CINXE.COM

Geometría diferencial de curvas - Wikipedia, la enciclopedia libre

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="es" dir="ltr"> <head> <meta charset="UTF-8"> <title>Geometría diferencial de curvas - Wikipedia, la enciclopedia libre</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )eswikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","enero","febrero","marzo","abril","mayo","junio","julio","agosto","septiembre","octubre","noviembre","diciembre"],"wgRequestId":"4747ec6f-70d8-4974-b447-4f14372a8a4c","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Geometría_diferencial_de_curvas","wgTitle":"Geometría diferencial de curvas","wgCurRevisionId":153744697,"wgRevisionId":153744697,"wgArticleId":495635,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Wikipedia:Páginas con enlaces mágicos de ISBN","Geometría diferencial"],"wgPageViewLanguage":"es","wgPageContentLanguage":"es","wgPageContentModel":"wikitext","wgRelevantPageName":"Geometría_diferencial_de_curvas","wgRelevantArticleId":495635,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive" :false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"es","pageLanguageDir":"ltr","pageVariantFallbacks":"es"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q2254404","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":true,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.imagenesinfobox":"ready", "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.a-commons-directo","ext.gadget.ReferenceTooltips","ext.gadget.refToolbar","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging", "ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=es&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=es&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=es&amp;modules=ext.gadget.imagenesinfobox&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=es&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <noscript><link rel="stylesheet" href="/w/load.php?lang=es&amp;modules=noscript&amp;only=styles&amp;skin=vector-2022"></noscript> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Geometría diferencial de curvas - Wikipedia, la enciclopedia libre"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//es.m.wikipedia.org/wiki/Geometr%C3%ADa_diferencial_de_curvas"> <link rel="alternate" type="application/x-wiki" title="Editar" href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (es)"> <link rel="EditURI" type="application/rsd+xml" href="//es.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://es.wikipedia.org/wiki/Geometr%C3%ADa_diferencial_de_curvas"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.es"> <link rel="alternate" type="application/atom+xml" title="Canal Atom de Wikipedia" href="/w/index.php?title=Especial:CambiosRecientes&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Geometría_diferencial_de_curvas rootpage-Geometría_diferencial_de_curvas skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Ir al contenido</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sitio"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menú principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menú principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menú principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">ocultar</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navegación </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Portada" title="Visitar la página principal [z]" accesskey="z"><span>Portada</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Portal:Comunidad" title="Acerca del proyecto, lo que puedes hacer, dónde encontrar información"><span>Portal de la comunidad</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Actualidad" title="Encuentra información de contexto sobre acontecimientos actuales"><span>Actualidad</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Especial:CambiosRecientes" title="Lista de cambios recientes en la wiki [r]" accesskey="r"><span>Cambios recientes</span></a></li><li id="n-newpages" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginasNuevas"><span>Páginas nuevas</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Especial:Aleatoria" title="Cargar una página al azar [x]" accesskey="x"><span>Página aleatoria</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Ayuda:Contenidos" title="El lugar para aprender"><span>Ayuda</span></a></li><li id="n-bug_in_article" class="mw-list-item"><a href="/wiki/Wikipedia:Informes_de_error"><span>Notificar un error</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikipedia:Portada" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="La enciclopedia libre" src="/static/images/mobile/copyright/wikipedia-tagline-es.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Especial:Buscar" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Buscar en este wiki [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Buscar</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Buscar en Wikipedia" aria-label="Buscar en Wikipedia" autocapitalize="sentences" title="Buscar en este wiki [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Especial:Buscar"> </div> <button class="cdx-button cdx-search-input__end-button">Buscar</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Herramientas personales"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Apariencia"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Apariencia" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Apariencia</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_es.wikipedia.org&amp;uselang=es" class=""><span>Donaciones</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Crear_una_cuenta&amp;returnto=Geometr%C3%ADa+diferencial+de+curvas" title="Te recomendamos crear una cuenta e iniciar sesión; sin embargo, no es obligatorio" class=""><span>Crear una cuenta</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Entrar&amp;returnto=Geometr%C3%ADa+diferencial+de+curvas" title="Te recomendamos iniciar sesión, aunque no es obligatorio [o]" accesskey="o" class=""><span>Acceder</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Más opciones" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Herramientas personales" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Herramientas personales</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menú de usuario" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_es.wikipedia.org&amp;uselang=es"><span>Donaciones</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Crear_una_cuenta&amp;returnto=Geometr%C3%ADa+diferencial+de+curvas" title="Te recomendamos crear una cuenta e iniciar sesión; sin embargo, no es obligatorio"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Crear una cuenta</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Entrar&amp;returnto=Geometr%C3%ADa+diferencial+de+curvas" title="Te recomendamos iniciar sesión, aunque no es obligatorio [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Acceder</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Páginas para editores desconectados <a href="/wiki/Ayuda:Introducci%C3%B3n" aria-label="Obtenga más información sobre editar"><span>más información</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Especial:MisContribuciones" title="Una lista de modificaciones hechas desde esta dirección IP [y]" accesskey="y"><span>Contribuciones</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Especial:MiDiscusi%C3%B3n" title="Discusión sobre ediciones hechas desde esta dirección IP [n]" accesskey="n"><span>Discusión</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sitio"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contenidos" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contenidos</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">ocultar</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inicio</div> </a> </li> <li id="toc-Longitud_de_arco" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Longitud_de_arco"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Longitud de arco</span> </div> </a> <ul id="toc-Longitud_de_arco-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vectores_tangente,_normal_y_binormal:_Triedro_de_Frênet-Serret" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Vectores_tangente,_normal_y_binormal:_Triedro_de_Frênet-Serret"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Vectores tangente, normal y binormal: Triedro de Frênet-Serret</span> </div> </a> <ul id="toc-Vectores_tangente,_normal_y_binormal:_Triedro_de_Frênet-Serret-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Curvatura_y_torsión" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Curvatura_y_torsión"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Curvatura y torsión</span> </div> </a> <ul id="toc-Curvatura_y_torsión-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Plano_osculador" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Plano_osculador"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Plano osculador</span> </div> </a> <ul id="toc-Plano_osculador-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Centro_de_curvatura" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Centro_de_curvatura"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Centro de curvatura</span> </div> </a> <ul id="toc-Centro_de_curvatura-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Teorema_fundamental_de_curvas" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Teorema_fundamental_de_curvas"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Teorema fundamental de curvas</span> </div> </a> <ul id="toc-Teorema_fundamental_de_curvas-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Véase_también" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Véase_también"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Véase también</span> </div> </a> <ul id="toc-Véase_también-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Referencias" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Referencias"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Referencias</span> </div> </a> <button aria-controls="toc-Referencias-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Alternar subsección Referencias</span> </button> <ul id="toc-Referencias-sublist" class="vector-toc-list"> <li id="toc-Bibliografía" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bibliografía"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Bibliografía</span> </div> </a> <ul id="toc-Bibliografía-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Enlaces_externos" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Enlaces_externos"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Enlaces externos</span> </div> </a> <ul id="toc-Enlaces_externos-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contenidos" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Cambiar a la tabla de contenidos" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Cambiar a la tabla de contenidos</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Geometría diferencial de curvas</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Ir a un artículo en otro idioma. Disponible en 8 idiomas" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-8" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">8 idiomas</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%87%D9%86%D8%AF%D8%B3%D8%A9_%D8%A7%D9%84%D9%85%D9%86%D8%AD%D9%86%D9%8A%D8%A7%D8%AA_%D8%A7%D9%84%D8%AA%D9%81%D8%A7%D8%B6%D9%84%D9%8A%D8%A9" title="هندسة المنحنيات التفاضلية (árabe)" lang="ar" hreflang="ar" data-title="هندسة المنحنيات التفاضلية" data-language-autonym="العربية" data-language-local-name="árabe" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Differentiable_curve" title="Differentiable curve (inglés)" lang="en" hreflang="en" data-title="Differentiable curve" data-language-autonym="English" data-language-local-name="inglés" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Geometria_differenziale_delle_curve" title="Geometria differenziale delle curve (italiano)" lang="it" hreflang="it" data-title="Geometria differenziale delle curve" data-language-autonym="Italiano" data-language-local-name="italiano" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Curva_diferenci%C3%A1vel" title="Curva diferenciável (portugués)" lang="pt" hreflang="pt" data-title="Curva diferenciável" data-language-autonym="Português" data-language-local-name="portugués" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Geometria_diferen%C8%9Bial%C4%83_a_curbelor" title="Geometria diferențială a curbelor (rumano)" lang="ro" hreflang="ro" data-title="Geometria diferențială a curbelor" data-language-autonym="Română" data-language-local-name="rumano" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%80%D0%B8%D0%B2%D1%8B%D1%85" title="Дифференциальная геометрия кривых (ruso)" lang="ru" hreflang="ru" data-title="Дифференциальная геометрия кривых" data-language-autonym="Русский" data-language-local-name="ruso" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D1%96%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0_%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F_%D0%BA%D1%80%D0%B8%D0%B2%D0%B8%D1%85" title="Диференціальна геометрія кривих (ucraniano)" lang="uk" hreflang="uk" data-title="Диференціальна геометрія кривих" data-language-autonym="Українська" data-language-local-name="ucraniano" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%9B%B2%E7%BA%BF%E7%9A%84%E5%BE%AE%E5%88%86%E5%87%A0%E4%BD%95" title="曲线的微分几何 (chino)" lang="zh" hreflang="zh" data-title="曲线的微分几何" data-language-autonym="中文" data-language-local-name="chino" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2254404#sitelinks-wikipedia" title="Editar enlaces interlingüísticos" class="wbc-editpage">Editar enlaces</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espacios de nombres"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Geometr%C3%ADa_diferencial_de_curvas" title="Ver la página de contenido [c]" accesskey="c"><span>Artículo</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discusi%C3%B3n:Geometr%C3%ADa_diferencial_de_curvas" rel="discussion" title="Discusión acerca de la página [t]" accesskey="t"><span>Discusión</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Cambiar variante de idioma" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">español</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Vistas"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Geometr%C3%ADa_diferencial_de_curvas"><span>Leer</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=edit" title="Editar esta página [e]" accesskey="e"><span>Editar</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=history" title="Versiones anteriores de esta página [h]" accesskey="h"><span>Ver historial</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Página de herramientas"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Herramientas" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Herramientas</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Herramientas</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">ocultar</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Más opciones" > <div class="vector-menu-heading"> Acciones </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Geometr%C3%ADa_diferencial_de_curvas"><span>Leer</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=edit" title="Editar esta página [e]" accesskey="e"><span>Editar</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=history"><span>Ver historial</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Especial:LoQueEnlazaAqu%C3%AD/Geometr%C3%ADa_diferencial_de_curvas" title="Lista de todas las páginas de la wiki que enlazan aquí [j]" accesskey="j"><span>Lo que enlaza aquí</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Especial:CambiosEnEnlazadas/Geometr%C3%ADa_diferencial_de_curvas" rel="nofollow" title="Cambios recientes en las páginas que enlazan con esta [k]" accesskey="k"><span>Cambios en enlazadas</span></a></li><li id="t-upload" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard?uselang=es" title="Subir archivos [u]" accesskey="u"><span>Subir archivo</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginasEspeciales" title="Lista de todas las páginas especiales [q]" accesskey="q"><span>Páginas especiales</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;oldid=153744697" title="Enlace permanente a esta versión de la página"><span>Enlace permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=info" title="Más información sobre esta página"><span>Información de la página</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Especial:Citar&amp;page=Geometr%C3%ADa_diferencial_de_curvas&amp;id=153744697&amp;wpFormIdentifier=titleform" title="Información sobre cómo citar esta página"><span>Citar esta página</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Especial:Acortador_de_URL&amp;url=https%3A%2F%2Fes.wikipedia.org%2Fwiki%2FGeometr%25C3%25ADa_diferencial_de_curvas"><span>Obtener URL acortado</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Especial:QrCode&amp;url=https%3A%2F%2Fes.wikipedia.org%2Fwiki%2FGeometr%25C3%25ADa_diferencial_de_curvas"><span>Descargar código QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimir/exportar </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Especial:Libro&amp;bookcmd=book_creator&amp;referer=Geometr%C3%ADa+diferencial+de+curvas"><span>Crear un libro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Especial:DownloadAsPdf&amp;page=Geometr%C3%ADa_diferencial_de_curvas&amp;action=show-download-screen"><span>Descargar como PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;printable=yes" title="Versión imprimible de esta página [p]" accesskey="p"><span>Versión para imprimir</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> En otros proyectos </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2254404" title="Enlace al elemento conectado del repositorio de datos [g]" accesskey="g"><span>Elemento de Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Página de herramientas"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Apariencia"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Apariencia</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">ocultar</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">De Wikipedia, la enciclopedia libre</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="es" dir="ltr"><p>En matemáticas, la <b>geometría diferencial de curvas</b> propone definiciones y métodos para analizar <a href="/wiki/Curva" title="Curva">curvas</a> simples en <a href="/wiki/Variedad_de_Riemann" title="Variedad de Riemann">Variedades de Riemann</a>, y en particular, en el <a href="/wiki/Espacio_Eucl%C3%ADdeo" class="mw-redirect" title="Espacio Euclídeo">Espacio Euclídeo</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Longitud_de_arco">Longitud de arco</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=edit&amp;section=1" title="Editar sección: Longitud de arco"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="noprint AP rellink"><span style="font-size:88%">Artículo principal:</span>&#32;<i><a href="/wiki/Longitud_de_arco" title="Longitud de arco"> Longitud de arco</a></i></div> <p>Dada una curva suficientemente <a href="/wiki/Curva#curva_suave" title="Curva">suave</a> (diferenciable y de clase <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{2}(\mathrm {I} )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{2}(\mathrm {I} )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ac38d84991006522dcb73c3288caf295265356" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.888ex; height:3.176ex;" alt="{\displaystyle C^{2}(\mathrm {I} )\,}"></span>), en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> y dado su vector de posición <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7216e69d28fdb11c29c859f015a284c1ec6f06ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.751ex; height:2.843ex;" alt="{\displaystyle \mathbf {r} (t)}"></span> expresado mediante el parámetro <i>t</i>; </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} (t)=x(t)\mathbf {i} +y(t)\mathbf {j} +z(t)\mathbf {k} \qquad t\in [a,b]\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>+</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>+</mo> <mi>z</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mspace width="2em" /> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} (t)=x(t)\mathbf {i} +y(t)\mathbf {j} +z(t)\mathbf {k} \qquad t\in [a,b]\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b241899d3a43740404e9505d6d5069ab22008dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.287ex; height:2.843ex;" alt="{\displaystyle \mathbf {r} (t)=x(t)\mathbf {i} +y(t)\mathbf {j} +z(t)\mathbf {k} \qquad t\in [a,b]\,}"></span></dd></dl> <p>se define el llamado <a href="/wiki/Longitud_de_arco" title="Longitud de arco">parámetro de arco</a> <i>s</i> como:<br /> <br /> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=\phi (t)=\int _{a}^{t}{\sqrt {\left[x'(\tau )\right]^{2}+\left[y'(\tau )\right]^{2}+\left[z'(\tau )\right]^{2}}}\,d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mrow> <mo>[</mo> <mrow> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>[</mo> <mrow> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>[</mo> <mrow> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=\phi (t)=\int _{a}^{t}{\sqrt {\left[x'(\tau )\right]^{2}+\left[y'(\tau )\right]^{2}+\left[z'(\tau )\right]^{2}}}\,d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bf8ce2b8166eef1410d586e92613dc1aff870d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:47.521ex; height:6.176ex;" alt="{\displaystyle s=\phi (t)=\int _{a}^{t}{\sqrt {\left[x&#039;(\tau )\right]^{2}+\left[y&#039;(\tau )\right]^{2}+\left[z&#039;(\tau )\right]^{2}}}\,d\tau }"></span></dd></dl> <p>La cual se puede expresar también de la siguiente forma en la cual resulta más fácil de recordar </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=\phi (t)=\int _{a}^{t}{\left\Vert \mathbf {r} '(\tau )\right\|}d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> </mrow> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=\phi (t)=\int _{a}^{t}{\left\Vert \mathbf {r} '(\tau )\right\|}d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe7d5d2aab3cdca46b477d0144642402ca3777d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.54ex; height:6.176ex;" alt="{\displaystyle s=\phi (t)=\int _{a}^{t}{\left\Vert \mathbf {r} &#039;(\tau )\right\|}d\tau }"></span></dd></dl> <p>Lo cual permite reparametrizar la curva de la siguiente manera: <br /> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\tilde {r}} (s)=\left({\tilde {x}}(s),{\tilde {y}}(s),{\tilde {z}}(s)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold" stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\tilde {r}} (s)=\left({\tilde {x}}(s),{\tilde {y}}(s),{\tilde {z}}(s)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11dad3e7ad99cc2bd267072c4836022192691ea4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.839ex; height:2.843ex;" alt="{\displaystyle \mathbf {\tilde {r}} (s)=\left({\tilde {x}}(s),{\tilde {y}}(s),{\tilde {z}}(s)\right)}"></span></dd></dl> <p><br /> donde <br /> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {x}}(\phi (t))=x(t),\qquad {\tilde {y}}(\phi (t))=y(t),\qquad {\tilde {z}}(\phi (t))=z(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>z</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {x}}(\phi (t))=x(t),\qquad {\tilde {y}}(\phi (t))=y(t),\qquad {\tilde {z}}(\phi (t))=z(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87214c32f903ee3c45d18c9eee22779a2b7c9e66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:53.633ex; height:2.843ex;" alt="{\displaystyle {\tilde {x}}(\phi (t))=x(t),\qquad {\tilde {y}}(\phi (t))=y(t),\qquad {\tilde {z}}(\phi (t))=z(t)}"></span></dd></dl> <p><br /> son las relaciones entre las dos parametrizaciones. </p> <div class="mw-heading mw-heading2"><h2 id="Vectores_tangente,_normal_y_binormal:_Triedro_de_Frênet-Serret"><span id="Vectores_tangente.2C_normal_y_binormal:_Triedro_de_Fr.C3.AAnet-Serret"></span>Vectores tangente, normal y binormal: Triedro de Frênet-Serret</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=edit&amp;section=2" title="Editar sección: Vectores tangente, normal y binormal: Triedro de Frênet-Serret"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="VT rellink"><span style="font-size:88%">Véase también:</span> <i><a href="/wiki/F%C3%B3rmulas_de_Frenet-Serret" title="Fórmulas de Frenet-Serret">Fórmulas de Frenet-Serret</a></i></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Archivo:Frenet_trihedron.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Frenet_trihedron.svg/350px-Frenet_trihedron.svg.png" decoding="async" width="350" height="209" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Frenet_trihedron.svg/525px-Frenet_trihedron.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/08/Frenet_trihedron.svg/700px-Frenet_trihedron.svg.png 2x" data-file-width="520" data-file-height="310" /></a><figcaption>Vista esquemática del <span style="color:#0000FF">vector tangente</span>, <span style="color:#00FF00">vector normal</span> y <span style="color:#FF0000">vector binormal</span> de una curva <a href="/wiki/H%C3%A9lice_(geometr%C3%ADa)" title="Hélice (geometría)">hélice</a>.</figcaption></figure> <figure typeof="mw:File/Thumb"><a href="/wiki/Archivo:Frenet-Serret-frame_helix_around_torus.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Frenet-Serret-frame_helix_around_torus.gif/350px-Frenet-Serret-frame_helix_around_torus.gif" decoding="async" width="350" height="350" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Frenet-Serret-frame_helix_around_torus.gif/525px-Frenet-Serret-frame_helix_around_torus.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Frenet-Serret-frame_helix_around_torus.gif/700px-Frenet-Serret-frame_helix_around_torus.gif 2x" data-file-width="1024" data-file-height="1024" /></a><figcaption>Triedro de Frenet-Serret. Hélice alrededor de un <a href="/wiki/Toro_(geometr%C3%ADa)" title="Toro (geometría)">toro</a>.</figcaption></figure> <p>Dada una curva parametrizada <b>r</b>(<i>t</i>) según un parámetro cualquiera <i>t</i> se define el llamado vector tangente, normal y binormal como:<br /> <br /> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {T} (t)=\mathbf {N} (t)\times \mathbf {B} (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">N</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {T} (t)=\mathbf {N} (t)\times \mathbf {B} (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a2ef030a9f43c57b0345ce41fef86e725976ca0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.737ex; height:2.843ex;" alt="{\displaystyle \mathbf {T} (t)=\mathbf {N} (t)\times \mathbf {B} (t)}"></span> o bien <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {T} (t)={\frac {\mathbf {r} '(t)}{\left\Vert \mathbf {r} '(t)\right\|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {T} (t)={\frac {\mathbf {r} '(t)}{\left\Vert \mathbf {r} '(t)\right\|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/572697fb9d510317b656348f1c495e015fab9b4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.203ex; height:6.509ex;" alt="{\displaystyle \mathbf {T} (t)={\frac {\mathbf {r} &#039;(t)}{\left\Vert \mathbf {r} &#039;(t)\right\|}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} (t)=\mathbf {T} (t)\times \mathbf {N} (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">N</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} (t)=\mathbf {T} (t)\times \mathbf {N} (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f7ab0ea089a65798c6dd1a3282666d6cf1bbdb3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.737ex; height:2.843ex;" alt="{\displaystyle \mathbf {B} (t)=\mathbf {T} (t)\times \mathbf {N} (t)}"></span> o bien <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} (t)={\frac {\mathbf {r} '(t)\times \mathbf {r} ''(t)}{\left\Vert \mathbf {r} '(t)\times \mathbf {r} ''(t)\right\|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} (t)={\frac {\mathbf {r} '(t)\times \mathbf {r} ''(t)}{\left\Vert \mathbf {r} '(t)\times \mathbf {r} ''(t)\right\|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/013a1d6abd6f53513e8d16349952f1c9d2848f8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.974ex; height:6.509ex;" alt="{\displaystyle \mathbf {B} (t)={\frac {\mathbf {r} &#039;(t)\times \mathbf {r} &#039;&#039;(t)}{\left\Vert \mathbf {r} &#039;(t)\times \mathbf {r} &#039;&#039;(t)\right\|}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {N} (t)=\mathbf {B} (t)\times \mathbf {T} (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">N</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {N} (t)=\mathbf {B} (t)\times \mathbf {T} (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2306b8819bedaa724ab90439608a25262933f3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.737ex; height:2.843ex;" alt="{\displaystyle \mathbf {N} (t)=\mathbf {B} (t)\times \mathbf {T} (t)}"></span> o bien <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {N} (t)={\frac {[\mathbf {r} '(t)\times \mathbf {r} ''(t)]\times \mathbf {r} '(t)}{\left\Vert [\mathbf {r} '(t)\times \mathbf {r} ''(t)]\times \mathbf {r} '(t)\right\|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">N</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">[</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mo stretchy="false">[</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {N} (t)={\frac {[\mathbf {r} '(t)\times \mathbf {r} ''(t)]\times \mathbf {r} '(t)}{\left\Vert [\mathbf {r} '(t)\times \mathbf {r} ''(t)]\times \mathbf {r} '(t)\right\|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e71aa3e3a5873f30bd8bac396cd285259bc92042" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:31.734ex; height:6.509ex;" alt="{\displaystyle \mathbf {N} (t)={\frac {[\mathbf {r} &#039;(t)\times \mathbf {r} &#039;&#039;(t)]\times \mathbf {r} &#039;(t)}{\left\Vert [\mathbf {r} &#039;(t)\times \mathbf {r} &#039;&#039;(t)]\times \mathbf {r} &#039;(t)\right\|}}}"></span></dd></dl> <p><br /> Estos tres vectores son unitarios y perpendiculares entre sí, juntos configuran un <a href="/wiki/Marco_m%C3%B3vil" title="Marco móvil">sistema de referencia móvil</a> conocido como <b>Triedro de Frênet-Serret</b> a raíz del estudio de <a href="/wiki/Jean_Frenet" title="Jean Frenet">Jean Frenet</a> y <a href="/wiki/Joseph_Serret" class="mw-redirect" title="Joseph Serret">Joseph Serret</a>. Es interesante que para una <a href="/wiki/Part%C3%ADcula_puntual" class="mw-redirect" title="Partícula puntual">partícula</a> física desplazándose en el espacio, el vector tangente es paralelo a la velocidad, mientras que el vector normal da el cambio dirección por unidad de tiempo de la velocidad o <a href="/wiki/Aceleraci%C3%B3n#Componentes_intrínsecas_de_la_aceleración:_aceleraciones_tangencial_y_normal" title="Aceleración">aceleración normal</a>. </p><p>Si la curva está parametrizada según la longitud de arco, como se explicó en la sección anterior las fórmulas anteriores pueden simplificarse notablemente: </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {T} (s)={\frac {d{\tilde {\mathbf {r} }}(s)}{ds}}\qquad \mathbf {N} (s)={\frac {1}{\chi }}{\frac {d\mathbf {T} (s)}{ds}}\qquad \mathbf {B} (s)={\frac {1}{\tau }}\left({\frac {d\mathbf {N} (s)}{ds}}+\chi \mathbf {T} \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">N</mi> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03C7;<!-- χ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03C4;<!-- τ --></mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">N</mi> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {T} (s)={\frac {d{\tilde {\mathbf {r} }}(s)}{ds}}\qquad \mathbf {N} (s)={\frac {1}{\chi }}{\frac {d\mathbf {T} (s)}{ds}}\qquad \mathbf {B} (s)={\frac {1}{\tau }}\left({\frac {d\mathbf {N} (s)}{ds}}+\chi \mathbf {T} \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07b9c8e8d9d8b3a776b6d94e87cbfdf2b5f8aa66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:67.398ex; height:6.343ex;" alt="{\displaystyle \mathbf {T} (s)={\frac {d{\tilde {\mathbf {r} }}(s)}{ds}}\qquad \mathbf {N} (s)={\frac {1}{\chi }}{\frac {d\mathbf {T} (s)}{ds}}\qquad \mathbf {B} (s)={\frac {1}{\tau }}\left({\frac {d\mathbf {N} (s)}{ds}}+\chi \mathbf {T} \right)}"></span> </p> </blockquote> <p>Donde los parámetros χ y τ anteriores designan respectivamente a la curvatura y a la torsión. </p> <div class="mw-heading mw-heading2"><h2 id="Curvatura_y_torsión"><span id="Curvatura_y_torsi.C3.B3n"></span>Curvatura y torsión</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=edit&amp;section=3" title="Editar sección: Curvatura y torsión"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>La <b>curvatura</b> es una medida del cambio de dirección del vector tangente a una curva, cuanto más rápido cambia este a medida que nos desplazamos a lo largo de la curva, se dice que es más grande la curvatura. Para una curva parametrizada cualquiera la curvatura es igual a: <br /> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi (t)={\frac {\left\Vert \mathbf {r} '(t)\times \mathbf {r} ''(t)\right\|}{\left\Vert \mathbf {r} '(t)\right\|^{3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi (t)={\frac {\left\Vert \mathbf {r} '(t)\times \mathbf {r} ''(t)\right\|}{\left\Vert \mathbf {r} '(t)\right\|^{3}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd91f43c0cbf78bbb5a4ff1859f02357a2218056" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.528ex; height:6.843ex;" alt="{\displaystyle \chi (t)={\frac {\left\Vert \mathbf {r} &#039;(t)\times \mathbf {r} &#039;&#039;(t)\right\|}{\left\Vert \mathbf {r} &#039;(t)\right\|^{3}}}}"></span></dd></dl> <p><br /> Si la curva está parametrizada por el parámetro de longitud de arco, la anterior ecuación se reduce simplemente a: <br /> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi (s)=\left\Vert \mathbf {\tilde {r}} ''(s)\right\|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold" stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi (s)=\left\Vert \mathbf {\tilde {r}} ''(s)\right\|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0333efe46d4f6220e06e2b4b71fd4b4fac8979a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.152ex; height:3.176ex;" alt="{\displaystyle \chi (s)=\left\Vert \mathbf {\tilde {r}} &#039;&#039;(s)\right\|}"></span></dd></dl> <p><br /> Además de la curvatura se suele definir el llamado <a href="/wiki/Radio_de_curvatura" title="Radio de curvatura">radio de curvatura</a>, como el inverso de la curvatura. </p><p>La <b>torsión</b> es una medida del cambio de dirección del vector binormal: cuanto más rápido cambia, más rápido gira el vector binormal alrededor del vector tangente y más retorcida aparece la curva. Por lo tanto, para una curva totalmente contenida en el plano la torsión es nula ya que el vector binormal es constantemente perpendicular al plano que la contiene. Para el caso general la torsión viene dada por: <br /> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau (t)=-{\frac {\left(\mathbf {r} '(t)\times \mathbf {r} ''(t)\right)\cdot \mathbf {r} '''(t)}{\left\Vert \mathbf {r} '(t)\times \mathbf {r} ''(t)\right\|^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2034;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau (t)=-{\frac {\left(\mathbf {r} '(t)\times \mathbf {r} ''(t)\right)\cdot \mathbf {r} '''(t)}{\left\Vert \mathbf {r} '(t)\times \mathbf {r} ''(t)\right\|^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81525df275cb710b56a6444ea3c8c88c1a64821c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:30.587ex; height:7.009ex;" alt="{\displaystyle \tau (t)=-{\frac {\left(\mathbf {r} &#039;(t)\times \mathbf {r} &#039;&#039;(t)\right)\cdot \mathbf {r} &#039;&#039;&#039;(t)}{\left\Vert \mathbf {r} &#039;(t)\times \mathbf {r} &#039;&#039;(t)\right\|^{2}}}}"></span></dd></dl> <p><br /> Si la curva está parametrizada por el parámetro de longitud de arco, la anterior ecuación se reduce a: <br /> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau (s)={\frac {\left(\mathbf {r} '(t)\times \mathbf {r} ''(t)\right)\cdot \mathbf {r} '''(t)}{\left\Vert \mathbf {\tilde {r}} ''(s)\right\|^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2034;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold" stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau (s)={\frac {\left(\mathbf {r} '(t)\times \mathbf {r} ''(t)\right)\cdot \mathbf {r} '''(t)}{\left\Vert \mathbf {\tilde {r}} ''(s)\right\|^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c56f0e9d4b34cacb7c573f69bd28bc20055c3ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:29.03ex; height:7.343ex;" alt="{\displaystyle \tau (s)={\frac {\left(\mathbf {r} &#039;(t)\times \mathbf {r} &#039;&#039;(t)\right)\cdot \mathbf {r} &#039;&#039;&#039;(t)}{\left\Vert \mathbf {\tilde {r}} &#039;&#039;(s)\right\|^{2}}}}"></span></dd></dl> <p><br /> </p> <div class="mw-heading mw-heading2"><h2 id="Plano_osculador">Plano osculador</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=edit&amp;section=4" title="Editar sección: Plano osculador"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En cada punto de una curva, el plano osculador es el plano que contiene a su vector tangente y al vector normal a la curva. Para una partícula desplazándose en el espacio tridimensional, el plano osculador coincide con el plano que en cada instante contiene a la aceleración y la velocidad. La ecuación de este plano viene dada por:<sup id="cite_ref-1" class="reference separada"><a href="#cite_note-1"><span class="corchete-llamada">[</span>1<span class="corchete-llamada">]</span></a></sup>&#8203; </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det {\begin{vmatrix}x-x_{0}&amp;y-y_{0}&amp;z-z_{0}\\x'_{0}&amp;y'_{0}&amp;z'_{0}\\x''_{0}&amp;y''_{0}&amp;z''_{0}\end{vmatrix}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> <mtd> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> <mtd> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mo>&#x2032;</mo> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mo>&#x2032;</mo> </msubsup> </mtd> <mtd> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mo>&#x2032;</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mo>&#x2033;</mo> </msubsup> </mtd> <mtd> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mo>&#x2033;</mo> </msubsup> </mtd> <mtd> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mo>&#x2033;</mo> </msubsup> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det {\begin{vmatrix}x-x_{0}&amp;y-y_{0}&amp;z-z_{0}\\x'_{0}&amp;y'_{0}&amp;z'_{0}\\x''_{0}&amp;y''_{0}&amp;z''_{0}\end{vmatrix}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc0be438e3d1626eb7f8d69e90ce791c501671a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.126ex; margin-bottom: -0.212ex; width:33.375ex; height:9.843ex;" alt="{\displaystyle \det {\begin{vmatrix}x-x_{0}&amp;y-y_{0}&amp;z-z_{0}\\x&#039;_{0}&amp;y&#039;_{0}&amp;z&#039;_{0}\\x&#039;&#039;_{0}&amp;y&#039;&#039;_{0}&amp;z&#039;&#039;_{0}\end{vmatrix}}=0}"></span> </p> </blockquote> <p>Donde: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},y_{0},z_{0})\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0},y_{0},z_{0})\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af41d2d30beaec96424b7b91092c41abbf3546f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.977ex; height:2.843ex;" alt="{\displaystyle (x_{0},y_{0},z_{0})\,}"></span>, el punto de la trayectoria.<br /></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x'_{0},y'_{0},z'_{0})\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x'_{0},y'_{0},z'_{0})\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61da0af689f44a4c28b5d0b1332873562da50ced" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.977ex; height:3.009ex;" alt="{\displaystyle (x&#039;_{0},y&#039;_{0},z&#039;_{0})\,}"></span>, el vector velocidad en el punto considerado.<br /></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y,z)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y,z)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c95076d93d11e04e9605954265296e6c36fc88c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.838ex; height:2.843ex;" alt="{\displaystyle (x,y,z)\,}"></span>, las coordenadas de un punto genérico del plano osculador.<br /></dd></dl> <p>Si se tiene una partícula en la posición <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b677d5c2321ab34fec1ddcedf73a23deaf7accb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.47ex; height:2.343ex;" alt="{\displaystyle \mathbf {x} _{p}}"></span>, moviéndose con velocidad <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span> y sometida a una aceleración <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \neq \mathbf {0} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x2260;<!-- ≠ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \neq \mathbf {0} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fbd86f21598eb5c1c24152737ed1c22835368e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.735ex; height:2.676ex;" alt="{\displaystyle \mathbf {a} \neq \mathbf {0} }"></span> el plano osculador viene dado por el conjunto de puntos: </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {v} \times \mathbf {a} )\cdot (\mathbf {x} -\mathbf {x} _{p})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {v} \times \mathbf {a} )\cdot (\mathbf {x} -\mathbf {x} _{p})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79794b060a6dbeaded87c98fe97092940f06cfbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.831ex; height:3.009ex;" alt="{\displaystyle (\mathbf {v} \times \mathbf {a} )\cdot (\mathbf {x} -\mathbf {x} _{p})=0}"></span> </p> </blockquote> <p>Obviamente si la partícula tiene un <a href="/wiki/Movimiento_rectil%C3%ADneo" title="Movimiento rectilíneo">movimiento rectilíneo</a> el plano osculador no está definido. </p> <div class="mw-heading mw-heading2"><h2 id="Centro_de_curvatura">Centro de curvatura</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=edit&amp;section=5" title="Editar sección: Centro de curvatura"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Archivo:Osculating_circle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/84/Osculating_circle.svg/280px-Osculating_circle.svg.png" decoding="async" width="280" height="210" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/84/Osculating_circle.svg/420px-Osculating_circle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/84/Osculating_circle.svg/560px-Osculating_circle.svg.png 2x" data-file-width="480" data-file-height="360" /></a><figcaption>Ilustración de la circunferencia osculatriz en el punto <i>P</i> de la curva <i>C</i>, en la que se muestra también el radio y centro de curvatura.</figcaption></figure> <p>En un entorno de un punto de una curva puede ser aproximado por un círculo, llamado <a href="/wiki/C%C3%ADrculo_osculador" class="mw-redirect" title="Círculo osculador">círculo osculador</a> por estar contenido en el plano osculador. El radio del círculo osculador coincide con el radio de curvatura (inverso de la curvatura). El centro de dicho círculo puede buscarse como: </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} _{c}(t)=\mathbf {r} (t)-{\frac {\|\mathbf {r} '(t)\|^{2}(\mathbf {r} '(t)\cdot \mathbf {r} ''(t))}{\|\mathbf {r} '(t)\times \mathbf {r} ''(t)\|^{2}}}\mathbf {r} '(t)+{\frac {\|\mathbf {r} '(t)\|^{4}}{\|\mathbf {r} '(t)\times \mathbf {r} ''(t)\|^{2}}}\mathbf {r} ''(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} _{c}(t)=\mathbf {r} (t)-{\frac {\|\mathbf {r} '(t)\|^{2}(\mathbf {r} '(t)\cdot \mathbf {r} ''(t))}{\|\mathbf {r} '(t)\times \mathbf {r} ''(t)\|^{2}}}\mathbf {r} '(t)+{\frac {\|\mathbf {r} '(t)\|^{4}}{\|\mathbf {r} '(t)\times \mathbf {r} ''(t)\|^{2}}}\mathbf {r} ''(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f811dbb33e232e371a3b1f76edcf95226219932a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:64.392ex; height:6.676ex;" alt="{\displaystyle \mathbf {r} _{c}(t)=\mathbf {r} (t)-{\frac {\|\mathbf {r} &#039;(t)\|^{2}(\mathbf {r} &#039;(t)\cdot \mathbf {r} &#039;&#039;(t))}{\|\mathbf {r} &#039;(t)\times \mathbf {r} &#039;&#039;(t)\|^{2}}}\mathbf {r} &#039;(t)+{\frac {\|\mathbf {r} &#039;(t)\|^{4}}{\|\mathbf {r} &#039;(t)\times \mathbf {r} &#039;&#039;(t)\|^{2}}}\mathbf {r} &#039;&#039;(t)}"></span> </p> </blockquote> <p>O más sencillamente en función del parámetro de arco como: </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\tilde {r}} _{c}(s)=\mathbf {\tilde {r}} (s)+{\frac {\mathbf {\tilde {r}} ''(s)}{\|\mathbf {\tilde {r}} ''(s)\|^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold" stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold" stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold" stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold" stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\tilde {r}} _{c}(s)=\mathbf {\tilde {r}} (s)+{\frac {\mathbf {\tilde {r}} ''(s)}{\|\mathbf {\tilde {r}} ''(s)\|^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0deb25c72a86547609fa6cbd1fbf4e2aa75460f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:24.945ex; height:6.843ex;" alt="{\displaystyle \mathbf {\tilde {r}} _{c}(s)=\mathbf {\tilde {r}} (s)+{\frac {\mathbf {\tilde {r}} &#039;&#039;(s)}{\|\mathbf {\tilde {r}} &#039;&#039;(s)\|^{2}}}}"></span> </p> </blockquote> <div class="mw-heading mw-heading2"><h2 id="Teorema_fundamental_de_curvas">Teorema fundamental de curvas</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=edit&amp;section=6" title="Editar sección: Teorema fundamental de curvas"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>El teorema fundamental de curvas que enunciamos a continuación nos dice que conocido un punto de una curva y su vector tangente, la curva queda totalmente especificada si se conoce la función de curvatura y de torsión. Su enunciado es el siguiente: </p><p>Sea <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J\subset \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo>&#x2282;<!-- ⊂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J\subset \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02638c7f85d66abbf916acb4ec91c26122d81438" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.248ex; height:2.176ex;" alt="{\displaystyle J\subset \mathbb {R} }"></span> un intervalo. Dadas dos funciones continuas χ y τ de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74cf25dd030038def6817d413bfcf9250294f7c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.858ex; height:2.176ex;" alt="{\displaystyle J\,}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> y dado un sistema de referencia fijo (<a href="/wiki/Ortonormal" title="Ortonormal">ortonormal</a>) de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span>, {<i>x</i><sub>0</sub>; <b>e</b><sub>1</sub>, <b>e</b><sub>2</sub>, <b>e</b><sub>3</sub>}, entonces existe una única curva parametrizada de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} :J\to \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>:</mo> <mi>J</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} :J\to \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/875d269a30749463adf7810684c12a40584ea76b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.166ex; height:2.676ex;" alt="{\displaystyle \mathbf {x} :J\to \mathbb {R} ^{3}}"></span> y tales que: </p> <ol><li>La curva pasa por <i>x</i><sub>0</sub>, y el vector tangente <b>T</b> a la curva en ese punto coincide con <b>e</b><sub>1</sub>.</li> <li>A lo largo de la curva pueden definirse tres campos vectoriales <b>T</b>(s), <b>N</b>(s) y <b>B</b>(s) llamados respectivamente vector tangente, normal y binormal, perpendiculares entre sí y tales que en el punto inicial coinciden con <b>e</b><sub>1</sub>, <b>e</b><sub>2</sub>, <b>e</b><sub>3</sub> (es decir, <b>T</b>(0) = <b>e</b><sub>1</sub>, <b>N</b>(0) = <b>e</b><sub>2</sub>, <b>B</b>(0) = <b>e</b><sub>3</sub>).</li> <li>Se cumplen las siguientes ecuaciones:</li></ol> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}{\cfrac {d\mathbf {x} (s)}{ds}}=\mathbf {T} (s)&amp;{\cfrac {d\mathbf {T} (s)}{ds}}=\chi (s)\mathbf {N} (s)\\{\cfrac {d\mathbf {N} (s)}{ds}}=-\chi (s)\mathbf {T} (s)+\tau (s)\mathbf {B} (s)&amp;{\cfrac {d\mathbf {B} (s)}{ds}}=-\tau (s)\mathbf {N} (s)\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>s</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>s</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">N</mi> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">N</mi> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>s</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>s</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">N</mi> </mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}{\cfrac {d\mathbf {x} (s)}{ds}}=\mathbf {T} (s)&amp;{\cfrac {d\mathbf {T} (s)}{ds}}=\chi (s)\mathbf {N} (s)\\{\cfrac {d\mathbf {N} (s)}{ds}}=-\chi (s)\mathbf {T} (s)+\tau (s)\mathbf {B} (s)&amp;{\cfrac {d\mathbf {B} (s)}{ds}}=-\tau (s)\mathbf {N} (s)\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd52600502a970cd86b1cc92e14fa8b691afd552" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.171ex; width:58.799ex; height:13.509ex;" alt="{\displaystyle {\begin{cases}{\cfrac {d\mathbf {x} (s)}{ds}}=\mathbf {T} (s)&amp;{\cfrac {d\mathbf {T} (s)}{ds}}=\chi (s)\mathbf {N} (s)\\{\cfrac {d\mathbf {N} (s)}{ds}}=-\chi (s)\mathbf {T} (s)+\tau (s)\mathbf {B} (s)&amp;{\cfrac {d\mathbf {B} (s)}{ds}}=-\tau (s)\mathbf {N} (s)\end{cases}}}"></span> </p> </blockquote> <p>O bien escrito matricialmente </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}{\dot {T}}\\{\dot {N}}\\{\dot {B}}\\\end{bmatrix}}={\begin{bmatrix}0&amp;\chi &amp;0\\-\chi &amp;0&amp;\tau \\0&amp;-\tau &amp;0\\\end{bmatrix}}{\begin{bmatrix}T\\N\\B\\\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>T</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>N</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&#x03C7;<!-- χ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C7;<!-- χ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>&#x03C4;<!-- τ --></mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>T</mi> </mtd> </mtr> <mtr> <mtd> <mi>N</mi> </mtd> </mtr> <mtr> <mtd> <mi>B</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}{\dot {T}}\\{\dot {N}}\\{\dot {B}}\\\end{bmatrix}}={\begin{bmatrix}0&amp;\chi &amp;0\\-\chi &amp;0&amp;\tau \\0&amp;-\tau &amp;0\\\end{bmatrix}}{\begin{bmatrix}T\\N\\B\\\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c14fcdece989fb87e87e251976106f34ea56e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:30.903ex; height:10.176ex;" alt="{\displaystyle {\begin{bmatrix}{\dot {T}}\\{\dot {N}}\\{\dot {B}}\\\end{bmatrix}}={\begin{bmatrix}0&amp;\chi &amp;0\\-\chi &amp;0&amp;\tau \\0&amp;-\tau &amp;0\\\end{bmatrix}}{\begin{bmatrix}T\\N\\B\\\end{bmatrix}}}"></span> </p> </blockquote> <p>donde el punto es la derivada con respecto al arcoparámetro s. </p><p>Esto tiene implicaciones físicas interesantes, por ejemplo, la trayectoria de una partícula queda especificada si se conocen la posición inicial, la velocidad inicial y la variación en el tiempo de las derivadas segundas (que están relacionadas con la curvatura y la torsión). Es por eso por lo que las <a href="/wiki/Leyes_de_Newton" title="Leyes de Newton">leyes de Newton</a> o las <a href="/wiki/Ecuaciones_de_Euler-Lagrange" title="Ecuaciones de Euler-Lagrange">ecuaciones de Euler-Lagrange</a> se expresan en términos de derivadas de segundo orden (que es necesario complementar con la posición y velocidades iniciales). </p> <div class="mw-heading mw-heading2"><h2 id="Véase_también"><span id="V.C3.A9ase_tambi.C3.A9n"></span>Véase también</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=edit&amp;section=7" title="Editar sección: Véase también"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Geometr%C3%ADa_diferencial_de_superficies" title="Geometría diferencial de superficies">Geometría diferencial de superficies</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Referencias">Referencias</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=edit&amp;section=8" title="Editar sección: Referencias"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="listaref" style="list-style-type: decimal;"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text">Spiegel &amp; Abellanas, p. 120</span> </li> </ol></div> <div class="mw-heading mw-heading3"><h3 id="Bibliografía"><span id="Bibliograf.C3.ADa"></span>Bibliografía</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=edit&amp;section=9" title="Editar sección: Bibliografía"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Girbau, J.: "<i>Geometria diferencial i relativitat</i>", Ed. <a href="/wiki/Universidad_Aut%C3%B3noma_de_Barcelona" title="Universidad Autónoma de Barcelona">Universidad Autónoma de Barcelona</a>, 1993. <a href="/wiki/Especial:FuentesDeLibros/847929776X" class="internal mw-magiclink-isbn">ISBN 84-7929-776-X</a>.</li> <li>Spiegel, M. &amp; Abellanas, L.: "<i>Fórmulas y tablas de matemática aplicada</i>", Ed. McGraw-Hill, 1988. <a href="/wiki/Especial:FuentesDeLibros/8476151977" class="internal mw-magiclink-isbn">ISBN 84-7615-197-7</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Enlaces_externos">Enlaces externos</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;action=edit&amp;section=10" title="Editar sección: Enlaces externos"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span typeof="mw:File"><a href="/wiki/Archivo:Nuvola_apps_edu_mathematics-p.svg" class="mw-file-description" title="Ver el portal sobre Matemática"><img alt="Ver el portal sobre Matemática" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/20px-Nuvola_apps_edu_mathematics-p.svg.png" decoding="async" width="20" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/30px-Nuvola_apps_edu_mathematics-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/40px-Nuvola_apps_edu_mathematics-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> <a href="/wiki/Portal:Matem%C3%A1tica" title="Portal:Matemática">Portal:Matemática</a>. Contenido relacionado con <b><a href="/wiki/Matem%C3%A1tica" class="mw-redirect" title="Matemática">Matemática</a></b>.</li></ul> <style data-mw-deduplicate="TemplateStyles:r161257576">.mw-parser-output .mw-authority-control{margin-top:1.5em}.mw-parser-output .mw-authority-control .navbox table{margin:0}.mw-parser-output .mw-authority-control .navbox hr:last-child{display:none}.mw-parser-output .mw-authority-control .navbox+.mw-mf-linked-projects{display:none}.mw-parser-output .mw-authority-control .mw-mf-linked-projects{display:flex;padding:0.5em;border:1px solid var(--border-color-base,#a2a9b1);background-color:var(--background-color-neutral,#eaecf0);color:var(--color-base,#202122)}.mw-parser-output .mw-authority-control .mw-mf-linked-projects ul li{margin-bottom:0}.mw-parser-output .mw-authority-control .navbox{border:1px solid var(--border-color-base,#a2a9b1);background-color:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .mw-authority-control .navbox-list{border-color:#f8f9fa}.mw-parser-output .mw-authority-control .navbox th{background-color:#eeeeff}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .mw-mf-linked-projects{border:1px solid var(--border-color-base,#72777d);background-color:var(--background-color-neutral,#27292d);color:var(--color-base,#eaecf0)}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .navbox{border:1px solid var(--border-color-base,#72777d)!important;background-color:var(--background-color-neutral-subtle,#202122)!important}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .navbox-list{border-color:#202122!important}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .navbox th{background-color:#27292d!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .mw-mf-linked-projects{border:1px solid var(--border-color-base,#72777d)!important;background-color:var(--background-color-neutral,#27292d)!important;color:var(--color-base,#eaecf0)!important}html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .navbox{border:1px solid var(--border-color-base,#72777d)!important;background-color:var(--background-color-neutral-subtle,#202122)!important}html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .navbox-list{border-color:#202122!important}html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .navbox th{background-color:#27292d!important}}</style><div class="mw-authority-control"><div role="navigation" class="navbox" aria-label="Navbox" style="width: inherit;padding:3px"><table class="hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width: 12%; text-align:center;"><a href="/wiki/Control_de_autoridades" title="Control de autoridades">Control de autoridades</a></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><b>Proyectos Wikimedia</b></li> <li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikidata" title="Wikidata"><img alt="Wd" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/20px-Wikidata-logo.svg.png" decoding="async" width="20" height="11" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/30px-Wikidata-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/40px-Wikidata-logo.svg.png 2x" data-file-width="1050" data-file-height="590" /></a></span> Datos:</span> <span class="uid"><a href="https://www.wikidata.org/wiki/Q2254404" class="extiw" title="wikidata:Q2254404">Q2254404</a></span></li></ul> </div></td></tr></tbody></table></div><div class="mw-mf-linked-projects hlist"> <ul><li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikidata" title="Wikidata"><img alt="Wd" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/20px-Wikidata-logo.svg.png" decoding="async" width="20" height="11" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/30px-Wikidata-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/40px-Wikidata-logo.svg.png 2x" data-file-width="1050" data-file-height="590" /></a></span> Datos:</span> <span class="uid"><a href="https://www.wikidata.org/wiki/Q2254404" class="extiw" title="wikidata:Q2254404">Q2254404</a></span></li></ul> </div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐7c479b968‐pms52 Cached time: 20241115191057 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.143 seconds Real time usage: 0.287 seconds Preprocessor visited node count: 1261/1000000 Post‐expand include size: 5454/2097152 bytes Template argument size: 739/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 1/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 4190/5000000 bytes Lua time usage: 0.059/10.000 seconds Lua memory usage: 1021407/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 144.932 1 -total 68.64% 99.484 1 Plantilla:Control_de_autoridades 14.79% 21.437 7 Plantilla:Ecuación 12.20% 17.684 7 Plantilla:Trim 7.64% 11.073 1 Plantilla:Portal 5.51% 7.987 2 Plantilla:Iconos 2.68% 3.883 1 Plantilla:AP 2.41% 3.495 1 Plantilla:Listaref 1.65% 2.387 1 Plantilla:VT --> <!-- Saved in parser cache with key eswiki:pcache:idhash:495635-0!canonical and timestamp 20241115191057 and revision id 153744697. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Obtenido de «<a dir="ltr" href="https://es.wikipedia.org/w/index.php?title=Geometría_diferencial_de_curvas&amp;oldid=153744697">https://es.wikipedia.org/w/index.php?title=Geometría_diferencial_de_curvas&amp;oldid=153744697</a>»</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Especial:Categor%C3%ADas" title="Especial:Categorías">Categoría</a>: <ul><li><a href="/wiki/Categor%C3%ADa:Geometr%C3%ADa_diferencial" title="Categoría:Geometría diferencial">Geometría diferencial</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categoría oculta: <ul><li><a href="/wiki/Categor%C3%ADa:Wikipedia:P%C3%A1ginas_con_enlaces_m%C3%A1gicos_de_ISBN" title="Categoría:Wikipedia:Páginas con enlaces mágicos de ISBN">Wikipedia:Páginas con enlaces mágicos de ISBN</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Esta página se editó por última vez el 14 sep 2023 a las 19:57.</li> <li id="footer-info-copyright">El texto está disponible bajo la <a href="/wiki/Wikipedia:Texto_de_la_Licencia_Creative_Commons_Atribuci%C3%B3n-CompartirIgual_4.0_Internacional" title="Wikipedia:Texto de la Licencia Creative Commons Atribución-CompartirIgual 4.0 Internacional">Licencia Creative Commons Atribución-CompartirIgual 4.0</a>; pueden aplicarse cláusulas adicionales. Al usar este sitio aceptas nuestros <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/es">términos de uso</a> y nuestra <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Privacy_policy/es">política de privacidad</a>.<br />Wikipedia&#174; es una marca registrada de la <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/es/">Fundación Wikimedia</a>, una organización sin ánimo de lucro.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/es">Política de privacidad</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Acerca_de">Acerca de Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Limitaci%C3%B3n_general_de_responsabilidad">Limitación de responsabilidad</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Código de conducta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Desarrolladores</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/es.wikipedia.org">Estadísticas</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement/es">Declaración de cookies</a></li> <li id="footer-places-mobileview"><a href="//es.m.wikipedia.org/w/index.php?title=Geometr%C3%ADa_diferencial_de_curvas&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versión para móviles</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-4dtrt","wgBackendResponseTime":166,"wgPageParseReport":{"limitreport":{"cputime":"0.143","walltime":"0.287","ppvisitednodes":{"value":1261,"limit":1000000},"postexpandincludesize":{"value":5454,"limit":2097152},"templateargumentsize":{"value":739,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":4190,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 144.932 1 -total"," 68.64% 99.484 1 Plantilla:Control_de_autoridades"," 14.79% 21.437 7 Plantilla:Ecuación"," 12.20% 17.684 7 Plantilla:Trim"," 7.64% 11.073 1 Plantilla:Portal"," 5.51% 7.987 2 Plantilla:Iconos"," 2.68% 3.883 1 Plantilla:AP"," 2.41% 3.495 1 Plantilla:Listaref"," 1.65% 2.387 1 Plantilla:VT"]},"scribunto":{"limitreport-timeusage":{"value":"0.059","limit":"10.000"},"limitreport-memusage":{"value":1021407,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-7c479b968-pms52","timestamp":"20241115191057","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Geometr\u00eda diferencial de curvas","url":"https:\/\/es.wikipedia.org\/wiki\/Geometr%C3%ADa_diferencial_de_curvas","sameAs":"http:\/\/www.wikidata.org\/entity\/Q2254404","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q2254404","author":{"@type":"Organization","name":"Colaboradores de los proyectos Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-08-18T21:58:20Z","dateModified":"2023-09-14T19:57:08Z","headline":"An\u00e1lisis matem\u00e1tico que usa \u00e1lgebra y c\u00e1lculo para describir puntos de curvas"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10