CINXE.COM

Search results for: urban thermal environment

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: urban thermal environment</title> <meta name="description" content="Search results for: urban thermal environment"> <meta name="keywords" content="urban thermal environment"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="urban thermal environment" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="urban thermal environment"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14849</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: urban thermal environment</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14849</span> Research on Urban Thermal Environment Climate Map Based on GIS: Taking Shapingba District, Chongqing as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Haoyue">Zhao Haoyue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the combined effects of climate change, urban expansion, and population growth, various environmental issues, such as urban heat islands and pollution, arise. Therefore, reliable information on urban environmental climate is needed to address and mitigate the negative effects. The emergence of urban climate maps provides a practical basis for urban climate regulation and improvement. This article takes Shapingba District, Chongqing City, as an example to study the construction method of urban thermal environment climate maps based on GIS spatial analysis technology. The thermal load, ventilation potential analysis map, and thermal environment comprehensive analysis map were obtained. Based on the classification criteria obtained from the climate map, corresponding protection and planning mitigation measures have been proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20climate" title="urban climate">urban climate</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20island%20analysis" title=" heat island analysis"> heat island analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20thermal%20environment" title=" urban thermal environment"> urban thermal environment</a> </p> <a href="https://publications.waset.org/abstracts/174949/research-on-urban-thermal-environment-climate-map-based-on-gis-taking-shapingba-district-chongqing-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14848</span> Analyzing Land use change and its impacts on the Urban Environment in a Fast Growing Metropolitan City of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nasar-u-Minallah">Muhammad Nasar-u-Minallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagmar%20Haase"> Dagmar Haase</a>, <a href="https://publications.waset.org/abstracts/search?q=Salman%20Qureshi"> Salman Qureshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a rapidly growing developing country cities are becoming more urbanized leading to modifications in urban climate. Rapid urbanization, especially unplanned urban land expansion, together with climate change has a profound impact on the urban settlement and urban thermal environment. Cities, particularly Pakistan are facing remarkably environmental issues and uneven development, and thus it is important to strengthen the investigation of urban environmental pressure brought by land-use changes and urbanization. The present study investigated the long term modification of the urban environment by urbanization utilizing Spatio-temporal dynamics of land-use change, urban population data, urban heat islands, monthly maximum, and minimum temperature of thirty years, multi remote sensing imageries, and spectral indices such as Normalized Difference Built-up Index and Normalized Difference Vegetation Index. The results indicate rapid growth in an urban built-up area and a reduction in vegetation cover in the last three decades (1990-2020). A positive correlation between urban heat islands and Normalized Difference Built-up Index, whereas a negative correlation between urban heat islands and the Normalized Difference Vegetation Index clearly shows how urbanization is affecting the local environment. The increase in air and land surface temperature temperatures is dangerous to human comfort. Practical approaches, such as increasing the urban green spaces and proper planning of the cities, have been suggested to help prevent further modification of the urban thermal environment by urbanization. The findings of this work are thus important for multi-sectorial use in the cities of Pakistan. By taking into consideration these results, the urban planners, decision-makers, and local government can make different policies to mitigate the urban land use impacts on the urban thermal environment in Pakistan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use" title="land use">land use</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20environment" title=" urban environment"> urban environment</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20climate" title=" local climate"> local climate</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahore" title=" Lahore"> Lahore</a> </p> <a href="https://publications.waset.org/abstracts/148915/analyzing-land-use-change-and-its-impacts-on-the-urban-environment-in-a-fast-growing-metropolitan-city-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14847</span> Application of RayMan Model in Quantifying the Impacts of the Built Environment and Surface Properties on Surrounding Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Karimi">Maryam Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouzbeh%20Nazari"> Rouzbeh Nazari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Understanding thermal distribution in the micro-urban climate has now been necessary for urban planners or designers due to the impact of complex micro-scale features of Urban Heat Island (UHI) on the built environment and public health. Hence, understanding the interrelation between urban components and thermal pattern can assist planners in the proper addition of vegetation to build-environment, which can minimize the UHI impact. To characterize the need for urban green infrastructure (UGI) through better urban planning, this study proposes the use of RayMan model to measure the impact of air quality and increased temperature based on urban morphology in the selected metropolitan cities. This project will measure the impact of build environment for urban and regional planning using human biometeorological evaluations (Tmrt). Methods: We utilized the RayMan model to estimate the Tmrt in an urban environment incorporating location and height of buildings and trees as a supplemental tool in urban planning and street design. The estimated Tmrt value will be compared with existing surface and air temperature data to find the actual temperature felt by pedestrians. Results: Our current results suggest a strong relationship between sky-view factor (SVF) and increased surface temperature in megacities based on current urban morphology. Conclusion: This study will help with Quantifying the impacts of the built environment and surface properties on surrounding temperature, identifying priority urban neighborhoods by analyzing Tmrt and air quality data at the pedestrian level, and characterizing the need for urban green infrastructure cooling potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=built%20environment" title="built environment">built environment</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20cooling" title=" urban cooling"> urban cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20heat" title=" extreme heat"> extreme heat</a> </p> <a href="https://publications.waset.org/abstracts/112555/application-of-rayman-model-in-quantifying-the-impacts-of-the-built-environment-and-surface-properties-on-surrounding-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14846</span> Evaluating the Impact of Urban Green Spaces on Urban Microclimate of Lahore: A Rapidly Urbanizing Metropolis of the Punjab-Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nasar-U-Minallah">Muhammad Nasar-U-Minallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagmar%20Haase"> Dagmar Haase</a>, <a href="https://publications.waset.org/abstracts/search?q=Salman%20Qureshi"> Salman Qureshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Safdar%20Ali%20Shirazi"> Safdar Ali Shirazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban green spaces (UGS) play a key role in the urban ecology of an area since they provide significant ecological services to compensate for natural environment functions damaged by the rapid growth of urbanization. The transformation of urban green specs to impervious landscapes has been recognized as a key factor prompting the distinctive urban heat and associated microclimatic changes. There is no doubt that urban green spaces offer a range of ecosystem services that can help to mitigate the ill effects of urbanization, heat anomalies, and climate change. The present study attempts to appraise the impact of urban green spaces on the urban thermal environment for the development of the microclimatic conditions in Lahore, Pakistan. The influence of urban heat has been studied through Landsat 8 data. The land surface temperature (LST) of Lahore was computed through the Radiative transfer method (RTM). The spatial variation of land surface temperature is retrieved to describe their local heat effect on urban microclimate. The association between the LST, normalized difference vegetation index, and the normalized difference built-up index are investigated to explore the impact of the urban green spaces and impervious surfaces on urban microclimate. The results of this study show significant changes in (impervious land surface 18% increase) land use within the study area. However, conversion of natural green cover to commercial and residential uses considerably increases the LST. Furthermore, results show that green spaces were the major heat sinks while impervious landscapes were the major heat source in the study area. Urban green spaces reveal 1 to 3℃ lower LST associated with their surrounding urban built-up area. This study shows that urban green spaces will help to mitigate the effect of urban microclimate and it is significant for the sustainable urban environment as well as to improve the quality of life of the urban inhabitants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20environmental" title="thermal environmental">thermal environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20green%20space" title=" urban green space"> urban green space</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20effect" title=" cooling effect"> cooling effect</a>, <a href="https://publications.waset.org/abstracts/search?q=microclimate" title=" microclimate"> microclimate</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahore" title=" Lahore"> Lahore</a> </p> <a href="https://publications.waset.org/abstracts/148868/evaluating-the-impact-of-urban-green-spaces-on-urban-microclimate-of-lahore-a-rapidly-urbanizing-metropolis-of-the-punjab-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14845</span> Urban Furniture: Relationship between Metropolises Environment and Humans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najmehossadat%20Enjoo">Najmehossadat Enjoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beautification means all mindfully measurements to improve quality of urban environment which makes the city more suitable for its inhabitants' life. Purpose of beautification is to provide an environment in which all citizens take pleasure. Beautification aims at urban environment's quality improvement. In space among buildings and constructions some supplementary elements are required to furnish urban life; equipment like house furniture makes life possible in a space surrounded with stones, concrete, and glass. Such elements regulate the flow of movement, rest, recreation and stress in a city and exhilarate it. Urban furniture is the common term used for such facilities and capabilities. Nowadays, experience and application of urban elements have proved that to what extent using proper equipment and furniture can positively affect the citizens and users of urban environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20servitudes" title="urban servitudes">urban servitudes</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20design" title=" urban design"> urban design</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20furniture" title=" urban furniture"> urban furniture</a>, <a href="https://publications.waset.org/abstracts/search?q=visage%20of%20city" title=" visage of city "> visage of city </a> </p> <a href="https://publications.waset.org/abstracts/1775/urban-furniture-relationship-between-metropolises-environment-and-humans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14844</span> Basic Study on a Thermal Model for Evaluating The Environment of Infant Facilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin%20Yuan">Xin Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Ryu"> Yuji Ryu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The indoor environment has a significant impact on occupants and a suitable indoor thermal environment can improve the children’s physical health and study efficiency during school hours. In this study, we explored the thermal environment in infant facilities classrooms for infants and children aged 1-5 and evaluated their thermal comfort. An infant facility in Fukuoka, Japan was selected for a case study to capture the infant and children’s thermal comfort characteristics in summer and winter from August 2019 to February 2020. Previous studies have pointed out using PMV indices to evaluate the thermal comfort for children could create errors that may lead to misleading results. Thus, to grasp the actual thermal environment and thermal comfort characteristics of infants and children, we retrieved the operative temperature of each child through the thermal model, based on the sensible heat transfer from the skin to the environment, and the measured classroom indoor temperature, relative humidity, and pocket temperature of children’s shorts. The statistical and comparative analysis of the results shows that (1) the operative temperature showed a large individual difference among children, with the maximum reached 6.25 °C. (2) The children might feel slightly cold in the classrooms in summer, with the frequencies of operative temperature within the interval of 26-28 ºC were only 5.33% and 16.6% for children respectively. (3) The thermal environment around children is more complicated in winter the operative temperature could exceed or fail to reach the thermal comfort temperature zone (20-23 ºC interval). (4) The environmental conditions surrounding the children may account for the reduction of their thermal comfort. The findings contribute to improving the understanding of the infant and children’s thermal comfort and provide valuable information for designers and governments to develop effective strategies for the indoor thermal environment considering the perspective of children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infant%20and%20children" title="infant and children">infant and children</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20environment" title=" thermal environment"> thermal environment</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20model" title=" thermal model"> thermal model</a>, <a href="https://publications.waset.org/abstracts/search?q=operative%20temperature." title=" operative temperature."> operative temperature.</a> </p> <a href="https://publications.waset.org/abstracts/148343/basic-study-on-a-thermal-model-for-evaluating-the-environment-of-infant-facilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14843</span> Development of a Mobile APP for Establishing Thermal Sensation Maps using Citizen Participation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong-Min%20Son">Jeong-Min Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Hee%20Eum"> Jeong-Hee Eum</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Kyu%20Min"> Jin-Kyu Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Uk-Je%20Sung"> Uk-Je Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju-Eun%20Kim"> Ju-Eun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While various environmental problems are severe due to climate change, especially in cities where population and development are concentrated, urban thermal environment problems such as heat waves and tropical nights are particularly worsening. Accordingly, the Korean government provides basic data related to the urban thermal environment to support each local government in effectively establishing policies to cope with heat waves. However, the basic data related to the thermal environment provided by the government has limitations in establishing a regional thermal adaptation plan with a minimum unit of cities, counties, and districts. In addition, the urban heat environment perceived by people differs in each region and space. Therefore, it is necessary to prepare practical measures that can be used to establish regional-based policies for heat wave adaptation by identifying people’s heat perception in the entire city. This study aims to develop a mobile phone application (APP) to gather people’s thermal sensation information and create Korea’s first thermal map based on this information. In addition, through this APP, citizens directly propose thermal adaptation policies, and urban planners and policymakers accept citizens' opinions, so this study provides a tool to solve local thermal environment problems. To achieve this purpose, first, the composition and contents of the app were discussed by examining various existing apps and cases for citizen participation and collection of heat information. In addition, factors affecting human thermal comfort, such as spatial, meteorological, and demographic factors, were investigated to construct the APP system. Based on these results, the basic version of the APP was developed. Second, the living lab methodology was adopted to gather people’s heat perception using the developed app to conduct overall evaluation and feedback of people on the APP. The people participating in the living lab were selected as those living in Daegu Metropolitan City, which is located in South Korea and annually records high temperatures. The user interface was improved through the living lab to make the app easier to use and the thermal map was modified. This study expects to establish high-resolution thermal maps for effective policies and measures and to solve local thermal environmental problems using the APP. The collected information can be used to evaluate spatial, meteorological, and demographic characteristics that affect the perceived heat of citizens. In addition, it is expected that the research can be expanded by gathering thermal information perceived by citizens of foreign cities as well as other cities in South Korea through the APP developed in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20application" title="mobile application">mobile application</a>, <a href="https://publications.waset.org/abstracts/search?q=living%20lab" title=" living lab"> living lab</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20map" title=" thermal map"> thermal map</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20adaptation" title=" climate change adaptation"> climate change adaptation</a> </p> <a href="https://publications.waset.org/abstracts/158047/development-of-a-mobile-app-for-establishing-thermal-sensation-maps-using-citizen-participation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14842</span> Identification of Thermally Critical Zones Based on Inter Seasonal Variation in Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakti%20Mandal">Sakti Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Varying distribution of land surface temperature in an urbanized environment is a globally addressed phenomenon. Usually has been noticed that criticality of surface temperature increases from the periphery to the urban centre. As the centre experiences maximum severity of heat throughout the year, it also represents most critical zone in terms of thermal condition. In this present study, an attempt has been taken to propose a quantitative approach of thermal critical zonation (TCZ) on the basis of seasonal temperature variation. Here the zonation is done by calculating thermal critical value (TCV). From the Landsat 8 thermal digital data of summer and winter seasons for the year 2014, the land surface temperature maps and thermally critical zonation has been prepared, and corresponding dataset has been computed to conduct the overall study of that particular study area. It is shown that TCZ can be clearly identified and analyzed by the help of inter-seasonal temperature range. The results of this study can be utilized effectively in future urban development and planning projects as well as a framework for implementing rules and regulations by the authorities for a sustainable urban development through an environmentally affable approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20critical%20values%20%28TCV%29" title="thermal critical values (TCV)">thermal critical values (TCV)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermally%20critical%20zonation%20%28TCZ%29" title=" thermally critical zonation (TCZ)"> thermally critical zonation (TCZ)</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20surface%20temperature%20%28LST%29" title=" land surface temperature (LST)"> land surface temperature (LST)</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat%208" title=" Landsat 8"> Landsat 8</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolkata%20Municipal%20Corporation%20%28KMC%29" title=" Kolkata Municipal Corporation (KMC)"> Kolkata Municipal Corporation (KMC)</a> </p> <a href="https://publications.waset.org/abstracts/85395/identification-of-thermally-critical-zones-based-on-inter-seasonal-variation-in-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14841</span> Thermal Comfort and Outdoor Urban Spaces in the Hot Dry City of Damascus, Syria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lujain%20Khraiba">Lujain Khraiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, there is a broad recognition that micro-climate conditions contribute to the quality of life in urban spaces outdoors, both from economical and social viewpoints. The consideration of urban micro-climate and outdoor thermal comfort in urban design and planning processes has become one of the important aspects in current related studies. However, these aspects are so far not considered in urban planning regulations in practice and these regulations are often poorly adapted to the local climate and culture. Therefore, there is a huge need to adapt the existing planning regulations to the local climate especially in cities that have extremely hot weather conditions. The overall aim of this study is to point out the complexity of the relationship between urban planning regulations, urban design, micro-climate and outdoor thermal comfort in the hot dry city of Damascus, Syria. The main aim is to investigate the temporal and spatial effects of micro-climate on urban surface temperatures and outdoor thermal comfort in different urban design patterns as a result of urban planning regulations during the extreme summer conditions. In addition, studying different alternatives of how to mitigate the surface temperature and thermal stress is also a part of the aim. The novelty of this study is to highlight the combined effect of urban surface materials and vegetation to develop the thermal environment. This study is based on micro-climate simulations using ENVI-met 3.1. The input data is calibrated according to a micro-climate fieldwork that has been conducted in different urban zones in Damascus. Different urban forms and geometries including the old and the modern parts of Damascus are thermally evaluated. The Physiological Equivalent Temperature (PET) index is used as an indicator for outdoor thermal comfort analysis. The study highlights the shortcomings of existing planning regulations in terms of solar protection especially at street levels. The results show that the surface temperatures in Old Damascus are lower than in the modern part. This is basically due to the difference in urban geometries that prevent the solar radiation in Old Damascus to reach the ground and heat up the surface whereas in modern Damascus, the streets are prescribed as wide spaces with high values of Sky View Factor (SVF is about 0.7). Moreover, the canyons in the old part are paved in cobblestones whereas the asphalt is the main material used in the streets of modern Damascus. Furthermore, Old Damascus is less stressful than the modern part (the difference in PET index is about 10 °C). The thermal situation is enhanced when different vegetation are considered (an improvement of 13 °C in the surface temperature is recorded in modern Damascus). The study recommends considering a detailed landscape code at street levels to be integrated in urban regulations of Damascus in order to achieve a better urban development in harmony with micro-climate and comfort. Such strategy will be very useful to decrease the urban warming in the city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-climate" title="micro-climate">micro-climate</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20thermal%20comfort" title=" outdoor thermal comfort"> outdoor thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning%20regulations" title=" urban planning regulations"> urban planning regulations</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20spaces" title=" urban spaces "> urban spaces </a> </p> <a href="https://publications.waset.org/abstracts/28784/thermal-comfort-and-outdoor-urban-spaces-in-the-hot-dry-city-of-damascus-syria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14840</span> A Literature Review of the Trend towards Indoor Dynamic Thermal Comfort</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Katungyi">James Katungyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Steady State thermal comfort model which dominates thermal comfort practice and which posits the ideal thermal conditions in a narrow range of thermal conditions does not deliver the expected comfort levels among occupants. Furthermore, the buildings where this model is applied consume a lot of energy in conditioning. This paper reviews significant literature about thermal comfort in dynamic indoor conditions including the adaptive thermal comfort model and alliesthesia. A major finding of the paper is that the adaptive thermal comfort model is part of a trend from static to dynamic indoor environments in aspects such as lighting, views, sounds and ventilation. Alliesthesia or thermal delight is consistent with this trend towards dynamic thermal conditions. It is within this trend that the two fold goal of increased thermal comfort and reduced energy consumption lies. At the heart of this trend is a rediscovery of the link between the natural environment and human well-being, a link that was partially severed by over-reliance on mechanically dominated artificial indoor environments. The paper concludes by advocating thermal conditioning solutions that integrate mechanical with natural thermal conditioning in a balanced manner in order to meet occupant thermal needs without endangering the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20thermal%20comfort" title="adaptive thermal comfort">adaptive thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=alliesthesia" title=" alliesthesia"> alliesthesia</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20environment" title=" natural environment"> natural environment</a> </p> <a href="https://publications.waset.org/abstracts/93485/a-literature-review-of-the-trend-towards-indoor-dynamic-thermal-comfort" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14839</span> The Research of Reliability of MEMS Device under Thermal Shock Test in Space Mission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Ziyu">Liu Ziyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gao%20Yongfeng"> Gao Yongfeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Muhua"> Li Muhua</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Jiahao"> Zhao Jiahao</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Song"> Meng Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of thermal shock on the operation of micro electromechanical systems (MEMS) were examined. All MEMS device were tested before and after three different conditions of thermal shock (from -55℃ to 85℃, from -65℃ to 125℃, from -65℃ to 200℃). The micro lens showed no changes after thermal shock, which shows that the design of the micro lens can be well adapted to the application environment in the space. The design of the micro mirror can be well adapted to the space application environment. The micro-magnetometer, RF MEMS switch and the micro accelerometer exhibited degradation and parameter drift after thermal shock, potential mechanical was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20shock%20test" title=" thermal shock test"> thermal shock test</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20environment" title=" space environment"> space environment</a> </p> <a href="https://publications.waset.org/abstracts/41898/the-research-of-reliability-of-mems-device-under-thermal-shock-test-in-space-mission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14838</span> Canopy Temperature Acquired from Daytime and Nighttime Aerial Data as an Indicator of Trees’ Health Status</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agata%20Zakrzewska">Agata Zakrzewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominik%20Kope%C4%87"> Dominik Kopeć</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Ochtyra"> Adrian Ochtyra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing number of new cameras, sensors, and research methods allow for a broader application of thermal data in remote sensing vegetation studies. The aim of this research was to check whether it is possible to use thermal infrared data with a spectral range (3.6-4.9 μm) obtained during the day and the night to assess the health condition of selected species of deciduous trees in an urban environment. For this purpose, research was carried out in the city center of Warsaw (Poland) in 2020. During the airborne data acquisition, thermal data, laser scanning, and orthophoto map images were collected. Synchronously with airborne data, ground reference data were obtained for 617 studied species (Acer platanoides, Acer pseudoplatanus, Aesculus hippocastanum, Tilia cordata, and Tilia × euchlora) in different health condition states. The results were as follows: (i) healthy trees are cooler than trees in poor condition and dying both in the daytime and nighttime data; (ii) the difference in the canopy temperatures between healthy and dying trees was 1.06oC of mean value on the nighttime data and 3.28oC of mean value on the daytime data; (iii) condition classes significantly differentiate on both daytime and nighttime thermal data, but only on daytime data all condition classes differed statistically significantly from each other. In conclusion, the aerial thermal data can be considered as an alternative to hyperspectral data, a method of assessing the health condition of trees in an urban environment. Especially data obtained during the day, which can differentiate condition classes better than data obtained at night. The method based on thermal infrared and laser scanning data fusion could be a quick and efficient solution for identifying trees in poor health that should be visually checked in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=middle%20wave%20infrared" title="middle wave infrared">middle wave infrared</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20imagery" title=" thermal imagery"> thermal imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20discoloration" title=" tree discoloration"> tree discoloration</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20trees" title=" urban trees"> urban trees</a> </p> <a href="https://publications.waset.org/abstracts/149926/canopy-temperature-acquired-from-daytime-and-nighttime-aerial-data-as-an-indicator-of-trees-health-status" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14837</span> Decoding Urban Stress Mapping Criteria in Urban Heritage Cores: Gandhi Park, Kerala Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ansal%20D%27cruz">Ansal D&#039;cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Anurup%20K."> Anurup K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Saritha%20G.%20Parambath"> Saritha G. Parambath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical and mental strain is a growing concern arising from various stressors in an urban context. However, these stressors are relatively less explored in the domain of urban design, especially in Indian cities where the central business district falls within the heritage core. An attempt is made in the context of the heritage core of Thiruvananthapuram city, Kerala, to understand and identify the connection between the built environment and urban stress. The criteria for establishing the indicators were obtained through a systematic literature review. A thorough study conducted in Gandhi Park, East Fort area using the identified criteria resulted in valuable insights into various urban stressors. Onsite surveys established the correlation between the built environment and user stress levels. The study concludes with guidelines for approaching urban stress in urban parks in an Indian context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20stress" title="urban stress">urban stress</a>, <a href="https://publications.waset.org/abstracts/search?q=built%20environment" title=" built environment"> built environment</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20health" title=" mental health"> mental health</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20stressors" title=" urban stressors"> urban stressors</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20design" title=" urban design"> urban design</a> </p> <a href="https://publications.waset.org/abstracts/184416/decoding-urban-stress-mapping-criteria-in-urban-heritage-cores-gandhi-park-kerala-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14836</span> Research on the Mode and Strategy of Urban Renewal in the Old Urban Area of China: A Case Study of Chongqing City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sun%20Ailu">Sun Ailu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Wanmin"> Zhao Wanmin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the process of rapid urbanization, old urban renewal is an important task in China&#39;s urban construction. This study, using status survey and Analytic Hierarchy Process (AHP) method, taking Chongqing of China as an example, puts forward the problems faced by the old urban area from the aspects of function, facilities and environment. Further, this study summarizes the types of the old urban area and proposes space renewal strategies for three typical old urban areas, such as old residential area, old factory and old market. These old urban areas are confronted with the problems of functional layout confounding, lack of infrastructure and poor living environment. At last, this paper proposes spatial strategies for urban renewal, which are hoped to be useful for urban renewal management in China. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=old%20urban%20renewal" title="old urban renewal">old urban renewal</a>, <a href="https://publications.waset.org/abstracts/search?q=renewal%20mode" title=" renewal mode"> renewal mode</a>, <a href="https://publications.waset.org/abstracts/search?q=renewal%20strategy" title=" renewal strategy"> renewal strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=Chongqing" title=" Chongqing"> Chongqing</a>, <a href="https://publications.waset.org/abstracts/search?q=China" title=" China"> China</a> </p> <a href="https://publications.waset.org/abstracts/94972/research-on-the-mode-and-strategy-of-urban-renewal-in-the-old-urban-area-of-china-a-case-study-of-chongqing-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14835</span> Improvement of Thermal Comfort Conditions in an Urban Space &quot;Case Study: The Square of Independence, Setif, Algeria&quot;</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ballout%20Amor">Ballout Amor</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmina%20Bouchahm"> Yasmina Bouchahm</a>, <a href="https://publications.waset.org/abstracts/search?q=Lacheheb%20Dhia%20Eddine%20Zakaria"> Lacheheb Dhia Eddine Zakaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several studies all around the world were conducted on the phenomenon of the urban heat island, and referring to the results obtained, one of the most important factors that influence this phenomenon is the mineralization of the cities which means the reducing of evaporative urban surfaces, replacing vegetation and wetlands with concrete and asphalt. The use of vegetation and water can change the urban environment and improve comfort, thus reduce the heat island. The trees act as a mask to the sun, wind, and sound, and also as a source of humidity which reduces air temperature and surrounding surfaces. Water also acts as a buffer to noise; it is also a source of moisture and regulates temperature not to mention the psychological effect on humans. Our main objective in this paper is to determine the impact of vegetation, ponds and fountains on the urban micro climate in general and on the thermal comfort of people along the Independence square in the Algerian city of Sétif, which is a semi-arid climate, in particularly. In order to reach this objective, a comparative study between different scenarios has been done; the use of the Envi-met program enabled us to model the urban environment of the Independence Square and to study the possibility of improving the conditions of comfort by adding an amount of vegetation and water ponds. After studying the results obtained (temperature, relative humidity, wind speed, PMV and PPD indicators), the efficiency of the additions we've made on the square was confirmed and this is what helped us to confirm our assumptions regarding the terms of comfort in the studied site, and in the end we are trying to develop recommendations and solutions which may contribute to improve the conditions for greater comfort in the Independence square. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comfort%20in%20outer%20space" title="comfort in outer space">comfort in outer space</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20environment" title=" urban environment"> urban environment</a>, <a href="https://publications.waset.org/abstracts/search?q=scenarisation" title=" scenarisation"> scenarisation</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation" title=" vegetation"> vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20ponds" title=" water ponds"> water ponds</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20square" title=" public square"> public square</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/18807/improvement-of-thermal-comfort-conditions-in-an-urban-space-case-study-the-square-of-independence-setif-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14834</span> Remote Sensing Approach to Predict the Impacts of Land Use/Land Cover Change on Urban Thermal Comfort Using Machine Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20E.%20Aldousaria">Ahmad E. Aldousaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulla%20Al%20Kafy"> Abdulla Al Kafy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urbanization is an incessant process that involves the transformation of land use/land cover (LULC), resulting in a reduction of cool land covers and thermal comfort zones (TCZs). This study explores the directional shrinkage of TCZs in Kuwait using Landsat satellite data from 1991 – 2021 to predict the future LULC and TCZ distribution for 2026 and 2031 using cellular automata (CA) and artificial neural network (ANN) algorithms. Analysis revealed a rapid urban expansion (40 %) in SE, NE, and NW directions and TCZ shrinkage in N – NW and SW directions with 25 % of the very uncomfortable area. The predicted result showed an urban area increase from 44 % in 2021 to 47 % and 52 % in 2026 and 2031, respectively, where uncomfortable zones were found to be concentrated around urban areas and bare lands in N – NE and N – NW directions. This study proposes an effective and sustainable framework to control TCZ shrinkage, including zero soil policies, planned landscape design, manmade water bodies, and rooftop gardens. This study will help urban planners and policymakers to make Kuwait an eco–friendly, functional, and sustainable country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20change" title="land cover change">land cover change</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20environment" title=" thermal environment"> thermal environment</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20cover%20loss" title=" green cover loss"> green cover loss</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/154624/remote-sensing-approach-to-predict-the-impacts-of-land-useland-cover-change-on-urban-thermal-comfort-using-machine-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14833</span> Evaluation of Thermal Comfort and Energy Consumption in Classroom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Kadek%20Candra%20Parmana%20Wiguna">I. Kadek Candra Parmana Wiguna</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiwik%20Budiawan"> Wiwik Budiawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Heru%20Prastawa"> Heru Prastawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semarang has become not only a metropolitan city but also a centre of government that has experienced significant changes in urban land use. Temperature increases in urban areas result from the expansion of development. The average temperature in Semarang reached 27.10°C to 29.60°C in 2022. The state of thermal sensation is very dependent on the mode of operation; Industrial Engineering building is mostly equipped with an air conditioner (AC). This study aims to analyze the thermal comfort level and energy consumption of air conditioners in classroom of industrial engineering. Participants in this study amounted to 31 students with data collection for 4 weeks. Results of the physical environment are Ta in: 25.52°C, Ta out: 32.71 °C, Rh in: 61.14%, Rh out: 59.43%, and Av in: 0.037 m/s. The results of clothing insulation are 41% of the respondents belonged to the categories 0.31 - 0.5 clo (summer domming) and 0.51 - 0.70 clo (spring clothing). Regarding the predicted mean vote (PMV), the average value is 0.63, and only 14.85% result of the predicted percentage dissatisfied (PPD). The neutral temperature with measurement Griffith’s constant 0.5/°C was 27.16°C, but the statistical test results show that the comfort temperature to use TSV ≤ 0 which is 28.55°C. The highest average power (watt) measurement results during week 3, which is 1613.65 watts. It is concluded in this study that the thermal comfort conditions in the classroom are adequate and acceptable to more than 90% of respondents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title="thermal comfort">thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=PMV%2FPPD" title=" PMV/PPD"> PMV/PPD</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20conditioner" title=" air conditioner"> air conditioner</a>, <a href="https://publications.waset.org/abstracts/search?q=TSV" title=" TSV"> TSV</a> </p> <a href="https://publications.waset.org/abstracts/188182/evaluation-of-thermal-comfort-and-energy-consumption-in-classroom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14832</span> Evaluating the Impact of Expansion on Urban Thermal Surroundings: A Case Study of Lahore Metropolitan City, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usman%20Ahmed%20%20Khan">Usman Ahmed Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urbanization directly affects the existing infrastructure, landscape modification, environmental contamination, and traffic pollution, especially if there is a lack of urban planning. Recently, the rapid urban sprawl has resulted in less developed green areas and has devastating environmental consequences. This study was aimed to study the past urban expansion rates and measure LST from satellite data. The land use land cover (LULC) maps of years 1996, 2010, 2013, and 2017 were generated using landsat satellite images. Four main classes, i.e., water, urban, bare land, and vegetation, were identified using unsupervised classification with iterative self-organizing data analysis (isodata) technique. The LST from satellite thermal data can be derived from different procedures: atmospheric, radiometric calibrations and surface emissivity corrections, classification of spatial changeability in land-cover. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, From 1996-2017, urban areas increased to about a considerable increase of about 48%. Few areas of the city also shown in a reduction in LST from the year 1996-2017 that actually began their transitional phase from rural to urban LULC. The mean temperature of the city increased averagely about 1ºC each year in the month of October. The green and vegetative areas witnessed a decrease in the area while a higher number of pixels increased in urban class. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LST" title="LST">LST</a>, <a href="https://publications.waset.org/abstracts/search?q=LULC" title=" LULC"> LULC</a>, <a href="https://publications.waset.org/abstracts/search?q=isodata" title=" isodata"> isodata</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a> </p> <a href="https://publications.waset.org/abstracts/118836/evaluating-the-impact-of-expansion-on-urban-thermal-surroundings-a-case-study-of-lahore-metropolitan-city-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14831</span> Indoor Thermal Comfort in Educational Buildings in the State of Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sana%20El-Azzeh">Sana El-Azzeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Farraj%20Al-Ajmi"> Farraj Al-Ajmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Al-Aqqad"> Abdulrahman Al-Aqqad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Salem"> Mohamed Salem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal comfort is defined according to ANSI/ASHRAE Standard 55 as a condition of mind that expresses satisfaction with the thermal environment and is assessed by subjective evaluation. Sustaining this standard of thermal comfort for occupants of buildings or other enclosures is one of the important goals of HVAC design engineers. This paper presents a study of thermal comfort and adaptive behaviors of occupants who occupies two locations at the campus of the Australian College of Kuwait. A longitudinal survey and field measurement were conducted to measure thermal comfort, adaptive behaviors, and indoor environment qualities. The study revealed that female occupants in the selected locations felt warmer than males and needed more air velocity and lower temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20thermal%20comfort" title="indoor thermal comfort">indoor thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20facility" title=" educational facility"> educational facility</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20analysis" title=" gender analysis"> gender analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20desert%20climate" title=" dry desert climate"> dry desert climate</a> </p> <a href="https://publications.waset.org/abstracts/132734/indoor-thermal-comfort-in-educational-buildings-in-the-state-of-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14830</span> Thermal Simulation for Urban Planning in Early Design Phases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20A.%20Romero%20Espinosa">Diego A. Romero Espinosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal simulations are used to evaluate comfort and energy consumption of buildings. However, the performance of different urban forms cannot be assessed precisely if an environmental control system and user schedules are considered. The outcome of such analysis would lead to conclusions that combine the building use, operation, services, envelope, orientation and density of the urban fabric. The influence of these factors varies during the life cycle of a building. The orientation, as well as the surroundings, can be considered a constant during the lifetime of a building. The structure impacts the thermal inertia and has the largest lifespan of all the building components. On the other hand, the building envelope is the most frequent renovated component of a building since it has a great impact on energy performance and comfort. Building services have a shorter lifespan and are replaced regularly. With the purpose of addressing the performance, an urban form, a specific orientation, and density, a thermal simulation method were developed. The solar irradiation is taken into consideration depending on the outdoor temperature. Incoming irradiation at low temperatures has a positive impact increasing the indoor temperature. Consequently, overheating would be the combination of high outdoor temperature and high irradiation at the façade. On this basis, the indoor temperature is simulated for a specific orientation of the evaluated urban form. Thermal inertia and building envelope performance are considered additionally as the materiality of the building. The results of different thermal zones are summarized using the 'Degree day method' for cooling and heating. During the early phase of a design process for a project, such as Masterplan, conclusions regarding urban form, density and materiality can be drawn by means of this analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20envelope" title="building envelope">building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=masterplanning" title=" masterplanning"> masterplanning</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20form" title=" urban form"> urban form</a> </p> <a href="https://publications.waset.org/abstracts/93163/thermal-simulation-for-urban-planning-in-early-design-phases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14829</span> Renewed Urban Waterfront: Spatial Conditions of a Contemporary Urban Space Typology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beate%20Niemann">Beate Niemann</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabian%20Pramel"> Fabian Pramel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The formerly industrially or militarily used Urban Waterfront is a potential area for urban development. Extensive interventions in the urban space come along with the development of these previously inaccessible areas in the city. The development of the Urban Waterfront in the European City is not subject to any recognizable urban paradigm. In this study, the development of the Urban Waterfront as a new urban space typology is analyzed by case studies of Urban Waterfront developments in European Cities. For humans, perceptible spatial conditions are categorized and it is identified whether the themed Urban Waterfront Developments are congruent or incongruent urban design interventions and which deviations the Urban Waterfront itself induce. As congruent urban design, a design is understood, which fits in the urban fabric regarding its similar spatial conditions to the surrounding. Incongruent urban design, however, shows significantly different conditions in its shape. Finally, the spatial relationship of the themed Urban Waterfront developments and their associated environment are compared in order to identify contrasts between new and old urban space. In this way, conclusions about urban design paradigms of the new urban space typology are tried to be drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composition" title="composition">composition</a>, <a href="https://publications.waset.org/abstracts/search?q=congruence" title=" congruence"> congruence</a>, <a href="https://publications.waset.org/abstracts/search?q=identity" title=" identity"> identity</a>, <a href="https://publications.waset.org/abstracts/search?q=paradigm" title=" paradigm"> paradigm</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20condition" title=" spatial condition"> spatial condition</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20design" title=" urban design"> urban design</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20development" title=" urban development"> urban development</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20waterfront" title=" urban waterfront"> urban waterfront</a> </p> <a href="https://publications.waset.org/abstracts/58261/renewed-urban-waterfront-spatial-conditions-of-a-contemporary-urban-space-typology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14828</span> Influence of Roofing Material on Indoor Thermal Comfort of Bamboo House</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thet%20Su%20Hlaing">Thet Su Hlaing</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoichi%20Kojima"> Shoichi Kojima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing desire for better indoor thermal performance with moderate energy consumption is becoming an issue for challenging today’s built environment. Studies related to the effective way of enhancing indoor thermal comfort had been done by approaching in numerous ways. Few studies have been focused on the correlation between building material and indoor thermal comfort of vernacular house. This paper analyzes the thermal comfort conditions of Bamboo House, mostly located in a hot and humid region. Depending on the roofing material, how the indoor environment varies will be observed through monitoring indoor and outdoor comfort measurement of Bamboo house as well as occupants’ preferable comfort condition. The result revealed that the indigenous roofing material mostly influences the indoor thermal environment by performing to have less effect from the outdoor temperature. It can keep the room cool with moderate thermal comfort, especially in the early morning and night, in the summertime without mechanical device assistance. After analyzing the performance of roofing material, which effect on indoor thermal comfort for 24 hours, it can be efficiently managed the time for availing mechanical cooling devices and make it supply only the necessary period of a day, which will lead to a partially reduce energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20house" title="bamboo house">bamboo house</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate" title=" hot and humid climate"> hot and humid climate</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20thermal%20comfort" title=" indoor thermal comfort"> indoor thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20indigenous%20roofing%20material" title=" local indigenous roofing material"> local indigenous roofing material</a> </p> <a href="https://publications.waset.org/abstracts/117485/influence-of-roofing-material-on-indoor-thermal-comfort-of-bamboo-house" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14827</span> Urban Resilience: Relation between COVID-19 and Urban Environment in Amman City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Layla%20Mujahed">Layla Mujahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> COVID-19 is an exam for all the city&rsquo;s systems. It shows many gaps in the systems such as healthcare, economic, social, and environment. This pandemic is paving for a new era, an era of technology and it has changed people&rsquo;s lives, such as physical, and emotional changes, and converting communication into digitalized. The effect of COVID-19 has covered all urban city parts. COVID-19 will not be the last pandemic our cities will face. For that, more researches focus on enhancing the quality of the urban environment. This pandemic encourages a rethinking of the environment&rsquo;s role, especially in cities. Cities are trying to provide the best suitable strategies and regulations to prevent the spread of COVID-19, and an example of that is Amman city. Amman has a high increment in the number of COVID-19 infected people, while it has controlled the situation for months. For that, this paper studies the relation between COVID-19 and urban environmental studies cases about cities around the world, and learns from their models to face COVID-19. In Amman, people&rsquo;s behavior has changed towards public transportation and public green spaces. N&shy;ew governmental regulations focus on increasing people&rsquo;s mental awareness, supporting local businesses, and enhancing neighborhood planning that can help Amman to face any future pandemics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20environment" title=" urban environment"> urban environment</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20resilience" title=" urban resilience"> urban resilience</a> </p> <a href="https://publications.waset.org/abstracts/131486/urban-resilience-relation-between-covid-19-and-urban-environment-in-amman-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14826</span> Research on Level Adjusting Mechanism System of Large Space Environment Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Xiao">Han Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei"> Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Huang%20Hai"> Huang Hai</a>, <a href="https://publications.waset.org/abstracts/search?q=Lv%20Shizeng"> Lv Shizeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space environment simulator is a device for spacecraft test. KM8 large space environment simulator built in Tianjing Space City is the largest as well as the most advanced space environment simulator in China. Large deviation of spacecraft level will lead to abnormally work of the thermal control device in spacecraft during the thermal vacuum test. In order to avoid thermal vacuum test failure, level adjusting mechanism system is developed in the KM8 large space environment simulator as one of the most important subsystems. According to the level adjusting requirements of spacecraft’s thermal vacuum tests, the four fulcrums adjusting model is established. By means of collecting level instruments and displacement sensors data, stepping motors controlled by PLC drive four supporting legs simultaneous movement. In addition, a PID algorithm is used to control the temperature of supporting legs and level instruments which long time work under the vacuum cold and black environment in KM8 large space environment simulator during thermal vacuum tests. Based on the above methods, the data acquisition and processing, the analysis and calculation, real time adjustment and fault alarming of the level adjusting mechanism system are implemented. The level adjusting accuracy reaches 1mm/m, and carrying capacity is 20 tons. Debugging showed that the level adjusting mechanism system of KM8 large space environment simulator can meet the thermal vacuum test requirement of the new generation spacecraft. The performance and technical indicators of the level adjusting mechanism system which provides important support for the development of spacecraft in China have been ahead of similar equipment in the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator" title="space environment simulator">space environment simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20vacuum%20test" title=" thermal vacuum test"> thermal vacuum test</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20adjusting" title=" level adjusting"> level adjusting</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20mechanism" title=" parallel mechanism"> parallel mechanism</a> </p> <a href="https://publications.waset.org/abstracts/69565/research-on-level-adjusting-mechanism-system-of-large-space-environment-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14825</span> A Systematic Approach to Mitigate the Impact of Increased Temperature and Air Pollution in Urban Settings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samain%20Sabrin">Samain Sabrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Pratt"> Joshua Pratt</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Bryk"> Joshua Bryk</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Karimi"> Maryam Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Globally, extreme heat events have led to a surge in the number of heat-related moralities. These incidents are further exacerbated in high-density population centers due to the Urban Heat Island (UHI) effect. Varieties of anthropogenic activities such as unsupervised land surface modifications, expansion of impervious areas, and lack of use of vegetation are all contributors to an increase in the amount of heat flux trapped by an urban canopy which intensifies the UHI effect. This project aims to propose a systematic approach to measure the impact of air quality and increased temperature based on urban morphology in the selected metropolitan cities. This project will measure the impact of build environment for urban and regional planning using human biometeorological evaluations (mean radiant temperature, Tmrt). We utilized the Rayman model (capable of calculating short and long wave radiation fluxes affecting the human body) to estimate the Tmrt in an urban environment incorporating location and height of buildings and trees as a supplemental tool in urban planning, and street design. Our current results suggest a strong correlation between building height and increased surface temperature in megacities. This model will help with; 1. Quantify the impacts of the built environment and surface properties on surrounding temperature, 2. Identify priority urban neighborhoods by analyzing Tmrt and air quality data at pedestrian level, 3. Characterizing the need for urban green infrastructure or better urban planning- maximizing the cooling benefit from existing Urban Green Infrastructure (UGI), and 4. Developing a hierarchy of streets for new UGI integration and propose new UGI based on site characteristics and cooling potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title="air quality">air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20mitigation" title=" heat mitigation"> heat mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=human-biometeorological%20indices" title=" human-biometeorological indices"> human-biometeorological indices</a>, <a href="https://publications.waset.org/abstracts/search?q=increased%20temperature" title=" increased temperature"> increased temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20radiant%20temperature" title=" mean radiant temperature"> mean radiant temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20flux" title=" radiation flux"> radiation flux</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20canopy" title=" urban canopy"> urban canopy</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a> </p> <a href="https://publications.waset.org/abstracts/106274/a-systematic-approach-to-mitigate-the-impact-of-increased-temperature-and-air-pollution-in-urban-settings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14824</span> Building on Local People Capacities as Key Resources in Making Livable Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouassim%20Chemrouk">Ouassim Chemrouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Naima%20Chabbi-Chemrouk"> Naima Chabbi-Chemrouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contemporary settlements and urban places are becoming increasingly complex involving technologically advanced building materials, and mechanical systems for controlling environmental quality such as thermal comfort, lighting, acoustics and other building performances. These systems, which rely exclusively on the utilization of nonrenewable energy are often expensive and environment pollutants. The proposed paper illustrates the important role of traditional knowledge and practice and what is sometimes called intangible cultural heritage assume in the design of the built environment. It shows that some traditional “ways of doing” that are transmitted at local scales from generation to generation could be built upon to become key resources for more livable urban places. Based on evidence from documentary sources and field surveys, it also shows how different attempts were made to translate some traditional practices and local know-how in the proposal of new urban schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=key%20resource" title="key resource">key resource</a>, <a href="https://publications.waset.org/abstracts/search?q=know-how" title=" know-how"> know-how</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20people" title=" local people"> local people</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20building" title=" capacity building"> capacity building</a>, <a href="https://publications.waset.org/abstracts/search?q=liveable%20built%20environments" title=" liveable built environments"> liveable built environments</a> </p> <a href="https://publications.waset.org/abstracts/42266/building-on-local-people-capacities-as-key-resources-in-making-livable-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14823</span> Using Manipulating Urban Layouts to Enhance Ventilation and Thermal Comfort in Street Canyons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su%20Ying-Ming">Su Ying-Ming</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High density of high rise buildings in urban areas lead to a deteriorative Urban Heat Island Effect, gradually. This study focuses on discussing the relationship between urban layout and ventilation comfort in street canyons. This study takes Songjiang Nanjing Rd. area of Taipei, Taiwan as an example to evaluate the wind environment comfort index by field measurement and Computational Fluid Dynamics (CFD) to improve both the quality and quantity of the environment. In this study, different factors including street blocks size, the width of buildings, street width ratio and the direction of the wind were used to discuss the potential of ventilation. The environmental wind field was measured by the environmental testing equipment, Testo 480. Evaluation of blocks sizes, the width of buildings, street width ratio and the direction of the wind was made under the condition of constant floor area with the help of Stimulation CFD to adjust research methods for optimizing regional wind environment. The results of this study showed the width of buildings influences the efficiency of outdoor ventilation; improvement of the efficiency of ventilation with large street width was also shown. The study found that Block width and H/D value and PR value has a close relationship. Furthermore, this study showed a significant relationship between the alteration of street block geometry and outdoor comfortableness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20ventilation%20path" title="urban ventilation path">urban ventilation path</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation%20efficiency%20indices" title=" ventilation efficiency indices"> ventilation efficiency indices</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20layout" title=" building layout"> building layout</a> </p> <a href="https://publications.waset.org/abstracts/67206/using-manipulating-urban-layouts-to-enhance-ventilation-and-thermal-comfort-in-street-canyons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14822</span> The Aspect of Urban Inequality after Urban Redevelopment Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungik%20Kang">Sungik Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ja-Hoon%20Koo"> Ja-Hoon Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Globally, urban environments have become unequal, and cities have been segmented by income class. It is predicted that urban inequality has arisen by urban redevelopment and reconstruction projects that improve the urban environment and innovate cities. This study aims to analyze the occurrence and characteristics of urban inequality by using the housing price and sale price and demonstrating the correlation with the urban redevelopment project. This study measures 14 years of urban inequality index for 25 autonomous districts in Seoul and analyzes the correlation between urban inequality with urban redevelopment projects. As a conclusion of this study, first, the urban inequality index of Seoul has been continuously rising since 2015. Trends from 2006 to 2019 have been in U-curved shape in between 2015. In 2019, Seoul's urban inequality index was 0.420, a level similar to that of the 2007 financial crisis. Second, the correlation between urban redevelopment and urban inequality was not statistically significant. Therefore, we judged that urban redevelopment's scale or project structure has nothing with urban inequality. Third, while district designation of urban reconstruction temporarily alleviates urban inequality, the completion of the project increases urban inequality. When designating a district, urban inequality is likely to decrease due to decreased outdated housing transactions. However, the correlation with urban inequality increases as expensive houses has been placed after project completion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20inequality" title="urban inequality">urban inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20redevelopment%20projects" title=" urban redevelopment projects"> urban redevelopment projects</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20reconstruction%20projects" title=" urban reconstruction projects"> urban reconstruction projects</a>, <a href="https://publications.waset.org/abstracts/search?q=housing%20price%20inequality" title=" housing price inequality"> housing price inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20analysis" title=" panel analysis"> panel analysis</a> </p> <a href="https://publications.waset.org/abstracts/141883/the-aspect-of-urban-inequality-after-urban-redevelopment-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14821</span> Review of Urban Vitality in China: Exploring the Theoretical Framework, Characteristics, and Assessment Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Wei">Dong Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu%20Jinxiu"> Wu Jinxiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As China's urban construction enters a new phase of 'stock optimization,' the key point of urban development has shifted to the development and reuse of existing public space. However, cities still face a series of challenges, such as the shortage of space quantity and insufficient space quality, which indirectly affect urban vitality. A review of the vitality of urban public space will significantly contribute to optimizing the quality of the urban built environment. It firstly analyses the research hotspots of urban vitality at home and abroad, based on a semi-systematic literature review. Then this paper summarizes the theoretical definitions of the vitality of urban public space and sorts out the influencing factors from the perspectives of society, environment, and users. Lastly, the paper concludes with the mainstream quantitative and evaluation methods, such as linear evaluation and integrated evaluation. This paper renders a multi-theoretical perspective to understand the characteristics and evaluation system of the vitality of public space, which helps to acknowledge the dynamic relationship between users, urban environment, and vitality. It also looks forward to providing optimal design strategies for constructing a vigorous public space in future cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=public%20space" title="public space">public space</a>, <a href="https://publications.waset.org/abstracts/search?q=quantification%20of%20vitality" title=" quantification of vitality"> quantification of vitality</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20vitality" title=" spatial vitality"> spatial vitality</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20vitality" title=" urban vitality"> urban vitality</a> </p> <a href="https://publications.waset.org/abstracts/152188/review-of-urban-vitality-in-china-exploring-the-theoretical-framework-characteristics-and-assessment-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14820</span> Simulation of the Impact of Street Tree Species on the Urban Microclimate: A Case Study of El-Houria Neighborhood in Mostaganem, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Nora">Bachir Nora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integrating vegetation into urban environments is crucial for enhancing quality of life, particularly through microclimate regulation and the reduction of urban heat islands. This study investigates the impact of different street tree species on the urban microclimate in the El-Houria neighborhood of Mostaganem, Algeria, using the ENVI-met software for advanced environmental simulations. it focused on three tree species—Robinia pseudo-acacia, Populus alba, and Jacaranda mimosifolia—to evaluate their effectiveness in influencing key meteorological parameters, including air temperature, mean radiant temperature, surface temperature, and the predicted percentage of dissatisfied (PPD) thermal comfort index. Statistical analyses were conducted to compare these parameters across different tree species, ensuring the robustness of our findings. Our results indicate that Robinia pseudo-acacia is the most effective species, capable of reducing air temperature by up to 1°C and surface temperature by up to 12°C. These findings underscore the importance of strategically selecting tree species to mitigate the effects of climate change, improve thermal comfort, and reduce energy consumption in urban settings. The study offers valuable insights for urban planners and policymakers, providing practical guidance for sustainable urban design practices tailored to the Algerian context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20islands" title="heat islands">heat islands</a>, <a href="https://publications.waset.org/abstracts/search?q=microclimate%20simulation" title=" microclimate simulation"> microclimate simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=street%20tree%20alignment" title=" street tree alignment"> street tree alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20urban%20design" title=" sustainable urban design"> sustainable urban design</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort." title=" thermal comfort."> thermal comfort.</a> </p> <a href="https://publications.waset.org/abstracts/189371/simulation-of-the-impact-of-street-tree-species-on-the-urban-microclimate-a-case-study-of-el-houria-neighborhood-in-mostaganem-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=urban%20thermal%20environment&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=urban%20thermal%20environment&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=urban%20thermal%20environment&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=urban%20thermal%20environment&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=urban%20thermal%20environment&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=urban%20thermal%20environment&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=urban%20thermal%20environment&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=urban%20thermal%20environment&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=urban%20thermal%20environment&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=urban%20thermal%20environment&amp;page=494">494</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=urban%20thermal%20environment&amp;page=495">495</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=urban%20thermal%20environment&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10