CINXE.COM

Search results for: palm

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: palm</title> <meta name="description" content="Search results for: palm"> <meta name="keywords" content="palm"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="palm" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="palm"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 320</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: palm</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Value Chain Analysis and Enhancement Added Value in Palm Oil Supply Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juliza%20Hidayati">Juliza Hidayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Sawarni%20Hasibuan"> Sawarni Hasibuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PT. XYZ is a manufacturing company that produces Crude Palm Oil (CPO). The fierce competition in the global markets not only between companies but also a competition between supply chains. This research aims to analyze the supply chain and value chain of Crude Palm Oil (CPO) in the company. Data analysis method used is qualitative analysis and quantitative analysis. The qualitative analysis describes supply chain and value chain, while the quantitative analysis is used to find out value added and the establishment of the value chain. Based on the analysis, the value chain of crude palm oil (CPO) in the company consists of four main actors that are suppliers of raw materials, processing, distributor, and customer. The value chain analysis consists of two actors; those are palm oil plantation and palm oil processing plant. The palm oil plantation activities include nurseries, planting, plant maintenance, harvesting, and shipping. The palm oil processing plant activities include reception, sterilizing, thressing, pressing, and oil classification. The value added of palm oil plantations was 72.42% and the palm oil processing plant was 10.13%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20oil" title="palm oil">palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20chain" title=" value chain"> value chain</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20added" title=" value added"> value added</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/82837/value-chain-analysis-and-enhancement-added-value-in-palm-oil-supply-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Expanding Chance of Palm Oil Market into ASEAN Community: Case Study of Choomporn Palm Oil Cooperative</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pichamon%20Chansuchai">Pichamon Chansuchai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studied the expanding market opportunity palm oil ASEAN community: case study of Choomporn Palm Oil Cooperative as qualitative research. The purpose is to study and analyze expanding and linking the liberalization of trade in palm oil products under the terms of cooperation and ASEAN countries. Collection data were collected using participatory observation, in-depth interviews, focus groups, government officials, palm oil cooperative, entrepreneurs and farmers to exchange opinions. The study found that of major competitors is Indonesia and Malaysia which as ASEAM members countries has the potential to produce over Thailand. Thailand government must have a policy to increase the competitiveness of the palm oil Thailand. Using grants from the Free Trade Area fund should add value to agricultural products, palm oil and the development of standard products to meet the needs of the member countries. And creating a learning center of the palm oil sector can transfer knowledge, development of palm species, solution process from planting to harvest care privatization process. And the development of palm oil in order to expand market opportunities for Thailand's palm oil has the potential to be competitive in the neighboring countries and the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20oil" title="palm oil">palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=market" title=" market"> market</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperative" title=" cooperative"> cooperative</a>, <a href="https://publications.waset.org/abstracts/search?q=ASEAN" title=" ASEAN"> ASEAN</a> </p> <a href="https://publications.waset.org/abstracts/53212/expanding-chance-of-palm-oil-market-into-asean-community-case-study-of-choomporn-palm-oil-cooperative" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Fluorescence Sensing as a Tool to Estimate Palm Oil Quality and Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norul%20Husna%20A.%20Kasim">Norul Husna A. Kasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Siva%20K.%20Balasundram"> Siva K. Balasundram </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gap between ‘actual yield’ and ‘potential yield’ has remained a problem in the Malaysian oil palm industry. Ineffective maturity assessment and untimely harvesting have compounded this problem. Typically, the traditional method of palm oil quality and yield assessment is destructive, costly and laborious. Fluorescence-sensing offers a new means of assessing palm oil quality and yield non-destructively. This work describes the estimation of palm oil quality and yield using a multi-parametric fluorescence sensor (Multiplex®) to quantify the concentration of secondary metabolites, such as anthocyanin and flavonoid, in fresh fruit bunches across three different palm ages (6, 9, and 12 years-old). Results show that fluorescence sensing is an effective means of assessing FFB maturity, in terms of palm oil quality and yield quantifications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthocyanin" title="anthocyanin">anthocyanin</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid%20fluorescence%20sensor" title=" flavonoid fluorescence sensor"> flavonoid fluorescence sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20yield%20and%20quality" title=" palm oil yield and quality"> palm oil yield and quality</a> </p> <a href="https://publications.waset.org/abstracts/18494/fluorescence-sensing-as-a-tool-to-estimate-palm-oil-quality-and-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">809</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> Mass Pheromone Trapping on Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Oil Palm Plantations of Terengganu</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wahizatul%20Afzan%20Azmi">Wahizatul Afzan Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Ain%20Farhah%20Ros%20Saidon%20Khudri"> Nur Ain Farhah Ros Saidon Khudri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Haris%20Hussain"> Mohamad Haris Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Tse%20Seng%20Chuah"> Tse Seng Chuah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaysia houses a broad range of palm trees species and some of these palm trees are very crucial for the country’s social and economic development, especially the oil palm trees. However, the destructive pest of the various palms species, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) or known as Red Palm Weevil (RPW) was first detected in Terengganu in 2007. Recently, the pattern of infestation has move from coastal lines toward inland areas. After the coconut plantations, it is presumed that the RPW will be a serious threat to the oil palm plantations in Malaysia. Thus, this study was carried out to detect the presence and distribution of Red Palm Weevil (RPW) in selected oil palm plantations of Terengganu. A total of 42 traps were installed in the three oil palm plantations in Terengganu and were inspected every week for two months. Oil palm plantation A collected significantly higher adults RPW compared to the other locations. Generally, females of RPW were significantly higher than male individuals. Females were collected more as the synthetic aggregation pheromone used, ferrugineol was synthesized from the male aggregation pheromone of adult RPW. Oil palm plantation A collected the highest number of RPW might be due to the abundance of soft part in the host plant as the oil palm trees age ranged between 6 to 10 years old. As a conclusion, RPW presence was detected in some oil palm plantations of Terengganu and immediate action is crucially needed before it is too late. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=red%20palm%20weevil" title="red palm weevil">red palm weevil</a>, <a href="https://publications.waset.org/abstracts/search?q=pest" title=" pest"> pest</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm" title=" oil palm"> oil palm</a>, <a href="https://publications.waset.org/abstracts/search?q=pheromone" title=" pheromone"> pheromone</a> </p> <a href="https://publications.waset.org/abstracts/98093/mass-pheromone-trapping-on-red-palm-weevil-rhynchophorus-ferrugineus-coleoptera-curculionidae-in-oil-palm-plantations-of-terengganu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> In vitro Fermentation Characteristics of Palm Oil Byproducts Which is Supplemented with Growth Factor Rumen Microbes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mardiati%20Zain">Mardiati Zain</a>, <a href="https://publications.waset.org/abstracts/search?q=Jurnida%20Rahman"> Jurnida Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Khasrad"> Khasrad</a>, <a href="https://publications.waset.org/abstracts/search?q=Erpomen"> Erpomen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this experiment was to study the use of palm oil by products (oil palm fronds (OPF), palm oil sludge (POS) and palm kernel cake (PKC)), that supplemented with growth factor rumen microbes (Sapindus rarak and Sacharomyces cerevisiae) on digestibility and fermentation in vitro. Oil Palm Fronds was previously treated with 3% urea. The treatments consist of 50% OPF+ 30% POS+ 20% PKC as a control diet (A), B = A + 4% Sapindus rarak, C = A + 0.5 % Sacharomyces cerevisiae and D = A + 4% Sapindus rarak + 0.5% Sacharomyces cerevisiae. Digestibility of DM, OM, ADF, NDF, cellulose and rumen parameters (NH3 and VFA) of all treatments were significantly different (P < 0.05). Fermentation and digestibility treatment A were significantly lower than treatments B, C, and D. The result indicated that supplementation Sapindus rarak and S. cerevisiae were able to improve fermentability and digestibility of palm oil by product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20by%20product" title="palm oil by product">palm oil by product</a>, <a href="https://publications.waset.org/abstracts/search?q=Sapindus%20rarak" title=" Sapindus rarak"> Sapindus rarak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sacharomyces%20rerevisiae" title=" Sacharomyces rerevisiae"> Sacharomyces rerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentability" title=" fermentability"> fermentability</a>, <a href="https://publications.waset.org/abstracts/search?q=OPF%20ammoniated" title=" OPF ammoniated "> OPF ammoniated </a> </p> <a href="https://publications.waset.org/abstracts/19247/in-vitro-fermentation-characteristics-of-palm-oil-byproducts-which-is-supplemented-with-growth-factor-rumen-microbes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">688</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> Supply Chain Management Practices in Thailand Palm Oil Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athirat%20Intajorn">Athirat Intajorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the ASEAN free trade areas (AFTA), Thailand has applied the AFTA agreement for reducing tariffs and reflecting changes in business processes. The reflection of changes in agribusiness processes, in particular, has accumulated as production costs for producers. Palm Oil industry has become an important industry to Thailand economic. Thailand currently ranks the 3rd in the world for Crude Palm Oil CPO. Therefore, the scope of this paper presents a research framework to investigate the supply chain management practices in Thailand palm oil industry. This research is limit to literature review. And the proposed framework identifies the criteria of supply chain management for Thailand palm oil industry in order for linkage among entities within logistics management involving plantation, mill, collection port, refinery and cookie from the data utilization. The Supply Chain Management Practices in Thailand Palm Oil Industry framework has a somewhat different view due to the high complexity of agribusiness logistics management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title="supply chain management">supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=practice" title=" practice"> practice</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20industry" title=" palm oil industry"> palm oil industry</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand%20palm%20oil%20industry" title=" Thailand palm oil industry"> Thailand palm oil industry</a> </p> <a href="https://publications.waset.org/abstracts/74374/supply-chain-management-practices-in-thailand-palm-oil-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> Analysis of Sound Absorption Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakiul%20Fuady">Zakiul Fuady</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20AB"> Ismail AB</a>, <a href="https://publications.waset.org/abstracts/search?q=Fauzi"> Fauzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulfian"> Zulfian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was conducted to analyze the absorption coefficients of sound at several types of materials as well as its combinations. The aim of this research was to find the value of sound absorption coefficients on the materials and its combinations. The materials used in this research were gypsum panel, gypsum-fibre palm, fibre palm-gypsum, and foamed concrete-fibre palm. The test was conducted by using a method of reverberation chamber based on the ISO 354-1985 with the types of the sound source: white noise and pink noise at the frequency of 125 Hz - 8000 Hz. Based on the test results of white noise, it was found that the panel of gypsum-fibre palm has α = 0.93 at low frequency; the panel of fibre palm has α = 0.97 at a medium frequency; and the panel of foamed concrete-fibre palm has α = 0.89 at high frequency. Further, for the sound source of pink noise, it was found that the panel of gypsum-fibre palm has α = 0.99 at low level; the panel of fibre palm-gypsum has α = 0.86 at medium level; and the panel of fibre palm-gypsum has α = 0.64 at high level. The fibre palm panel could absorb the sounds well since this material has bigger airspace (pore) than the foamed concrete and gypsum. Consequently, when the sounds wave enters to this material it will be trapped in the space. The panel of fibre palm affected an increasing of sound absorption coefficient value at the combination materials when the panel of fibre palm was placed under another panel. However, the absorption coefficient values of both fibre palm and fibre palm-gypsum panels are about the same. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20sound%20absorption" title="coefficient of sound absorption">coefficient of sound absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=pink%20noise" title=" pink noise"> pink noise</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20noise" title=" white noise"> white noise</a>, <a href="https://publications.waset.org/abstracts/search?q=palm" title=" palm"> palm</a> </p> <a href="https://publications.waset.org/abstracts/86576/analysis-of-sound-absorption-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> Study on Total Chlorine in Crude Palm Oil from Various Palm Oil Mill Operation Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norliza%20Saparin">Norliza Saparin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmadilfitri%20Noor"> Ahmadilfitri Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Suria%20Affandi%20Yusoff"> Mohd Suria Affandi Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Shawaluddin%20Tahiruddin"> Shawaluddin Tahiruddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A palm oil mill produces crude palm oil (CPO) and has many operation units that comprises of sterilization, stripping, digestion and pressing, clarification, purification, drying and storage. This study investigated the total chlorine in palm fruit and CPO after each operating units. The total chlorine were determined by Mitsubishi NSX-2100 H, Trace Elemental Analyzer. The trace elemental analyzer is a furnace system with a micro-coulometric detector that was used for measuring and detecting total chlorine whether in organic or inorganic form. This determination is important as the chlorine is a direct precursor for 3-MCPD ester. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorine" title="chlorine">chlorine</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-coulometric" title=" micro-coulometric"> micro-coulometric</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil" title=" palm oil"> palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=3-MCPD" title=" 3-MCPD"> 3-MCPD</a> </p> <a href="https://publications.waset.org/abstracts/26844/study-on-total-chlorine-in-crude-palm-oil-from-various-palm-oil-mill-operation-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">674</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> Physicochemical Properties of Palm Stearin (PS) and Palm Kernel Olein (PKOO) Blends as Potential Edible Coating Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Ruzaina">I. Ruzaina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Rashid"> A. B. Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Halimahton%20Zahrah"> M. S. Halimahton Zahrah</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Cheow"> C. S. Cheow</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Adi"> M. S. Adi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to determine the potential of palm stearin (PS) as edible coating materials for fruits. The palm stearin was blended with 20-80% palm kernel olein (PKOo) and the properties of the blends were evaluated in terms of the slip melting point (SMP), solid fat content (SFC), fatty acid and triacylglycerol compositions (TAG), and polymorphism. Blending of PS with PKOo reduced the SMP, SFC, altered the FAC and TAG composition and changed the crystal polymorphism from β to mixture of β and β′. The changes in the physicochemical properties of PS were due to the replacement of the high melting TAG in PS with medium chain TAG in PKOo. From the analysis, 1:1 and 3:2 were the better PSPKOo blend formulations in slowing down the weight loss, respiration gases and gave better appearance when compared to other PSPKOo blends formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guava" title="guava">guava</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20stearin" title=" palm stearin"> palm stearin</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20kernel%20olein" title=" palm kernel olein"> palm kernel olein</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical "> physicochemical </a> </p> <a href="https://publications.waset.org/abstracts/28629/physicochemical-properties-of-palm-stearin-ps-and-palm-kernel-olein-pkoo-blends-as-potential-edible-coating-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">311</span> Clay Palm Press: A Technique of Hand Building in Ceramics for Developing Conceptual Forms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okewu%20E.%20Jonathan">Okewu E. Jonathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several techniques of production in the field of ceramics. These different techniques overtime have been categorised under three methods of production which includes; casting, throwing and hand building. Hand building method of production is further broken down into other techniques and they include coiling, slabbing and pinching. Ceramic artists find the different hand building techniques to be very interesting, practicable and rewarding. This has encouraged ceramic artist in their various studios at different levels to experiment for further hand building techniques that could be unique and unusual. The art of <em>&ldquo;Clay Palm Press&rdquo;</em> is a development from studio experiment in a quest for uniqueness in conceptual ceramic practise. Clay palm press is a technique that requires no formal tutelage but at the same time, it is not easily comprehensible when viewed. It is a practice of putting semi-solid clay in the palm and inserting a closed fist pressure so as to take the imprint of the human palm. This clay production from the palm when dried, fired and explored into an art, work reveals an absolute awesomeness of what the palm imprint could result in. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramics" title="ceramics">ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20palm%20press" title=" clay palm press"> clay palm press</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20forms" title=" conceptual forms"> conceptual forms</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20building" title=" hand building"> hand building</a>, <a href="https://publications.waset.org/abstracts/search?q=technique" title=" technique"> technique</a> </p> <a href="https://publications.waset.org/abstracts/87630/clay-palm-press-a-technique-of-hand-building-in-ceramics-for-developing-conceptual-forms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">310</span> The Clarification of Palm Oil Wastewater Treatment by Coagulant Composite from Palm Oil Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rewadee%20Anuwattana">Rewadee Anuwattana</a>, <a href="https://publications.waset.org/abstracts/search?q=Narumol%20Soparatana"> Narumol Soparatana</a>, <a href="https://publications.waset.org/abstracts/search?q=Pattamaphorn%20Phuangngamphan"> Pattamaphorn Phuangngamphan</a>, <a href="https://publications.waset.org/abstracts/search?q=Worapong%20Pattayawan"> Worapong Pattayawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Atiporn%20Jinprayoon"> Atiporn Jinprayoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Klangkongsap"> Saroj Klangkongsap</a>, <a href="https://publications.waset.org/abstracts/search?q=Supinya%20Sutthima"> Supinya Sutthima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work focus on clarification in palm oil wastewater treatment by using coagulant composite from palm oil ash. The design of this study was carried out by two steps; first, synthesis of new coagulant composite from palm oil ash which was fused by using Al source combined with Fe source and form to the crystal by the hydrothermal crystallization process. The characterization of coagulant composite from palm oil ash was analyzed by advanced instruments, and The pattern was analyzed by X-ray Diffraction (XRD), chemical composition by X-Ray Fluorescence (XRFS) and morphology characterized by SEM. The second step, the clarification wastewater treatment efficiency of synthetic coagulant composite, was evaluated by coagulation/flocculation process based on the COD, turbidity, phosphate and color removal of wastewater from palm oil factory by varying the coagulant dosage (1-8 %w/v) with no adjusted pH and commercial coagulants (Alum, Ferric Chloride and poly aluminum chloride) which adjusted the pH (6). The results found that the maximum removal of 6% w/v of synthetic coagulant from palm oil ash can remove COD, turbidity, phosphate and color was 88.44%, 93.32%, 93.32% and 93.32%, respectively. The experiments were compared using 6% w/v of commercial coagulants (Alum, Ferric Chloride and Polyaluminum Chloride) can remove COD of 74.29%, 71.43% and 57.14%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation" title="coagulation">coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulant" title=" coagulant"> coagulant</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20utilization" title=" waste utilization"> waste utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20ash" title=" palm oil ash"> palm oil ash</a> </p> <a href="https://publications.waset.org/abstracts/141743/the-clarification-of-palm-oil-wastewater-treatment-by-coagulant-composite-from-palm-oil-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">309</span> Study of Ether Species Effects on Physicochemical Properties of Palm Oil Ether Monoesters as Novel Biodiesels </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hejun%20Guo">Hejun Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shenghua%20Liu"> Shenghua Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Five palm oil ether monoesters utilized as novel biodiesels were synthesized and structurally identified in the paper. Investigation was made on the effect of ether species on physicochemical properties of the palm oil ether monoesters. The results showed that density, kinematic viscosity, smoke point, and solidifying point increase linearly with their CH2 group number in certain relationships. Cetane number is enhanced whereas heat value decreases linearly with CH2 group number. In addition, the influencing regularities of volumetric content of the palm oil ether monoesters on the fuel properties were also studied when the ether monoesters are used as diesel fuel additives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20ether%20monoester" title=" palm oil ether monoester"> palm oil ether monoester</a>, <a href="https://publications.waset.org/abstracts/search?q=ether%20species" title=" ether species"> ether species</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20property" title=" physicochemical property"> physicochemical property</a> </p> <a href="https://publications.waset.org/abstracts/1852/study-of-ether-species-effects-on-physicochemical-properties-of-palm-oil-ether-monoesters-as-novel-biodiesels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">308</span> Usage of Palm Oil Industrial Wastes as Construction Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Momeenul%20Islam">Mohammad Momeenul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Johnson%20Alengaram"> U. Johnson Alengaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zamin%20Jumaat"> Mohd Zamin Jumaat</a>, <a href="https://publications.waset.org/abstracts/search?q=Iftekhair%20Ibnul%20Bashar"> Iftekhair Ibnul Bashar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Palm oil industry produces millions of tonnes of industrial wastes and these wastes create huge storage and environmental problems. In order to solve these problems various research works have been performed for past decades. The commonly available wastes are Oil palm shells (OPS) and Palm oil fuel ash (POFA). These materials have already acquired well recognition as alternate of conventional construction materials. OPS has been used as coarse aggregate and compressive strength was found up to 56 MPa for 56-day. It is said that 30 grade Oil Palm shell concrete (OPSC) is possible without adding any cementitious materials. The maximum modulus of elasticity for OPSC was found 18.6 GPa. The Oil palm shell concrete (OPSC) are used in country areas and nearby areas where the palm oil factories are located for houses, road-kerbs, drain blocks, etc. In case of superstructure like beams and slab are also produced by utilizing OPS. Many experimental works have been performed to establish POFA as a substituting binding material in replace of Ordinary Portland cement (OPC). Throughout the research it has been showed that up to 20% of cement by mass can be replaced by POFA. POFA is one of the most enriched pozzolanic materials. The main purpose of this review is to discuss the usage and opportunity of the palm oil industrial wastes as construction materials following the previous experimental research work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20materials" title="construction materials">construction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20shells%20%28OPS%29" title=" oil palm shells (OPS)"> oil palm shells (OPS)</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20fuel%20ash%20%28POFA%29" title=" palm oil fuel ash (POFA)"> palm oil fuel ash (POFA)</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregates" title=" aggregates"> aggregates</a> </p> <a href="https://publications.waset.org/abstracts/24250/usage-of-palm-oil-industrial-wastes-as-construction-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">307</span> Antioxidant Extraction from Indonesian Crude Palm Oil and Its Antioxidation Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supriyono">Supriyono</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumardiyono"> Sumardiyono</a>, <a href="https://publications.waset.org/abstracts/search?q=Puti%20Pertiwi"> Puti Pertiwi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crude palm oil (CPO) is a vegetable oil that came from a palm tree bunch. Palm oil tree was known as highest vegetable oil yield. It was grown across Equatorial County, especially in Malaysia and Indonesia. The greenish red color on CPO was came from carotenoid antioxidant, which could be extracted and use separately as functional food and other purposes as antioxidant source. Another antioxidant that also found in CPO is tocopherol. The aim of the research work is to find antioxidant activity on CPO comparing to the synthetic antioxidant that available in a market. On this research work, antioxidant was extracted by using a mixture of acetone and n. hexane, while activity of the antioxidant extract was determine by DPPH method. The extracted matter was shown that their antioxidant activity was about 45% compare to pure tocopherol and beta carotene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a>, <a href="https://publications.waset.org/abstracts/search?q=beta%20carotene" title=" beta carotene"> beta carotene</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20palm%20oil" title=" crude palm oil"> crude palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a>, <a href="https://publications.waset.org/abstracts/search?q=tocopherol" title=" tocopherol "> tocopherol </a> </p> <a href="https://publications.waset.org/abstracts/74220/antioxidant-extraction-from-indonesian-crude-palm-oil-and-its-antioxidation-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">306</span> Immature Palm Tree Detection Using Morphological Filter for Palm Counting with High Resolution Satellite Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Nadhirah%20Rusyda%20Rosnan">Nur Nadhirah Rusyda Rosnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nursuhaili%20Najwa%20Masrol"> Nursuhaili Najwa Masrol</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Fatiha%20MD%20Nor"> Nurul Fatiha MD Nor</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zafrullah%20Mohammad%20Salim"> Mohammad Zafrullah Mohammad Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sim%20Choon%20Cheak"> Sim Choon Cheak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate inventories of oil palm planted areas are crucial for plantation management as this would impact the overall economy and production of oil. One of the technological advancements in the oil palm industry is semi-automated palm counting, which is replacing conventional manual palm counting via digitizing aerial imagery. Most of the semi-automated palm counting method that has been developed was limited to mature palms due to their ideal canopy size represented by satellite image. Therefore, immature palms were often left out since the size of the canopy is barely visible from satellite images. In this paper, an approach using a morphological filter and high-resolution satellite image is proposed to detect immature palm trees. This approach makes it possible to count the number of immature oil palm trees. The method begins with an erosion filter with an appropriate window size of 3m onto the high-resolution satellite image. The eroded image was further segmented using watershed segmentation to delineate immature palm tree regions. Then, local minimum detection was used because it is hypothesized that immature oil palm trees are located at the local minimum within an oil palm field setting in a grayscale image. The detection points generated from the local minimum are displaced to the center of the immature oil palm region and thinned. Only one detection point is left that represents a tree. The performance of the proposed method was evaluated on three subsets with slopes ranging from 0 to 20° and different planting designs, i.e., straight and terrace. The proposed method was able to achieve up to more than 90% accuracy when compared with the ground truth, with an overall F-measure score of up to 0.91. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immature%20palm%20count" title="immature palm count">immature palm count</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm" title=" oil palm"> oil palm</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/175726/immature-palm-tree-detection-using-morphological-filter-for-palm-counting-with-high-resolution-satellite-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">305</span> Composite Base Natural Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Mahmoudi">Noureddine Mahmoudi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of natural fibers in the development of composite materials is a sector in full expansion. These fibers were used for their low cost, their availability and their renewable character. The fibers of the palm (palm tree) were used as reinforcement in polypropylene (PP). The date palm fibers have some potential because of their ecological and economic interest. Both unmodified and compatibilized fibers are used. Compatibilization was carried out with the use of maleic anhydride copolymers. The morphology and mechanical properties were characterized by electron microscopy scanning (SEM) and tensile tests. The influence of fiber content on mechanical properties of composite PP / date palm has been evaluated and demonstrated, that the maximum stress and elongation decreases with increasing fiber volume rate. On the other hand, an increase of the tensile modulus has been noticed, but after the fibers improvement, the maximum stress increases significantly up to 25% weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20fiber" title="plant fiber">plant fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=palm" title=" palm"> palm</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=compatibilizer" title=" compatibilizer"> compatibilizer</a> </p> <a href="https://publications.waset.org/abstracts/28197/composite-base-natural-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">304</span> Isolation and Identification of Fungal Pathogens in Palm Groves of Oued Righ </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakhdari%20Wassima">Lakhdari Wassima</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouffroukh%20Ammar"> Ouffroukh Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=Dahliz%20Abderrahm%C3%A8ne"> Dahliz Abderrahmène</a>, <a href="https://publications.waset.org/abstracts/search?q=Soud%20Adila"> Soud Adila</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammi%20Hamida"> Hammi Hamida</a>, <a href="https://publications.waset.org/abstracts/search?q=M%E2%80%99lik%20Randa"> M’lik Randa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prospected palm groves of Oued Righ regions (Ouargla, Algeria) allowed us to observe sudden death of palm trees aged between 05 and 70 years. Field examinations revealed abnormal clinical signs with sometimes a quick death of affected trees. Entomologic investigations have confirmed the absence of phytophagous insects on dead trees. Further investigations by questioning farmers on the global management of palm groves visited (Irrigation, water quality used, soil type, etc.) did not establish any relationship between these aspects and the death of palm trees, which naturally pushed us to focus our investigations for research on fungal pathogens. Thus, laboratory studies were conducted to know the real causes of this phenomenon, 13 fungi were found on different parts of the dead palm trees. The flowing fungal types were identified: 1-Diplodia phoenicum, 2-Theilaviopsis paradoxa, 3-Phytophthora sp, 4-Helminthosporium sp, 5-Stemphylium botryosum, 6-Alternaria sp, 7-Aspergillus niger, 8-Aspergillus sp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20tree" title="palm tree">palm tree</a>, <a href="https://publications.waset.org/abstracts/search?q=death" title=" death"> death</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20pathogens" title=" fungal pathogens"> fungal pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=Oued%20Righ" title=" Oued Righ "> Oued Righ </a> </p> <a href="https://publications.waset.org/abstracts/14128/isolation-and-identification-of-fungal-pathogens-in-palm-groves-of-oued-righ" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">303</span> Oil Palm Leaf and Corn Stalk, Mechanical Properties and Surface Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zawawi%20Daud">Zawawi Daud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agro waste can be defined as waste from agricultural plant. Oil palm leaf and corn stalk can be categorized as ago waste material. At first, the comparison between oil palm leaf and corn stalk by mechanical properties from soda pulping process. After that, focusing on surface characterization by Scanning Electron Microscopy (SEM). Both material have a potential due to mechanical properties (tensile, tear, burst and fold) and surface characterization but corn stalk shows more in strength and compactness due to fiber characterization compared to oil palm leaf. This study promoting the green technology in develop a friendly product and suitable to be used as an alternative pulp in paper making industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber" title="fiber">fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20leaf" title=" oil palm leaf"> oil palm leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20stalk" title=" corn stalk"> corn stalk</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20technology" title=" green technology"> green technology</a> </p> <a href="https://publications.waset.org/abstracts/21503/oil-palm-leaf-and-corn-stalk-mechanical-properties-and-surface-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">302</span> Mechanical Properties of Palm Oil-Based Resin Containing Unsaturated Polyester</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Fakhari">Alireza Fakhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Razak%20Rahmat"> Abdul Razak Rahmat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, new palm oil-based polymer systems have been produced by blending unsaturated polyester (UPE) and maleinated, acrylated epoxidized palm oil (MAEPO). The MAEPO/UPE ratio was varied between 10/90 and 40/60 wt%. The influences of various loadings of MAEPO (10, 20, 30, and 40 wt%) on tensile, flexural and impact properties of resulting polymer systems were investigated. The results revealed that, these bio-based polymer systems exhibit mechanical properties comparable to those of petroleum-based polymers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20oil" title="palm oil">palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-based%20resin" title=" bio-based resin"> bio-based resin</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20resources" title=" renewable resources"> renewable resources</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20polyester%20resin" title=" unsaturated polyester resin"> unsaturated polyester resin</a> </p> <a href="https://publications.waset.org/abstracts/18966/mechanical-properties-of-palm-oil-based-resin-containing-unsaturated-polyester" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">301</span> Date Palm Compreg: A High Quality Bio-Composite of Date Palm Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Soltani">Mojtaba Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Edi%20Suhaimi%20Bakar"> Edi Suhaimi Bakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Reza%20Naji"> Hamid Reza Naji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Date Palm Wood (D.P.W) specimens were impregnated with Phenol formaldehyde (PF) resin at 15% level, using vacuum/pressure method. Three levels of moisture content (MC) (50%, 60%, and 70% ) before pressing stage and three hot pressing times (15, 20, and 30 minutes) were the variables. The boards were prepared at 20% compression rate. The physical properties of specimens such as spring back, thickness swelling and water absorption, and mechanical properties including MOR, MOE were studied and compared between variables. The results indicated that the percentage of MC levels before compression set was the main factor on the properties of the Date Palm Compreg. Also, the results showed that this compregnation method can be used as a good method for making high-quality bio-composite from Date Palm Wood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Date%20palm" title="Date palm">Date palm</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol%20formaldehyde%20resin" title=" phenol formaldehyde resin"> phenol formaldehyde resin</a>, <a href="https://publications.waset.org/abstracts/search?q=high-quality%20bio-composite" title=" high-quality bio-composite"> high-quality bio-composite</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20and%20mechanical%20properties" title=" physical and mechanical properties"> physical and mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/29594/date-palm-compreg-a-high-quality-bio-composite-of-date-palm-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">300</span> Identification of Healthy and BSR-Infected Oil Palm Trees Using Color Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Khairunniza-Bejo">Siti Khairunniza-Bejo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusnida%20Yusoff"> Yusnida Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Nik%20Salwani%20Nik%20Yusoff"> Nik Salwani Nik Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Idris%20Abu%20Seman"> Idris Abu Seman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Izzuddin%20Anuar"> Mohamad Izzuddin Anuar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the oil palm plantations have been threatened by Basal Stem Rot (BSR) disease which causes serious economic impact. This study was conducted to identify the healthy and BSR-infected oil palm tree using thirteen color indices. Multispectral and thermal camera was used to capture 216 images of the leaves taken from frond number 1, 9 and 17. Indices of normalized difference vegetation index (NDVI), red (R), green (G), blue (B), near infrared (NIR), green – blue (GB), green/blue (G/B), green – red (GR), green/red (G/R), hue (H), saturation (S), intensity (I) and thermal index (T) were used. From this study, it can be concluded that G index taken from frond number 9 is the best index to differentiate between the healthy and BSR-infected oil palm trees. It not only gave high value of correlation coefficient (R=-0.962), but also high value of separation between healthy and BSR-infected oil palm tree. Furthermore, power and S model developed using G index gave the highest R2 value which is 0.985. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20palm" title="oil palm">oil palm</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=disease" title=" disease"> disease</a>, <a href="https://publications.waset.org/abstracts/search?q=leaves" title=" leaves"> leaves</a> </p> <a href="https://publications.waset.org/abstracts/28605/identification-of-healthy-and-bsr-infected-oil-palm-trees-using-color-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">299</span> Water Footprint for the Palm Oil Industry in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Subramaniam">Vijaya Subramaniam</a>, <a href="https://publications.waset.org/abstracts/search?q=Loh%20Soh%20Kheang"> Loh Soh Kheang</a>, <a href="https://publications.waset.org/abstracts/search?q=Astimar%20Abdul%20Aziz"> Astimar Abdul Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water footprint (WFP) has gained importance due to the increase in water scarcity in the world. This study analyses the WFP for an agriculture sector, i.e., the oil palm supply chain, which produces oil palm fresh fruit bunch (FFB), crude palm oil, palm kernel, and crude palm kernel oil. The water accounting and vulnerability evaluation (WAVE) method was used. This method analyses the water depletion index (WDI) based on the local blue water scarcity. The main contribution towards the WFP at the plantation was the production of FFB from the crop itself at 0.23m³/tonne FFB. At the mill, the burden shifts to the water added during the process, which consists of the boiler and process water, which accounted for 6.91m³/tonne crude palm oil. There was a 33% reduction in the WFP when there was no dilution or water addition after the screw press at the mill. When allocation was performed, the WFP reduced by 42% as the burden was shared with the palm kernel and palm kernel shell. At the kernel crushing plant (KCP), the main contributor towards the WFP 4.96 m³/tonne crude palm kernel oil which came from the palm kernel which carried the burden from upstream followed by electricity, 0.33 m³/tonne crude palm kernel oil used for the process and 0.08 m³/tonne crude palm kernel oil for transportation of the palm kernel. A comparison was carried out for mills with biogas capture versus no biogas capture, and the WFP had no difference for both scenarios. The comparison when the KCPs operate in the proximity of mills as compared to those operating in the proximity of ports only gave a reduction of 6% for the WFP. Both these scenarios showed no difference and insignificant difference, which differed from previous life cycle assessment studies on the carbon footprint, which showed significant differences. This shows that findings change when only certain impact categories are focused on. It can be concluded that the impact from the water used by the oil palm tree is low due to the practice of no irrigation at the plantations and the high availability of water from rainfall in Malaysia. This reiterates the importance of planting oil palm trees in regions with high rainfall all year long, like the tropics. The milling stage had the most significant impact on the WFP. Mills should avoid dilution to reduce this impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20footprint" title=" water footprint"> water footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20palm%20oil" title=" crude palm oil"> crude palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20palm%20kernel%20oil" title=" crude palm kernel oil"> crude palm kernel oil</a>, <a href="https://publications.waset.org/abstracts/search?q=WAVE%20method" title=" WAVE method"> WAVE method</a> </p> <a href="https://publications.waset.org/abstracts/118478/water-footprint-for-the-palm-oil-industry-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">298</span> The Estimation of Bird Diversity Loss and Gain as an Impact of Oil Palm Plantation: Study Case in KJNP Estate Riau Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanto%20Santosa">Yanto Santosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Catharina%20Yudea"> Catharina Yudea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid growth of oil palm industry in Indonesia raised many negative accusations from various parties, who said that oil palm plantation is damaging the environment and biodiversity, including birds. Since research on oil palm plantation impacts on bird diversity is still limited, this study needs to be developed in order to gain further learning and understanding. Data on bird diversity were collected in March 2018 in KJNP Estate, Riau Province using strip transect method on five different land cover types (young, intermediate, and old growth of oil palm plantation, high conservation value area, and crops field or the baseline). The observations were conducted simultaneously, with three repetitions. The result shows that the baseline has 19 species of birds and land cover after the oil palm plantation has 39 species. HCV (high conservation value) area has the highest increase in diversity value. Oil palm plantation has changed the composition of bird species. The highest similarity index is shown by young growth oil palm land cover with total score 0.65, meanwhile the lowest similarity index with total score 0.43 is shown by HCV area. Overall, the existence of oil palm plantation made a positive impact by increasing bird species diversity, with total 23 species gained and 3 species lost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bird%20diversity" title="bird diversity">bird diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=crops%20field" title=" crops field"> crops field</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20of%20oil%20palm%20plantation" title=" impact of oil palm plantation"> impact of oil palm plantation</a>, <a href="https://publications.waset.org/abstracts/search?q=KJNP%20estate" title=" KJNP estate"> KJNP estate</a> </p> <a href="https://publications.waset.org/abstracts/99648/the-estimation-of-bird-diversity-loss-and-gain-as-an-impact-of-oil-palm-plantation-study-case-in-kjnp-estate-riau-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">297</span> Bio-Oil Production and Chromatographic Characterization from the Pyrolysis of Oil Palm Empty Fruit Bunches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arif%20Ferdiyanto">Arif Ferdiyanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Fajar%20Hamida"> Fajar Hamida</a>, <a href="https://publications.waset.org/abstracts/search?q=Arif%20Hidayat"> Arif Hidayat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil palm empty fruit bunches, derived biomass available in Indonesia, is one of the potential biomass to produce biofuels like bio-oil due to its abundant supply and favorable physicochemical characteristics. An interesting alternative of utilising the oil palm empty fruit bunches is in the production of bio-oil by pyrolysis. Pyrolysis of oil palm empty fruit bunches to bio-oil is being considered for national energy security and environmental advantages. The aim of this study was to produce bio-oil by pyrolysis of oil palm empty fruit bunches at various temperature and observe its detailed chemical composition. The biomass was submitted to a pyrolysis in a batch reactor. Experiments were carried out at a temperature range of 450–600°C and heating rate range of 10-20°C/min. The yield of bio-oil was found to be maximum at the temperature of 600°C. The bio-oils detailed compositions were investigated using FTIR and GC-MS. The bio-char produced as a co-product can be a potential soil amendment with multiple benefits including soil fertility and for solid fuel applications that also contributes to the preservation of the environment. The present investigation suggests the suitability of oil palm empty fruit bunches as a potential feedstock for exploitation of energy and biomaterials through pyrolysis process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-oil" title="bio-oil">bio-oil</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20empty%20fruit%20bunches" title=" oil palm empty fruit bunches"> oil palm empty fruit bunches</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/66672/bio-oil-production-and-chromatographic-characterization-from-the-pyrolysis-of-oil-palm-empty-fruit-bunches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">296</span> Date Palm Insects and Mite Pests at Biskra Oasis, South Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Tarai">N. Tarai</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Seighi"> S. Seighi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Doumandji"> S. Doumandji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The date palm trees Phoenix dactylifera L. are subject to infestation with a variety of insect pests and mite associated, the Carob moth Ectomyelois ceatoniae (Zeller)(Lepidoptera, Pyralidae) is a key pest. Survey of the insect and mite pests associated with date palm trees in the seven stations at Biskra Oasis, throughout two successive years, from October 2011 until September 2012 revealed twelve insect pests belonging to ten families and six orders in addition to one mite belonging to one family from order Acari. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=date%20palm" title="date palm">date palm</a>, <a href="https://publications.waset.org/abstracts/search?q=insect" title=" insect"> insect</a>, <a href="https://publications.waset.org/abstracts/search?q=pests" title=" pests"> pests</a>, <a href="https://publications.waset.org/abstracts/search?q=infestation" title=" infestation"> infestation</a>, <a href="https://publications.waset.org/abstracts/search?q=mit" title=" mit"> mit</a>, <a href="https://publications.waset.org/abstracts/search?q=Biskra" title=" Biskra"> Biskra</a>, <a href="https://publications.waset.org/abstracts/search?q=Oasis" title=" Oasis "> Oasis </a> </p> <a href="https://publications.waset.org/abstracts/3003/date-palm-insects-and-mite-pests-at-biskra-oasis-south-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">295</span> Oil Palm Shell Ash: Cement Mortar Mixture and Modification of Mechanical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdoullah%20Namdar">Abdoullah Namdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadzil%20Mat%20Yahaya"> Fadzil Mat Yahaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The waste agriculture materials cause environment pollution, recycle of these materials help sustainable development. This study focused on the impact of used oil palm shell ash on the compressive and flexural strengths of cement mortar. Two different cement mortar mixes have been designed to investigate the impact of oil palm shell ash on strengths of cement mortar. Quantity of 4% oil palm shell ash has been replaced in cement mortar. The main objective of this paper is, to modify mechanical properties of cement mortar by replacement of oil palm ash in it at early age of seven days. The results have been revealed optimum quantity of oil palm ash for replacement in cement mortar. The deflection, load to failure, time to failure of compressive strength and flexural strength of all specimens have significantly been improved. The stress-strain behavior has been indicated ability of modified cement mortar in control stress path and strain. The micro property of cement paste has not been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minerals" title="minerals">minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=additive" title=" additive"> additive</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a> </p> <a href="https://publications.waset.org/abstracts/3727/oil-palm-shell-ash-cement-mortar-mixture-and-modification-of-mechanical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">294</span> Effect of Oyster Mushroom on Biodegradation of Oil Palm Mesocarp Fibre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Saidu">Mohammed Saidu</a>, <a href="https://publications.waset.org/abstracts/search?q=Afiz%20Busari"> Afiz Busari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Yuzir"> Ali Yuzir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Razman%20Salim"> Mohd Razman Salim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Degradation of agricultural residues from palm oil industry is increasing due to its expansion. Lignocelloulosic waste from these industry represent large amount of unutilized resources, this is due to their high lignin content. Since, white rot fungi are capable of degrading the lignin, its potential to degradation was accessed for upgrading it. The lignocellluloses content was measured before and after biodegradation and the rate of reduction was determined. From the results of biodegradation, it was observed that hemicellulose reduces by 22.62%, cellulose by 20.97% and lignin by 10.65% from the initials lignocelluloses contents. Thus, to improve the digestibility of palm oil mesocarp fibre, treatment by white rot-fungi is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological" title="biological">biological</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocelluses" title=" lignocelluses"> lignocelluses</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm" title=" oil palm"> oil palm</a> </p> <a href="https://publications.waset.org/abstracts/38517/effect-of-oyster-mushroom-on-biodegradation-of-oil-palm-mesocarp-fibre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">293</span> Benchmarking Energy Challenges in Palm Oil Production Industry in Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathias%20B.%20Michael">Mathias B. Michael</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20T.%20Akinlabi"> Esther T. Akinlabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tien-Chien%20Jen"> Tien-Chien Jen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current energy crisis in Ghana has affected significant number of industries which have direct impact on the country’s economy. Amongst the affected industries are palm oil production industries even though the impact is less as compared to fully relied national grid industries. Most of the large and medium palm oil production industries are partially grid reliance, however, the unavailability and the high cost palm biomass poses huge challenge. This paper aimed to identify and analyse the energy challenges associated with the palm oil production industries in Ghana. The study is conducted on the nine largest palm oil production plants in Ghana. Data is obtained by the use of questionnaire and observation. Since the study aimed to compare the respective energy challenges associated with nine industrial plants under study and establish a benchmark that represents a common problem of all the nine plants under study, the study uses percentile analysis and Analysis of Variance (ANOVA) as the statistical tools to validate the benchmark. The results indicate that lack of sustainability of palm biomass supply chain is the key energy challenge in the palm oil production industries in Ghana. Other problems include intermittent power supply from the grid and the low boiler efficiency due to outmoded conversion technology of the boilers. The result also demonstrates that there are statistically significant differences between the technologies in different age groups in relation to technology conversion efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20biomass" title="palm biomass">palm biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20supply" title=" steam supply"> steam supply</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20challenges" title=" energy challenges"> energy challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20benchmark" title=" energy benchmark"> energy benchmark</a> </p> <a href="https://publications.waset.org/abstracts/78555/benchmarking-energy-challenges-in-palm-oil-production-industry-in-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">292</span> Peformance of Bali Cattles Fed with Various Levels of Oil Palm Frond Ammoniated</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mardiati%20Zain">Mardiati Zain</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryanto%20Khasrad"> Ryanto Khasrad</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Elihasridas"> I. Elihasridas</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Juliantoni"> J. Juliantoni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research objective was to determine the productivity of cattle fed a complete ration with ammoniated based of oil palm-frond supplemented by Rumen Microbes Growth Factor (RMGF). The research used Randomized Block Design applying 4 rations as treatment and 4 groups cattle. The treatments were: A (60% oil palm frond ammoniated + 40% concentrate + RMGF); B (50% oil palm frond ammoniated + 50% concentrate + RMGF); C (40% oil palm frond ammoniated + 60% concentrate + RMGF); and D (30% oil palm frond ammoniated + 70% concentrate + RMGF). The measured parameters were dry matter (DM) and organic matter (OM) intake, daily weight gain (DWG), feed efficiency, total digestible nutrient (TDN), and digestibility of crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), cellulose, hemicellulose. Statistical analysis showed that the treatment had no significant effect (P > 0.05) on DM intake, OM intake, daily weight gain, feed efficiency, digestibility of DM, OM, CP, TDN, NDF, hemicellulose but had a highly significant effect (P < 0.01) on digestibility of ADF and cellulose. All treatments with different ratio (oil palm frond ammoniated: concentrate : RMGF) had no different effect on cattle productivities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20frond%20ammoniated" title="oil palm frond ammoniated">oil palm frond ammoniated</a>, <a href="https://publications.waset.org/abstracts/search?q=digestibility" title=" digestibility"> digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20microba%20growth%20factor" title=" rumen microba growth factor"> rumen microba growth factor</a>, <a href="https://publications.waset.org/abstracts/search?q=Bali%20cattle" title=" Bali cattle"> Bali cattle</a> </p> <a href="https://publications.waset.org/abstracts/51323/peformance-of-bali-cattles-fed-with-various-levels-of-oil-palm-frond-ammoniated" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">291</span> Engineering Study on the Handling of Date Palm Fronds to Reduce Waste and Used as Energy Environmentally Friendly Fuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20H.%20Amer%20Eissa">Ayman H. Amer Eissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rahman%20O.%20Alghannam"> Abdul Rahman O. Alghannam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The agricultural crop residuals are considered one of the most important problems faced by the environmental life and farmers in the world. A study was carried out to evaluate the physical characteristics of chopped date palm stalks (fronds and leaflets). These properties are necessary to apply normal design procedures such as pneumatic conveying, fluidization, drying, and combustion. The mechanical treatment by cutting, crushing or chopping and briquetting processes are the primary step and the suitable solution for solving this problem and recycling these residuals to be transformed into useful products. So the aim of the present work to get a high quality for agriculture residues such as date palm stalks (fronds), date palm leaflets briquettes. The results obtained from measuring the mechanical properties (average shear and compressive strength) for date palm stalks at different moisture content (12.63, 33.21 and 60.54%) was (6.4, 4.7 and 3.21MPa) and (3.8, 3.18 and 2.86MPa) respectively. The modulus of elasticity and toughness were evaluated as a function of moisture content. As the moisture content of the stalk regions increased the modulus of elasticity and toughness decreased indicating a reduction in the brittleness of the stalk regions. Chopped date palm stalks (palm fronds), date palm leaflets having moisture content of 8, 10 and 12% and 8, 10 and 12.8% w.b. were dandified into briquettes without binder and with binder (urea-formaldehyde) using a screw press machine. Quality properties for briquettes were durability, compression ratio hardness, bulk density, compression ratio, resiliency, water resistance and gases emission. The optimum quality properties found for briquettes at 8 % moisture content and without binder. Where the highest compression stress and durability were 8.95, 10.39 MPa and 97.06 %, 93.64 % for date palm stalks (palm fronds), date palm leaflets briquettes, respectively. The CO and CO2 emissions for date palm stalks (fronds), date palm leaflets briquettes were less than these for loose residuals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residues" title="residues">residues</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20palm%20stalks" title=" date palm stalks"> date palm stalks</a>, <a href="https://publications.waset.org/abstracts/search?q=chopper" title=" chopper"> chopper</a>, <a href="https://publications.waset.org/abstracts/search?q=briquetting" title=" briquetting"> briquetting</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20properties" title=" quality properties"> quality properties</a> </p> <a href="https://publications.waset.org/abstracts/3627/engineering-study-on-the-handling-of-date-palm-fronds-to-reduce-waste-and-used-as-energy-environmentally-friendly-fuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10