CINXE.COM

Levels of Representation in a Deep Learning Model of Categorization | bioRxiv

<!DOCTYPE html> <html lang="en" dir="ltr" xmlns="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <head prefix="og: http://ogp.me/ns# article: http://ogp.me/ns/article# book: http://ogp.me/ns/book#" > <!--[if IE]><![endif]--> <link rel="dns-prefetch" href="//d33xdlntwy0kbs.cloudfront.net" /> <link rel="dns-prefetch" href="//www.google.com" /> <link rel="dns-prefetch" href="//scholar.google.com" /> <link rel="dns-prefetch" href="//www.googletagmanager.com" /> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="shortcut icon" href="https://www.biorxiv.org/sites/default/files/images/favicon.ico" type="image/vnd.microsoft.icon" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link rel="alternate" type="application/pdf" title="Full Text (PDF)" href="/content/10.1101/626374v2.full.pdf" /> <link rel="alternate" type="text/plain" title="Full Text (Plain)" href="/content/10.1101/626374v2.full.txt" /> <meta name="article_thumbnail" content="https://www.biorxiv.org/content/biorxiv/early/2019/05/22/626374/embed/graphic-2.gif" /> <meta name="type" content="article" /> <meta name="category" content="article" /> <meta name="HW.identifier" content="/biorxiv/early/2019/05/22/626374.atom" /> <meta name="HW.pisa" content="biorxiv;626374v2" /> <meta name="DC.Format" content="text/html" /> <meta name="DC.Language" content="en" /> <meta name="DC.Title" content="Levels of Representation in a Deep Learning Model of Categorization" /> <meta name="DC.Identifier" content="10.1101/626374" /> <meta name="DC.Date" content="2019-05-22" /> <meta name="DC.Publisher" content="Cold Spring Harbor Laboratory" /> <meta name="DC.Rights" content="© 2019, Posted by Cold Spring Harbor Laboratory. This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0/" /> <meta name="DC.AccessRights" content="restricted" /> <meta name="DC.Description" content="Deep convolutional neural networks (DCNNs) rival humans in object recognition. The layers (or levels of representation) in DCNNs have been successfully aligned with processing stages along the ventral stream for visual processing. Here, we propose a model of concept learning that uses visual representations from these networks to build memory representations of novel categories, which may rely on the medial temporal lobe (MTL) and medial prefrontal cortex (mPFC). Our approach opens up two possibilities: a ) formal investigations can involve photographic stimuli as opposed to stimuli handcrafted and coded by the experimenter; b ) model comparison can determine which level of representation within a DCNN a learner is using during categorization decisions. Pursuing the latter point, DCNNs suggest that the shape bias in children relies on representations at more advanced network layers whereas a learner that relied on lower network layers would display a color bias. These results confirm the role of natural statistics in the shape bias (i.e., shape is predictive of category membership) while highlighting that the type of statistics matter, i.e., those from lower or higher levels of representation. We use the same approach to provide evidence that pigeons performing seemingly sophisticated categorization of complex imagery may in fact be relying on representations that are very low-level (i.e., retinotopic). Although complex features, such as shape, relatively predominate at more advanced network layers, even simple features, such as spatial frequency and orientation, are better represented at the more advanced layers, contrary to a standard hierarchical view." /> <meta name="DC.Contributor" content="Olivia Guest" /> <meta name="DC.Contributor" content="Bradley C. Love" /> <meta name="article:published_time" content="2019-05-22" /> <meta name="article:section" content="New Results" /> <meta name="citation_title" content="Levels of Representation in a Deep Learning Model of Categorization" /> <meta name="citation_abstract" lang="en" content="&lt;h3&gt;Abstract&lt;/h3&gt; &lt;p&gt;Deep convolutional neural networks (DCNNs) rival humans in object recognition. The layers (or levels of representation) in DCNNs have been successfully aligned with processing stages along the ventral stream for visual processing. Here, we propose a model of concept learning that uses visual representations from these networks to build memory representations of novel categories, which may rely on the medial temporal lobe (MTL) and medial prefrontal cortex (mPFC). Our approach opens up two possibilities: &lt;i&gt;a&lt;/i&gt;) formal investigations can involve photographic stimuli as opposed to stimuli handcrafted and coded by the experimenter; &lt;i&gt;b&lt;/i&gt;) model comparison can determine which level of representation within a DCNN a learner is using during categorization decisions. Pursuing the latter point, DCNNs suggest that the shape bias in children relies on representations at more advanced network layers whereas a learner that relied on lower network layers would display a color bias. These results confirm the role of natural statistics in the shape bias (i.e., shape is predictive of category membership) while highlighting that the type of statistics matter, i.e., those from lower or higher levels of representation. We use the same approach to provide evidence that pigeons performing seemingly sophisticated categorization of complex imagery may in fact be relying on representations that are very low-level (i.e., retinotopic). Although complex features, such as shape, relatively predominate at more advanced network layers, even simple features, such as spatial frequency and orientation, are better represented at the more advanced layers, contrary to a standard hierarchical view.&lt;/p&gt;" /> <meta name="citation_journal_title" content="bioRxiv" /> <meta name="citation_publisher" content="Cold Spring Harbor Laboratory" /> <meta name="citation_publication_date" content="2019/01/01" /> <meta name="citation_mjid" content="biorxiv;626374v2" /> <meta name="citation_id" content="626374v2" /> <meta name="citation_public_url" content="https://www.biorxiv.org/content/10.1101/626374v2" /> <meta name="citation_abstract_html_url" content="https://www.biorxiv.org/content/10.1101/626374v2.abstract" /> <meta name="citation_full_html_url" content="https://www.biorxiv.org/content/10.1101/626374v2.full" /> <meta name="citation_pdf_url" content="https://www.biorxiv.org/content/biorxiv/early/2019/05/22/626374.full.pdf" /> <meta name="citation_doi" content="10.1101/626374" /> <meta name="citation_num_pages" content="34" /> <meta name="citation_article_type" content="Article" /> <meta name="citation_section" content="New Results" /> <meta name="citation_firstpage" content="626374" /> <meta name="citation_author" content="Olivia Guest" /> <meta name="citation_author_institution" content="Department of Experimental Psychology, University College London" /> <meta name="citation_author" content="Bradley C. Love" /> <meta name="citation_author_institution" content="Department of Experimental Psychology, University College London, and The Alan Turing Institute" /> <meta name="citation_reference" content="Ahlheim, C., &amp; Love, B. C. (2018). Estimating the functional dimensionality of neural representations. NeuroImage, 179, 51–62." /> <meta name="citation_reference" content="Anderson, J. A. (1972). A simple neural network generating an interactive memory. Mathematical biosciences, 14(3-4), 197–220." /> <meta name="citation_reference" content="citation_title=The adaptive character of thought;citation_year=1990" /> <meta name="citation_reference" content="Bhatt, R., Wasserman, E., Reynolds, W., &amp; Knauss, K. (1988). Conceptual behavior in pigeons: Categorization of both familiar and novel examples from four classes of natural and artificial stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 14(3), 219." /> <meta name="citation_reference" content="Bobadilla-Suarez, S., Ahlheim, C., Mehrotra, A., Panos, A., &amp; Love, B. C. (2019). Measures of neural similarity. BioRxiv, 439893." /> <meta name="citation_reference" content="Bracci, S., &amp; Op de Beeck, H. (2016). Dissociations and Associations between Shape and Category Representations in the Two Visual Pathways. Journal of Neuroscience, 36(2), 432–444. doi: 10.1523/JNEUROSCI.2314-15.2016" /> <meta name="citation_reference" content="Braunlich, K., &amp; Love, B. C. (2018). Occipitotemporal representations reflect individual differences in conceptual knowledge. Journal of Experimental Psychology: General." /> <meta name="citation_reference" content="Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., &amp; Oliva, A. (2016). Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Scientific reports, 6, 27755." /> <meta name="citation_reference" content="Cohen, L. B., &amp; Cashon, C. H. (2003). Infant Perception and Cognition. In Handbook of Psychology. John Wiley &amp; Sons, Inc. (DOI:) doi: 10.1002/0471264385.wei0603/abstract" /> <meta name="citation_reference" content="Cohen, M. A., Alvarez, G. A., Nakayama, K., &amp; Konkle, T. (2016). Visual search for object categories is predicted by the representational architecture of high-level visual cortex. Journal of neurophysiology, 117(1), 388–402." /> <meta name="citation_reference" content="Davis, T., Love, B. C., &amp; Preston, A. R. (2011). Learning the exception to the rule: Model-based fmri reveals specialized representations for surprising category members. Cerebral Cortex, 22(2), 260–273." /> <meta name="citation_reference" content="Davis, T., Love, B. C., &amp; Preston, A. R. (2012). Striatal and hippocampal entropy and recognition signals in category learning: simultaneous processes revealed by model-based fmri. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(4), 821." /> <meta name="citation_reference" content="Dittrich, L., Adam, R., Ünver, E., &amp; Güntürkün, O. (2010). Pigeons identify individual humans but show no sign of recognizing them in photographs. Behavioural Processes, 83(1), 82–89." /> <meta name="citation_reference" content="Folstein, J. R., Palmeri, T. J., Van Gulick, A. E., &amp; Gauthier, I. (2015). Category learning stretches neural representations in visual cortex. Current directions in psychological science, 24(1), 17–23." /> <meta name="citation_reference" content="Fukushima, K., &amp; Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267–285). Springer." /> <meta name="citation_reference" content="Gershkoff-Stowe, L., &amp; Smith, L. B. (2004, July). Shape and the First Hundred Nouns. Child Development, 75(4), 1098–1114. doi: 10.1111/j.1467-8624.2004.00728.x" /> <meta name="citation_reference" content="Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G., Itzchak, Y., &amp; Malach, R. (1999). Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron, 24(1), 187–203." /> <meta name="citation_reference" content="Güçlü, U., &amp; van Gerven, M. A. (2015). Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. Journal of Neuroscience, 35(27), 10005–10014." /> <meta name="citation_reference" content="Guest, O., &amp; Love, B. C. (2017). What the success of brain imaging implies about the neural code. eLife, 6, e21397. doi: 10.7554/eLife.21397" /> <meta name="citation_reference" content="Haushofer, J., Livingstone, M. S., &amp; Kanwisher, N. (2008). Multivariate patterns in object-selective cortex dissociate perceptual and physical shape similarity. PLOS Biology, 6(7), e187." /> <meta name="citation_reference" content="Hong, H., Yamins, D. L. K., Majaj, N. J., &amp; DiCarlo, J. J. (2016). Explicit information for category-orthogonal object properties increases along the ventral stream. Nature neuroscience, 19(4), 613." /> <meta name="citation_reference" content="Hubel, D. H. (1963). The Visual Cortex of the Brain. Scientific, 209(5), 2–10." /> <meta name="citation_reference" content="Hubel, D. H., &amp; Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of physiology, 160(1), 106–154." /> <meta name="citation_reference" content="Khaligh-Razavi, S.-M., &amp; Kriegeskorte, N. (2014). Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation. PLOS Computational Biology, 10(11), 1–29. doi: 10.1371/journal.pcbi.1003915" /> <meta name="citation_reference" content="Krizhevsky, A., Sutskever, I., &amp; Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105)." /> <meta name="citation_reference" content="Kubilius, J., Bracci, S., &amp; Op de Beeck, H. P. (2016). Deep Neural Networks as a Computational Model for Human Shape Sensitivity. PLOS Computational Biology, 12(4), 1–26. doi: 10.1371/journal.pcbi.1004896" /> <meta name="citation_reference" content="Lake, B. M., Zaremba, W., Fergus, R., &amp; Gureckis, T. M. (2015). Deep Neural Networks Predict Category Typicality Ratings for Images. In Proceedings of the Annual Meeting of the Cognitive Science Society (pp. 1–6)." /> <meta name="citation_reference" content="Landau, B., Smith, L. B., &amp; Jones, S. (1992). Syntactic context and the shape bias in children’s and adults’ lexical learning. Journal of Memory and Language, 31(6), 807–825." /> <meta name="citation_reference" content="Landau, B., Smith, L. B., &amp; Jones, S. S. (1988). The importance of shape in early lexical learning. Cognitive Development, 3(3), 299–321. doi: 10.1016/0885-2014(88)90014-7" /> <meta name="citation_reference" content="Lea, S. E., Pothos, E. M., Wills, A. J., Leaver, L. A., Ryan, C. M., &amp; Meier, C. (2018). Multiple feature use in pigeonsâĂŹ category discrimination: The influence of stimulus set structure and the salience of stimulus differences. Journal of Experimental Psychology: Animal Learning and Cognition, 44(2), 114." /> <meta name="citation_reference" content="citation_title=The handbook of brain theory and neural networks.;citation_year=1995" /> <meta name="citation_reference" content="LeCun, Y., Bengio, Y., &amp; Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. doi: 10.1038/nature14539" /> <meta name="citation_reference" content="citation_title=Advances in neural information processing systems (nips 1989);citation_volume=2;citation_year=1990" /> <meta name="citation_reference" content="Lescroart, M. D., &amp; Gallant, J. L. (2019). Human scene-selective areas represent 3D configurations of surfaces. Neuron, 101(1), 178–192.e7. doi: 10.1016/j.neuron.2018.11.004" /> <meta name="citation_reference" content="Levenson, R. M., Krupinski, E. A., Navarro, V. M., &amp; Wasserman, E. A. (2015). Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images. PLOS ONE, 10(11), 1–21. doi: 10.1371/journal.pone.0141357" /> <meta name="citation_reference" content="Lindsay, G. W., &amp; Miller, K. D. (2018). How biological attention mechanisms improve task performance in a large-scale visual system model. eLife, 7, e38105." /> <meta name="citation_reference" content="Linke, M., Bröker, F., Ramscar, M., &amp; Baayen, H. (2017, 08). Are baboons learning “orthographic” representations? probably not. PLOS ONE, 12(8), 1–14. Retrieved from https://doi.org/10.1371/journal.pone.0183876 doi: 10.1371/journal.pone.0183876" /> <meta name="citation_reference" content="Love, B. C. (2016). Cognitive models as bridge between brain and behavior. Trends in Cognitive Sciences, 20(4), 247–248. doi: 10.1016/j.tics.2016.02.006" /> <meta name="citation_reference" content="Love, B. C., Guest, O., Slomka, P., Navarro, V. M., &amp; Wasserman, E. (2017). Deep networks as models of human and animal categorization. In Proceedings of the 39th annual meeting of the cognitve science society." /> <meta name="citation_reference" content="Love, B. C., &amp; Gureckis, T. M. (2007). Models in search of a brain. Cognitive, Affective, &amp; Behavioral Neuroscience, 7(2), 90–108." /> <meta name="citation_reference" content="Love, B. C., Medin, D. L., &amp; Gureckis, T. M. (2004). Sustain: a network model of category learning. Psychological review, 111(2), 309." /> <meta name="citation_reference" content="Lu, Y., Yin, J., Chen, Z., Gong, H., Liu, Y., Qian, L., … Wang, W. (2018). Revealing detail along the visual hierarchy: neural clustering preserves acuity from v1 to v4. Neuron, 98(2), 417–428." /> <meta name="citation_reference" content="Mack, M. L., Love, B. C., &amp; Preston, A. R. (2016). Dynamic updating of hippocampal object representations reflects new conceptual knowledge. Proceedings of the National Academy of Sciences, 113(46), 13203–13208." /> <meta name="citation_reference" content="Mack, M. L., Love, B. C., &amp; Preston, A. R. (2018). Building concepts one episode at a time: The hippocampus and concept formation. Neuroscience Letters, 680, 31–38." /> <meta name="citation_reference" content="Mack, M. L., Preston, A. R., &amp; Love, B. C. (2013). Decoding the brainâĂŹs algorithm for categorization from its neural implementation. Current Biology, 23(20), 2023–2027." /> <meta name="citation_reference" content="Mack, M. L., Preston, A. R., &amp; Love, B. C. (2017). Medial prefrontal cortex compresses concept representations through learning. In 2017 international workshop on pattern recognition in neuroimaging (prni) (pp. 1–4)." /> <meta name="citation_reference" content="Maddox, W. T., &amp; Ashby, F. G. (1993, January 01). Comparing decision bound and exemplar models of categorization. Perception &amp; Psychophysics, 53(1), 49–70. doi: 10.3758/BF03211715" /> <meta name="citation_reference" content="Medin, D. L., &amp; Schaffer, M. M. (1978). Context theory of classification learning. Psychological review, 85(3), 207." /> <meta name="citation_reference" content="MondragÃşn, E., Alonso, E., &amp; Kokkola, N. (2017). Associative learning should go deep. Trends in Cognitive Sciences, 21(11), 822–825. Retrieved from http://www.sciencedirect.com/science/article/pii/S1364661317301250 doi: https://doi.org/10.1016/j.tics.2017.06.001" /> <meta name="citation_reference" content="Mozer, M. C. (1991). The perception of multiple objects: A connectionist approach. The MIT Press." /> <meta name="citation_reference" content="Nosofsky, R. M. (1986). Attention, similarity, and the identification–categorization relationship. Journal of experimental psychology: General, 115(1), 39." /> <meta name="citation_reference" content="Nosofsky, R. M., Sanders, C. A., Gerdom, A., Douglas, B. J., &amp; McDaniel, M. A. (2017). On learning natural-science categories that violate the family-resemblance principle. Psychological science, 28(1), 104–114." /> <meta name="citation_reference" content="Nosofsky, R. M., &amp; Zaki, S. R. (2002). Exemplar and prototype models revisited: Response strategies, selective attention, and stimulus generalization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(5), 924." /> <meta name="citation_reference" content="Op de Beeck, H. P., Torfs, K., &amp; Wagemans, J. (2008). Perceived shape similarity among unfamiliar objects and the organization of the human object vision pathway. Journal of Neuroscience, 28(40), 10111–10123." /> <meta name="citation_reference" content="Quinn, P. C., &amp; Eimas, P. D. (1996, October). Perceptual cues that permit categorical differentiation of animal species by infants. Journal of Experimental Child Psychology, 63(1), 189–211. doi: 10.1006/jecp.1996.0047" /> <meta name="citation_reference" content="Rakison, D. H., &amp; Butterworth, G. E. (1998, November). Infants’ attention to object structure in early categorization. Developmental Psychology, 34(6), 1310–1325." /> <meta name="citation_reference" content="Rice, G. E., Watson, D. M., Hartley, T., &amp; Andrews, T. J. (2014). Low-Level Image Properties of Visual Objects Predict Patterns of Neural Response across Category-Selective Regions of the Ventral Visual Pathway. Journal of Neuroscience, 34(26), 8837–8844. doi: 10.1523/JNEUROSCI.5265-13.2014" /> <meta name="citation_reference" content="Ritter, S., Barrett, D. G. T., Santoro, A., &amp; Botvinick, M. M. (2017). Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study. ArXiv e-prints." /> <meta name="citation_reference" content="Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386." /> <meta name="citation_reference" content="Rumelhart, D. E., Hinton, G. E., &amp; Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533." /> <meta name="citation_reference" content="Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3), 211–252. doi: 10.1007/s11263-015-0816-y" /> <meta name="citation_reference" content="Samuelson, L. K., Horst, J. S., Schutte, A. R., &amp; Dobbertin, B. N. (2008, August). Rigid thinking about deformables: do children sometimes overgeneralize the shape bias? Journal of Child Language, 35(3), 559–589. doi: 10.1017/S0305000908008672" /> <meta name="citation_reference" content="Samuelson, L. K., &amp; Smith, L. B. (1999). Early noun vocabularies: do ontology, category structure and syntax correspond? Cognition, 73(1), 1–33." /> <meta name="citation_reference" content="Samuelson, L. K., &amp; Smith, L. B. (2000). Children’s Attention to Rigid and Deformable Shape in Naming and Non-Naming Tasks. Child Development, 71(6), 1555–1570." /> <meta name="citation_reference" content="Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., … DiCarlo, J. J. (2018). Brain-score: Which artificial neural network for object recognition is most brain-like? bioRxiv. doi: 10.1101/407007" /> <meta name="citation_reference" content="Serre, T., &amp; Poggio, T. (2010). A neuromorphic approach to computer vision. Communications of the ACM, 53(10), 54–61." /> <meta name="citation_reference" content="Smith, J. D., Minda, J. P., &amp; Washburn, D. A. (2004). Category learning in rhesus monkeys: a study of the shepard, hovland, and jenkins (1961) tasks. Journal of Experimental Psychology: General, 133(3), 398." /> <meta name="citation_reference" content="Soto, F. A., &amp; Wasserman, E. A. (2012, Mar 01). Visual object categorization in birds and primates: Integrating behavioral, neurobiological, and computational evidence within a “general process” framework. Cognitive, Affective, &amp; Behavioral Neuroscience, 12(1), 220–240. Retrieved from https://doi.org/10.3758/s13415-011-0070-x doi: 10.3758/s13415-011-0070-x" /> <meta name="citation_reference" content="Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., … Rabinovich, A. (2015, June). Going Deeper With Convolutions. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)." /> <meta name="citation_reference" content="Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., &amp; Wojna, Z. (2015). Rethinking the Inception Architecture for Computer Vision. CoRR, abs/1512.00567." /> <meta name="citation_reference" content="Watson, D. M., Hartley, T., &amp; Andrews, T. J. (2014). Patterns of response to visual scenes are linked to the low-level properties of the image. NeuroImage, 99, 402–410. doi: 10.1016/j.neuroimage.2014.05.045" /> <meta name="citation_reference" content="Yamins, D. L. K., &amp; DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature neuroscience, 19(3), 356–365. doi: 10.1038/nn.4244" /> <meta name="citation_reference" content="Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., &amp; DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1403112111" /> <meta name="twitter:title" content="Levels of Representation in a Deep Learning Model of Categorization" /> <meta name="twitter:site" content="@biorxivpreprint" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:image" content="https://www.biorxiv.org/sites/default/files/images/biorxiv_logo_homepage7-5-small.png" /> <meta name="twitter:description" content="Deep convolutional neural networks (DCNNs) rival humans in object recognition. The layers (or levels of representation) in DCNNs have been successfully aligned with processing stages along the ventral stream for visual processing. Here, we propose a model of concept learning that uses visual representations from these networks to build memory representations of novel categories, which may rely on the medial temporal lobe (MTL) and medial prefrontal cortex (mPFC). Our approach opens up two possibilities: a ) formal investigations can involve photographic stimuli as opposed to stimuli handcrafted and coded by the experimenter; b ) model comparison can determine which level of representation within a DCNN a learner is using during categorization decisions. Pursuing the latter point, DCNNs suggest that the shape bias in children relies on representations at more advanced network layers whereas a learner that relied on lower network layers would display a color bias. These results confirm the role of natural statistics in the shape bias (i.e., shape is predictive of category membership) while highlighting that the type of statistics matter, i.e., those from lower or higher levels of representation. We use the same approach to provide evidence that pigeons performing seemingly sophisticated categorization of complex imagery may in fact be relying on representations that are very low-level (i.e., retinotopic). Although complex features, such as shape, relatively predominate at more advanced network layers, even simple features, such as spatial frequency and orientation, are better represented at the more advanced layers, contrary to a standard hierarchical view." /> <meta name="og-title" property="og:title" content="Levels of Representation in a Deep Learning Model of Categorization" /> <meta name="og-url" property="og:url" content="https://www.biorxiv.org/content/10.1101/626374v2" /> <meta name="og-site-name" property="og:site_name" content="bioRxiv" /> <meta name="og-description" property="og:description" content="Deep convolutional neural networks (DCNNs) rival humans in object recognition. The layers (or levels of representation) in DCNNs have been successfully aligned with processing stages along the ventral stream for visual processing. Here, we propose a model of concept learning that uses visual representations from these networks to build memory representations of novel categories, which may rely on the medial temporal lobe (MTL) and medial prefrontal cortex (mPFC). Our approach opens up two possibilities: a ) formal investigations can involve photographic stimuli as opposed to stimuli handcrafted and coded by the experimenter; b ) model comparison can determine which level of representation within a DCNN a learner is using during categorization decisions. Pursuing the latter point, DCNNs suggest that the shape bias in children relies on representations at more advanced network layers whereas a learner that relied on lower network layers would display a color bias. These results confirm the role of natural statistics in the shape bias (i.e., shape is predictive of category membership) while highlighting that the type of statistics matter, i.e., those from lower or higher levels of representation. We use the same approach to provide evidence that pigeons performing seemingly sophisticated categorization of complex imagery may in fact be relying on representations that are very low-level (i.e., retinotopic). Although complex features, such as shape, relatively predominate at more advanced network layers, even simple features, such as spatial frequency and orientation, are better represented at the more advanced layers, contrary to a standard hierarchical view." /> <meta name="og-type" property="og:type" content="article" /> <meta name="og-image" property="og:image" content="https://www.biorxiv.org/sites/default/files/images/biorxiv_logo_homepage7-5-small.png" /> <meta name="citation_date" content="2019-05-22" /> <link rel="alternate" type="application/vnd.ms-powerpoint" title="Powerpoint" href="/content/10.1101/626374v2.ppt" /> <meta name="description" content="bioRxiv - the preprint server for biology, operated by Cold Spring Harbor Laboratory, a research and educational institution" /> <meta name="generator" content="Drupal 7 (http://drupal.org)" /> <link rel="canonical" href="https://www.biorxiv.org/content/10.1101/626374v2" /> <link rel="shortlink" href="https://www.biorxiv.org/node/743427" /> <title>Levels of Representation in a Deep Learning Model of Categorization | bioRxiv</title> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__7SC0i-kTgUlQGKuqbmyS18Sez8FDO-aG9FSHkGrLGl8__EBUojqg5W_1M2-aUl2Y1w9JxEEauoJ0pj29wOb-7Vz4__V7p9f6xKfJWB4tz1ZOzGhbp_vlwczIKATHxjqvc4v4c.css" media="all" /> <link type="text/css" rel="stylesheet" href="//cdn.jsdelivr.net/qtip2/2.2.1/jquery.qtip.min.css" media="all" /> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__UufzdoKtMhzTNiAJfsa_0bYn78zz-bBHwNEqMQ0UIXk__1-Opexvnkee5dlO1d6qLW5_7DT6gOdNGKRcC-FxT6QU__V7p9f6xKfJWB4tz1ZOzGhbp_vlwczIKATHxjqvc4v4c.css" media="all" /> <style type="text/css" media="all"> /* <![CDATA[ */ .panels-flexible-new .panels-flexible-region{padding:0}.panels-flexible-new .panels-flexible-region-inside{padding-right:.5em;padding-left:.5em}.panels-flexible-new .panels-flexible-region-inside-first{padding-left:0}.panels-flexible-new .panels-flexible-region-inside-last{padding-right:0}.panels-flexible-new .panels-flexible-column{padding:0}.panels-flexible-new .panels-flexible-column-inside{padding-right:.5em;padding-left:.5em}.panels-flexible-new .panels-flexible-column-inside-first{padding-left:0}.panels-flexible-new .panels-flexible-column-inside-last{padding-right:0}.panels-flexible-new .panels-flexible-row{padding:0 0 .5em;margin:0}.panels-flexible-new .panels-flexible-row-last{padding-bottom:0}.panels-flexible-column-new-main{float:left;width:99.0000%}.panels-flexible-new-inside{padding-right:0}.panels-flexible-new{width:auto}.panels-flexible-region-new-center{float:left;width:99.0000%}.panels-flexible-row-new-main-row-inside{padding-right:0} /* ]]> */ </style> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__PWuQ_RYRTJ4BLEKsbWQeHysPg0gOQ3571ruQa_rXvAo__pWyBeQHtoijrNnOoDz9ZPdiNPirDrSCPOz0Q1CDCeno__V7p9f6xKfJWB4tz1ZOzGhbp_vlwczIKATHxjqvc4v4c.css" media="all" /> <style type="text/css" media="all"> /* <![CDATA[ */ #sliding-popup.sliding-popup-bottom,#sliding-popup.sliding-popup-bottom .eu-cookie-withdraw-banner,.eu-cookie-withdraw-tab{background:gray}#sliding-popup.sliding-popup-bottom.eu-cookie-withdraw-wrapper{background:transparent}#sliding-popup .popup-content #popup-text h1,#sliding-popup .popup-content #popup-text h2,#sliding-popup .popup-content #popup-text h3,#sliding-popup .popup-content #popup-text p,.eu-cookie-compliance-secondary-button,.eu-cookie-withdraw-tab{color:#fff !important}.eu-cookie-withdraw-tab{border-color:#fff}.eu-cookie-compliance-more-button{color:#fff !important} /* ]]> */ </style> <!--[if lte IE 7]> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__ElJr3PIJEvw3qLXc1cnYiLj2G4KgDPSXFOfm6Phf8hw__JdWGm15cDWjsK6KrFlQVXQix9YgNeYysf22XZHj-Y-c__V7p9f6xKfJWB4tz1ZOzGhbp_vlwczIKATHxjqvc4v4c.css" media="all" /> <![endif]--> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__Wnlyen9qEpwh_Qaf9okEu4QdVGM0BDothxeqA6Nbvo8__EJmw6SZD9bYoS8jocCpPYS3JFRURpdzmuvJoAUNiI-g__V7p9f6xKfJWB4tz1ZOzGhbp_vlwczIKATHxjqvc4v4c.css" media="all" /> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__GqVTUTb7fU4hyk1a4WfDybBJWTzZGnja1psLzVIDVK4__igagZiGB2PktJMjUpZ2u3tnc56saoUGIrD5N0KSRmI4__V7p9f6xKfJWB4tz1ZOzGhbp_vlwczIKATHxjqvc4v4c.css" media="all" /> <!--[if (lt IE 9)&(!IEMobile)]> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__XH6bpcI0f2dImc-p674DLCZtWBGb-QwxJK1YexVGtno__vUceGprdo5nIhV6DH93X7fI3r8RcTJbChbas9TQXeW4__V7p9f6xKfJWB4tz1ZOzGhbp_vlwczIKATHxjqvc4v4c.css" media="all" /> <![endif]--> <!--[if gte IE 9]><!--> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__2WBMox6sOrN42ss5lCnH7WWVRdFdJCxtTKnQJYRwTE4__yqNvNYLvMpjy3ffuJrjjm9uW2i-Me1c23KLYuWHaqio__V7p9f6xKfJWB4tz1ZOzGhbp_vlwczIKATHxjqvc4v4c.css" media="all" /> <!--<![endif]--> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__PhTRi_fk5yUzXvXL8wrLbKhuhHzmf8F1fDvOapcQSqY__E0Tx0ykGwSvbSa_sKCrkD0RCA6q_OJfnjP8zcxUKd_I__V7p9f6xKfJWB4tz1ZOzGhbp_vlwczIKATHxjqvc4v4c.css" media="all" /> <link type="text/css" rel="stylesheet" href="https://d33xdlntwy0kbs.cloudfront.net/cshl_custom.css" media="all" /> <script type="text/javascript" src="https://www.biorxiv.org/sites/default/files/advagg_js/js__BKYqkKToQ7EjirB7eIdMEH5521EU3da9IpoOs8Ex2XI__aSjVoX8giBmLhN2EbCgIGQJNu89Mh5aVu1LvI_gkJ7Y__V7p9f6xKfJWB4tz1ZOzGhbp_vlwczIKATHxjqvc4v4c.js"></script> <script type="text/javascript" src="//cdn.jsdelivr.net/qtip2/2.2.1/jquery.qtip.min.js"></script> <script type="text/javascript" src="https://www.biorxiv.org/sites/default/files/advagg_js/js__4Cn2dxvNlsJ-sHe6QOTLREaQvcqb0Yh0Zm9tTOHtQow__JeZEUjzbaj_yX6UjCI8eBbXy_J64ZVuoWmc2fSpLZHo__V7p9f6xKfJWB4tz1ZOzGhbp_vlwczIKATHxjqvc4v4c.js"></script> <script type="text/javascript" src="https://www.google.com/recaptcha/api.js?hl=en&amp;render=explicit&amp;onload=drupalRecaptchaOnload"></script> <script type="text/javascript" src="https://www.biorxiv.org/sites/default/files/advagg_js/js__dGWpV57YWu3sX6UOe04RMH-iP9jSkEP7Ajt0caYXZZk__1l8Wa0iuIek7SEVmMuU0Y9TlAvRR-XZVfl1u9ezOPes__V7p9f6xKfJWB4tz1ZOzGhbp_vlwczIKATHxjqvc4v4c.js"></script> <script type="text/javascript" async="async" src="https://scholar.google.com/scholar_js/casa.js"></script> <script type="text/javascript" async="async" src="https://www.googletagmanager.com/gtag/js?id=G-RZD586MC3Q"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- /*! * yepnope1.5.4 * (c) WTFPL, GPLv2 */ (function(a,b,c){function d(a){return"[object Function]"==o.call(a)}function e(a){return"string"==typeof a}function f(){}function g(a){return!a||"loaded"==a||"complete"==a||"uninitialized"==a}function h(){var a=p.shift();q=1,a?a.t?m(function(){("c"==a.t?B.injectCss:B.injectJs)(a.s,0,a.a,a.x,a.e,1)},0):(a(),h()):q=0}function i(a,c,d,e,f,i,j){function k(b){if(!o&&g(l.readyState)&&(u.r=o=1,!q&&h(),l.onload=l.onreadystatechange=null,b)){"img"!=a&&m(function(){t.removeChild(l)},50);for(var d in y[c])y[c].hasOwnProperty(d)&&y[c][d].onload()}}var j=j||B.errorTimeout,l=b.createElement(a),o=0,r=0,u={t:d,s:c,e:f,a:i,x:j};1===y[c]&&(r=1,y[c]=[]),"object"==a?l.data=c:(l.src=c,l.type=a),l.width=l.height="0",l.onerror=l.onload=l.onreadystatechange=function(){k.call(this,r)},p.splice(e,0,u),"img"!=a&&(r||2===y[c]?(t.insertBefore(l,s?null:n),m(k,j)):y[c].push(l))}function j(a,b,c,d,f){return q=0,b=b||"j",e(a)?i("c"==b?v:u,a,b,this.i++,c,d,f):(p.splice(this.i++,0,a),1==p.length&&h()),this}function k(){var a=B;return a.loader={load:j,i:0},a}var l=b.documentElement,m=a.setTimeout,n=b.getElementsByTagName("script")[0],o={}.toString,p=[],q=0,r="MozAppearance"in l.style,s=r&&!!b.createRange().compareNode,t=s?l:n.parentNode,l=a.opera&&"[object Opera]"==o.call(a.opera),l=!!b.attachEvent&&!l,u=r?"object":l?"script":"img",v=l?"script":u,w=Array.isArray||function(a){return"[object Array]"==o.call(a)},x=[],y={},z={timeout:function(a,b){return b.length&&(a.timeout=b[0]),a}},A,B;B=function(a){function b(a){var a=a.split("!"),b=x.length,c=a.pop(),d=a.length,c={url:c,origUrl:c,prefixes:a},e,f,g;for(f=0;f<d;f++)g=a[f].split("="),(e=z[g.shift()])&&(c=e(c,g));for(f=0;f<b;f++)c=x[f](c);return c}function g(a,e,f,g,h){var i=b(a),j=i.autoCallback;i.url.split(".").pop().split("?").shift(),i.bypass||(e&&(e=d(e)?e:e[a]||e[g]||e[a.split("/").pop().split("?")[0]]),i.instead?i.instead(a,e,f,g,h):(y[i.url]?i.noexec=!0:y[i.url]=1,f.load(i.url,i.forceCSS||!i.forceJS&&"css"==i.url.split(".").pop().split("?").shift()?"c":c,i.noexec,i.attrs,i.timeout),(d(e)||d(j))&&f.load(function(){k(),e&&e(i.origUrl,h,g),j&&j(i.origUrl,h,g),y[i.url]=2})))}function h(a,b){function c(a,c){if(a){if(e(a))c||(j=function(){var a=[].slice.call(arguments);k.apply(this,a),l()}),g(a,j,b,0,h);else if(Object(a)===a)for(n in m=function(){var b=0,c;for(c in a)a.hasOwnProperty(c)&&b++;return b}(),a)a.hasOwnProperty(n)&&(!c&&!--m&&(d(j)?j=function(){var a=[].slice.call(arguments);k.apply(this,a),l()}:j[n]=function(a){return function(){var b=[].slice.call(arguments);a&&a.apply(this,b),l()}}(k[n])),g(a[n],j,b,n,h))}else!c&&l()}var h=!!a.test,i=a.load||a.both,j=a.callback||f,k=j,l=a.complete||f,m,n;c(h?a.yep:a.nope,!!i),i&&c(i)}var i,j,l=this.yepnope.loader;if(e(a))g(a,0,l,0);else if(w(a))for(i=0;i<a.length;i++)j=a[i],e(j)?g(j,0,l,0):w(j)?B(j):Object(j)===j&&h(j,l);else Object(a)===a&&h(a,l)},B.addPrefix=function(a,b){z[a]=b},B.addFilter=function(a){x.push(a)},B.errorTimeout=1e4,null==b.readyState&&b.addEventListener&&(b.readyState="loading",b.addEventListener("DOMContentLoaded",A=function(){b.removeEventListener("DOMContentLoaded",A,0),b.readyState="complete"},0)),a.yepnope=k(),a.yepnope.executeStack=h,a.yepnope.injectJs=function(a,c,d,e,i,j){var k=b.createElement("script"),l,o,e=e||B.errorTimeout;k.src=a;for(o in d)k.setAttribute(o,d[o]);c=j?h:c||f,k.onreadystatechange=k.onload=function(){!l&&g(k.readyState)&&(l=1,c(),k.onload=k.onreadystatechange=null)},m(function(){l||(l=1,c(1))},e),i?k.onload():n.parentNode.insertBefore(k,n)},a.yepnope.injectCss=function(a,c,d,e,g,i){var e=b.createElement("link"),j,c=i?h:c||f;e.href=a,e.rel="stylesheet",e.type="text/css";for(j in d)e.setAttribute(j,d[j]);g||(n.parentNode.insertBefore(e,n),m(c,0))}})(this,document); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- yepnope({ test: Modernizr.matchmedia, nope: '/sites/all/libraries/media-match/media.match.min.js' }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- var _prum=[['id', '612e3d94173350001100005d'], ['mark', 'firstbyte', (new Date()).getTime()]]; (function() { var s=document.getElementsByTagName('script')[0], p=document.createElement('script'); p.async='async'; p.src='//rum-static.pingdom.net/prum.min.js';s.parentNode.insertBefore(p,s);})(); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- if(typeof window.MathJax === "undefined") window.MathJax = { menuSettings: { zoom: "Click" } }; //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.dataLayer = window.dataLayer || [];function gtag(){dataLayer.push(arguments)};gtag("js", new Date());gtag("set", "developer_id.dMDhkMT", true);gtag("config", "G-RZD586MC3Q", {"groups":"default","anonymize_ip":true}); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- jQuery.extend(Drupal.settings,{"basePath":"\/","pathPrefix":"","ajaxPageState":{"theme":"jcore_1","theme_token":"2WEDS4gyTpaUuBMmKaYHdu_TYjd54aSjuZy8TTJ4GNk"},"colorbox":{"opacity":"0.85","current":"{current} of {total}","previous":"\u00ab Prev","next":"Next \u00bb","close":"Close","maxWidth":"98%","maxHeight":"98%","fixed":true,"mobiledetect":true,"mobiledevicewidth":"480px"},"highwire":{"nid":"743427","apath":"\/biorxiv\/early\/2019\/05\/22\/626374.atom","pisa":"biorxiv;626374v2","ac":{"\/biorxiv\/early\/2019\/05\/22\/626374.atom":{"access":{"full":true},"pisa_id":"","apath":"\/biorxiv\/early\/2019\/05\/22\/626374.atom","jcode":"biorxiv"},"biorxiv;626374v2":{"access":{"full":true},"pisa_id":"biorxiv;626374v2","apath":"","jcode":"biorxiv"}},"processed":["highwire_math"],"markup":[{"requested":"abstract","variant":"abstract","view":"abstract","pisa":"biorxiv;626374v2"}],"modal_window_width":"560","share_modal_width":"560","share_modal_title":"Share this Article"},"jcarousel":{"ajaxPath":"\/jcarousel\/ajax\/views"},"instances":"{\u0022highwire_abstract_tooltip\u0022:{\u0022content\u0022:{\u0022text\u0022:\u0022\u0022},\u0022style\u0022:{\u0022tip\u0022:{\u0022width\u0022:20,\u0022height\u0022:20,\u0022border\u0022:1,\u0022offset\u0022:0,\u0022corner\u0022:true},\u0022classes\u0022:\u0022qtip-custom hw-tooltip hw-abstract-tooltip qtip-shadow qtip-rounded\u0022,\u0022classes_custom\u0022:\u0022hw-tooltip hw-abstract-tooltip\u0022},\u0022position\u0022:{\u0022at\u0022:\u0022right center\u0022,\u0022my\u0022:\u0022left center\u0022,\u0022viewport\u0022:true,\u0022adjust\u0022:{\u0022method\u0022:\u0022shift\u0022}},\u0022show\u0022:{\u0022event\u0022:\u0022mouseenter click \u0022,\u0022solo\u0022:true},\u0022hide\u0022:{\u0022event\u0022:\u0022mouseleave \u0022,\u0022fixed\u0022:1,\u0022delay\u0022:\u0022100\u0022}},\u0022highwire_author_tooltip\u0022:{\u0022content\u0022:{\u0022text\u0022:\u0022\u0022},\u0022style\u0022:{\u0022tip\u0022:{\u0022width\u0022:15,\u0022height\u0022:15,\u0022border\u0022:1,\u0022offset\u0022:0,\u0022corner\u0022:true},\u0022classes\u0022:\u0022qtip-custom hw-tooltip hw-author-tooltip qtip-shadow qtip-rounded\u0022,\u0022classes_custom\u0022:\u0022hw-tooltip hw-author-tooltip\u0022},\u0022position\u0022:{\u0022at\u0022:\u0022top center\u0022,\u0022my\u0022:\u0022bottom center\u0022,\u0022viewport\u0022:true,\u0022adjust\u0022:{\u0022method\u0022:\u0022\u0022}},\u0022show\u0022:{\u0022event\u0022:\u0022mouseenter \u0022,\u0022solo\u0022:true},\u0022hide\u0022:{\u0022event\u0022:\u0022mouseleave \u0022,\u0022fixed\u0022:1,\u0022delay\u0022:\u0022100\u0022}},\u0022highwire_reflinks_tooltip\u0022:{\u0022content\u0022:{\u0022text\u0022:\u0022\u0022},\u0022style\u0022:{\u0022tip\u0022:{\u0022width\u0022:15,\u0022height\u0022:15,\u0022border\u0022:1,\u0022mimic\u0022:\u0022top center\u0022,\u0022offset\u0022:0,\u0022corner\u0022:true},\u0022classes\u0022:\u0022qtip-custom hw-tooltip hw-ref-link-tooltip qtip-shadow qtip-rounded\u0022,\u0022classes_custom\u0022:\u0022hw-tooltip hw-ref-link-tooltip\u0022},\u0022position\u0022:{\u0022at\u0022:\u0022bottom left\u0022,\u0022my\u0022:\u0022top left\u0022,\u0022viewport\u0022:true,\u0022adjust\u0022:{\u0022method\u0022:\u0022flip\u0022}},\u0022show\u0022:{\u0022event\u0022:\u0022mouseenter \u0022,\u0022solo\u0022:true},\u0022hide\u0022:{\u0022event\u0022:\u0022mouseleave \u0022,\u0022fixed\u0022:1,\u0022delay\u0022:\u0022100\u0022}}}","qtipDebug":"{\u0022leaveElement\u0022:0}","panel_ajax_tab":{"path":"sites\/all\/modules\/contrib\/panels_ajax_tab"},"disqus":{"domain":"biorxivstage","url":"https:\/\/www.biorxiv.org\/content\/10.1101\/626374v2","title":"Levels of Representation in a Deep Learning Model of Categorization","identifier":"node\/743427"},"panels_ajax_pane":{"new-28877068-b9cb-4641-830b-b6b4638c98bb":"{\u0022encrypted\u0022:\u0022{\\\u0022encrypted\\\u0022:\\\u0022NSEhFfewEcBjRDYSKAw+UP\\\\\\\/Y1hcC2w9c3s\\\\\\\/Jdq4o7F\\\\\\\/Lf2lya5\\\\\\\/4lRHUGep+XYPS\\\\\\\/o7t9gKasM0FP6iugdu4udqkhumgn2W69vCS3Pew0z75ml71r34TjMA2eFfm08Dv2sX9ngxqmWrF8ikXHFicak77s3Rb3Qw0Y7vtZzIx15ZFNdC8YNjog9hZleBhIgqZZHKSKPL1srobMzpJhRtOMPitv1p1OWzoL9OdgPLRPI8fyFcZpn6CyI1CnKl\\\\\\\/dBNi02LBETZsJblG6aMCOkPBdWL1Ca+5Ry2m1+ZCUrxZJPz4VAgFm3Tq2HhJ7G8VCjP8SOaU14p1JFkk1S6XBWXC1IzhUI3mAVouAj\\\\\\\/xfmsHjGC15Y17lBy6UZ+5SvuuYnvuI58NtW5StQcngb1m0PnlpmRF3znGfHDufuEv3lVxnzkxkr\\\\\\\/sHHnmLWoPzJitAZmA5Lj679tLZF3hU8APaPc1OyDWMfPdO2cZ31iddE+l81X1o9jVx2RhnlEwEGMiJMeluItIPnYTQ0C5GiPhfLDho9pAn9P9quaeof+W\\\\\\\/ejVMiDhUS7XJBVSLQknHynBKaedysXH7T3YG+pgkGnWYZEGiJ1QVVfTO\\\\\\\/O7+ll+7Zd7spNyFhhzIYFPC\\\\\\\/FqKPkDdJH3WIUX\\\\\\\/bR0+M8ML6lCSPeKMt3mhmfRu1sXxi2GNyBATOAPsMWorjIpfTxst6WEIE5EUVYnH2h1Wz3kRNLTjm5xoYPojb\\\\\\\/3qKE8Mws87h\\\\\\\/rt\\\\\\\/XDuMSqcQuEMvc4eXiueOacYc3L9L2vTTdpzbN3nBJBAsp7aeQuvZ7deZjpE8Wp93V3vxat0blw1yvuJJsWkwAagJBReWcGTgw154GsC0u\\\\\\\/8a+hf+JyLfJFaa1swt\\\\\\\/\\\\\\\/Ds2w8WvXVfKC49WgyS3cMIldEiJtrUJ7d9LvTmo7m0VlVsgGx915Ym9vQfW\\\\\\\/Po+jQfDX4+TamjYDTVSzZE\\\\\\\/bw5RBccf1rGTrG8Ok6edt93Wf4XUx155ZcMtKms0PkJ1cR2ezqpEsoLn5ryxLjnXiyTVYlTLfISbDR6ZcKPyrYS5RNBDp3fl2LF5pFPsuJHwzdoCBl+dMogm1b2oRVO4H9Jt1oYPN9lY+JToNNPPM8mPGE\\\\\\\/a9H6nK5w8YuHfl48vk2kaPX9l5N+96OA+9KdiV7ErmAUWyoq5i\\\\\\\/SWDWd+t3U6CxvmVOgVrmYiJ4hr3F044EU3eA3bxAW+tX+EjUMWS\\\\\\\/mV3sWHy3ZGm2mf09nrU01qSzcPwbg2uWGDGjr++ZX5dwrM2Tf0Eieyd4fZJBZqr5TilIwgdDnoxhGv7mSDRnUaRmJLWYjySsoGHR8eCssB\\\\\\\/gzelE8qXs1HIiwDk+jyPlGUu\\\u0022,\\\u0022iv\\\u0022:\\\u0022+MOXoGjlJ4U4jier46W33g==\\\u0022,\\\u0022salt\\\u0022:\\\u0022f9d8845712f72c9fee5db7d9ff111eab\\\u0022}\u0022,\u0022hmac\u0022:\u0022a462a2d4979d9ced901fa48b3eab631a9a93438f822bd94af8a8217d5bafd435\u0022}"},"urlIsAjaxTrusted":{"\/content\/10.1101\/626374v2":true},"ws_fl":{"width":100,"height":21},"ws_gpo":{"size":"","annotation":"","lang":"","callback":"","width":300},"color":{"logo":"https:\/\/www.biorxiv.org\/sites\/default\/files\/biorxiv_article.jpg"},"highwire_list_expand":{"is_collapsed":"1"},"highwireResponsive":{"enquire_enabled":1,"breakpoints_configured":1,"breakpoints":{"zero":"all and (min-width: 0px)","xsmall":"all and (min-width: 380px)","narrow":"all and (min-width: 768px) and (min-device-width: 768px), (max-device-width: 800px) and (min-width: 768px) and (orientation:landscape)","normal":"all and (min-width: 980px) and (min-device-width: 980px), all and (max-device-width: 1024px) and (min-width: 1024px) and (orientation:landscape)","wide":"all and (min-width: 1220px)"}},"eu_cookie_compliance":{"popup_enabled":1,"popup_agreed_enabled":0,"popup_hide_agreed":0,"popup_clicking_confirmation":1,"popup_scrolling_confirmation":false,"popup_html_info":"\u003Cdiv\u003E\n \u003Cdiv class=\u0022popup-content info\u0022\u003E\n \u003Cdiv id=\u0022popup-text\u0022\u003E\n \u003Cp\u003EWe use cookies on this site to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies.\u003C\/p\u003E\n \u003C\/div\u003E\n \u003Cdiv id=\u0022popup-buttons\u0022\u003E\n \u003Cbutton type=\u0022button\u0022 role=\u0022dialog\u0022 aria-labelledby=\u0022Continue\u0022\n class=\u0022agree-button eu-cookie-compliance-default-button\u0022\u003EContinue\u003C\/button\u003E\n \u003Cbutton type=\u0022button\u0022 role=\u0022dialog\u0022 aria-labelledby=\u0022Find out more\u0022\n class=\u0022find-more-button eu-cookie-compliance-more-button\u0022\u003EFind out more\u003C\/button\u003E\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003C\/div\u003E","use_mobile_message":false,"mobile_popup_html_info":"\u003Cdiv\u003E\n \u003Cdiv class=\u0022popup-content info\u0022\u003E\n \u003Cdiv id=\u0022popup-text\u0022\u003E\n \u003C\/div\u003E\n \u003Cdiv id=\u0022popup-buttons\u0022\u003E\n \u003Cbutton type=\u0022button\u0022 role=\u0022dialog\u0022 aria-labelledby=\u0022Continue\u0022\n class=\u0022agree-button eu-cookie-compliance-default-button\u0022\u003EContinue\u003C\/button\u003E\n \u003Cbutton type=\u0022button\u0022 role=\u0022dialog\u0022 aria-labelledby=\u0022Find out more\u0022\n class=\u0022find-more-button eu-cookie-compliance-more-button\u0022\u003EFind out more\u003C\/button\u003E\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003C\/div\u003E","mobile_breakpoint":"768","popup_html_agreed":"\u003Cdiv\u003E\n \u003Cdiv class=\u0022popup-content agreed\u0022\u003E\n \u003Cdiv id=\u0022popup-text\u0022\u003E\n \u003Ch2\u003EThank you for accepting cookies\u003C\/h2\u003E\u003Cp\u003EYou can now hide this message or find out more about cookies.\u003C\/p\u003E \u003C\/div\u003E\n \u003Cdiv id=\u0022popup-buttons\u0022\u003E\n \u003Cbutton type=\u0022button\u0022 class=\u0022hide-popup-button eu-cookie-compliance-hide-button\u0022\u003EHide\u003C\/button\u003E\n \u003Cbutton type=\u0022button\u0022 class=\u0022find-more-button eu-cookie-compliance-more-button-thank-you\u0022 \u003EMore info\u003C\/button\u003E\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003C\/div\u003E","popup_use_bare_css":false,"popup_height":"auto","popup_width":"100%","popup_delay":1000,"popup_link":"\/help\/cookie-policy","popup_link_new_window":1,"popup_position":null,"popup_language":"en","store_consent":false,"better_support_for_screen_readers":0,"reload_page":0,"domain":"","popup_eu_only_js":0,"cookie_lifetime":"365","cookie_session":false,"disagree_do_not_show_popup":0,"method":"default","whitelisted_cookies":"","withdraw_markup":"\u003Cbutton type=\u0022button\u0022 class=\u0022eu-cookie-withdraw-tab\u0022\u003EPrivacy settings\u003C\/button\u003E\n\u003Cdiv class=\u0022eu-cookie-withdraw-banner\u0022\u003E\n \u003Cdiv class=\u0022popup-content info\u0022\u003E\n \u003Cdiv id=\u0022popup-text\u0022\u003E\n \u003Cp\u003E\u0026lt;h2\u0026gt;We use cookies on this site to enhance your user experience\u0026lt;\/h2\u0026gt;\u0026lt;p\u0026gt;You have given your consent for us to set cookies.\u0026lt;\/p\u0026gt;\u003C\/p\u003E\n \u003C\/div\u003E\n \u003Cdiv id=\u0022popup-buttons\u0022\u003E\n \u003Cbutton type=\u0022button\u0022 class=\u0022eu-cookie-withdraw-button\u0022\u003EWithdraw consent\u003C\/button\u003E\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003C\/div\u003E\n","withdraw_enabled":false},"googleanalytics":{"account":["G-RZD586MC3Q"],"trackOutbound":1,"trackMailto":1,"trackDownload":1,"trackDownloadExtensions":"7z|aac|arc|arj|asf|asx|avi|bin|csv|doc(x|m)?|dot(x|m)?|exe|flv|gif|gz|gzip|hqx|jar|jpe?g|js|mp(2|3|4|e?g)|mov(ie)?|msi|msp|pdf|phps|png|ppt(x|m)?|pot(x|m)?|pps(x|m)?|ppam|sld(x|m)?|thmx|qtm?|ra(m|r)?|sea|sit|tar|tgz|torrent|txt|wav|wma|wmv|wpd|xls(x|m|b)?|xlt(x|m)|xlam|xml|z|zip","trackColorbox":1},"jnl_biorxiv_styles":{"defaultJCode":"biorxiv"},"omega":{"layouts":{"primary":"normal","order":["narrow","normal","wide"],"queries":{"narrow":"all and (min-width: 768px) and (min-device-width: 768px), (max-device-width: 800px) and (min-width: 768px) and (orientation:landscape)","normal":"all and (min-width: 980px) and (min-device-width: 980px), all and (max-device-width: 1024px) and (min-width: 1024px) and (orientation:landscape)","wide":"all and (min-width: 1220px)"}}}}); //--><!]]> </script> <!--[if lt IE 9]><script src="http://html5shiv.googlecode.com/svn/trunk/html5.js"></script><![endif]--> </head> <body class="html not-front not-logged-in page-node page-node- page-node-743427 node-type-highwire-article context-content hw-default-jcode-biorxiv hw-article-type-article hw-article-category-new-results"> <!-- Google Tag Manager --> <noscript><iframe src="//www.googletagmanager.com/ns.html?id=GTM-M677548" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <script type="text/javascript">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start':new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0];var j=d.createElement(s);var dl=l!='dataLayer'?'&l='+l:'';j.src='//www.googletagmanager.com/gtm.js?id='+i+dl;j.type='text/javascript';j.async=true;f.parentNode.insertBefore(j,f);})(window,document,'script','dataLayer','GTM-M677548');</script> <!-- End Google Tag Manager --> <div id="skip-link"> <a href="#main-content" class="element-invisible element-focusable">Skip to main content</a> </div> <div class="page clearfix page-box-shadows footer-borders panels-page panels-layout-jcore_2col" id="page"> <header id="section-header" class="section section-header"> <div id="zone-branding" class="zone zone-branding clearfix print-display-block container-30"> <div class="grid-15 prefix-1 region region-branding print-display-block" id="region-branding"> <div class="region-inner region-branding-inner"> <div class="branding-data clearfix"> <div class="logo-img"> <a href="/" rel="home" class="" data-icon-position="" data-hide-link-title="0"><img alt="bioRxiv" src="https://www.biorxiv.org/sites/default/files/biorxiv_article.jpg" /></a> </div> </div> </div> </div><div class="grid-11 suffix-1 region region-branding-second print-hidden" id="region-branding-second"> <div class="region-inner region-branding-second-inner"> <div class="block block-system block-menu block-main-menu block-system-main-menu odd block-without-title" id="block-system-main-menu"> <div class="block-inner clearfix"> <div class="content clearfix"> <nav class="menubar-nav"><ul class="menu" role="menu"><li class="first leaf" role="menuitem"><a href="/" title="" class="" data-icon-position="" data-hide-link-title="0">Home</a></li> <li class="leaf" role="menuitem"><a href="/about-biorxiv" class="" data-icon-position="" data-hide-link-title="0">About</a></li> <li class="leaf" role="menuitem"><a href="/submit-a-manuscript" class="" data-icon-position="" data-hide-link-title="0">Submit</a></li> <li class="last leaf" role="menuitem"><a href="/alertsrss" title="" class="" data-icon-position="" data-hide-link-title="0">ALERTS / RSS</a></li> </ul></nav> </div> </div> </div><div class="block block-panels-mini block-biorxiv-search-box block-panels-mini-biorxiv-search-box even block-without-title" id="block-panels-mini-biorxiv-search-box"> <div class="block-inner clearfix"> <div class="content clearfix"> <div class="panel-display panel-1col clearfix" id="mini-panel-biorxiv_search_box"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-highwire-seach-quicksearch" > <div class="pane-content"> <form class="highwire-quicksearch button-style-mini button-style-mini" action="/content/10.1101/626374v2" method="post" id="highwire-search-quicksearch-form-0" accept-charset="UTF-8"><div><div class="form-item form-item-label-invisible form-type-textfield form-item-keywords"> <label class="element-invisible" for="search_rightsidebar_keywords_2060900870">Search for this keyword </label> <input placeholder="Search" type="text" id="search_rightsidebar_keywords_2060900870" name="keywords" value="" size="60" maxlength="128" class="form-text" /> </div> <div class="button-wrapper button-mini"><span class="icon-search"></span><input data-icon-only="1" data-font-icon="icon-search" data-icon-position="after" type="submit" id="search_rightsidebar_submit_1247554745" name="op" value="Search" class="form-submit" /></div><input type="hidden" name="form_build_id" value="form-E14MQi3gIklEcJvY2kwc9X9FEUqqbR1c5tvScN8AUZs" /> <input type="hidden" name="form_id" value="highwire_search_quicksearch_form_0" /> </div></form> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-custom pane-2 advanced-search-link" > <div class="pane-content"> <a href="/search">Advanced Search</a> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div id="zone-header" class="zone zone-header clearfix container-30"> </div> </header> <section id="section-content" class="section section-content"> <div id="zone-content" class="zone zone-content clearfix container-30"> <div class="grid-28 suffix-1 prefix-1 region region-content" id="region-content"> <div class="region-inner region-content-inner"> <a id="main-content"></a> <div class="block block-system block-main block-system-main odd block-without-title" id="block-system-main"> <div class="block-inner clearfix"> <div class="content clearfix"> <div class="panel-display panels-960-layout jcore-2col-layout" > <div class="panel-row-wrapper clearfix"> <div class="main-content-wrapper grid-17 suffix-1 alpha"> <div class="panel-panel panel-region-content"> <div class="inside"><div class="panel-pane pane-highwire-article-citation" > <div class="pane-content"> <div class="highwire-article-citation highwire-citation-type-highwire-article node743427" data-node-nid="743427" id="node-743427--2390659037" data-pisa="biorxiv;626374v2" data-pisa-master="biorxiv;626374" data-apath="/biorxiv/early/2019/05/22/626374.atom" data-hw-author-tooltip-instance="highwire_author_tooltip"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-biorxiv-article-top clearfix has-author-tooltip" > <span class="biorxiv-article-type"> New Results </span> <h1 class="highwire-cite-title" id="page-title">Levels of Representation in a Deep Learning Model of Categorization</h1> <div class="highwire-cite-authors" ><span class="highwire-citation-authors"><span class="highwire-citation-author first" data-delta="0"><span class="nlm-given-names">Olivia</span> <span class="nlm-surname">Guest</span></span>, <span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Bradley C.</span> <span class="nlm-surname">Love</span></span></span></div> <div class="highwire-cite-metadata" ><span class="highwire-cite-metadata-doi highwire-cite-metadata"><span class="label">doi:</span> https://doi.org/10.1101/626374 </span></div> </div> <div id="hw-article-author-popups-node-743427--2390659037" style="display: none;"><div class="author-tooltip-0"><div class="author-tooltip-name">Olivia Guest </div><div class="author-tooltip-affiliation"><span class="author-tooltip-text"><div class='author-affiliation'><span class='nlm-sup'>1</span><span class='nlm-institution'>Department of Experimental Psychology, University College London</span></div></span></div><ul class="author-tooltip-find-more"><li class="author-tooltip-gs-link first"><a href="/lookup/google-scholar?link_type=googlescholar&amp;gs_type=author&amp;author%5B0%5D=Olivia%2BGuest%2B" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on Google Scholar</a></li><li class="author-tooltip-pubmed-link"><a href="/lookup/external-ref?access_num=Guest%20O&amp;link_type=AUTHORSEARCH" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on PubMed</a></li><li class="author-site-search-link last"><a href="/search/author1%3AOlivia%2BGuest%2B" rel="nofollow" class="" data-icon-position="" data-hide-link-title="0">Search for this author on this site</a></li></ul></div><div class="author-tooltip-1"><div class="author-tooltip-name">Bradley C. Love </div><div class="author-tooltip-affiliation"><span class="author-tooltip-text"><div class='author-affiliation'><span class='nlm-sup'>2</span><span class='nlm-institution'>Department of Experimental Psychology, University College London, and The Alan Turing Institute</span></div></span></div><ul class="author-tooltip-find-more"><li class="author-tooltip-gs-link first"><a href="/lookup/google-scholar?link_type=googlescholar&amp;gs_type=author&amp;author%5B0%5D=Bradley%2BC.%2BLove%2B" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on Google Scholar</a></li><li class="author-tooltip-pubmed-link"><a href="/lookup/external-ref?access_num=Love%20BC&amp;link_type=AUTHORSEARCH" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on PubMed</a></li><li class="author-site-search-link last"><a href="/search/author1%3ABradley%2BC.%2BLove%2B" rel="nofollow" class="" data-icon-position="" data-hide-link-title="0">Search for this author on this site</a></li></ul></div></div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-panel-tabs pane-panels-ajax-tab-tabs" > <div class="pane-content"> <div class="item-list"><ul class="tabs inline panels-ajax-tab"><li class="first"><a href="/content/10.1101/626374v2" class="panels-ajax-tab-tab" data-panel-name="biorxiv_tab_art" data-target-id="highwire_article_tabs" data-entity-context="node:743427" data-trigger="" data-url-enabled="1">Abstract</a><a href="/panels_ajax_tab/biorxiv_tab_art/node:743427/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li><li><a href="/content/10.1101/626374v2.full-text" class="panels-ajax-tab-tab" data-panel-name="article_tab_full_text" data-target-id="highwire_article_tabs" data-entity-context="node:743427" data-trigger="full-text" data-url-enabled="1">Full Text</a><a href="/panels_ajax_tab/article_tab_full_text/node:743427/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li><li><a href="/content/10.1101/626374v2.article-info" class="panels-ajax-tab-tab" data-panel-name="biorxiv_tab_info" data-target-id="highwire_article_tabs" data-entity-context="node:743427" data-trigger="article-info" data-url-enabled="1">Info/History</a><a href="/panels_ajax_tab/biorxiv_tab_info/node:743427/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li><li><a href="/content/10.1101/626374v2.article-metrics" class="panels-ajax-tab-tab" data-panel-name="article_tab_metrics" data-target-id="highwire_article_tabs" data-entity-context="node:743427" data-trigger="article-metrics" data-url-enabled="1">Metrics</a><a href="/panels_ajax_tab/article_tab_metrics/node:743427/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li><li><a href="/content/10.1101/626374v2.external-links" class="panels-ajax-tab-tab" data-panel-name="article_tab_data_code" data-target-id="highwire_article_tabs" data-entity-context="node:743427" data-trigger="external-links" data-url-enabled="1">Data/Code</a><a href="/panels_ajax_tab/article_tab_data_code/node:743427/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li><li class="last"><a href="/content/10.1101/626374v2.full.pdf+html" class="panels-ajax-tab-tab" data-panel-name="biorxiv_tab_pdf" data-target-id="highwire_article_tabs" data-entity-context="node:743427" data-trigger="full.pdf+html" data-url-enabled="1"><i class="icon-file-alt"></i> Preview PDF</a><a href="/panels_ajax_tab/biorxiv_tab_pdf/node:743427/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li></ul></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-panel-tabs-container" > <div class="pane-content"> <div data-panels-ajax-tab-preloaded="biorxiv_tab_art" id="panels-ajax-tab-container-highwire_article_tabs" class="panels-ajax-tab-container"><div class="panels-ajax-tab-loading" style ="display:none"><img class="loading" src="https://www.biorxiv.org/sites/all/modules/contrib/panels_ajax_tab/images/loading.gif" alt="Loading" title="Loading" /></div><div class="panels-ajax-tab-wrap-biorxiv_tab_art"><div class="panel-display panel-1col clearfix" > <div class="panel-panel panel-col"> <div><div class="panel-pane pane-highwire-markup" > <div class="pane-content"> <div class="highwire-markup"><div xmlns="http://www.w3.org/1999/xhtml" data-highwire-cite-ref-tooltip-instance="highwire_reflinks_tooltip" class="content-block-markup" xmlns:xhtml="http://www.w3.org/1999/xhtml"><div class="article abstract-view "><span class="highwire-journal-article-marker-start"></span><div class="section abstract" id="abstract-1"><h2 class="">Abstract</h2><p id="p-4">Deep convolutional neural networks (DCNNs) rival humans in object recognition. The layers (or levels of representation) in DCNNs have been successfully aligned with processing stages along the ventral stream for visual processing. Here, we propose a model of concept learning that uses visual representations from these networks to build memory representations of novel categories, which may rely on the medial temporal lobe (MTL) and medial prefrontal cortex (mPFC). Our approach opens up two possibilities: <em>a</em>) formal investigations can involve photographic stimuli as opposed to stimuli handcrafted and coded by the experimenter; <em>b</em>) model comparison can determine which level of representation within a DCNN a learner is using during categorization decisions. Pursuing the latter point, DCNNs suggest that the shape bias in children relies on representations at more advanced network layers whereas a learner that relied on lower network layers would display a color bias. These results confirm the role of natural statistics in the shape bias (i.e., shape is predictive of category membership) while highlighting that the type of statistics matter, i.e., those from lower or higher levels of representation. We use the same approach to provide evidence that pigeons performing seemingly sophisticated categorization of complex imagery may in fact be relying on representations that are very low-level (i.e., retinotopic). Although complex features, such as shape, relatively predominate at more advanced network layers, even simple features, such as spatial frequency and orientation, are better represented at the more advanced layers, contrary to a standard hierarchical view.</p></div><div class="section fn-group" id="fn-group-1"><h2>Footnotes</h2><ul><li class="fn-supported-by" id="fn-1"><p id="p-1">This work was supported by NIH (Grant 1P01HD080679), and a Wellcome Trust Investigator Award (Grant WT106931MA) to BCL, as well as The Alan Turing Institute under the EPSRC grant EP/N510129/1. Some of this work was originally reported at the 39th Annual Meeting of the Cognitive Science Society in 2017.</p></li><li class="fn-other" id="fn-2"><p id="p-2">The authors declare that they have no competing interests. The authors would like to thank the members of the Love lab at UCL for their useful input when preparing the manuscript. The code used to run these experiments is available here: <a href="https://osf.io/jxavn/">https://osf.io/jxavn/</a>.</p></li><li class="fn-dataset fn-group-external-links" id="fn-3"><p id="p-5"> <a href="https://osf.io/jxavn/">https://osf.io/jxavn/</a> </p></li></ul></div><span class="highwire-journal-article-marker-end"></span></div><span class="related-urls"></span></div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-biorxiv-copyright" > <div class="pane-content"> <div class="field field-name-field-highwire-copyright field-type-text field-label-inline clearfix"><div class="field-label">Copyright&nbsp;</div><div class="field-items"><div class="field-item even">The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.<span class="license-type"> It is made available under a <a href="http://creativecommons.org/licenses/by/4.0/" class="" data-icon-position="" data-hide-link-title="0">CC-BY 4.0 International license</a>.</span></div></div></div> </div> </div> </div> </div> </div> </div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-disqus-comment" > <div class="pane-content"> <div id="disqus_thread"><noscript><p><a href="http://biorxivstage.disqus.com/?url=https%3A%2F%2Fwww.biorxiv.org%2Fcontent%2F10.1101%2F626374v2" class="" data-icon-position="" data-hide-link-title="0">View the discussion thread.</a></p></noscript></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-back-to-top" > <div class="pane-content"> <a href="#page" class="back-to-top" data-icon-position="" data-hide-link-title="0"><span class="icon-chevron-up"></span> Back to top</a> </div> </div> </div> </div> </div> <div class="sidebar-right-wrapper grid-10 omega"> <div class="panel-panel panel-region-sidebar-right"> <div class="inside"><div class="panel-pane pane-highwire-node-pager" > <div class="pane-content"> <div class="pager highwire-pager pager-mini clearfix highwire-node-pager highwire-article-pager"><span class="pager-prev"><a href="/content/10.1101/551036v3" title="Introgressive and horizontal acquisition of Wolbachia by Drosophila yakuba-clade hosts and horizontal transfer of incompatibility loci between distantly related Wolbachia" rel="prev" class="pager-link-prev link-icon"><span class="icon-circle-arrow-left"></span> <span class="title">Previous</span></a></span><span class="pager-next"><a href="/content/10.1101/283929v2-0" title="Cell-type heterogeneity in adipose tissue is associated with complex traits and reveals disease-relevant cell-specific eQTLs" rel="next" class="pager-link-next link-icon-right link-icon"><span class="title">Next</span> <span class="icon-circle-arrow-right"></span></a></span></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-custom pane-1" > <div class="pane-content"> Posted&nbsp;May 22, 2019. </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-panels-mini pane-biorxiv-art-tools" > <div class="pane-content"> <div id="mini-panel-biorxiv_art_tools" class="highwire-2col-stacked panel-display"> <div class="panel-row-wrapper clearfix"> <div class="content-left-wrapper content-column"> <div class="panel-panel panel-region-content-left"> <div class="inside"><div class="panel-pane pane-highwire-variant-link" > <div class="pane-content"> <a href="/content/10.1101/626374v2.full.pdf" target="_self" class="article-dl-pdf-link link-icon"><span class="icon-external-link-sign"></span> <span class="title">Download PDF</span></a> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-variant-link" > <div class="pane-content"> <a href="/content/early/2019/05/22/626374.external-links" target="_self" class="link-icon"><span class="icon-file"></span> <span class="title">Data/Code</span></a> </div> </div> </div> </div> </div> <div class="content-right-wrapper content-column"> <div class="panel-panel panel-region-content-right"> <div class="inside"><div class="panel-pane pane-minipanel-dialog-link pane-biorxiv-art-email" > <div class="pane-content"> <div class='minipanel-dialog-wrapper'><div class='minipanel-dialog-link-link'><a href="/" oncontextmenu="javascript: return false;" class="minipanel-dialog-link-trigger" title="Email this Article" data-icon-position="" data-hide-link-title="0"><i class = 'icon-envelope'></i> Email</a></div><div class='minipanel-dialog-link-mini' style='display:none'><div class="panel-display panel-1col clearfix" id="mini-panel-biorxiv_art_email"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-block pane-forward-form pane-forward" > <div class="pane-content"> <form action="/content/10.1101/626374v2" method="post" id="forward-form" accept-charset="UTF-8"><div><div id="edit-instructions" class="form-item form-item-label-before form-type-item"> <p>Thank you for your interest in spreading the word about bioRxiv.</p><p>NOTE: Your email address is requested solely to identify you as the sender of this article.</p> </div> <div class="form-item form-item-label-before form-type-textfield form-item-email"> <label for="edit-email">Your Email <span class="form-required" title="This field is required.">*</span></label> <input type="text" id="edit-email" name="email" value="" size="58" maxlength="256" class="form-text required" /> </div> <div class="form-item form-item-label-before form-type-textfield form-item-name"> <label for="edit-name">Your Name <span class="form-required" title="This field is required.">*</span></label> <input type="text" id="edit-name" name="name" value="" size="58" maxlength="256" class="form-text required" /> </div> <div class="form-item form-item-label-before form-type-textarea form-item-recipients"> <label for="edit-recipients">Send To <span class="form-required" title="This field is required.">*</span></label> <div class="form-textarea-wrapper resizable"><textarea id="edit-recipients" name="recipients" cols="50" rows="5" class="form-textarea required"></textarea></div> <div class="description">Enter multiple addresses on separate lines or separate them with commas.</div> </div> <div id="edit-page" class="form-item form-item-label-before form-type-item"> <label for="edit-page">You are going to email the following </label> <a href="/content/10.1101/626374v2" class="active" data-icon-position="" data-hide-link-title="0">Levels of Representation in a Deep Learning Model of Categorization</a> </div> <div id="edit-subject" class="form-item form-item-label-before form-type-item"> <label for="edit-subject">Message Subject </label> (Your Name) has forwarded a page to you from bioRxiv </div> <div id="edit-body" class="form-item form-item-label-before form-type-item"> <label for="edit-body">Message Body </label> (Your Name) thought you would like to see this page from the bioRxiv website. </div> <div class="form-item form-item-label-before form-type-textarea form-item-message"> <label for="edit-message--2">Your Personal Message </label> <div class="form-textarea-wrapper resizable"><textarea id="edit-message--2" name="message" cols="50" rows="10" class="form-textarea"></textarea></div> </div> <input type="hidden" name="path" value="node/743427" /> <input type="hidden" name="path_cid" value="" /> <input type="hidden" name="forward_footer" value=" " /> <input type="hidden" name="form_build_id" value="form-9R6WRjnHQup6TexfMdfgDHkiHCA8Dzfn7di9dxUezfs" /> <input type="hidden" name="form_id" value="forward_form" /> <fieldset class="captcha form-wrapper"><legend><span class="fieldset-legend">CAPTCHA</span></legend><div class="fieldset-wrapper"><div class="fieldset-description">This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.</div><input type="hidden" name="captcha_sid" value="931607303" /> <input type="hidden" name="captcha_token" value="efa8074cd6ddc923644144d5430ea47b" /> <input type="hidden" name="captcha_response" value="Google no captcha" /> <div class="g-recaptcha" data-sitekey="6LfnJVIUAAAAAE-bUOMg0MJGki4lqSvDmhJp19fN" data-theme="light" data-type="image"></div></div></fieldset> <div class="form-actions form-wrapper" id="edit-actions"><input type="submit" id="edit-submit" name="op" value="Send Message" class="form-submit" /></div></div></form> </div> </div> </div> </div> </div> </div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-share-link highwire_clipboard_link_ajax" id="shareit"> <div class="pane-content"> <a href="/" class="link-icon"><span class="icon-share-alt"></span> <span class="title">Share</span></a> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-panels-mini pane-biorxiv-share highwire_clipboard_form_ajax_shareit" > <div class="pane-content"> <div class="panel-display omega-12-onecol" id="mini-panel-biorxiv_share"> <div class="panel-panel grid-12 panel-region-preface"> <div class="inside"><div class="panel-pane pane-highwire-article-citation" > <div class="pane-content"> <div class="highwire-article-citation highwire-citation-type-highwire-article node743427--3" data-node-nid="743427" id="node-743427--41106489515" data-pisa="biorxiv;626374v2" data-pisa-master="biorxiv;626374" data-seqnum="743427" data-apath="/biorxiv/early/2019/05/22/626374.atom"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-biorxiv-article-pap-list clearfix" > <div class="highwire-cite-title" > <div class="highwire-cite-title">Levels of Representation in a Deep Learning Model of Categorization</div> </div> <div class="highwire-cite-authors" ><span class="highwire-citation-authors"><span class="highwire-citation-author first" data-delta="0"><span class="nlm-given-names">Olivia</span> <span class="nlm-surname">Guest</span></span>, <span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Bradley C.</span> <span class="nlm-surname">Love</span></span></span></div> <div class="highwire-cite-metadata" ><span class="highwire-cite-metadata-journal highwire-cite-metadata">bioRxiv </span><span class="highwire-cite-metadata-pages highwire-cite-metadata">626374; </span><span class="highwire-cite-metadata-doi highwire-cite-metadata"><span class="doi_label">doi:</span> https://doi.org/10.1101/626374 </span></div> </div> </div> </div> </div> </div> </div> <div class="panel-panel grid-12 panel-region-content"> <div class="inside"><div class="panel-pane pane-highwire-article-clipboard-copy" > <div class="pane-content"> <div class = "clipboard-copy"> <span class="label-url"> <label for="dynamic">Share This Article:</label> </span> <span class="input-text-url"> <input type="text" id="dynamic" value="https://www.biorxiv.org/content/10.1101/626374v2" size="50"/> </span> <span class="copy-button button"> <button id="copy-dynamic" class="clipboardjs-button" data-clipboard-target="#dynamic" data-clipboard-alert-style="tooltip" data-clipboard-alert-text="Copied!">Copy</button> </span> </div> </div> </div> </div> </div> <div class="panel-panel grid-12 panel-region-postscript"> <div class="inside"><div class="panel-pane pane-service-links text-center" > <div class="pane-content"> <div class="service-links"><a href="http://twitter.com/share?url=https%3A//www.biorxiv.org/content/10.1101/626374v2&amp;text=Levels%20of%20Representation%20in%20a%20Deep%20Learning%20Model%20of%20Categorization" id="twitter" title="Share this on Twitter" class="service-links-twitter" rel="nofollow" data-icon-position="" data-hide-link-title="0"><img src="https://www.biorxiv.org/sites/all/modules/highwire/highwire/images/twitter.png" alt="Twitter logo" /></a> <a href="http://www.facebook.com/sharer.php?u=https%3A//www.biorxiv.org/content/10.1101/626374v2&amp;t=Levels%20of%20Representation%20in%20a%20Deep%20Learning%20Model%20of%20Categorization" id="facebook" title="Share on Facebook" class="service-links-facebook" rel="nofollow" data-icon-position="" data-hide-link-title="0"><img src="https://www.biorxiv.org/sites/all/modules/highwire/highwire/images/fb-blue.png" alt="Facebook logo" /></a> <a href="http://www.linkedin.com/shareArticle?mini=true&amp;url=https%3A//www.biorxiv.org/content/10.1101/626374v2&amp;title=Levels%20of%20Representation%20in%20a%20Deep%20Learning%20Model%20of%20Categorization&amp;summary=&amp;source=bioRxiv" id="linkedin" title="Publish this post to LinkedIn" class="service-links-linkedin" rel="nofollow" data-icon-position="" data-hide-link-title="0"><img src="https://www.biorxiv.org/sites/all/modules/highwire/highwire/images/linkedin-32px.png" alt="LinkedIn logo" /></a> <a href="http://www.mendeley.com/import/?url=https%3A//www.biorxiv.org/content/10.1101/626374v2&amp;title=Levels%20of%20Representation%20in%20a%20Deep%20Learning%20Model%20of%20Categorization" id="mendeley" title="Share on Mendeley" class="service-links-mendeley" rel="nofollow" data-icon-position="" data-hide-link-title="0"><img src="https://www.biorxiv.org/sites/all/modules/highwire/highwire/images/mendeley.png" alt="Mendeley logo" /></a></div> </div> </div> </div> </div> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-minipanel-dialog-link pane-biorxiv-cite-tool" > <div class="pane-content"> <div class='minipanel-dialog-wrapper'><div class='minipanel-dialog-link-link'><a href="/" oncontextmenu="javascript: return false;" class="minipanel-dialog-link-trigger link-icon" title="Citation Tools"><span class="icon-globe"></span> <span class="title">Citation Tools</span></a></div><div class='minipanel-dialog-link-mini' style='display:none'><div class="panel-display panel-1col clearfix" id="mini-panel-biorxiv_cite_tool"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-highwire-citation-export" > <div class="pane-content"> <div class="highwire-citation-export"> <div class="highwire-citation-info"> <div class="highwire-article-citation highwire-citation-type-highwire-article cite-tool-node743427--5" data-node-nid="743427" id="citation-node-743427--61957196049" data-pisa="biorxiv;626374v2" data-pisa-master="biorxiv;626374" data-seqnum="743427" data-apath="/biorxiv/early/2019/05/22/626374.atom"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-biorxiv-article-pap-list clearfix" > <div class="highwire-cite-title" > <div class="highwire-cite-title">Levels of Representation in a Deep Learning Model of Categorization</div> </div> <div class="highwire-cite-authors" ><span class="highwire-citation-authors"><span class="highwire-citation-author first" data-delta="0"><span class="nlm-given-names">Olivia</span> <span class="nlm-surname">Guest</span></span>, <span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Bradley C.</span> <span class="nlm-surname">Love</span></span></span></div> <div class="highwire-cite-metadata" ><span class="highwire-cite-metadata-journal highwire-cite-metadata">bioRxiv </span><span class="highwire-cite-metadata-pages highwire-cite-metadata">626374; </span><span class="highwire-cite-metadata-doi highwire-cite-metadata"><span class="doi_label">doi:</span> https://doi.org/10.1101/626374 </span></div> </div> </div> </div> <div class="highwire-citation-formats"> <h2>Citation Manager Formats</h2> <div class="highwire-citation-formats-links"> <span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.spage&amp;rft.epage&amp;rft.atitle=Levels%20of%20Representation%20in%20a%20Deep%20Learning%20Model%20of%20Categorization&amp;rft.volume&amp;rft.issue&amp;rft.date=2019-01-01%2000%3A00%3A00&amp;rft.stitle&amp;rft.jtitle=bioRxiv&amp;rft.au=Guest%2C+Olivia&amp;rft.au=Love%2C+Bradley+C."></span><ul class="hw-citation-links inline button button-alt button-grid clearfix"><li class="bibtext first"><a href="/highwire/citation/743427/bibtext" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">BibTeX</a></li><li class="bookends"><a href="/highwire/citation/743427/bookends" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Bookends</a></li><li class="easybib"><a href="/highwire/citation/743427/easybib" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">EasyBib</a></li><li class="endnote-tagged"><a href="/highwire/citation/743427/endnote-tagged" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">EndNote (tagged)</a></li><li class="endnote-8-xml"><a href="/highwire/citation/743427/endnote-8-xml" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">EndNote 8 (xml)</a></li><li class="medlars"><a href="/highwire/citation/743427/medlars" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Medlars</a></li><li class="mendeley"><a href="/highwire/citation/743427/mendeley" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Mendeley</a></li><li class="papers"><a href="/highwire/citation/743427/papers" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Papers</a></li><li class="refworks-tagged"><a href="/highwire/citation/743427/refworks-tagged" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">RefWorks Tagged</a></li><li class="reference-manager"><a href="/highwire/citation/743427/reference-manager" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Ref Manager</a></li><li class="ris"><a href="/highwire/citation/743427/ris" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">RIS</a></li><li class="zotero last"><a href="/highwire/citation/743427/zotero" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Zotero</a></li></ul> </div> </div> </div> </div> </div> </div> </div> </div> </div></div> </div> </div> </div> </div> </div> </div> <!-- /.panel-row-wrapper --> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-service-links" > <div class="pane-content"> <div class="service-links"><div class="item-list"><ul><li class="first"><a href="http://twitter.com/share?url=https%3A//www.biorxiv.org/content/10.1101/626374v2&amp;count=horizontal&amp;via=&amp;text=Levels%20of%20Representation%20in%20a%20Deep%20Learning%20Model%20of%20Categorization&amp;counturl=https%3A//www.biorxiv.org/content/10.1101/626374v2" class="twitter-share-button service-links-twitter-widget" id="twitter_widget" title="Tweet This" rel="nofollow" data-icon-position="" data-hide-link-title="0"><span class="element-invisible">Tweet Widget</span></a></li><li><a href="http://www.facebook.com/plugins/like.php?href=https%3A//www.biorxiv.org/content/10.1101/626374v2&amp;layout=button_count&amp;show_faces=false&amp;action=like&amp;colorscheme=light&amp;width=100&amp;height=21&amp;font=&amp;locale=" id="facebook_like" title="I Like it" class="service-links-facebook-like" rel="nofollow" data-icon-position="" data-hide-link-title="0"><span class="element-invisible">Facebook Like</span></a></li><li class="last"><a href="https://www.biorxiv.org/content/10.1101/626374v2" id="google_plus_one" title="Plus it" class="service-links-google-plus-one" rel="nofollow" data-icon-position="" data-hide-link-title="0"><span class="element-invisible">Google Plus One</span></a></li></ul></div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-article-collections" > <h2 class="pane-title">Subject Area</h2> <div class="pane-content"> <div class="highwire-list-wrapper highwire-article-collections"><div class="highwire-list"><ul class="highwire-article-collection-term-list"><li class="first last odd"><span class="highwire-article-collection-term"><a href="/collection/neuroscience" class="highlight" data-icon-position="" data-hide-link-title="0">Neuroscience<i class="icon-caret-right"></i> </a></span></li></ul></div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-panels-mini pane-biorxiv-subject-collections block-style-col2" > <div class="pane-content"> <div class="panel-flexible panels-flexible-new clearfix" id="mini-panel-biorxiv_subject_collections"> <div class="panel-flexible-inside panels-flexible-new-inside"> <div class="panels-flexible-region panels-flexible-region-new-center panels-flexible-region-first panels-flexible-region-last"> <div class="inside panels-flexible-region-inside panels-flexible-region-new-center-inside panels-flexible-region-inside-first panels-flexible-region-inside-last"> <div class="panel-pane pane-snippet" > <div class="pane-content"> <div class="snippet biorxiv-subject-areas-table-title" id="biorxiv-subject-areas-table-title"> <div class="snippet-content"> <b>Subject Areas</b> </div> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-snippet" > <div class="pane-content"> <div class="snippet biorxiv-subject-areas-view-papers" id="biorxiv-subject-areas-view-papers"> <div class="snippet-content"> <a href="/content/early/recent"><strong>All Articles</strong></a> </div> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-subject-collections" > <div class="pane-content"> <ul id="collection" class="collection highwire-list-expand"><li class="outer collection depth-2 child first"><div class = "data-wrapper"><a href="/collection/animal-behavior-and-cognition" class="" data-icon-position="" data-hide-link-title="0">Animal Behavior and Cognition</a> <span class = "article-count">(6240)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper">Biochemistry</div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/biochemistry-0" class="" data-icon-position="" data-hide-link-title="0">Biochemistry</a> <span class = "article-count">(14246)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/bioengineering" class="" data-icon-position="" data-hide-link-title="0">Bioengineering</a> <span class = "article-count">(10872)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/bioinformatics" class="" data-icon-position="" data-hide-link-title="0">Bioinformatics</a> <span class = "article-count">(34414)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/biophysics" class="" data-icon-position="" data-hide-link-title="0">Biophysics</a> <span class = "article-count">(17713)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/cancer-biology" class="" data-icon-position="" data-hide-link-title="0">Cancer Biology</a> <span class = "article-count">(14819)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/cell-biology" class="" data-icon-position="" data-hide-link-title="0">Cell Biology</a> <span class = "article-count">(20880)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/clinical-trials" class="" data-icon-position="" data-hide-link-title="0">Clinical Trials</a> <span class = "article-count">(138)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/developmental-biology" class="" data-icon-position="" data-hide-link-title="0">Developmental Biology</a> <span class = "article-count">(11226)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/ecology" class="" data-icon-position="" data-hide-link-title="0">Ecology</a> <span class = "article-count">(16567)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/epidemiology" class="" data-icon-position="" data-hide-link-title="0">Epidemiology</a> <span class = "article-count">(2067)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/evolutionary-biology" class="" data-icon-position="" data-hide-link-title="0">Evolutionary Biology</a> <span class = "article-count">(20883)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/genetics" class="" data-icon-position="" data-hide-link-title="0">Genetics</a> <span class = "article-count">(13720)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/genomics" class="" data-icon-position="" data-hide-link-title="0">Genomics</a> <span class = "article-count">(19150)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/immunology" class="" data-icon-position="" data-hide-link-title="0">Immunology</a> <span class = "article-count">(14308)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/microbiology" class="" data-icon-position="" data-hide-link-title="0">Microbiology</a> <span class = "article-count">(33329)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/molecular-biology" class="" data-icon-position="" data-hide-link-title="0">Molecular Biology</a> <span class = "article-count">(13903)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/neuroscience" class="" data-icon-position="" data-hide-link-title="0">Neuroscience</a> <span class = "article-count">(72702)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/paleontology" class="" data-icon-position="" data-hide-link-title="0">Paleontology</a> <span class = "article-count">(546)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/pathology" class="" data-icon-position="" data-hide-link-title="0">Pathology</a> <span class = "article-count">(2286)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/pharmacology-and-toxicology" class="" data-icon-position="" data-hide-link-title="0">Pharmacology and Toxicology</a> <span class = "article-count">(3872)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/physiology" class="" data-icon-position="" data-hide-link-title="0">Physiology</a> <span class = "article-count">(6130)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/plant-biology" class="" data-icon-position="" data-hide-link-title="0">Plant Biology</a> <span class = "article-count">(12447)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/scientific-communication-and-education" class="" data-icon-position="" data-hide-link-title="0">Scientific Communication and Education</a> <span class = "article-count">(1842)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/synthetic-biology" class="" data-icon-position="" data-hide-link-title="0">Synthetic Biology</a> <span class = "article-count">(3477)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/systems-biology" class="" data-icon-position="" data-hide-link-title="0">Systems Biology</a> <span class = "article-count">(8396)</span></div></li> <li class="outer collection depth-2 child last"><div class = "data-wrapper"><a href="/collection/zoology" class="" data-icon-position="" data-hide-link-title="0">Zoology</a> <span class = "article-count">(1921)</span></div></li> </ul> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> <!-- /.panel-row-wrapper --> </div> </div> </div> </div> </div> </div> </div> </section> </div> <div class="region region-page-bottom" id="region-page-bottom"> <div class="region-inner region-page-bottom-inner"> </div> </div><script type="text/javascript" src="https://www.biorxiv.org/sites/default/files/advagg_js/js__Vh5BcRYb6VtLoN3uam6O4DIKltYUVMjVDWtakoysPq0__Wed8jsPTirEozek7dWSCS8970Cp7a9xKKgFk6FPuSVM__V7p9f6xKfJWB4tz1ZOzGhbp_vlwczIKATHxjqvc4v4c.js"></script> <script type="text/javascript" src="//d33xdlntwy0kbs.cloudfront.net/cshl_custom.js"></script> <script type="text/javascript" src="https://www.biorxiv.org/sites/default/files/advagg_js/js__BmqjBnkz3MgYCAoc25s1lDRMEjLhC3mEPVonUFIHi08__Unwv5-ZIuHBfFwytsjEx1niBVJ7n1T4lPws7VrkHXM4__V7p9f6xKfJWB4tz1ZOzGhbp_vlwczIKATHxjqvc4v4c.js"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- function euCookieComplianceLoadScripts() {} //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- var eu_cookie_compliance_cookie_name = ""; //--><!]]> </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10