CINXE.COM
Search results for: scaffolds
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: scaffolds</title> <meta name="description" content="Search results for: scaffolds"> <meta name="keywords" content="scaffolds"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="scaffolds" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="scaffolds"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 172</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: scaffolds</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">172</span> 3D Scaffolds Fabricated by Microfluidic Device for Rat Cardiomyocytes Observation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Wei%20Chao">Chih-Wei Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiashing%20Yu"> Jiashing Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microfluidic devices have recently emerged as promising tools for the fabrication of scaffolds for cell culture. To mimic the natural circumstances of organism for cells to grow, here we present three-dimensional (3D) scaffolds fabricated by microfluidics for cells cultivation. This work aims at investigating the behavior in terms of the viability and the proliferation capability of rat H9c2 cardiomyocytes in the gelatin 3D scaffolds by fluorescent images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20device" title="microfluidic device">microfluidic device</a>, <a href="https://publications.waset.org/abstracts/search?q=H9c2" title=" H9c2"> H9c2</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20scaffolds" title=" 3D scaffolds"> 3D scaffolds</a> </p> <a href="https://publications.waset.org/abstracts/13074/3d-scaffolds-fabricated-by-microfluidic-device-for-rat-cardiomyocytes-observation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">171</span> A Green Approach towards the Production of CaCO₃ Scaffolds for Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudhir%20Kumar%20Sharma">Sudhir Kumar Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Abiy%20D.%20Woldetsadik"> Abiy D. Woldetsadik</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazin%20Magzoub"> Mazin Magzoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Jagannathan"> Ramesh Jagannathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that bioactive ceramics exhibit specific biological affinities, especially in the area of tissue re-generation. In this context, we report the development of an eminently scalable, novel, supercritical CO₂ based process for the fabrication of hierarchically porous 'soft' CaCO₃ scaffolds. Porosity at the macro, micro, and nanoscales was obtained through process optimization of the so-called 'coffee-ring effect'. Exposure of these CaCO₃ scaffolds to monocytic THP-1 cells yielded negligible levels of tumor necrosis factor-alpha (TNF-α) thereby confirming the lack of immunogenicity of the scaffolds. ECM protein treatment of the scaffolds showed enhanced adsorption comparable to standard control such as glass. In vitro studies using osteoblast precursor cell line, MC3T3, also demonstrated the cytocompatibility of hierarchical porous CaCO₃ scaffolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supercritical%20CO2" title="supercritical CO2">supercritical CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=CaCO3%20scaffolds" title=" CaCO3 scaffolds"> CaCO3 scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=coffee-ring%20effect" title=" coffee-ring effect"> coffee-ring effect</a>, <a href="https://publications.waset.org/abstracts/search?q=ECM%20proteins" title=" ECM proteins"> ECM proteins</a> </p> <a href="https://publications.waset.org/abstracts/72952/a-green-approach-towards-the-production-of-caco3-scaffolds-for-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> Crystal Nucleation in 3D Printed Polymer Scaffolds in Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amani%20Alotaibi">Amani Alotaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D printing has emerged as a pivotal technique for scaffold development, particularly in the field of bone tissue regeneration, due to its ability to customize scaffolds to fit complex geometries of bone defects. Among the various methods available, fused deposition modeling (FDM) is particularly promising as it avoids the use of solvents or toxic chemicals during fabrication. This study investigates the effects of three key parameters, extrusion temperature, screw rotational speed, and deposition speed, on the crystallization and mechanical properties of polycaprolactone (PCL) scaffolds. Three extrusion temperatures (70°C, 80°C, and 90°C), three screw speeds (10 RPM, 15 RPM, and 20 RPM), and three deposition speeds (8 mm/s, 10 mm/s, and 12 mm/s) were evaluated. The scaffolds were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and tensile testing to assess changes in crystallinity and mechanical properties. Additionally, the scaffolds were analyzed for crystal size and biocompatibility. The results demonstrated that increasing the extrusion temperature to 80°C, combined with a screw speed of 15 RPM and a deposition speed of 10 mm/s, significantly improved the crystallinity, compressive modulus, and thermal resistance of the PCL scaffolds. These findings suggest that by fine-tuning basic 3D printing parameters, it is possible to modulate the structural and mechanical properties of the scaffold, thereby enhancing its suitability for bone tissue regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffolds" title=" scaffolds"> scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a> </p> <a href="https://publications.waset.org/abstracts/194998/crystal-nucleation-in-3d-printed-polymer-scaffolds-in-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> Simulated Mechanical Analysis on Hydroxyapatite Coated Porous Polylactic Acid Scaffold for Bone Grafting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ala%20Abobakr%20Abdulhafidh%20Al-Dubai">Ala Abobakr Abdulhafidh Al-Dubai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bone loss has risen due to fractures, surgeries, and traumatic injuries. Scientists and engineers have worked over the years to find solutions to heal and accelerate bone regeneration. The bone grafting technique has been utilized, which projects significant improvement in the bone regeneration area. An extensive study is essential on the relation between the mechanical properties of bone scaffolds and the pore size of the scaffolds, as well as the relation between the mechanical properties of bone scaffolds with the development of bioactive coating on the scaffolds. In reducing the cost and time, a mechanical simulation analysis is beneficial to simulate both relations. Therefore, this study highlights the simulated mechanical analyses on three-dimensional (3D) polylactic acid (PLA) scaffolds at two different pore sizes (P: 400 and 600 μm) and two different internals distances of (D: 600 and 900 μm), with and without the presence of hydroxyapatite (HA) coating. The 3D scaffold models were designed using SOLIDWORKS software. The respective material properties were assigned with the fixation of boundary conditions on the meshed 3D models. Two different loads were applied on the PLA scaffolds, including side loads of 200 N and vertical loads of 2 kN. While only vertical loads of 2 kN were applied on the HA coated PLA scaffolds. The PLA scaffold P600D900, which has the largest pore size and maximum internal distance, generated the minimum stress under the applied vertical load. However, that same scaffold became weaker under the applied side load due to the high construction gap between the pores. The development of HA coating on top of the PLA scaffolds induced greater stress generation compared to the non-coated scaffolds which is tailorable for bone implantation. This study concludes that the pore size and the construction of HA coating on bone scaffolds affect the mechanical strength of the bone scaffolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite%20coating" title="hydroxyapatite coating">hydroxyapatite coating</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20scaffold" title=" bone scaffold"> bone scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20simulation" title=" mechanical simulation"> mechanical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20%283D%29" title=" three-dimensional (3D)"> three-dimensional (3D)</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid%20%28PLA%29." title=" polylactic acid (PLA)."> polylactic acid (PLA).</a> </p> <a href="https://publications.waset.org/abstracts/182078/simulated-mechanical-analysis-on-hydroxyapatite-coated-porous-polylactic-acid-scaffold-for-bone-grafting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">168</span> Effect of Varying Scaffold Architecture and Porosity of Calcium Alkali Orthophosphate Based-Scaffolds for Bone Tissue Engineering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Adel">D. Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Giacomini"> F. Giacomini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Gildenhaar"> R. Gildenhaar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Berger"> G. Berger</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Gomes"> C. Gomes</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Linow"> U. Linow</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hardt"> M. Hardt</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Peleskae"> B. Peleskae</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20G%C3%BCnster"> J. Günster</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Houshmand"> A. Houshmand</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Stiller"> M. Stiller</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rack"> A. Rack</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ghaffar"> K. Ghaffar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gamal"> A. Gamal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20El%20Mofty"> M. El Mofty</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Knabe"> C. Knabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this study was to develop 3D scaffolds from a silica containing calcium alkali orthophosphate utilizing two different fabrication processes, first a replica technique namely the Schwartzwalder Somers method (SSM), and second 3D printing, i.e. Rapid prototyping (RP). First, the mechanical and physical properties of the scaffolds (porosity, compressive strength, and solubility) was assessed and second their potential to facilitate homogenous colonization with osteogenic cells and extracellular bone matrix formation throughout the porous scaffold architecture. To this end murine and rat calavarie osteoblastic cells were dynamically seeded on both scaffold types under perfusion with concentrations of 3 million cells. The amount of cells and extracellular matrix as well as osteogenic marker expression was evaluated using hard tissue histology, immunohistochemistry, and histomorphometric analysis. Total porosities of both scaffolds were 86.9 % and 50% for SSM and RP respectively, Compressive strength values were 0.46 ± 0.2 MPa for SSM and 6.6± 0.8 MPa for RP. Regarding the cellular behavior, RP scaffolds displayed a higher cell and matrix percentage of 24.45%. Immunoscoring yielded strong osteocalcin expression of cells and matrix in RP scaffolds and a moderate expression in SSM scaffolds. 3D printed RP scaffolds displayed superior mechanical and biological properties compared to SSM. 3D printed scaffolds represent excellent candidates for bone tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20alkali%20orthophosphate" title="calcium alkali orthophosphate">calcium alkali orthophosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20matrix%20mineralization" title=" extracellular matrix mineralization"> extracellular matrix mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoblast%20differentiation" title=" osteoblast differentiation"> osteoblast differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title=" rapid prototyping"> rapid prototyping</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold" title=" scaffold"> scaffold</a> </p> <a href="https://publications.waset.org/abstracts/46386/effect-of-varying-scaffold-architecture-and-porosity-of-calcium-alkali-orthophosphate-based-scaffolds-for-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">167</span> Porous Titanium Scaffolds Fabricated by Metal Injection Moulding Using Potassium-Chloride and Space Holder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Dehghan%20Manshadi">Ali Dehghan Manshadi</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20H.%20StJohn"> David H. StJohn</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20S.%20Dargusch"> Matthew S. Dargusch</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Qian"> M. Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biocompatible, highly porous titanium scaffolds were manufactured by metal injection moulding of spherical titanium powder (powder size: -45 µm) with potassium chloride (powder size: -250 µm) as a space holder. Property evaluation of scaffolds confirmed a high level of compatibility between their mechanical properties and those of human cortical bone. The optimum sintering temperature was found to be 1250°C producing scaffolds with more than 90% interconnected pores in the size range of 200-250 µm, yield stress of 220 MPa and Young’s modulus of 7.80 GPa, all of which are suitable for bone tissue engineering. Increasing the sintering temperature to 1300°C increased the Young’s modulus to 22.0 GPa while reducing the temperature to 1150°C reduced the yield stress to 120 MPa due to incomplete sintering. The residual potassium chloride was determined vs. sintering temperature. A comparison was also made between the porous titanium scaffolds fabricated in this study and the additively manufactured titanium lattices of similar porosity reported in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium" title="titanium">titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20injection%20moulding" title=" metal injection moulding"> metal injection moulding</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffolds" title=" scaffolds"> scaffolds</a> </p> <a href="https://publications.waset.org/abstracts/82116/porous-titanium-scaffolds-fabricated-by-metal-injection-moulding-using-potassium-chloride-and-space-holder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> Effective Stiffness, Permeability, and Reduced Wall Shear Stress of Highly Porous Tissue Engineering Scaffolds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Mohammadi%20Khujin">Hassan Mohammadi Khujin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tissue engineering is the science of tissues and complex organs creation using scaffolds, cells and biologically active components. Most cells require scaffolds to grow and proliferate. These temporary support structures for tissue regeneration are later replaced with extracellular matrix produced inside the body. Recent advances in additive manufacturing methods allow production of highly porous, complex three dimensional scaffolds suitable for cell growth and proliferation. The current paper investigates the mechanical properties, including elastic modulus and compressive strength, as well as fluid flow dynamics, including permeability and flow-induced shear stress of scaffolds with four triply periodic minimal surface (TPMS) configurations, namely the Schwarz primitive, the Schwarz diamond, the gyroid, and the Neovius structures. Higher porosity in all scaffold types resulted in lower mechanical properties. The permeability of the scaffolds was determined using Darcy's law with reference to geometrical parameters and the pressure drop derived from the computational fluid dynamics (CFD) analysis. Higher porosity enhanced permeability and reduced wall shear stress in all scaffold designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=highly%20porous%20scaffolds" title="highly porous scaffolds">highly porous scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements%20analysis" title=" finite elements analysis"> finite elements analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20analysis" title=" CFD analysis"> CFD analysis</a> </p> <a href="https://publications.waset.org/abstracts/159662/effective-stiffness-permeability-and-reduced-wall-shear-stress-of-highly-porous-tissue-engineering-scaffolds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> Preparation and Characterization of Silk/Diopside Composite Nanofibers via Electrospinning for Tissue Engineering Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Teimouri">Abbas Teimouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Ghorbanian"> Leila Ghorbanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Iren%20Dabirian"> Iren Dabirian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work focused on preparation and characterizations of silk fibroin (SF)/nanodiopside nanoceramic via electrospinning process. Nanofibrous scaffolds were characterized by combined techniques of scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD). The results confirmed that fabricated SF/diopside scaffolds improved cell attachment and proliferation. The results indicated that the electrospun of SF/nanodiopside nanofibrous scaffolds could be considered as ideal candidates for tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=silk%20fibroin" title=" silk fibroin"> silk fibroin</a>, <a href="https://publications.waset.org/abstracts/search?q=diopside" title=" diopside"> diopside</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20scaffold" title=" composite scaffold"> composite scaffold</a> </p> <a href="https://publications.waset.org/abstracts/45720/preparation-and-characterization-of-silkdiopside-composite-nanofibers-via-electrospinning-for-tissue-engineering-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">164</span> Improved Mechanical Properties and Osteogenesis in Electrospun Poly L-Lactic Ultrafine Nanofiber Scaffolds Incorporated with Graphene Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weili%20Shao">Weili Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Wang"> Qian Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianxin%20He"> Jianxin He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the applications of graphene oxide in fabricating scaffolds for bone tissue engineering have been received extensive concern. In this work, poly l-lactic/graphene oxide composite nanofibers were successfully fabricated by electrospinning. The morphology structure, porosity and mechanical properties of the composite nanofibers were characterized using different techniques. And mouse mesenchymal stem cells were cultured on the composite nanofiber scaffolds to assess their suitability for bone tissue engineering. The results indicated that the composite nanofiber scaffolds had finer fiber diameter and higher porosity as compared with pure poly l-lactic nanofibers. Furthermore, incorporation of graphene oxide into the poly l-lactic nanofibers increased protein adsorptivity, boosted the Young’s modulus and tensile strength by nearly 4.2-fold and 3.5-fold, respectively, and significantly enhanced adhesion, proliferation, and osteogenesis in mouse mesenchymal stem cells. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly%20l-lactic" title="poly l-lactic">poly l-lactic</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=osteogenesis" title=" osteogenesis"> osteogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title=" bone tissue engineering"> bone tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/67896/improved-mechanical-properties-and-osteogenesis-in-electrospun-poly-l-lactic-ultrafine-nanofiber-scaffolds-incorporated-with-graphene-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> Fabrication of Cheap Novel 3d Porous Scaffolds Activated by Nano-Particles and Active Molecules for Bone Regeneration and Drug Delivery Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Mabrouk">Mostafa Mabrouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Basma%20E.%20Abdel-Ghany"> Basma E. Abdel-Ghany</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Moaness"> Mona Moaness</a>, <a href="https://publications.waset.org/abstracts/search?q=Bothaina%20M.%20Abdel-Hady"> Bothaina M. Abdel-Hady</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20H.%20Beherei"> Hanan H. Beherei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tissue engineering became a promising field for bone repair and regenerative medicine in which cultured cells, scaffolds and osteogenic inductive signals are used to regenerate tissues. The annual cost of treating bone defects in Egypt has been estimated to be many billions, while enormous costs are spent on imported bone grafts for bone injuries, tumors, and other pathologies associated with defective fracture healing. The current study is aimed at developing a more strategic approach in order to speed-up recovery after bone damage. This will reduce the risk of fatal surgical complications and improve the quality of life of people affected with such fractures. 3D scaffolds loaded with cheap nano-particles that possess an osteogenic effect were prepared by nano-electrospinning. The Microstructure and morphology characterizations of the 3D scaffolds were monitored using scanning electron microscopy (SEM). The physicochemical characterization was investigated using X-ray diffractometry (XRD) and infrared spectroscopy (IR). The Physicomechanical properties of the 3D scaffold were determined by a universal testing machine. The in vitro bioactivity of the 3D scaffold was assessed in simulated body fluid (SBF). The bone-bonding ability of novel 3D scaffolds was also evaluated. The obtained nanofibrous scaffolds demonstrated promising microstructure, physicochemical and physicomechanical features appropriate for enhanced bone regeneration. Therefore, the utilized nanomaterials loaded with the drug are greatly recommended as cheap alternatives to growth factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title="bone regeneration">bone regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=cheap%20scaffolds" title=" cheap scaffolds"> cheap scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20molecules" title=" active molecules"> active molecules</a> </p> <a href="https://publications.waset.org/abstracts/146968/fabrication-of-cheap-novel-3d-porous-scaffolds-activated-by-nano-particles-and-active-molecules-for-bone-regeneration-and-drug-delivery-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> UV-Reactive Electrospinning: Preparation, Characterization and Cell Culture Applications of Nanofiber Scaffolds Containing Keratin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Y%C3%BCksel%20Deniz">Duygu Yüksel Deniz</a>, <a href="https://publications.waset.org/abstracts/search?q=Memet%20Vezir%20Kahraman"> Memet Vezir Kahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Serap%20Erdem%20Kuruca"> Serap Erdem Kuruca</a>, <a href="https://publications.waset.org/abstracts/search?q=Mediha%20S%C3%BCleymano%C4%9Flu"> Mediha Süleymanoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our first aim was to synthesize Hydroxy Apatite (HAP) and then modify its surface by adding 4-Vinylbenzene boronic acid (4-VBBA). The characterization was done by FT-IR. By adding Polyvinyl alcohol (PVA) to 4- VBBA-HAP, we obtained a suitable electrospinning solution. PVA solution which was also modified by using alkoxy silanes, in order to prevent the scaffolds from being damaged by aqueous cell medium, was added. Keratin was dissolved and then added into the electrospinning solution. Keratin containing 4-VBBA- HAP/PVA composite was used to fabricate nanofiber scaffolds with the simultaneous UV-reactive electrospinning technique. The structural characterization was done by FT-IR. Thermal gravimetric analysis was also performed by using TGA. The morphological characterization was determined by SEM analyses. Our second aim was to create a scaffold where cells could grow. With this purpose, suitable nanofibers were choosen according to their SEM analysis. Keratin containing nanofibers were seeded with 3T3, ECV and SAOS cells and their cytotoxicity and cell proliferation were investigated by using MTT assay. After cell culturing process morphological characterization was determined by SEM analyses. These scaffolds were designed to be nontoxic biomaterials. Here, a comparision was made between keratin containing 3T3, ECV and SAOS seeded nanofiber scaffolds and the results were presented and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20culture" title="cell culture">cell culture</a>, <a href="https://publications.waset.org/abstracts/search?q=keratin" title=" keratin"> keratin</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-reactive%20electrospinning" title=" UV-reactive electrospinning"> UV-reactive electrospinning</a> </p> <a href="https://publications.waset.org/abstracts/25095/uv-reactive-electrospinning-preparation-characterization-and-cell-culture-applications-of-nanofiber-scaffolds-containing-keratin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Advancement in Adhesion and Osteogenesis of Stem Cells with Histatin Coated 3D-Printed Bio-Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haiyan%20Wang">Haiyan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongyun%20Wang"> Dongyun Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongyong%20Yan"> Yongyong Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20T.%20Jaspers"> Richard T. Jaspers</a>, <a href="https://publications.waset.org/abstracts/search?q=Gang%20Wu"> Gang Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesenchymal stem cell and 3D printing-based bone tissue engineering present a promising technique to repair large-volume bone defects. Its success is highly dependent on cell attachment, spreading, osteogenic differentiation, and in vivo survival of stem cells on 3D-printed scaffolds. In this study, human salivary histatin-1 (Hst1) was utilized to enhance the interactions between human adipose-derived stem cells (hASCs) and 3D-printed β-tricalcium phosphate (β-TCP) bioceramic scaffolds. Fluorescent images showed that Hst1 significantly enhanced the adhesion of hASCs to both bioinert glass and 3D-printed β-TCP scaffold. In addition, Hst1 was associated with significantly higher proliferation and osteogenic differentiation of hASCs on 3D-printed β-TCP scaffolds. Moreover, coating 3D-printed β-TCP scaffolds with histatin significantly promotes the survival of hASCs in vivo. The ERK and p38 but not JNK signaling was found to be involved in the superior adhesion of hASCs to β-TCP scaffolds with the aid of Hst1. In conclusion, Hst1 could significantly promote the adhesion, spreading, osteogenic differentiation, and in vivo survival of hASCs on 3D-printed β-TCP scaffolds, bearing a promising application in stem cell/3D printing-based constructs for bone tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3d%20printing" title="3d printing">3d printing</a>, <a href="https://publications.waset.org/abstracts/search?q=adipose-derived%20stem%20cells" title=" adipose-derived stem cells"> adipose-derived stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title=" bone tissue engineering"> bone tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=histatin-1" title=" histatin-1"> histatin-1</a>, <a href="https://publications.waset.org/abstracts/search?q=osteogenesis" title=" osteogenesis"> osteogenesis</a> </p> <a href="https://publications.waset.org/abstracts/183798/advancement-in-adhesion-and-osteogenesis-of-stem-cells-with-histatin-coated-3d-printed-bio-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Polymeric Microspheres for Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yamina%20Boukari">Yamina Boukari</a>, <a href="https://publications.waset.org/abstracts/search?q=Nashiru%20Billa"> Nashiru Billa</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Morris"> Andrew Morris</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Doughty"> Stephen Doughty</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Shakesheff"> Kevin Shakesheff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poly (lactic-co-glycolic) acid (PLGA) is a synthetic polymer that can be used in bone tissue engineering with the aim of creating a scaffold in order to support the growth of cells. The formation of microspheres from this polymer is an attractive strategy that would allow for the development of an injectable system, hence avoiding invasive surgical procedures. The aim of this study was to develop a microsphere delivery system for use as an injectable scaffold in bone tissue engineering and evaluate various formulation parameters on its properties. Porous and lysozyme-containing PLGA microspheres were prepared using the double emulsion solvent evaporation method from various molecular weights (MW). Scaffolds were formed by sintering to contain 1 -3mg of lysozyme per gram of scaffold. The mechanical and physical properties of the scaffolds were assessed along with the release of lysozyme, which was used as a model protein. The MW of PLGA was found to have an influence on microsphere size during fabrication, with increased MW leading to an increased microsphere diameter. An inversely proportional relationship was displayed between PLGA MW and mechanical strength of formed scaffolds across loadings for low, intermediate and high MW respectively. Lysozyme release from both microspheres and formed scaffolds showed an initial burst release phase, with both microspheres and scaffolds fabricated using high MW PLGA showing the lowest protein release. Following the initial burst phase, the profiles for each MW followed a similar slow release over 30 days. Overall, the results of this study demonstrate that lysozyme can be successfully incorporated into porous PLGA scaffolds and released over 30 days in vitro, and that varying the MW of the PLGA can be used as a method of altering the physical properties of the resulting scaffolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone" title="bone">bone</a>, <a href="https://publications.waset.org/abstracts/search?q=microspheres" title=" microspheres"> microspheres</a>, <a href="https://publications.waset.org/abstracts/search?q=PLGA" title=" PLGA"> PLGA</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/24045/polymeric-microspheres-for-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Biocompatible Porous Titanium Scaffolds Produced Using a Novel Space Holder Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yunhui%20Chen">Yunhui Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Damon%20Kent"> Damon Kent</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Dargusch"> Matthew Dargusch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic scaffolds are a highly promising new approach to replace both autografts and allografts to repair and remodel damaged bone tissue. Biocompatible porous titanium scaffold was manufactured through a powder metallurgy approach. Magnesium powder was used as space holder material which was compacted with titanium powder and removed during sintering. Evaluation of the porosity and mechanical properties showed a high level of compatibility with human bone. Interconnectivity between pores is higher than 95% for porosity as low as 30%. The elastic moduli are 39 GPa, 16 GPa and 9 GPa for 30%, 40% and 50% porosity samples which match well to that of natural bone (4-30 GPa). The yield strengths for 30% and 40% porosity samples of 315 MPa and 175 MPa are superior to that of human bone (130-180 MPa). In-vitro cell culture tests on the scaffold samples using Human Mesenchymal Stem Cells (hMSCs) demonstrated their biocompatibility and indicated osseointegration potential. The scaffolds allowed cells to adhere and spread both on the surface and inside the pore structures. With increasing levels of porosity/interconnectivity, improved cell proliferation is obtained within the pores. It is concluded that samples with 30% porosity exhibit the best biocompatibility. The results suggest that porous titanium scaffolds generated using this manufacturing route have excellent potential for hard tissue engineering applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scaffolds" title="scaffolds">scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=MG-63%20cell%20culture" title=" MG-63 cell culture"> MG-63 cell culture</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20holder" title=" space holder"> space holder</a> </p> <a href="https://publications.waset.org/abstracts/75472/biocompatible-porous-titanium-scaffolds-produced-using-a-novel-space-holder-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Developing Scaffolds for Tissue Regeneration using Low Temperature Plasma (LTP)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Komal%20Vig">Komal Vig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cardiovascular disease (CVD)-related deaths occur in 17.3 million people globally each year, accounting for 30% of all deaths worldwide, with a predicted annual incidence of deaths to reach 23.3 million globally by 2030. Autologous bypass grafts remain an important therapeutic option for the treatment of CVD, but the poor quality of the donor patient’s blood vessels, the invasiveness of the resection surgery, and postoperative movement restrictions create issues. The present study is aimed to improve the endothelialization of intimal surface of graft by using low temperature plasma (LTP) to increase the cell attachment and proliferation. Polytetrafluoroethylene (PTFE) was treated with LTP. Air was used as the feed-gas, and the pressure in the plasma chamber was kept at 800 mTorr. Scaffolds were also modified with gelatin and collagen by dipping method. Human umbilical vein endothelial cells (HUVEC) were plated on the developed scaffolds, and cell proliferation was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and by microscopy. mRNA expressions levels of different cell markers were investigated using quantitative real-time PCR (qPCR). XPS confirmed the introduction of oxygenated functionalities from LTP. HUVEC cells showed 80% seeding efficiency on the scaffold. Microscopic and MTT assays indicated increase in cell viability in LTP treated scaffolds, especially when treated with gelatin or collagen, compared to untreated scaffolds. Gene expression studies shows enhanced expression of cell adhesion marker Integrin- α 5 gene after LTP treatment. LTP treated scaffolds exhibited better cell proliferation and viability compared to untreated scaffolds. Protein treatment of scaffold increased cell proliferation. Based on our initial results, more scaffolds alternatives will be developed and investigated for cell growth and vascularization studies. Acknowledgments: This work is supported by the NSF EPSCoR RII-Track-1 Cooperative Agreement OIA-2148653. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LTP" title="LTP">LTP</a>, <a href="https://publications.waset.org/abstracts/search?q=HUVEC%20cells" title=" HUVEC cells"> HUVEC cells</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular%20graft" title=" vascular graft"> vascular graft</a>, <a href="https://publications.waset.org/abstracts/search?q=endothelialization" title=" endothelialization"> endothelialization</a> </p> <a href="https://publications.waset.org/abstracts/173814/developing-scaffolds-for-tissue-regeneration-using-low-temperature-plasma-ltp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Aspirin Loaded Poly-L-Lactic Acid Nanofibers and Their Potentials as Small Diameter Vascular Grafts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahboubeh%20Kabiri">Mahboubeh Kabiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Aslani"> Saba Aslani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among various approaches used for the treatment of cardiovascular diseases, the occlusion of the small-diameter vascular graft (SDVG) is still an unresolved problem which seeks further research to address them. Though autografts are now the gold standards to be replaced for blocked coronary arteries, they suffer from inadequate quality and quantity. On the other hand, the major problems of the tissue engineered grafts are thrombosis and intimal hyperplasia. Provision of a suitable spatiotemporal release pattern of anticoagulant agents such as heparin and aspirin can be a step forward to overcome such issues . Herein, we fabricated electrospun scaffolds from FDA (Food and Drug Administration) approved poly-L-lactic acid (PLLA) with aspirin loaded into the nanofibers. Also, we surface coated the scaffolds with Amniotic Membrane lysate as a source for natural elastic polymers and a mimic of endothelial basement membrane. The scaffolds were characterized thoroughly structurally and mechanically for their morphology, fiber orientation, tensile strength, hydrophilicity, cytotoxicity, aspirin release and cell attachment support. According to the scanning electron microscopy (SEM) images, the size of fibers ranged from 250 to 500 nm. The scaffolds showed appropriate tensile strength expected for vascular grafts. Cellular attachment, growth, and infiltration were proved using SEM and MTT (3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide) assay. Drug-loaded scaffolds showed a sustained release profile of aspirin in 7 days. An enhanced cytocompatibility was observed in AM-coated electrospun PLLA fibers compared to uncoated scaffolds. Our results together indicated that AM lysate coated ASA releasing scaffolds have promising potentials for development of a biocompatible SDVG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vascular%20tissue%20engineering" title="vascular tissue engineering">vascular tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular%20grafts" title=" vascular grafts"> vascular grafts</a>, <a href="https://publications.waset.org/abstracts/search?q=anticoagulant%20agent" title=" anticoagulant agent"> anticoagulant agent</a>, <a href="https://publications.waset.org/abstracts/search?q=aspirin" title=" aspirin"> aspirin</a>, <a href="https://publications.waset.org/abstracts/search?q=amniotic%20membrane" title=" amniotic membrane"> amniotic membrane</a> </p> <a href="https://publications.waset.org/abstracts/97597/aspirin-loaded-poly-l-lactic-acid-nanofibers-and-their-potentials-as-small-diameter-vascular-grafts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Investigation on 3D Printing of Calcium silicate Bioceramic Slurry for Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Jabbari">Amin Jabbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The state of the art in major 3D printing technologies, such as powder-based and slurry based, has led researchers to investigate the ability to fabricate bone scaffolds for bone tissue engineering using biomaterials. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures that match their functional properties. Polymer matrix composites reinforced with particulate bioceramics, hydrogels reinforced with particulate bioceramics, polymers coated with bioceramics, and non-porous bioceramics are among the materials that can be investigated for bone scaffold printing. Furthermore, it was shown that the introduction of high-density micropores into the sparingly dissolvable CSiMg10 and dissolvable CSiMg4 shell layer inevitably leads to a nearly 30% reduction in compressive strength, but such micropores can easily influence the ion release behavior of the scaffolds. Also, biocompatibility tests such as cytotoxicity, hemocompatibility and genotoxicity were tested on printed parts. The printed part was tested in vitro, and after 24-26 h for cytotoxicity, and 4h for hemocompatibility test, the CSiMg4@CSiMg10-p scaffolds were found to have significantly higher osteogenic capability than the other scaffolds of implantation. Overall, these experimental studies demonstrate that 3D printed, additively-manufactured bioceramic calcium (Ca)-silicate scaffolds with appropriate pore dimensions are promising to guide new bone ingrowth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AM" title="AM">AM</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printed%20implants" title=" 3D printed implants"> 3D printed implants</a>, <a href="https://publications.waset.org/abstracts/search?q=bioceramic" title=" bioceramic"> bioceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/169211/investigation-on-3d-printing-of-calcium-silicate-bioceramic-slurry-for-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Safety Conditions Analysis of Scaffolding on Construction Sites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Pie%C5%84ko">M. Pieńko</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Robak"> A. Robak</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20B%C5%82azik-Borowa"> E. Błazik-Borowa</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Szer"> J. Szer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of analysis of 100 full-scale scaffolding structures in terms of compliance with legal acts and safety of use. In 2016 and 2017, authors examined scaffolds in Poland located at buildings which were at construction or renovation stage. The basic elements affecting the safety of scaffolding use such as anchors, supports, platforms, guardrails and toe-boards have been taken into account. All of these elements were checked in each of considered scaffolding. Based on the analyzed scaffoldings, the most common errors concerning assembly process and use of scaffolding were collected. Legal acts on the scaffoldings are not always clear, and this causes many issues. In practice, people realize how dangerous the use of incomplete scaffolds is only when the accident occurs. Despite the fact that the scaffolding should ensure the safety of its users, most accidents on construction sites are caused by fall from a height. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fa%C3%A7ade%20scaffolds" title="façade scaffolds">façade scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20capacity" title=" load capacity"> load capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=practice" title=" practice"> practice</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20of%20people" title=" safety of people"> safety of people</a> </p> <a href="https://publications.waset.org/abstracts/72128/safety-conditions-analysis-of-scaffolding-on-construction-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Effect of the Hardness of Spacer Agent on Structural Properties of Metallic Scaffolds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20%20Khodaei">Mohammad Khodaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20%20Meratien"> Mahmood Meratien</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Valanezhad"> Alireza Valanezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Serdar%20Pazarlioglu"> Serdar Pazarlioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Serdar%20Salman"> Serdar Salman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikuya%20Watanabe"> Ikuya Watanabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pore size and morphology plays a crucial role on mechanical properties of porous scaffolds. In this research, titanium scaffold was prepared using space holder technique. Sodium chloride and ammonium bicarbonate were utilized as spacer agent separately. The effect of the hardness of spacer on the cell morphology was investigated using scanning electron microscopy (SEM) and optical stereo microscopy. Image analyzing software was used to interpret the microscopic images quantitatively. It was shown that sodium chloride, due to its higher hardness, maintain its morphology during cold compaction, and cause better replication in porous scaffolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spacer" title="Spacer">Spacer</a>, <a href="https://publications.waset.org/abstracts/search?q=Titanium%20Scaffold" title=" Titanium Scaffold"> Titanium Scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=Pore%20Morphology" title=" Pore Morphology"> Pore Morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=Space%20Holder%20Technique" title=" Space Holder Technique"> Space Holder Technique</a> </p> <a href="https://publications.waset.org/abstracts/66028/effect-of-the-hardness-of-spacer-agent-on-structural-properties-of-metallic-scaffolds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> iPSCs More Effectively Differentiate into Neurons on PLA Scaffolds with High Adhesive Properties for Primary Neuronal Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azieva%20A.%20M.">Azieva A. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Yastremsky%20E.%20V."> Yastremsky E. V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirillova%20D.%20A."> Kirillova D. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Patsaev%20T.%20D."> Patsaev T. D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharikov%20R.%20V."> Sharikov R. V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamyshinsky%20R.%20A."> Kamyshinsky R. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukanina%20K.%20I."> Lukanina K. I.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharikova%20N.%20A."> Sharikova N. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Grigoriev%20T.%20E."> Grigoriev T. E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasiliev%20A.%20L."> Vasiliev A. L.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesive properties of scaffolds, which predominantly depend on the chemical and structural features of their surface, play the most important role in tissue engineering. The basic requirements for such scaffolds are biocompatibility, biodegradation, high cell adhesion, which promotes cell proliferation and differentiation. In many cases, synthetic polymers scaffolds have proven advantageous because they are easy to shape, they are tough, and they have high tensile properties. The regeneration of nerve tissue still remains a big challenge for medicine, and neural stem cells provide promising therapeutic potential for cell replacement therapy. However, experiments with stem cells have their limitations, such as low level of cell viability and poor control of cell differentiation. Whereas the study of already differentiated neuronal cell culture obtained from newborn mouse brain is limited only to cell adhesion. The growth and implantation of neuronal culture requires proper scaffolds. Moreover, the polymer scaffolds implants with neuronal cells could demand specific morphology. To date, it has been proposed to use numerous synthetic polymers for these purposes, including polystyrene, polylactic acid (PLA), polyglycolic acid, and polylactide-glycolic acid. Tissue regeneration experiments demonstrated good biocompatibility of PLA scaffolds, despite the hydrophobic nature of the compound. Problem with poor wettability of the PLA scaffold surface could be overcome in several ways: the surface can be pre-treated by poly-D-lysine or polyethyleneimine peptides; roughness and hydrophilicity of PLA surface could be increased by plasma treatment, or PLA could be combined with natural fibers, such as collagen or chitosan. This work presents a study of adhesion of both induced pluripotent stem cells (iPSCs) and mouse primary neuronal cell culture on the polylactide scaffolds of various types: oriented and non-oriented fibrous nonwoven materials and sponges – with and without the effect of plasma treatment and composites with collagen and chitosan. To evaluate the effect of different types of PLA scaffolds on the neuronal differentiation of iPSCs, we assess the expression of NeuN in differentiated cells through immunostaining. iPSCs more effectively differentiate into neurons on PLA scaffolds with high adhesive properties for primary neuronal cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PLA%20scaffold" title="PLA scaffold">PLA scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=neurons" title=" neurons"> neurons</a>, <a href="https://publications.waset.org/abstracts/search?q=neuronal%20differentiation" title=" neuronal differentiation"> neuronal differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title=" stem cells"> stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactid" title=" polylactid"> polylactid</a> </p> <a href="https://publications.waset.org/abstracts/164951/ipscs-more-effectively-differentiate-into-neurons-on-pla-scaffolds-with-high-adhesive-properties-for-primary-neuronal-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Electrospun Nanofibrous Scaffolds Modified with Collagen-I and Fibronectin with LX-2 Cells to Study Liver Fibrosis in vitro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prativa%20Das">Prativa Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Lay%20Poh%20Tan"> Lay Poh Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three-dimensional microenvironment is a need to study the event cascades of liver fibrosis in vitro. Electrospun nanofibers modified with essential extracellular matrix proteins can closely mimic the random fibrous structure of native liver extracellular matrix (ECM). In this study, we fabricate a series of 3D electrospun scaffolds by wet electrospinning process modified with different ratios of collagen-I to fibronectin to achieve optimized distribution of these two ECM proteins on the fiber surface. A ratio of 3:1 of collagen-I to fibronectin was found to be optimum for surface modification of electrospun poly(lactic-co-glycolic acid) (PLGA) fibers by chemisorption process. In 3:1 collagen-I to fibronectin modified scaffolds the total protein content increased by ~2 fold compared to collagen-I modified and ~1.5 fold compared to 1:1/9:1 collagen-I to fibronectin modified scaffolds. We have cultured LX-2 cells on this scaffold over 14 days and found that LX-2 cells acquired more quiescent phenotype throughout the culture period and shown significantly lower expression of alpha smooth muscle actin and collagen-I. Thus, this system can be used as a model to study liver fibrosis by using different fibrogenic mediators in vitro. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen-I%20and%20fibronectin" title=" collagen-I and fibronectin"> collagen-I and fibronectin</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification%20of%20fiber" title=" surface modification of fiber"> surface modification of fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=LX-2%20cells" title=" LX-2 cells"> LX-2 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20fibrosis" title=" liver fibrosis"> liver fibrosis</a> </p> <a href="https://publications.waset.org/abstracts/104340/electrospun-nanofibrous-scaffolds-modified-with-collagen-i-and-fibronectin-with-lx-2-cells-to-study-liver-fibrosis-in-vitro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Numerical Simulation of Bio-Chemical Diffusion in Bone Scaffolds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Madadelahi">Masoud Madadelahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Shamloo"> Amir Shamloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Sara%20Salehi"> Seyedeh Sara Salehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Previously, some materials like solid metals and their alloys have been used as implants in human’s body. In order to amend fixation of these artificial hard human tissues, some porous structures have been introduced. In this way, tissues in vicinity of the porous structure can be attached more easily to the inserted implant. In particular, the porous bone scaffolds are useful since they can deliver important biomolecules like growth factors and proteins. This study focuses on the properties of the degradable porous hard tissues using a three-dimensional numerical Finite Element Method (FEM). The most important studied properties of these structures are diffusivity flux and concentration of different species like glucose, oxygen, and lactate. The process of cells migration into the scaffold is considered as a diffusion process, and related parameters are studied for different values of production/consumption rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20scaffolds" title="bone scaffolds">bone scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusivity" title=" diffusivity"> diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/67362/numerical-simulation-of-bio-chemical-diffusion-in-bone-scaffolds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Optimizing the Morphology and Flow Patterns of Scaffold Perfusion Systems for Effective Cell Deposition Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vineeth%20Siripuram">Vineeth Siripuram</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhineet%20Nigam"> Abhineet Nigam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A bioreactor is an engineered system that supports a biologically active environment. Along the years, the advancements in bioreactors have been widely accepted all over the world for varied applications ranging from sewage treatment to tissue cloning. Driven by tissue and organ shortage, tissue engineering has emerged as an alternative to transplantation for the reconstruction of lost or damaged organs. In this study, Computational fluid dynamics (CFD) has been used to model porous medium flow in scaffolds (taken from the literature) with different flow patterns. A detailed analysis of different scaffold geometries and their influence on cell deposition in the perfusion system is been carried out using Computational fluid dynamics (CFD). Considering the fact that, the scaffold should mimic the organs or tissues structures in a three-dimensional manner, certain assumptions were made accordingly. The research on scaffolds has been extensively carried out in different bioreactors. However, there has been less focus on the morphology of the scaffolds and the flow patterns in which the perfusion system is laid upon. The objective of this paper is to employ a computational approach using CFD simulation to determine the optimal morphology and the anisotropic measurements of the various samples of scaffolds. Using predictive computational modelling approach, variables which exert dominant effects on the cell deposition within the scaffold were prioritised and corresponding changes in morphology of scaffold and flow patterns in the perfusion systems are made. A Eulerian approach was carried on in multiple CFD simulations, and it is observed that the morphological and topological changes in the scaffold perfusion system are of great importance in the commercial applications of scaffolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20seeding" title="cell seeding">cell seeding</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20patterns" title=" flow patterns"> flow patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=perfusion%20systems" title=" perfusion systems"> perfusion systems</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold" title=" scaffold"> scaffold</a> </p> <a href="https://publications.waset.org/abstracts/90785/optimizing-the-morphology-and-flow-patterns-of-scaffold-perfusion-systems-for-effective-cell-deposition-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Two-Component Biocompartible Material for Reconstruction of Articular Hyaline Cartilage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alena%20O.%20Stepanova">Alena O. Stepanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20S.%20Chernonosova"> Vera S. Chernonosova</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20S.%20Godovikova"> Tatyana S. Godovikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantin%20A.%20Bulatov"> Konstantin A. Bulatov</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Y.%20Patrushev"> Andrey Y. Patrushev</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20P.%20Laktionov"> Pavel P. Laktionov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trauma and arthrosis, not to mention cartilage destruction in overweight and elders put hyaline cartilage lesion among the most frequent diseases of locomotor system. These problems combined with low regeneration potential of the cartilage make regeneration of articular cartilage a high-priority task of tissue engineering. Many types of matrices, the procedures of their installation and autologous chondrocyte implantation protocols were offered, but certain aspects including adhesion of the implant with surrounding cartilage/bone, prevention of the ossification and fibrosis were not resolved. Simplification and acceleration of the procedures resulting in restoration of normal cartilage are also required. We have demonstrated that human chondroblasts can be successfully cultivated at the surface of electrospun scaffolds and produce extracellular matrix components in contrast to chondroblasts grown in homogeneous hydrogels. To restore cartilage we offer to use stacks of electrospun scaffolds fixed with photopolymerized solution of prepared from gelatin and chondroitin-4-sulfate both modified by glycidyl methacrylate and non-toxic photoinitator Darocur 2959. Scaffolds were prepared from nylon 6, polylactide-co-glicolide and their mixtures with modified gelatin. Illumination of chondroblasts in photopolymerized solution using 365 nm LED light had no effect on cell viability at compressive strength of the gel less than0,12 MPa. Stacks of electrospun scaffolds provide good compressive strength and have the potential for substitution with cartilage when biodegradable scaffolds are used. Vascularization can be prevented by introduction of biostable scaffolds in the layers contacting the subchondral bone. Studies of two-component materials (2-3 sheets of electrospun scaffold) implanted in the knee-joints of rabbits and fixed by photopolymerization demonstrated good crush resistance, biocompatibility and good adhesion of the implant with surrounding cartilage. Histological examination of the implants 3 month after implantation demonstrates absence of any inflammation and signs of replacement of the biodegradable scaffolds with normal cartilage. The possibility of intraoperative population of the implants with autologous cells is being investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chondroblasts" title="chondroblasts">chondroblasts</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospun%20scaffolds" title=" electrospun scaffolds"> electrospun scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=hyaline%20cartilage" title=" hyaline cartilage"> hyaline cartilage</a>, <a href="https://publications.waset.org/abstracts/search?q=photopolymerized%20gel" title=" photopolymerized gel"> photopolymerized gel</a> </p> <a href="https://publications.waset.org/abstracts/42577/two-component-biocompartible-material-for-reconstruction-of-articular-hyaline-cartilage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Poly(ε-Caprolactone)-Based Bilayered Scaffolds Prepared by Electrospinning for Tissue Engineering of Small-Diameter Vascular Grafts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Fayez%20Al%20Rez">Mohammed Fayez Al Rez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, there is an unmet clinical need for new small-diameter vascular grafts to overcome the drawbacks of traditional methods used for treatment of widespread cardiovascular diseases. Vascular tissue engineering (VTE) is a promising approach that can be utilized to develop viable vascular grafts by in vitro seeding of functional cells onto a scaffold allowing them to attach, proliferate and differentiate. To achieve this purpose, the scaffold should provide cells with the initial necessary extracellular matrix environment and structure until being able to reconstruct the required vascular tissue. Therefore, producing scaffolds with suitable features is crucial for guiding cells properly to develop the desired tissue-engineered vascular grafts for clinical applications. The main objective of this work is fabrication and characterization of tubular small-diameter ( < 6 mm) bilayered scaffolds for VTE. The scaffolds were prepared via mixing electrospinning approach of biodegradable poly(ε-caprolactone) (PCL) polymer – due to its favorable physicochemical properties – to mimic the natural environment-extracellular matrix. Firstly, tubular nanofibrous construct with inner diameter of 3, 4 or 5 mm was electrospun as inner layer, and secondly, microfibrous construct was electrospun as outer layer directly on the first produced inner layer. To improve the biological properties of PCL, a group of the electrospun scaffolds was immersed in type-1 collagen solution. The morphology and structure of the resulting fibrous scaffolds were investigated by scanning electron microscope. The electrospun nanofibrous inner layer contained fibers measuring 219±35 nm in diameter, while the electrospun microfibrous outer layer contained fibers measuring 1011 ± 150 nm. Furthermore, mechanical, thermal and physical tests were conducted with both electrospun bilayered scaffold types where revealed improved properties. Biological investigations using endothelial, smooth muscle and fibroblast cell line showed good biocompatibility of both tested electrospun scaffolds. Better attachment and proliferation were obviously found when cells were cultured on the scaffolds immersed with collagen due to increasing the hydrophilicity of the PCL. The easy, inexpensive and versatile electrospinning approach used in this work was able to successfully produce double layered tubular elastic structures containing both nanofibers and microfibers to imitate the native vascular structure. The PCL – as a suitable and approved biomaterial for many biomedical and tissue engineering applications – can ensure favorable mechanical properties of scaffolds used for VTE. The VTE approach using electrospun bilayered scaffolds offers optimal solutions and holds significant promises for treatment of many cardiovascular diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28%CE%B5-caprolactone%29%20%28PCL%29" title=" poly(ε-caprolactone) (PCL)"> poly(ε-caprolactone) (PCL)</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue-engineered%20vascular%20graft" title=" tissue-engineered vascular graft"> tissue-engineered vascular graft</a>, <a href="https://publications.waset.org/abstracts/search?q=tubular%20bilayered%20scaffolds" title=" tubular bilayered scaffolds"> tubular bilayered scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular%20cells" title=" vascular cells"> vascular cells</a> </p> <a href="https://publications.waset.org/abstracts/70732/polye-caprolactone-based-bilayered-scaffolds-prepared-by-electrospinning-for-tissue-engineering-of-small-diameter-vascular-grafts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Fabrication of Hybrid Scaffolds Consisting of Cell-laden Electrospun Micro/Nanofibers and PCL Micro-structures for Tissue Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=MyungGu%20Yeo">MyungGu Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=JongHan%20Ha"> JongHan Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Gi-Hoon%20Yang"> Gi-Hoon Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=JaeYoon%20Lee"> JaeYoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=SeungHyun%20Ahn"> SeungHyun Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeongjin%20Lee"> Hyeongjin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=HoJun%20Jeon"> HoJun Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=YongBok%20Kim"> YongBok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minseong%20Kim"> Minseong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=GeunHyung%20Kim"> GeunHyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tissue engineering is a rapidly growing interdisciplinary research area that may provide options for treating damaged tissues and organs. As a promising technique for regenerating various tissues, this technology requires biomedical scaffolds, which serve as an artificial extracellular matrix (ECM) to support neotissue growth. Electrospun micro/nanofibers have been used widely in tissue engineering because of their high surface-area-to-volume ratio and structural similarity to extracellular matrix. However, low mechanical sustainability, low 3D shape-ability, and low cell infiltration have been major limitations to their use. In this work, we propose new hybrid scaffolds interlayered with cell-laden electrospun micro/nano fibers and poly(caprolactone) microstructures. Also, we applied various concentrations of alginate and electric field strengths to determine optimal conditions for the cell-electrospinning process. The combination of cell-laden bioink (2 ⅹ 10^5 osteoblast-like MG63 cells/mL, 2 wt% alginate, 2 wt% poly(ethylene oxide), and 0.7 wt% lecithin) and a 0.16 kV/mm electric field showed the highest cell viability and fiber formation in this process. Using these conditions and PCL microstructures, we achieved mechanically stable hybrid scaffolds. In addition, the cells embedded in the fibrous structure were viable and proliferated. We suggest that the cell-embedded hybrid scaffolds fabricated using the cell-electrospinning process may be useful for various soft- and hard-tissue regeneration applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioink" title="bioink">bioink</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-laden%20scaffold" title=" cell-laden scaffold"> cell-laden scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%2Fnanofibers" title=" micro/nanofibers"> micro/nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28caprolactone%29" title=" poly(caprolactone)"> poly(caprolactone)</a> </p> <a href="https://publications.waset.org/abstracts/40640/fabrication-of-hybrid-scaffolds-consisting-of-cell-laden-electrospun-micronanofibers-and-pcl-micro-structures-for-tissue-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Poly(L-Lactic Acid) Scaffolds for Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Bu%C5%BEArovska">Aleksandra BužArovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordana%20Bogoeva%20Gaceva"> Gordana Bogoeva Gaceva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodegradable polymers have received significant scientific attention in tissue engineering (TE) application, in particular their composites consisting of inorganic nanoparticles. In the last 15 years, they are subject of intensive research by many groups, aiming to develop polymer scaffolds with defined biodegradability, porosity and adequate mechanical stability. The most important characteristic making these materials attractive for TE is their biodegradability, a process that could be time controlled and long enough to enable generation of a new tissue as a replacement for the degraded polymer scaffold. In this work poly(L-lactic acid) scaffolds, filled with TiO2 nanoparticles functionalized with oleic acid, have been prepared by thermally induced phase separation method (TIPS). The functionalization of TiO2 nanoparticles with oleic acid was performed in order to improve the nanoparticles dispersibility within the polymer matrix and at the same time to inhibit the cytotoxicity of the nanofiller. The oleic acid was chosen as amphiphilic molecule belonging to the fatty acid family because of its non-toxicity and possibility for mediation between the hydrophilic TiO2 nanoparticles and hydrophobic PLA matrix. The produced scaffolds were characterized with thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and mechanical compression measurements. The bioactivity for bone tissue engineering application was tested in supersaturated simulated body fluid. The degradation process was followed by Fourier transform infrared spectroscopy (FTIR). The results showed anisotropic morphology with elongated open pores (100 µm), high porosity (around 92%) and perfectly dispersed nanofiller. The compression moduli up to 10 MPa were identified independent on the nanofiller content. Functionalized TiO2 nanoparticles induced formation of hydroxyapatite clusters as much as unfunctionalized TiO2. The prepared scaffolds showed properties ideal for scaffold vascularization, cell attachment, growth and proliferation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title="biodegradation">biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title=" bone tissue engineering"> bone tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization" title=" mineralization"> mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA%20scaffolds" title=" PLA scaffolds"> PLA scaffolds</a> </p> <a href="https://publications.waset.org/abstracts/67418/polyl-lactic-acid-scaffolds-for-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Methane Plasma Modified Polyvinyl Alcohol Scaffolds for Melanocytes Cultivation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Kodedova">B. Kodedova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Filova"> E. Filova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kralovic"> M. Kralovic</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Amler"> E. Amler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vitiligo is the most common depigmentation disorder of the skin characterized by loss of melanocyte in the epidermis that leads to white lesions. One of the possible treatments is autologous transplantation of melanocytes. Biodegradable electrospun polymeric nanofibers provide good mechanical properties and could serve as suitable scaffold for epithelial cells cultivation and follow up transplantation. Moreover the microarchitecture of nanofibers mimics the structure of extracellular matrix and its porosity allows nutrients and waste exchange. The aim of this work was to develop biocompatible and biodegradable polymeric scaffolds suitable for autologous melanocytes transplantation. Electrospun polyvinyl alcohol (PVA) nanofibers were modified by cold methane plasma to lower their hydrofility and to achieve better adhesion, proliferation and viability of the murine melanocyte (Melan-a). Cells were seeded on the modified scaffolds and their adhesion, metabolic activity, proliferation and melanin synthesis was evaluated and compared to non-modified scaffolds. Results clearly indicate that cold methane plasma modified PVA nanofibers are suitable for melanocyte cultivation and may be future candidate for vitiligo treatment. Furthermore, the nanofibers can be functionalized with various bioactive substances, for enhancement of the melanocyte proliferation, melanogenesis or healing and regenerative processes. The project was supported by the Ministry of Education, Youth and Sports NPU I: LO1309 and by Grant Agency of Charles University (grant No. 1228214). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melanocyte" title="melanocyte">melanocyte</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20alcohol" title=" polyvinyl alcohol"> polyvinyl alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20modification" title=" plasma modification"> plasma modification</a> </p> <a href="https://publications.waset.org/abstracts/48855/methane-plasma-modified-polyvinyl-alcohol-scaffolds-for-melanocytes-cultivation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Soft Robotic System for Mechanical Stimulation of Scaffolds During Dynamic Cell Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johanna%20Perdomo">Johanna Perdomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Riki%20Lamont"> Riki Lamont</a>, <a href="https://publications.waset.org/abstracts/search?q=Edmund%20Pickering"> Edmund Pickering</a>, <a href="https://publications.waset.org/abstracts/search?q=Naomi%20C.%20Paxton"> Naomi C. Paxton</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20A.%20Woodruff"> Maria A. Woodruff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Tissue Engineering (TE) has combined advanced materials, such as biomaterials, to create affordable scaffolds and dynamic systems to generate stimulation of seeded cells on these scaffolds, improving and maintaining the cellular growth process in a cell culture. However, Few TE skin products have been clinically translated, and more research is required to produce highly biomimetic skin substitutes that mimic the native elasticity of skin in a controlled manner. Therefore, this work will be focused on the fabrication of a novel mechanical system to enhance the TE treatment approaches for the reparation of damaged tissue skin. Aims: To archive this, a soft robotic device will be created to emulate different deformation of skin stress. The design of this soft robot will allow the attachment of scaffolds, which will then be mechanically actuated. This will provide a novel and highly adaptable platform for dynamic cell culture. Methods: Novel, low-cost soft robot is fabricated via 3D printed moulds and silicone. A low cost, electro-mechanical device was constructed to actuate the soft robot through the controlled combination of positive and negative air pressure to control the different state of movements. Mechanical tests were conducted to assess the performance and calibration of each electronic component. Similarly, pressure-displacement test was performed on scaffolds, which were attached to the soft robot, applying various mechanical loading regimes. Lastly, digital image correlation test was performed to obtain strain distributions over the soft robot’s surface. Results: The control system can control and stabilise positive pressure changes for long hours. Similarly, pressure-displacement test demonstrated that scaffolds with 5µm of diameter and wavy geometry can displace at 100%, applying a maximum pressure of 1.5 PSI. Lastly, during the inflation state, the displacement of silicone was measured using DIC method, and this showed a parameter of 4.78 mm and strain of 0.0652. Discussion And Conclusion: The developed soft robot system provides a novel and low-cost platform for the dynamic actuation of tissue scaffolds with a target towards dynamic cell culture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20robot" title="soft robot">soft robot</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20stimulation" title=" mechanical stimulation"> mechanical stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20cell%20culture" title=" dynamic cell culture"> dynamic cell culture</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a> </p> <a href="https://publications.waset.org/abstracts/156201/soft-robotic-system-for-mechanical-stimulation-of-scaffolds-during-dynamic-cell-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Treatment of Neuronal Defects by Bone Marrow Stem Cells Differentiation to Neuronal Cells Cultured on Gelatin-PLGA Scaffolds Coated with Nano-Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Shams">Alireza Shams</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Zamanian"> Ali Zamanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Atefehe%20Shamosi"> Atefehe Shamosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farnaz%20Ghorbani"> Farnaz Ghorbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Although the application of a new strategy remains a remarkable challenge for treatment of disabilities due to neuronal defects, progress in Nanomedicine and tissue engineering, suggesting the new medical methods. One of the promising strategies for reconstruction and regeneration of nervous tissue is replacing of lost or damaged cells by specific scaffolds after Compressive, ischemic and traumatic injuries of central nervous system. Furthermore, ultrastructure, composition, and arrangement of tissue scaffolds are effective on cell grafts. We followed implantation and differentiation of mesenchyme stem cells to neural cells on Gelatin Polylactic-co-glycolic acid (PLGA) scaffolds coated with iron nanoparticles. The aim of this study was to evaluate the capability of stem cells to differentiate into motor neuron-like cells under topographical cues and morphogenic factors. Methods and Materials: Bone marrow mesenchymal stem cells (BMMSCs) was obtained by primary cell culturing of adult rat bone marrow got from femur bone by flushing method. BMMSCs were incubated with DMEM/F12 (Gibco), 15% FBS and 100 U/ml pen/strep as media. Then, BMMSCs seeded on Gel/PLGA scaffolds and tissue culture (TCP) polystyrene embedded and incorporated by Fe Nano particles (FeNPs) (Fe3o4 oxide (M w= 270.30 gr/mol.). For neuronal differentiation, 2×10 5 BMMSCs were seeded on Gel/PLGA/FeNPs scaffolds was cultured for 7 days and 0.5 µ mol. Retinoic acid, 100 µ mol. Ascorbic acid,10 ng/ml. Basic fibroblast growth factor (Sigma, USA), 250 μM Iso butyl methyl xanthine, 100 μM 2-mercaptoethanol, and 0.2 % B27 (Invitrogen, USA) added to media. Proliferation of BMMSCs was assessed by using MTT assay for cell survival. The morphology of BMMSCs and scaffolds was investigated by scanning electron microscopy analysis. Expression of neuron-specific markers was studied by immunohistochemistry method. Data were analyzed by analysis of variance, and statistical significance was determined by Turkey’s test. Results: Our results revealed that differentiation and survival of BMMSCs into motor neuron-like cells on Gel/PLGA/FeNPs as a biocompatible and biodegradable scaffolds were better than those cultured in Gel/PLGA in absence of FeNPs and TCP scaffolds. FeNPs had raised physical power but decreased capacity absorption of scaffolds. Well defined oriented pores in scaffolds due to FeNPs may activate differentiation and synchronized cells as a mechanoreceptor. Induction effects of magnetic FeNPs by One way flow of channels in scaffolds help to lead the cells and can facilitate direction of their growth processes. Discussion: Progression of biological properties of BMMSCs and the effects of FeNPs spreading under magnetic field was evaluated in this investigation. In vitro study showed that the Gel/PLGA/FeNPs scaffold provided a suitable structure for motor neuron-like cells differentiation. This could be a promising candidate for enhancing repair and regeneration in neural defects. Dynamic and static magnetic field for inducing and construction of cells can provide better results for further experimental studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differentiation" title="differentiation">differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20particles" title=" nano particles"> nano particles</a>, <a href="https://publications.waset.org/abstracts/search?q=neuronal%20defects" title=" neuronal defects"> neuronal defects</a>, <a href="https://publications.waset.org/abstracts/search?q=Scaffolds" title=" Scaffolds"> Scaffolds</a> </p> <a href="https://publications.waset.org/abstracts/82969/treatment-of-neuronal-defects-by-bone-marrow-stem-cells-differentiation-to-neuronal-cells-cultured-on-gelatin-plga-scaffolds-coated-with-nano-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scaffolds&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scaffolds&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scaffolds&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scaffolds&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scaffolds&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scaffolds&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>