions in literatures. Moreover, dynamical properties of exact solutions are investigated. Our analysis and results may have potential values for certain applications in modern nonlinear science and textile engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title="exact solutions">exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=variable-coefficient%20Jacobian%20elliptic%20function%20method" title=" variable-coefficient Jacobian elliptic function method"> variable-coefficient Jacobian elliptic function method</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20sine-Gordon%20equation" title=" discrete sine-Gordon equation"> discrete sine-Gordon equation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20behaviors" title=" dynamical behaviors"> dynamical behaviors</a> </p> <a href="https://publications.waset.org/abstracts/48966/exact-solutions-of-discrete-sine-gordon-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1085</span> Approximating Maximum Speed on Road from Curvature Information of Bezier Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yushalify%20Misro">M. Yushalify Misro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ramli"> Ahmad Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamaludin%20M.%20Ali"> Jamaludin M. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bezier curves have useful properties for path generation problem, for instance, it can generate the reference trajectory for vehicles to satisfy the path constraints. Both algorithms join cubic Bezier curve segment smoothly to generate the path. Some of the useful properties of Bezier are curvature. In mathematics, the curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line. Another extrinsic example of curvature is a circle, where the curvature is equal to the reciprocal of its radius at any point on the circle. The smaller the radius, the higher the curvature thus the vehicle needs to bend sharply. In this study, we use Bezier curve to fit highway-like curve. We use the different approach to finding the best approximation for the curve so that it will resemble highway-like curve. We compute curvature value by analytical differentiation of the Bezier Curve. We will then compute the maximum speed for driving using the curvature information obtained. Our research works on some assumptions; first the Bezier curve estimates the real shape of the curve which can be verified visually. Even, though, the fitting process of Bezier curve does not interpolate exactly on the curve of interest, we believe that the estimation of speed is acceptable. We verified our result with the manual calculation of the curvature from the map. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speed%20estimation" title="speed estimation">speed estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20constraints" title=" path constraints"> path constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20trajectory" title=" reference trajectory"> reference trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=Bezier%20curve" title=" Bezier curve"> Bezier curve</a> </p> <a href="https://publications.waset.org/abstracts/36228/approximating-maximum-speed-on-road-from-curvature-information-of-bezier-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1084</span> Exploring Regularity Results in the Context of Extremely Degenerate Elliptic Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Ullah">Zahid Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Atlas%20Khan"> Atlas Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research endeavors to explore the regularity properties associated with a specific class of equations, namely extremely degenerate elliptic equations. These equations hold significance in understanding complex physical systems like porous media flow, with applications spanning various branches of mathematics. The focus is on unraveling and analyzing regularity results to gain insights into the smoothness of solutions for these highly degenerate equations. Elliptic equations, fundamental in expressing and understanding diverse physical phenomena through partial differential equations (PDEs), are particularly adept at modeling steady-state and equilibrium behaviors. However, within the realm of elliptic equations, the subset of extremely degenerate cases presents a level of complexity that challenges traditional analytical methods, necessitating a deeper exploration of mathematical theory. While elliptic equations are celebrated for their versatility in capturing smooth and continuous behaviors across different disciplines, the introduction of degeneracy adds a layer of intricacy. Extremely degenerate elliptic equations are characterized by coefficients approaching singular behavior, posing non-trivial challenges in establishing classical solutions. Still, the exploration of extremely degenerate cases remains uncharted territory, requiring a profound understanding of mathematical structures and their implications. The motivation behind this research lies in addressing gaps in the current understanding of regularity properties within solutions to extremely degenerate elliptic equations. The study of extreme degeneracy is prompted by its prevalence in real-world applications, where physical phenomena often exhibit characteristics defying conventional mathematical modeling. Whether examining porous media flow or highly anisotropic materials, comprehending the regularity of solutions becomes crucial. Through this research, the aim is to contribute not only to the theoretical foundations of mathematics but also to the practical applicability of mathematical models in diverse scientific fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elliptic%20equations" title="elliptic equations">elliptic equations</a>, <a href="https://publications.waset.org/abstracts/search?q=extremely%20degenerate" title=" extremely degenerate"> extremely degenerate</a>, <a href="https://publications.waset.org/abstracts/search?q=regularity%20results" title=" regularity results"> regularity results</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equations" title=" partial differential equations"> partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media%20flow" title=" porous media flow"> porous media flow</a> </p> <a href="https://publications.waset.org/abstracts/181735/exploring-regularity-results-in-the-context-of-extremely-degenerate-elliptic-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elliptic%20curve&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elliptic%20curve&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elliptic%20curve&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elliptic%20curve&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elliptic%20curve&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elliptic%20curve&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elliptic%20curve&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elliptic%20curve&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elliptic%20curve&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elliptic%20curve&page=37">37</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elliptic%20curve&page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elliptic%20curve&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>