CINXE.COM

Search results for: oily refractory wastewater

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: oily refractory wastewater</title> <meta name="description" content="Search results for: oily refractory wastewater"> <meta name="keywords" content="oily refractory wastewater"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="oily refractory wastewater" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="oily refractory wastewater"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1128</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: oily refractory wastewater</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1098</span> Recrystallization Microstructure Studies of Cold-Rolled Ta0.5Nb0.5Hf0.5ZrTi1.5 Non-Equiatomic Refractory High Entropy Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veeresham%20Mokali">Veeresham Mokali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recrystallization microstructure and grain growth studies of Ta₀.₅Nb₀.₅Hf₀.₅ZrTi₁.₅ refractory high entropy alloy have been explored in the present work. The as-cast Ta₀.₅Nb₀.₅Hf₀.₅ZrTi₁.₅ alloy was cold-rolled to 90% in several passes at room temperature and further subjected to annealing treatment for recrystallization at 800°C, 1000°C, 1250°C, and 1400°C temperatures for one hour. However, the characterization of heavily cold-rolled and annealed condition specimens was done using scanning electron microscopy (SEM-EBSD). The cold-rolled specimens showed the development of an inhomogeneous microstructure. Upon annealing, recrystallized microstructures were achieved; in addition to that, the coarsening of microstructure with raising annealing temperature noticed in the range of 800°C – 1400°C annealed temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refractory%20high%20entropy%20alloys" title="refractory high entropy alloys">refractory high entropy alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=cold-rolling" title=" cold-rolling"> cold-rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=recrystallization" title=" recrystallization"> recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/138947/recrystallization-microstructure-studies-of-cold-rolled-ta05nb05hf05zrti15-non-equiatomic-refractory-high-entropy-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1097</span> Assessment of Physical, Chemical and Radionuclides Concentrations in Pharamasucal Industrial Wastewater Effluents in Amman, Jordan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Salem%20Abdullah%20Alhwaiti">Mohammad Salem Abdullah Alhwaiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to assess the physical, chemical, and radionuclide concentrations of pharmaceutical industrial wastewater effluents. Fourteen wastewater samples were collected from pharmaceutical industries. The results showed a marked reduction in the levels of TH, Mg, and Ca concentration in wastewater limit for properties and criteria for discharge of wastewater to streams or wadies or water bodies in the effluent, whereas TSS and TDS showed higher concentration allowable for discharge of wastewater to streams or wadies or water bodies. The gross α activity in all the wastewater samples ranged between (0.086-0.234 Bq/L) lowered the 0.1 Bq/L limit set by World Health Organization (WHO), whereas gross β activity in few samples ranged between (2.565-4.800 Bq/L), indicating the higher limit set by WHO. Gamma spectroscopy revealed that K-40, Cr-51, Co-60, I-131, Cs-137, and U-238 activity are ≤0.114 Bq/L, ≤0.062 Bq/L, ≤0.00815Bq/L, ≤0.00792Bq/L, ≤0.00956 Bq/L, and ≤0.151 Bq/L, respectively, indicating lowest concentrations of these radionuclides in the pharmaceutical industrial wastewater effluents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20wastewater" title="pharmaceutical wastewater">pharmaceutical wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=gross%20%CE%B1%2F%CE%B2%20activity" title=" gross α/β activity"> gross α/β activity</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan"> Jordan</a> </p> <a href="https://publications.waset.org/abstracts/162078/assessment-of-physical-chemical-and-radionuclides-concentrations-in-pharamasucal-industrial-wastewater-effluents-in-amman-jordan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1096</span> Development of High Quality Refractory Bricks from Fireclays for Industrial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20E.%20Esezobor">David E. Esezobor</a>, <a href="https://publications.waset.org/abstracts/search?q=Friday%20I.%20Apeh"> Friday I. Apeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Harrison%20O.%20Onovo"> Harrison O. Onovo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ademola%20A.%20Agbeleye"> Ademola A. Agbeleye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Available indigenous refractory bricks in Nigeria can only be used in the lining of furnaces for melting of cast iron operating at less than 1,400°C or in preheating furnaces due to their low refractoriness less than 1,500°C. The bricks crack and shatter on heating at 1350 to 1450°C. In this paper, a simple and adaptable technology of manufacturing high-quality refractory bricks from selected Nigerian clays for furnace linings was developed. Fireclays from Onibode, Owode-Ketu in Ogun State and Kwoi in Kaduna State were crushed, ground, and sieved into various grain sizes using standard techniques. The pulverized clays were blended with alumina in various mix ratios and indurated in the furnace at 900 – 16000C. Their chemical, microstructure and mineralogical properties were characterized using atomic absorption spectrophotometry, scanning electron microscopy and x-ray diffraction spectrometry respectively. The mineralogical and spectrochemical analyses suggested that the clays are of siliceous alumino-silicate and acidic in nature. The appropriate blending of fireclays with alumina provided the tremendous improvement in the refractoriness of the bricks and other acceptable service properties comparable with imported refractory bricks. The change in microstructure from pseudo-hexagonal grains to equiaxed grains of well – ordered sequence of structural layers could be responsible for the improved properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina" title="alumina">alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=furnace" title=" furnace"> furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=industry" title=" industry"> industry</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=refractoriness" title=" refractoriness"> refractoriness</a> </p> <a href="https://publications.waset.org/abstracts/59486/development-of-high-quality-refractory-bricks-from-fireclays-for-industrial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1095</span> Assessment of Different Industrial Wastewater Quality in the Most Common Industries in Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Aljumaa">Mariam Aljumaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial wastewater has been increased rapidly in the last decades, however, the generated wastewater is not treated properly on site before transfer it to the treatment plant. In this study, the most common industries (dairy, soft drinks, detergent, and petrochemical) has been studied in term of wastewater quality. The main aim of this study is to characterize and evaluate the quality of the most common industrial wastewater in Kuwait. Industrial wastewater samples were collected from detergents, dairy, beverage, and petrochemical factories. The collected wastewater samples were analyzed for temperature, EC, pH, DO, BOD, COD, TOC, TS, TSS, volatile suspended solids (VSS), total volatile solids (TVS), NO2, NO3, NH3, N, P, K, CaCO3, heavy metals, Total coliform, Fecal coliform, and E.coli bacteria. The results showed that petrochemical industry has the highest concentration of organic and nutrients, followed by detergents wastewater, then dairy, and finally, soft drink wastewater. Regarding the heavy metals, the results showed that dairy wastewater had the highest concentration, specifically in Zinc, Arsenic, and Cadmium. In term of biological analysis, the dairy industry had the highest concentration of total coliform, followed by soft drinks industry, then shampoo industry, and finally petrochemical industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title="industrial wastewater">industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20quality" title=" wastewater quality"> wastewater quality</a> </p> <a href="https://publications.waset.org/abstracts/162989/assessment-of-different-industrial-wastewater-quality-in-the-most-common-industries-in-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1094</span> Analysis and Treatment of Sewage Treatment Plant Wastewater of El-Karma, Oran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Hammadi">Larbi Hammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellatif%20El%20Bari%20Tidjani"> Abdellatif El Bari Tidjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce the flow of pollutants in the wastewater of the urban agglomerations of the city of Oran, a preliminary study was carried out at the El-Karma wastewater treatment plant. The primary objective of this study was to estimate the overall physicochemical pollution in the effluents of the El-Karma sewage treatment plant wastewater. It was found that the effluent of El-Karma wastewater treatment plant contains a significant amount of insoluble. Total suspended soli TSS concentrations ranged from 112 to 475 mg/l, with an average of 220.5 mg/l. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD₅) values remain within the reference range for domestic wastewater with an average value of COD < 125 and BOD₅ < 25. The COD/BOD₅ ratio of raw water entering the treatment plant is less than 2. This ratio would predict that the raw sewage from the El-Karma treatment plant is polluted by inorganic pollution strong enough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=El-Karma%20wastewater" title="El-Karma wastewater">El-Karma wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=TSS%20concentrations" title=" TSS concentrations"> TSS concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20and%20BOD5" title=" COD and BOD5"> COD and BOD5</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%2FBOD5%20ratio" title=" COD/BOD5 ratio"> COD/BOD5 ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/87940/analysis-and-treatment-of-sewage-treatment-plant-wastewater-of-el-karma-oran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1093</span> Monitoring and Evaluation of the Reverse Osmosis Reject Wastewater from the Sulaibiya Wastewater Treatment Plant in Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mishari%20Khajah">Mishari Khajah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Elmuntasir%20Ahmed"> Mohd. Elmuntasir Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Al-Matouq"> Abdullah Al-Matouq</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Al-Ajeel"> Farah Al-Ajeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemah%20Dashti"> Fatemah Dashti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Shishter"> Ahmed Shishter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The overall aim of this study was to monitor and evaluate the effluent quality of a reverse osmosis (RO) reject wastewater from the biggest wastewater treatment plant in the world that is using RO and ultrafiltration membranes in their processes to reclaim water for indirect potable water reuse from municipal wastewaters. The RO reject wastewater or brine included various contaminants that could harm the human health and the environment such as trace organics, organic matters, heavy metals, nutrients and pathogens. Unfortunately, there are no legally binding regulatory guidelines for brine management in Kuwait as many countries around the world. This study monitors and evaluate the RO reject wastewater (brine) generated from the Sulaibiya Wastewater Treatment Plant. Samples were collected and analyzed about 37 parameters for one-year period, twice a month, and compare it to Kuwait Environment Public Authority, KEPA. Results showed that the heavy metals parameters were above KEPA standards, which needs to be treated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=domestic%20wastewater" title="domestic wastewater">domestic wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=potable%20water" title=" potable water"> potable water</a>, <a href="https://publications.waset.org/abstracts/search?q=RO%20reject%20wastewater" title=" RO reject wastewater"> RO reject wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaibiya%20wastewater%20treatment%20plant" title=" Sulaibiya wastewater treatment plant"> Sulaibiya wastewater treatment plant</a> </p> <a href="https://publications.waset.org/abstracts/162907/monitoring-and-evaluation-of-the-reverse-osmosis-reject-wastewater-from-the-sulaibiya-wastewater-treatment-plant-in-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1092</span> Effect of Al Addition on Microstructure and Properties of NbTiZrCrAl Refractory High Entropy Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiping%20Guo">Xiping Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanglin%20Ge"> Fanglin Ge</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Guan"> Ping Guan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Refractory high entropy alloys are alternative materials expected to be employed at high temperatures. The comprehensive changes of microstructure and properties of NbTiZrCrAl refractory high entropy alloys are systematically studied by adjusting Al content. Five kinds of button alloy ingots with different contents of Al in NbTiZrCrAlX (X=0, 0.2, 0.5, 0.75, 1.0) were prepared by vacuum non-consumable arc melting technology. The microstructure analysis results show that the five alloys are composed of BCC solid solution phase rich in Nb and Ti and Laves phase rich in Cr, Zr, and Al. The addition of Al changes the structure from hypoeutectic to hypereutectic, increases the proportion of Laves phase, and changes the structure from cubic C15 to hexagonal C14. The hardness and fracture toughness of the five alloys were tested at room temperature, and the compressive mechanical properties were tested at 1000℃. The results showed that the addition of Al increased the proportion of Laves phase and decreased the proportion of the BCC phase, thus increasing the hardness and decreasing the fracture toughness at room temperature. However, at 1000℃, the strength of 0.5Al and 0.75Al alloys whose composition is close to the eutectic point is the best, which indicates that the eutectic structure is of great significance for the improvement of high temperature strength of NbTiZrCrAl refractory high entropy alloys. The five alloys were oxidized for 1 h and 20 h in static air at 1000℃. The results show that only the oxide film of 0Al alloy falls off after oxidizing for 1 h at 1000℃. After 20h, the oxide film of all the alloys fell off, but the oxide film of alloys containing Al was more dense and complete. By producing protective oxide Al₂O₃, inhibiting the preferential oxidation of Zr, promoting the preferential oxidation of Ti, and combination of Cr₂O₃ and Nb₂O₅ to form CrNbO₄, Al significantly improves the high temperature oxidation resistance of NbTiZrCrAl refractory high entropy alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NbTiZrCrAl" title="NbTiZrCrAl">NbTiZrCrAl</a>, <a href="https://publications.waset.org/abstracts/search?q=refractory%20high%20entropy%20alloy" title=" refractory high entropy alloy"> refractory high entropy alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=al%20content" title=" al content"> al content</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructural%20evolution" title=" microstructural evolution"> microstructural evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=room%20temperature%20mechanical%20properties" title=" room temperature mechanical properties"> room temperature mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20compressive%20strength" title=" high temperature compressive strength"> high temperature compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20resistance" title=" oxidation resistance"> oxidation resistance</a> </p> <a href="https://publications.waset.org/abstracts/163087/effect-of-al-addition-on-microstructure-and-properties-of-nbtizrcral-refractory-high-entropy-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1091</span> Chemical Treatment of Wastewater through Biosorption for the Removal of Toxic Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shafiq%20Alam">Shafiq Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Manjunathan%20Ulaganathan"> Manjunathan Ulaganathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water/wastewater often contains heavy/toxic metals, such as lead, copper, zinc and arsenic as well as harmful elements, such as antimony, selenium and fluoride. It may also contains radioactive elements, such as cesium and strontium. If they are not removed from water/wastewater then the environment and human health can be negatively impacted. Extensive research has been carried out to remove such harmful metals/elements from water/wastewater through biosorption using biomaterials (bioadsorbents). This presentation will give an overview of the research on preparation of bioadsorbents from biomass wastes and their use for the removal of harmful metals/elements from aqueous media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20metals" title=" toxic metals"> toxic metals</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/73865/chemical-treatment-of-wastewater-through-biosorption-for-the-removal-of-toxic-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1090</span> Performance of an Anaerobic Baffled Reactor (ABR) Treating High-Strength Food Industrial Wastewater with Fluctuating pH </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Bassuney">D. M. Bassuney</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Ibrahim"> W. A. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20A.%20E.%20Moustafa"> Medhat A. E. Moustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As awareness of the variable nature of food industrial wastewater and its environmental impact grows, a more stable treatment reactor is needed to treat such wastewater. In this paper, a performance of 5-compartment lab-scale Anaerobic Baffled Reactor (ABR) treating high strength wastewater with high pH variation was studied under three organic loading rates (OLRs). The reactor showed high COD removal efficiencies: 92.67, 97.44, and 98.19% corresponding to OLRs of 2.0, 3.0, and 4.8 KgCOD/m3 d, respectively. The first compartment showed a good buffering capacity and a distinct phase separation occurred in the ABR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20baffled%20reactor" title="anaerobic baffled reactor">anaerobic baffled reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20industrial%20wastewater" title=" food industrial wastewater"> food industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20wastewater" title=" high strength wastewater"> high strength wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20loading" title=" organic loading"> organic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a> </p> <a href="https://publications.waset.org/abstracts/9695/performance-of-an-anaerobic-baffled-reactor-abr-treating-high-strength-food-industrial-wastewater-with-fluctuating-ph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1089</span> Risk Allocation in Public-Private Partnership (PPP) Projects for Wastewater Treatment Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Capintero">Samuel Capintero</a>, <a href="https://publications.waset.org/abstracts/search?q=Ole%20H.%20Petersen"> Ole H. Petersen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the utilization of public-private partnerships for the building and operation of wastewater treatment plants. Our research focuses on risk allocation in this kind of projects. Our analysis builds on more than hundred wastewater treatment plants built and operated through PPP projects in Aragon (Spain). The paper illustrates the consequences of an inadequate management of construction risk and an unsuitable transfer of demand risk in wastewater treatment plants. It also shows that the involvement of many public bodies at local, regional and national level further increases the complexity of this kind of projects and make time delays more likely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20plants" title=" treatment plants"> treatment plants</a>, <a href="https://publications.waset.org/abstracts/search?q=PPP" title=" PPP"> PPP</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a> </p> <a href="https://publications.waset.org/abstracts/25863/risk-allocation-in-public-private-partnership-ppp-projects-for-wastewater-treatment-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">649</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1088</span> MBR-RO System Operation in Quantitative and Qualitative Promotion of Waste Water Cleaning: Case Study of Shokohieyh Qoms’ Waste Water Cleaning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Hassani">A. A. Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nasri%20Nasrabadi"> M. Nasri Nasrabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to population growth and increasing water needs of industrial and agricultural sections and lack of existing water sources, also increases of wastewater and new wastewater treatment plant construction’s high costs, it is inevitable to reuse wastewater with the approach of increasing wastewater treatment capacity and output sewage quality. In this regard, the first sewage reuse plan in industrial uses was designed with the approach of qualitative and quantitative improvement due to the increased organic load of the output sewage of Qom Shokohieh city’s’ in wastewater treatment plant. This research investigated qualitative factors COD, BOD, TSS, TDS, and input and output heavy metal of MBR-RO system and ability of increase wastewater acceptance capacity by existing in wastewater treatment plant. For this purpose, experimental results of seven-month navigation system have been used from 07/01/2013 to 02/01/2014. Existing data analysis showed that MBR system is able to remove 93.2% COD, 94.4% BOD, 13.8% TDS, 98% heavy metals and RO system is able to remove 98.9% TDS. This study showed that MBR-RO integration system is able to increase the capacity of refinery by 30%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title="industrial wastewater">industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reuse" title=" wastewater reuse"> wastewater reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=MBR" title=" MBR"> MBR</a>, <a href="https://publications.waset.org/abstracts/search?q=RO" title=" RO"> RO</a> </p> <a href="https://publications.waset.org/abstracts/16657/mbr-ro-system-operation-in-quantitative-and-qualitative-promotion-of-waste-water-cleaning-case-study-of-shokohieyh-qoms-waste-water-cleaning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1087</span> Development of Light-Weight Refractory Bricks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liaqat%20Ali">Liaqat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Furqan%20Ahmad"> Furqan Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat losses should be controlled during the high temperature processes from energy conservation point of view. For this purpose, refractories with low thermal conductivity, high porosity and good mechanical strength along with low price are desirable. In this work, various combinations of naturally occurring, locally available, cheap raw materials, namely, clay, rice husk and saw dust were used. Locally produced insulating firebricks (IFBs) cannot be used at higher than a few hundred °C and possess low strength as well. Various process parameters were studied and the refractories with desirable properties were produced, which can be used up to 1200 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=firebricks" title="firebricks">firebricks</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=refractory%20bricks" title=" refractory bricks"> refractory bricks</a> </p> <a href="https://publications.waset.org/abstracts/40387/development-of-light-weight-refractory-bricks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1086</span> Kinetic Evaluation of Biodegradability of Paint Shop Wastewater of a Bus Production Factory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Didem%20G%C3%BCven">Didem Güven</a>, <a href="https://publications.waset.org/abstracts/search?q=Oytun%20Hanhan"> Oytun Hanhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Elif%20Ceren%20Aksoy"> Elif Ceren Aksoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Ubay%20%C3%87okg%C3%B6r"> Emine Ubay Çokgör</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a biological treatability study ofpaintshopwastewaterof a bus factory by an anoxic/aerobic sequencing batch reactor.A lab scale 14L SBR system was implementedto investigate carbon and nitrogen removal performance frompaint shop waste streams combined with domestic and process wastewater of a bus production factory in Istanbul (Turkey).The wastewater collected from decanters of the paint boots and pre-treatmentplant was usedforthefeeding of SBR. The reactor was operated with a total hydraulic retention time of 24 hrs, and a total sludge age of 18.7 days. Initially the efficiency and stability of the reactor were studied when fed with main wastewater stream to simulate the current wastewater treatment plant. Removal efficiency of 57% nitrogen and 90% COD were obtained. Once the paint shop wastewater was introduced to mainstream feeding with a ratio of 1:5, nitrification completely, carbon removal were partially inhibited. SBR system was successful to handle even at very high COD concentrations of paint shop wastewater after feeding of 2 months, with an average effluent COD of 100 mg/L. For the determination of kinetic parameters, respirometric analysis was also conducted with/without paint shop wastewater addition. Model simulation indicated lower maximum specific growth and hydrolysis rates when paint shop wastewater was mixed with the mainstream wastewater of the factory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20treatability" title="biological treatability">biological treatability</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20removal" title=" nitrogen removal"> nitrogen removal</a>, <a href="https://publications.waset.org/abstracts/search?q=paint%20shop%20wastewater" title=" paint shop wastewater"> paint shop wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing%20batch%20reactor" title=" sequencing batch reactor"> sequencing batch reactor</a> </p> <a href="https://publications.waset.org/abstracts/44831/kinetic-evaluation-of-biodegradability-of-paint-shop-wastewater-of-a-bus-production-factory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1085</span> Microbial Fuel Cells in Waste Water Treatment and Electricity Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajalaxmi%20N.">Rajalaxmi N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Padma%20Bhat"> Padma Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Garag"> Pooja Garag</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20N.%20M."> Pooja N. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20Hombalimath"> V. S. Hombalimath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial fuel cell (MFC) is the advancement of science that aims at utilizing the oxidizing potential of bacteria for wastewater treatment and production of bio-hydrogen and bio-electricity. Salt-bridge is the economic alternative to highly priced proton-exchange membrane in the construction of a microbial fuel cell. This paper studies the electricity generating capacity of E.coli and Clostridium sporogenes in microbial fuel cells (MFCs). Unlike most of MFC research, this targets the long term goals of renewable energy production and wastewater treatment. In present study the feasibility and potential of bioelectricity production from different wastewater was observed. Different wastewater was primarily treated which were confirmed by the COD tests which showed reduction of COD. We observe that the electricity production of MFCs decreases almost linearly after 120 hrs. The sewage wastewater containing Clostridium sporogenes showed bioelectricity production up to 188mV with COD removal of 60.52%. Sewage wastewater efficiently produces bioelectricity and this also helpful to reduce wastewater pollution load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title="microbial fuel cell">microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectricity" title=" bioelectricity"> bioelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20bridge" title=" salt bridge"> salt bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a> </p> <a href="https://publications.waset.org/abstracts/23470/microbial-fuel-cells-in-waste-water-treatment-and-electricity-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1084</span> Evaluation of the Effectiveness of a Sewage Treatment Plant in Oman: Samail Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azza%20Mohsin%20Al-Hashami">Azza Mohsin Al-Hashami</a>, <a href="https://publications.waset.org/abstracts/search?q=Reginald%20Victor"> Reginald Victor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Treatment of wastewater involves physical, chemical, and biological processes to remove the pollutants from wastewater. This study evaluates of the effectiveness of sewage treatment plants (STP) in Samail, Oman. Samail STP has tertiary treatment using conventional activated sludge with surface aeration. The collection of wastewater is through a network with a total length of about 60 km and also by tankers for the areas outside the network. Treated wastewater from this STP is used for the irrigation of vegetation in the STP premises and as a backwash for sand filters. Some treated water is supplied to the Samail municipality, which uses it for the landscaping, road construction, and 'the Million Date Palms' project. In this study, homogenous samples were taken from eight different treatment stages along the treatment continuum for one year, at a frequency of once a month, to evaluate the physical, chemical, and biological parameters. All samples were analyzed using the standard methods for the examination of water and wastewater. The spatial variations in water quality along the continuum are discussed. Despite these variations, the treated wastewater from Samail STP was of good quality, and most of the parameters are within class A category in Oman Standards for wastewater reuse and discharge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=STP" title=" STP"> STP</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=processes" title=" processes"> processes</a> </p> <a href="https://publications.waset.org/abstracts/119536/evaluation-of-the-effectiveness-of-a-sewage-treatment-plant-in-oman-samail-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1083</span> Assessment of Cobalt Concentrations in Wastewater and Vegetable Samples Grown along Kubanni Stream Channels in Zaria, Kaduna State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Saeed">M. D. Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Oladeji"> S. O. Oladeji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The level of cobalt was determined in wastewater and vegetable (carrot, lettuce, onion, spinach, cabbage, tomato and okro) samples collected on seasonal basis from December, 2012 to September 2014 along Kubanni stream channels in Zaria. The results showed cobalt concentrations in wastewater were in the range of 3.77 – 15.20 mg/L for the year 2013 and 4.74 – 15.20 mg/L in 2014 while the vegetable had concentrations in the range of 1.25 – 8.75 mg/Kg for the year 2013 and 2.76 – 12.45 mg/Kg in 2014. Statistical analysis revealed a significant difference in cobalt levels across the locations for wastewater and vegetables whereas seasons (harmattan, dry and rainy) showed no significant difference in wastewater and vegetables analyzed. Pearson correlation revealed substantial (r = 0.726) relationship between cobalt levels in wastewater for the year 2013 and 2014 likewise, substantial (r = 0.750) relationship was also obtained for vegetables cultivated in 2013 and 2014 respectively. Cobalt concentrations obtained in this study was higher than Maximum Contaminant Levels set by Standard Organization such as W.H.O. and F.A.O. for wastewater; however, vegetables indicated no contamination with cobalt metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt" title="cobalt">cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable" title=" vegetable"> vegetable</a> </p> <a href="https://publications.waset.org/abstracts/32711/assessment-of-cobalt-concentrations-in-wastewater-and-vegetable-samples-grown-along-kubanni-stream-channels-in-zaria-kaduna-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1082</span> Contribution of Soluble Microbial Products on Dissolved Organic Nitrogen in Wastewater Effluent from Moving Bed Biofilm Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boonsiri%20Dandumrongsin">Boonsiri Dandumrongsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Halis%20Simsek"> Halis Simsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaiwat%20Rongsayamanont"> Chaiwat Rongsayamanont</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dissolved organic nitrogen (DON) is known as one of the persistence nitrogenous pollutant being originated from secondary treated effluent of municipal sewage treatment plant. However, effect of key system operating condition on the fate and behavior of residual DON in the treated effluent is still not known. This study aims to investigate effect of organic loading rate (OLR) on the residual level of DON in the biofilm reactor effluent. Synthetic municipal wastewater was fed into moving bed biofilm reactors at OLR of 1.6x10-3 and 3.2x10-3 kg SCOD/m3-d. The results showed higher organic removal efficiency was found in the reactor operating at higher OLR. However, DON was observed at higher value in the effluent of the higher OLR reactor than that of the lower OLR reactor evidencing a clear influence of OLR on the residual DON level in the treated effluent of the biofilm reactors. It is possible that the lower DON being observed in the reactor at lower OLR is likely to be a result of providing the microbe with the additional period for utilizing the refractory DON molecules during operation at lower organic loading. All the experiments were repeated using raw wastewaters and similar trend was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissolved%20organic%20nitrogen" title="dissolved organic nitrogen">dissolved organic nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20retention%20time" title=" hydraulic retention time"> hydraulic retention time</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor" title=" moving bed biofilm reactor"> moving bed biofilm reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=soluble%20microbial%20products" title=" soluble microbial products"> soluble microbial products</a> </p> <a href="https://publications.waset.org/abstracts/71660/contribution-of-soluble-microbial-products-on-dissolved-organic-nitrogen-in-wastewater-effluent-from-moving-bed-biofilm-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1081</span> An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J%C3%BAlia%20Cristina%20Bonaldo">Júlia Cristina Bonaldo</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20L.%20Martin"> Christophe L. Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Martiniano%20Piccico"> Martiniano Piccico</a>, <a href="https://publications.waset.org/abstracts/search?q=Keith%20Beale"> Keith Beale</a>, <a href="https://publications.waset.org/abstracts/search?q=Roop%20Kishore"> Roop Kishore</a>, <a href="https://publications.waset.org/abstracts/search?q=Severine%20Romero-Baivier"> Severine Romero-Baivier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refractory%20composite" title="refractory composite">refractory composite</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title=" fracture mechanics"> fracture mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20propagation" title=" crack propagation"> crack propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a> </p> <a href="https://publications.waset.org/abstracts/172105/an-investigation-of-the-fracture-behavior-of-model-mgo-c-refractories-using-the-discrete-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1080</span> Removal of Chloro-Compounds from Pulp and Paper Industry Wastewater Using Electrocoagulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chhaya%20Sharma">Chhaya Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Dushyant%20Kumar"> Dushyant Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with the treatment of wastewater generated by paper industry by using aluminium as anode material. The quantitative and qualitative analyses of chloropenolics have been carried out by using primary clarifier effluent with the help of gas chromatography mass spectrometry. Sixteen chlorophenolics compounds have been identified and estimated. Results indicated that among 16 identified compounds, 7 are 100% removed and overall 66% reduction in chorophenolics compounds have been detected. Moreover, during the treatment, the biodegradability index of wastewater significantly increases, along with 70 % reduction in chemical oxygen demand and 99 % in color. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20anode" title="aluminium anode">aluminium anode</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophenolics" title=" chlorophenolics"> chlorophenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20load" title=" pollution load"> pollution load</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/71014/removal-of-chloro-compounds-from-pulp-and-paper-industry-wastewater-using-electrocoagulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1079</span> Use of Microbial Fuel Cell for Metal Recovery from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajbhan%20Sevda">Surajbhan Sevda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal containing wastewater is generated in large quintiles due to rapid industrialization. Generally, the metal present in wastewater is not biodegradable and can be accumulated in living animals, humans and plant tissue, causing disorder and diseases. The conventional metal recovery methods include chemical, physical and biological methods, but these are chemical and energy intensive. The recent development in microbial fuel cell (MFC) technology provides a new approach for metal recovery; this technology offers a flexible platform for both reduction and oxidation reaction oriented process. The use of MFCs will be a new platform for more efficient and low energy approach for metal recovery from the wastewater. So far metal recover was extensively studied using chemical, physical and biological methods. The MFCs present a new and efficient approach for removing and recovering metals from different wastewater, suggesting the use of different electrode for metal recovery can be a new efficient and effective approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20recovery" title="metal recovery">metal recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectricity" title=" bioelectricity"> bioelectricity</a> </p> <a href="https://publications.waset.org/abstracts/78731/use-of-microbial-fuel-cell-for-metal-recovery-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1078</span> Desodesmus sp.: A Potential Micro Alga to Treat the Textile Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thirunavoukkarasu%20Manikkannan">Thirunavoukkarasu Manikkannan</a>, <a href="https://publications.waset.org/abstracts/search?q=Karpanai%20Selvan%20Balasubramanian"> Karpanai Selvan Balasubramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile industry is the one of the most important industrial sector in India. It accounts for 5% of total Gross Domestic Product (GDP) in the country. A Textile industry consumes large quantities of water (~250 m3/ton of product) and they generate almost ~90% of wastewater from its consumption. The problem is alarming and requires proper treatment process to acquire dual benefit of Zero Liquid Discharge and no contamination to the environment. Here we describe the process by which the textile wastewater can be reused. We have collected the textile wastewater in and around Ayyampettai area of Tamilnadu, India. Among different microalgal strains used, Desodesmus sp. collected at Manali, Chennai, Tamilnadu, India was able to lessen the colour of the waste water in 12-15 hrs of its growth, COD around 81.7%, Dissolved solid reduction was 28 ± 0.5 %, Suspended solid was reduced to 40.5 ± 0.3 %, Dye degradation was 50-78%. Further, Desodesmus sp. able to achieve the biomass of 0.9 ± 0.2 g/L (dry weight) in two weeks’ time, the Chl a content was 11 mg/L. It infers that this algal strain able to utilize the textile wastewater as source for growth and algal biomass production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Desodesmus%20sp." title="Desodesmus sp.">Desodesmus sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/85485/desodesmus-sp-a-potential-micro-alga-to-treat-the-textile-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1077</span> Harnessing the Potential of Renewable Energy Sources to Reduce Fossil Energy Consumption in the Wastewater Treatment Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hen%20Friman">Hen Friman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various categories of aqueous solutions are discharged within residential, institutional, commercial, and industrial structures. To safeguard public health and preserve the environment, it is imperative to subject wastewater to treatment processes that eliminate pathogens (such as bacteria and viruses), nutrients (such as nitrogen and phosphorus), and other compounds. Failure to address untreated sewage accumulation can result in an array of adverse consequences. Israel exemplifies a special case in wastewater management. Appropriate wastewater treatment significantly benefits sectors such as agriculture, tourism, horticulture, and industry. Nevertheless, untreated sewage in settlements lacking proper sewage collection or transportation networks remains an ongoing and substantial threat. Notably, the process of wastewater treatment entails substantial energy consumption. Consequently, this study explores the integration of solar energy as a renewable power source within the wastewater treatment framework. By incorporating renewable energy sources into the process, costs can be minimized, and decentralized facilities can be established even in areas lacking adequate infrastructure for traditional treatment methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative" title=" innovative"> innovative</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/168354/harnessing-the-potential-of-renewable-energy-sources-to-reduce-fossil-energy-consumption-in-the-wastewater-treatment-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1076</span> Numerical Investigation of Wastewater ‎Rheological Characteristics on Flow Field ‎Inside a Sewage Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed-Mohammad-Kazem%20Emami">Seyed-Mohammad-Kazem Emami</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrang%20Saki"> Behrang Saki</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Mohammadian"> Majid Mohammadian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wastewater flow field inside a sewage network including pipe and ‎manhole was investigated using a Computational Fluid Dynamics ‎‎(CFD) model. The numerical model is developed by incorporating a ‎rheological model to calculate the viscosity of wastewater fluid by ‎means of open source toolbox OpenFOAM. The rheological ‎properties of prepared wastewater fluid suspensions are first measured ‎using a BrookField LVDVII Pro+ viscometer with an enhanced UL ‎adapter and then correlated the suitable rheological viscosity model ‎values from the measured rheological properties. The results show the ‎significant effects of rheological characteristics of wastewater fluid on ‎the flow domain of sewer system. Results were compared and ‎discussed with the commonly used Newtonian model to evaluate the ‎differences for velocity profile, pressure and shear stress. ‎ <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Non-Newtonian%20flows" title="Non-Newtonian flows">Non-Newtonian flows</a>, <a href="https://publications.waset.org/abstracts/search?q=Wastewater" title=" Wastewater"> Wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=Numerical%20simulation" title=" Numerical simulation"> Numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Rheology" title=" Rheology"> Rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=Sewage%20Network" title=" Sewage Network"> Sewage Network</a> </p> <a href="https://publications.waset.org/abstracts/124723/numerical-investigation-of-wastewater-rheological-characteristics-on-flow-field-inside-a-sewage-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1075</span> Valorisation of a Bioflocculant and Hydroxyapatites as Coagulation-Flocculation Adjuvants in Wastewater Treatment of the Steppe in the Wilaya of Saida</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Choumane">Fatima Zohra Choumane</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Benguella"> Belkacem Benguella</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouhana%20Maachou"> Bouhana Maachou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacera%20Saadi"> Nacera Saadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollution caused by wastewater is a serious problem in Algeria. This pollution has certainly harmful effects on the environment. In order to reduce the bad effects of these pollutants, many wastewater treatment processes, mainly physicochemical, are implemented. This study consists in using two flocculants; the first one is a biodegradable natural bioflocculant, i.e. Cactaceaeou ficus-indica cactus juice, and the second is the synthetic hydroxyapatite, in a physico-chemical process through coagulation-flocculation, using two coagulants, i.e. ferric chloride and aluminum sulfate, to treat wastewater collected at the entrance of the treatment plant, in the town of Saida. The influence of various experimental parameters, such as the amounts of coagulants and flocculants used, pH, turbidity, COD and BOD5, was investigated. The coagulation - flocculation jar tests of wastewater reveal that ferric chloride, containing a mass of 0.3 g – hydroxyapatite, treated for 1 hour through calcination, is the most effective adjuvant in clarifying the wastewater, with turbidity equal to 98.16 %. In the presence of the two bioflocculants, Cactaceae juice and aluminum sulphate, with a dose of 0.2 g, flocculation is good, with turbidity equal to 95.61 %. Examination of the key reaction parameters, following the flocculation tests of wastewater, shows that the degree of pollution decreases. This is confirmed by the COD and turbidity values obtained. Examination of these results suggests the use of these flocculants in wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=cactus%20ficus-indica" title=" cactus ficus-indica"> cactus ficus-indica</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulation%20-%20flocculation" title=" coagulation - flocculation"> coagulation - flocculation</a> </p> <a href="https://publications.waset.org/abstracts/43194/valorisation-of-a-bioflocculant-and-hydroxyapatites-as-coagulation-flocculation-adjuvants-in-wastewater-treatment-of-the-steppe-in-the-wilaya-of-saida" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1074</span> Divalent Iron Oxidative Process for Degradation of Carbon and Nitrogen Based Pollutants from Dye Intermediate Industrial Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nibedita%20Pani">Nibedita Pani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20Tejani"> Vishnu Tejani</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Anantha%20Singh"> T. S. Anantha Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water pollution resulting from discharge of partial/not treated textile wastewater containing high carbon and nitrogen pollutants pose a huge threat to the environment, ecosystem, and human health. It is essential to remove carbon- and nitrogen-based organic pollutants more effectively from industrial wastewater before discharging. The present study focuses on removal of carbon-based pollutant in particular COD (chemical oxygen demand) and nitrogen-based pollutants, in particular, ammoniacal nitrogen by Fenton oxidation process using Fe²⁺ and H₂O₂ as reagents. The study was carried out with high strength wastewater containing initial COD 5632 mg/L and NH⁴⁺-N 1372 mg/L. The major operating condition like pH was varied between 1.0 to 4.0. The maximum degradation was obtained at pH 3.0 taking the molar ratio of Fe²⁺/H₂O₂ as 1:1. At this pH, the removal efficiencies of COD and ammoniacal nitrogen were found to be 77.27% and 74.9%, respectively. The Fenton process can be the best alternative for the simultaneous removal of COD and NH4+-N from industrial wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammoniacal%20nitrogen" title="ammoniacal nitrogen">ammoniacal nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a>, <a href="https://publications.waset.org/abstracts/search?q=Fenton%20oxidation" title=" Fenton oxidation"> Fenton oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title=" industrial wastewater"> industrial wastewater</a> </p> <a href="https://publications.waset.org/abstracts/92225/divalent-iron-oxidative-process-for-degradation-of-carbon-and-nitrogen-based-pollutants-from-dye-intermediate-industrial-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1073</span> Adsorption Performance of Hydroxyapatite Powder in the Removal of Dyes in Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aderonke%20A.%20Okoya">Aderonke A. Okoya</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwaseun%20A.%20Somoye"> Oluwaseun A. Somoye</a>, <a href="https://publications.waset.org/abstracts/search?q=Omotayo%20S.%20Amuda"> Omotayo S. Amuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Ifeanyi%20E.%20Ofoezie"> Ifeanyi E. Ofoezie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study assessed the efficiency of Hydroxyapatite Powder (HAP) in the removal of dyes in wastewater in comparison with Commercial Activated Carbon (CAC). This was with a view to developing cost effective method that could be more environment friendly. The HAP and CAC were used as adsorbent while Indigo dye was used as the adsorbate. The batch adsorption experiment was carried out by varying initial concentrations of the indigo dye, contact time and adsorbent dosage. Adsorption efficiency was classified by adsorption Isotherms using Langmuir, Freundlich and D-R isotherm models. Physicochemical parameters of a textile industry wastewater were determined before and after treatment with the adsorbents. The results from the batch experiments showed that at initial concentration of 125 mg/L of adsorbate in simulated wastewater, 0.9276 ± 0.004618 mg/g and 3.121 ± 0.006928 mg/g of indigo adsorbed per unit time (qt) of HAP and CAC respectively. The ratio of HAP to CAC required for the removal of indigo dye in simulated wastewater was 2:1. The isotherm model of the simulated wastewater fitted well to Freundlich model, the adsorption intensity (1/n) presented 1.399 and 0.564 for HAP and CAC, respectively. This revealed that the HAP had weaker bond than the electrostatic interactions which were present in CAC. The values of some physicochemical parameters (acidity, COD, Cr, Cd) of textile wastewater when treated with HAP decreased. The study concluded that HAP, an environment-friendly adsorbent, could be effectively used to remove dye from textile industrial wastewater with added advantage of being regenerated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherm" title="adsorption isotherm">adsorption isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=commercial%20activated%20carbon" title=" commercial activated carbon"> commercial activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite%20powder" title=" hydroxyapatite powder"> hydroxyapatite powder</a>, <a href="https://publications.waset.org/abstracts/search?q=indigo%20dye" title=" indigo dye"> indigo dye</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20wastewater" title=" textile wastewater"> textile wastewater</a> </p> <a href="https://publications.waset.org/abstracts/69319/adsorption-performance-of-hydroxyapatite-powder-in-the-removal-of-dyes-in-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1072</span> Landfill Leachate Wastewater Treatment by Fenton Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rewadee%20Anuwattana">Rewadee Anuwattana</a>, <a href="https://publications.waset.org/abstracts/search?q=Pattamaphorn%20Phuangngamphan"> Pattamaphorn Phuangngamphan</a>, <a href="https://publications.waset.org/abstracts/search?q=Narumon%20Soparatana"> Narumon Soparatana</a>, <a href="https://publications.waset.org/abstracts/search?q=Supinya%20Sutthima"> Supinya Sutthima</a>, <a href="https://publications.waset.org/abstracts/search?q=Worapong%20Pattayawan"> Worapong Pattayawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Klangkongsub"> Saroj Klangkongsub</a>, <a href="https://publications.waset.org/abstracts/search?q=Songkiat%20Roddang"> Songkiat Roddang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pluek%20Wongpanich"> Pluek Wongpanich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The leachate wastewater is high contaminant water; hence it needs to be treated. The objective of this research was to determine the Chemical Oxygen Demand (COD) concentration, Phosphate (PO₄³⁻), Ammonia (NH₃) and color in leachate wastewater in the landfill area. The experiments were carried out in the optimum condition by pH, the Fenton reagent dosage (concentration of dosing Fe²⁺ and H₂O₂). The optimum pH is 3, the optimum [Fe²⁺]/[COD] and [H₂O₂]/[COD₀] = 0.03 and 0.03, respectively. The Biochemical Oxygen Demand (BOD₅)/Chemical Oxygen Demand (COD) ratio can be adjusted to 1 for landfill leachate wastewater (BOD₅/COD = 0.11). From the results, the Fenton process shall be investigated further to achieve the removal of phosphates in addition to COD and color. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landfill%20leachate%20treatment" title="landfill leachate treatment">landfill leachate treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20dumpsite" title=" open dumpsite"> open dumpsite</a>, <a href="https://publications.waset.org/abstracts/search?q=Fenton%20process" title=" Fenton process"> Fenton process</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/141732/landfill-leachate-wastewater-treatment-by-fenton-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1071</span> Impact on Soil Irrigated with Municipal and Industrial Wastewater from Korangi Drain near IoBM, Karachi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhan%20Ali">Farhan Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of wastewater for growing vegetables has become a common practice around big cities. Wastewater contains organic material and inorganic elements essential for plant growth but also contain heavy metals, which may be lethal for animals and humans if their concentration increases than permissible limit. To monitor this situation, a survey was conducted to ascertain the addition of heavy metals into agricultural fields through wastewater irrigation and their translocation in to the edible parts of the vegetables. The study highlighted that there is a large accumulation of heavy metals in the soil, which is irrigated with industrial wastewater Laden and people consume vegetables grown in soil irrigated with sewage water to absorb a large amount of these metals. This accumulation of heavy metals in food cause possible health risks for the consumer. Regular monitoring of the levels of pathogens and heavy metals from the waste water drain which effluent are used for growing vegetables and other foodstuffs is essential to monitor excessive accumulation of these metals in the food chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pathogens" title="pathogens">pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=effluent" title=" effluent"> effluent</a> </p> <a href="https://publications.waset.org/abstracts/32592/impact-on-soil-irrigated-with-municipal-and-industrial-wastewater-from-korangi-drain-near-iobm-karachi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1070</span> Development of Al Foam by a Low-Cost Salt Replication Method for Industrial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Soni">B. Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Biswas"> S. Biswas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal foams of Al find diverse applications in several industrial sectors such as in automotive and sports equipment industry as impact, acoustic and vibration absorbers, the aerospace industry as structural components in turbines and spatial cones, in the naval industry as low frequency vibration absorbers, and in construction industry as sound barriers inside tunnels, as fire proof materials and structure protection systems against explosions and even in heat exchangers, orthopedic components, and decorative items. Here, we report on the development of Al foams by a low cost and convenient technique of salt replication method with efficient control over size, geometry and distribution of the pores. Sodium bicarbonate was used as the foaming agent to form the porous refractory salt pattern. The mixed refractory salt slurry was microwave dried followed by sintering for selected time periods. Molten Al was infiltrated into the salt pattern in an inert atmosphere at a pressure of 2 bars. The final products were obtained by leaching out the refractory salt pattern. Mechanical properties of the derived samples were studied with a universal testing machine. The results were analyzed in correlation with their microstructural features evaluated with a scanning electron microscope (SEM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20foam" title="metal foam">metal foam</a>, <a href="https://publications.waset.org/abstracts/search?q=Al" title=" Al"> Al</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20replication%20method" title=" salt replication method"> salt replication method</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/22450/development-of-al-foam-by-a-low-cost-salt-replication-method-for-industrial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1069</span> Ceramic Membrane Filtration Technologies for Oilfield Produced Water Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Ebrahimi">Mehrdad Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Schmitz"> Oliver Schmitz</a>, <a href="https://publications.waset.org/abstracts/search?q=Axel%20Schmidt"> Axel Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Czermak"> Peter Czermak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> “Produced water” (PW) is any fossil water that is brought to the surface along with crude oil or natural gas. By far, PW is the largest waste stream by volume associated with oil and gas production operations. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging PW on the environment has lately become a significant issue of environmental concerns. Therefore, there is a need for new technologies for PW treatment due to increase focus on water conservation and environmental regulation. The use of membrane processes for treatment of PW has several advantages over many of the traditional separation techniques. In oilfield produced water treatment with ceramic membranes, process efficiency is characterized by the specific permeate flux and by the oil separation performance. Apart from the membrane properties, the permeate flux during filtration of oily wastewaters is known to be strongly dependent on the constituents of the feed solution, as well as on process conditions, e.g. trans-membrane pressure (TMP) and cross-flow velocity (CFV). The research project presented in these report describes the application of different ceramic membrane filtration technologies for the efficient treatment of oil-field produced water and different model oily solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20fouling" title=" membrane fouling"> membrane fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20rejection" title=" oil rejection"> oil rejection</a>, <a href="https://publications.waset.org/abstracts/search?q=produced%20water%20treatment" title=" produced water treatment"> produced water treatment</a> </p> <a href="https://publications.waset.org/abstracts/121611/ceramic-membrane-filtration-technologies-for-oilfield-produced-water-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oily%20refractory%20wastewater&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oily%20refractory%20wastewater&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oily%20refractory%20wastewater&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oily%20refractory%20wastewater&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oily%20refractory%20wastewater&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oily%20refractory%20wastewater&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oily%20refractory%20wastewater&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oily%20refractory%20wastewater&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oily%20refractory%20wastewater&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oily%20refractory%20wastewater&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oily%20refractory%20wastewater&amp;page=37">37</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oily%20refractory%20wastewater&amp;page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oily%20refractory%20wastewater&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10