CINXE.COM

Search results for: shear thinning

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: shear thinning</title> <meta name="description" content="Search results for: shear thinning"> <meta name="keywords" content="shear thinning"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="shear thinning" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="shear thinning"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1368</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: shear thinning</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1248</span> Influence of Composite Adherents Properties on the Dynamic Behavior of Double Lap Bonded Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Saleh">P. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Challita"> G. Challita</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Hazimeh"> R. Hazimeh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Khalil"> K. Khalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper 3D FEM analysis was carried out on double lap bonded joint with composite adherents subjected to dynamic shear. The adherents are made of Carbon/Epoxy while the adhesive is epoxy Araldite 2031. The maximum average shear stress and the stress homogeneity in the adhesive layer were examined. Three fibers textures were considered: UD; 2.5D and 3D with same volume fiber then a parametric study based on changing the thickness and the type of fibers texture in 2.5D was accomplished. Moreover, adherents’ dissimilarity was also investigated. It was found that the main parameter influencing the behavior is the longitudinal stiffness of the adherents. An increase in the adherents’ longitudinal stiffness induces an increase in the maximum average shear stress in the adhesive layer and an improvement in the shear stress homogeneity within the joint. No remarkable improvement was observed for dissimilar adherents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive" title="adhesive">adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20adherents" title=" composite adherents"> composite adherents</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20shear" title=" impact shear"> impact shear</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a> </p> <a href="https://publications.waset.org/abstracts/24695/influence-of-composite-adherents-properties-on-the-dynamic-behavior-of-double-lap-bonded-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1247</span> Strategic Shear Wall Arrangement in Buildings under Seismic Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akram%20Khelaifia">Akram Khelaifia</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Guettala"> Salah Guettala</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesreddine%20Djafar%20Henni"> Nesreddine Djafar Henni</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Chebili"> Rachid Chebili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete shear walls are pivotal in protecting buildings from seismic forces by providing strength and stiffness. This study highlights the importance of strategically placing shear walls and optimizing the shear wall-to-floor area ratio in building design. Nonlinear analyses were conducted on an eight-story building situated in a high seismic zone, exploring various scenarios of shear wall positioning and ratios to floor area. Employing the performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria such as inter-story drift ratio and damage levels. The results indicate that concentrating shear walls in the middle of the structure during the design phase yields superior performance compared to peripheral distributions. Utilizing shear walls that fully infill the frame and adopting compound shapes (e.g., Box, U, and L) enhances reliability in terms of inter-story drift. Conversely, the absence of complete shear walls within the frame leads to decreased stiffness and degradation of shorter beams. Increasing the shear wall-to-floor area ratio in building design enhances structural rigidity and reliability regarding inter-story drift, facilitating the attainment of desired performance levels. The study suggests that a shear wall ratio of 1.0% is necessary to meet validation criteria for inter-story drift and structural damage, as exceeding this percentage leads to excessive performance levels, proving uneconomical as structural elements operate near the elastic range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analyses" title="nonlinear analyses">nonlinear analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wall" title=" shear wall"> shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20hinge" title=" plastic hinge"> plastic hinge</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20level" title=" performance level"> performance level</a> </p> <a href="https://publications.waset.org/abstracts/182474/strategic-shear-wall-arrangement-in-buildings-under-seismic-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1246</span> Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Meddah">H. Meddah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Berediaf-Bourahla"> M. Berediaf-Bourahla</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20El-Djouzi"> B. El-Djouzi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bourahla"> N. Bourahla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20steel" title="cold-formed steel">cold-formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20technique" title=" modeling technique"> modeling technique</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wall%20panel" title=" shear wall panel"> shear wall panel</a> </p> <a href="https://publications.waset.org/abstracts/55753/numerical-analysis-of-cold-formed-steel-shear-wall-panels-subjected-to-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1245</span> Linear Regression Estimation of Tactile Comfort for Denim Fabrics Based on In-Plane Shear Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazli%20Uren">Nazli Uren</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Okur"> Ayse Okur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tactile comfort of a textile product is an essential property and a major concern when it comes to customer perceptions and preferences. The subjective nature of comfort and the difficulties regarding the simulation of human hand sensory feelings make it hard to establish a well-accepted link between tactile comfort and objective evaluations. On the other hand, shear behavior of a fabric is a mechanical parameter which can be measured by various objective test methods. The principal aim of this study is to determine the tactile comfort of commercially available denim fabrics by subjective measurements, create a tactile score database for denim fabrics and investigate the relations between tactile comfort and shear behavior. In-plane shear behaviors of 17 different commercially available denim fabrics with a variety of raw material and weave structure were measured by a custom design shear frame and conventional bias extension method in two corresponding diagonal directions. Tactile comfort of denim fabrics was determined via subjective customer evaluations as well. Aforesaid relations were statistically investigated and introduced as regression equations. The analyses regarding the relations between tactile comfort and shear behavior showed that there are considerably high correlation coefficients. The suggested regression equations were likewise found out to be statistically significant. Accordingly, it was concluded that the tactile comfort of denim fabrics can be estimated with a high precision, based on the results of in-plane shear behavior measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=denim%20fabrics" title="denim fabrics">denim fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=in-plane%20shear%20behavior" title=" in-plane shear behavior"> in-plane shear behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression%20estimation" title=" linear regression estimation"> linear regression estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=tactile%20comfort" title=" tactile comfort"> tactile comfort</a> </p> <a href="https://publications.waset.org/abstracts/60967/linear-regression-estimation-of-tactile-comfort-for-denim-fabrics-based-on-in-plane-shear-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1244</span> Effects on Cortical Thickness due to Musical Training in Elementary School Children: The Importance of Manual Structural Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Daneshmand">Saba Daneshmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Assal%20Habibi"> Assal Habibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studying musicians has become a prominent approach in macrostructural neuroscience research aimed at exploring the influence of environmental factors on brain development due to the significant impact of musical training on the brain. Although longitudinal studies can establish a direct causal relationship between musical training and brain development, only a limited number of studies have been conducted for a long enough duration. We recruited children for the experimental music group to participate in an after-school music program which was compared to the control group that had no such after-school program or enrichment activities. We ultimately calculated cortical thickness, a distinct measure of development. When a task such as playing an instrument occurs frequently, the associated neural processes become quicker and more refined over time, causing only the necessary pathways to remain; this, therefore, results in cortical thinning. The Brain and Music Lab has identified the anterior and posterior superior temporal gyrus, Heschl's gyrus, and the inferior regions to be involved with musicianship. The past study only found that the posterior superior temporal gyrus experienced a larger thinning in the music group compared to the control; however, we expect our ongoing study to produce similar but more intense results, including thinning in the other regions associated with musicianship. We believe the limited results of the previous study are due to its short duration which is why this ongoing and more lengthy longitudinal study is a significant and indispensable contribution in helping us discover the important developmental aspects of musical training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cortical%20thickness" title="cortical thickness">cortical thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=music" title=" music"> music</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroimaging" title=" neuroimaging"> neuroimaging</a>, <a href="https://publications.waset.org/abstracts/search?q=child%20development" title=" child development"> child development</a> </p> <a href="https://publications.waset.org/abstracts/192654/effects-on-cortical-thickness-due-to-musical-training-in-elementary-school-children-the-importance-of-manual-structural-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">16</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1243</span> Hydrodynamics of Shear Layers at River Confluences by Formation of Secondary Circulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Aghazadegan">Ali Aghazadegan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Shokri"> Ali Shokri</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Mullarney"> Julia Mullarney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> River confluences are areas where there is a lot of mixing, which is often caused by the formation of shear layers and helical motions. The hydrodynamics of secondary circulation at river confluences with low flow discharge ratios and a 90° junction angle are investigated in this study. The analysis is based on Delft 3D modelling, which includes a three-dimensional time-averaged velocity field, turbulence, and water surface levels that have been validated using laboratory data. Confluence structure was characterized by shear layer, secondary circulation, and mixing at the junction and post confluence channel. This study analysis formation of the shear layer by generation of secondary circulations in variation discharge ratios. The values of streamwise, cross-wise, and vertical components are used to estimate the secondary circulation observed within and downstream of the tributary mouth. These variables are estimated for three horizontal planes at Z = [0.14; 0.07; 0.02] and for eight cross-sections at X = [-0.1; 0.00; 0.10; 0.2; 0.30; 0.4; 0.5; 0.6] within a range of 0.05 Y 0.30. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=river%20confluence" title="river confluence">river confluence</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20layer" title=" shear layer"> shear layer</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20circulation" title=" secondary circulation"> secondary circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a> </p> <a href="https://publications.waset.org/abstracts/152370/hydrodynamics-of-shear-layers-at-river-confluences-by-formation-of-secondary-circulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1242</span> Numerical Modelling of Shear Zone and Its Implications on Slope Instability at Letšeng Diamond Open Pit Mine, Lesotho</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nt%C5%A1olo">M. Ntšolo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kalumba"> D. Kalumba</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Lefu"> N. Lefu</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Letlatsa"> G. Letlatsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rock mass damage due to shear tectonic activity has been investigated largely in geoscience where fluid transport is of major interest. However, little has been studied on the effect of shear zones on rock mass behavior and its impact on stability of rock slopes. At Let&scaron;eng Diamonds open pit mine in Lesotho, the shear zone composed of sheared kimberlite material, calcite and altered basalt is forming part of the haul ramp into the main pit cut 3. The alarming rate at which the shear zone is deteriorating has triggered concerns about both local and global stability of pit the walls. This study presents the numerical modelling of the open pit slope affected by shear zone at Let&scaron;eng Diamond Mine (LDM). Analysis of the slope involved development of the slope model by using a two-dimensional finite element code RS2. Interfaces between shear zone and host rock were represented by special joint elements incorporated in the finite element code. The analysis of structural geological mapping data provided a good platform to understand the joint network. Major joints including shear zone were incorporated into the model for simulation. This approach proved successful by demonstrating that continuum modelling can be used to evaluate evolution of stresses, strain, plastic yielding and failure mechanisms that are consistent with field observations. Structural control due to geological shear zone structure proved to be important in its location, size and orientation. Furthermore, the model analyzed slope deformation and sliding possibility along shear zone interfaces. This type of approach can predict shear zone deformation and failure mechanism, hence mitigation strategies can be deployed for safety of human lives and property within mine pits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title="numerical modeling">numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20pit%20mine" title=" open pit mine"> open pit mine</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20zone" title=" shear zone"> shear zone</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/60108/numerical-modelling-of-shear-zone-and-its-implications-on-slope-instability-at-letseng-diamond-open-pit-mine-lesotho" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1241</span> Behavior of Composite Construction Precast Reactive Powder RC Girder and Ordinary RC Deck Slab </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nameer%20A.%20Alwash">Nameer A. Alwash</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunia%20A.%20Abd%20AlRadha"> Dunia A. Abd AlRadha</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshed%20M.%20Aljanaby"> Arshed M. Aljanaby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study present an experimental investigation of composite behavior for hybrid reinforced concrete slab on girder from locale material in Iraq, ordinary concrete, NC, in slab and reactive powder concrete in girder ,RPC, with steel fibers of different types(straight, hook, and mix between its), tested as simply supported span subjected under two point loading, also study effects on overall behavior such as the ultimate load, crack width and deflection. The result shows that the most suitable for production girder from RPC by using 2% micro straight steel fiber, in terms of ultimate strength and min crack width. Also the results shows that using RPC in girder of composite section increased ultimate load by 79% when compared with same section made of NC, and increased the shear strength which erased the effect of changing reinforcement in shear, and using RPC in girder and epoxy (in shear transfer between composite section) (meaning no stirrups) equivalent presence of shear reinforcement by 90% when compared with same section using Φ8@100 as shear reinforcement. And the result shows that changing the cross section girder shape of the composite section to inverted T, with same section area, increased the ultimate load by 5% when compared with same section of rectangular shape girder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reactive%20powder%20concrete" title="reactive powder concrete">reactive powder concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=RPC" title=" RPC"> RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20concrete" title=" hybrid concrete"> hybrid concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20section" title=" composite section"> composite section</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20girder" title=" RC girder"> RC girder</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20slab" title=" RC slab"> RC slab</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20connecters" title=" shear connecters"> shear connecters</a>, <a href="https://publications.waset.org/abstracts/search?q=inverted%20T%20section" title=" inverted T section"> inverted T section</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20reinforcment" title=" shear reinforcment"> shear reinforcment</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20span%20over%20effective%20depth" title=" shear span over effective depth"> shear span over effective depth</a> </p> <a href="https://publications.waset.org/abstracts/23769/behavior-of-composite-construction-precast-reactive-powder-rc-girder-and-ordinary-rc-deck-slab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1240</span> Influence of Flexural Reinforcement on the Shear Strength of RC Beams Without Stirrups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guray%20Arslan">Guray Arslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Riza%20Secer%20Orkun%20Keskin"> Riza Secer Orkun Keskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and load-strain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of the diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20reinforcement" title=" flexural reinforcement"> flexural reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20beam" title=" reinforced concrete beam"> reinforced concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/25278/influence-of-flexural-reinforcement-on-the-shear-strength-of-rc-beams-without-stirrups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1239</span> Shear Strengthening of Reinforced Concrete Flat Slabs Using Prestressing Bars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haifa%20Saleh">Haifa Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamiran%20Abduka"> Kamiran Abduka</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20Kalfat"> Robin Kalfat</a>, <a href="https://publications.waset.org/abstracts/search?q=Riadh%20Al-Mahaidi"> Riadh Al-Mahaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effectiveness of using pre-stressing steel bars for shear strengthening of high strength reinforced concrete (RC) slabs was assessed. Two large-scale RC slabs were tested, one without shear reinforcement and the second strengthened against punching shear failure using pre-stressing steel bars. The two slabs had the same dimensions, flexural reinforcement ratio, loading and support arrangements. The experimental program including the method of strengthening, set up and instrumentation are described in this paper. The experimental results are analyzed and discussed in terms of the structural behavior of the RC slabs, the performance of pre-stressing steel bolts and failure modes. The results confirmed that the shear strengthening technique increased the shear capacity, ductility and yield capacity of the slab by up to 15%, 44%, and 22%, respectively compared to the unstrengthened slab. The strengthening technique also successfully contributed to changing the failure mode from a brittle punching shear mode to ductile flexural failure mode. Vic3D digital image correlation system (photogrammetry) was also used in this research. This technique holds several advantages over traditional contact instrumentations including that it is inexpensive, it produces results that are simple to analyze and it is remote visualization technique. The displacement profile along the span of the slab and rotation has been found and compared with the results obtained from traditional sensors. The performance of the photogrammetry technique was very good and the results of both measurements were in very close agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flat%20slab" title="flat slab">flat slab</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title=" photogrammetry"> photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=punching%20shear" title=" punching shear"> punching shear</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/89102/shear-strengthening-of-reinforced-concrete-flat-slabs-using-prestressing-bars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1238</span> Investigation of Extreme Gradient Boosting Model Prediction of Soil Strain-Shear Modulus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Mehryaar">Ehsan Mehryaar</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Bushehri"> Reza Bushehri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the principal parameters defining the clay soil dynamic response is the strain-shear modulus relation. Predicting the strain and, subsequently, shear modulus reduction of the soil is essential for performance analysis of structures exposed to earthquake and dynamic loadings. Many soil properties affect soil’s dynamic behavior. In order to capture those effects, in this study, a database containing 1193 data points consists of maximum shear modulus, strain, moisture content, initial void ratio, plastic limit, liquid limit, initial confining pressure resulting from dynamic laboratory testing of 21 clays is collected for predicting the shear modulus vs. strain curve of soil. A model based on an extreme gradient boosting technique is proposed. A tree-structured parzan estimator hyper-parameter tuning algorithm is utilized simultaneously to find the best hyper-parameters for the model. The performance of the model is compared to the existing empirical equations using the coefficient of correlation and root mean square error. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=XGBoost" title="XGBoost">XGBoost</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper-parameter%20tuning" title=" hyper-parameter tuning"> hyper-parameter tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20shear%20modulus" title=" soil shear modulus"> soil shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title=" dynamic response"> dynamic response</a> </p> <a href="https://publications.waset.org/abstracts/141477/investigation-of-extreme-gradient-boosting-model-prediction-of-soil-strain-shear-modulus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1237</span> Hemodynamics of a Cerebral Aneurysm under Rest and Exercise Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivam%20Patel">Shivam Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Y.%20Usmani"> Abdullah Y. Usmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physiological flow under rest and exercise conditions in patient-specific cerebral aneurysm models is numerically investigated. A finite-volume based code with BiCGStab as the linear equation solver is used to simulate unsteady three-dimensional flow field through the incompressible Navier-Stokes equations. Flow characteristics are first established in a healthy cerebral artery for both physiological conditions. The effect of saccular aneurysm on cerebral hemodynamics is then explored through a comparative analysis of the velocity distribution, nature of flow patterns, wall pressure and wall shear stress (WSS) against the reference configuration. The efficacy of coil embolization as a potential strategy of surgical intervention is also examined by modelling coil as a homogeneous and isotropic porous medium where the extended Darcy’s law, including Forchheimer and Brinkman terms, is applicable. The Carreau-Yasuda non-Newtonian blood model is incorporated to capture the shear thinning behavior of blood. Rest and exercise conditions correspond to normotensive and hypertensive blood pressures respectively. The results indicate that the fluid impingement on the outer wall of the arterial bend leads to abnormality in the distribution of wall pressure and WSS, which is expected to be the primary cause of the localized aneurysm. Exercise correlates with elevated flow velocity, vortex strength, wall pressure and WSS inside the aneurysm sac. With the insertion of coils in the aneurysm cavity, the flow bypasses the dilatation, leading to a decline in flow velocities and WSS. Particle residence time is observed to be lower under exercise conditions, a factor favorable for arresting plaque deposition and combating atherosclerosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20FVM" title="3D FVM">3D FVM</a>, <a href="https://publications.waset.org/abstracts/search?q=Cerebral%20aneurysm" title=" Cerebral aneurysm"> Cerebral aneurysm</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertension" title=" hypertension"> hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=coil%20embolization" title=" coil embolization"> coil embolization</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluid" title=" non-Newtonian fluid"> non-Newtonian fluid</a> </p> <a href="https://publications.waset.org/abstracts/73792/hemodynamics-of-a-cerebral-aneurysm-under-rest-and-exercise-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1236</span> The Application of Extend Spectrum-Based Pushover Analysis for Seismic Evaluation of Reinforced Concrete Wall Structures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Liu">Yang Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete (RC) shear wall structures are one of the most popular and efficient structural forms for medium- and high-rise buildings to resist the action of earthquake loading. Thus, it is of great significance to evaluate the seismic demands of the RC shear walls. In this paper, the application of the extend spectrum-based pushover analysis (ESPA) method on the seismic evaluation of the shear wall structure is presented. The ESPA method includes a nonlinear consecutive pushover analysis procedure and a linear elastic modal response analysis procedure to consider the combination of modes in both elastic and inelastic cases. It is found from the results of case study that the ESPA method can predict the seismic performance of shear wall structures, including internal forces and deformations very well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20shear%20wall" title="reinforced concrete shear wall">reinforced concrete shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20mode%20effect" title=" high mode effect"> high mode effect</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a> </p> <a href="https://publications.waset.org/abstracts/109639/the-application-of-extend-spectrum-based-pushover-analysis-for-seismic-evaluation-of-reinforced-concrete-wall-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1235</span> Bending and Shear Characteristics of Hollowcore Slab with Polystyrene Forms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang%20Kun%20Lee">Kang Kun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New I-slab system with polystyrene forms and precast concrete deck is proposed to reduce the construction period and the self-weight of the slab. This paper presents experimental works on the bending and shear of the I-slabs. Five specimens were tested. The main parameters of experiments are diameters of the holes made by polystyrene form and the thickness of slab. Structural performance of I-slab is evaluated on the basis of failure mode, load-displacement curve, and ultimate strengths. Based on the test results, it is found that the critical punching shear sections are changed as the test variables are different, hence resulting in the varied punching shear strengths. Test results indicate that the developed I-slab is very effective to increase the strength due to self-weight reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hollowcore%20slab" title="hollowcore slab">hollowcore slab</a>, <a href="https://publications.waset.org/abstracts/search?q=section%20force-deformation%20response" title=" section force-deformation response"> section force-deformation response</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20concrete%20deck" title=" precast concrete deck"> precast concrete deck</a> </p> <a href="https://publications.waset.org/abstracts/4392/bending-and-shear-characteristics-of-hollowcore-slab-with-polystyrene-forms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1234</span> Effect of Realistic Lubricant Properties on Thermal Electrohydrodynamic Lubrication Behavior in Circular Contacts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Puneet%20Katyal">Puneet Katyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Punit%20Kumar"> Punit Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A great deal of efforts has been done in the field of thermal effects in electrohydrodynamic lubrication (TEHL) during the last five decades. The focus was primarily on the development of an efficient numerical scheme to deal with the computational challenges involved in the solution of TEHL model; however, some important aspects related to the accurate description of lubricant properties such as viscosity, rheology and thermal conductivity in EHL point contact analysis remain largely neglected. A few studies available in this regard are based upon highly complex mathematical models difficult to formulate and execute. Using a simplified thermal EHL model for point contacts, this work sheds some light on the importance of accurate characterization of the lubricant properties and demonstrates that the computed TEHL characteristics are highly sensitive to lubricant properties. It also emphasizes the use of appropriate mathematical models with experimentally determined parameters to account for correct lubricant behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TEHL" title="TEHL">TEHL</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20thinning" title=" shear thinning"> shear thinning</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=conductivity" title=" conductivity"> conductivity</a> </p> <a href="https://publications.waset.org/abstracts/79195/effect-of-realistic-lubricant-properties-on-thermal-electrohydrodynamic-lubrication-behavior-in-circular-contacts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1233</span> A Study on Performance-Based Design Analysis for Vertical Extension of Apartment Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minsun%20Kim">Minsun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Sun%20Choi"> Ki-Sun Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Jee%20Lee"> Hyun-Jee Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Chan%20You"> Young-Chan You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is no reinforcement example for the renovation of the vertical and horizontal extension to existing building structures which is a shear wall type in apartment units in Korea. Among these existing structures, the structures which are shear wall type are rare overseas, while Korea has many shear wall apartment units. Recently, in Korea, a few researchers are trying to confirm the possibility of the vertical extension in existing building with shear walls. This study evaluates the possibility of the renovation by applying performance-based seismic design to existing buildings with shear walls in the analysis phase of the structure. In addition, force-based seismic design, used by general structural engineers in Korea, is carried out to compare the amount of reinforcement of walls, which is a main component of wall structure. As a result, we suggest that performance-based design obtains more economical advantages than force-based seismic design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20for%20extension" title="design for extension">design for extension</a>, <a href="https://publications.waset.org/abstracts/search?q=performance-based%20design" title=" performance-based design"> performance-based design</a>, <a href="https://publications.waset.org/abstracts/search?q=remodeling" title=" remodeling"> remodeling</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wall%20frame" title=" shear wall frame"> shear wall frame</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a> </p> <a href="https://publications.waset.org/abstracts/79730/a-study-on-performance-based-design-analysis-for-vertical-extension-of-apartment-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1232</span> Shear Strengthening of RC T-Beams by Means of CFRP Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20A.%20Farghal">Omar A. Farghal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed to experimentally and analytically investigate the contribution of bonded web carbon fiber reinforced polymer (CFRP) sheets to the shear strength of reinforced concrete (RC) T-beams. Two strengthening techniques using CFRP strips were applied along the shear-span zone: the first one is vertical U-jacket and the later is vertical strips bonded to the beam sides only. Fibers of both U-jacket and side sheets were vertically oriented (θ = 90°). Test results showed that the strengthening technique with U-jacket CFRP sheets improved the shear strength particularly. Three mechanisms of failure were recognized for the tested beams depending upon the end condition of the bonded CFRP sheet. Although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket CFRP sheets showed more or less a ductile behavior at a higher loading level up to a load level just before failure. As a consequence, these beams approved an acceptable enhancement in the structural ductility. Moreover, the obtained results concerning both the strains induced in the CFRP sheets and the maximum loads are used to study the applicability of the analytical models proposed in this study (ACI code) to predict: the nominal shear strength of the strengthened beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer" title="carbon fiber reinforced polymer">carbon fiber reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=wrapping" title=" wrapping"> wrapping</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strengthening" title=" shear strengthening"> shear strengthening</a> </p> <a href="https://publications.waset.org/abstracts/6324/shear-strengthening-of-rc-t-beams-by-means-of-cfrp-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1231</span> The Small Strain Effects to the Shear Strength and Maximum Stiffness of Post-Cyclic Degradation of Hemic Peat Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Adnan">Z. Adnan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Habib"> M. M. Habib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The laboratory tests for measuring the effects of small strain to the shear strength and maximum stiffness development of post-cyclic degradation of hemic peat are reviewed in this paper. A series of laboratory testing has been conducted to fulfil the objective of this research to study the post-cyclic behaviour of peat soil and focuses on the small strain characteristics. For this purpose, a number of strain-controlled static, cyclic and post-cyclic triaxial tests were carried out in undrained condition on hemic peat soil. The shear strength and maximum stiffness of hemic peat are evaluated immediately after post-cyclic monotonic testing. There are two soil samples taken from West Johor and East Malaysia peat soil. Based on these laboratories and field testing data, it was found that the shear strength and maximum stiffness of peat soil decreased in post-cyclic monotonic loading than its initial shear strength and stiffness. In particular, degradation in shear strength and stiffness is more sensitive for peat soil due to fragile and uniform fibre structures. Shear strength of peat soil, &tau;<sub>max</sub> = 12.53 kPa (Beaufort peat, BFpt) and 36.61 kPa (Parit Nipah peat, PNpt) decreased than its initial 58.46 kPa and 91.67 kPa. The maximum stiffness, G<sub>max</sub> = 0.23 and 0.25 decreased markedly with post-cyclic, G<sub>max</sub> = 0.04 and 0.09. Simple correlations between the G<sub>max</sub> and the &tau;<sub>max</sub> effects due to small strain, &epsilon; = 0.1, the G<sub>max</sub> values for post-cyclic are relatively low compared to its initial G<sub>max</sub>. As a consequence, the reported values and patterns of both the West Johor and East Malaysia peat soil are generally the same. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=post-cyclic" title="post-cyclic">post-cyclic</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20stiffness" title=" maximum stiffness"> maximum stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/65062/the-small-strain-effects-to-the-shear-strength-and-maximum-stiffness-of-post-cyclic-degradation-of-hemic-peat-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1230</span> Effect of Density on the Shear Modulus and Damping Ratio of Saturated Sand in Small Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kakavand">M. Kakavand</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Naeini"> S. A. Naeini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic properties of soil in small strains, especially for geotechnical engineers, are important for describing the behavior of soil and estimation of the earth structure deformations and structures, especially significant structures. This paper presents the effect of density on the shear modulus and damping ratio of saturated clean sand at various isotropic confining pressures. For this purpose, the specimens were compared with two different relative densities, loose Dr = 30% and dense Dr = 70%. Dynamic parameters were attained from a series of consolidated undrained fixed &ndash; free type torsional resonant column tests in small strain. Sand No. 161 is selected for this paper. The experiments show that by increasing sand density and confining pressure, the shear modulus increases and the damping ratio decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20properties" title="dynamic properties">dynamic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20ratio" title=" damping ratio"> damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20sand" title=" clean sand"> clean sand</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=confining%20pressure" title=" confining pressure"> confining pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20column%2Ftorsional%20simple%20shear" title=" resonant column/torsional simple shear"> resonant column/torsional simple shear</a>, <a href="https://publications.waset.org/abstracts/search?q=TSS" title=" TSS"> TSS</a> </p> <a href="https://publications.waset.org/abstracts/111345/effect-of-density-on-the-shear-modulus-and-damping-ratio-of-saturated-sand-in-small-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1229</span> Geometrical Analysis of an Atheroma Plaque in Left Anterior Descending Coronary Artery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sohrab%20Jafarpour">Sohrab Jafarpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Farokhi"> Hamed Farokhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Rahmati"> Mohammad Rahmati</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Gholipour"> Alireza Gholipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, a nonlinear fluid-structure interaction (FSI) biomechanical model of atherosclerosis in the left anterior descending (LAD) coronary artery is developed to perform a detailed sensitivity analysis of the geometrical features of an atheroma plaque. In the development of the numerical model, first, a 3D geometry of the diseased artery is developed based on patient-specific dimensions obtained from the experimental studies. The geometry includes four influential geometric characteristics: stenosis ratio, plaque shoulder-length, fibrous cap thickness, and eccentricity intensity. Then, a suitable strain energy density function (SEDF) is proposed based on the detailed material stability analysis to accurately model the hyperelasticity of the arterial walls. The time-varying inlet velocity and outlet pressure profiles are adopted from experimental measurements to incorporate the pulsatile nature of the blood flow. In addition, a computationally efficient type of structural boundary condition is imposed on the arterial walls. Finally, a non-Newtonian viscosity model is implemented to model the shear-thinning behaviour of the blood flow. According to the results, the structural responses in terms of the maximum principal stress (MPS) are affected more compared to the fluid responses in terms of wall shear stress (WSS) as the geometrical characteristics are varying. The extent of these changes is critical in the vulnerability assessment of an atheroma plaque. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atherosclerosis" title="atherosclerosis">atherosclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-Structure%20interaction%20modeling" title=" fluid-Structure interaction modeling"> fluid-Structure interaction modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20stability%20analysis" title=" material stability analysis"> material stability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20nonlinear%20biomechanics" title=" and nonlinear biomechanics"> and nonlinear biomechanics</a> </p> <a href="https://publications.waset.org/abstracts/150770/geometrical-analysis-of-an-atheroma-plaque-in-left-anterior-descending-coronary-artery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1228</span> Detailed Microzonation Studies around Denizli, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Aydin">A. Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Akyol"> E. Akyol</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Soyatik"> N. Soyatik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study has been presented which is a detailed work of seismic microzonation of the city center. For seismic microzonation area of 225 km2 has been selected as the study area. MASW (Multichannel analysis of surface wave) and seismic refraction methods have been used to generate one-dimensional shear wave velocity profile at 250 locations and two-dimensional profile at 60 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 60 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Denizli and the application and use of these results should be required and enforced by municipal authorities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20microzonation" title="seismic microzonation">seismic microzonation</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20management" title=" land use management"> land use management</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20refraction" title=" seismic refraction"> seismic refraction</a> </p> <a href="https://publications.waset.org/abstracts/12346/detailed-microzonation-studies-around-denizli-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1227</span> Experimental and Analytical Study of Various Types of Shear Connector Used for Cold-Formed Steel-Ferrocement Composite Beam </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talal%20Alhajri">Talal Alhajri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20M.%20Tahir"> Mahmood M. Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Alenezi"> Khaled Alenezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Ragaee"> Mohamad Ragaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the experimental tests carried out to evaluate the behaviour of different types of shear connectors proposed for cold formed steel (CFS) section integrated with ferrocement slab as potential used for composite beam. Ten push-out test specimens of cold-formed steel lipped channel sections connected with ferrocement slab were tested. Three types of shear connectors were studied comprised of bolts, self-drilling-screw and bar angle. The connection behavior is analysed in terms of its load-slip relationship and the failure mode. The parametric studies were performed to investigate the effect on the shear connector’s capacity by varying the number of layers of wire mesh used in ferrocement slab and types of shear connector used. An analytical analysis using ANSYS program and theoretical analysis (Eurocode 4) were carried out to verify the experiment results. The results show that the experimental, theoretical, and numerical values proved to have good agreement with each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20steel" title="cold-formed steel">cold-formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20beam" title=" composite beam"> composite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrocement" title=" ferrocement"> ferrocement</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=push-out%20test" title=" push-out test"> push-out test</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20connector" title=" shear connector"> shear connector</a> </p> <a href="https://publications.waset.org/abstracts/14006/experimental-and-analytical-study-of-various-types-of-shear-connector-used-for-cold-formed-steel-ferrocement-composite-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1226</span> Punching Shear Strengthening of Reinforced Concrete Flat Slabs Using Internal Square Patches of Carbon Fiber Reinforced Polymer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malik%20Assi">Malik Assi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents a strengthening technique for enhancing the punching shear resistance of concrete flat slabs. Internal square patches of CFRP were centrally installed inside 450*450mm concrete panels during casting at a chosen distance from the tension face to produce six simply supported samples. The dimensions of those patches ranged from 50*50mm to 360*360mm. All the examined slabs contained the same amount of tensile reinforcement, had identical dimensions, were designed according to the American Concrete Institute code (ACI) and tested to failure. Compared to the control unstrengthened spacemen, all the strengthened slabs have shown an enhancement in punching capacity and stiffness. This enhancement has been found to be proportional to the area of the installed CFRP patches. In addition to the reasonably enhanced stiffness and punching shear, this strengthening technique can change the slab failure mode from shear to flexural. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP%20patches" title="CFRP patches">CFRP patches</a>, <a href="https://publications.waset.org/abstracts/search?q=Flat%20slabs" title=" Flat slabs"> Flat slabs</a>, <a href="https://publications.waset.org/abstracts/search?q=Flexural" title=" Flexural"> Flexural</a>, <a href="https://publications.waset.org/abstracts/search?q=Stiffness" title=" Stiffness"> Stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=Punching%20shear" title=" Punching shear"> Punching shear</a> </p> <a href="https://publications.waset.org/abstracts/66194/punching-shear-strengthening-of-reinforced-concrete-flat-slabs-using-internal-square-patches-of-carbon-fiber-reinforced-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1225</span> Optimization of Friction Stir Spot Welding Process Parameters for Joining 6061 Aluminum Alloy Using Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Tashkandi">Mohammed A. Tashkandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawdat%20A.%20Al-Jarrah"> Jawdat A. Al-Jarrah</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Ibrahim"> Masoud Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the shear strength of the joints produced by friction stir spot welding process (FSSW). FSSW parameters such as tool rotational speed, plunge depth, shoulder diameter of the welding tool and dwell time play the major role in determining the shear strength of the joints. The effect of these four parameters on FSSW process as well as the shear strength of the welded joints was studied via five levels of each parameter. Taguchi method was used to minimize the number of experiments required to determine the fracture load of the friction stir spot-welded joints by incorporating independently controllable FSSW parameters. Taguchi analysis was applied to optimize the FSSW parameters to attain the maximum shear strength of the spot weld for this type of aluminum alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Friction%20Stir%20Spot%20Welding" title="Friction Stir Spot Welding">Friction Stir Spot Welding</a>, <a href="https://publications.waset.org/abstracts/search?q=Al6061%20alloy" title=" Al6061 alloy"> Al6061 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shear%20Strength" title=" Shear Strength"> Shear Strength</a>, <a href="https://publications.waset.org/abstracts/search?q=FSSW%20process%20parameters" title=" FSSW process parameters "> FSSW process parameters </a> </p> <a href="https://publications.waset.org/abstracts/21231/optimization-of-friction-stir-spot-welding-process-parameters-for-joining-6061-aluminum-alloy-using-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1224</span> Ultimate Shear Resistance of Plate Girders Part 2- Höglund Theory </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Elamary">Ahmed S. Elamary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultimate shear resistance (USR) of slender plate girders can be predicted theoretically using Cardiff theory or Hӧglund theory. This paper will be concerned with predicting the USR using Hӧglund theory and EC3. Two main factors can affect the USR, the panel width “b” and the web depth “d”, consequently, the panel aspect ratio (b/d) has to be identified by limits. In most of the previous study, there is no limit for panel aspect ratio indicated. In this paper theoretical analysis has been conducted to study the effect of (b/d) on the USR. The analysis based on ninety-six test results of steel plate girders subjected to shear executed and collected by others. New formula proposed to predict the percentage of the distance between the plastic hinges form in the flanges “c” to panel width “b”. Conservative limits of (c/b) have been suggested to get a consistent value of USR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultimate%20shear%20resistance" title="ultimate shear resistance">ultimate shear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20girder" title=" plate girder"> plate girder</a>, <a href="https://publications.waset.org/abstracts/search?q=H%D3%A7glund%E2%80%99s%20theory" title=" Hӧglund’s theory"> Hӧglund’s theory</a>, <a href="https://publications.waset.org/abstracts/search?q=EC3" title=" EC3"> EC3</a> </p> <a href="https://publications.waset.org/abstracts/2897/ultimate-shear-resistance-of-plate-girders-part-2-hoglund-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1223</span> Laboratory Study on Behavior of Compacted Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Mekkakia">M. M. Mekkakia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P%20Luong"> M. P Luong</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Arab"> A. Arab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These controlling the water content of compaction are a major concern of fundamental civil engineers. Also, the knowledge of the fundamentals of the behaviour of compacted clay soils is essential to predict and quantify the effects of a change in water content. The study of unsaturated soils is a very complex area which several studies are directed to in recent years. Our job work is to perform tests of Proctor, Oedometer and shear, on samples of unsaturated clay in order to see the influence of water content on the compressibility and the shear strength. The samples were prepared at different amounts of water from water content to optimum water contents close to saturation. This study thus allowed us to measure and monitor the parameters of compressibility and shear strength as a function of water content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laboratory%20tests" title="laboratory tests">laboratory tests</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soil" title=" unsaturated soil"> unsaturated soil</a>, <a href="https://publications.waset.org/abstracts/search?q=atterberg%20limits" title=" atterberg limits"> atterberg limits</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=compressibility" title=" compressibility"> compressibility</a>, <a href="https://publications.waset.org/abstracts/search?q=shear" title=" shear"> shear</a> </p> <a href="https://publications.waset.org/abstracts/3580/laboratory-study-on-behavior-of-compacted-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1222</span> Shear Strength Characteristics of Sand Mixed with Particulate Rubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Firas%20Daghistani">Firas Daghistani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossam%20Abuel%20Naga"> Hossam Abuel Naga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste tyres is a global problem that has a negative effect on the environment, where there are approximately one billion waste tyres discarded worldwide yearly. Waste tyres are discarded in stockpiles, where they provide harm to the environment in many ways. Finding applications to these materials can help in reducing this global problem. One of these applications is recycling these waste materials and using them in geotechnical engineering. Recycled waste tyre particulates can be mixed with sand to form a lightweight material with varying shear strength characteristics. Contradicting results were found in the literature on the inclusion of particulate rubber to sand, where some experiments found that the inclusion of particulate rubber can increase the shear strength of the mixture, while other experiments stated that the addition of particulate rubber decreases the shear strength of the mixture. This research further investigates the inclusion of particulate rubber to sand and whether it can increase or decrease the shear strength characteristics of the mixture. For the experiment, a series of direct shear tests were performed on a poorly graded sand with a mean particle size of 0.32 mm mixed with recycled poorly graded particulate rubber with a mean particle size of 0.51 mm. The shear tests were performedon four normal stresses 30, 55, 105, 200 kPa at a shear rate of 1 mm/minute. Different percentages ofparticulate rubber content were used in the mixture i.e., 10%, 20%, 30% and 50% of sand dry weight at three density states, namely loose, slight dense, and dense state. The size ratio of the mixture,which is the mean particle size of the particulate rubber divided by the mean particle size of the sand, was 1.59. The results identified multiple parameters that can influence the shear strength of the mixture. The parameters were: normal stress, particulate rubber content, mixture gradation, mixture size ratio, and the mixture’s density. The inclusion of particulate rubber tosand showed a decrease to the internal friction angle and an increase to the apparent cohesion. Overall, the inclusion of particulate rubber did not have a significant influenceon the shear strength of the mixture. For all the dense states at the low normal stresses 33 and 55 kPa, the inclusion of particulate rubber showed aslight increase in the shear strength where the peak was at 20% rubber content of the sand’s dry weight. On the other hand, at the high normal stresses 105, and 200 kPa, there was a slight decrease in the shear strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title="shear strength">shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20shear" title=" direct shear"> direct shear</a>, <a href="https://publications.waset.org/abstracts/search?q=sand-rubber%20mixture" title=" sand-rubber mixture"> sand-rubber mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20material" title=" waste material"> waste material</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20material" title=" granular material"> granular material</a> </p> <a href="https://publications.waset.org/abstracts/147188/shear-strength-characteristics-of-sand-mixed-with-particulate-rubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1221</span> Shear Modulus Degradation of a Liquefiable Sand Deposit by Shaking Table Tests </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henry%20Munoz">Henry Munoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mohsan"> Muhammad Mohsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Kiyota"> Takashi Kiyota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strength and deformability characteristics of a liquefiable sand deposit including the development of earthquake-induced shear stress and shear strain as well as soil softening via the progressive degradation of shear modulus were studied via shaking table experiments. To do so, a model of a liquefiable sand deposit was constructed and densely instrumented where accelerations, pressures, and displacements at different locations were continuously monitored. Furthermore, the confinement effects on the strength and deformation characteristics of the liquefiable sand deposit due to an external surcharge by placing a heavy concrete slab (i.e. the model of an actual structural rigid pavement) on the ground surface were examined. The results indicate that as the number of seismic-loading cycles increases, the sand deposit softens progressively as large shear strains take place in different sand elements. Liquefaction state is reached after the combined effects of the progressive degradation of the initial shear modulus associated with the continuous decrease in the mean principal stress, and the buildup of the excess of pore pressure takes place in the sand deposit. Finally, the confinement effects given by a concrete slab placed on the surface of the sand deposit resulted in a favorable increasing in the initial shear modulus, an increase in the mean principal stress and a decrease in the softening rate (i.e. the decreasing rate in shear modulus) of the sand, thus making the onset of liquefaction to take place at a later stage. This is, only after the sand deposit having a concrete slab experienced a higher number of seismic loading cycles liquefaction took place, in contrast to an ordinary sand deposit having no concrete slab. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus%20degradation" title=" shear modulus degradation"> shear modulus degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table" title=" shaking table"> shaking table</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a> </p> <a href="https://publications.waset.org/abstracts/78982/shear-modulus-degradation-of-a-liquefiable-sand-deposit-by-shaking-table-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1220</span> Shear Capacity of Rectangular Duct Panel Experiencing Internal Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Sivakumaran">K. S. Sivakumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Thanga"> T. Thanga</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Halabieh"> B. Halabieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The end panels of a large rectangular industrial duct, which experience significant internal pressures, also experience considerable transverse shear due to transfer of gravity loads to the supports. The current design practice of such thin plate panels for shear load is based on methods used for the design of plate girder webs. The structural arrangements, the loadings and the resulting behavior associated with the industrial duct end panels are, however, significantly different than those of the web of a plate girder. The large aspect ratio of the end panels gives rise to multiple bands of tension fields, whereas the plate girder web design is based on one tension field. In addition to shear, the industrial end panels are subjected to internal pressure which in turn produces significant membrane action. This paper reports a study which was undertaken to review the current industrial analysis and design methods and to propose a comprehensive method of designing industrial duct end panels for shear resistance. In this investigation, a nonlinear finite element model was developed to simulate the behavior of industrial duct end panel subjected to transverse shear and internal pressures. The model considered the geometric imperfections and constitutive relations for steels. Six scale independent dimensionless parameters that govern the behavior of such end panel were identified and were then used in an extensive parametric study. It was concluded that the plate slenderness dominates the shear strength of stockier end panels, and whereas, the aspect ratio and plate slenderness influence the shear strength of slender end panels. Based on these studies, this paper proposes design aids for estimating the shear strength of rectangular duct end panels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin%20plate" title="thin plate">thin plate</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20shear" title=" transverse shear"> transverse shear</a>, <a href="https://publications.waset.org/abstracts/search?q=tension%20field" title=" tension field"> tension field</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20study" title=" parametric study"> parametric study</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a> </p> <a href="https://publications.waset.org/abstracts/42058/shear-capacity-of-rectangular-duct-panel-experiencing-internal-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1219</span> Effect of Horizontal Joint Reinforcement on Shear Behaviour of RC Knee Connections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Zhang">N. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Kuang"> J. S. Kuang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mogili"> S. Mogili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To investigate seismic performance of beam-column knee joints, four full-scale reinforced concrete beam-column knee joints, which were fabricated to simulate those in as-built RC frame buildings designed to ACI 318-14 and ACI-ASCE 352R-02, were tested under reversed cyclic loading. In the experimental programme, particular emphasis was given to the effect of horizontal reinforcement (in format of inverted U-shape bars) on the shear strength and ductility capacity of knee joints. Test results are compared with those predicted by four seismic design codes, including ACI 318-14, EC8, NZS3101 and GB50010. It is seen that the current design codes of practice cannot accurately predict the shear strength of seismically designed knee joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large-scale%20tests" title="large-scale tests">large-scale tests</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20beam-column%20knee%20joints" title=" RC beam-column knee joints"> RC beam-column knee joints</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/59153/effect-of-horizontal-joint-reinforcement-on-shear-behaviour-of-rc-knee-connections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20thinning&amp;page=4" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20thinning&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20thinning&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20thinning&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20thinning&amp;page=4">4</a></li> <li class="page-item active"><span class="page-link">5</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20thinning&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20thinning&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20thinning&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20thinning&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20thinning&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20thinning&amp;page=45">45</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20thinning&amp;page=46">46</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20thinning&amp;page=6" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10