CINXE.COM

Automorphism groups of Cayley evolution algebras | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas

<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="robots" content="max-image-preview:large"> <meta name="access" content="Yes"> <meta name="360-site-verification" content="1268d79b5e96aecf3ff2a7dac04ad990" /> <title>Automorphism groups of Cayley evolution algebras | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas</title> <meta name="twitter:site" content="@SpringerLink"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="Automorphism groups of Cayley evolution algebras"/> <meta name="twitter:description" content="Revista de la Real Academia de Ciencias Exactas, F&#237;sicas y Naturales. Serie A. Matem&#225;ticas - In this paper we introduce a new species of evolution algebras that we call Cayley evolution..."/> <meta name="twitter:image" content="https://media.springernature.com/full/springer-static/cover-hires/journal/13398"/> <meta name="journal_id" content="13398"/> <meta name="dc.title" content="Automorphism groups of Cayley evolution algebras"/> <meta name="dc.source" content="Revista de la Real Academia de Ciencias Exactas, F&#237;sicas y Naturales. Serie A. Matem&#225;ticas 2023 117:2"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Springer"/> <meta name="dc.date" content="2023-03-08"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2023 The Author(s)"/> <meta name="dc.rights" content="2023 The Author(s)"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="In this paper we introduce a new species of evolution algebras that we call Cayley evolution algebras. We show that if a field $$\Bbbk $$ contains sufficiently many elements (for example if $$\Bbbk $$ is infinite) then every finite group G is isomorphic to $${\text {Aut}}(X)$$ where X is a finite-dimensional absolutely simple Cayley evolution $$\Bbbk $$ -algebra."/> <meta name="prism.issn" content="1579-1505"/> <meta name="prism.publicationName" content="Revista de la Real Academia de Ciencias Exactas, F&#237;sicas y Naturales. Serie A. Matem&#225;ticas"/> <meta name="prism.publicationDate" content="2023-03-08"/> <meta name="prism.volume" content="117"/> <meta name="prism.number" content="2"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="1"/> <meta name="prism.endingPage" content="11"/> <meta name="prism.copyright" content="2023 The Author(s)"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://link.springer.com/article/10.1007/s13398-023-01414-w"/> <meta name="prism.doi" content="doi:10.1007/s13398-023-01414-w"/> <meta name="citation_pdf_url" content="https://link.springer.com/content/pdf/10.1007/s13398-023-01414-w.pdf"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/article/10.1007/s13398-023-01414-w"/> <meta name="citation_journal_title" content="Revista de la Real Academia de Ciencias Exactas, F&#237;sicas y Naturales. Serie A. Matem&#225;ticas"/> <meta name="citation_journal_abbrev" content="Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat."/> <meta name="citation_publisher" content="Springer International Publishing"/> <meta name="citation_issn" content="1579-1505"/> <meta name="citation_title" content="Automorphism groups of Cayley evolution algebras"/> <meta name="citation_volume" content="117"/> <meta name="citation_issue" content="2"/> <meta name="citation_publication_date" content="2023/04"/> <meta name="citation_online_date" content="2023/03/08"/> <meta name="citation_firstpage" content="1"/> <meta name="citation_lastpage" content="11"/> <meta name="citation_article_type" content="Original Paper"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1007/s13398-023-01414-w"/> <meta name="DOI" content="10.1007/s13398-023-01414-w"/> <meta name="size" content="579922"/> <meta name="citation_doi" content="10.1007/s13398-023-01414-w"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1007/s13398-023-01414-w&amp;api_key="/> <meta name="description" content="In this paper we introduce a new species of evolution algebras that we call Cayley evolution algebras. We show that if a field $$\Bbbk $$ contains sufficie"/> <meta name="dc.creator" content="Costoya, C."/> <meta name="dc.creator" content="Mu&#241;oz, V."/> <meta name="dc.creator" content="Tocino, A."/> <meta name="dc.creator" content="Viruel, A."/> <meta name="dc.subject" content="Mathematics, general"/> <meta name="dc.subject" content="Applications of Mathematics"/> <meta name="dc.subject" content="Theoretical, Mathematical and Computational Physics"/> <meta name="citation_reference" content="Ahmed, H., Bekbaev, U., Rakhimov, I.: On classification of $$2$$ -dimensional evolution algebras and its applications. In: 5th International Conference on Mathematical Applications in Engineering 30&#8211;31 October 2019, Putrajaya, Malaysia, vol. 1489, pp. 012001. IOP Publishing Ltd (2020)"/> <meta name="citation_reference" content="citation_journal_title=Eur. J. Pure Appl. Math.; citation_title=Properties of nilpotent evolution algebras with no maximal nilindex; citation_author=A Alarafeen, I Qaralleh, A Ahmad; citation_volume=14; citation_issue=1; citation_publication_date=2021; citation_pages=278-300; citation_doi=10.29020/nybg.ejpam.v14i1.3912; citation_id=CR2"/> <meta name="citation_reference" content="Cabrera&#160;C.Y.: Evolution algebras. Ph.D. thesis, University of M&#225;laga, Spain (2016)"/> <meta name="citation_reference" content="citation_journal_title=Linear Algebra Appl.; citation_title=Evolution algebras of arbitrary dimension and their decompositions; citation_author=CY Cabrera, MM Siles, MV Velasco; citation_volume=495; citation_publication_date=2016; citation_pages=122-162; citation_doi=10.1016/j.laa.2016.01.007; citation_id=CR4"/> <meta name="citation_reference" content="citation_journal_title=Proc. Am. Math. Soc.; citation_title=Regular evolution algebras are universally finite; citation_author=C Costoya, P Ligouras, A Tocino, A Viruel; citation_volume=150; citation_issue=3; citation_publication_date=2022; citation_pages=919-925; citation_doi=10.1090/proc/15648; citation_id=CR5"/> <meta name="citation_reference" content="citation_journal_title=Collect. Math.; citation_title=Realisability problem in arrow categories; citation_author=C Costoya, D M&#233;ndez, A Viruel; citation_volume=71; citation_publication_date=2020; citation_pages=383-405; citation_doi=10.1007/s13348-019-00265-2; citation_id=CR6"/> <meta name="citation_reference" content="citation_journal_title=J. Algebra Appl.; citation_title=Evolution algebras and graphs; citation_author=A Elduque, A Labra; citation_volume=14; citation_issue=7; citation_publication_date=2015; citation_pages=1550103; citation_doi=10.1142/S0219498815501030; citation_id=CR7"/> <meta name="citation_reference" content="citation_journal_title=Linear Multilinear Algebra; citation_title=Evolution algebras, automorphisms, and graphs; citation_author=A Elduque, A Labra; citation_volume=69; citation_issue=2; citation_publication_date=2019; citation_pages=1-12; citation_id=CR8"/> <meta name="citation_reference" content="citation_journal_title=Ann. Math.; citation_title=Automorphism groups of finite dimensional simple algebras; citation_author=NL Gordeev, VL Popov; citation_volume=158; citation_publication_date=2003; citation_pages=1041-1065; citation_doi=10.4007/annals.2003.158.1041; citation_id=CR9"/> <meta name="citation_reference" content="citation_journal_title=Siam Rev.; citation_title=The determinant of the adjacency matrix of a graph; citation_author=F Harary; citation_volume=4; citation_issue=3; citation_publication_date=1962; citation_pages=202-210; citation_doi=10.1137/1004057; citation_id=CR10"/> <meta name="citation_reference" content="citation_journal_title=Ann. Math. (2); citation_title=A counterexample to the isomorphism problem for integral group rings; citation_author=M Hertweck; citation_volume=154; citation_issue=1; citation_publication_date=2001; citation_pages=115-138; citation_doi=10.2307/3062112; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=J. Algebra Appl.; citation_title=Derivations and automorphisms of nilpotent evolution algebras with maximal nilindex; citation_author=F Mukhamedov, O Khakimov, B Omirov, I Qaralleh; citation_volume=18; citation_issue=12; citation_publication_date=2019; citation_pages=1950233; citation_doi=10.1142/S0219498819502335; citation_id=CR12"/> <meta name="citation_reference" content="citation_journal_title=Am. Math. Soc. Transl.; citation_title=An analogue of M. Artin&#8217;s conjecture on invariants for non-associative algebras; citation_author=VL Popov; citation_volume=169; citation_publication_date=1995; citation_pages=121-143; citation_id=CR13"/> <meta name="citation_reference" content="citation_title=The isomorphism problem for group rings: A survey; citation_inbook_title=Orders and Their Applications; citation_publication_date=1985; citation_pages=256-288; citation_id=CR14; citation_author=R Sandling; citation_publisher=Springer"/> <meta name="citation_reference" content="citation_journal_title=Linear Algebra Appl.; citation_title=On automorphism groups of idempotent evolution algebras; citation_author=S Sriwongsa, YM Zou; citation_volume=641; citation_publication_date=2022; citation_pages=143-155; citation_doi=10.1016/j.laa.2022.02.010; citation_id=CR15"/> <meta name="citation_reference" content="citation_title=Evolution Algebras and Their Applications. Lecture Notes in Mathematics; citation_publication_date=2008; citation_id=CR16; citation_author=JP Tian; citation_publisher=Springer"/> <meta name="citation_reference" content="citation_title=Graphs, Groups and Surfaces, Volume 8 of North-Holland Mathematics Studies; citation_publication_date=1984; citation_id=CR17; citation_author=AT White; citation_publisher=North-Holland Publishing Co."/> <meta name="citation_author" content="Costoya, C."/> <meta name="citation_author_email" content="cristina.costoya@udc.es"/> <meta name="citation_author_institution" content="CITIC, CITMAGA, Departamento de Ciencias de la Computaci&#243;n y Tecnolog&#237;as de la Informaci&#243;n, Universidade da Coru&#241;a, Coruna, Spain"/> <meta name="citation_author" content="Mu&#241;oz, V."/> <meta name="citation_author_email" content="vicente.munoz@ucm.es"/> <meta name="citation_author_institution" content="Departamento de &#193;lgebra, Geometr&#237;a y Topolog&#237;a, Universidad de M&#225;laga, Malaga, Spain"/> <meta name="citation_author" content="Tocino, A."/> <meta name="citation_author_email" content="alicia.tocino@uma.es"/> <meta name="citation_author_institution" content="Departamento de Matem&#225;tica Aplicada, Universidad de M&#225;laga, Malaga, Spain"/> <meta name="citation_author" content="Viruel, A."/> <meta name="citation_author_email" content="viruel@uma.es"/> <meta name="citation_author_institution" content="Departamento de &#193;lgebra, Geometr&#237;a y Topolog&#237;a, Universidad de M&#225;laga, Malaga, Spain"/> <meta name="format-detection" content="telephone=no"/> <meta name="citation_cover_date" content="2023/04/01"/> <meta property="og:url" content="https://link.springer.com/article/10.1007/s13398-023-01414-w"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="Automorphism groups of Cayley evolution algebras - Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas"/> <meta property="og:description" content="In this paper we introduce a new species of evolution algebras that we call Cayley evolution algebras. We show that if a field $$\Bbbk $$ k contains sufficiently many elements (for example if $$\Bbbk $$ k is infinite) then every finite group G is isomorphic to $${\text {Aut}}(X)$$ Aut ( X ) where X is a finite-dimensional absolutely simple Cayley evolution $$\Bbbk $$ k -algebra."/> <meta property="og:image" content="https://media.springernature.com/full/springer-static/cover-hires/journal/13398"/> <meta name="format-detection" content="telephone=no"> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-5272567b64.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-72ba046d97.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script type="text/javascript"> config = { env: 'live', site: '13398.springer.com', siteWithPath: '13398.springer.com' + window.location.pathname, twitterHashtag: '13398', cmsPrefix: 'https://studio-cms.springernature.com/studio/', publisherBrand: 'Springer', mustardcut: false }; </script> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1007/s13398-023-01414-w","Page":"article","springerJournal":true,"Publishing Model":"Hybrid Access","page":{"attributes":{"environment":"live"}},"Country":"HK","japan":false,"doi":"10.1007-s13398-023-01414-w","Journal Id":13398,"Journal Title":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","imprint":"Springer","Keywords":"Evolution algebra, Finite group, Automorphism group, Graph, 05C25, 17A36, 17D99","kwrd":["Evolution_algebra","Finite_group","Automorphism_group","Graph","05C25","17A36","17D99"],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"Y","hasAccess":"Y","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"open","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"vgzm.415900-10.1007-s13398-023-01414-w","Full HTML":"Y","Subject Codes":["SCM","SCM00009","SCM13003","SCP19005"],"pmc":["M","M00009","M13003","P19005"],"session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"1579-1505","pissn":"1578-7303"},"type":"Article","category":{"pmc":{"primarySubject":"Mathematics","primarySubjectCode":"M","secondarySubjects":{"1":"Mathematics, general","2":"Applications of Mathematics","3":"Theoretical, Mathematical and Computational Physics"},"secondarySubjectCodes":{"1":"M00009","2":"M13003","3":"P19005"}},"sucode":"SC10","articleType":"Original Paper"},"attributes":{"deliveryPlatform":"oscar"}},"Event Category":"Article"}]; </script> <script data-test="springer-link-article-datalayer"> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }, { name: 'chapter-books-recs', active: true } ], darwinAvailable: true } } }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = false; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-dad1690b0d.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-e7d03c4cb3.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <link rel="canonical" href="https://link.springer.com/article/10.1007/s13398-023-01414-w"/> <script type="application/ld+json">{"mainEntity":{"headline":"Automorphism groups of Cayley evolution algebras","description":"In this paper we introduce a new species of evolution algebras that we call Cayley evolution algebras. We show that if a field \n \n \n \n $$\\Bbbk $$\n \n contains sufficiently many elements (for example if \n \n \n \n $$\\Bbbk $$\n \n is infinite) then every finite group G is isomorphic to \n \n \n \n $${\\text {Aut}}(X)$$\n \n where X is a finite-dimensional absolutely simple Cayley evolution \n \n \n \n $$\\Bbbk $$\n \n -algebra.","datePublished":"2023-03-08T00:00:00Z","dateModified":"2023-03-08T00:00:00Z","pageStart":"1","pageEnd":"11","license":"http://creativecommons.org/licenses/by/4.0/","sameAs":"https://doi.org/10.1007/s13398-023-01414-w","keywords":["Evolution algebra","Finite group","Automorphism group","Graph","05C25","17A36","17D99","Mathematics","general","Applications of Mathematics","Theoretical","Mathematical and Computational Physics"],"image":[],"isPartOf":{"name":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","issn":["1579-1505","1578-7303"],"volumeNumber":"117","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Springer International Publishing","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"C. Costoya","affiliation":[{"name":"Universidade da Coruña","address":{"name":"CITIC, CITMAGA, Departamento de Ciencias de la Computación y Tecnologías de la Información, Universidade da Coruña, Coruna, Spain","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"V. Muñoz","affiliation":[{"name":"Universidad de Málaga","address":{"name":"Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, Malaga, Spain","@type":"PostalAddress"},"@type":"Organization"}],"email":"vicente.munoz@ucm.es","@type":"Person"},{"name":"A. Tocino","affiliation":[{"name":"Universidad de Málaga","address":{"name":"Departamento de Matemática Aplicada, Universidad de Málaga, Malaga, Spain","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"A. Viruel","affiliation":[{"name":"Universidad de Málaga","address":{"name":"Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, Malaga, Spain","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> </head> <body class="" > <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> <a class="c-skip-link" href="#main">Skip to main content</a> <div class="u-lazy-ad-wrapper u-mbs-0"> <div class="c-ad c-ad--728x90 c-ad--conditional" data-test="springer-doubleclick-ad"> <div class="c-ad c-ad__inner" > <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-LB1" class="div-gpt-ad grade-c-hide" data-gpt data-gpt-unitpath="/270604982/springerlink/13398/article" data-gpt-sizes="728x90" data-gpt-targeting="pos=top;articleid=s13398-023-01414-w;" data-ad-type="top" style="min-width:728px;min-height:90px"> <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/270604982/springerlink/13398/article&amp;sz=728x90&amp;pos=top&amp;articleid=s13398-023-01414-w"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/270604982/springerlink/13398/article&amp;sz=728x90&amp;pos=top&amp;articleid=s13398-023-01414-w" alt="Advertisement" width="728" height="90"> </a> </noscript> </div> </div> </div> </div> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/article/10.1007/s13398-023-01414-w?'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> <article lang="en" id="main" class="app-masthead__colour-5"> <section class="app-masthead " aria-label="article masthead"> <div class="app-masthead__container"> <div class="app-article-masthead u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="article" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs c-breadcrumbs--contrast" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/journal/13398" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Article</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="article-title" data-article-title="">Automorphism groups of Cayley evolution algebras</h1> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item" data-test="article-category">Original Paper</li> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item"> Published: <time datetime="2023-03-08">08 March 2023</time> </li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> <span data-test="journal-volume">Volume 117</span>, article number <span data-test="article-number">82</span>, (<span data-test="article-publication-year">2023</span>) </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this article" data-track-category="article body" data-track-label="link">Cite this article</a> </li> </ul> <div class="app-article-masthead__buttons" data-test="download-article-link-wrapper" data-track-context="masthead"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1007/s13398-023-01414-w.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> <p class="app-article-masthead__access"> <svg width="16" height="16" focusable="false" role="img" aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-check-filled-medium"></use></svg> You have full access to this <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link">open access</a> article</p> </div> </div> <div class="app-article-masthead__brand"> <a href="/journal/13398" class="app-article-masthead__journal-link" data-track="click_journal_home" data-track-action="journal homepage" data-track-context="article page" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="159" srcset="https://media.springernature.com/w120/springer-static/cover-hires/journal/13398?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/journal/13398?as=webp 2x"> <img width="72" height="95" src="https://media.springernature.com/w72/springer-static/cover-hires/journal/13398?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/journal/13398?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title">Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas</span> </a> <a href="https://link.springer.com/journal/13398/aims-and-scope" class="app-article-masthead__submission-link" data-track="click_aims_and_scope" data-track-action="aims and scope" data-track-context="article page" data-track-label="link"> Aims and scope <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> <a href="https://www.editorialmanager.com/rcsm" class="app-article-masthead__submission-link" data-track="click_submit_manuscript" data-track-context="article masthead on springerlink article page" data-track-action="submit manuscript" data-track-label="link"> Submit manuscript <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> </div> </div> </div> </section> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="u-serif js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container"> <div class="c-context-bar__title"> Automorphism groups of Cayley evolution algebras </div> <div data-test="inCoD" data-track-context="sticky banner"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1007/s13398-023-01414-w.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-C_-Costoya-Aff1" data-author-popup="auth-C_-Costoya-Aff1" data-author-search="Costoya, C.">C. Costoya</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-V_-Mu_oz-Aff2" data-author-popup="auth-V_-Mu_oz-Aff2" data-author-search="Muñoz, V." data-corresp-id="c1">V. Muñoz<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><sup class="u-js-hide"><a href="#Aff2">2</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-A_-Tocino-Aff3" data-author-popup="auth-A_-Tocino-Aff3" data-author-search="Tocino, A.">A. Tocino</a><sup class="u-js-hide"><a href="#Aff3">3</a></sup> &amp; </li><li class="c-article-author-list__show-more" aria-label="Show all 4 authors for this article" title="Show all 4 authors for this article">…</li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-A_-Viruel-Aff2" data-author-popup="auth-A_-Viruel-Aff2" data-author-search="Viruel, A.">A. Viruel</a><sup class="u-js-hide"><a href="#Aff2">2</a></sup> </li></ul><button aria-expanded="false" class="c-article-author-list__button"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-down-medium"></use></svg><span>Show authors</span></button> <div data-test="article-metrics"> <ul class="app-article-metrics-bar u-list-reset"> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>1304 <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-citations-medium"></use> </svg>1 <span class="app-article-metrics-bar__label">Citation</span></p> </li> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-altmetric-medium"></use> </svg>1 <span class="app-article-metrics-bar__label">Altmetric</span></p> </li> <li class="app-article-metrics-bar__item app-article-metrics-bar__item--metrics"> <p class="app-article-metrics-bar__details"><a href="/article/10.1007/s13398-023-01414-w/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Explore all metrics <svg class="u-icon app-article-metrics-bar__arrow-icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </li> </ul> </div> <div class="u-mt-32"> </div> </header> </div> <div data-article-body="true" data-track-component="article body" class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>In this paper we introduce a new species of evolution algebras that we call Cayley evolution algebras. We show that if a field <span class="mathjax-tex">\(\Bbbk \)</span> contains sufficiently many elements (for example if <span class="mathjax-tex">\(\Bbbk \)</span> is infinite) then every finite group <i>G</i> is isomorphic to <span class="mathjax-tex">\({\text {Aut}}(X)\)</span> where <i>X</i> is a finite-dimensional absolutely simple Cayley evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebra.</p></div></div></section> <div data-test="cobranding-download"> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-3-030-35256-1?as&#x3D;webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-3-030-35256-1_2?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1007/978-3-030-35256-1_2">Power-Associative Evolution Algebras </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2020</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3Aplaceholder%2Fimages/placeholder-figure-springernature.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s00013-018-1178-9?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1007/s00013-018-1178-9">Evolving groups </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">13 April 2018</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1134%2FS0037446622050184/MediaObjects/11202_2022_1238_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1134/S0037446622050184?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1134/S0037446622050184">On the Hilbert Evolution Algebras of a&#xa0;Graph </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">01 September 2022</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1732635770, embedded_user: 'null' } }); </script> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=13398" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div class="main-content"> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1"><span class="c-article-section__title-number">1 </span>Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>The question of whether any finite group may be realised as the full automorphism group of a finite-dimensional simple algebra (over an algebraically closed field <span class="mathjax-tex">\(\Bbbk \)</span> of characteristic zero) was raised by Popov in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="Popov, V.L.: An analogue of M. Artin’s conjecture on invariants for non-associative algebras. Am. Math. Soc. Transl. 169, 121–143 (1995)" href="/article/10.1007/s13398-023-01414-w#ref-CR13" id="ref-link-section-d2809547e614">13</a>]. Years later, in the celebrated paper by Gordeev and Popov [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Gordeev, N.L., Popov, V.L.: Automorphism groups of finite dimensional simple algebras. Ann. Math. 158, 1041–1065 (2003)" href="/article/10.1007/s13398-023-01414-w#ref-CR9" id="ref-link-section-d2809547e617">9</a>], a positive answer was given in a more general setting: if <span class="mathjax-tex">\(\Bbbk \)</span> is a field containing sufficiently many elements, every linear algebraic <span class="mathjax-tex">\(\Bbbk \)</span>-group is isomorphic to the full automorphism group of a finite-dimensional simple <span class="mathjax-tex">\(\Bbbk \)</span>-algebra (which is neither associative nor commutative).</p><p>Using techniques from Rational Homotopy Theory, in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="Costoya, C., Méndez, D., Viruel, A.: Realisability problem in arrow categories. Collect. Math. 71, 383–405 (2020)" href="/article/10.1007/s13398-023-01414-w#ref-CR6" id="ref-link-section-d2809547e678">6</a>, Proposition 4.2, Corollary 4.11(2)] it was shown that every group <i>G</i> is the full automorphism group of an infinite number of non-isomorphic differential graded <span class="mathjax-tex">\({\mathbb {Q}}\)</span>-algebras <span class="mathjax-tex">\(M_n,\; n \ge 1\)</span> (that are associative and commutative in the graded sense). Moreover, if the group <i>G</i> is finite, then for every integer <span class="mathjax-tex">\(n \ge 1\)</span>, <span class="mathjax-tex">\(M_n\)</span> is an elliptic algebra, which means that it is finitely generated with finite-dimensional cohomology over <span class="mathjax-tex">\({\mathbb {Q}}.\)</span></p><p>In this paper, we place ourselves in the framework of evolution algebras, which are commutative and non-associative algebras. Recall that a <span class="mathjax-tex">\(\Bbbk \)</span>-algebra <i>X</i> is called absolutely simple, if for every field extension <span class="mathjax-tex">\(\mathbb {F}/\Bbbk \)</span>, the <span class="mathjax-tex">\(\mathbb {F}\)</span>-algebra <span class="mathjax-tex">\(X_{{\mathbb {F}}}=X\otimes _\Bbbk {{\mathbb {F}}}\)</span> is simple. Then our main result is:</p> <h3 class="c-article__sub-heading" id="FPar1">Theorem A</h3> <p>Let <i>G</i> be a finite group and let <span class="mathjax-tex">\(\Bbbk \)</span> be a not necessarily finite field with multiplicative group of order <span class="mathjax-tex">\(|\Bbbk ^*| \ge 2|G|\)</span>. Then, there exists an absolutely simple evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebra <i>X</i> such that <span class="mathjax-tex">\({\text {Aut}}(X_{{\mathbb {F}}})\cong G\)</span> for every field extension <span class="mathjax-tex">\(\mathbb {F}/\Bbbk \)</span>.</p> <p>The proof of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar1">A</a> is postponed to Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s13398-023-01414-w#Sec4">4</a> and relies on the <i>good</i> properties of Cayley evolution algebras, which are new objects introduced in this work (see Definition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar6">3.1</a>). They are constructed out of any finite-dimensional associative <span class="mathjax-tex">\(\Bbbk \)</span>-algebra <span class="mathjax-tex">\({\mathcal {A}}\)</span>, <span class="mathjax-tex">\(\Bbbk \)</span> an arbitrary field. In the special case that <span class="mathjax-tex">\({\mathcal {A}}= \Bbbk [G]\)</span>, a group algebra with <i>G</i> finite group, the associated Cayley evolution algebras will be closely related to classical Cayley graphs.</p><p>We end this section by pointing out that our main result is an improvement of our previous result [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="Costoya, C., Ligouras, P., Tocino, A., Viruel, A.: Regular evolution algebras are universally finite. Proc. Am. Math. Soc. 150(3), 919–925 (2022)" href="/article/10.1007/s13398-023-01414-w#ref-CR5" id="ref-link-section-d2809547e1200">5</a>, Theorem 1.1] where finite groups were realised by regular, but not simple (see Remark <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar13">3.6</a>), evolution algebras (see also [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="Sriwongsa, S., Zou, Y.M.: On automorphism groups of idempotent evolution algebras. Linear Algebra Appl. 641, 143–155 (2022)" href="/article/10.1007/s13398-023-01414-w#ref-CR15" id="ref-link-section-d2809547e1206">15</a>] for an independent proof in char <span class="mathjax-tex">\(\Bbbk =0\)</span>).</p></div></div></section><section data-title="Background on evolution algebras"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2"><span class="c-article-section__title-number">2 </span>Background on evolution algebras</h2><div class="c-article-section__content" id="Sec2-content"><p>We present here the definitions on evolution algebras that are needed in the following sections. We mainly follow the notation in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="Cabrera C.Y.: Evolution algebras. Ph.D. thesis, University of Málaga, Spain (2016)" href="/article/10.1007/s13398-023-01414-w#ref-CR3" id="ref-link-section-d2809547e1242">3</a>], although the reader is encouraged to also check [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Tian, J.P.: Evolution Algebras and Their Applications. Lecture Notes in Mathematics, vol. 1921. Springer, Berlin (2008)" href="/article/10.1007/s13398-023-01414-w#ref-CR16" id="ref-link-section-d2809547e1245">16</a>], a classical reference on the subject. Other properties of evolution algebras appear in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="Ahmed, H., Bekbaev, U., Rakhimov, I.: On classification of &#xA; &#xA; &#xA; &#xA; $$2$$&#xA; &#xA; &#xA; 2&#xA; &#xA; &#xA; -dimensional evolution algebras and its applications. In: 5th International Conference on Mathematical Applications in Engineering 30–31 October 2019, Putrajaya, Malaysia, vol. 1489, pp. 012001. IOP Publishing Ltd (2020)" href="/article/10.1007/s13398-023-01414-w#ref-CR1" id="ref-link-section-d2809547e1248">1</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Alarafeen, A., Qaralleh, I., Ahmad, A.: Properties of nilpotent evolution algebras with no maximal nilindex. Eur. J. Pure Appl. Math. 14(1), 278–300 (2021)" href="/article/10.1007/s13398-023-01414-w#ref-CR2" id="ref-link-section-d2809547e1251">2</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="Mukhamedov, F., Khakimov, O., Omirov, B., Qaralleh, I.: Derivations and automorphisms of nilpotent evolution algebras with maximal nilindex. J. Algebra Appl. 18(12), 1950233 (2019)" href="/article/10.1007/s13398-023-01414-w#ref-CR12" id="ref-link-section-d2809547e1254">12</a>].</p><p>Let <span class="mathjax-tex">\(\Bbbk \)</span> be a field. An automorphism of <span class="mathjax-tex">\(\Bbbk \)</span>-algebra is a linear isomorphism which commutes with the multiplication of the algebra. In this work we consider only finite-dimensional algebras. We now recall the definition of an evolution algebra [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Tian, J.P.: Evolution Algebras and Their Applications. Lecture Notes in Mathematics, vol. 1921. Springer, Berlin (2008)" href="/article/10.1007/s13398-023-01414-w#ref-CR16" id="ref-link-section-d2809547e1296">16</a>, Definition 1], [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="Cabrera C.Y.: Evolution algebras. Ph.D. thesis, University of Málaga, Spain (2016)" href="/article/10.1007/s13398-023-01414-w#ref-CR3" id="ref-link-section-d2809547e1299">3</a>, Definitions 1.2.1]:</p> <h3 class="c-article__sub-heading" id="FPar2">Definition 2.1</h3> <p>Let <i>X</i> be a <span class="mathjax-tex">\(\Bbbk \)</span>-algebra. We say that <i>X</i> is an <i>evolution </i><span class="mathjax-tex">\(\Bbbk \)</span>-<i>algebra</i> if <i>X</i> admits a basis <span class="mathjax-tex">\(B = \{b_i\, |\, i \in \Lambda \}\)</span> such that <span class="mathjax-tex">\(b_i b_j = 0\)</span> for <span class="mathjax-tex">\(i\ne j\)</span>. Such a basis <i>B</i> is called a <i>natural basis</i>.</p> <p>Observe that given an evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebra <i>X</i>, it may admit more than one natural basis (see for example [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="Cabrera C.Y.: Evolution algebras. Ph.D. thesis, University of Málaga, Spain (2016)" href="/article/10.1007/s13398-023-01414-w#ref-CR3" id="ref-link-section-d2809547e1501">3</a>, Example 1.6.3]). On the other hand, for a given <span class="mathjax-tex">\(\Bbbk \)</span>-vector space <i>X</i> spanned by a basis <span class="mathjax-tex">\(B = \{b_i\, |\, i \in \Lambda \}\)</span>, an evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebra with natural basis <i>B</i> is completely determined by just giving <span class="mathjax-tex">\(b_i^2:=b_i b_i\in X\)</span> as a linear combination of elements in <i>B</i>, for every <span class="mathjax-tex">\(i\in \Lambda \)</span>, and declaring <span class="mathjax-tex">\(b_ib_j=0\)</span> for <span class="mathjax-tex">\(i \ne j\)</span>. This motivates the following definition [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="Cabrera C.Y.: Evolution algebras. Ph.D. thesis, University of Málaga, Spain (2016)" href="/article/10.1007/s13398-023-01414-w#ref-CR3" id="ref-link-section-d2809547e1736">3</a>, Definition 1.2.1]:</p> <h3 class="c-article__sub-heading" id="FPar3">Definition 2.2</h3> <p>Let <i>X</i> be an evolution algebra with a fixed natural basis <i>B</i>. The scalars <span class="mathjax-tex">\(\omega _{ki} \in \Bbbk \)</span> such that <span class="mathjax-tex">\(b_i^2:=b_i b_i=\sum _{k\in \Lambda }\omega _{ki}b_k\)</span> are called the <i>structure constants</i> of <i>X</i> relative to <i>B</i>, and the matrix <span class="mathjax-tex">\(M_B(X):= (\omega _{ki})\)</span> is said to be the <i>structure matrix</i> of <i>X</i> relative to <i>B</i>.</p> <h3 class="c-article__sub-heading" id="FPar4">Definition 2.3</h3> <p>An evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebra <i>X</i> is called <i>regular</i> (or perfect, or idempotent) if <span class="mathjax-tex">\(X=X^2\)</span>. An evolution algebra <i>X</i> is called <i>simple</i> if <span class="mathjax-tex">\(X^2\ne 0\)</span> and 0 is the only proper ideal.</p> <p>Notice that an evolution algebra <i>X</i> is regular if and only if for any natural basis <i>B</i>, the structure matrix <span class="mathjax-tex">\(M_B(X)\)</span> is a regular (or invertible) matrix. It is also clear that if <i>X</i> simple then <i>X</i> is regular, but the converse is not always true (see Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar11">3.5</a>).</p><p>Every evolution algebra has a directed graph and a weighted (or coloured) graph attached depending on the chosen natural basis [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Tian, J.P.: Evolution Algebras and Their Applications. Lecture Notes in Mathematics, vol. 1921. Springer, Berlin (2008)" href="/article/10.1007/s13398-023-01414-w#ref-CR16" id="ref-link-section-d2809547e2103">16</a>, Definition 15], [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="Elduque, A., Labra, A.: Evolution algebras and graphs. J. Algebra Appl. 14(7), 1550103 (2015)" href="/article/10.1007/s13398-023-01414-w#ref-CR7" id="ref-link-section-d2809547e2106">7</a>, Definition 2.2]:</p> <h3 class="c-article__sub-heading" id="FPar5">Definition 2.4</h3> <p>Let <i>X</i> be an evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebra, and <span class="mathjax-tex">\(B=\{b_1,\ldots ,b_n\}\)</span> its natural basis. The directed graph <span class="mathjax-tex">\(\Gamma (X,B)=(V,E)\)</span> with set of vertices <span class="mathjax-tex">\(V=\{1,\ldots ,n\}\)</span> and set of edges <span class="mathjax-tex">\(E=\{(i,j)\in V\times V: \omega _{ij}\ne 0\}\)</span> is called the directed graph attached to the evolution algebra <i>X</i> relative to <i>B</i>. The directed graph <span class="mathjax-tex">\(\Gamma ^w(X,B)=(V,E,w)\)</span> with <span class="mathjax-tex">\(\Gamma (X,B)=(V,E)\)</span> and weight function <span class="mathjax-tex">\(w:E\rightarrow \Bbbk \)</span>, given by <span class="mathjax-tex">\(w(i,j)=\omega _{ij}\)</span>, is called the weighted graph attached to the evolution algebra <i>X</i> relative to <i>B</i>.</p> </div></div></section><section data-title="The Cayley evolution algebra of a \(\Bbbk \)-algebra"><div class="c-article-section" id="Sec3-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec3"><span class="c-article-section__title-number">3 </span>The Cayley evolution algebra of a <span class="mathjax-tex">\(\Bbbk \)</span>-algebra</h2><div class="c-article-section__content" id="Sec3-content"><p>We now explain how, to a given associative <span class="mathjax-tex">\(\Bbbk \)</span>-algebra <span class="mathjax-tex">\(\mathcal {A}\)</span>, we can associate an evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebra that takes into account the inner product of <span class="mathjax-tex">\(\mathcal {A}\)</span>:</p> <h3 class="c-article__sub-heading" id="FPar6">Definition 3.1</h3> <p>Let <span class="mathjax-tex">\(\mathcal {A}\)</span> be a finite-dimensional associative <span class="mathjax-tex">\(\Bbbk \)</span>-algebra with basis <span class="mathjax-tex">\(B=\{b_i\,:\,i\in \Lambda \}\)</span> together with a function <span class="mathjax-tex">\(f:B\rightarrow \Bbbk \)</span> (a set-theoretical map). We define the <i>Cayley evolution </i> <span class="mathjax-tex">\(\Bbbk \)</span><i>-algebra associated to </i><i>f</i>, that we denote by <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span>, as the evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebra with <span class="mathjax-tex">\(\textrm{Cay}(f)\cong \mathcal {A}\)</span>, as a <span class="mathjax-tex">\(\Bbbk \)</span>-vector space, furnished with natural basis <i>B</i> and structure constants given by <span class="mathjax-tex">\(b_i\cdot b_i=\sum _{b_j\in B}f(b_j)b_ib_j\)</span>, where <span class="mathjax-tex">\(x\cdot y\)</span> denotes the product in <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> and <i>xy</i> the inner product in <span class="mathjax-tex">\(\mathcal {A}\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar7">Remark 3.2</h3> <p>Observe that fixing a function <span class="mathjax-tex">\(f:B\rightarrow \Bbbk \)</span> is equivalent to choosing a vector <span class="mathjax-tex">\(w=\sum f(b_i)b_i\)</span>. Therefore, the Cayley evolution algebra associated to <i>f</i> could also be defined as the Cayley evolution algebra associated to a vector <span class="mathjax-tex">\(w\in \mathcal {A}\)</span> with <span class="mathjax-tex">\(\textrm{Cay}(w)\cong \mathcal {A}\)</span>, as <span class="mathjax-tex">\(\Bbbk \)</span>-vector space, furnished with natural basis <i>B</i> and structure constants given by <span class="mathjax-tex">\(b_i\cdot b_i=\sum _{b_j\in B}w^*(b_j)b_ib_j\)</span>, where <span class="mathjax-tex">\(w^*\)</span> is the dual of <i>w</i>.</p> <h3 class="c-article__sub-heading" id="FPar8">Remark 3.3</h3> <p>Given a finite-dimensional associative <span class="mathjax-tex">\(\Bbbk \)</span>-algebra <span class="mathjax-tex">\(\mathcal {A}\)</span> with basis <i>B</i>, the isomorphism type of the evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebra <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> strongly depends on the choice of <span class="mathjax-tex">\(f:B\rightarrow \Bbbk \)</span>. For example, if <span class="mathjax-tex">\(\mathcal {A}\)</span> is a non-degenerate evolution algebra with natural basis <i>B</i>, then the constant map given by <span class="mathjax-tex">\(f_0(b_i)=0\)</span> converts <span class="mathjax-tex">\(\textrm{Cay}(f_0)\)</span> into a degenerated evolution algebra, whereas the constant map given by <span class="mathjax-tex">\(f_1(b_i)=1\)</span> transforms <span class="mathjax-tex">\(\textrm{Cay}(f_1)\cong \mathcal {A}\)</span>. A more elaborated example is constructed in Example <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar27">4.9</a> to illustrate how the isomorphism type of the Cayley evolution algebra depends on the choice of the basis.</p> <p>From now on, let us fix a unital finite-dimensional associative <span class="mathjax-tex">\(\Bbbk \)</span>-algebra <span class="mathjax-tex">\(\mathcal {A}\)</span>, with basis <i>B</i>, and a function <span class="mathjax-tex">\(f:B\rightarrow \Bbbk \)</span>. We now prove several properties of the Cayley evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebra associated to <i>f</i>, <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span>. First we show how units in <span class="mathjax-tex">\(\mathcal {A}\)</span> give rise to automorphisms of <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar9">Proposition 3.4</h3> <p>If <span class="mathjax-tex">\(x\in \mathcal {A}\)</span> is a unit such that <span class="mathjax-tex">\(xB=B\)</span> then the left-multiplication by <i>x</i> induces <span class="mathjax-tex">\(\psi _x\in {\text {Aut}}\big (\textrm{Cay}(f)\big )\)</span>. If moreover <i>B</i> consists of units in <span class="mathjax-tex">\(\mathcal {A}\)</span>, then <span class="mathjax-tex">\(\psi _x\)</span> acts freely on <i>B</i> for <span class="mathjax-tex">\(x \ne 1\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar10">Proof</h3> <p>Given a unit <span class="mathjax-tex">\(x\in \mathcal {A}\)</span>, we construct the map <span class="mathjax-tex">\(\psi _x:\textrm{Cay}(f)\rightarrow \textrm{Cay}(f)\)</span> given by <span class="mathjax-tex">\(\psi _x(a)=xa\)</span>. Observe that <span class="mathjax-tex">\(\psi _x\)</span> maps the natural basis <i>B</i> to itself since <span class="mathjax-tex">\(\psi _x(B)=xB=B\)</span>. Hence it is an automorphism of <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> as <span class="mathjax-tex">\(\Bbbk \)</span>–vector space. Now, to check that <span class="mathjax-tex">\(\psi _x\)</span> is an automorphism of evolution algebras, on the one hand we have that <span class="mathjax-tex">\(\psi _x(b_i\cdot b_i)=\psi _x(\sum _{b_j\in B}f(b_j)b_ib_j)=\sum _{b_j\in B}f(b_j)x(b_ib_j)=\sum _{b_j\in B}f(b_j)(x b_i)b_j= \sum _{b_j\in B}f(b_j)\psi _x(b_i)b_j=\psi _x(b_i)\cdot \psi _x(b_i)\)</span>. On the other hand, for <span class="mathjax-tex">\(b_i \ne b_j,\)</span> we have that <span class="mathjax-tex">\(\psi _x(b_i\cdot b_j)=\psi _x(0)=x0=0 \)</span> and we are going to prove that <span class="mathjax-tex">\(\psi _x(b_i)\cdot \psi _x(b_j)\)</span> is also zero. Suppose that it is not, hence <span class="mathjax-tex">\( \psi _x(b_i)\cdot \psi _x(b_j)=xb_i\cdot xb_j \ne 0\)</span>, and since <span class="mathjax-tex">\(xb_i\)</span> and <span class="mathjax-tex">\(xb_j \)</span> are elements in the natural basis <i>B</i>, they must be equal. But <i>x</i> is a unit in <span class="mathjax-tex">\(\mathcal {A}\)</span>, which leads to the contradiction <span class="mathjax-tex">\(b_i = b_j\)</span>.</p> <p>Now, suppose that <i>B</i> consists of units in <span class="mathjax-tex">\(\mathcal {A}\)</span>. If <span class="mathjax-tex">\(\psi _x\)</span> fixes an element <span class="mathjax-tex">\(b \in B\)</span>, then <span class="mathjax-tex">\(\psi _x(b)=xb= b\)</span>, so we obtain that <span class="mathjax-tex">\(x=1\)</span> since <i>b</i> is a unit. <span class="mathjax-tex">\(\square \)</span></p> <p>Let us define <span class="mathjax-tex">\({\text {supp}}(f: B \rightarrow \Bbbk ):=\{b\in B:f(b)\ne 0\}\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar11">Proposition 3.5</h3> <p>Suppose that <i>B</i> consists of units in <span class="mathjax-tex">\(\mathcal {A}\)</span>, and that <span class="mathjax-tex">\({\text {supp}}(f)\)</span> generates <span class="mathjax-tex">\(\mathcal {A}\)</span> as an algebra. If the Cayley evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebra associated to <i>f</i>, <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span>, is regular, then <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> is also simple.</p> <h3 class="c-article__sub-heading" id="FPar12">Proof</h3> <p>Suppose that <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> is regular but not simple. Then, according to [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Cabrera, C.Y., Siles, M.M., Velasco, M.V.: Evolution algebras of arbitrary dimension and their decompositions. Linear Algebra Appl. 495, 122–162 (2016)" href="/article/10.1007/s13398-023-01414-w#ref-CR4" id="ref-link-section-d2809547e5480">4</a>, Corollary 4.6], the elements in <i>B</i> can be reordered, namely <span class="mathjax-tex">\(B=\{b_{1},b_{2},\ldots ,b_{r},\ldots ,b_n\}\)</span>, <span class="mathjax-tex">\(1\le r&lt;n\)</span>, such that the structure matrix of <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> becomes</p><div id="Equ3" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} M_B(\textrm{Cay}(f))=\left( \begin{array}{ccc|ccc} * &amp;{} \ldots &amp;{} * &amp;{} * &amp;{} \ldots &amp;{} *\\ \vdots &amp;{} r \times r &amp;{} \vdots &amp;{} \vdots &amp;{} \ddots &amp;{} \vdots \\ * &amp;{} \ldots &amp;{} * &amp;{} * &amp;{} \ldots &amp;{} *\\ \hline &amp;{} &amp;{} &amp;{} * &amp;{} \ldots &amp;{} *\\ &amp;{} \text {0}&amp;{} &amp;{} \vdots &amp;{} \ddots &amp;{} \vdots \\ &amp;{} &amp;{} &amp;{} * &amp;{} \ldots &amp;{} *\\ \end{array} \right) . \end{aligned}$$</span></div></div><p>Let <span class="mathjax-tex">\(S={\text {supp}}(f)\)</span> and consider an element <span class="mathjax-tex">\(b\in B\smallsetminus \{b_1,\ldots ,b_r\}\)</span>. Since <i>S</i> generates <span class="mathjax-tex">\(\mathcal {A}\)</span> as algebra, and <i>B</i> consists of units in <span class="mathjax-tex">\(\mathcal {A}\)</span>, the product <span class="mathjax-tex">\(b_1^{-1}b=\sum _k \lambda _k \prod _{i=1}^{l_k}s_{i,k}\)</span>, where <span class="mathjax-tex">\(\lambda _k\in \Bbbk \)</span> and <span class="mathjax-tex">\(s_{i,k}\in S\)</span>. Then, <span class="mathjax-tex">\(b = b_1b_1^{-1}b = b_1\big (\sum _k \lambda _k \prod _{i=1}^{l_k}s_{i,k}\big ) = \sum _k \lambda _k b_1\big (\prod _{i=1}^{l_k}s_{i,k}\big ).\)</span></p> <p>We claim that <span class="mathjax-tex">\(b_1\big (\prod _{i=1}^{l_k}s_{i,k}\big ) \in Span(\{b_1,\ldots ,b_r\})\)</span>. Indeed, for <span class="mathjax-tex">\(j\in \{1,\ldots ,r\}\)</span>,</p><div id="Equ4" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} b_j\cdot b_j=\sum _{b_k\in B}f(b_k)b_jb_k=\sum _{s\in S}f(s)b_js, \end{aligned}$$</span></div></div><p>thus, by the shape of <span class="mathjax-tex">\(M_B(\textrm{Cay}(f))\)</span>, we conclude that <span class="mathjax-tex">\(b_js\in Span ( \{b_1,\ldots ,b_r\} )\)</span> for all <span class="mathjax-tex">\(j\in \{1,\ldots ,r\}\)</span> and for all <span class="mathjax-tex">\(s\in S\)</span>. Even more, given <span class="mathjax-tex">\(\prod _{i=1}^{l_k}s_{i,k}\)</span>, for <span class="mathjax-tex">\(s_{i,k}\in S\)</span>, an inductive argument shows that <span class="mathjax-tex">\(b_j\big (\prod _{i=1}^{l_k}s_{i,k}\big )\in Span(\{b_1,\ldots ,b_r\})\)</span> for all <span class="mathjax-tex">\(j\in \{1,\ldots ,r\}\)</span>. In particular, we obtain that <span class="mathjax-tex">\(b \in Span(\{b_1,\ldots ,b_r\}).\)</span> This leads to a contradiction as <i>B</i> is a linearly independent set, hence <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> is simple.</p> <p> <span class="mathjax-tex">\(\square \)</span> </p> <h3 class="c-article__sub-heading" id="FPar13">Remark 3.6</h3> <p>As we mentioned in Introduction, the evolution algebras obtained in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="Costoya, C., Méndez, D., Viruel, A.: Realisability problem in arrow categories. Collect. Math. 71, 383–405 (2020)" href="/article/10.1007/s13398-023-01414-w#ref-CR6" id="ref-link-section-d2809547e7405">6</a>] are regular but not simple. Recall that associated to a simple graph <span class="mathjax-tex">\({\mathcal {G}} = (V,E)\)</span>, we construct an evolution algebra <span class="mathjax-tex">\({\mathcal {X}} (G)\)</span> over any field <span class="mathjax-tex">\(\Bbbk \)</span> with natural basis <span class="mathjax-tex">\(B = \{b_v,\, v \in V\} \cup \{b_e,\,e \in E\}\)</span> (see [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="Costoya, C., Méndez, D., Viruel, A.: Realisability problem in arrow categories. Collect. Math. 71, 383–405 (2020)" href="/article/10.1007/s13398-023-01414-w#ref-CR6" id="ref-link-section-d2809547e7570">6</a>, Definition 3.2]). In particular, the multiplication for the elements associated to the vertices of the graph is given by <span class="mathjax-tex">\(b_v^2 = b_v,\)</span> for all <span class="mathjax-tex">\(v \in V\)</span>. Hence, for <span class="mathjax-tex">\(I_r\)</span> the identity matrix of order <span class="mathjax-tex">\(r= |V|\)</span>, and <span class="mathjax-tex">\(I_s\)</span> the identity matrix of order <span class="mathjax-tex">\(s=|E|\)</span>, the structure matrix of <span class="mathjax-tex">\({\mathcal {X}} (G)\)</span> becomes</p><div id="Equ5" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} M_B({\mathcal {X}} (G))=\left( \begin{array}{ccc|ccc} &amp;{} &amp;{} &amp;{} * &amp;{} \ldots &amp;{} *\\ &amp;{} I_r &amp;{} &amp;{} \vdots &amp;{} \ddots &amp;{} \vdots \\ &amp;{} &amp;{} &amp;{} * &amp;{} \ldots &amp;{} *\\ \hline &amp;{} &amp;{} &amp;{} &amp;{} &amp;{} \\ &amp;{}\text {0}&amp;{} &amp;{} &amp;{} I_s &amp;{} \\ &amp;{}&amp;{} &amp;{} &amp;{} &amp;{} \\ \end{array} \right) \end{aligned}$$</span></div></div><p>which by [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Cabrera, C.Y., Siles, M.M., Velasco, M.V.: Evolution algebras of arbitrary dimension and their decompositions. Linear Algebra Appl. 495, 122–162 (2016)" href="/article/10.1007/s13398-023-01414-w#ref-CR4" id="ref-link-section-d2809547e8120">4</a>, Corollary 4.6], implies that <span class="mathjax-tex">\({\mathcal {X}} (G)\)</span> is not simple for <span class="mathjax-tex">\(r,s&gt;0\)</span>.</p> </div></div></section><section data-title="Cayley evolution algebras of group algebras"><div class="c-article-section" id="Sec4-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec4"><span class="c-article-section__title-number">4 </span>Cayley evolution algebras of group algebras</h2><div class="c-article-section__content" id="Sec4-content"><p>In this section we refine the results in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s13398-023-01414-w#Sec3">3</a>. We fix a finite group <i>G</i> and we consider the group algebra over <span class="mathjax-tex">\(\Bbbk \)</span>, <span class="mathjax-tex">\(\mathcal {A}=\Bbbk [G]\)</span>. Now, we take as a basis <span class="mathjax-tex">\(B=G\)</span> and a function <span class="mathjax-tex">\(f:G\rightarrow \Bbbk .\)</span> In this setting, observe that the structure constants of <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> with respect to <i>G</i> can be given by <span class="mathjax-tex">\(g\cdot g=\sum _{k\in G}f(g^{-1}k)k\)</span>.</p><p>Our first result is a straightforward consequence of Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar9">3.4</a>.</p> <h3 class="c-article__sub-heading" id="FPar14">Proposition 4.1</h3> <p><i>G</i> acts faithfully on <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> as a permutation group over its natural basis by left-multiplication. That is, <span class="mathjax-tex">\(G\le {\text {Aut}}(\textrm{Cay}(f))\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar15">Proof</h3> <p>The elements of <i>G</i> are units in <span class="mathjax-tex">\(\mathcal {A}=\Bbbk [G]\)</span> and since <span class="mathjax-tex">\(G^2=G\)</span>, then <span class="mathjax-tex">\(GB=B\)</span>. Hence by Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar9">3.4</a>, <span class="mathjax-tex">\(\psi _g \in {\text {Aut}}\big (\textrm{Cay}(f)\big ).\)</span> Moreover, for any <span class="mathjax-tex">\(g,h\in G\)</span>, <span class="mathjax-tex">\(\psi _g\circ \psi _h=\psi _{gh}\)</span>, thus the units <span class="mathjax-tex">\(G\subset \mathcal {A}\)</span> produce a subgroup of automorphisms which is isomorphic to <i>G</i>. <span class="mathjax-tex">\(\square \)</span></p> <p>We now recall the definition of Cayley graph [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="White, A.T.: Graphs, Groups and Surfaces, Volume 8 of North-Holland Mathematics Studies, 2nd edn. North-Holland Publishing Co., Amsterdam (1984)" href="/article/10.1007/s13398-023-01414-w#ref-CR17" id="ref-link-section-d2809547e8776">17</a>, Definition 4-5].</p> <h3 class="c-article__sub-heading" id="FPar16">Definition 4.2</h3> <p>Let <i>G</i> be a finite group, and <i>S</i> be a subset of <i>G</i>. The <i>Cayley graph</i> of <i>G</i> with respect to <i>S</i> is the directed graph <span class="mathjax-tex">\(\textrm{Cay}(G,S)\)</span> with vertex set <i>G</i> and edges (<i>g</i>, <i>gs</i>) for each <span class="mathjax-tex">\(g\in G\)</span> and <span class="mathjax-tex">\(s\in S\)</span>. Moreover, we can assign a colour <span class="mathjax-tex">\(c_s\)</span> to each edge (<i>g</i>, <i>gs</i>), <span class="mathjax-tex">\(s\in S\)</span>, where <span class="mathjax-tex">\(c_s\ne c_{s'}\)</span> if <span class="mathjax-tex">\(s\ne s'\)</span>. Hence, we obtain an <i>edge-coloured directed graph</i>, the coloured Cayley graph. In this work we will denote it by <span class="mathjax-tex">\(\textrm{Cay}^{cor}(G,S)\)</span>.</p> <p>The Cayley evolution algebras that we have previously introduced are closely related to Cayley graphs. By comparing Definitions <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar5">2.4</a> and <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar16">4.2</a> we immediately obtain:</p> <h3 class="c-article__sub-heading" id="FPar17">Lemma 4.3</h3> <p>Let <span class="mathjax-tex">\(S={\text {supp}}(f)\)</span>, and assume <span class="mathjax-tex">\(f|_S\)</span> is injective. Then <span class="mathjax-tex">\(\Gamma \big (\textrm{Cay}(f),G\big )=\textrm{Cay}(G,S)\)</span> as abstract directed graphs while <span class="mathjax-tex">\(\Gamma ^w\big (\textrm{Cay}(f),G\big )=\textrm{Cay}^{cor}(G,S)\)</span> as edge-coloured directed graphs.</p> <p>One of the key features of the coloured Cayley graph <span class="mathjax-tex">\(\textrm{Cay}^{cor}(G,S)\)</span> is that whenever <i>S</i> generates <i>G</i>, the group <i>G</i> can be represented as the full group of automorphisms of <span class="mathjax-tex">\(\textrm{Cay}^{cor}(G,S)\)</span>, that is <span class="mathjax-tex">\(G\cong {\text {Aut}}(\textrm{Cay}^{cor}(G,S))\)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 17" title="White, A.T.: Graphs, Groups and Surfaces, Volume 8 of North-Holland Mathematics Studies, 2nd edn. North-Holland Publishing Co., Amsterdam (1984)" href="/article/10.1007/s13398-023-01414-w#ref-CR17" id="ref-link-section-d2809547e9450">17</a>, Theorem 4-8]. In a similar way we prove:</p> <h3 class="c-article__sub-heading" id="FPar18">Proposition 4.4</h3> <p>Suppose that the evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebra <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> is regular, <span class="mathjax-tex">\(S={\text {supp}}(f)\)</span> generates <i>G</i> and <span class="mathjax-tex">\(f|_S\)</span> injective. If <i>S</i> contains two elements of coprime order, then <span class="mathjax-tex">\(G \cong {\text {Aut}}(\textrm{Cay}(f))\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar19">Proof</h3> <p>First of all, we make use of the identification <span class="mathjax-tex">\(\Gamma \big (\textrm{Cay}(f),S\big )=\textrm{Cay}(G,S)\)</span> as abstract directed graphs, according to Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar17">4.3</a>. Now, since <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> is regular, by [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Elduque, A., Labra, A.: Evolution algebras, automorphisms, and graphs. Linear Multilinear Algebra 69(2), 1–12 (2019)" href="/article/10.1007/s13398-023-01414-w#ref-CR8" id="ref-link-section-d2809547e9720">8</a>, Theorem 3.2], there exists an exact sequence</p><div id="Equ6" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} 1\hookrightarrow {\text {Diag}}(\textrm{Cay}(G,S))\rightarrow {\text {Aut}}(\textrm{Cay}(f))\rightarrow {\text {Aut}}(\textrm{Cay}(G,S)), \end{aligned}$$</span></div></div><p>with <span class="mathjax-tex">\({\text {Diag}}(\textrm{Cay}(G,S)) = \mu _N = \{ k \in {\mathbb {K}} \,; k^N =1\}\)</span> for <span class="mathjax-tex">\(N = 2^\mathrm{b(\textrm{Cay}(G, S))}-1 \)</span> where <span class="mathjax-tex">\({\text {b}}(\textrm{Cay}(G, S))\)</span> is the balance of <span class="mathjax-tex">\( \textrm{Cay}(G,S)\)</span> (see [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Elduque, A., Labra, A.: Evolution algebras, automorphisms, and graphs. Linear Multilinear Algebra 69(2), 1–12 (2019)" href="/article/10.1007/s13398-023-01414-w#ref-CR8" id="ref-link-section-d2809547e10058">8</a>, Section 2] and [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Elduque, A., Labra, A.: Evolution algebras, automorphisms, and graphs. Linear Multilinear Algebra 69(2), 1–12 (2019)" href="/article/10.1007/s13398-023-01414-w#ref-CR8" id="ref-link-section-d2809547e10061">8</a>, Theorem 2.7]).</p> <p>We first calculate <span class="mathjax-tex">\({\text {Diag}}(\textrm{Cay}(G,S))\)</span>. Notice that for every <span class="mathjax-tex">\(s\in S\)</span>, the graph <span class="mathjax-tex">\(\textrm{Cay}(G,S)\)</span> has a directed cycle of length the order of the element <i>s</i>, <i>o</i>(<i>s</i>). Therefore, if <span class="mathjax-tex">\(s_1,s_2\in S\)</span> are elements such that <span class="mathjax-tex">\(\textrm{gcd} (o(s_1),o(s_2))=1\)</span>, we obtain</p><div id="Equ7" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} 1\le \textrm{b}(\textrm{Cay}(G,S))= \textrm{gcd}\{|\textrm{b} (\gamma )|:\, \gamma \text { cycle in} \,\textrm{Cay}(G,S) \}\le \textrm{gcd} (o(s_1),o(s_2))=1. \end{aligned}$$</span></div></div><p>Hence <span class="mathjax-tex">\(N=2^{\textrm{b}(\textrm{Cay}(G,S))-1}=1\)</span>, and <span class="mathjax-tex">\({\text {Diag}}(\textrm{Cay}(G,S))=\mu _1=\{1\}\)</span> so,</p><div id="Equ8" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\text {Aut}}(\textrm{Cay}(f))\le {\text {Aut}}(\textrm{Cay}(G,S)). \end{aligned}$$</span></div></div><p>Therefore, elements in <span class="mathjax-tex">\({\text {Aut}}(\textrm{Cay}(f))\)</span> can be thought as those graph automorphisms of <span class="mathjax-tex">\(\textrm{Cay}(G,S)\)</span> that preserve the structure matrix <span class="mathjax-tex">\(M_G(\textrm{Cay}(f))\)</span> in the following sense. Let <span class="mathjax-tex">\(\psi \in {\text {Aut}}(\textrm{Cay}(f))\)</span> and <span class="mathjax-tex">\(g \in G\)</span> an arbitrary element. As <span class="mathjax-tex">\(\psi \)</span> preserves the product in <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span>, for <span class="mathjax-tex">\(g\cdot g=\sum _{k\in G}f(g^{-1}k)k\)</span>, we have that</p><div id="Equ1" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \psi (g\cdot g) =\sum _{k\in G}f(g^{-1}k) \psi (k) \end{aligned}$$</span></div><div class="c-article-equation__number"> (1) </div></div><p>must coincide with <span class="mathjax-tex">\(\psi (g) \cdot \psi (g) = \sum _{k\in G}f( \psi (g)^{-1}k)k\)</span>. Since <span class="mathjax-tex">\(\psi \)</span> can be thought as a graph automorphism of <span class="mathjax-tex">\(\textrm{Cay}(G,S)\)</span>, <span class="mathjax-tex">\(\psi \)</span> is in particular a permutation of the elements in <i>G</i>, which allows us to express</p><div id="Equ2" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \psi (g) \cdot \psi (g) = \sum _{k \in G}f( \psi (g)^{-1}\psi (k)) \psi (k). \end{aligned}$$</span></div><div class="c-article-equation__number"> (2) </div></div><p>Comparing both (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13398-023-01414-w#Equ1">1</a>) and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s13398-023-01414-w#Equ2">2</a>) we deduce that <span class="mathjax-tex">\( f(g^{-1}k)= f( \psi (g)^{-1}\psi (k)) \)</span> for arbitrary <span class="mathjax-tex">\(g, k \in G\)</span>. In other words, <span class="mathjax-tex">\(\psi \)</span> is an automorphism of the weighted graph <span class="mathjax-tex">\(\Gamma ^w\big (\textrm{Cay}(f),G\big )\)</span> which, by Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar17">4.3</a> coincides with <span class="mathjax-tex">\(\textrm{Cay}^{cor}(G,S)\)</span>. That is,</p><div id="Equ9" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\text {Aut}}(\textrm{Cay}(f))\le {\text {Aut}}(\textrm{Cay}^{cor}(G,S))\cong G. \end{aligned}$$</span></div></div><p>Since <span class="mathjax-tex">\(G\le {\text {Aut}}(\textrm{Cay}(f))\)</span> by Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar14">4.1</a>, we conclude that <span class="mathjax-tex">\(G \cong {\text {Aut}}(\textrm{Cay}(f)) \)</span>. <span class="mathjax-tex">\(\square \)</span></p> <p>We prove now that if the field <span class="mathjax-tex">\(\Bbbk \)</span> is large enough compared with |<i>G</i>| (for instance, if <span class="mathjax-tex">\(\Bbbk \)</span> is infinite), it is then possible to construct <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span>, a Cayley evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebra associated to the function <span class="mathjax-tex">\(f: G \rightarrow \Bbbk \)</span>, fulfilling hypotheses from Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar17">4.3</a> and Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar18">4.4</a>.</p><p>The following lemma makes the condition “large enough compared with an integer" precise. Recall that a polynomial <span class="mathjax-tex">\(P\in \Bbbk [X_1,\ldots , X_m]\)</span> is said to be homogeneous of degree <span class="mathjax-tex">\(n\in \mathbb {N}\)</span>, denoted by <span class="mathjax-tex">\(\deg (P)=n\)</span>, if <i>P</i> is a linear combination of monomials <span class="mathjax-tex">\(X_1^{d_1}X_2^{d_2}\cdots X_m^{d_m}\)</span> such that <span class="mathjax-tex">\(\sum d_i=n\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar20">Lemma 4.5</h3> <p>Let <span class="mathjax-tex">\(\Bbbk \)</span> be a not necessarily finite field with multiplicative group of order <span class="mathjax-tex">\(|\Bbbk ^*|\)</span>, and let <i>n</i> and <i>m</i> be positive integers such that <span class="mathjax-tex">\(|\Bbbk ^*|\ge 2n\)</span> and <span class="mathjax-tex">\(n \ge m\)</span>. Then, for any homogeneous polynomial of degree <i>n</i> in <i>m</i> variables</p><div id="Equ10" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} P=\sum _{i=1}^m \lambda _iX_i^n + Q\in \Bbbk [X_1,\ldots , X_m], \end{aligned}$$</span></div></div><p>with <span class="mathjax-tex">\(\lambda _i \ne 0\)</span> for all <i>i</i>, and where every monomial in <i>Q</i> involves at least two different variables, there exists a choice of non-zero pairwise distinct values <span class="mathjax-tex">\(k_1,\ldots , k_m\in \Bbbk ^*\)</span> such that <span class="mathjax-tex">\(P(X_i=k_i: i=1,\ldots , m)\ne 0\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar21">Proof</h3> <p>Fix <span class="mathjax-tex">\(n \ge m\)</span> and <span class="mathjax-tex">\(P\in \Bbbk [X_1,\ldots , X_m]\)</span> as in the hypotheses. Since <span class="mathjax-tex">\(|\Bbbk ^*| \ge m\)</span>, we can choose <span class="mathjax-tex">\(k_1,\ldots , k_{m-1}\in \Bbbk ^*\)</span> pairwise distinct values. Hence, the polynomial <span class="mathjax-tex">\(\widetilde{P}(X_m):=P(X_i=k_i: i&lt;m)\)</span> is a non-trivial polynomial of degree <i>n</i>, and therefore the equation <span class="mathjax-tex">\(\widetilde{P}(X_m)=0\)</span> admits a most <i>n</i> different non-zero solutions. That is, there exist at most <span class="mathjax-tex">\(\kappa _1,\ldots ,\kappa _n\in \Bbbk ^*\)</span> such that <span class="mathjax-tex">\(\widetilde{P}(X_m=\kappa _r)=0\)</span>, for <span class="mathjax-tex">\(r=1, \ldots , n\)</span>. Since <span class="mathjax-tex">\(|\Bbbk ^*|\ge 2n&gt; m-1+n\)</span>, there exists a non-zero value <span class="mathjax-tex">\(k_m\in \Bbbk ^*\)</span> such that <span class="mathjax-tex">\(k_m\ne k_j\)</span> for <span class="mathjax-tex">\(j=1,\ldots ,m-1\)</span> and <span class="mathjax-tex">\(k_m\ne \kappa _r\)</span> for <span class="mathjax-tex">\(r=1,\ldots , n\)</span>. Then, <span class="mathjax-tex">\(k_1,\ldots , k_m\in \Bbbk ^*\)</span> are non-zero pairwise distinct values and <span class="mathjax-tex">\(P(X_i=k_i: i=1,\ldots , m)\ne 0\)</span>. <span class="mathjax-tex">\(\square \)</span></p> <h3 class="c-article__sub-heading" id="FPar22">Theorem 4.6</h3> <p>Let <span class="mathjax-tex">\(\Bbbk \)</span> be a not necessarily finite field with multiplicative group of order <span class="mathjax-tex">\(|\Bbbk ^*|\)</span> and let <i>G</i> be a finite group. If <span class="mathjax-tex">\(|\Bbbk ^*|\ge 2 |G|\)</span>, then for any non-empty <span class="mathjax-tex">\(S\subset G\)</span> there exists a function <span class="mathjax-tex">\(f :G\rightarrow \Bbbk \)</span> such that: </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">(1)</span> <p><span class="mathjax-tex">\(S={\text {supp}}(f)\)</span></p> </li> <li> <span class="u-custom-list-number">(2)</span> <p><span class="mathjax-tex">\(f|_S\)</span> is injective</p> </li> <li> <span class="u-custom-list-number">(3)</span> <p><span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> is regular.</p> </li> </ol> <h3 class="c-article__sub-heading" id="FPar23">Proof</h3> <p>For any function <span class="mathjax-tex">\(f:G\rightarrow \Bbbk \)</span>, if we denote by <span class="mathjax-tex">\(X_g\)</span> the variable such that <span class="mathjax-tex">\(X_g=f(g)\)</span>, the structure coefficients of <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> can be described by</p><div id="Equ11" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} g\cdot g=\sum _{h\in G}f(h)gh=\sum _{k\in G}f(g^{-1}k)k=\sum _{k\in G}X_{g^{-1}k}k, \end{aligned}$$</span></div></div><p>and therefore, the structure matrix of <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> becomes</p><div id="Equ12" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} M_B(\textrm{Cay}(f))=(X_{g^{-1}k})_{g,k\in G}\in M_{|G|\times |G|}(\Bbbk ), \end{aligned}$$</span></div></div><p>whose determinant is a homogeneous polynomial <span class="mathjax-tex">\(P(X_g:\,g\in G)\)</span> of degree |<i>G</i>|, that we now describe. Given <span class="mathjax-tex">\(k\in G\)</span>, let <span class="mathjax-tex">\(P_k:=P(X_g=0: g\ne k)\in \Bbbk [X_k],\)</span> thus <span class="mathjax-tex">\(P=\sum _{k\in G} P_k + Q\)</span> where <i>Q</i> is a homogeneous polynomial in <span class="mathjax-tex">\(\Bbbk [X_g: g\in G]\)</span> such that every monomial in <i>Q</i> involves at least two different variables. Since <i>P</i> is homogeneous, <span class="mathjax-tex">\(P_k(X_k)=\lambda _k X_k^{|G|}\)</span> for some <span class="mathjax-tex">\(\lambda _k\in \Bbbk \)</span>. Following the notation of [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="Harary, F.: The determinant of the adjacency matrix of a graph. Siam Rev. 4(3), 202–210 (1962)" href="/article/10.1007/s13398-023-01414-w#ref-CR10" id="ref-link-section-d2809547e14508">10</a>], we can think of the polynomials <span class="mathjax-tex">\(P_k\)</span> as</p><div id="Equ13" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} P_k(X_k)=\det \Big (\textrm{A}\big (\textrm{Cay}(G,\{k\}), X_k\big )\Big ) \end{aligned}$$</span></div></div><p>where <span class="mathjax-tex">\(\textrm{A}\big (\textrm{Cay}(G,\{k\}), X_k\big )\)</span> denotes the variable adjacency matrix of the Cayley graph <span class="mathjax-tex">\(\textrm{Cay}(G,\{k\})\)</span>. And, according to [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="Harary, F.: The determinant of the adjacency matrix of a graph. Siam Rev. 4(3), 202–210 (1962)" href="/article/10.1007/s13398-023-01414-w#ref-CR10" id="ref-link-section-d2809547e14762">10</a>, Theorem 2], as <span class="mathjax-tex">\(\textrm{Cay}(G,\{k\})\)</span> is a directed graph consisting of a total of <span class="mathjax-tex">\(\frac{|G|}{o(k)}\)</span> disjoint directed cycles of length <i>o</i>(<i>k</i>), which are also the strong components of <span class="mathjax-tex">\(\textrm{Cay}(G,\{k\})\)</span>, we obtain that</p><div id="Equ14" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} P_k(X_k)= \Big ( \det \big ( \textrm{A}\big (o(k)\text {-cycle}, X_k \big ) \big ) \Big )^{\frac{|G|}{o(k)}}. \end{aligned}$$</span></div></div><p>Since the variable adjacency matrix of a directed <i>o</i>(<i>k</i>)-cycle is of the form</p><div id="Equ15" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \left( \begin{array}{ccccc} 0 &amp;{} X_{k} &amp;{} 0 &amp;{} \ldots &amp;{} 0\\ 0 &amp;{} 0 &amp;{} X_{k} &amp;{} \ldots &amp;{} 0\\ \vdots &amp;{} \vdots &amp;{} \vdots &amp;{} \ddots &amp;{} \vdots \\ 0 &amp;{} 0 &amp;{} 0 &amp;{} \ldots &amp;{} X_{k}\\ X_{k} &amp;{} 0 &amp;{} 0 &amp;{} \ldots &amp;{} 0\\ \end{array} \right) \in M_{o(k) \times o(k)} (\Bbbk ) \end{aligned}$$</span></div></div><p>we conclude that</p><div id="Equ16" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} P_k(X_k)=\Big ((-1)^{o(k)+1}X_{k}^{o(k)}\Big )^{\frac{|G|}{o(k)}}= (-1)^{\frac{(o(k)+1)|G|}{o(k)}} X_k^{|G|}. \end{aligned}$$</span></div></div><p>We proceed now to construct, for a given <span class="mathjax-tex">\(S \subset G\)</span>, the desired function <span class="mathjax-tex">\(f:G\rightarrow \Bbbk \)</span>. Let <span class="mathjax-tex">\(P_S:=P(X_g=0: g\not \in S)\in \Bbbk [X_s:s\in S]\)</span> which is a non-trivial homogeneous polynomial of degree |<i>G</i>| on |<i>S</i>| variables. As <span class="mathjax-tex">\(|\Bbbk ^*| \ge 2n\)</span>, Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar20">4.5</a> ensures the existence of non-zero pairwise distinct values <span class="mathjax-tex">\(k_s\in \Bbbk ^*\)</span>, <span class="mathjax-tex">\(s\in S\)</span>, satisfying that <span class="mathjax-tex">\(P_S(X_s=k_s: s\in S)\ne 0\)</span>. With that in mind, let <span class="mathjax-tex">\(f:G\rightarrow \Bbbk \)</span> be defined by</p><div id="Equ17" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} f(g)={\left\{ \begin{array}{ll} k_g, &amp;{} \text {if } g\in S \\ 0, &amp;{} \text {otherwise} \end{array}\right. } \end{aligned}$$</span></div></div><p>Notice that since all the values <span class="mathjax-tex">\(k_s\in \Bbbk ^*\)</span>, for <span class="mathjax-tex">\(s\in S\)</span>, are non-zero and pairwise distinct, <span class="mathjax-tex">\(S={\text {supp}}(f)\)</span> and <span class="mathjax-tex">\(f|_S\)</span> is injective. Finally,</p><div id="Equ18" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned} \det \big (M_B(\textrm{Cay}(f))\big )&amp;= P(X_g=f(g):g\in G)\\&amp;= P_S(X_s=k_s:s\in S) \\&amp;\ne 0 \end{aligned} \end{aligned}$$</span></div></div><p>hence <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> is regular. <span class="mathjax-tex">\(\square \)</span></p> <p>Combining the results previously obtained, we give the proof of our main result.</p> <h3 class="c-article__sub-heading" id="FPar24">Proof of Theorem A</h3> <p>Let <i>S</i> be a set of generators of <i>G</i> containing coprime order elements. Observe that <i>S</i> is also a set of generators of <span class="mathjax-tex">\(\Bbbk [G] \)</span> as an algebra, and such <i>S</i> always exists, it suffices to consider a generating set <i>S</i> containing <span class="mathjax-tex">\(1\in S\)</span>, for example <span class="mathjax-tex">\(S = G\)</span>. Considering the function <span class="mathjax-tex">\(f:G\rightarrow \Bbbk \)</span> given in Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar22">4.6</a>, <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> is regular, <span class="mathjax-tex">\(S={\text {supp}}(f)\)</span> and <span class="mathjax-tex">\(f|_S\)</span> is injective. Moreover, <i>S</i> contains coprime order elements, so by Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar18">4.4</a> we conclude that <span class="mathjax-tex">\({\text {Aut}}(\textrm{Cay}(f))\cong G\)</span>. Moreover, since <i>S</i> generates <span class="mathjax-tex">\(\Bbbk [G]\)</span> and <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> is regular, by Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar11">3.5</a> we obtain that <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> is simple.</p> <p>We now check that the simple evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebra <span class="mathjax-tex">\(X =\textrm{Cay}(f) \)</span> above is indeed absolutely simple, and <span class="mathjax-tex">\({\text {Aut}}(X_{{\mathbb {F}}})\cong G\)</span> for every field extension <span class="mathjax-tex">\(\mathbb {F}/\Bbbk \)</span>. In fact, since the function <span class="mathjax-tex">\(f_{{\mathbb {F}}}:G\rightarrow {{\mathbb {F}}}\)</span> induced by <i>f</i> also satisfies conclusions (1), (2), and (3) in Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar22">4.6</a>, <span class="mathjax-tex">\({\text {Aut}}(\textrm{Cay}(f_{{\mathbb {F}}}))\cong G\)</span>, and <span class="mathjax-tex">\(\textrm{Cay}(f_{{\mathbb {F}}})\)</span> is simple. Finally, since <span class="mathjax-tex">\({{\mathbb {F}}}[G]=\Bbbk [G]\otimes _\Bbbk {{\mathbb {F}}}\)</span> then <span class="mathjax-tex">\(\textrm{Cay}(f_{{\mathbb {F}}})=\textrm{Cay}(f)\otimes _\Bbbk {{\mathbb {F}}}=X_{{\mathbb {F}}}\)</span>, thus <span class="mathjax-tex">\(X_{{\mathbb {F}}}\)</span> is simple and <span class="mathjax-tex">\({\text {Aut}}(X_{{\mathbb {F}}})\cong G\)</span>.</p> <p> <span class="mathjax-tex">\(\square \)</span> </p> <p>We end this paper with some remarks on the non-uniqueness of the simple evolution algebras realizing finite groups.</p> <h3 class="c-article__sub-heading" id="FPar25">Remark 4.7</h3> <p>Our construction of the simple evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebra <span class="mathjax-tex">\(\textrm{Cay}(f) \)</span> such that <span class="mathjax-tex">\({\text {Aut}}(\textrm{Cay}(f))\cong G\)</span>, for a fixed finite group <i>G</i> involves several choices: first, a generator set <span class="mathjax-tex">\(S\subset G\)</span> containing coprime order elements, which is not unique if <span class="mathjax-tex">\(|G|&gt;1\)</span>. Secondly, a function <span class="mathjax-tex">\(f:G\rightarrow \Bbbk \)</span> such that <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> is regular, as in the proof of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar22">4.6</a>, which is not is unique either since any non-zero scalar multiple of <span class="mathjax-tex">\(f:G\rightarrow \Bbbk \)</span> will also work. An easy argument on the edge-coloured directed graphs <span class="mathjax-tex">\(\Gamma ^w\big (\textrm{Cay}(f),B\big )=\textrm{Cay}^{cor}(G,S)\)</span> illustrates that both choices lead to non-isomorphic evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebras with the same group of automorphism <i>G</i>.</p> <h3 class="c-article__sub-heading" id="FPar26">Remark 4.8</h3> <p>For any evolution algebra <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> built upon the group algebra <span class="mathjax-tex">\(\mathcal {A}=\Bbbk [G]\)</span> with fixed natural basis <span class="mathjax-tex">\(B=G\)</span>, and any given <span class="mathjax-tex">\(f:B\rightarrow \Bbbk \)</span>, the following holds</p><div id="Equ19" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} G\le {\text {Aut}}(\textrm{Cay}(f))\le \textrm{GL}(\Bbbk , |G|) \end{aligned}$$</span></div></div><p>since <span class="mathjax-tex">\(B=G\)</span> is a group of units basis in <span class="mathjax-tex">\(\mathcal {A}=\Bbbk [G]\)</span> (see Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar14">4.1</a>). The lower bound <span class="mathjax-tex">\(G= {\text {Aut}}(\textrm{Cay}(f))\)</span> is obtained when <i>f</i> is as in the proof of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar1">A</a> (see also Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar22">4.6</a>) while the upper bound <span class="mathjax-tex">\({\text {Aut}}(\textrm{Cay}(f))=\textrm{GL}(\Bbbk , |G|)\)</span> is obtained when <span class="mathjax-tex">\(f= 0\)</span>. Although it is not the purpose of this paper, we could raise the question of which intermediate groups <i>H</i>,</p><div id="Equ20" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} G\le H\le \textrm{GL}(\Bbbk , |G|), \end{aligned}$$</span></div></div><p>can be realized as automorphisms of simple Cayley evolution algebras. That is, <span class="mathjax-tex">\({\text {Aut}}(\textrm{Cay}(f))= H\)</span> for some function <span class="mathjax-tex">\(f:G\rightarrow \Bbbk \)</span>.</p> <p>We now highlight that not only <span class="mathjax-tex">\({\text {Aut}}(\textrm{Cay}(f))\)</span> depends on how <i>good</i> or <i>bad</i> the function <span class="mathjax-tex">\(f: G \rightarrow \Bbbk \)</span> is, as Remark <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar26">4.8</a> illustrates, but it also depends on the group of units of <span class="mathjax-tex">\(\mathcal {A}=\Bbbk [G]\)</span>. And in fact, since the isomorphism problem for group rings [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="Sandling, R.: The isomorphism problem for group rings: A survey. In: Reiner, I., Roggenkamp, K.W. (eds.) Orders and Their Applications, pp. 256–288. Springer, Berlin (1985)" href="/article/10.1007/s13398-023-01414-w#ref-CR14" id="ref-link-section-d2809547e18343">14</a>, Problem 1.1] has a negative answer in general [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Hertweck, M.: A counterexample to the isomorphism problem for integral group rings. Ann. Math. (2) 154(1), 115–138 (2001)" href="/article/10.1007/s13398-023-01414-w#ref-CR11" id="ref-link-section-d2809547e18346">11</a>], the group of units basis is not unique in a group algebra. The following example shows that the choice of the group of units basis as natural basis for <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> might lead to non-isomorphic Cayley evolution algebras with non-isomorphic group of automorphisms:</p> <h3 class="c-article__sub-heading" id="FPar27">Example 4.9</h3> <p>Let <span class="mathjax-tex">\(G_1\)</span> and <span class="mathjax-tex">\(G_2\)</span> be the finite groups of order <span class="mathjax-tex">\(n=2^{21}97^{28}\)</span> denoted by respectively <i>X</i> and <i>Y</i> in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Hertweck, M.: A counterexample to the isomorphism problem for integral group rings. Ann. Math. (2) 154(1), 115–138 (2001)" href="/article/10.1007/s13398-023-01414-w#ref-CR11" id="ref-link-section-d2809547e18471">11</a>, Theorem B]. Let <span class="mathjax-tex">\(\Bbbk \)</span> be a field (not necessarily finite) with multiplicative group of order <span class="mathjax-tex">\(|\Bbbk ^*| \ge 2 \cdot 2^{21}97^{28}\)</span> and let <span class="mathjax-tex">\(\mathcal {A}= \Bbbk [G_1]\)</span> be the group <span class="mathjax-tex">\(\Bbbk \)</span>-algebra. By [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Hertweck, M.: A counterexample to the isomorphism problem for integral group rings. Ann. Math. (2) 154(1), 115–138 (2001)" href="/article/10.1007/s13398-023-01414-w#ref-CR11" id="ref-link-section-d2809547e18608">11</a>, Theorem B], although <span class="mathjax-tex">\(G_1\)</span> and <span class="mathjax-tex">\(G_2\)</span> are non-isomorphic, they can both be the group of units basis of <span class="mathjax-tex">\(\mathcal {A}\)</span>. Hence, following the proof of Theorem <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar1">A</a>, there exist functions <span class="mathjax-tex">\(f_1:G_1\rightarrow \Bbbk \)</span>, and <span class="mathjax-tex">\(f_2:G_2\rightarrow \Bbbk \)</span>, such that <span class="mathjax-tex">\(\textrm{Cay}(f_1)\)</span> and <span class="mathjax-tex">\(\textrm{Cay}(f_2)\)</span> are simple evolution <span class="mathjax-tex">\(\Bbbk \)</span>-algebras with <span class="mathjax-tex">\({\text {Aut}}(\textrm{Cay}(f_1))\cong G_1 \not \cong G_2 \cong {\text {Aut}}(\textrm{Cay}(f_2))\)</span>, and so <span class="mathjax-tex">\(\textrm{Cay}(f_1) \not \cong \textrm{Cay}(f_2)\)</span>.</p> <p>Finally, it is also natural to ask whether the function <span class="mathjax-tex">\(f:G\rightarrow \Bbbk \)</span> defining <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> can be chosen to be a significant one, for example a character, or more generally, a class function, that is <span class="mathjax-tex">\(f(g^{-1}kg)=f(k)\)</span> for all <span class="mathjax-tex">\(g,k\in G\)</span>. We prove the following:</p> <h3 class="c-article__sub-heading" id="FPar28">Proposition 4.10</h3> <p>Let <i>G</i> be a finite group, <span class="mathjax-tex">\(\mathcal {A}=\Bbbk [G]\)</span>, and <span class="mathjax-tex">\(f:G\rightarrow \Bbbk \)</span> be a class function. Then <span class="mathjax-tex">\({\text {Aut}}(\textrm{Cay}(f))\)</span> contains two subgroups <span class="mathjax-tex">\(K_i\)</span>, <span class="mathjax-tex">\(i=1,2\)</span>, such that <span class="mathjax-tex">\(K_1\cong G\)</span>, <span class="mathjax-tex">\(K_2\cong G/Z(G)\)</span> and <span class="mathjax-tex">\(K_1\cap K_2=\{1\}\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar29">Proof</h3> <p>By Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar14">4.1</a>, there exists <span class="mathjax-tex">\(K_1\cong G\le {\text {Aut}}(\textrm{Cay}(f))\)</span>. Moreover, since the natural basis <span class="mathjax-tex">\(B=G\)</span> of <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> consists of units in <span class="mathjax-tex">\(\mathcal {A}=\Bbbk [G]\)</span>, Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar9">3.4</a> ensures that <span class="mathjax-tex">\(K_1\)</span> acts freely on the natural basis of <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span>.</p> <p>We now consider the following morphism <span class="mathjax-tex">\(\rho :G\rightarrow {\text {Aut}}(\textrm{Cay}(f))\)</span>: for any <span class="mathjax-tex">\(h\in G\)</span>, let <span class="mathjax-tex">\(\rho (h)\)</span> be the linear automorphism of <span class="mathjax-tex">\(\textrm{Cay}(f)=\Bbbk [G]\)</span> given by inner conjugation in <i>G</i>, that is, <span class="mathjax-tex">\(\rho (h)(g)=hgh^{-1}\)</span>. Observe that <span class="mathjax-tex">\(\rho (h)\)</span> maps the natural basis <span class="mathjax-tex">\(B=G\)</span> of <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> to itself, hence if <span class="mathjax-tex">\(g \ne g'\)</span> thus <span class="mathjax-tex">\(g\cdot g'=0\)</span>, then <span class="mathjax-tex">\(\rho (h)(g) \ne \rho (h)(g')\)</span> and <span class="mathjax-tex">\(\rho (h)(g)\cdot \rho (h)(g')=0\)</span>. Moreover</p><div id="Equ21" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned} \rho (h)(g\cdot g)&amp;=\rho (h)\left( \sum _{k\in G}f(g^{-1}k)k\right) \\&amp;=\sum _{k\in G}f(g^{-1}k)\rho (h)(k)\\&amp;=\sum _{k\in G}f(g^{-1}k) hkh^{-1}\\&amp;=\sum _{k\in G}f(hg^{-1}kh^{-1}) hkh^{-1}\text { (since { f} is a class function)}\\&amp;=\sum _{k\in G}f(hg^{-1}h^{-1}hkh^{-1}) hkh^{-1}\\&amp;=\sum _{k\in G}f(hg^{-1}h^{-1}k) k\\&amp;=\sum _{k\in G}f(\rho (h)(g)^{-1}k) k\\&amp;= \rho (h)(g)\cdot \rho (h)(g). \end{aligned} \end{aligned}$$</span></div></div><p>Therefore, <span class="mathjax-tex">\(\rho (h)\)</span> is an actual automorphism of <span class="mathjax-tex">\(\textrm{Cay}(f)\)</span> for every <span class="mathjax-tex">\(h\in G\)</span> and by construction <span class="mathjax-tex">\(\rho (h)=\textrm{Id}\)</span> if and only if <span class="mathjax-tex">\(h\in Z(G)\)</span>. Hence <span class="mathjax-tex">\(\ker (\rho )=Z(G)\)</span> and <span class="mathjax-tex">\(K_2={\text {Im}}(\rho )\cong G/Z(G)\)</span>.</p> <p>Finally, notice that every <span class="mathjax-tex">\(\rho (h)\in K_2\)</span> fixes, at least, the element <i>h</i> in <i>B</i>, while every non-trivial element in <span class="mathjax-tex">\(K_1\)</span> acts freely on <i>B</i>. Therefore <span class="mathjax-tex">\(K_1\cap K_2=\{1\}\)</span>. <span class="mathjax-tex">\(\square \)</span></p> <p>We obtain the following corollary:</p> <h3 class="c-article__sub-heading" id="FPar30">Corollary 4.11</h3> <p>Let <span class="mathjax-tex">\(\mathcal {A}=\Bbbk [G]\)</span>, and <span class="mathjax-tex">\(f:G\rightarrow \Bbbk \)</span> be a class function satisfying that <span class="mathjax-tex">\({\text {Aut}}(\textrm{Cay}(f))\cong G\)</span>. Then <i>G</i> is abelian.</p> <h3 class="c-article__sub-heading" id="FPar31">Proof</h3> <p>According to Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s13398-023-01414-w#FPar28">4.10</a>, as <span class="mathjax-tex">\({\text {Aut}}(\textrm{Cay}(f))\cong G\)</span>, the subgroup <i>G</i>/<i>Z</i>(<i>G</i>) must be trivial.</p> <p> <span class="mathjax-tex">\(\square \)</span> </p> </div></div></section> </div> <div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1">Ahmed, H., Bekbaev, U., Rakhimov, I.: On classification of <span class="mathjax-tex">\(2\)</span>-dimensional evolution algebras and its applications. In: 5th International Conference on Mathematical Applications in Engineering 30–31 October 2019, Putrajaya, Malaysia, vol. 1489, pp. 012001. IOP Publishing Ltd (2020)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2">Alarafeen, A., Qaralleh, I., Ahmad, A.: Properties of nilpotent evolution algebras with no maximal nilindex. Eur. J. Pure Appl. Math. <b>14</b>(1), 278–300 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.29020/nybg.ejpam.v14i1.3912" data-track-item_id="10.29020/nybg.ejpam.v14i1.3912" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.29020%2Fnybg.ejpam.v14i1.3912" aria-label="Article reference 2" data-doi="10.29020/nybg.ejpam.v14i1.3912">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4313279" aria-label="MathSciNet reference 2">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&amp;title=Properties%20of%20nilpotent%20evolution%20algebras%20with%20no%20maximal%20nilindex&amp;journal=Eur.%20J.%20Pure%20Appl.%20Math.&amp;doi=10.29020%2Fnybg.ejpam.v14i1.3912&amp;volume=14&amp;issue=1&amp;pages=278-300&amp;publication_year=2021&amp;author=Alarafeen%2CA&amp;author=Qaralleh%2CI&amp;author=Ahmad%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3">Cabrera C.Y.: Evolution algebras. Ph.D. thesis, University of Málaga, Spain (2016)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4">Cabrera, C.Y., Siles, M.M., Velasco, M.V.: Evolution algebras of arbitrary dimension and their decompositions. Linear Algebra Appl. <b>495</b>, 122–162 (2016)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.laa.2016.01.007" data-track-item_id="10.1016/j.laa.2016.01.007" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.laa.2016.01.007" aria-label="Article reference 4" data-doi="10.1016/j.laa.2016.01.007">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3462991" aria-label="MathSciNet reference 4">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1395.17079" aria-label="MATH reference 4">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&amp;title=Evolution%20algebras%20of%20arbitrary%20dimension%20and%20their%20decompositions&amp;journal=Linear%20Algebra%20Appl.&amp;doi=10.1016%2Fj.laa.2016.01.007&amp;volume=495&amp;pages=122-162&amp;publication_year=2016&amp;author=Cabrera%2CCY&amp;author=Siles%2CMM&amp;author=Velasco%2CMV"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5">Costoya, C., Ligouras, P., Tocino, A., Viruel, A.: Regular evolution algebras are universally finite. Proc. Am. Math. Soc. <b>150</b>(3), 919–925 (2022)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1090/proc/15648" data-track-item_id="10.1090/proc/15648" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1090%2Fproc%2F15648" aria-label="Article reference 5" data-doi="10.1090/proc/15648">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4375692" aria-label="MathSciNet reference 5">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1486.17044" aria-label="MATH reference 5">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&amp;title=Regular%20evolution%20algebras%20are%20universally%20finite&amp;journal=Proc.%20Am.%20Math.%20Soc.&amp;doi=10.1090%2Fproc%2F15648&amp;volume=150&amp;issue=3&amp;pages=919-925&amp;publication_year=2022&amp;author=Costoya%2CC&amp;author=Ligouras%2CP&amp;author=Tocino%2CA&amp;author=Viruel%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6">Costoya, C., Méndez, D., Viruel, A.: Realisability problem in arrow categories. Collect. Math. <b>71</b>, 383–405 (2020)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s13348-019-00265-2" data-track-item_id="10.1007/s13348-019-00265-2" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s13348-019-00265-2" aria-label="Article reference 6" data-doi="10.1007/s13348-019-00265-2">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4129534" aria-label="MathSciNet reference 6">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1453.55009" aria-label="MATH reference 6">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&amp;title=Realisability%20problem%20in%20arrow%20categories&amp;journal=Collect.%20Math.&amp;doi=10.1007%2Fs13348-019-00265-2&amp;volume=71&amp;pages=383-405&amp;publication_year=2020&amp;author=Costoya%2CC&amp;author=M%C3%A9ndez%2CD&amp;author=Viruel%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7">Elduque, A., Labra, A.: Evolution algebras and graphs. J. Algebra Appl. <b>14</b>(7), 1550103 (2015)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1142/S0219498815501030" data-track-item_id="10.1142/S0219498815501030" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1142%2FS0219498815501030" aria-label="Article reference 7" data-doi="10.1142/S0219498815501030">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3339402" aria-label="MathSciNet reference 7">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1356.17028" aria-label="MATH reference 7">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&amp;title=Evolution%20algebras%20and%20graphs&amp;journal=J.%20Algebra%20Appl.&amp;doi=10.1142%2FS0219498815501030&amp;volume=14&amp;issue=7&amp;publication_year=2015&amp;author=Elduque%2CA&amp;author=Labra%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8">Elduque, A., Labra, A.: Evolution algebras, automorphisms, and graphs. Linear Multilinear Algebra <b>69</b>(2), 1–12 (2019)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4219282" aria-label="MathSciNet reference 8">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1481.17005" aria-label="MATH reference 8">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&amp;title=Evolution%20algebras%2C%20automorphisms%2C%20and%20graphs&amp;journal=Linear%20Multilinear%20Algebra&amp;volume=69&amp;issue=2&amp;pages=1-12&amp;publication_year=2019&amp;author=Elduque%2CA&amp;author=Labra%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9">Gordeev, N.L., Popov, V.L.: Automorphism groups of finite dimensional simple algebras. Ann. Math. <b>158</b>, 1041–1065 (2003)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.4007/annals.2003.158.1041" data-track-item_id="10.4007/annals.2003.158.1041" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.4007%2Fannals.2003.158.1041" aria-label="Article reference 9" data-doi="10.4007/annals.2003.158.1041">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2031860" aria-label="MathSciNet reference 9">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1073.20039" aria-label="MATH reference 9">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&amp;title=Automorphism%20groups%20of%20finite%20dimensional%20simple%20algebras&amp;journal=Ann.%20Math.&amp;doi=10.4007%2Fannals.2003.158.1041&amp;volume=158&amp;pages=1041-1065&amp;publication_year=2003&amp;author=Gordeev%2CNL&amp;author=Popov%2CVL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10">Harary, F.: The determinant of the adjacency matrix of a graph. Siam Rev. <b>4</b>(3), 202–210 (1962)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1137/1004057" data-track-item_id="10.1137/1004057" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1137%2F1004057" aria-label="Article reference 10" data-doi="10.1137/1004057">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=144330" aria-label="MathSciNet reference 10">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0113.17406" aria-label="MATH reference 10">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 10" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20determinant%20of%20the%20adjacency%20matrix%20of%20a%20graph&amp;journal=Siam%20Rev.&amp;doi=10.1137%2F1004057&amp;volume=4&amp;issue=3&amp;pages=202-210&amp;publication_year=1962&amp;author=Harary%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11">Hertweck, M.: A counterexample to the isomorphism problem for integral group rings. Ann. Math. (2) <b>154</b>(1), 115–138 (2001)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2307/3062112" data-track-item_id="10.2307/3062112" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2307%2F3062112" aria-label="Article reference 11" data-doi="10.2307/3062112">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=1847590" aria-label="MathSciNet reference 11">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0990.20002" aria-label="MATH reference 11">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20counterexample%20to%20the%20isomorphism%20problem%20for%20integral%20group%20rings&amp;journal=Ann.%20Math.%20%282%29&amp;doi=10.2307%2F3062112&amp;volume=154&amp;issue=1&amp;pages=115-138&amp;publication_year=2001&amp;author=Hertweck%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12">Mukhamedov, F., Khakimov, O., Omirov, B., Qaralleh, I.: Derivations and automorphisms of nilpotent evolution algebras with maximal nilindex. J. Algebra Appl. <b>18</b>(12), 1950233 (2019)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1142/S0219498819502335" data-track-item_id="10.1142/S0219498819502335" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1142%2FS0219498819502335" aria-label="Article reference 12" data-doi="10.1142/S0219498819502335">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4026793" aria-label="MathSciNet reference 12">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1456.17019" aria-label="MATH reference 12">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&amp;title=Derivations%20and%20automorphisms%20of%20nilpotent%20evolution%20algebras%20with%20maximal%20nilindex&amp;journal=J.%20Algebra%20Appl.&amp;doi=10.1142%2FS0219498819502335&amp;volume=18&amp;issue=12&amp;publication_year=2019&amp;author=Mukhamedov%2CF&amp;author=Khakimov%2CO&amp;author=Omirov%2CB&amp;author=Qaralleh%2CI"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13">Popov, V.L.: An analogue of M. Artin’s conjecture on invariants for non-associative algebras. Am. Math. Soc. Transl. <b>169</b>, 121–143 (1995)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0841.15029" aria-label="MATH reference 13">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20analogue%20of%20M.%20Artin%E2%80%99s%20conjecture%20on%20invariants%20for%20non-associative%20algebras&amp;journal=Am.%20Math.%20Soc.%20Transl.&amp;volume=169&amp;pages=121-143&amp;publication_year=1995&amp;author=Popov%2CVL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14">Sandling, R.: The isomorphism problem for group rings: A survey. In: Reiner, I., Roggenkamp, K.W. (eds.) Orders and Their Applications, pp. 256–288. Springer, Berlin (1985)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/BFb0074806" data-track-item_id="10.1007/BFb0074806" data-track-value="chapter reference" data-track-action="chapter reference" href="https://link.springer.com/doi/10.1007/BFb0074806" aria-label="Chapter reference 14" data-doi="10.1007/BFb0074806">Chapter</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20isomorphism%20problem%20for%20group%20rings%3A%20A%20survey&amp;doi=10.1007%2FBFb0074806&amp;pages=256-288&amp;publication_year=1985&amp;author=Sandling%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15">Sriwongsa, S., Zou, Y.M.: On automorphism groups of idempotent evolution algebras. Linear Algebra Appl. <b>641</b>, 143–155 (2022)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.laa.2022.02.010" data-track-item_id="10.1016/j.laa.2022.02.010" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.laa.2022.02.010" aria-label="Article reference 15" data-doi="10.1016/j.laa.2022.02.010">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4382066" aria-label="MathSciNet reference 15">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1501.17027" aria-label="MATH reference 15">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&amp;title=On%20automorphism%20groups%20of%20idempotent%20evolution%20algebras&amp;journal=Linear%20Algebra%20Appl.&amp;doi=10.1016%2Fj.laa.2022.02.010&amp;volume=641&amp;pages=143-155&amp;publication_year=2022&amp;author=Sriwongsa%2CS&amp;author=Zou%2CYM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16">Tian, J.P.: Evolution Algebras and Their Applications. Lecture Notes in Mathematics, vol. 1921. Springer, Berlin (2008)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-3-540-74284-5" data-track-item_id="10.1007/978-3-540-74284-5" data-track-value="book reference" data-track-action="book reference" href="https://link.springer.com/doi/10.1007/978-3-540-74284-5" aria-label="Book reference 16" data-doi="10.1007/978-3-540-74284-5">Book</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 16" href="http://scholar.google.com/scholar_lookup?&amp;title=Evolution%20Algebras%20and%20Their%20Applications.%20Lecture%20Notes%20in%20Mathematics&amp;doi=10.1007%2F978-3-540-74284-5&amp;publication_year=2008&amp;author=Tian%2CJP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17">White, A.T.: Graphs, Groups and Surfaces, Volume 8 of North-Holland Mathematics Studies, 2nd edn. North-Holland Publishing Co., Amsterdam (1984)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 17" href="http://scholar.google.com/scholar_lookup?&amp;title=Graphs%2C%20Groups%20and%20Surfaces%2C%20Volume%208%20of%20North-Holland%20Mathematics%20Studies&amp;publication_year=1984&amp;author=White%2CAT"> Google Scholar</a>  </p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s13398-023-01414-w?format=refman&amp;flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Funding"><div class="c-article-section" id="Fun-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Fun">Funding</h2><div class="c-article-section__content" id="Fun-content"><p>Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was partially supported by MCIN/AEI/10.13039/501100011033 [PID2020-115155GB-I00 and TED2021-131201B-I00 to C.C., PID2020-118452GB-I00 to V.M., PID2019-104236GB-I00 to A.T, and PID2020–118753GB-I00 to A.V.], and by Junta de Andalucía [UMA18-FEDERJA-119, FQM-336 to A.T., and PROYEXCEL-00827, FQM-213 to A.V.].</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">CITIC, CITMAGA, Departamento de Ciencias de la Computación y Tecnologías de la Información, Universidade da Coruña, 15071-A, Coruna, Spain</p><p class="c-article-author-affiliation__authors-list">C. Costoya</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071, Malaga, Spain</p><p class="c-article-author-affiliation__authors-list">V. Muñoz &amp; A. Viruel</p></li><li id="Aff3"><p class="c-article-author-affiliation__address">Departamento de Matemática Aplicada, Universidad de Málaga, 29071, Malaga, Spain</p><p class="c-article-author-affiliation__authors-list">A. Tocino</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-C_-Costoya-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">C. Costoya</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=C.%20Costoya" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=C.%20Costoya" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22C.%20Costoya%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-V_-Mu_oz-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">V. Muñoz</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=V.%20Mu%C3%B1oz" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=V.%20Mu%C3%B1oz" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22V.%20Mu%C3%B1oz%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-A_-Tocino-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">A. Tocino</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=A.%20Tocino" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=A.%20Tocino" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22A.%20Tocino%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-A_-Viruel-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">A. Viruel</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=A.%20Viruel" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=A.%20Viruel" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22A.%20Viruel%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:vicente.munoz@ucm.es">V. Muñoz</a>.</p></div></div></section><section data-title="Additional information"><div class="c-article-section" id="additional-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="additional-information">Additional information</h2><div class="c-article-section__content" id="additional-information-content"><h3 class="c-article__sub-heading">Publisher's Note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">http://creativecommons.org/licenses/by/4.0/</a>.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=Automorphism%20groups%20of%20Cayley%20evolution%20algebras&amp;author=C.%20Costoya%20et%20al&amp;contentID=10.1007%2Fs13398-023-01414-w&amp;copyright=The%20Author%28s%29&amp;publication=1578-7303&amp;publicationDate=2023-03-08&amp;publisherName=SpringerNature&amp;orderBeanReset=true&amp;oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1007/s13398-023-01414-w" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1007/s13398-023-01414-w" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Costoya, C., Muñoz, V., Tocino, A. <i>et al.</i> Automorphism groups of Cayley evolution algebras. <i>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat.</i> <b>117</b>, 82 (2023). https://doi.org/10.1007/s13398-023-01414-w</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s13398-023-01414-w?format=refman&amp;flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2022-07-08">08 July 2022</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2023-02-28">28 February 2023</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2023-03-08">08 March 2023</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1007/s13398-023-01414-w</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><h3 class="c-article__sub-heading">Keywords</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=Evolution%20algebra&amp;facet-discipline=&#34;Mathematics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Evolution algebra</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Finite%20group&amp;facet-discipline=&#34;Mathematics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Finite group</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Automorphism%20group&amp;facet-discipline=&#34;Mathematics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Automorphism group</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Graph&amp;facet-discipline=&#34;Mathematics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Graph</a></span></li></ul><h3 class="c-article__sub-heading">Mathematics Subject Classification</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=05C25&amp;facet-discipline=&#34;Mathematics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">05C25</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=17A36&amp;facet-discipline=&#34;Mathematics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">17A36</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=17D99&amp;facet-discipline=&#34;Mathematics&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">17D99</a></span></li></ul><div data-component="article-info-list"></div></div></div></div></div></section> </div> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=13398" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div data-test="collections"> </div> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu><div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-MPU1" class="div-gpt-ad grade-c-hide" data-pa11y-ignore data-gpt data-gpt-unitpath="/270604982/springerlink/13398/article" data-gpt-sizes="300x250" data-test="MPU1-ad" data-gpt-targeting="pos=MPU1;articleid=s13398-023-01414-w;"> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> </article> <div class="app-elements"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our imprints</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">&copy; 2024 Springer Nature</p> </div> </div> </footer> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10