CINXE.COM

Eva Casoni | Universitat Politecnica de Catalunya - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Eva Casoni | Universitat Politecnica de Catalunya - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="r10PWH8GNC60tLMKJEokslB6-AlQ6lDdioepqP5IM_nGeSRfF_xRJzWXLgvu7JkFfkKKNGe8-LSkEtW0vNAR-g" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni","image":"https://0.academia-photos.com/14723476/4010087/4682406/s200_eva.casoni.jpg","sameAs":[]},"dateCreated":"2014-08-05T01:49:49-07:00","dateModified":"2023-02-21T23:55:40-08:00","name":"Eva Casoni","description":"","image":"https://0.academia-photos.com/14723476/4010087/4682406/s200_eva.casoni.jpg","thumbnailUrl":"https://0.academia-photos.com/14723476/4010087/4682406/s65_eva.casoni.jpg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/14723476/4010087/4682406/s200_eva.casoni.jpg","width":200},"sameAs":[],"relatedLink":"https://www.academia.edu/97323747/A_phase_field_approach_enhanced_with_a_cohesive_zone_model_for_modeling_delamination_induced_by_matrix_cracking"}</script><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" media="all" /> <meta name="author" content="eva casoni" /> <meta name="description" content="Eva Casoni, Universitat Politecnica de Catalunya: 12 Followers, 1 Following, 15 Research papers. Research interests: Applied Mathematics, Applied mathematics…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'fc9704ab29969ace70ae5a7183a1ea87c53b7b1c'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13891,"monthly_visitors":"31 million","monthly_visitor_count":31300000,"monthly_visitor_count_in_millions":31,"user_count":286504738,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1744018878000); window.Aedu.timeDifference = new Date().getTime() - 1744018878000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" media="all" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-7a64a3c38a29bc41c7f849e23ebd5bcb2b2df1201e0997a11aeca732433c8f4f.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-fcdc3d92f84da311a1719c39a9ce23e4fc404efc061db3295349654890f352b9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://upc.academia.edu/EvaCasoni" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-f7aa9c07f7280b761db42ad8596e5fda81657e2511386a62cbe852b9a6f8fa36.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni","photo":"https://0.academia-photos.com/14723476/4010087/4682406/s65_eva.casoni.jpg","has_photo":true,"department":{"id":93301,"name":"ETSEIB","url":"https://upc.academia.edu/Departments/ETSEIB/Documents","university":{"id":1855,"name":"Universitat Politecnica de Catalunya","url":"https://upc.academia.edu/"}},"position":"Department Member","position_id":4,"is_analytics_public":false,"interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":96281,"name":"Applied mathematics and Modelling","url":"https://www.academia.edu/Documents/in/Applied_mathematics_and_Modelling"},{"id":125863,"name":"Applied Mathematics and Computational Science","url":"https://www.academia.edu/Documents/in/Applied_Mathematics_and_Computational_Science"},{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic"},{"id":2915,"name":"Design Methods","url":"https://www.academia.edu/Documents/in/Design_Methods"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://upc.academia.edu/EvaCasoni&quot;,&quot;location&quot;:&quot;/EvaCasoni&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;upc.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/EvaCasoni&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-a0f97fac-d86b-441a-8321-01314801d796"></div> <div id="ProfileCheckPaperUpdate-react-component-a0f97fac-d86b-441a-8321-01314801d796"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Eva Casoni" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/14723476/4010087/4682406/s200_eva.casoni.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Eva Casoni</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://upc.academia.edu/">Universitat Politecnica de Catalunya</a>, <a class="u-tcGrayDarker" href="https://upc.academia.edu/Departments/ETSEIB/Documents">ETSEIB</a>, <span class="u-tcGrayDarker">Department Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Eva" data-follow-user-id="14723476" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="14723476"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">12</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;"><b>Address:&nbsp;</b>Barcelona, Catalonia, Spain<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/LingWu1"><img class="profile-avatar u-positionAbsolute" alt="Ling Wu related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/LingWu1">Ling Wu</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/PatrickAmy"><img class="profile-avatar u-positionAbsolute" alt="Amy Patrick related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/42146684/11379336/12693460/s200_amy.patrick.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/PatrickAmy">Amy Patrick</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/Sadikshuvo5"><img class="profile-avatar u-positionAbsolute" alt="Sadik shuvo related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/212578970/71660800/65048989/s200_sadik.shuvo.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/Sadikshuvo5">Sadik shuvo</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/BassamMAHMOUD15"><img class="profile-avatar u-positionAbsolute" alt="Bassam MAHMOUD related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/249219917/103088680/92261047/s200_bassam.mahmoud.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/BassamMAHMOUD15">Bassam MAHMOUD</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/TinhQBui"><img class="profile-avatar u-positionAbsolute" alt="Tinh Q. Bui related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/190352086/53499249/41627491/s200_tinh_q..bui.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/TinhQBui">Tinh Q. Bui</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://oxford.academia.edu/EmilioMart%C3%ADnezPa%C3%B1eda"><img class="profile-avatar u-positionAbsolute" alt="Emilio Martínez Pañeda related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/15486899/4180616/4868342/s200_emilio.mart_nez_pa_eda.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://oxford.academia.edu/EmilioMart%C3%ADnezPa%C3%B1eda">Emilio Martínez Pañeda</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Oxford</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://sheffield.academia.edu/KevinKerrigan"><img class="profile-avatar u-positionAbsolute" alt="Kevin M Kerrigan related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/1192911/426851/3849499/s200_kevin.kerrigan.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://sheffield.academia.edu/KevinKerrigan">Kevin M Kerrigan</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">The University of Sheffield</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ntupk.academia.edu/ZeeshanLatif"><img class="profile-avatar u-positionAbsolute" alt="Zeeshan Latif related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/227732151/84609084/87368961/s200_zeeshan.latif.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ntupk.academia.edu/ZeeshanLatif">Zeeshan Latif</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">National Textile University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/SRivallant"><img class="profile-avatar u-positionAbsolute" alt="S. Rivallant related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/SRivallant">S. Rivallant</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://iith.academia.edu/PRANAVIDHALADHULI"><img class="profile-avatar u-positionAbsolute" alt="Dhaladhuli Pranavi related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/102357574/54328956/42473376/s200_pranavi.dhaladhuli.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://iith.academia.edu/PRANAVIDHALADHULI">Dhaladhuli Pranavi</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Indian institute of Technology,Hyderabad</p></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="14723476" href="https://www.academia.edu/Documents/in/Applied_Mathematics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://upc.academia.edu/EvaCasoni&quot;,&quot;location&quot;:&quot;/EvaCasoni&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;upc.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/EvaCasoni&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Applied Mathematics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-cd7948f1-964e-4095-ac9f-27454a5b93ce"></div> <div id="Pill-react-component-cd7948f1-964e-4095-ac9f-27454a5b93ce"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="14723476" href="https://www.academia.edu/Documents/in/Applied_mathematics_and_Modelling"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Applied mathematics and Modelling&quot;]}" data-trace="false" data-dom-id="Pill-react-component-88b53056-d1d7-4014-ac4e-6660139bd10a"></div> <div id="Pill-react-component-88b53056-d1d7-4014-ac4e-6660139bd10a"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="14723476" href="https://www.academia.edu/Documents/in/Applied_Mathematics_and_Computational_Science"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Applied Mathematics and Computational Science&quot;]}" data-trace="false" data-dom-id="Pill-react-component-04935cc4-7d1b-46a1-9cbe-e1d612cf9690"></div> <div id="Pill-react-component-04935cc4-7d1b-46a1-9cbe-e1d612cf9690"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Eva Casoni</h3></div><div class="js-work-strip profile--work_container" data-work-id="97323746"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/97323746/Modeling_the_damped_dynamic_behavior_of_a_flexible_pendulum"><img alt="Research paper thumbnail of Modeling the damped dynamic behavior of a flexible pendulum" class="work-thumbnail" src="https://attachments.academia-assets.com/98976289/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/97323746/Modeling_the_damped_dynamic_behavior_of_a_flexible_pendulum">Modeling the damped dynamic behavior of a flexible pendulum</a></div><div class="wp-workCard_item"><span>The Journal of Strain Analysis for Engineering Design</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The focus of this work is on the computational modeling of a pendulum made of a hyperelastic mate...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The focus of this work is on the computational modeling of a pendulum made of a hyperelastic material and the corresponding experimental validation with the aim of contributing to the study of a material commonly used in seismic absorber devices. From the proposed dynamics experiment, the motion of the pendulum is recorded using a high-speed camera. The evolution of the pendulum’s positions is recovered using a capturing motion technique by tracking markers. The simulation of the problem is developed in the framework of a parallel multi-physics code. Particular emphasis is placed on the analysis of the Newmark integration scheme and the use of Rayleigh damping model. In particular, the time step size effect is analyzed. A strong time step size dependency is obtained for dissipative time integration schemes, while the Rayleigh damping formulation without time integration dissipation shows time step–independent results when convergence is achieved.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="41db70287e2460f68f27807f92b016f9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98976289,&quot;asset_id&quot;:97323746,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98976289/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97323746"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97323746"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97323746; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97323746]").text(description); $(".js-view-count[data-work-id=97323746]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97323746; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97323746']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "41db70287e2460f68f27807f92b016f9" } } $('.js-work-strip[data-work-id=97323746]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97323746,"title":"Modeling the damped dynamic behavior of a flexible pendulum","translated_title":"","metadata":{"abstract":"The focus of this work is on the computational modeling of a pendulum made of a hyperelastic material and the corresponding experimental validation with the aim of contributing to the study of a material commonly used in seismic absorber devices. From the proposed dynamics experiment, the motion of the pendulum is recorded using a high-speed camera. The evolution of the pendulum’s positions is recovered using a capturing motion technique by tracking markers. The simulation of the problem is developed in the framework of a parallel multi-physics code. Particular emphasis is placed on the analysis of the Newmark integration scheme and the use of Rayleigh damping model. In particular, the time step size effect is analyzed. A strong time step size dependency is obtained for dissipative time integration schemes, while the Rayleigh damping formulation without time integration dissipation shows time step–independent results when convergence is achieved.","publisher":"SAGE Publications","ai_title_tag":"Flexible Pendulum Dynamics: Modeling and Validation","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"The Journal of Strain Analysis for Engineering Design"},"translated_abstract":"The focus of this work is on the computational modeling of a pendulum made of a hyperelastic material and the corresponding experimental validation with the aim of contributing to the study of a material commonly used in seismic absorber devices. From the proposed dynamics experiment, the motion of the pendulum is recorded using a high-speed camera. The evolution of the pendulum’s positions is recovered using a capturing motion technique by tracking markers. The simulation of the problem is developed in the framework of a parallel multi-physics code. Particular emphasis is placed on the analysis of the Newmark integration scheme and the use of Rayleigh damping model. In particular, the time step size effect is analyzed. A strong time step size dependency is obtained for dissipative time integration schemes, while the Rayleigh damping formulation without time integration dissipation shows time step–independent results when convergence is achieved.","internal_url":"https://www.academia.edu/97323746/Modeling_the_damped_dynamic_behavior_of_a_flexible_pendulum","translated_internal_url":"","created_at":"2023-02-22T00:04:16.678-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98976289,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98976289/thumbnails/1.jpg","file_name":"030932471983273520230222-1-1l6rqsx.pdf","download_url":"https://www.academia.edu/attachments/98976289/download_file","bulk_download_file_name":"Modeling_the_damped_dynamic_behavior_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98976289/030932471983273520230222-1-1l6rqsx-libre.pdf?1677053151=\u0026response-content-disposition=attachment%3B+filename%3DModeling_the_damped_dynamic_behavior_of.pdf\u0026Expires=1744022476\u0026Signature=asPGr0B-CqRwvPnbMcZU75oAW5l~d9OVYgpCdKn6X4MpsyRKdQ6GeZcg107L1BuHtgiuzwXuwxGi12PisYN14yR4aW-AMEuG2EGymitHeXbWykGTiDz9v2IZSOi6nPvKj2H8YRwRDJ6ULUwKKv5dpIVBIBgdWMPRafQNgesb5tPShPc4tmBazBIG0~BevSYGHj5zjzBXB4ZMBllJgcvZbDYHu7i4nCuimTfh2ef4ofp0ZxP85ZjeYhusef-HnuwCtfXnq4v3LFHb4cd4YY7uroz1QCWPiR6mvi-vYmPu1KkXVwxZKb0ABDcxE-2R3G9rWY-oD-sXzve-7r7p3WuYeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Modeling_the_damped_dynamic_behavior_of_a_flexible_pendulum","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"The focus of this work is on the computational modeling of a pendulum made of a hyperelastic material and the corresponding experimental validation with the aim of contributing to the study of a material commonly used in seismic absorber devices. From the proposed dynamics experiment, the motion of the pendulum is recorded using a high-speed camera. The evolution of the pendulum’s positions is recovered using a capturing motion technique by tracking markers. The simulation of the problem is developed in the framework of a parallel multi-physics code. Particular emphasis is placed on the analysis of the Newmark integration scheme and the use of Rayleigh damping model. In particular, the time step size effect is analyzed. A strong time step size dependency is obtained for dissipative time integration schemes, while the Rayleigh damping formulation without time integration dissipation shows time step–independent results when convergence is achieved.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[{"id":98976289,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98976289/thumbnails/1.jpg","file_name":"030932471983273520230222-1-1l6rqsx.pdf","download_url":"https://www.academia.edu/attachments/98976289/download_file","bulk_download_file_name":"Modeling_the_damped_dynamic_behavior_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98976289/030932471983273520230222-1-1l6rqsx-libre.pdf?1677053151=\u0026response-content-disposition=attachment%3B+filename%3DModeling_the_damped_dynamic_behavior_of.pdf\u0026Expires=1744022476\u0026Signature=asPGr0B-CqRwvPnbMcZU75oAW5l~d9OVYgpCdKn6X4MpsyRKdQ6GeZcg107L1BuHtgiuzwXuwxGi12PisYN14yR4aW-AMEuG2EGymitHeXbWykGTiDz9v2IZSOi6nPvKj2H8YRwRDJ6ULUwKKv5dpIVBIBgdWMPRafQNgesb5tPShPc4tmBazBIG0~BevSYGHj5zjzBXB4ZMBllJgcvZbDYHu7i4nCuimTfh2ef4ofp0ZxP85ZjeYhusef-HnuwCtfXnq4v3LFHb4cd4YY7uroz1QCWPiR6mvi-vYmPu1KkXVwxZKb0ABDcxE-2R3G9rWY-oD-sXzve-7r7p3WuYeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":202360,"name":"Pendulum","url":"https://www.academia.edu/Documents/in/Pendulum"},{"id":222949,"name":"Dissipation","url":"https://www.academia.edu/Documents/in/Dissipation"},{"id":245193,"name":"Numerical Integration","url":"https://www.academia.edu/Documents/in/Numerical_Integration"}],"urls":[{"id":29186920,"url":"http://journals.sagepub.com/doi/pdf/10.1177/0309324719832735"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-97323746-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="97323744"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/97323744/A_phase_field_approach_to_simulate_intralaminar_and_translaminar_fracture_in_long_fiber_composite_materials"><img alt="Research paper thumbnail of A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials</div><div class="wp-workCard_item"><span>Composite Structures</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The development of predictive numerical methods, which accurately represent the progress...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The development of predictive numerical methods, which accurately represent the progressive failure of long fiber composite materials, is nowadays required for the achievement of optimized mechanical responses in terms of load bearing capacities of modern composite structures. In this investigation, two characteristic failure mechanisms of long fiber composites, denominated as intralaminar and translaminar fracture, are simulated by means of a novel version of the phase field (PF) approach of fracture. This numerical strategy encompasses a sort of gradient-enhanced damage formulation rooted in the Griffith theory of fracture, which is herewith extended for its use in composite laminates applications. In order to assess its verification and validation, the predictions obtained using the present formulation are compared against experimental results and two well-established alternative computational methods, which correspond to an anisotropic local-based continuum damage model and a cohesive zone model. The comparisons demonstrate that the PF approach with the proposed formulation provides reliable and robust predictions under quasi-static loading, but with a higher versatility regarding the potential of triggering arbitrarily complex crack paths with intricate topology over alternative techniques.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97323744"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97323744"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97323744; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97323744]").text(description); $(".js-view-count[data-work-id=97323744]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97323744; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97323744']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=97323744]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97323744,"title":"A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials","translated_title":"","metadata":{"abstract":"Abstract The development of predictive numerical methods, which accurately represent the progressive failure of long fiber composite materials, is nowadays required for the achievement of optimized mechanical responses in terms of load bearing capacities of modern composite structures. In this investigation, two characteristic failure mechanisms of long fiber composites, denominated as intralaminar and translaminar fracture, are simulated by means of a novel version of the phase field (PF) approach of fracture. This numerical strategy encompasses a sort of gradient-enhanced damage formulation rooted in the Griffith theory of fracture, which is herewith extended for its use in composite laminates applications. In order to assess its verification and validation, the predictions obtained using the present formulation are compared against experimental results and two well-established alternative computational methods, which correspond to an anisotropic local-based continuum damage model and a cohesive zone model. The comparisons demonstrate that the PF approach with the proposed formulation provides reliable and robust predictions under quasi-static loading, but with a higher versatility regarding the potential of triggering arbitrarily complex crack paths with intricate topology over alternative techniques.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Composite Structures"},"translated_abstract":"Abstract The development of predictive numerical methods, which accurately represent the progressive failure of long fiber composite materials, is nowadays required for the achievement of optimized mechanical responses in terms of load bearing capacities of modern composite structures. In this investigation, two characteristic failure mechanisms of long fiber composites, denominated as intralaminar and translaminar fracture, are simulated by means of a novel version of the phase field (PF) approach of fracture. This numerical strategy encompasses a sort of gradient-enhanced damage formulation rooted in the Griffith theory of fracture, which is herewith extended for its use in composite laminates applications. In order to assess its verification and validation, the predictions obtained using the present formulation are compared against experimental results and two well-established alternative computational methods, which correspond to an anisotropic local-based continuum damage model and a cohesive zone model. The comparisons demonstrate that the PF approach with the proposed formulation provides reliable and robust predictions under quasi-static loading, but with a higher versatility regarding the potential of triggering arbitrarily complex crack paths with intricate topology over alternative techniques.","internal_url":"https://www.academia.edu/97323744/A_phase_field_approach_to_simulate_intralaminar_and_translaminar_fracture_in_long_fiber_composite_materials","translated_internal_url":"","created_at":"2023-02-22T00:04:16.343-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_phase_field_approach_to_simulate_intralaminar_and_translaminar_fracture_in_long_fiber_composite_materials","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract The development of predictive numerical methods, which accurately represent the progressive failure of long fiber composite materials, is nowadays required for the achievement of optimized mechanical responses in terms of load bearing capacities of modern composite structures. In this investigation, two characteristic failure mechanisms of long fiber composites, denominated as intralaminar and translaminar fracture, are simulated by means of a novel version of the phase field (PF) approach of fracture. This numerical strategy encompasses a sort of gradient-enhanced damage formulation rooted in the Griffith theory of fracture, which is herewith extended for its use in composite laminates applications. In order to assess its verification and validation, the predictions obtained using the present formulation are compared against experimental results and two well-established alternative computational methods, which correspond to an anisotropic local-based continuum damage model and a cohesive zone model. The comparisons demonstrate that the PF approach with the proposed formulation provides reliable and robust predictions under quasi-static loading, but with a higher versatility regarding the potential of triggering arbitrarily complex crack paths with intricate topology over alternative techniques.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":51372,"name":"Fiber","url":"https://www.academia.edu/Documents/in/Fiber"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":195378,"name":"Composite structures","url":"https://www.academia.edu/Documents/in/Composite_structures"}],"urls":[{"id":29186918,"url":"https://api.elsevier.com/content/article/PII:S0263822318339928?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-97323744-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="97323741"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/97323741/Enabling_a_Computational_Mechanics_Code_for_Massively_Parallel_Supercomputers"><img alt="Research paper thumbnail of Enabling a Computational Mechanics Code for Massively Parallel Supercomputers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Enabling a Computational Mechanics Code for Massively Parallel Supercomputers</div><div class="wp-workCard_item"><span>Proceedings of the Third International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT This paper introduces an hybrid parallel model of the solid mechanics simulation strateg...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT This paper introduces an hybrid parallel model of the solid mechanics simulation strategy of Alya-High Performance Computational Mechanics, a multi-physics code for supercomputing platforms, developed at Barcelona Supercomputing Center. The goal of the paper is the parallelization strategy, which is chosen as a hybrid MPI/OpenMP model in order to take advantage of all the levels of parallelism that a multicore architecture offers. The paper describes the main features: numerical implementation, algorithms, solution schemes, parallel issues and code engineering. Space and time discretization are based on the finite element method and on finite differences respectively. The solution scheme presented is a total Lagrangian formulation for large deformations, with Newton schemes to cope with non-linearities. Time integration is done either explicitly or implicitly. To exploit the thread-level parallelism of multicore architectures, OpenMP parallelization is introduced in the most time-consuming routines of the solid mechanics, mainly the element assembly and the iterative solver. Additionally, as the communications between threads are via shared memory, there would be a reduction of the communication cost between processors. The main ideas implemented behind the parallel I/O aspects are detailed. Preliminary scalability results are presented for a three-dimensional beam test that requires large data structures. The results obtained are encouraging, outperforming the current MPI-based Alya implementation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97323741"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97323741"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97323741; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97323741]").text(description); $(".js-view-count[data-work-id=97323741]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97323741; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97323741']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=97323741]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97323741,"title":"Enabling a Computational Mechanics Code for Massively Parallel Supercomputers","translated_title":"","metadata":{"abstract":"ABSTRACT This paper introduces an hybrid parallel model of the solid mechanics simulation strategy of Alya-High Performance Computational Mechanics, a multi-physics code for supercomputing platforms, developed at Barcelona Supercomputing Center. The goal of the paper is the parallelization strategy, which is chosen as a hybrid MPI/OpenMP model in order to take advantage of all the levels of parallelism that a multicore architecture offers. The paper describes the main features: numerical implementation, algorithms, solution schemes, parallel issues and code engineering. Space and time discretization are based on the finite element method and on finite differences respectively. The solution scheme presented is a total Lagrangian formulation for large deformations, with Newton schemes to cope with non-linearities. Time integration is done either explicitly or implicitly. To exploit the thread-level parallelism of multicore architectures, OpenMP parallelization is introduced in the most time-consuming routines of the solid mechanics, mainly the element assembly and the iterative solver. Additionally, as the communications between threads are via shared memory, there would be a reduction of the communication cost between processors. The main ideas implemented behind the parallel I/O aspects are detailed. Preliminary scalability results are presented for a three-dimensional beam test that requires large data structures. The results obtained are encouraging, outperforming the current MPI-based Alya implementation.","publication_name":"Proceedings of the Third International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering"},"translated_abstract":"ABSTRACT This paper introduces an hybrid parallel model of the solid mechanics simulation strategy of Alya-High Performance Computational Mechanics, a multi-physics code for supercomputing platforms, developed at Barcelona Supercomputing Center. The goal of the paper is the parallelization strategy, which is chosen as a hybrid MPI/OpenMP model in order to take advantage of all the levels of parallelism that a multicore architecture offers. The paper describes the main features: numerical implementation, algorithms, solution schemes, parallel issues and code engineering. Space and time discretization are based on the finite element method and on finite differences respectively. The solution scheme presented is a total Lagrangian formulation for large deformations, with Newton schemes to cope with non-linearities. Time integration is done either explicitly or implicitly. To exploit the thread-level parallelism of multicore architectures, OpenMP parallelization is introduced in the most time-consuming routines of the solid mechanics, mainly the element assembly and the iterative solver. Additionally, as the communications between threads are via shared memory, there would be a reduction of the communication cost between processors. The main ideas implemented behind the parallel I/O aspects are detailed. Preliminary scalability results are presented for a three-dimensional beam test that requires large data structures. The results obtained are encouraging, outperforming the current MPI-based Alya implementation.","internal_url":"https://www.academia.edu/97323741/Enabling_a_Computational_Mechanics_Code_for_Massively_Parallel_Supercomputers","translated_internal_url":"","created_at":"2023-02-22T00:04:15.924-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Enabling_a_Computational_Mechanics_Code_for_Massively_Parallel_Supercomputers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT This paper introduces an hybrid parallel model of the solid mechanics simulation strategy of Alya-High Performance Computational Mechanics, a multi-physics code for supercomputing platforms, developed at Barcelona Supercomputing Center. The goal of the paper is the parallelization strategy, which is chosen as a hybrid MPI/OpenMP model in order to take advantage of all the levels of parallelism that a multicore architecture offers. The paper describes the main features: numerical implementation, algorithms, solution schemes, parallel issues and code engineering. Space and time discretization are based on the finite element method and on finite differences respectively. The solution scheme presented is a total Lagrangian formulation for large deformations, with Newton schemes to cope with non-linearities. Time integration is done either explicitly or implicitly. To exploit the thread-level parallelism of multicore architectures, OpenMP parallelization is introduced in the most time-consuming routines of the solid mechanics, mainly the element assembly and the iterative solver. Additionally, as the communications between threads are via shared memory, there would be a reduction of the communication cost between processors. The main ideas implemented behind the parallel I/O aspects are detailed. Preliminary scalability results are presented for a three-dimensional beam test that requires large data structures. The results obtained are encouraging, outperforming the current MPI-based Alya implementation.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":442,"name":"Parallel Computing","url":"https://www.academia.edu/Documents/in/Parallel_Computing"},{"id":11819,"name":"Computational Science","url":"https://www.academia.edu/Documents/in/Computational_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-97323741-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="97323740"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/97323740/Alya_Computational_Solid_Mechanics_for_Supercomputers"><img alt="Research paper thumbnail of Alya: Computational Solid Mechanics for Supercomputers" class="work-thumbnail" src="https://attachments.academia-assets.com/98976285/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/97323740/Alya_Computational_Solid_Mechanics_for_Supercomputers">Alya: Computational Solid Mechanics for Supercomputers</a></div><div class="wp-workCard_item"><span>Archives of Computational Methods in Engineering</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">While solid mechanics codes are now conventional tools both in industry and research, the increas...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">While solid mechanics codes are now conventional tools both in industry and research, the increasingly more exigent requirements of both sectors are fuelling the need for more computational power and more advanced algorithms. For obvious reasons, commercial codes are lagging behind academic codes often dedicated either to the implementation of one new technique, or the upscaling of current conventional codes to tackle massively large scale computational problems. Only in a few cases, both approaches have been followed simultaneously. In this article, a solid mechanics simulation strategy for parallel supercomputers based on a hybrid approach is presented. Hybrid parallelization exploits the thread-level parallelism of multicore architectures, com</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b736021be8cbb8d8f0055b29eeb1b857" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98976285,&quot;asset_id&quot;:97323740,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98976285/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97323740"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97323740"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97323740; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97323740]").text(description); $(".js-view-count[data-work-id=97323740]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97323740; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97323740']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b736021be8cbb8d8f0055b29eeb1b857" } } $('.js-work-strip[data-work-id=97323740]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97323740,"title":"Alya: Computational Solid Mechanics for Supercomputers","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","ai_title_tag":"Hybrid Parallelism in Solid Mechanics Simulations","grobid_abstract":"While solid mechanics codes are now conventional tools both in industry and research, the increasingly more exigent requirements of both sectors are fuelling the need for more computational power and more advanced algorithms. For obvious reasons, commercial codes are lagging behind academic codes often dedicated either to the implementation of one new technique, or the upscaling of current conventional codes to tackle massively large scale computational problems. Only in a few cases, both approaches have been followed simultaneously. In this article, a solid mechanics simulation strategy for parallel supercomputers based on a hybrid approach is presented. Hybrid parallelization exploits the thread-level parallelism of multicore architectures, com","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Archives of Computational Methods in Engineering","grobid_abstract_attachment_id":98976285},"translated_abstract":null,"internal_url":"https://www.academia.edu/97323740/Alya_Computational_Solid_Mechanics_for_Supercomputers","translated_internal_url":"","created_at":"2023-02-22T00:04:15.479-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98976285,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98976285/thumbnails/1.jpg","file_name":"alya_20computationaol_20solid.pdf","download_url":"https://www.academia.edu/attachments/98976285/download_file","bulk_download_file_name":"Alya_Computational_Solid_Mechanics_for_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98976285/alya_20computationaol_20solid-libre.pdf?1677053147=\u0026response-content-disposition=attachment%3B+filename%3DAlya_Computational_Solid_Mechanics_for_S.pdf\u0026Expires=1744022477\u0026Signature=HsdBrfU603e1z4BPGvIx2T0Q2BjBNTcEpxykfeZsROO5Hj4ZgqzdU9vXgiuDtqR24aEC~GqejVVoofJcJ0gmrSM1WHPR0Am9BReZSz2yy7laRQQCzstqAW0KxupySMdyr19THa00GJ0q7hXoUP-cmkuUA2Q7WzDprT2TODVC0qoUFT2mz-~2FzoWbHnBR5GDxe~RWFfgYOhkFL-tbYvfb2L2Z-S-j2UGGGxEY2k0pmoRgH4thbWPSlwLJmZP-LwzAmZbjsyjSbs0UmpvwARdls~474l7pos8BH5K9aN7weDZATPC5RGTd2NK99~vE80~M2MuvYaMZkD7Uwk8OE1e-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Alya_Computational_Solid_Mechanics_for_Supercomputers","translated_slug":"","page_count":20,"language":"en","content_type":"Work","summary":"While solid mechanics codes are now conventional tools both in industry and research, the increasingly more exigent requirements of both sectors are fuelling the need for more computational power and more advanced algorithms. For obvious reasons, commercial codes are lagging behind academic codes often dedicated either to the implementation of one new technique, or the upscaling of current conventional codes to tackle massively large scale computational problems. Only in a few cases, both approaches have been followed simultaneously. In this article, a solid mechanics simulation strategy for parallel supercomputers based on a hybrid approach is presented. Hybrid parallelization exploits the thread-level parallelism of multicore architectures, com","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[{"id":98976285,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98976285/thumbnails/1.jpg","file_name":"alya_20computationaol_20solid.pdf","download_url":"https://www.academia.edu/attachments/98976285/download_file","bulk_download_file_name":"Alya_Computational_Solid_Mechanics_for_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98976285/alya_20computationaol_20solid-libre.pdf?1677053147=\u0026response-content-disposition=attachment%3B+filename%3DAlya_Computational_Solid_Mechanics_for_S.pdf\u0026Expires=1744022477\u0026Signature=HsdBrfU603e1z4BPGvIx2T0Q2BjBNTcEpxykfeZsROO5Hj4ZgqzdU9vXgiuDtqR24aEC~GqejVVoofJcJ0gmrSM1WHPR0Am9BReZSz2yy7laRQQCzstqAW0KxupySMdyr19THa00GJ0q7hXoUP-cmkuUA2Q7WzDprT2TODVC0qoUFT2mz-~2FzoWbHnBR5GDxe~RWFfgYOhkFL-tbYvfb2L2Z-S-j2UGGGxEY2k0pmoRgH4thbWPSlwLJmZP-LwzAmZbjsyjSbs0UmpvwARdls~474l7pos8BH5K9aN7weDZATPC5RGTd2NK99~vE80~M2MuvYaMZkD7Uwk8OE1e-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":442,"name":"Parallel Computing","url":"https://www.academia.edu/Documents/in/Parallel_Computing"},{"id":2376,"name":"Computational Mechanics","url":"https://www.academia.edu/Documents/in/Computational_Mechanics"},{"id":11819,"name":"Computational Science","url":"https://www.academia.edu/Documents/in/Computational_Science"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":88861,"name":"Computer Systems","url":"https://www.academia.edu/Documents/in/Computer_Systems"},{"id":213990,"name":"Flexibility in engineering design","url":"https://www.academia.edu/Documents/in/Flexibility_in_engineering_design"},{"id":377043,"name":"Scalability","url":"https://www.academia.edu/Documents/in/Scalability"},{"id":394053,"name":"Chimera","url":"https://www.academia.edu/Documents/in/Chimera"},{"id":537164,"name":"Exascale Computing","url":"https://www.academia.edu/Documents/in/Exascale_Computing"},{"id":799604,"name":"Supercomputers","url":"https://www.academia.edu/Documents/in/Supercomputers"},{"id":2141217,"name":"Supercomputer","url":"https://www.academia.edu/Documents/in/Supercomputer"},{"id":3208414,"name":"Multi-Core Processor","url":"https://www.academia.edu/Documents/in/Multi-Core_Processor"}],"urls":[{"id":29186916,"url":"http://link.springer.com/content/pdf/10.1007/s11831-014-9126-8.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-97323740-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="97323739"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/97323739/An_XFEM_CZM_implementation_for_massively_parallel_simulations_of_composites_fracture"><img alt="Research paper thumbnail of An XFEM/CZM implementation for massively parallel simulations of composites fracture" class="work-thumbnail" src="https://attachments.academia-assets.com/98976291/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/97323739/An_XFEM_CZM_implementation_for_massively_parallel_simulations_of_composites_fracture">An XFEM/CZM implementation for massively parallel simulations of composites fracture</a></div><div class="wp-workCard_item"><span>Composite Structures</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Because of their widely spread use in many industries, composites are the subject of many researc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Because of their widely spread use in many industries, composites are the subject of many research campaigns. More particularly, the development of both accurate and flexible numerical models able to capture their intrinsically multiscale modes of failure is still a challenge. The standard finite element method typically requires intensive remeshing to adequately capture the geometry of the cracks and high accuracy is thus often sacrificed in favor of scalability, and vice versa. In an effort to preserve both properties, we present here an extended finite element method (XFEM) for large scale composite fracture simulations. In this formulation, the standard FEM formulation is partially enriched by use of shifted Heaviside functions with special attention paid to the scalability of the scheme. This enrichment technique offers several benefits, since the interpolation property of the standard shape function still holds at the nodes. Those benefits include (i) no extra boundary condition for the enrichment degree of freedom, and (ii) no need for transition/blending regions; both of which contribute to maintain the scalability of the code. Two different cohesive zone models (CZM) are then adopted to capture the physics of the crack propagation mechanisms. At the intralaminar level, an extrinsic CZM embedded in the XFEM formulation is used. At the interlaminar level, an intrinsic CZM is adopted for predicting the failure. The overall framework is implemented in ALYA, a mechanics code specifically developed for large scale, massively parallel simulations of coupled multi-physics problems. The implementation of both intrinsic and extrinsic CZM models within the code is such that it conserves the extremely efficient scalability of ALYA while providing accurate physical simulations of computationally expensive phenomena. The strong scalability provided by the proposed implementation is demonstrated. The model is ultimately validated against a full experimental campaign of loading tests and X-ray tomography analyses for a chosen very large scale.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c20cb638d3231c4961e0d177d2c5ec25" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98976291,&quot;asset_id&quot;:97323739,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98976291/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97323739"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97323739"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97323739; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97323739]").text(description); $(".js-view-count[data-work-id=97323739]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97323739; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97323739']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c20cb638d3231c4961e0d177d2c5ec25" } } $('.js-work-strip[data-work-id=97323739]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97323739,"title":"An XFEM/CZM implementation for massively parallel simulations of composites fracture","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Parallel XFEM/CZM for Composite Fracture Simulations","grobid_abstract":"Because of their widely spread use in many industries, composites are the subject of many research campaigns. More particularly, the development of both accurate and flexible numerical models able to capture their intrinsically multiscale modes of failure is still a challenge. The standard finite element method typically requires intensive remeshing to adequately capture the geometry of the cracks and high accuracy is thus often sacrificed in favor of scalability, and vice versa. In an effort to preserve both properties, we present here an extended finite element method (XFEM) for large scale composite fracture simulations. In this formulation, the standard FEM formulation is partially enriched by use of shifted Heaviside functions with special attention paid to the scalability of the scheme. This enrichment technique offers several benefits, since the interpolation property of the standard shape function still holds at the nodes. Those benefits include (i) no extra boundary condition for the enrichment degree of freedom, and (ii) no need for transition/blending regions; both of which contribute to maintain the scalability of the code. Two different cohesive zone models (CZM) are then adopted to capture the physics of the crack propagation mechanisms. At the intralaminar level, an extrinsic CZM embedded in the XFEM formulation is used. At the interlaminar level, an intrinsic CZM is adopted for predicting the failure. The overall framework is implemented in ALYA, a mechanics code specifically developed for large scale, massively parallel simulations of coupled multi-physics problems. The implementation of both intrinsic and extrinsic CZM models within the code is such that it conserves the extremely efficient scalability of ALYA while providing accurate physical simulations of computationally expensive phenomena. The strong scalability provided by the proposed implementation is demonstrated. The model is ultimately validated against a full experimental campaign of loading tests and X-ray tomography analyses for a chosen very large scale.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Composite Structures","grobid_abstract_attachment_id":98976291},"translated_abstract":null,"internal_url":"https://www.academia.edu/97323739/An_XFEM_CZM_implementation_for_massively_parallel_simulations_of_composites_fracture","translated_internal_url":"","created_at":"2023-02-22T00:04:15.296-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98976291,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98976291/thumbnails/1.jpg","file_name":"2015_COST_XFEM.pdf","download_url":"https://www.academia.edu/attachments/98976291/download_file","bulk_download_file_name":"An_XFEM_CZM_implementation_for_massively.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98976291/2015_COST_XFEM-libre.pdf?1677053159=\u0026response-content-disposition=attachment%3B+filename%3DAn_XFEM_CZM_implementation_for_massively.pdf\u0026Expires=1744022477\u0026Signature=MSI-qC7x8E7zhzqfGTC1MRWV9s~j6C8-9vrXi3xHSLPSiIVWprMCD0EHp19T1QJaFo1Yh9BvKYpBoonp6gqCNgGBz2CzycQ3ud7GnQx~HgivnFEIqg0ezs7AeGuHDi~GXXa9fFwUcClE0lrBjo8HnwfBpxBGf9HvarchuSGlDYe-LK8tjXt-wTPUAkS50mUyaCdm9tu~UtYKBmEz7930Rb3TnnHhIhvvR4Dn6Q~iPdRnQuwVyUJ14lBlO1eTrrRYb4-UY7SwODXeZ1l3UhOXRuL-t3wxg894zD4SueBQ1Nsro0Birjn~isO83jBeU2qtUtZAPjB6IYSQlT8vQLYiow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_XFEM_CZM_implementation_for_massively_parallel_simulations_of_composites_fracture","translated_slug":"","page_count":20,"language":"en","content_type":"Work","summary":"Because of their widely spread use in many industries, composites are the subject of many research campaigns. More particularly, the development of both accurate and flexible numerical models able to capture their intrinsically multiscale modes of failure is still a challenge. The standard finite element method typically requires intensive remeshing to adequately capture the geometry of the cracks and high accuracy is thus often sacrificed in favor of scalability, and vice versa. In an effort to preserve both properties, we present here an extended finite element method (XFEM) for large scale composite fracture simulations. In this formulation, the standard FEM formulation is partially enriched by use of shifted Heaviside functions with special attention paid to the scalability of the scheme. This enrichment technique offers several benefits, since the interpolation property of the standard shape function still holds at the nodes. Those benefits include (i) no extra boundary condition for the enrichment degree of freedom, and (ii) no need for transition/blending regions; both of which contribute to maintain the scalability of the code. Two different cohesive zone models (CZM) are then adopted to capture the physics of the crack propagation mechanisms. At the intralaminar level, an extrinsic CZM embedded in the XFEM formulation is used. At the interlaminar level, an intrinsic CZM is adopted for predicting the failure. The overall framework is implemented in ALYA, a mechanics code specifically developed for large scale, massively parallel simulations of coupled multi-physics problems. The implementation of both intrinsic and extrinsic CZM models within the code is such that it conserves the extremely efficient scalability of ALYA while providing accurate physical simulations of computationally expensive phenomena. The strong scalability provided by the proposed implementation is demonstrated. The model is ultimately validated against a full experimental campaign of loading tests and X-ray tomography analyses for a chosen very large scale.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[{"id":98976291,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98976291/thumbnails/1.jpg","file_name":"2015_COST_XFEM.pdf","download_url":"https://www.academia.edu/attachments/98976291/download_file","bulk_download_file_name":"An_XFEM_CZM_implementation_for_massively.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98976291/2015_COST_XFEM-libre.pdf?1677053159=\u0026response-content-disposition=attachment%3B+filename%3DAn_XFEM_CZM_implementation_for_massively.pdf\u0026Expires=1744022477\u0026Signature=MSI-qC7x8E7zhzqfGTC1MRWV9s~j6C8-9vrXi3xHSLPSiIVWprMCD0EHp19T1QJaFo1Yh9BvKYpBoonp6gqCNgGBz2CzycQ3ud7GnQx~HgivnFEIqg0ezs7AeGuHDi~GXXa9fFwUcClE0lrBjo8HnwfBpxBGf9HvarchuSGlDYe-LK8tjXt-wTPUAkS50mUyaCdm9tu~UtYKBmEz7930Rb3TnnHhIhvvR4Dn6Q~iPdRnQuwVyUJ14lBlO1eTrrRYb4-UY7SwODXeZ1l3UhOXRuL-t3wxg894zD4SueBQ1Nsro0Birjn~isO83jBeU2qtUtZAPjB6IYSQlT8vQLYiow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4496,"name":"Composites","url":"https://www.academia.edu/Documents/in/Composites"},{"id":24257,"name":"Failure","url":"https://www.academia.edu/Documents/in/Failure"},{"id":47947,"name":"Fracture and cohesive zone model","url":"https://www.academia.edu/Documents/in/Fracture_and_cohesive_zone_model"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":195378,"name":"Composite structures","url":"https://www.academia.edu/Documents/in/Composite_structures"},{"id":897823,"name":"Elsevier","url":"https://www.academia.edu/Documents/in/Elsevier"}],"urls":[{"id":29186915,"url":"https://api.elsevier.com/content/article/PII:S0263822315001063?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-97323739-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="97323264"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/97323264/SEVENTH_FRAMEWORK_PROGRAMME_Research_Infrastructures_INFRA_2011_2_3_5_Second_Implementation_Phase_of_the_European_High_Performance_Computing_HPC_service_PRACE_PRACE_2IP_PRACE_Second_Implementation_Phase_Project"><img alt="Research paper thumbnail of SEVENTH FRAMEWORK PROGRAMME Research Infrastructures INFRA-2011-2.3.5 – Second Implementation Phase of the European High Performance Computing (HPC) service PRACE PRACE-2IP PRACE Second Implementation Phase Project" class="work-thumbnail" src="https://attachments.academia-assets.com/98975898/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/97323264/SEVENTH_FRAMEWORK_PROGRAMME_Research_Infrastructures_INFRA_2011_2_3_5_Second_Implementation_Phase_of_the_European_High_Performance_Computing_HPC_service_PRACE_PRACE_2IP_PRACE_Second_Implementation_Phase_Project">SEVENTH FRAMEWORK PROGRAMME Research Infrastructures INFRA-2011-2.3.5 – Second Implementation Phase of the European High Performance Computing (HPC) service PRACE PRACE-2IP PRACE Second Implementation Phase Project</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">*-The dissemination level are indicated as follows: PU-Public, PP-Restricted to other participant...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">*-The dissemination level are indicated as follows: PU-Public, PP-Restricted to other participants (including the Commission Services), RE-Restricted to a group specified by the consortium (including the Commission Services). CO-Confidential, only for members of the consortium (including the Commission Services).</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-97323264-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-97323264-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48550571/figure-1-seventh-framework-programme-research"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/98975898/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48550575/figure-1-viscosolve-first-four-iterations-total-solve-time"><img alt="Figure 1: ViscoSolve first four iterations total solve time for 127920 hexahedral elements A good scalability is therefore reachable up to 256 parallel threads. " class="figure-slide-image" src="https://figures.academia-assets.com/98975898/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48550578/table-1-seventh-framework-programme-research-infrastructures"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/98975898/table_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48550580/table-2-seventh-framework-programme-research-infrastructures"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/98975898/table_002.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-97323264-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="771230232982f3d2d8b429c86a08eff8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98975898,&quot;asset_id&quot;:97323264,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98975898/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97323264"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97323264"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97323264; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97323264]").text(description); $(".js-view-count[data-work-id=97323264]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97323264; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97323264']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "771230232982f3d2d8b429c86a08eff8" } } $('.js-work-strip[data-work-id=97323264]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97323264,"title":"SEVENTH FRAMEWORK PROGRAMME Research Infrastructures INFRA-2011-2.3.5 – Second Implementation Phase of the European High Performance Computing (HPC) service PRACE PRACE-2IP PRACE Second Implementation Phase Project","translated_title":"","metadata":{"grobid_abstract":"*-The dissemination level are indicated as follows: PU-Public, PP-Restricted to other participants (including the Commission Services), RE-Restricted to a group specified by the consortium (including the Commission Services). CO-Confidential, only for members of the consortium (including the Commission Services).","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"grobid_abstract_attachment_id":98975898},"translated_abstract":null,"internal_url":"https://www.academia.edu/97323264/SEVENTH_FRAMEWORK_PROGRAMME_Research_Infrastructures_INFRA_2011_2_3_5_Second_Implementation_Phase_of_the_European_High_Performance_Computing_HPC_service_PRACE_PRACE_2IP_PRACE_Second_Implementation_Phase_Project","translated_internal_url":"","created_at":"2023-02-21T23:55:41.929-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98975898,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98975898/thumbnails/1.jpg","file_name":"2IP-D9.3.pdf","download_url":"https://www.academia.edu/attachments/98975898/download_file","bulk_download_file_name":"SEVENTH_FRAMEWORK_PROGRAMME_Research_Inf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98975898/2IP-D9.3-libre.pdf?1677053167=\u0026response-content-disposition=attachment%3B+filename%3DSEVENTH_FRAMEWORK_PROGRAMME_Research_Inf.pdf\u0026Expires=1744022477\u0026Signature=HkiRReXG4NBcW7Go4d3fRCDz2iZ0Thj5O2wuVbbcA3q702JIECk7fFuJ4NfMaP9a1VVfPmpOX~X2R51kumP9li-GWSxOYiSYamrPQn~P6eUGQW4ALz4O3MDaaa82zvJq-rxJD3iBaTTLp5TsWOH0fF7DXBxQeNqCp0FSa5lZFG~vSxbZ9krkvqMf8lLFowZ8O4vhl~XXZGF3QMGVOkgbq~1dNjkiUjM2AKA3p1p-D69tzO~lzyf77Z7tPZKcsvx2AlPZBczkBeqs3txxCIE-7SOHf~v9n~xJecxVnSvqY4G-1aeuFAE7rOizciG7XmrbDMIvYM7vk7qpphhVyHEEqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SEVENTH_FRAMEWORK_PROGRAMME_Research_Infrastructures_INFRA_2011_2_3_5_Second_Implementation_Phase_of_the_European_High_Performance_Computing_HPC_service_PRACE_PRACE_2IP_PRACE_Second_Implementation_Phase_Project","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"*-The dissemination level are indicated as follows: PU-Public, PP-Restricted to other participants (including the Commission Services), RE-Restricted to a group specified by the consortium (including the Commission Services). CO-Confidential, only for members of the consortium (including the Commission Services).","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[{"id":98975898,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98975898/thumbnails/1.jpg","file_name":"2IP-D9.3.pdf","download_url":"https://www.academia.edu/attachments/98975898/download_file","bulk_download_file_name":"SEVENTH_FRAMEWORK_PROGRAMME_Research_Inf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98975898/2IP-D9.3-libre.pdf?1677053167=\u0026response-content-disposition=attachment%3B+filename%3DSEVENTH_FRAMEWORK_PROGRAMME_Research_Inf.pdf\u0026Expires=1744022477\u0026Signature=HkiRReXG4NBcW7Go4d3fRCDz2iZ0Thj5O2wuVbbcA3q702JIECk7fFuJ4NfMaP9a1VVfPmpOX~X2R51kumP9li-GWSxOYiSYamrPQn~P6eUGQW4ALz4O3MDaaa82zvJq-rxJD3iBaTTLp5TsWOH0fF7DXBxQeNqCp0FSa5lZFG~vSxbZ9krkvqMf8lLFowZ8O4vhl~XXZGF3QMGVOkgbq~1dNjkiUjM2AKA3p1p-D69tzO~lzyf77Z7tPZKcsvx2AlPZBczkBeqs3txxCIE-7SOHf~v9n~xJecxVnSvqY4G-1aeuFAE7rOizciG7XmrbDMIvYM7vk7qpphhVyHEEqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":29186674,"url":"https://prace-ri.eu/wp-content/uploads/2IP-D9.3.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-97323264-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="7879873"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7879873/SHOCK_CAPTURING_WITH_DISCONTINUOUS_GALERKIN_METHODS"><img alt="Research paper thumbnail of SHOCK-CAPTURING WITH DISCONTINUOUS GALERKIN METHODS" class="work-thumbnail" src="https://attachments.academia-assets.com/34368353/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7879873/SHOCK_CAPTURING_WITH_DISCONTINUOUS_GALERKIN_METHODS">SHOCK-CAPTURING WITH DISCONTINUOUS GALERKIN METHODS</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A shock capturing strategy for high order Discontinuous Galerkin methods for conservation laws is...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A shock capturing strategy for high order Discontinuous Galerkin methods for conservation laws is proposed. We present a method in the one-dimensional case based on the introduction of artificial viscosity into the original equations. With this approach the shock is capture with sharp resolution maintaining high-order accuracy. The ideas for the extension to the two-dimensional case are also set.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="493191a663e9cbeeb15b4764c85ef93b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34368353,&quot;asset_id&quot;:7879873,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34368353/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7879873"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7879873"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7879873; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7879873]").text(description); $(".js-view-count[data-work-id=7879873]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7879873; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7879873']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "493191a663e9cbeeb15b4764c85ef93b" } } $('.js-work-strip[data-work-id=7879873]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7879873,"title":"SHOCK-CAPTURING WITH DISCONTINUOUS GALERKIN METHODS","translated_title":"","metadata":{"grobid_abstract":"A shock capturing strategy for high order Discontinuous Galerkin methods for conservation laws is proposed. We present a method in the one-dimensional case based on the introduction of artificial viscosity into the original equations. With this approach the shock is capture with sharp resolution maintaining high-order accuracy. The ideas for the extension to the two-dimensional case are also set.","grobid_abstract_attachment_id":34368353},"translated_abstract":null,"internal_url":"https://www.academia.edu/7879873/SHOCK_CAPTURING_WITH_DISCONTINUOUS_GALERKIN_METHODS","translated_internal_url":"","created_at":"2014-08-05T01:50:50.122-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34368353,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34368353/thumbnails/1.jpg","file_name":"acta13.pdf","download_url":"https://www.academia.edu/attachments/34368353/download_file","bulk_download_file_name":"SHOCK_CAPTURING_WITH_DISCONTINUOUS_GALER.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34368353/acta13-libre.pdf?1407228699=\u0026response-content-disposition=attachment%3B+filename%3DSHOCK_CAPTURING_WITH_DISCONTINUOUS_GALER.pdf\u0026Expires=1744022477\u0026Signature=e3jAXiqaAQv~gwNQfASUsebErOXGCJmTidTsK4qEWCvXuHLLSMMctOPkgq~oCrqURozeZJWW5rJdJ81PyuSHk8DzKN3A2P38EEHEUdE16BdYBo1yYEGCLLFkGcpmdmDec6Vo~QzZoi6BlmwGe2bOTs1GB~MHi6Mnd1oQ4X4RfoTh9iNlPWMdMH0MCC-k5lLRdp5PR8cJnRLo7IANbP1OHrFVW8lto3ZmXsT~H0ZXnHX8j2FAOzsZnb5KDwEx4J2tIbFhnT~CMCvtNjpa9ySBKMZQxifdzFpDRSUWs6Z0MSrAl78lyPpDizpLgodxOstPfWIthN~3bB2XndtvHtwv2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SHOCK_CAPTURING_WITH_DISCONTINUOUS_GALERKIN_METHODS","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"A shock capturing strategy for high order Discontinuous Galerkin methods for conservation laws is proposed. We present a method in the one-dimensional case based on the introduction of artificial viscosity into the original equations. With this approach the shock is capture with sharp resolution maintaining high-order accuracy. The ideas for the extension to the two-dimensional case are also set.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[{"id":34368353,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34368353/thumbnails/1.jpg","file_name":"acta13.pdf","download_url":"https://www.academia.edu/attachments/34368353/download_file","bulk_download_file_name":"SHOCK_CAPTURING_WITH_DISCONTINUOUS_GALER.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34368353/acta13-libre.pdf?1407228699=\u0026response-content-disposition=attachment%3B+filename%3DSHOCK_CAPTURING_WITH_DISCONTINUOUS_GALER.pdf\u0026Expires=1744022477\u0026Signature=e3jAXiqaAQv~gwNQfASUsebErOXGCJmTidTsK4qEWCvXuHLLSMMctOPkgq~oCrqURozeZJWW5rJdJ81PyuSHk8DzKN3A2P38EEHEUdE16BdYBo1yYEGCLLFkGcpmdmDec6Vo~QzZoi6BlmwGe2bOTs1GB~MHi6Mnd1oQ4X4RfoTh9iNlPWMdMH0MCC-k5lLRdp5PR8cJnRLo7IANbP1OHrFVW8lto3ZmXsT~H0ZXnHX8j2FAOzsZnb5KDwEx4J2tIbFhnT~CMCvtNjpa9ySBKMZQxifdzFpDRSUWs6Z0MSrAl78lyPpDizpLgodxOstPfWIthN~3bB2XndtvHtwv2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":34368354,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34368354/thumbnails/1.jpg","file_name":"acta13.pdf","download_url":"https://www.academia.edu/attachments/34368354/download_file","bulk_download_file_name":"SHOCK_CAPTURING_WITH_DISCONTINUOUS_GALER.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34368354/acta13-libre.pdf?1407228665=\u0026response-content-disposition=attachment%3B+filename%3DSHOCK_CAPTURING_WITH_DISCONTINUOUS_GALER.pdf\u0026Expires=1744022477\u0026Signature=SLuRPsArVyGzsf9y7iUbveZ3e7XqgHK1J-P8t4ancG8L-5VLBHNCKxPLXBHTi36TOHS2YcLg6iz~hqBX3SJ5i4GZAEQRiM-GsVFDP~KCG8pAXeH3loVMlHwsHBZPRm1i8fex2OS~6SiY~HbqWG6dS8mPOifVyuLcFSHiDs2cC2eZvEYt3ZI99z~zww60q3YTUdXxtdYav22M2LgZkiXhu8dxbWNEx~eL6FwEehsX9glYvgm3nmAChbpVQdzz2A3IFouaPn9a8ctCPUNWPHo-KYPMGKQ9XVQw0oSEDjRxG9Rm0rLWqVeXylL7FL9Jx-iBvlM1IZUFSNoewLkhIP5MVg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":96281,"name":"Applied mathematics and Modelling","url":"https://www.academia.edu/Documents/in/Applied_mathematics_and_Modelling"}],"urls":[{"id":3291676,"url":"http://upcommons.upc.edu/revistes/bitstream/2099/7814/1/acta13.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-7879873-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="7879872"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7879872/Discontinuous_Galerkin_Methods_for_elliptic_problems"><img alt="Research paper thumbnail of Discontinuous Galerkin Methods for elliptic problems" class="work-thumbnail" src="https://attachments.academia-assets.com/48304747/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7879872/Discontinuous_Galerkin_Methods_for_elliptic_problems">Discontinuous Galerkin Methods for elliptic problems</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper is a short essay on discontinuous Galerkin methods intended for a very wide audience. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper is a short essay on discontinuous Galerkin methods intended for a very wide audience. We present the discontinuous Galerkin methods and describe and discuss their main features. Since the methods use completely discontinuous approximations, they produce mass matrices that are block-diagonal. This renders the methods highly parallelizable when applied to hyperbolic problems. Another consequence of the use of discontinuous approximations is that these methods can easily handle irregular meshes with hanging nodes and approximations that have polynomials of different degrees in different elements. They are thus ideal for use with adaptive algorithms. Moreover, the methods are locally conservative (a property highly valued by the computational fluid dynamics community) and, in spite of providing discontinuous approximations, stable, and high-order accurate. Even more, when applied to non-linear hyperbolic problems, the discontinuous Galerkin methods are able to capture highly complex solutions presenting discontinuities with high resolution. In this paper, we concentrate on the exposition of the ideas behind the devising of these methods as well as on the mechanisms that allow them to perform so well in such a variety of problems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="863070471e357f62b72678148aa73177" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48304747,&quot;asset_id&quot;:7879872,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48304747/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7879872"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7879872"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7879872; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7879872]").text(description); $(".js-view-count[data-work-id=7879872]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7879872; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7879872']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "863070471e357f62b72678148aa73177" } } $('.js-work-strip[data-work-id=7879872]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7879872,"title":"Discontinuous Galerkin Methods for elliptic problems","translated_title":"","metadata":{"grobid_abstract":"This paper is a short essay on discontinuous Galerkin methods intended for a very wide audience. We present the discontinuous Galerkin methods and describe and discuss their main features. Since the methods use completely discontinuous approximations, they produce mass matrices that are block-diagonal. This renders the methods highly parallelizable when applied to hyperbolic problems. Another consequence of the use of discontinuous approximations is that these methods can easily handle irregular meshes with hanging nodes and approximations that have polynomials of different degrees in different elements. They are thus ideal for use with adaptive algorithms. Moreover, the methods are locally conservative (a property highly valued by the computational fluid dynamics community) and, in spite of providing discontinuous approximations, stable, and high-order accurate. Even more, when applied to non-linear hyperbolic problems, the discontinuous Galerkin methods are able to capture highly complex solutions presenting discontinuities with high resolution. In this paper, we concentrate on the exposition of the ideas behind the devising of these methods as well as on the mechanisms that allow them to perform so well in such a variety of problems.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"grobid_abstract_attachment_id":48304747},"translated_abstract":null,"internal_url":"https://www.academia.edu/7879872/Discontinuous_Galerkin_Methods_for_elliptic_problems","translated_internal_url":"","created_at":"2014-08-05T01:50:49.993-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":48304747,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48304747/thumbnails/1.jpg","file_name":"Discontinuous_Galerkin_method20160825-12275-mkd99h.pdf","download_url":"https://www.academia.edu/attachments/48304747/download_file","bulk_download_file_name":"Discontinuous_Galerkin_Methods_for_ellip.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48304747/Discontinuous_Galerkin_method20160825-12275-mkd99h-libre.pdf?1472121592=\u0026response-content-disposition=attachment%3B+filename%3DDiscontinuous_Galerkin_Methods_for_ellip.pdf\u0026Expires=1744022477\u0026Signature=NoXGsmYAXAJ02UB9ksmhzHatBAZiv9E2LO2FJ8ybDemnjGWIJhnqX40r0Fi605-O4gW15A3O21zx6xKHstgeDcQFeWA9RyO47loEVWTGe965tAmeVjsU8MBa1D7yP6cFhhtSfDKGsVcV5-wg88K7esciYLG8MV5O2kSnFe2OUiWKb7N9OuBw3FZVJ9M92cuCnNTGmbqqUDf9tGfnadbgpv4zdOGXOgcr3AehIeiymeQZvZBKkmwUcnP7HQPomKrudOOo11GqCic5JnUtadu8ll6JlNpI1XnzRyVvIT2gRlyL9PxPLF~zRUCoGe8syUf0QTjOAvh1dVk7EgvfqgcLFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Discontinuous_Galerkin_Methods_for_elliptic_problems","translated_slug":"","page_count":25,"language":"en","content_type":"Work","summary":"This paper is a short essay on discontinuous Galerkin methods intended for a very wide audience. We present the discontinuous Galerkin methods and describe and discuss their main features. Since the methods use completely discontinuous approximations, they produce mass matrices that are block-diagonal. This renders the methods highly parallelizable when applied to hyperbolic problems. Another consequence of the use of discontinuous approximations is that these methods can easily handle irregular meshes with hanging nodes and approximations that have polynomials of different degrees in different elements. They are thus ideal for use with adaptive algorithms. Moreover, the methods are locally conservative (a property highly valued by the computational fluid dynamics community) and, in spite of providing discontinuous approximations, stable, and high-order accurate. Even more, when applied to non-linear hyperbolic problems, the discontinuous Galerkin methods are able to capture highly complex solutions presenting discontinuities with high resolution. In this paper, we concentrate on the exposition of the ideas behind the devising of these methods as well as on the mechanisms that allow them to perform so well in such a variety of problems.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[{"id":48304747,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48304747/thumbnails/1.jpg","file_name":"Discontinuous_Galerkin_method20160825-12275-mkd99h.pdf","download_url":"https://www.academia.edu/attachments/48304747/download_file","bulk_download_file_name":"Discontinuous_Galerkin_Methods_for_ellip.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48304747/Discontinuous_Galerkin_method20160825-12275-mkd99h-libre.pdf?1472121592=\u0026response-content-disposition=attachment%3B+filename%3DDiscontinuous_Galerkin_Methods_for_ellip.pdf\u0026Expires=1744022477\u0026Signature=NoXGsmYAXAJ02UB9ksmhzHatBAZiv9E2LO2FJ8ybDemnjGWIJhnqX40r0Fi605-O4gW15A3O21zx6xKHstgeDcQFeWA9RyO47loEVWTGe965tAmeVjsU8MBa1D7yP6cFhhtSfDKGsVcV5-wg88K7esciYLG8MV5O2kSnFe2OUiWKb7N9OuBw3FZVJ9M92cuCnNTGmbqqUDf9tGfnadbgpv4zdOGXOgcr3AehIeiymeQZvZBKkmwUcnP7HQPomKrudOOo11GqCic5JnUtadu8ll6JlNpI1XnzRyVvIT2gRlyL9PxPLF~zRUCoGe8syUf0QTjOAvh1dVk7EgvfqgcLFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[{"id":3291675,"url":"http://www-lacan.upc.edu/old/seminars/abstracts05_06/RSC_ECR.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-7879872-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="7879870"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/7879870/One_Dimensional_Shock_Capturing_for_High_Order_Discontinuous_Galerkin_Methods"><img alt="Research paper thumbnail of One-Dimensional Shock-Capturing for High-Order Discontinuous Galerkin Methods" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">One-Dimensional Shock-Capturing for High-Order Discontinuous Galerkin Methods</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonli...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonlinear conservation equations. In particular, their inherent structure (the need of a numerical flux based on a suitable approximate Riemann solver which in practice introduces some stabilization) seem to suggest that they are specially adapted to capture shocks. however, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for high-order discontinuous Galerkin. Thus, slope-limiter methods, which are extensions of finite volume methods, have been proposed for high-order approximations. Here it is shown that these techniques require mesh adaption and a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7879870"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7879870"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7879870; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7879870]").text(description); $(".js-view-count[data-work-id=7879870]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7879870; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7879870']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=7879870]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7879870,"title":"One-Dimensional Shock-Capturing for High-Order Discontinuous Galerkin Methods","translated_title":"","metadata":{"abstract":"Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonlinear conservation equations. In particular, their inherent structure (the need of a numerical flux based on a suitable approximate Riemann solver which in practice introduces some stabilization) seem to suggest that they are specially adapted to capture shocks. however, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for high-order discontinuous Galerkin. Thus, slope-limiter methods, which are extensions of finite volume methods, have been proposed for high-order approximations. Here it is shown that these techniques require mesh adaption and a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology."},"translated_abstract":"Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonlinear conservation equations. In particular, their inherent structure (the need of a numerical flux based on a suitable approximate Riemann solver which in practice introduces some stabilization) seem to suggest that they are specially adapted to capture shocks. however, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for high-order discontinuous Galerkin. Thus, slope-limiter methods, which are extensions of finite volume methods, have been proposed for high-order approximations. Here it is shown that these techniques require mesh adaption and a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology.","internal_url":"https://www.academia.edu/7879870/One_Dimensional_Shock_Capturing_for_High_Order_Discontinuous_Galerkin_Methods","translated_internal_url":"","created_at":"2014-08-05T01:50:49.834-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"One_Dimensional_Shock_Capturing_for_High_Order_Discontinuous_Galerkin_Methods","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonlinear conservation equations. In particular, their inherent structure (the need of a numerical flux based on a suitable approximate Riemann solver which in practice introduces some stabilization) seem to suggest that they are specially adapted to capture shocks. however, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for high-order discontinuous Galerkin. Thus, slope-limiter methods, which are extensions of finite volume methods, have been proposed for high-order approximations. Here it is shown that these techniques require mesh adaption and a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[],"research_interests":[{"id":96281,"name":"Applied mathematics and Modelling","url":"https://www.academia.edu/Documents/in/Applied_mathematics_and_Modelling"}],"urls":[{"id":3291674,"url":"http://www.springerlink.com/index/ph5430h50h241122.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-7879870-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="7879869"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7879869/ECCOMAS_JUBILEE_HUERTA"><img alt="Research paper thumbnail of ECCOMAS-JUBILEE-HUERTA" class="work-thumbnail" src="https://attachments.academia-assets.com/34368346/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7879869/ECCOMAS_JUBILEE_HUERTA">ECCOMAS-JUBILEE-HUERTA</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonli...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonlinear conservation equations. In particular, their inherent structure (the need of a numerical flux based on a suitable approximate Riemann solver which in practice introduces some stabilization) seem to suggest that they are specially adapted to capture shocks. however, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for high-order discontinuous Galerkin. Thus, slope-limiter methods, which are extensions of finite volume methods, have been proposed for high-order approximations. Here it is shown that these techniques require mesh adaption and a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e630c43b8ced73ba657664de646cda88" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34368346,&quot;asset_id&quot;:7879869,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34368346/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7879869"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7879869"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7879869; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7879869]").text(description); $(".js-view-count[data-work-id=7879869]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7879869; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7879869']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e630c43b8ced73ba657664de646cda88" } } $('.js-work-strip[data-work-id=7879869]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7879869,"title":"ECCOMAS-JUBILEE-HUERTA","translated_title":"","metadata":{"grobid_abstract":"Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonlinear conservation equations. In particular, their inherent structure (the need of a numerical flux based on a suitable approximate Riemann solver which in practice introduces some stabilization) seem to suggest that they are specially adapted to capture shocks. however, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for high-order discontinuous Galerkin. Thus, slope-limiter methods, which are extensions of finite volume methods, have been proposed for high-order approximations. Here it is shown that these techniques require mesh adaption and a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology.","grobid_abstract_attachment_id":34368346},"translated_abstract":null,"internal_url":"https://www.academia.edu/7879869/ECCOMAS_JUBILEE_HUERTA","translated_internal_url":"","created_at":"2014-08-05T01:50:44.856-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34368346,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34368346/thumbnails/1.jpg","file_name":"ECCOMAS-JUBILEE-HUERTA.pdf","download_url":"https://www.academia.edu/attachments/34368346/download_file","bulk_download_file_name":"ECCOMAS_JUBILEE_HUERTA.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34368346/ECCOMAS-JUBILEE-HUERTA-libre.pdf?1407228635=\u0026response-content-disposition=attachment%3B+filename%3DECCOMAS_JUBILEE_HUERTA.pdf\u0026Expires=1744022477\u0026Signature=X-pF2Edu3wsLBuLZeYYid2udbIqbxrsnG6y~4bPhzcRuPJ7gZOmrn2ovqHHpuNiHD6K5oRpP3lvSfaUtdi9k2ArsFb5BvENmBpZnowx6yZly7ni8IDku4IDVK9Q0S4OLiXNUX6DDR0OAXX08YjXDSOrFs4sXiF~JgvSOs24qpD7vVCFuK-C1Ealesq-rKrzw~~Aa1a2QofQfn-l2unfXNwTpuAbhIIzc7CbZg~YqPQCDg9HTu1UFScIoDkwjZS0ANwRxiG43D6mB0EsnfUEEO9dZUx8HEIuOZrGMRwejJQGQoUouPh2SDzmKPQ8d0JKDhkRjAgYCkU4IWsl~I6e2CQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"ECCOMAS_JUBILEE_HUERTA","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonlinear conservation equations. In particular, their inherent structure (the need of a numerical flux based on a suitable approximate Riemann solver which in practice introduces some stabilization) seem to suggest that they are specially adapted to capture shocks. however, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for high-order discontinuous Galerkin. Thus, slope-limiter methods, which are extensions of finite volume methods, have been proposed for high-order approximations. Here it is shown that these techniques require mesh adaption and a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[{"id":34368346,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34368346/thumbnails/1.jpg","file_name":"ECCOMAS-JUBILEE-HUERTA.pdf","download_url":"https://www.academia.edu/attachments/34368346/download_file","bulk_download_file_name":"ECCOMAS_JUBILEE_HUERTA.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34368346/ECCOMAS-JUBILEE-HUERTA-libre.pdf?1407228635=\u0026response-content-disposition=attachment%3B+filename%3DECCOMAS_JUBILEE_HUERTA.pdf\u0026Expires=1744022477\u0026Signature=X-pF2Edu3wsLBuLZeYYid2udbIqbxrsnG6y~4bPhzcRuPJ7gZOmrn2ovqHHpuNiHD6K5oRpP3lvSfaUtdi9k2ArsFb5BvENmBpZnowx6yZly7ni8IDku4IDVK9Q0S4OLiXNUX6DDR0OAXX08YjXDSOrFs4sXiF~JgvSOs24qpD7vVCFuK-C1Ealesq-rKrzw~~Aa1a2QofQfn-l2unfXNwTpuAbhIIzc7CbZg~YqPQCDg9HTu1UFScIoDkwjZS0ANwRxiG43D6mB0EsnfUEEO9dZUx8HEIuOZrGMRwejJQGQoUouPh2SDzmKPQ8d0JKDhkRjAgYCkU4IWsl~I6e2CQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":125863,"name":"Applied Mathematics and Computational Science","url":"https://www.academia.edu/Documents/in/Applied_Mathematics_and_Computational_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-7879869-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="1680629" id="papers"><div class="js-work-strip profile--work_container" data-work-id="97323746"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/97323746/Modeling_the_damped_dynamic_behavior_of_a_flexible_pendulum"><img alt="Research paper thumbnail of Modeling the damped dynamic behavior of a flexible pendulum" class="work-thumbnail" src="https://attachments.academia-assets.com/98976289/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/97323746/Modeling_the_damped_dynamic_behavior_of_a_flexible_pendulum">Modeling the damped dynamic behavior of a flexible pendulum</a></div><div class="wp-workCard_item"><span>The Journal of Strain Analysis for Engineering Design</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The focus of this work is on the computational modeling of a pendulum made of a hyperelastic mate...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The focus of this work is on the computational modeling of a pendulum made of a hyperelastic material and the corresponding experimental validation with the aim of contributing to the study of a material commonly used in seismic absorber devices. From the proposed dynamics experiment, the motion of the pendulum is recorded using a high-speed camera. The evolution of the pendulum’s positions is recovered using a capturing motion technique by tracking markers. The simulation of the problem is developed in the framework of a parallel multi-physics code. Particular emphasis is placed on the analysis of the Newmark integration scheme and the use of Rayleigh damping model. In particular, the time step size effect is analyzed. A strong time step size dependency is obtained for dissipative time integration schemes, while the Rayleigh damping formulation without time integration dissipation shows time step–independent results when convergence is achieved.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="41db70287e2460f68f27807f92b016f9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98976289,&quot;asset_id&quot;:97323746,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98976289/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97323746"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97323746"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97323746; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97323746]").text(description); $(".js-view-count[data-work-id=97323746]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97323746; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97323746']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "41db70287e2460f68f27807f92b016f9" } } $('.js-work-strip[data-work-id=97323746]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97323746,"title":"Modeling the damped dynamic behavior of a flexible pendulum","translated_title":"","metadata":{"abstract":"The focus of this work is on the computational modeling of a pendulum made of a hyperelastic material and the corresponding experimental validation with the aim of contributing to the study of a material commonly used in seismic absorber devices. From the proposed dynamics experiment, the motion of the pendulum is recorded using a high-speed camera. The evolution of the pendulum’s positions is recovered using a capturing motion technique by tracking markers. The simulation of the problem is developed in the framework of a parallel multi-physics code. Particular emphasis is placed on the analysis of the Newmark integration scheme and the use of Rayleigh damping model. In particular, the time step size effect is analyzed. A strong time step size dependency is obtained for dissipative time integration schemes, while the Rayleigh damping formulation without time integration dissipation shows time step–independent results when convergence is achieved.","publisher":"SAGE Publications","ai_title_tag":"Flexible Pendulum Dynamics: Modeling and Validation","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"The Journal of Strain Analysis for Engineering Design"},"translated_abstract":"The focus of this work is on the computational modeling of a pendulum made of a hyperelastic material and the corresponding experimental validation with the aim of contributing to the study of a material commonly used in seismic absorber devices. From the proposed dynamics experiment, the motion of the pendulum is recorded using a high-speed camera. The evolution of the pendulum’s positions is recovered using a capturing motion technique by tracking markers. The simulation of the problem is developed in the framework of a parallel multi-physics code. Particular emphasis is placed on the analysis of the Newmark integration scheme and the use of Rayleigh damping model. In particular, the time step size effect is analyzed. A strong time step size dependency is obtained for dissipative time integration schemes, while the Rayleigh damping formulation without time integration dissipation shows time step–independent results when convergence is achieved.","internal_url":"https://www.academia.edu/97323746/Modeling_the_damped_dynamic_behavior_of_a_flexible_pendulum","translated_internal_url":"","created_at":"2023-02-22T00:04:16.678-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98976289,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98976289/thumbnails/1.jpg","file_name":"030932471983273520230222-1-1l6rqsx.pdf","download_url":"https://www.academia.edu/attachments/98976289/download_file","bulk_download_file_name":"Modeling_the_damped_dynamic_behavior_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98976289/030932471983273520230222-1-1l6rqsx-libre.pdf?1677053151=\u0026response-content-disposition=attachment%3B+filename%3DModeling_the_damped_dynamic_behavior_of.pdf\u0026Expires=1744022476\u0026Signature=asPGr0B-CqRwvPnbMcZU75oAW5l~d9OVYgpCdKn6X4MpsyRKdQ6GeZcg107L1BuHtgiuzwXuwxGi12PisYN14yR4aW-AMEuG2EGymitHeXbWykGTiDz9v2IZSOi6nPvKj2H8YRwRDJ6ULUwKKv5dpIVBIBgdWMPRafQNgesb5tPShPc4tmBazBIG0~BevSYGHj5zjzBXB4ZMBllJgcvZbDYHu7i4nCuimTfh2ef4ofp0ZxP85ZjeYhusef-HnuwCtfXnq4v3LFHb4cd4YY7uroz1QCWPiR6mvi-vYmPu1KkXVwxZKb0ABDcxE-2R3G9rWY-oD-sXzve-7r7p3WuYeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Modeling_the_damped_dynamic_behavior_of_a_flexible_pendulum","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"The focus of this work is on the computational modeling of a pendulum made of a hyperelastic material and the corresponding experimental validation with the aim of contributing to the study of a material commonly used in seismic absorber devices. From the proposed dynamics experiment, the motion of the pendulum is recorded using a high-speed camera. The evolution of the pendulum’s positions is recovered using a capturing motion technique by tracking markers. The simulation of the problem is developed in the framework of a parallel multi-physics code. Particular emphasis is placed on the analysis of the Newmark integration scheme and the use of Rayleigh damping model. In particular, the time step size effect is analyzed. A strong time step size dependency is obtained for dissipative time integration schemes, while the Rayleigh damping formulation without time integration dissipation shows time step–independent results when convergence is achieved.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[{"id":98976289,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98976289/thumbnails/1.jpg","file_name":"030932471983273520230222-1-1l6rqsx.pdf","download_url":"https://www.academia.edu/attachments/98976289/download_file","bulk_download_file_name":"Modeling_the_damped_dynamic_behavior_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98976289/030932471983273520230222-1-1l6rqsx-libre.pdf?1677053151=\u0026response-content-disposition=attachment%3B+filename%3DModeling_the_damped_dynamic_behavior_of.pdf\u0026Expires=1744022476\u0026Signature=asPGr0B-CqRwvPnbMcZU75oAW5l~d9OVYgpCdKn6X4MpsyRKdQ6GeZcg107L1BuHtgiuzwXuwxGi12PisYN14yR4aW-AMEuG2EGymitHeXbWykGTiDz9v2IZSOi6nPvKj2H8YRwRDJ6ULUwKKv5dpIVBIBgdWMPRafQNgesb5tPShPc4tmBazBIG0~BevSYGHj5zjzBXB4ZMBllJgcvZbDYHu7i4nCuimTfh2ef4ofp0ZxP85ZjeYhusef-HnuwCtfXnq4v3LFHb4cd4YY7uroz1QCWPiR6mvi-vYmPu1KkXVwxZKb0ABDcxE-2R3G9rWY-oD-sXzve-7r7p3WuYeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":202360,"name":"Pendulum","url":"https://www.academia.edu/Documents/in/Pendulum"},{"id":222949,"name":"Dissipation","url":"https://www.academia.edu/Documents/in/Dissipation"},{"id":245193,"name":"Numerical Integration","url":"https://www.academia.edu/Documents/in/Numerical_Integration"}],"urls":[{"id":29186920,"url":"http://journals.sagepub.com/doi/pdf/10.1177/0309324719832735"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-97323746-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="97323744"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/97323744/A_phase_field_approach_to_simulate_intralaminar_and_translaminar_fracture_in_long_fiber_composite_materials"><img alt="Research paper thumbnail of A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials</div><div class="wp-workCard_item"><span>Composite Structures</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The development of predictive numerical methods, which accurately represent the progress...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The development of predictive numerical methods, which accurately represent the progressive failure of long fiber composite materials, is nowadays required for the achievement of optimized mechanical responses in terms of load bearing capacities of modern composite structures. In this investigation, two characteristic failure mechanisms of long fiber composites, denominated as intralaminar and translaminar fracture, are simulated by means of a novel version of the phase field (PF) approach of fracture. This numerical strategy encompasses a sort of gradient-enhanced damage formulation rooted in the Griffith theory of fracture, which is herewith extended for its use in composite laminates applications. In order to assess its verification and validation, the predictions obtained using the present formulation are compared against experimental results and two well-established alternative computational methods, which correspond to an anisotropic local-based continuum damage model and a cohesive zone model. The comparisons demonstrate that the PF approach with the proposed formulation provides reliable and robust predictions under quasi-static loading, but with a higher versatility regarding the potential of triggering arbitrarily complex crack paths with intricate topology over alternative techniques.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97323744"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97323744"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97323744; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97323744]").text(description); $(".js-view-count[data-work-id=97323744]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97323744; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97323744']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=97323744]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97323744,"title":"A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials","translated_title":"","metadata":{"abstract":"Abstract The development of predictive numerical methods, which accurately represent the progressive failure of long fiber composite materials, is nowadays required for the achievement of optimized mechanical responses in terms of load bearing capacities of modern composite structures. In this investigation, two characteristic failure mechanisms of long fiber composites, denominated as intralaminar and translaminar fracture, are simulated by means of a novel version of the phase field (PF) approach of fracture. This numerical strategy encompasses a sort of gradient-enhanced damage formulation rooted in the Griffith theory of fracture, which is herewith extended for its use in composite laminates applications. In order to assess its verification and validation, the predictions obtained using the present formulation are compared against experimental results and two well-established alternative computational methods, which correspond to an anisotropic local-based continuum damage model and a cohesive zone model. The comparisons demonstrate that the PF approach with the proposed formulation provides reliable and robust predictions under quasi-static loading, but with a higher versatility regarding the potential of triggering arbitrarily complex crack paths with intricate topology over alternative techniques.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Composite Structures"},"translated_abstract":"Abstract The development of predictive numerical methods, which accurately represent the progressive failure of long fiber composite materials, is nowadays required for the achievement of optimized mechanical responses in terms of load bearing capacities of modern composite structures. In this investigation, two characteristic failure mechanisms of long fiber composites, denominated as intralaminar and translaminar fracture, are simulated by means of a novel version of the phase field (PF) approach of fracture. This numerical strategy encompasses a sort of gradient-enhanced damage formulation rooted in the Griffith theory of fracture, which is herewith extended for its use in composite laminates applications. In order to assess its verification and validation, the predictions obtained using the present formulation are compared against experimental results and two well-established alternative computational methods, which correspond to an anisotropic local-based continuum damage model and a cohesive zone model. The comparisons demonstrate that the PF approach with the proposed formulation provides reliable and robust predictions under quasi-static loading, but with a higher versatility regarding the potential of triggering arbitrarily complex crack paths with intricate topology over alternative techniques.","internal_url":"https://www.academia.edu/97323744/A_phase_field_approach_to_simulate_intralaminar_and_translaminar_fracture_in_long_fiber_composite_materials","translated_internal_url":"","created_at":"2023-02-22T00:04:16.343-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_phase_field_approach_to_simulate_intralaminar_and_translaminar_fracture_in_long_fiber_composite_materials","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract The development of predictive numerical methods, which accurately represent the progressive failure of long fiber composite materials, is nowadays required for the achievement of optimized mechanical responses in terms of load bearing capacities of modern composite structures. In this investigation, two characteristic failure mechanisms of long fiber composites, denominated as intralaminar and translaminar fracture, are simulated by means of a novel version of the phase field (PF) approach of fracture. This numerical strategy encompasses a sort of gradient-enhanced damage formulation rooted in the Griffith theory of fracture, which is herewith extended for its use in composite laminates applications. In order to assess its verification and validation, the predictions obtained using the present formulation are compared against experimental results and two well-established alternative computational methods, which correspond to an anisotropic local-based continuum damage model and a cohesive zone model. The comparisons demonstrate that the PF approach with the proposed formulation provides reliable and robust predictions under quasi-static loading, but with a higher versatility regarding the potential of triggering arbitrarily complex crack paths with intricate topology over alternative techniques.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":51372,"name":"Fiber","url":"https://www.academia.edu/Documents/in/Fiber"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":195378,"name":"Composite structures","url":"https://www.academia.edu/Documents/in/Composite_structures"}],"urls":[{"id":29186918,"url":"https://api.elsevier.com/content/article/PII:S0263822318339928?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-97323744-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="97323741"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/97323741/Enabling_a_Computational_Mechanics_Code_for_Massively_Parallel_Supercomputers"><img alt="Research paper thumbnail of Enabling a Computational Mechanics Code for Massively Parallel Supercomputers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Enabling a Computational Mechanics Code for Massively Parallel Supercomputers</div><div class="wp-workCard_item"><span>Proceedings of the Third International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT This paper introduces an hybrid parallel model of the solid mechanics simulation strateg...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT This paper introduces an hybrid parallel model of the solid mechanics simulation strategy of Alya-High Performance Computational Mechanics, a multi-physics code for supercomputing platforms, developed at Barcelona Supercomputing Center. The goal of the paper is the parallelization strategy, which is chosen as a hybrid MPI/OpenMP model in order to take advantage of all the levels of parallelism that a multicore architecture offers. The paper describes the main features: numerical implementation, algorithms, solution schemes, parallel issues and code engineering. Space and time discretization are based on the finite element method and on finite differences respectively. The solution scheme presented is a total Lagrangian formulation for large deformations, with Newton schemes to cope with non-linearities. Time integration is done either explicitly or implicitly. To exploit the thread-level parallelism of multicore architectures, OpenMP parallelization is introduced in the most time-consuming routines of the solid mechanics, mainly the element assembly and the iterative solver. Additionally, as the communications between threads are via shared memory, there would be a reduction of the communication cost between processors. The main ideas implemented behind the parallel I/O aspects are detailed. Preliminary scalability results are presented for a three-dimensional beam test that requires large data structures. The results obtained are encouraging, outperforming the current MPI-based Alya implementation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97323741"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97323741"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97323741; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97323741]").text(description); $(".js-view-count[data-work-id=97323741]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97323741; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97323741']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=97323741]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97323741,"title":"Enabling a Computational Mechanics Code for Massively Parallel Supercomputers","translated_title":"","metadata":{"abstract":"ABSTRACT This paper introduces an hybrid parallel model of the solid mechanics simulation strategy of Alya-High Performance Computational Mechanics, a multi-physics code for supercomputing platforms, developed at Barcelona Supercomputing Center. The goal of the paper is the parallelization strategy, which is chosen as a hybrid MPI/OpenMP model in order to take advantage of all the levels of parallelism that a multicore architecture offers. The paper describes the main features: numerical implementation, algorithms, solution schemes, parallel issues and code engineering. Space and time discretization are based on the finite element method and on finite differences respectively. The solution scheme presented is a total Lagrangian formulation for large deformations, with Newton schemes to cope with non-linearities. Time integration is done either explicitly or implicitly. To exploit the thread-level parallelism of multicore architectures, OpenMP parallelization is introduced in the most time-consuming routines of the solid mechanics, mainly the element assembly and the iterative solver. Additionally, as the communications between threads are via shared memory, there would be a reduction of the communication cost between processors. The main ideas implemented behind the parallel I/O aspects are detailed. Preliminary scalability results are presented for a three-dimensional beam test that requires large data structures. The results obtained are encouraging, outperforming the current MPI-based Alya implementation.","publication_name":"Proceedings of the Third International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering"},"translated_abstract":"ABSTRACT This paper introduces an hybrid parallel model of the solid mechanics simulation strategy of Alya-High Performance Computational Mechanics, a multi-physics code for supercomputing platforms, developed at Barcelona Supercomputing Center. The goal of the paper is the parallelization strategy, which is chosen as a hybrid MPI/OpenMP model in order to take advantage of all the levels of parallelism that a multicore architecture offers. The paper describes the main features: numerical implementation, algorithms, solution schemes, parallel issues and code engineering. Space and time discretization are based on the finite element method and on finite differences respectively. The solution scheme presented is a total Lagrangian formulation for large deformations, with Newton schemes to cope with non-linearities. Time integration is done either explicitly or implicitly. To exploit the thread-level parallelism of multicore architectures, OpenMP parallelization is introduced in the most time-consuming routines of the solid mechanics, mainly the element assembly and the iterative solver. Additionally, as the communications between threads are via shared memory, there would be a reduction of the communication cost between processors. The main ideas implemented behind the parallel I/O aspects are detailed. Preliminary scalability results are presented for a three-dimensional beam test that requires large data structures. The results obtained are encouraging, outperforming the current MPI-based Alya implementation.","internal_url":"https://www.academia.edu/97323741/Enabling_a_Computational_Mechanics_Code_for_Massively_Parallel_Supercomputers","translated_internal_url":"","created_at":"2023-02-22T00:04:15.924-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Enabling_a_Computational_Mechanics_Code_for_Massively_Parallel_Supercomputers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT This paper introduces an hybrid parallel model of the solid mechanics simulation strategy of Alya-High Performance Computational Mechanics, a multi-physics code for supercomputing platforms, developed at Barcelona Supercomputing Center. The goal of the paper is the parallelization strategy, which is chosen as a hybrid MPI/OpenMP model in order to take advantage of all the levels of parallelism that a multicore architecture offers. The paper describes the main features: numerical implementation, algorithms, solution schemes, parallel issues and code engineering. Space and time discretization are based on the finite element method and on finite differences respectively. The solution scheme presented is a total Lagrangian formulation for large deformations, with Newton schemes to cope with non-linearities. Time integration is done either explicitly or implicitly. To exploit the thread-level parallelism of multicore architectures, OpenMP parallelization is introduced in the most time-consuming routines of the solid mechanics, mainly the element assembly and the iterative solver. Additionally, as the communications between threads are via shared memory, there would be a reduction of the communication cost between processors. The main ideas implemented behind the parallel I/O aspects are detailed. Preliminary scalability results are presented for a three-dimensional beam test that requires large data structures. The results obtained are encouraging, outperforming the current MPI-based Alya implementation.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":442,"name":"Parallel Computing","url":"https://www.academia.edu/Documents/in/Parallel_Computing"},{"id":11819,"name":"Computational Science","url":"https://www.academia.edu/Documents/in/Computational_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-97323741-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="97323740"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/97323740/Alya_Computational_Solid_Mechanics_for_Supercomputers"><img alt="Research paper thumbnail of Alya: Computational Solid Mechanics for Supercomputers" class="work-thumbnail" src="https://attachments.academia-assets.com/98976285/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/97323740/Alya_Computational_Solid_Mechanics_for_Supercomputers">Alya: Computational Solid Mechanics for Supercomputers</a></div><div class="wp-workCard_item"><span>Archives of Computational Methods in Engineering</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">While solid mechanics codes are now conventional tools both in industry and research, the increas...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">While solid mechanics codes are now conventional tools both in industry and research, the increasingly more exigent requirements of both sectors are fuelling the need for more computational power and more advanced algorithms. For obvious reasons, commercial codes are lagging behind academic codes often dedicated either to the implementation of one new technique, or the upscaling of current conventional codes to tackle massively large scale computational problems. Only in a few cases, both approaches have been followed simultaneously. In this article, a solid mechanics simulation strategy for parallel supercomputers based on a hybrid approach is presented. Hybrid parallelization exploits the thread-level parallelism of multicore architectures, com</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b736021be8cbb8d8f0055b29eeb1b857" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98976285,&quot;asset_id&quot;:97323740,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98976285/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97323740"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97323740"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97323740; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97323740]").text(description); $(".js-view-count[data-work-id=97323740]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97323740; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97323740']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b736021be8cbb8d8f0055b29eeb1b857" } } $('.js-work-strip[data-work-id=97323740]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97323740,"title":"Alya: Computational Solid Mechanics for Supercomputers","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","ai_title_tag":"Hybrid Parallelism in Solid Mechanics Simulations","grobid_abstract":"While solid mechanics codes are now conventional tools both in industry and research, the increasingly more exigent requirements of both sectors are fuelling the need for more computational power and more advanced algorithms. For obvious reasons, commercial codes are lagging behind academic codes often dedicated either to the implementation of one new technique, or the upscaling of current conventional codes to tackle massively large scale computational problems. Only in a few cases, both approaches have been followed simultaneously. In this article, a solid mechanics simulation strategy for parallel supercomputers based on a hybrid approach is presented. Hybrid parallelization exploits the thread-level parallelism of multicore architectures, com","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Archives of Computational Methods in Engineering","grobid_abstract_attachment_id":98976285},"translated_abstract":null,"internal_url":"https://www.academia.edu/97323740/Alya_Computational_Solid_Mechanics_for_Supercomputers","translated_internal_url":"","created_at":"2023-02-22T00:04:15.479-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98976285,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98976285/thumbnails/1.jpg","file_name":"alya_20computationaol_20solid.pdf","download_url":"https://www.academia.edu/attachments/98976285/download_file","bulk_download_file_name":"Alya_Computational_Solid_Mechanics_for_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98976285/alya_20computationaol_20solid-libre.pdf?1677053147=\u0026response-content-disposition=attachment%3B+filename%3DAlya_Computational_Solid_Mechanics_for_S.pdf\u0026Expires=1744022477\u0026Signature=HsdBrfU603e1z4BPGvIx2T0Q2BjBNTcEpxykfeZsROO5Hj4ZgqzdU9vXgiuDtqR24aEC~GqejVVoofJcJ0gmrSM1WHPR0Am9BReZSz2yy7laRQQCzstqAW0KxupySMdyr19THa00GJ0q7hXoUP-cmkuUA2Q7WzDprT2TODVC0qoUFT2mz-~2FzoWbHnBR5GDxe~RWFfgYOhkFL-tbYvfb2L2Z-S-j2UGGGxEY2k0pmoRgH4thbWPSlwLJmZP-LwzAmZbjsyjSbs0UmpvwARdls~474l7pos8BH5K9aN7weDZATPC5RGTd2NK99~vE80~M2MuvYaMZkD7Uwk8OE1e-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Alya_Computational_Solid_Mechanics_for_Supercomputers","translated_slug":"","page_count":20,"language":"en","content_type":"Work","summary":"While solid mechanics codes are now conventional tools both in industry and research, the increasingly more exigent requirements of both sectors are fuelling the need for more computational power and more advanced algorithms. For obvious reasons, commercial codes are lagging behind academic codes often dedicated either to the implementation of one new technique, or the upscaling of current conventional codes to tackle massively large scale computational problems. Only in a few cases, both approaches have been followed simultaneously. In this article, a solid mechanics simulation strategy for parallel supercomputers based on a hybrid approach is presented. Hybrid parallelization exploits the thread-level parallelism of multicore architectures, com","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[{"id":98976285,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98976285/thumbnails/1.jpg","file_name":"alya_20computationaol_20solid.pdf","download_url":"https://www.academia.edu/attachments/98976285/download_file","bulk_download_file_name":"Alya_Computational_Solid_Mechanics_for_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98976285/alya_20computationaol_20solid-libre.pdf?1677053147=\u0026response-content-disposition=attachment%3B+filename%3DAlya_Computational_Solid_Mechanics_for_S.pdf\u0026Expires=1744022477\u0026Signature=HsdBrfU603e1z4BPGvIx2T0Q2BjBNTcEpxykfeZsROO5Hj4ZgqzdU9vXgiuDtqR24aEC~GqejVVoofJcJ0gmrSM1WHPR0Am9BReZSz2yy7laRQQCzstqAW0KxupySMdyr19THa00GJ0q7hXoUP-cmkuUA2Q7WzDprT2TODVC0qoUFT2mz-~2FzoWbHnBR5GDxe~RWFfgYOhkFL-tbYvfb2L2Z-S-j2UGGGxEY2k0pmoRgH4thbWPSlwLJmZP-LwzAmZbjsyjSbs0UmpvwARdls~474l7pos8BH5K9aN7weDZATPC5RGTd2NK99~vE80~M2MuvYaMZkD7Uwk8OE1e-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":442,"name":"Parallel Computing","url":"https://www.academia.edu/Documents/in/Parallel_Computing"},{"id":2376,"name":"Computational Mechanics","url":"https://www.academia.edu/Documents/in/Computational_Mechanics"},{"id":11819,"name":"Computational Science","url":"https://www.academia.edu/Documents/in/Computational_Science"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":88861,"name":"Computer Systems","url":"https://www.academia.edu/Documents/in/Computer_Systems"},{"id":213990,"name":"Flexibility in engineering design","url":"https://www.academia.edu/Documents/in/Flexibility_in_engineering_design"},{"id":377043,"name":"Scalability","url":"https://www.academia.edu/Documents/in/Scalability"},{"id":394053,"name":"Chimera","url":"https://www.academia.edu/Documents/in/Chimera"},{"id":537164,"name":"Exascale Computing","url":"https://www.academia.edu/Documents/in/Exascale_Computing"},{"id":799604,"name":"Supercomputers","url":"https://www.academia.edu/Documents/in/Supercomputers"},{"id":2141217,"name":"Supercomputer","url":"https://www.academia.edu/Documents/in/Supercomputer"},{"id":3208414,"name":"Multi-Core Processor","url":"https://www.academia.edu/Documents/in/Multi-Core_Processor"}],"urls":[{"id":29186916,"url":"http://link.springer.com/content/pdf/10.1007/s11831-014-9126-8.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-97323740-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="97323739"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/97323739/An_XFEM_CZM_implementation_for_massively_parallel_simulations_of_composites_fracture"><img alt="Research paper thumbnail of An XFEM/CZM implementation for massively parallel simulations of composites fracture" class="work-thumbnail" src="https://attachments.academia-assets.com/98976291/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/97323739/An_XFEM_CZM_implementation_for_massively_parallel_simulations_of_composites_fracture">An XFEM/CZM implementation for massively parallel simulations of composites fracture</a></div><div class="wp-workCard_item"><span>Composite Structures</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Because of their widely spread use in many industries, composites are the subject of many researc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Because of their widely spread use in many industries, composites are the subject of many research campaigns. More particularly, the development of both accurate and flexible numerical models able to capture their intrinsically multiscale modes of failure is still a challenge. The standard finite element method typically requires intensive remeshing to adequately capture the geometry of the cracks and high accuracy is thus often sacrificed in favor of scalability, and vice versa. In an effort to preserve both properties, we present here an extended finite element method (XFEM) for large scale composite fracture simulations. In this formulation, the standard FEM formulation is partially enriched by use of shifted Heaviside functions with special attention paid to the scalability of the scheme. This enrichment technique offers several benefits, since the interpolation property of the standard shape function still holds at the nodes. Those benefits include (i) no extra boundary condition for the enrichment degree of freedom, and (ii) no need for transition/blending regions; both of which contribute to maintain the scalability of the code. Two different cohesive zone models (CZM) are then adopted to capture the physics of the crack propagation mechanisms. At the intralaminar level, an extrinsic CZM embedded in the XFEM formulation is used. At the interlaminar level, an intrinsic CZM is adopted for predicting the failure. The overall framework is implemented in ALYA, a mechanics code specifically developed for large scale, massively parallel simulations of coupled multi-physics problems. The implementation of both intrinsic and extrinsic CZM models within the code is such that it conserves the extremely efficient scalability of ALYA while providing accurate physical simulations of computationally expensive phenomena. The strong scalability provided by the proposed implementation is demonstrated. The model is ultimately validated against a full experimental campaign of loading tests and X-ray tomography analyses for a chosen very large scale.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c20cb638d3231c4961e0d177d2c5ec25" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98976291,&quot;asset_id&quot;:97323739,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98976291/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97323739"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97323739"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97323739; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97323739]").text(description); $(".js-view-count[data-work-id=97323739]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97323739; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97323739']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c20cb638d3231c4961e0d177d2c5ec25" } } $('.js-work-strip[data-work-id=97323739]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97323739,"title":"An XFEM/CZM implementation for massively parallel simulations of composites fracture","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Parallel XFEM/CZM for Composite Fracture Simulations","grobid_abstract":"Because of their widely spread use in many industries, composites are the subject of many research campaigns. More particularly, the development of both accurate and flexible numerical models able to capture their intrinsically multiscale modes of failure is still a challenge. The standard finite element method typically requires intensive remeshing to adequately capture the geometry of the cracks and high accuracy is thus often sacrificed in favor of scalability, and vice versa. In an effort to preserve both properties, we present here an extended finite element method (XFEM) for large scale composite fracture simulations. In this formulation, the standard FEM formulation is partially enriched by use of shifted Heaviside functions with special attention paid to the scalability of the scheme. This enrichment technique offers several benefits, since the interpolation property of the standard shape function still holds at the nodes. Those benefits include (i) no extra boundary condition for the enrichment degree of freedom, and (ii) no need for transition/blending regions; both of which contribute to maintain the scalability of the code. Two different cohesive zone models (CZM) are then adopted to capture the physics of the crack propagation mechanisms. At the intralaminar level, an extrinsic CZM embedded in the XFEM formulation is used. At the interlaminar level, an intrinsic CZM is adopted for predicting the failure. The overall framework is implemented in ALYA, a mechanics code specifically developed for large scale, massively parallel simulations of coupled multi-physics problems. The implementation of both intrinsic and extrinsic CZM models within the code is such that it conserves the extremely efficient scalability of ALYA while providing accurate physical simulations of computationally expensive phenomena. The strong scalability provided by the proposed implementation is demonstrated. The model is ultimately validated against a full experimental campaign of loading tests and X-ray tomography analyses for a chosen very large scale.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Composite Structures","grobid_abstract_attachment_id":98976291},"translated_abstract":null,"internal_url":"https://www.academia.edu/97323739/An_XFEM_CZM_implementation_for_massively_parallel_simulations_of_composites_fracture","translated_internal_url":"","created_at":"2023-02-22T00:04:15.296-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98976291,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98976291/thumbnails/1.jpg","file_name":"2015_COST_XFEM.pdf","download_url":"https://www.academia.edu/attachments/98976291/download_file","bulk_download_file_name":"An_XFEM_CZM_implementation_for_massively.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98976291/2015_COST_XFEM-libre.pdf?1677053159=\u0026response-content-disposition=attachment%3B+filename%3DAn_XFEM_CZM_implementation_for_massively.pdf\u0026Expires=1744022477\u0026Signature=MSI-qC7x8E7zhzqfGTC1MRWV9s~j6C8-9vrXi3xHSLPSiIVWprMCD0EHp19T1QJaFo1Yh9BvKYpBoonp6gqCNgGBz2CzycQ3ud7GnQx~HgivnFEIqg0ezs7AeGuHDi~GXXa9fFwUcClE0lrBjo8HnwfBpxBGf9HvarchuSGlDYe-LK8tjXt-wTPUAkS50mUyaCdm9tu~UtYKBmEz7930Rb3TnnHhIhvvR4Dn6Q~iPdRnQuwVyUJ14lBlO1eTrrRYb4-UY7SwODXeZ1l3UhOXRuL-t3wxg894zD4SueBQ1Nsro0Birjn~isO83jBeU2qtUtZAPjB6IYSQlT8vQLYiow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_XFEM_CZM_implementation_for_massively_parallel_simulations_of_composites_fracture","translated_slug":"","page_count":20,"language":"en","content_type":"Work","summary":"Because of their widely spread use in many industries, composites are the subject of many research campaigns. More particularly, the development of both accurate and flexible numerical models able to capture their intrinsically multiscale modes of failure is still a challenge. The standard finite element method typically requires intensive remeshing to adequately capture the geometry of the cracks and high accuracy is thus often sacrificed in favor of scalability, and vice versa. In an effort to preserve both properties, we present here an extended finite element method (XFEM) for large scale composite fracture simulations. In this formulation, the standard FEM formulation is partially enriched by use of shifted Heaviside functions with special attention paid to the scalability of the scheme. This enrichment technique offers several benefits, since the interpolation property of the standard shape function still holds at the nodes. Those benefits include (i) no extra boundary condition for the enrichment degree of freedom, and (ii) no need for transition/blending regions; both of which contribute to maintain the scalability of the code. Two different cohesive zone models (CZM) are then adopted to capture the physics of the crack propagation mechanisms. At the intralaminar level, an extrinsic CZM embedded in the XFEM formulation is used. At the interlaminar level, an intrinsic CZM is adopted for predicting the failure. The overall framework is implemented in ALYA, a mechanics code specifically developed for large scale, massively parallel simulations of coupled multi-physics problems. The implementation of both intrinsic and extrinsic CZM models within the code is such that it conserves the extremely efficient scalability of ALYA while providing accurate physical simulations of computationally expensive phenomena. The strong scalability provided by the proposed implementation is demonstrated. The model is ultimately validated against a full experimental campaign of loading tests and X-ray tomography analyses for a chosen very large scale.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[{"id":98976291,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98976291/thumbnails/1.jpg","file_name":"2015_COST_XFEM.pdf","download_url":"https://www.academia.edu/attachments/98976291/download_file","bulk_download_file_name":"An_XFEM_CZM_implementation_for_massively.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98976291/2015_COST_XFEM-libre.pdf?1677053159=\u0026response-content-disposition=attachment%3B+filename%3DAn_XFEM_CZM_implementation_for_massively.pdf\u0026Expires=1744022477\u0026Signature=MSI-qC7x8E7zhzqfGTC1MRWV9s~j6C8-9vrXi3xHSLPSiIVWprMCD0EHp19T1QJaFo1Yh9BvKYpBoonp6gqCNgGBz2CzycQ3ud7GnQx~HgivnFEIqg0ezs7AeGuHDi~GXXa9fFwUcClE0lrBjo8HnwfBpxBGf9HvarchuSGlDYe-LK8tjXt-wTPUAkS50mUyaCdm9tu~UtYKBmEz7930Rb3TnnHhIhvvR4Dn6Q~iPdRnQuwVyUJ14lBlO1eTrrRYb4-UY7SwODXeZ1l3UhOXRuL-t3wxg894zD4SueBQ1Nsro0Birjn~isO83jBeU2qtUtZAPjB6IYSQlT8vQLYiow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4496,"name":"Composites","url":"https://www.academia.edu/Documents/in/Composites"},{"id":24257,"name":"Failure","url":"https://www.academia.edu/Documents/in/Failure"},{"id":47947,"name":"Fracture and cohesive zone model","url":"https://www.academia.edu/Documents/in/Fracture_and_cohesive_zone_model"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":195378,"name":"Composite structures","url":"https://www.academia.edu/Documents/in/Composite_structures"},{"id":897823,"name":"Elsevier","url":"https://www.academia.edu/Documents/in/Elsevier"}],"urls":[{"id":29186915,"url":"https://api.elsevier.com/content/article/PII:S0263822315001063?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-97323739-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="97323264"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/97323264/SEVENTH_FRAMEWORK_PROGRAMME_Research_Infrastructures_INFRA_2011_2_3_5_Second_Implementation_Phase_of_the_European_High_Performance_Computing_HPC_service_PRACE_PRACE_2IP_PRACE_Second_Implementation_Phase_Project"><img alt="Research paper thumbnail of SEVENTH FRAMEWORK PROGRAMME Research Infrastructures INFRA-2011-2.3.5 – Second Implementation Phase of the European High Performance Computing (HPC) service PRACE PRACE-2IP PRACE Second Implementation Phase Project" class="work-thumbnail" src="https://attachments.academia-assets.com/98975898/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/97323264/SEVENTH_FRAMEWORK_PROGRAMME_Research_Infrastructures_INFRA_2011_2_3_5_Second_Implementation_Phase_of_the_European_High_Performance_Computing_HPC_service_PRACE_PRACE_2IP_PRACE_Second_Implementation_Phase_Project">SEVENTH FRAMEWORK PROGRAMME Research Infrastructures INFRA-2011-2.3.5 – Second Implementation Phase of the European High Performance Computing (HPC) service PRACE PRACE-2IP PRACE Second Implementation Phase Project</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">*-The dissemination level are indicated as follows: PU-Public, PP-Restricted to other participant...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">*-The dissemination level are indicated as follows: PU-Public, PP-Restricted to other participants (including the Commission Services), RE-Restricted to a group specified by the consortium (including the Commission Services). CO-Confidential, only for members of the consortium (including the Commission Services).</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-97323264-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-97323264-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48550571/figure-1-seventh-framework-programme-research"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/98975898/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48550575/figure-1-viscosolve-first-four-iterations-total-solve-time"><img alt="Figure 1: ViscoSolve first four iterations total solve time for 127920 hexahedral elements A good scalability is therefore reachable up to 256 parallel threads. " class="figure-slide-image" src="https://figures.academia-assets.com/98975898/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48550578/table-1-seventh-framework-programme-research-infrastructures"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/98975898/table_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/48550580/table-2-seventh-framework-programme-research-infrastructures"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/98975898/table_002.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-97323264-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="771230232982f3d2d8b429c86a08eff8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98975898,&quot;asset_id&quot;:97323264,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98975898/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="97323264"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="97323264"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 97323264; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=97323264]").text(description); $(".js-view-count[data-work-id=97323264]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 97323264; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='97323264']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "771230232982f3d2d8b429c86a08eff8" } } $('.js-work-strip[data-work-id=97323264]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":97323264,"title":"SEVENTH FRAMEWORK PROGRAMME Research Infrastructures INFRA-2011-2.3.5 – Second Implementation Phase of the European High Performance Computing (HPC) service PRACE PRACE-2IP PRACE Second Implementation Phase Project","translated_title":"","metadata":{"grobid_abstract":"*-The dissemination level are indicated as follows: PU-Public, PP-Restricted to other participants (including the Commission Services), RE-Restricted to a group specified by the consortium (including the Commission Services). CO-Confidential, only for members of the consortium (including the Commission Services).","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"grobid_abstract_attachment_id":98975898},"translated_abstract":null,"internal_url":"https://www.academia.edu/97323264/SEVENTH_FRAMEWORK_PROGRAMME_Research_Infrastructures_INFRA_2011_2_3_5_Second_Implementation_Phase_of_the_European_High_Performance_Computing_HPC_service_PRACE_PRACE_2IP_PRACE_Second_Implementation_Phase_Project","translated_internal_url":"","created_at":"2023-02-21T23:55:41.929-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98975898,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98975898/thumbnails/1.jpg","file_name":"2IP-D9.3.pdf","download_url":"https://www.academia.edu/attachments/98975898/download_file","bulk_download_file_name":"SEVENTH_FRAMEWORK_PROGRAMME_Research_Inf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98975898/2IP-D9.3-libre.pdf?1677053167=\u0026response-content-disposition=attachment%3B+filename%3DSEVENTH_FRAMEWORK_PROGRAMME_Research_Inf.pdf\u0026Expires=1744022477\u0026Signature=HkiRReXG4NBcW7Go4d3fRCDz2iZ0Thj5O2wuVbbcA3q702JIECk7fFuJ4NfMaP9a1VVfPmpOX~X2R51kumP9li-GWSxOYiSYamrPQn~P6eUGQW4ALz4O3MDaaa82zvJq-rxJD3iBaTTLp5TsWOH0fF7DXBxQeNqCp0FSa5lZFG~vSxbZ9krkvqMf8lLFowZ8O4vhl~XXZGF3QMGVOkgbq~1dNjkiUjM2AKA3p1p-D69tzO~lzyf77Z7tPZKcsvx2AlPZBczkBeqs3txxCIE-7SOHf~v9n~xJecxVnSvqY4G-1aeuFAE7rOizciG7XmrbDMIvYM7vk7qpphhVyHEEqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SEVENTH_FRAMEWORK_PROGRAMME_Research_Infrastructures_INFRA_2011_2_3_5_Second_Implementation_Phase_of_the_European_High_Performance_Computing_HPC_service_PRACE_PRACE_2IP_PRACE_Second_Implementation_Phase_Project","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"*-The dissemination level are indicated as follows: PU-Public, PP-Restricted to other participants (including the Commission Services), RE-Restricted to a group specified by the consortium (including the Commission Services). CO-Confidential, only for members of the consortium (including the Commission Services).","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[{"id":98975898,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98975898/thumbnails/1.jpg","file_name":"2IP-D9.3.pdf","download_url":"https://www.academia.edu/attachments/98975898/download_file","bulk_download_file_name":"SEVENTH_FRAMEWORK_PROGRAMME_Research_Inf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98975898/2IP-D9.3-libre.pdf?1677053167=\u0026response-content-disposition=attachment%3B+filename%3DSEVENTH_FRAMEWORK_PROGRAMME_Research_Inf.pdf\u0026Expires=1744022477\u0026Signature=HkiRReXG4NBcW7Go4d3fRCDz2iZ0Thj5O2wuVbbcA3q702JIECk7fFuJ4NfMaP9a1VVfPmpOX~X2R51kumP9li-GWSxOYiSYamrPQn~P6eUGQW4ALz4O3MDaaa82zvJq-rxJD3iBaTTLp5TsWOH0fF7DXBxQeNqCp0FSa5lZFG~vSxbZ9krkvqMf8lLFowZ8O4vhl~XXZGF3QMGVOkgbq~1dNjkiUjM2AKA3p1p-D69tzO~lzyf77Z7tPZKcsvx2AlPZBczkBeqs3txxCIE-7SOHf~v9n~xJecxVnSvqY4G-1aeuFAE7rOizciG7XmrbDMIvYM7vk7qpphhVyHEEqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":29186674,"url":"https://prace-ri.eu/wp-content/uploads/2IP-D9.3.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-97323264-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="7879873"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7879873/SHOCK_CAPTURING_WITH_DISCONTINUOUS_GALERKIN_METHODS"><img alt="Research paper thumbnail of SHOCK-CAPTURING WITH DISCONTINUOUS GALERKIN METHODS" class="work-thumbnail" src="https://attachments.academia-assets.com/34368353/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7879873/SHOCK_CAPTURING_WITH_DISCONTINUOUS_GALERKIN_METHODS">SHOCK-CAPTURING WITH DISCONTINUOUS GALERKIN METHODS</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A shock capturing strategy for high order Discontinuous Galerkin methods for conservation laws is...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A shock capturing strategy for high order Discontinuous Galerkin methods for conservation laws is proposed. We present a method in the one-dimensional case based on the introduction of artificial viscosity into the original equations. With this approach the shock is capture with sharp resolution maintaining high-order accuracy. The ideas for the extension to the two-dimensional case are also set.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="493191a663e9cbeeb15b4764c85ef93b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34368353,&quot;asset_id&quot;:7879873,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34368353/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7879873"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7879873"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7879873; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7879873]").text(description); $(".js-view-count[data-work-id=7879873]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7879873; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7879873']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "493191a663e9cbeeb15b4764c85ef93b" } } $('.js-work-strip[data-work-id=7879873]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7879873,"title":"SHOCK-CAPTURING WITH DISCONTINUOUS GALERKIN METHODS","translated_title":"","metadata":{"grobid_abstract":"A shock capturing strategy for high order Discontinuous Galerkin methods for conservation laws is proposed. We present a method in the one-dimensional case based on the introduction of artificial viscosity into the original equations. With this approach the shock is capture with sharp resolution maintaining high-order accuracy. The ideas for the extension to the two-dimensional case are also set.","grobid_abstract_attachment_id":34368353},"translated_abstract":null,"internal_url":"https://www.academia.edu/7879873/SHOCK_CAPTURING_WITH_DISCONTINUOUS_GALERKIN_METHODS","translated_internal_url":"","created_at":"2014-08-05T01:50:50.122-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34368353,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34368353/thumbnails/1.jpg","file_name":"acta13.pdf","download_url":"https://www.academia.edu/attachments/34368353/download_file","bulk_download_file_name":"SHOCK_CAPTURING_WITH_DISCONTINUOUS_GALER.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34368353/acta13-libre.pdf?1407228699=\u0026response-content-disposition=attachment%3B+filename%3DSHOCK_CAPTURING_WITH_DISCONTINUOUS_GALER.pdf\u0026Expires=1744022477\u0026Signature=e3jAXiqaAQv~gwNQfASUsebErOXGCJmTidTsK4qEWCvXuHLLSMMctOPkgq~oCrqURozeZJWW5rJdJ81PyuSHk8DzKN3A2P38EEHEUdE16BdYBo1yYEGCLLFkGcpmdmDec6Vo~QzZoi6BlmwGe2bOTs1GB~MHi6Mnd1oQ4X4RfoTh9iNlPWMdMH0MCC-k5lLRdp5PR8cJnRLo7IANbP1OHrFVW8lto3ZmXsT~H0ZXnHX8j2FAOzsZnb5KDwEx4J2tIbFhnT~CMCvtNjpa9ySBKMZQxifdzFpDRSUWs6Z0MSrAl78lyPpDizpLgodxOstPfWIthN~3bB2XndtvHtwv2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SHOCK_CAPTURING_WITH_DISCONTINUOUS_GALERKIN_METHODS","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"A shock capturing strategy for high order Discontinuous Galerkin methods for conservation laws is proposed. We present a method in the one-dimensional case based on the introduction of artificial viscosity into the original equations. With this approach the shock is capture with sharp resolution maintaining high-order accuracy. The ideas for the extension to the two-dimensional case are also set.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[{"id":34368353,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34368353/thumbnails/1.jpg","file_name":"acta13.pdf","download_url":"https://www.academia.edu/attachments/34368353/download_file","bulk_download_file_name":"SHOCK_CAPTURING_WITH_DISCONTINUOUS_GALER.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34368353/acta13-libre.pdf?1407228699=\u0026response-content-disposition=attachment%3B+filename%3DSHOCK_CAPTURING_WITH_DISCONTINUOUS_GALER.pdf\u0026Expires=1744022477\u0026Signature=e3jAXiqaAQv~gwNQfASUsebErOXGCJmTidTsK4qEWCvXuHLLSMMctOPkgq~oCrqURozeZJWW5rJdJ81PyuSHk8DzKN3A2P38EEHEUdE16BdYBo1yYEGCLLFkGcpmdmDec6Vo~QzZoi6BlmwGe2bOTs1GB~MHi6Mnd1oQ4X4RfoTh9iNlPWMdMH0MCC-k5lLRdp5PR8cJnRLo7IANbP1OHrFVW8lto3ZmXsT~H0ZXnHX8j2FAOzsZnb5KDwEx4J2tIbFhnT~CMCvtNjpa9ySBKMZQxifdzFpDRSUWs6Z0MSrAl78lyPpDizpLgodxOstPfWIthN~3bB2XndtvHtwv2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":34368354,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34368354/thumbnails/1.jpg","file_name":"acta13.pdf","download_url":"https://www.academia.edu/attachments/34368354/download_file","bulk_download_file_name":"SHOCK_CAPTURING_WITH_DISCONTINUOUS_GALER.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34368354/acta13-libre.pdf?1407228665=\u0026response-content-disposition=attachment%3B+filename%3DSHOCK_CAPTURING_WITH_DISCONTINUOUS_GALER.pdf\u0026Expires=1744022477\u0026Signature=SLuRPsArVyGzsf9y7iUbveZ3e7XqgHK1J-P8t4ancG8L-5VLBHNCKxPLXBHTi36TOHS2YcLg6iz~hqBX3SJ5i4GZAEQRiM-GsVFDP~KCG8pAXeH3loVMlHwsHBZPRm1i8fex2OS~6SiY~HbqWG6dS8mPOifVyuLcFSHiDs2cC2eZvEYt3ZI99z~zww60q3YTUdXxtdYav22M2LgZkiXhu8dxbWNEx~eL6FwEehsX9glYvgm3nmAChbpVQdzz2A3IFouaPn9a8ctCPUNWPHo-KYPMGKQ9XVQw0oSEDjRxG9Rm0rLWqVeXylL7FL9Jx-iBvlM1IZUFSNoewLkhIP5MVg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":96281,"name":"Applied mathematics and Modelling","url":"https://www.academia.edu/Documents/in/Applied_mathematics_and_Modelling"}],"urls":[{"id":3291676,"url":"http://upcommons.upc.edu/revistes/bitstream/2099/7814/1/acta13.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-7879873-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="7879872"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7879872/Discontinuous_Galerkin_Methods_for_elliptic_problems"><img alt="Research paper thumbnail of Discontinuous Galerkin Methods for elliptic problems" class="work-thumbnail" src="https://attachments.academia-assets.com/48304747/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7879872/Discontinuous_Galerkin_Methods_for_elliptic_problems">Discontinuous Galerkin Methods for elliptic problems</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper is a short essay on discontinuous Galerkin methods intended for a very wide audience. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper is a short essay on discontinuous Galerkin methods intended for a very wide audience. We present the discontinuous Galerkin methods and describe and discuss their main features. Since the methods use completely discontinuous approximations, they produce mass matrices that are block-diagonal. This renders the methods highly parallelizable when applied to hyperbolic problems. Another consequence of the use of discontinuous approximations is that these methods can easily handle irregular meshes with hanging nodes and approximations that have polynomials of different degrees in different elements. They are thus ideal for use with adaptive algorithms. Moreover, the methods are locally conservative (a property highly valued by the computational fluid dynamics community) and, in spite of providing discontinuous approximations, stable, and high-order accurate. Even more, when applied to non-linear hyperbolic problems, the discontinuous Galerkin methods are able to capture highly complex solutions presenting discontinuities with high resolution. In this paper, we concentrate on the exposition of the ideas behind the devising of these methods as well as on the mechanisms that allow them to perform so well in such a variety of problems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="863070471e357f62b72678148aa73177" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48304747,&quot;asset_id&quot;:7879872,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48304747/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7879872"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7879872"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7879872; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7879872]").text(description); $(".js-view-count[data-work-id=7879872]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7879872; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7879872']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "863070471e357f62b72678148aa73177" } } $('.js-work-strip[data-work-id=7879872]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7879872,"title":"Discontinuous Galerkin Methods for elliptic problems","translated_title":"","metadata":{"grobid_abstract":"This paper is a short essay on discontinuous Galerkin methods intended for a very wide audience. We present the discontinuous Galerkin methods and describe and discuss their main features. Since the methods use completely discontinuous approximations, they produce mass matrices that are block-diagonal. This renders the methods highly parallelizable when applied to hyperbolic problems. Another consequence of the use of discontinuous approximations is that these methods can easily handle irregular meshes with hanging nodes and approximations that have polynomials of different degrees in different elements. They are thus ideal for use with adaptive algorithms. Moreover, the methods are locally conservative (a property highly valued by the computational fluid dynamics community) and, in spite of providing discontinuous approximations, stable, and high-order accurate. Even more, when applied to non-linear hyperbolic problems, the discontinuous Galerkin methods are able to capture highly complex solutions presenting discontinuities with high resolution. In this paper, we concentrate on the exposition of the ideas behind the devising of these methods as well as on the mechanisms that allow them to perform so well in such a variety of problems.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"grobid_abstract_attachment_id":48304747},"translated_abstract":null,"internal_url":"https://www.academia.edu/7879872/Discontinuous_Galerkin_Methods_for_elliptic_problems","translated_internal_url":"","created_at":"2014-08-05T01:50:49.993-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":48304747,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48304747/thumbnails/1.jpg","file_name":"Discontinuous_Galerkin_method20160825-12275-mkd99h.pdf","download_url":"https://www.academia.edu/attachments/48304747/download_file","bulk_download_file_name":"Discontinuous_Galerkin_Methods_for_ellip.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48304747/Discontinuous_Galerkin_method20160825-12275-mkd99h-libre.pdf?1472121592=\u0026response-content-disposition=attachment%3B+filename%3DDiscontinuous_Galerkin_Methods_for_ellip.pdf\u0026Expires=1744022477\u0026Signature=NoXGsmYAXAJ02UB9ksmhzHatBAZiv9E2LO2FJ8ybDemnjGWIJhnqX40r0Fi605-O4gW15A3O21zx6xKHstgeDcQFeWA9RyO47loEVWTGe965tAmeVjsU8MBa1D7yP6cFhhtSfDKGsVcV5-wg88K7esciYLG8MV5O2kSnFe2OUiWKb7N9OuBw3FZVJ9M92cuCnNTGmbqqUDf9tGfnadbgpv4zdOGXOgcr3AehIeiymeQZvZBKkmwUcnP7HQPomKrudOOo11GqCic5JnUtadu8ll6JlNpI1XnzRyVvIT2gRlyL9PxPLF~zRUCoGe8syUf0QTjOAvh1dVk7EgvfqgcLFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Discontinuous_Galerkin_Methods_for_elliptic_problems","translated_slug":"","page_count":25,"language":"en","content_type":"Work","summary":"This paper is a short essay on discontinuous Galerkin methods intended for a very wide audience. We present the discontinuous Galerkin methods and describe and discuss their main features. Since the methods use completely discontinuous approximations, they produce mass matrices that are block-diagonal. This renders the methods highly parallelizable when applied to hyperbolic problems. Another consequence of the use of discontinuous approximations is that these methods can easily handle irregular meshes with hanging nodes and approximations that have polynomials of different degrees in different elements. They are thus ideal for use with adaptive algorithms. Moreover, the methods are locally conservative (a property highly valued by the computational fluid dynamics community) and, in spite of providing discontinuous approximations, stable, and high-order accurate. Even more, when applied to non-linear hyperbolic problems, the discontinuous Galerkin methods are able to capture highly complex solutions presenting discontinuities with high resolution. In this paper, we concentrate on the exposition of the ideas behind the devising of these methods as well as on the mechanisms that allow them to perform so well in such a variety of problems.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[{"id":48304747,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48304747/thumbnails/1.jpg","file_name":"Discontinuous_Galerkin_method20160825-12275-mkd99h.pdf","download_url":"https://www.academia.edu/attachments/48304747/download_file","bulk_download_file_name":"Discontinuous_Galerkin_Methods_for_ellip.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48304747/Discontinuous_Galerkin_method20160825-12275-mkd99h-libre.pdf?1472121592=\u0026response-content-disposition=attachment%3B+filename%3DDiscontinuous_Galerkin_Methods_for_ellip.pdf\u0026Expires=1744022477\u0026Signature=NoXGsmYAXAJ02UB9ksmhzHatBAZiv9E2LO2FJ8ybDemnjGWIJhnqX40r0Fi605-O4gW15A3O21zx6xKHstgeDcQFeWA9RyO47loEVWTGe965tAmeVjsU8MBa1D7yP6cFhhtSfDKGsVcV5-wg88K7esciYLG8MV5O2kSnFe2OUiWKb7N9OuBw3FZVJ9M92cuCnNTGmbqqUDf9tGfnadbgpv4zdOGXOgcr3AehIeiymeQZvZBKkmwUcnP7HQPomKrudOOo11GqCic5JnUtadu8ll6JlNpI1XnzRyVvIT2gRlyL9PxPLF~zRUCoGe8syUf0QTjOAvh1dVk7EgvfqgcLFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[{"id":3291675,"url":"http://www-lacan.upc.edu/old/seminars/abstracts05_06/RSC_ECR.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-7879872-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="7879870"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/7879870/One_Dimensional_Shock_Capturing_for_High_Order_Discontinuous_Galerkin_Methods"><img alt="Research paper thumbnail of One-Dimensional Shock-Capturing for High-Order Discontinuous Galerkin Methods" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">One-Dimensional Shock-Capturing for High-Order Discontinuous Galerkin Methods</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonli...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonlinear conservation equations. In particular, their inherent structure (the need of a numerical flux based on a suitable approximate Riemann solver which in practice introduces some stabilization) seem to suggest that they are specially adapted to capture shocks. however, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for high-order discontinuous Galerkin. Thus, slope-limiter methods, which are extensions of finite volume methods, have been proposed for high-order approximations. Here it is shown that these techniques require mesh adaption and a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7879870"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7879870"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7879870; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7879870]").text(description); $(".js-view-count[data-work-id=7879870]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7879870; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7879870']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=7879870]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7879870,"title":"One-Dimensional Shock-Capturing for High-Order Discontinuous Galerkin Methods","translated_title":"","metadata":{"abstract":"Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonlinear conservation equations. In particular, their inherent structure (the need of a numerical flux based on a suitable approximate Riemann solver which in practice introduces some stabilization) seem to suggest that they are specially adapted to capture shocks. however, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for high-order discontinuous Galerkin. Thus, slope-limiter methods, which are extensions of finite volume methods, have been proposed for high-order approximations. Here it is shown that these techniques require mesh adaption and a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology."},"translated_abstract":"Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonlinear conservation equations. In particular, their inherent structure (the need of a numerical flux based on a suitable approximate Riemann solver which in practice introduces some stabilization) seem to suggest that they are specially adapted to capture shocks. however, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for high-order discontinuous Galerkin. Thus, slope-limiter methods, which are extensions of finite volume methods, have been proposed for high-order approximations. Here it is shown that these techniques require mesh adaption and a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology.","internal_url":"https://www.academia.edu/7879870/One_Dimensional_Shock_Capturing_for_High_Order_Discontinuous_Galerkin_Methods","translated_internal_url":"","created_at":"2014-08-05T01:50:49.834-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"One_Dimensional_Shock_Capturing_for_High_Order_Discontinuous_Galerkin_Methods","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonlinear conservation equations. In particular, their inherent structure (the need of a numerical flux based on a suitable approximate Riemann solver which in practice introduces some stabilization) seem to suggest that they are specially adapted to capture shocks. however, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for high-order discontinuous Galerkin. Thus, slope-limiter methods, which are extensions of finite volume methods, have been proposed for high-order approximations. Here it is shown that these techniques require mesh adaption and a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[],"research_interests":[{"id":96281,"name":"Applied mathematics and Modelling","url":"https://www.academia.edu/Documents/in/Applied_mathematics_and_Modelling"}],"urls":[{"id":3291674,"url":"http://www.springerlink.com/index/ph5430h50h241122.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-7879870-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="7879869"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7879869/ECCOMAS_JUBILEE_HUERTA"><img alt="Research paper thumbnail of ECCOMAS-JUBILEE-HUERTA" class="work-thumbnail" src="https://attachments.academia-assets.com/34368346/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7879869/ECCOMAS_JUBILEE_HUERTA">ECCOMAS-JUBILEE-HUERTA</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonli...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonlinear conservation equations. In particular, their inherent structure (the need of a numerical flux based on a suitable approximate Riemann solver which in practice introduces some stabilization) seem to suggest that they are specially adapted to capture shocks. however, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for high-order discontinuous Galerkin. Thus, slope-limiter methods, which are extensions of finite volume methods, have been proposed for high-order approximations. Here it is shown that these techniques require mesh adaption and a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e630c43b8ced73ba657664de646cda88" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34368346,&quot;asset_id&quot;:7879869,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34368346/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7879869"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7879869"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7879869; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7879869]").text(description); $(".js-view-count[data-work-id=7879869]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7879869; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7879869']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e630c43b8ced73ba657664de646cda88" } } $('.js-work-strip[data-work-id=7879869]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7879869,"title":"ECCOMAS-JUBILEE-HUERTA","translated_title":"","metadata":{"grobid_abstract":"Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonlinear conservation equations. In particular, their inherent structure (the need of a numerical flux based on a suitable approximate Riemann solver which in practice introduces some stabilization) seem to suggest that they are specially adapted to capture shocks. however, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for high-order discontinuous Galerkin. Thus, slope-limiter methods, which are extensions of finite volume methods, have been proposed for high-order approximations. Here it is shown that these techniques require mesh adaption and a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology.","grobid_abstract_attachment_id":34368346},"translated_abstract":null,"internal_url":"https://www.academia.edu/7879869/ECCOMAS_JUBILEE_HUERTA","translated_internal_url":"","created_at":"2014-08-05T01:50:44.856-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":14723476,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34368346,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34368346/thumbnails/1.jpg","file_name":"ECCOMAS-JUBILEE-HUERTA.pdf","download_url":"https://www.academia.edu/attachments/34368346/download_file","bulk_download_file_name":"ECCOMAS_JUBILEE_HUERTA.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34368346/ECCOMAS-JUBILEE-HUERTA-libre.pdf?1407228635=\u0026response-content-disposition=attachment%3B+filename%3DECCOMAS_JUBILEE_HUERTA.pdf\u0026Expires=1744022477\u0026Signature=X-pF2Edu3wsLBuLZeYYid2udbIqbxrsnG6y~4bPhzcRuPJ7gZOmrn2ovqHHpuNiHD6K5oRpP3lvSfaUtdi9k2ArsFb5BvENmBpZnowx6yZly7ni8IDku4IDVK9Q0S4OLiXNUX6DDR0OAXX08YjXDSOrFs4sXiF~JgvSOs24qpD7vVCFuK-C1Ealesq-rKrzw~~Aa1a2QofQfn-l2unfXNwTpuAbhIIzc7CbZg~YqPQCDg9HTu1UFScIoDkwjZS0ANwRxiG43D6mB0EsnfUEEO9dZUx8HEIuOZrGMRwejJQGQoUouPh2SDzmKPQ8d0JKDhkRjAgYCkU4IWsl~I6e2CQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"ECCOMAS_JUBILEE_HUERTA","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonlinear conservation equations. In particular, their inherent structure (the need of a numerical flux based on a suitable approximate Riemann solver which in practice introduces some stabilization) seem to suggest that they are specially adapted to capture shocks. however, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for high-order discontinuous Galerkin. Thus, slope-limiter methods, which are extensions of finite volume methods, have been proposed for high-order approximations. Here it is shown that these techniques require mesh adaption and a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology.","impression_tracking_id":null,"owner":{"id":14723476,"first_name":"Eva","middle_initials":null,"last_name":"Casoni","page_name":"EvaCasoni","domain_name":"upc","created_at":"2014-08-05T01:49:49.417-07:00","display_name":"Eva Casoni","url":"https://upc.academia.edu/EvaCasoni"},"attachments":[{"id":34368346,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34368346/thumbnails/1.jpg","file_name":"ECCOMAS-JUBILEE-HUERTA.pdf","download_url":"https://www.academia.edu/attachments/34368346/download_file","bulk_download_file_name":"ECCOMAS_JUBILEE_HUERTA.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34368346/ECCOMAS-JUBILEE-HUERTA-libre.pdf?1407228635=\u0026response-content-disposition=attachment%3B+filename%3DECCOMAS_JUBILEE_HUERTA.pdf\u0026Expires=1744022477\u0026Signature=X-pF2Edu3wsLBuLZeYYid2udbIqbxrsnG6y~4bPhzcRuPJ7gZOmrn2ovqHHpuNiHD6K5oRpP3lvSfaUtdi9k2ArsFb5BvENmBpZnowx6yZly7ni8IDku4IDVK9Q0S4OLiXNUX6DDR0OAXX08YjXDSOrFs4sXiF~JgvSOs24qpD7vVCFuK-C1Ealesq-rKrzw~~Aa1a2QofQfn-l2unfXNwTpuAbhIIzc7CbZg~YqPQCDg9HTu1UFScIoDkwjZS0ANwRxiG43D6mB0EsnfUEEO9dZUx8HEIuOZrGMRwejJQGQoUouPh2SDzmKPQ8d0JKDhkRjAgYCkU4IWsl~I6e2CQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":125863,"name":"Applied Mathematics and Computational Science","url":"https://www.academia.edu/Documents/in/Applied_Mathematics_and_Computational_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-7879869-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "2a0ad6c7e00378e644e3119e9affb94937eb9ee2d1a1f3d258466d13d6551ab8", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="B_s3FRwUC8qj0UMKSdcVTuk59e_T-ngJ4722vv4DPi1u3xwSdO5uwyLy3guDcaj5xwGH0uSs0GDNKMqivJscLg" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://upc.academia.edu/EvaCasoni" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="P9Np00tnPIysDDUhECxy-Xm-RfMphlxxfxwfBSAHQIFW90LUI51ZhS0vqCDais9OV4Y3zh7Q9BhRiWMZYp9igg" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10