CINXE.COM
Search results for: skin care
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: skin care</title> <meta name="description" content="Search results for: skin care"> <meta name="keywords" content="skin care"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="skin care" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="skin care"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4662</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: skin care</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4662</span> Skin Care through Ayurveda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20L.%20Virupaksha%20Gupta">K. L. Virupaksha Gupta </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ayurveda offers a holistic outlook regarding skin care. Most Initial step in Ayurveda is to identify the skin type and care accordingly which is highly personalized. Though dermatologically there are various skin type classifications such Baumann skin types (based on 4 parameters i) Oily Vs Dry ii) Sensitive Vs Resistant iii) Pigmented Vs Non-Pigmented iv) Wrinkled Vs Tight (Unwrinkled) etc but Skin typing in Ayurveda is mainly determined by the prakriti (constitution) of the individual as well as the status of Doshas (Humors) which are basically of 3 types – i.e Vata Pitta and Kapha,. Difference between them is mainly attributed to the qualities of each dosha (humor). All the above said skin types can be incorporated under these three types. The skin care modalities in each of the constitution vary greatly. Skin of an individual of Vata constitution would be lustreless, having rough texture and cracks due to dryness and thus should be given warm and unctuous therapies and oil massage for lubrication and natural moisturizers for hydration. Skin of an individual of Pitta constitution would look more vascular (pinkish), delicate and sensitive with a fair complexion, unctuous and tendency for wrinkles and greying of hair at an early age and hence should be given cooling and nurturing therapies and should avoid tanning treatments. Skin of an individual of kapha constitution will have oily skin, they are delicate and look beautiful and radiant and hence these individuals would require therapies to mainly combat oily skin. Hence, the skin typing and skin care in Ayurveda is highly rational and scientific. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayurveda" title="Ayurveda">Ayurveda</a>, <a href="https://publications.waset.org/abstracts/search?q=dermatology" title=" dermatology"> dermatology</a>, <a href="https://publications.waset.org/abstracts/search?q=Dosha" title=" Dosha"> Dosha</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20types" title=" skin types"> skin types</a> </p> <a href="https://publications.waset.org/abstracts/19790/skin-care-through-ayurveda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4661</span> Data Model to Predict Customize Skin Care Product Using Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashi%20Gautam">Ashi Gautam</a>, <a href="https://publications.waset.org/abstracts/search?q=Isha%20Shukla"> Isha Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhil%20Seghal"> Akhil Seghal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosensors are analytical devices that use a biological sensing element to detect and measure a specific chemical substance or biomolecule in a sample. These devices are widely used in various fields, including medical diagnostics, environmental monitoring, and food analysis, due to their high specificity, sensitivity, and selectivity. In this research paper, a machine learning model is proposed for predicting the suitability of skin care products based on biosensor readings. The proposed model takes in features extracted from biosensor readings, such as biomarker concentration, skin hydration level, inflammation presence, sensitivity, and free radicals, and outputs the most appropriate skin care product for an individual. This model is trained on a dataset of biosensor readings and corresponding skin care product information. The model's performance is evaluated using several metrics, including accuracy, precision, recall, and F1 score. The aim of this research is to develop a personalised skin care product recommendation system using biosensor data. By leveraging the power of machine learning, the proposed model can accurately predict the most suitable skin care product for an individual based on their biosensor readings. This is particularly useful in the skin care industry, where personalised recommendations can lead to better outcomes for consumers. The developed model is based on supervised learning, which means that it is trained on a labeled dataset of biosensor readings and corresponding skin care product information. The model uses these labeled data to learn patterns and relationships between the biosensor readings and skin care products. Once trained, the model can predict the most suitable skin care product for an individual based on their biosensor readings. The results of this study show that the proposed machine learning model can accurately predict the most appropriate skin care product for an individual based on their biosensor readings. The evaluation metrics used in this study demonstrate the effectiveness of the model in predicting skin care products. This model has significant potential for practical use in the skin care industry for personalised skin care product recommendations. The proposed machine learning model for predicting the suitability of skin care products based on biosensor readings is a promising development in the skin care industry. The model's ability to accurately predict the most appropriate skin care product for an individual based on their biosensor readings can lead to better outcomes for consumers. Further research can be done to improve the model's accuracy and effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensors" title="biosensors">biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20model" title=" data model"> data model</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20care" title=" skin care"> skin care</a> </p> <a href="https://publications.waset.org/abstracts/164611/data-model-to-predict-customize-skin-care-product-using-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4660</span> Dermatological Study on Risk Factors for Pruritic Skin: Skin Properties of Elderly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dianis%20Wulan%20Sari">Dianis Wulan Sari</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeo%20Minematsu"> Takeo Minematsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikako%20Yoshida"> Mikako Yoshida</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiromi%20Sanada"> Hiromi Sanada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Pruritus is diagnosed as itching without macroscopic abnormalities on skin. It is the most skin complaint of elderly people. In the present study, we conducted a dermatological study to examine the risk factors of pruritic skin and predicted how to prevent pruritus especially in the elderly population. Pruritus is caused several types of inflammation, including epidermal innate immunity based on keratinocyte responses and acquired immunity regulated by type 1 or 2 helper T (Th) cells. The triggers of pruritus differ among inflammation types, therefore we did separately assess the pruritus-associated factors of each inflammation type in an effort to contribute to the identification of intervention targets for preventing pruritus. Therefore, this study aimed to investigate the factors related with actual condition of pruritic skin by examine the skin properties. Method: This study was conducted in elderly population of Indonesian nursing home. Basic characteristics and behaviors were obtained by interview. The properties of pruritic skin were collected by examination of skin biomarker using skin blotting as novel method of non-invasive skin assessment method and examination of skin barrier function using stratum corneum hydration and skin pH. Result: The average age of participants was 74 years with independent status was 66.8%. Age (β = -0.130, p = 0.044), cumulative lifetime sun exposure (β = 0.145, p = 0.026), bathing duration (β = 0.151, p = 0.022), clothing change frequency (β = 0.135, p = 0.029), and clothing type (β = -0.139, p = 0.021) were risk factors of pruritic skin in multivariate analysis. Conclusion: Risk factors of pruritic skin in elderly population were caused by internal factors such as skin senescence and external factors such as sun exposure, hygiene care and skin care behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aging" title="aging">aging</a>, <a href="https://publications.waset.org/abstracts/search?q=hygiene%20care" title=" hygiene care"> hygiene care</a>, <a href="https://publications.waset.org/abstracts/search?q=pruritus" title=" pruritus"> pruritus</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20care" title=" skin care"> skin care</a>, <a href="https://publications.waset.org/abstracts/search?q=sun%20exposure" title=" sun exposure"> sun exposure</a> </p> <a href="https://publications.waset.org/abstracts/77905/dermatological-study-on-risk-factors-for-pruritic-skin-skin-properties-of-elderly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4659</span> How to Prevent From Skin Complications in Diabetes Type 2 in View Point of Student of Shiraz University of Medical Sciences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Abdi">Zahra Abdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Roghayeh%20Alipour"> Roghayeh Alipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Farahi%20Ghasraboonasr"> Babak Farahi Ghasraboonasr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Diabetes is a serious medical condition that requires constant care. People with type 2 diabetes may also be likely to experience dry, itchy skin and poor wound healing. Some people with diabetes will have a skin problems at some time in their lives and for those not yet diagnosed with diabetes, a skin problem can be an indication of the disease. our purpose was to assess the capability and knowledge of students of Shiraz University of Medical Sciences about prevent from skin complications in diabetes type 2. Methods: In this descriptive cross-sectional study, knowledge of 360 students of Shiraz University of Medical Sciences was evaluated about different ways to avoid skin complications in diabetes type 2. Data were analyzed by spss19.(P<0.05) was considered significant. Results: 360 students of Shiraz University of Medical Sciences participated in this study. 45% of students agree with the effect of Moisturize skin daily, If Diabetics have sensitive skin, choose a fragrance-free, dye-free moisturizer that won’t irritate skin. 52% believe that Protect skin from sun can be so useful, Sun exposure is drying and aging. Use sunscreen with SPF 30 or higher whenever you’re outside. Wear gloves when doing yardwork to protect the skin on your hands. 62% of students strongly agree with Carefully clean any cuts and scrapes, If diabetics notice any sign of infection skin that’s red, swollen, or warm to the touch, or has a foul-smelling drainage or pus should consulting with a doctor immediately. Diabetics should be careful about any injury that takes longer than normal to heal and they should consulting with doctor about them too. 72% of students believe that diabetics should be diligent about daily foot care. Clean and moisturize feet each day and check each foot closely, top and bottom, for wounds even a tiny cut, blisters, or cracked skin. Conclusions: The risk of getting these diabetes complications can be lessened by controlling blood sugar. Skin complications can cause serious consequences. Taking care of skin is so important and using these tips are remarkable effective and help diabetics to look after their skin easier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skin%20complications" title="skin complications">skin complications</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20type%202" title=" diabetes type 2"> diabetes type 2</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiraz%20University%20of%20Medical%20Sciences" title=" Shiraz University of Medical Sciences"> Shiraz University of Medical Sciences</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetics" title=" diabetics"> diabetics</a> </p> <a href="https://publications.waset.org/abstracts/29872/how-to-prevent-from-skin-complications-in-diabetes-type-2-in-view-point-of-student-of-shiraz-university-of-medical-sciences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4658</span> Improved Skin Detection Using Colour Space and Texture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medjram%20Sofiane">Medjram Sofiane</a>, <a href="https://publications.waset.org/abstracts/search?q=Babahenini%20Mohamed%20Chaouki"> Babahenini Mohamed Chaouki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benali%20Yamina"> Mohamed Benali Yamina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin detection is an important task for computer vision systems. A good method for skin detection means a good and successful result of the system. The colour is a good descriptor that allows us to detect skin colour in the images, but because of lightings effects and objects that have a similar colour skin, skin detection becomes difficult. In this paper, we proposed a method using the YCbCr colour space for skin detection and lighting effects elimination, then we use the information of texture to eliminate the false regions detected by the YCbCr colour skin model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skin%20detection" title="skin detection">skin detection</a>, <a href="https://publications.waset.org/abstracts/search?q=YCbCr" title=" YCbCr"> YCbCr</a>, <a href="https://publications.waset.org/abstracts/search?q=GLCM" title=" GLCM"> GLCM</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20skin" title=" human skin"> human skin</a> </p> <a href="https://publications.waset.org/abstracts/19039/improved-skin-detection-using-colour-space-and-texture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4657</span> Analysis of Tactile Perception of Textiles by Fingertip Skin Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Izabela%20L.%20Ciesielska-Wr%CF%8Cbel">Izabela L. Ciesielska-Wrόbel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents finite element models of the fingertip skin which have been created to simulate the contact of textile objects with the skin to gain a better understanding of the perception of textiles through the skin, so-called Hand of Textiles (HoT). Many objective and subjective techniques have been developed to analyze HoT, however none of them provide exact overall information concerning the sensation of textiles through the skin. As the human skin is a complex heterogeneous hyperelastic body composed of many particles, some simplifications had to be made at the stage of building the models. The same concerns models of woven structures, however their utilitarian value was maintained. The models reflect only friction between skin and woven textiles, deformation of the skin and fabrics when “touching” textiles and heat transfer from the surface of the skin into direction of textiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fingertip%20skin%20models" title="fingertip skin models">fingertip skin models</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20models" title=" finite element models"> finite element models</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20of%20textiles" title=" modelling of textiles"> modelling of textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=sensation%20of%20textiles%20through%20the%20skin" title=" sensation of textiles through the skin"> sensation of textiles through the skin</a> </p> <a href="https://publications.waset.org/abstracts/26064/analysis-of-tactile-perception-of-textiles-by-fingertip-skin-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4656</span> Skin Diseases in the Rural Areas in Nepal; Impact on Quality of Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dwarika%20P.%20Shrestha">Dwarika P. Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipendra%20Gurung"> Dipendra Gurung</a>, <a href="https://publications.waset.org/abstracts/search?q=Rushma%20Shrestha"> Rushma Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=Inger%20Rosdahl"> Inger Rosdahl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Skin diseases are one of the most common health problems in Nepal. The objectives of this study are to determine the prevalence of skin diseases and impact on quality of life in rural areas in Nepal. Materials and methods: A house-to-house survey was conducted, to obtain socio-demographic data and identify individuals with skin diseases, followed by health camps, where the villagers were examined. A pilot study was conducted in one village, which was then extended to 10 villages in 4 districts. To assess the impact on quality of life, the villagers were interviewed with Skin Disease Disability Index. This is a questionnaire developed and validated by the authors for use in Nepal. Results: In the pilot study, the overall prevalence of skin diseases was 20.1% (645/3207). In the additional 10 villages with 7348 (3651/3787 m/f) inhabitants, 1862 (721/1141 m/f, mean age 31.4 years) had one or more skin diseases. The overall prevalence of skin diseases was 25%. The most common skin disease categories were eczemas (13.7%, percentage among all inhabitants) pigment disorders (6.8%), fungal infections (4.9%), nevi (3.7%) and urticaria (2.9%). These five most common skin disease categories comprise 71% of all skin diseases seen in the study. The mean skin disease disability index score was 13.7, indicating very large impact on the quality of life. Conclusions: This population-based study shows that skin diseases are very common in the rural areas of Nepal and have significant impact on quality of life. Targeted intervention at the primary health care level should help to reduce the health burden due to skin diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prevalence%20and%20pattern%20of%20skin%20diseases" title="prevalence and pattern of skin diseases">prevalence and pattern of skin diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20on%20quality%20of%20life" title=" impact on quality of life"> impact on quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20Nepal" title=" rural Nepal"> rural Nepal</a>, <a href="https://publications.waset.org/abstracts/search?q=interventions" title=" interventions"> interventions</a> </p> <a href="https://publications.waset.org/abstracts/36188/skin-diseases-in-the-rural-areas-in-nepal-impact-on-quality-of-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4655</span> Penetration Depth Study of Linear Siloxanes through Human Skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Szymkowska">K. Szymkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mojsiewicz-%20Pie%C5%84kowska"> K. Mojsiewicz- Pieńkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Siloxanes are a common ingredients in medicinal products used on the skin, as well as cosmetics. It is widely believed that the silicones are not capable of overcoming the skin barrier. The aim of the study was to verify the possibility of penetration and permeation of linear siloxanes through human skin and determine depth penetration limit of these compounds. Based on the results it was found that human skin is not a barrier for linear siloxanes. PDMS 50 cSt was not identified in the dermis suggests that this molecular size of silicones (3780Da) is safe when it is used in the skin formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20siloxanes" title="linear siloxanes">linear siloxanes</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes" title=" methyl siloxanes"> methyl siloxanes</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20penetration" title=" skin penetration"> skin penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20permeation" title=" skin permeation"> skin permeation</a> </p> <a href="https://publications.waset.org/abstracts/47996/penetration-depth-study-of-linear-siloxanes-through-human-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4654</span> Skin Manifestations in Children With Inborn Errors of Immunity in a Tertiary Care Hospital in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Salehi%20Shahrbabaki">Zahra Salehi Shahrbabaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Chavoshzadeh"> Zahra Chavoshzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahimeh%20Abdollahimajd"> Fahimeh Abdollahimajd</a>, <a href="https://publications.waset.org/abstracts/search?q=Samin%20Sharafian"> Samin Sharafian</a>, <a href="https://publications.waset.org/abstracts/search?q=Tolue%20Mahdavi"> Tolue Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahnaz%20Jamee"> Mahnaz Jamee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Inborn errors of immunity (IEIs) are monogenic diseases of the immune the system with broad clinical manifestations. Despite the increasing genetic advancements, the diagnosis of IEIs still leans on clinical diagnosis. Dermatologic manifestations are observed in a large number of IEI patients and can lead to proper approach, prompt intervention and improved prognosis. Methods: This cross-sectional study was carried out between 2018 and 2020 on IEIs at a Children's tertiary care center in Tehran, Iran. Demographic details (including age, sex, and parental consanguinity), age at onset of symptoms and family history of IEI with were recorded. Results :212 patients were included. Cutaneous findings were reported in (95 ,44.8%) patients. and 61 of 95 (64.2%) reported skin lesions as the first clinical presentation. Skin infection (69, 72.6%) was the most frequent cutaneous manifestation, followed by an eczematous rash (24, 25 %). Conclusions: Skin manifestations are common feature in IEI patients and can be readily recognizable by healthcare providers. This study tried to provide information on prognostic consequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=primary%20immuno%20deficiency" title="primary immuno deficiency">primary immuno deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=inborn%20errror%20of%20metabolism" title=" inborn errror of metabolism"> inborn errror of metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20manifestation" title=" skin manifestation"> skin manifestation</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20infection" title=" skin infection"> skin infection</a> </p> <a href="https://publications.waset.org/abstracts/156821/skin-manifestations-in-children-with-inborn-errors-of-immunity-in-a-tertiary-care-hospital-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4653</span> Nurses’ Perception of Pain and Skin Tearing during Dressing Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung%20Yoon%20Kim">Jung Yoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Wounds inevitably cause patients to experience discomfort, distress, and consequentially reduced quality of life due to entailed pain, maceration, and foul odor. The dressing has been a universal wound care method in which wounds are covered and protected, and an optimum environment for healing is provided. This study aimed to investigate Korean nurses’ level of awareness of pain and skin tearing in wound beds and/or peri-wound skin at dressing change. Methods: A descriptive study was performed. Convenience sampling was employed, and registered nurses were recruited from attendees of continuing education program. A total of 399 participants (RN) completed the questionnaire. Data were collected from September to November 2022. Results: Many of them perceived skin tearing and wound-related pain associated with dressing changes, but most of them did not assess and record pain and skin tearing at dressing change. More than half of the respondents reported that they did not provide nursing intervention to prevent pain and skin tearing. Many of them reported that a systematic educational program for preventing pain and skin tearing at dressing changes was needed. Discussion: Many of the respondents were aware of pain and skin tearing at dressing change but did not take any further necessary measures, including nursing intervention, for the most appropriate, systematic pain and skin tearing management. Therefore, this study suggested that a systematic and comprehensive educational program for Korean healthcare professionals needs to be developed and implemented in Korea’s hospital settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skin%20tearing" title="skin tearing">skin tearing</a>, <a href="https://publications.waset.org/abstracts/search?q=pain" title=" pain"> pain</a>, <a href="https://publications.waset.org/abstracts/search?q=dressing%20change" title=" dressing change"> dressing change</a>, <a href="https://publications.waset.org/abstracts/search?q=nurses" title=" nurses"> nurses</a> </p> <a href="https://publications.waset.org/abstracts/166903/nurses-perception-of-pain-and-skin-tearing-during-dressing-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4652</span> Skin-to-Skin Contact Simulation: Improving Health Outcomes for Medically Fragile Newborns in the Neonatal Intensive Care Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriella%20Zarlenga">Gabriella Zarlenga</a>, <a href="https://publications.waset.org/abstracts/search?q=Martha%20L.%20Hall"> Martha L. Hall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Premature infants are at risk for neurodevelopmental deficits and hospital readmissions, which can increase the financial burden on the health care system and families. Kangaroo care (skin-to-skin contact) is a practice that can improve preterm infant health outcomes. Preterm infants can acquire adequate body temperature, heartbeat, and breathing regulation through lying directly on the mother’s abdomen and in between her breasts. Due to some infant’s condition, kangaroo care is not a feasible intervention. The purpose of this proof-of-concept research project is to create a device which simulates skin-to-skin contact for pre-term infants not eligible for kangaroo care, with the aim of promoting baby’s health outcomes, reducing the incidence of serious neonatal and early childhood illnesses, and/or improving cognitive, social and emotional aspects of development. Methods: The study design is a proof-of-concept based on a three-phase approach; (1) observational study and data analysis of the standard of care for 2 groups of pre-term infants, (2) design and concept development of a novel device for pre-term infants not currently eligible for standard kangaroo care, and (3) prototyping, laboratory testing, and evaluation of the novel device in comparison to current assessment parameters of kangaroo care. A single center study will be conducted in an area hospital offering Level III neonatal intensive care. Eligible participants include newborns born premature (28-30 weeks of age) admitted to the NICU. The study design includes 2 groups: a control group receiving standard kangaroo care and an experimental group not eligible for kangaroo care. Based on behavioral analysis of observational video data collected in the NICU, the device will be created to simulate mother’s body using electrical components in a thermoplastic polymer housing covered in silicone. It will be designed with a microprocessor that controls simulated respiration, heartbeat, and body temperature of the 'simulated caregiver' by using a pneumatic lung, vibration sensors (heartbeat), pressure sensors (weight/position), and resistive film to measure temperature. A slight contour of the simulator surface may be integrated to help position the infant correctly. Control and monitoring of the skin-to-skin contact simulator would be performed locally by an integrated touchscreen. The unit would have built-in Wi-Fi connectivity as well as an optional Bluetooth connection in which the respiration and heart rate could be synced with a parent or caregiver. A camera would be integrated, allowing a video stream of the infant in the simulator to be streamed to a monitoring location. Findings: Expected outcomes are stabilization of respiratory and cardiac rates, thermoregulation of those infants not eligible for skin to skin contact with their mothers, and real time mother Bluetooth to the device to mimic the experience in the womb. Results of this study will benefit clinical practice by creating a new standard of care for premature neonates in the NICU that are deprived of skin to skin contact due to various health restrictions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kangaroo%20care" title="kangaroo care">kangaroo care</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20technology" title=" wearable technology"> wearable technology</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-term%20infants" title=" pre-term infants"> pre-term infants</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20design" title=" medical design "> medical design </a> </p> <a href="https://publications.waset.org/abstracts/123840/skin-to-skin-contact-simulation-improving-health-outcomes-for-medically-fragile-newborns-in-the-neonatal-intensive-care-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4651</span> Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Duarte">Fernando Duarte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the aquisition of the sample images ended being very unreliable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=segmentation" title="segmentation">segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20space" title=" color space"> color space</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20tone" title=" skin tone"> skin tone</a>, <a href="https://publications.waset.org/abstracts/search?q=Fitzpatrick" title=" Fitzpatrick"> Fitzpatrick</a> </p> <a href="https://publications.waset.org/abstracts/188975/use-of-segmentation-and-color-adjustment-for-skin-tone-classification-in-dermatological-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4650</span> Towards Integrating Statistical Color Features for Human Skin Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zamri%20Osman">Mohd Zamri Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Aizaini%20Maarof"> Mohd Aizaini Maarof</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Foad%20Rohani"> Mohd Foad Rohani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20space" title="color space">color space</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20detection" title=" skin detection"> skin detection</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20feature" title=" statistical feature"> statistical feature</a> </p> <a href="https://publications.waset.org/abstracts/43485/towards-integrating-statistical-color-features-for-human-skin-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4649</span> Histopathological Spectrum of Skin Lesions in the Elderly: Experience from a Tertiary Hospital in Southeast Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ndukwe">Ndukwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinedu%20O."> Chinedu O.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: There are only a few epidemiological studies published on skin disorders in the elderly within the Nigerian context and none from the Southeast Region of the country. In addition, none of these studies has considered the pattern and frequency of histopathologically diagnosed geriatric skin lesions. Hence, we attempted to determine the frequency as well as the age and gender distributions of histologically diagnosed dermatological diseases in the geriatric population from skin biopsies submitted to the histopathology department of a tertiary care hospital in Southeast Nigeria. Material and methods: This is a cross-sectional retrospective hospital-based study involving all skin biopsies of patients 60 years and above, received at the Department of Histopathology, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria from January 2004 to December 2019. Results: During the study period, 751 skin biopsies were received in the histopathology department. Of these, 142 were from patients who were older than 60 years. Thus, the overall share of geriatric patients was 18.9%. The mean age at presentation was 71.1 ± 8.6 years. The M: F was 1:1 and most of the patients belonged to the age group of 60–69 years (69 cases, 48.6%). The mean age of the male patients was 72.1±9.5 years. In the female patients, it was 70.1±7.5 years. The commonest disease category was neoplasms (91, 64.1%). Most neoplasms were malignant. There were 67/142 (47.2%) malignant lesions. Commonest was Squamous cell carcinoma (SCC) (30 cases) which is 21.1% of all geriatric skin biopsies and 44.8% of malignant skin biopsies. This is closely followed by melanoma (29 cases). Conclusion: Malignant neoplasms, benign neoplasms and papulosquamous disorders are the three commonest histologically diagnosed skin lesions in our geriatric population. The commonest skin malignancies in this group of patients are squamous cell carcinoma and malignant melanoma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geriatric" title="geriatric">geriatric</a>, <a href="https://publications.waset.org/abstracts/search?q=skin" title=" skin"> skin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=histopathology" title=" histopathology"> histopathology</a> </p> <a href="https://publications.waset.org/abstracts/142582/histopathological-spectrum-of-skin-lesions-in-the-elderly-experience-from-a-tertiary-hospital-in-southeast-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4648</span> Fabrication of Optical Tissue Phantoms Simulating Human Skin and Their Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihoon%20Park">Jihoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungkon%20Yu"> Sungkon Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungjo%20Jung"> Byungjo Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although various optical tissue phantoms (OTPs) simulating human skin have been actively studied, their completeness is unclear because skin tissue has the intricate optical property and complicated structure disturbing the optical simulation. In this study, we designed multilayer OTP mimicking skin structure, and fabricated OTP models simulating skin-blood vessel and skin pigmentation in the skin, which are useful in Biomedical optics filed. The OTPs were characterized with the optical property and the cross-sectional structure, and analyzed by using various optical tools such as a laser speckle imaging system, OCT and a digital microscope to show the practicality. The measured optical property was within 5% error, and the thickness of each layer was uniform within 10% error in micrometer scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20vessel" title="blood vessel">blood vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom" title=" optical tissue phantom"> optical tissue phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20property" title=" optical property"> optical property</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20tissue" title=" skin tissue"> skin tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=pigmentation" title=" pigmentation"> pigmentation</a> </p> <a href="https://publications.waset.org/abstracts/68389/fabrication-of-optical-tissue-phantoms-simulating-human-skin-and-their-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4647</span> Classification of Red, Green and Blue Values from Face Images Using k-NN Classifier to Predict the Skin or Non-Skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Polat">Kemal Polat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, it has been estimated whether there is skin by using RBG values obtained from the camera and k-nearest neighbor (k-NN) classifier. The dataset used in this study has an unbalanced distribution and a linearly non-separable structure. This problem can also be called a big data problem. The Skin dataset was taken from UCI machine learning repository. As the classifier, we have used the k-NN method to handle this big data problem. For k value of k-NN classifier, we have used as 1. To train and test the k-NN classifier, 50-50% training-testing partition has been used. As the performance metrics, TP rate, FP Rate, Precision, recall, f-measure and AUC values have been used to evaluate the performance of k-NN classifier. These obtained results are as follows: 0.999, 0.001, 0.999, 0.999, 0.999, and 1,00. As can be seen from the obtained results, this proposed method could be used to predict whether the image is skin or not. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=k-NN%20classifier" title="k-NN classifier">k-NN classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20or%20non-skin%20classification" title=" skin or non-skin classification"> skin or non-skin classification</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB%20values" title=" RGB values"> RGB values</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/86538/classification-of-red-green-and-blue-values-from-face-images-using-k-nn-classifier-to-predict-the-skin-or-non-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4646</span> The Effect of Skin to Skin Contact Immediately to Maternal Breastfeeding Self-Efficacy after Cesarean Section</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Triana">D. Triana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20N.%20Rachmawati"> I. N. Rachmawati</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Sabri"> L. Sabri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maternal breastfeeding self-efficacy is positively associated with increased duration of breastfeeding in different cultures and age groups. This study aims to determine the effect of skin-to-skin contact immediately after the cesarean section on maternal breastfeeding self-efficacy. The research design is Posttest quasi-experimental research design only with control groups involving 52 women with consecutive sampling in Langsa-Aceh. The data collected through breastfeeding Self-Efficacy Scale-Short Form. The results of Independent t-test showed a significant difference in the mean values of maternal breastfeeding self-efficacy in the intervention group and the control group (59.00 ± 6.54; 49.62 ± 7.78; p= 0.001). Skin to skin contact is proven to affect the maternal breastfeeding self-efficacy after cesarean section significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breastfeeding%20self-efficacy" title="breastfeeding self-efficacy">breastfeeding self-efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=cesarean%20section" title=" cesarean section"> cesarean section</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20to%20skin%20contact" title=" skin to skin contact"> skin to skin contact</a>, <a href="https://publications.waset.org/abstracts/search?q=immediately" title=" immediately"> immediately</a> </p> <a href="https://publications.waset.org/abstracts/32533/the-effect-of-skin-to-skin-contact-immediately-to-maternal-breastfeeding-self-efficacy-after-cesarean-section" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4645</span> A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Firas%20Gerges">Firas Gerges</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Y.%20Shih"> Frank Y. Shih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20cancer" title=" skin cancer"> skin cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a> </p> <a href="https://publications.waset.org/abstracts/134720/a-convolutional-deep-neural-network-approach-for-skin-cancer-detection-using-skin-lesion-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4644</span> Operating Characteristics of Point-of-Care Ultrasound in Identifying Skin and Soft Tissue Abscesses in the Emergency Department</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sathyaseelan%20Subramaniam">Sathyaseelan Subramaniam</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacqueline%20Bober"> Jacqueline Bober</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Chao"> Jennifer Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahriar%20Zehtabchi"> Shahriar Zehtabchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Emergency physicians frequently evaluate skin and soft tissue infections in order to differentiate abscess from cellulitis. This helps determine which patients will benefit from incision and drainage. Our objective was to determine the operating characteristics of point-of-care ultrasound (POCUS) compared to clinical examination in identifying abscesses in emergency department (ED) patients with features of skin and soft tissue infections. Methods: We performed a comprehensive search in the following databases: Medline, Web of Science, EMBASE, CINAHL and Cochrane Library. Trials were included if they compared the operating characteristics of POCUS with clinical examination in identifying skin and soft tissue abscesses. Trials that included patients with oropharyngeal abscesses or that requiring abscess drainage in the operating room were excluded. The presence of an abscess was determined by pus drainage. No pus seen on incision or resolution of symptoms without pus drainage at follow up, determined the absence of an abscess. Quality of included trials was assessed using GRADE criteria. Operating characteristics of POCUS are reported as sensitivity, specificity, positive likelihood (LR+) and negative likelihood (LR-) ratios and the respective 95% confidence intervals (CI). Summary measures were calculated by generating a hierarchical summary receiver operating characteristic model (HSROC). Results: Out of 3203 references identified, 5 observational studies with 615 patients in aggregate were included (2 adults and 3 pediatrics). We rated the quality of 3 trials as low and 2 as very low. The operating characteristics of POCUS and clinical examination in identifying soft tissue abscesses are presented in the table. The HSROC for POCUS revealed a sensitivity of 96% (95% CI = 89-98%), specificity of 79% (95% CI = 71-86), LR+ of 4.6 (95% CI = 3.2-6.8), and LR- of 0.06 (95% CI = 0.02-0.2). Conclusion: Existing evidence indicates that POCUS is useful in identifying abscesses in ED patients with skin or soft tissue infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abscess" title="abscess">abscess</a>, <a href="https://publications.waset.org/abstracts/search?q=point-of-care%20ultrasound" title=" point-of-care ultrasound"> point-of-care ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=pocus" title=" pocus"> pocus</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20and%20soft%20tissue%20infection" title=" skin and soft tissue infection"> skin and soft tissue infection</a> </p> <a href="https://publications.waset.org/abstracts/39256/operating-characteristics-of-point-of-care-ultrasound-in-identifying-skin-and-soft-tissue-abscesses-in-the-emergency-department" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4643</span> Improving the Accuracy of Oral Care Performed by ICU Nurses for Cancer Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huang%20Wei-Yi">Huang Wei-Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Oral cancer patients undergoing skin flap reconstruction may have wounds in the oral cavity, leading to accumulation of blood, clots, and secretions. Inadequate oral care by nursing staff can result in oral infections and pain. Methods: An investigation revealed that ICU nurses' knowledge and adherence to oral care standards were below acceptable levels. Key issues identified included lack of hands-on training opportunities, insufficient experience, absence of oral care standards and regular audits, no in-service education programs, and a lack of oral care educational materials. Interventions: The following measures were implemented: 1) in-service education programs, 2) development of care standards, 3) creation of a monitoring plan, 4) bedside demonstration teaching, and 5) revision of educational materials. Results: The intervention demonstrated that ICU nurses' knowledge and adherence to oral care standards improved, leading to better quality oral care and reduced pain for patients. Conclusion: Through in-service education, bedside demonstrations, establishment of oral care standards, and regular audits, the oral care skills of ICU nurses were significantly enhanced, resulting in improved oral care quality and decreased patient pain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oral%20care" title="oral care">oral care</a>, <a href="https://publications.waset.org/abstracts/search?q=ICU" title=" ICU"> ICU</a>, <a href="https://publications.waset.org/abstracts/search?q=improving" title=" improving"> improving</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20cancer" title=" oral cancer"> oral cancer</a> </p> <a href="https://publications.waset.org/abstracts/190197/improving-the-accuracy-of-oral-care-performed-by-icu-nurses-for-cancer-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4642</span> Quality Rabbit Skin Gelatin with Acetic Acid Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wehandaka%20Pancapalaga">Wehandaka Pancapalaga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to analyze the water content, yield, fat content, protein content, viscosity, gel strength, pH, melting and organoleptic rabbit skin gelatin with acetic acid extraction levels are different. The materials used in this study were Rex rabbit skin male. Treatments that P1 = the extraction of acetic acid 2% (v / v); P2 = the extraction of acetic acid 3% (v / v); P3 = the extraction of acetic acid 4 % (v / v). P5 = the extraction of acetic acid 5% (v / v). The results showed that the greater the concentration of acetic acid as the extraction of rabbit skin can reduce the water content and fat content of rabbit skin gelatin but increase the protein content, viscosity, pH, gel strength, yield and melting point rabbit skin gelatin. texture, color and smell of gelatin rabbits there were no differences with cow skin gelatin. The results showed that the quality of rabbit skin gelatin accordance Indonesian National Standard (SNI). Conclusion 5% acetic acid extraction produces the best quality gelatin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gelatin" title="gelatin">gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20rabbit" title=" skin rabbit"> skin rabbit</a>, <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid%20extraction" title=" acetic acid extraction"> acetic acid extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/61347/quality-rabbit-skin-gelatin-with-acetic-acid-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4641</span> Transparent Photovoltaic Skin for Artificial Thermoreceptor and Nociceptor Memory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Bhatnagar">Priyanka Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=Malkeshkumar%20Patel"> Malkeshkumar Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Joondong%20Kim"> Joondong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Joonpyo%20Hong"> Joonpyo Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial skin and sensory memory platforms are produced using a flexible, transparent photovoltaic (TPV) device. The TPV device is composed of a metal oxide heterojunction (nZnO/p-NiO) and transmits visible light (> 50%) while producing substantial electric power (0.5 V and 200 μA cm-2 ). This TPV device is a transparent energy interface that can be used to detect signals and propagate information without an external energy supply. The TPV artificial skin offers a temperature detection range (0 C75 C) that is wider than that of natural skin (5 C48 °C) due to the temperature-sensitive pyrocurrent from the ZnO layer. Moreover, the TPV thermoreceptor offers sensory memory of extreme thermal stimuli. Much like natural skin, artificial skin uses the nociceptor mechanism to protect tissue from harmful damage via signal amplification (hyperalgesia) and early adaption (allodynia). This demonstrates the many features of TPV artificial skin, which can sense and transmit signals and memorize information under self-operation mode. This transparent photovoltaic skin can provide sustainable energy for use in human electronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transparent" title="transparent">transparent</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaics" title=" photovoltaics"> photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20memory" title=" thermal memory"> thermal memory</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20skin" title=" artificial skin"> artificial skin</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoreceptor" title=" thermoreceptor"> thermoreceptor</a> </p> <a href="https://publications.waset.org/abstracts/149259/transparent-photovoltaic-skin-for-artificial-thermoreceptor-and-nociceptor-memory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4640</span> Study on Reusable, Non Adhesive Silicone Male External Catheter: Clinical Proof of Study and Quality Improvement Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Buddharaju">Venkata Buddharaju</a>, <a href="https://publications.waset.org/abstracts/search?q=Irene%20Mccarron"> Irene Mccarron</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazel%20Alba"> Hazel Alba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Male external catheters (MECs) are commonly used to collect and drain urine. MECs are increasingly used in acute care, long-term acute care hospitals, and nursing facilities, and in other patients as an alternative to invasive urinary catheters to reduce catheter-associated urinary tract infections (CAUTI).MECs are also used to avoid the need for incontinence pads and diapers. Most of the Male External Catheters are held in place by skin adhesive, with the exception of a few, which uses a foam strap clamp around the penile shaft. The adhesive condom catheters typically stay for 24 hours or less. It is also a common practice that extra skin adhesive tape is wrapped around the condom catheter for additional security of the device. The fixed nature of the adhesive will not allow the normal skin expansion of penile size over time. The adhesive can cause skin irritation, redness, erosion, and skin damage. Acanthus condom catheter (ACC) is a patented, specially designed, stretchable silicone catheter without adhesive, adapts to the size and contour of the penis. It is held in place with a single elastic strap that wraps around the lower back and tied to the opposite catheter ring holescriss cross. It can be reused for up to 5 days on the same patient after daily cleaning and washingpotentially reducing cost. Methods: The study was conducted from September 17th to October 8th, 2020. The nursing staff was educated and trained on how to use and reuse the catheter. After identifying five (5) appropriate patients, the catheter was placed and maintained by nursing staff. The data on the ease of use, leak, and skin damage were collected and reported by nurses to the nursing education department of the hospital for analysis. Setting: RML Chicago, long-term acute care hospital, an affiliate of Loyola University Medical Center, Chicago, IL USA. Results: The data showed that the catheter was easy to apply, remove, wash and reuse, without skin problems or urine infections. One patient had used for 16 days after wash, reuse, and replacement without any urine leak or skin issues. A minimal leak was observed on two patients. Conclusion: Acanthus condom catheter was easy to use, functioned well with minimal or no leak during use and reuse. The skin was intact in all patients studied. There were no urinary tract infections in any of the studied patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAUTI" title="CAUTI">CAUTI</a>, <a href="https://publications.waset.org/abstracts/search?q=male%20external%20catheter" title=" male external catheter"> male external catheter</a>, <a href="https://publications.waset.org/abstracts/search?q=reusable" title=" reusable"> reusable</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20adhesive" title=" skin adhesive"> skin adhesive</a> </p> <a href="https://publications.waset.org/abstracts/137314/study-on-reusable-non-adhesive-silicone-male-external-catheter-clinical-proof-of-study-and-quality-improvement-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4639</span> A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20George">Joseph George</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Kotteswara%20Roa"> Anne Kotteswara Roa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skin%20cancer" title="skin cancer">skin cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20measures" title=" performance measures"> performance measures</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=datasets" title=" datasets"> datasets</a> </p> <a href="https://publications.waset.org/abstracts/151256/a-survey-of-skin-cancer-detection-and-classification-from-skin-lesion-images-using-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4638</span> Nursing Care Experience for a Patient with Type2 Diabetes Mellitus and Hyperglycemic Hyperosmolar State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yen-Hsia%20Lin">Yen-Hsia Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya-Fang%20Cheng"> Ya-Fang Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Zhu%20Chen"> Hui-Zhu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Hui%20Tiao"> Chi-Hui Tiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This is a case study of a 70-year-old man suffering from Type 2 diabetes mellitus and hyperglycemia hyperosmolarity state. He was admitted into the intensive care unit from the 20th to 26th of October, 2015. After receiving relevant information through open-ended conversations, observation, and physical assessment, as well as the psychological, social and spiritual holistic nursing assessment, several clinical health problems such as unstable blood sugar, impaired skin integrity and lack of self-care management knowledge were identified by the author. During the period of care, the patient was encouraged to share and express his feelings, an active listening and initiating approach from the nursing team had led to the understanding of why the patient refused to use insulin. This knowledge enabled the nursing team to manage patient care by educating the patient with self-care management skills, such as foot wound care and insulin injection skills to slow the deterioration of complications. Also, the implementation of appropriate diet and exercise routine to improve patients’ style. By enhancing self-care ability in diabetic patients, they are able to return home with the skill to improve better quality life style. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyperglycemia%20hyperosmolar%20state" title="hyperglycemia hyperosmolar state">hyperglycemia hyperosmolar state</a>, <a href="https://publications.waset.org/abstracts/search?q=type2%20diabetes%20Mellitu" title=" type2 diabetes Mellitu"> type2 diabetes Mellitu</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20Mellitu%20foot%20care" title=" diabetes Mellitu foot care"> diabetes Mellitu foot care</a>, <a href="https://publications.waset.org/abstracts/search?q=intensive%20care" title=" intensive care"> intensive care</a> </p> <a href="https://publications.waset.org/abstracts/90869/nursing-care-experience-for-a-patient-with-type2-diabetes-mellitus-and-hyperglycemic-hyperosmolar-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4637</span> Effect of Pomegranate (Punica granatum) Seed Oil on Keratinocytes in Patients with Atopic Dermatitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fardis%20Teifoori">Fardis Teifoori</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Dehghani"> Mehdi Dehghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Idoia%20Postigo"> Idoia Postigo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Martinez"> Jorge Martinez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Many skin disorders, such as atopic dermatitis (AD), is characterized by inflammation, infection, and hyperplasia. In this work, keratinocytes from AD patients are used to study the pomegranate seed oil properties for skin care. Material and methods: Isolated keratinocytes from patients with AD were cultured and stimulated by IL-9 (20 ng/ml) and TNF-α (50ng/ml) for 48h to induce vascular endothelial growth factor (VEGF) and Regulated upon activation, normal T cell expressed and secreted (RANTES) production, respectively, in the presence of different concentrations of pomegranate seed oil (20, 50, 100, and 200 µM). Finally, the concentrations of RANTES and VEGF in the cell culture supernatant were quantified according to the standard protocol of commercial ELISA kits. Results: The results indicated that pomegranate seed oil concentrations of 50, 100, and 200 µM could significantly inhibit the production of VEGF and RANTES by stimulating keratinocytes with IL-9 (20 ng/ml) and TNF-α (50ng/ml), respectively. The decrease in VEGF and RANTES concentration in the presence of the pomegranate seed oil concentrations of 20 and 50 uM was not significant. Conclusion: It was concluded that pomegranate seed oil (PSO) counteracts atopic dermatitis conditions dose-dependently: with the highest effect at the concentration of 200 µM. We suggest that the inexpensive and easily available pomegranate seed oil is a good candidate for cosmetics and clinical utilization for skin care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atopic%20dermatitis" title="atopic dermatitis">atopic dermatitis</a>, <a href="https://publications.waset.org/abstracts/search?q=pomegranate" title=" pomegranate"> pomegranate</a>, <a href="https://publications.waset.org/abstracts/search?q=Punica%20granatum" title=" Punica granatum"> Punica granatum</a>, <a href="https://publications.waset.org/abstracts/search?q=RANTES" title=" RANTES"> RANTES</a>, <a href="https://publications.waset.org/abstracts/search?q=VEGF" title=" VEGF"> VEGF</a> </p> <a href="https://publications.waset.org/abstracts/158675/effect-of-pomegranate-punica-granatum-seed-oil-on-keratinocytes-in-patients-with-atopic-dermatitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4636</span> Prevalence and Potential Risk Factors Associated with Skin Affection in Donkeys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Z.%20Sayed-Ahmed">Mohamed Z. Sayed-Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Ahdy"> Ahmed M. Ahdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Emad%20E.%20Younis"> Emad E. Younis</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabry%20A.%20El-Khodary"> Sabry A. El-Khodary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Little research information is available on the prevalence of diseases of donkeys in Egypt. Across sectional study was undertaken between March 2009 and February 2010 to verify the prevalence of skin affection of donkeys. A total of 1134 donkeys in northern Egypt were investigated. A questionnaire was constructed to verify the number of infected contact animals as well as the associated factors. Physical examination was carried out, and the distribution of skin lesions was recorded. Skin scraping and biopsy were obtained to perform bacteriological, mycological, and histopathological examinations. Thirty-five (3.09%) out of 1134 noticed donkeys had skin affections including mange (18/35), dermatophytosis (6/35), bacterial dermatitis (6/35) urticaria (2/35) and allergic dermatitis (3/35). The present results indicate that mange and dermatophytosis are the prevalent skin diseases in donkeys. Contact with other animal species of contaminated environment may contribute to the occurrence of the diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=donkeys" title="donkeys">donkeys</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=prevalence" title=" prevalence"> prevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20affection" title=" skin affection"> skin affection</a> </p> <a href="https://publications.waset.org/abstracts/124209/prevalence-and-potential-risk-factors-associated-with-skin-affection-in-donkeys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4635</span> Pufferfish Skin Collagens and Their Role in Inflation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirti">Kirti</a>, <a href="https://publications.waset.org/abstracts/search?q=Samanta%20Sekhar%20Khora"> Samanta Sekhar Khora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inflation serves different purposes in different organisms and adds beauty to their behavioral attributes. Pufferfishes are also known as blowfish, swellfish, and globefish due to their remarkable ability to puff themselves up like a balloon when threatened. This ability to inflate can be correlated with anatomical features that are unique to pufferfishes. Pufferfish skin provides a rigid framework to support the body contents and a flexible covering to allow whatever changes are necessary for remarkable inflation mechanism. Skin, the outer covering of animals is made up of collagen fibers arranged in more or less ordered arrays. The ventral skin of pufferfish stretches more than dorsal skin during inflation. So, this study is of much of the interest in comparing the structure and mechanical properties of these two skin regions. The collagen fibers were found to be arranged in different ordered arrays for ventral and dorsal skin and concentration of fibers were also found to be different for these two skin parts. Scanning electron microscopy studies of the ventral skin showed a unidirectional arrangement of the collagen fibers, which provide more stretching capacity. Dorsal skin, on the other hand, has an orthogonal arrangement of fibers. This provides more stiffness to the ventral skin at the time of inflation. In this study, the possible role of collagen fibers was determined which significantly contributed to the remarkable inflation mechanism of pufferfishes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collagen" title="collagen">collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=histology" title=" histology"> histology</a>, <a href="https://publications.waset.org/abstracts/search?q=inflation" title=" inflation"> inflation</a>, <a href="https://publications.waset.org/abstracts/search?q=pufferfish" title=" pufferfish"> pufferfish</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=Small-Angle%20X-Ray%20Scattering%20%28SAXS%29" title=" Small-Angle X-Ray Scattering (SAXS)"> Small-Angle X-Ray Scattering (SAXS)</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20electron%20microscopy" title=" transmission electron microscopy"> transmission electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/85346/pufferfish-skin-collagens-and-their-role-in-inflation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4634</span> Preparation and Characterization of Water-in-Oil Nanoemulsion of 5-Fluorouracil to Enhance Skin Permeation for Treatment of Skin Diseases.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Rajinikanth">P. S. Rajinikanth</a>, <a href="https://publications.waset.org/abstracts/search?q=Shobana%20Mariappan"> Shobana Mariappan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jestin%20Chellian"> Jestin Chellian </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the study was to prepare and characterize a water-in-oil nano emulsion of 5-Fluorouracil (5FU) to enhance the skin penetration. The present study describes a nano emulsion of 5FU using Capyrol PGMC, Transcutol HP and PEG 400 as oil, surfactant and co-surfactant, respectively. The optimized formulations were further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential in order to confirm the stability of the optimized nano emulsions. The in-vitro characterization results showed that the droplets of prepared formulation were ~100 nm with ± 15 zeta potential. In vitro skin permeation studies was conducted in albino mice skin. Significant increase in permeability parameters was also observed in nano emulsion formulations (P<0.05). The steady-state flux (Jss), enhancement ration and permeability coefficient (Kp) for optimized nano emulsion formulation (FU2, FU1, 1:1 S mix were found to be 24.21 ±2.45 μg/cm2/h, 3.28±0.87 & 19.52±1.87 cm/h, respectively), which were significant compared with conventional gel. The in vitro and in vivo skin deposition studies in rat indicated that the amount of drug deposited from the nano emulsion (292.45 µg/cm2) in skin was significant (P<0.05) an increased as compared to a conventional 5FU gel (121.42 µg/cm2). The skin irritation study using rat skin showed that the mean irritation index of the nano emulsion reduced significantly (P<0.05) as compared with conventional gel contain 1% 5FU. The results from this study suggest that a water-in-oil nano emulsion could be safely used to promote skin penetration of 5FU following topical application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20emulsion" title="nano emulsion">nano emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20release" title=" controlled release"> controlled release</a>, <a href="https://publications.waset.org/abstracts/search?q=5%20fluorouracil" title=" 5 fluorouracil"> 5 fluorouracil</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20penetration" title=" skin penetration"> skin penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20irritation" title=" skin irritation "> skin irritation </a> </p> <a href="https://publications.waset.org/abstracts/11646/preparation-and-characterization-of-water-in-oil-nanoemulsion-of-5-fluorouracil-to-enhance-skin-permeation-for-treatment-of-skin-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4633</span> The Effects of Topically-Applied Skin Moisturizer on Striae Gravidarum in East Indian Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipanshu%20Sur">Dipanshu Sur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratnabali%20Chakravorty"> Ratnabali Chakravorty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Striae result from rapid expansion of the underlying tissue, e.g. during puberty, pregnancy or rapid weight gain. Prior data indicate that the incidence of stretch marks in Indian women is 77%.The hormonal and genetic factors are associated with their appearance. Recently that has been found skin extensibility, elasticity and rupture were strongly influenced by the water content of dermis and epidermis cells. Objective: The objectives were to assess the effects of topical treatments applied during pregnancy on the later development of stretch marks. Materials and methods: An open, prospective, randomized study was done on 120 pregnant women in whom skin elasticity and hydration as well as striae presence or apparition were measured at baseline and periodically until delivery. Patients were randomly assigned to application in wet skin cream, or in dry skin conditions. Results: The average basal hydration was 42 ±13 IU and the final was 46 ± 6 IU (P = 0.0325; 95% CI: -7.66 to -0.34), which difference was statistically significant. By measuring the moisture in the control region (forearm) a basal reading of 40 ± 9 IU and end of study of 38 ± 6; (p = 0.1547; 95% CI: -0.77 to 4.77) and this difference was considered to be not statistically significant. It was observed that at the end of the study, 55% women without ridges; mild ridges 5%; 36% moderate, and 4%, severe ridges. The proportion of women without grooves was 54% when the cream was applied studied wet skin and 45% when the cream was applied on dry skin. Conclusion: It was shown that cream under study increased hydration and elasticity of abdominal skin consequently in all subjects. This effect is more significant (54%) when the cream is applied to damp skin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=striae%20gravidarum" title="striae gravidarum">striae gravidarum</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20moisturizer" title=" skin moisturizer"> skin moisturizer</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20hydration" title=" skin hydration"> skin hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20elasticity" title=" skin elasticity"> skin elasticity</a> </p> <a href="https://publications.waset.org/abstracts/36646/the-effects-of-topically-applied-skin-moisturizer-on-striae-gravidarum-in-east-indian-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20care&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20care&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20care&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20care&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20care&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20care&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20care&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20care&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20care&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20care&page=155">155</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20care&page=156">156</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=skin%20care&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>