CINXE.COM

Function (mathematics) - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Function (mathematics) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"c8ef837f-4400-4a02-8149-80575bfd5fc3","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Function_(mathematics)","wgTitle":"Function (mathematics)","wgCurRevisionId":1277220748,"wgRevisionId":1277220748,"wgArticleId":185427,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Commons category link is on Wikidata","Functions and mappings","Basic concepts in set theory","Elementary mathematics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Function_(mathematics)","wgRelevantArticleId":185427,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[], "wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":80000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11348","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser" :false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","mediawiki.page.gallery.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cmediawiki.page.gallery.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.17"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Function (mathematics) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Function_(mathematics)"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Function_(mathematics)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Function_(mathematics)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Function_mathematics rootpage-Function_mathematics skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Function+%28mathematics%29" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Function+%28mathematics%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Function+%28mathematics%29" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Function+%28mathematics%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-Formal_definition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Formal_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Formal definition</span> </div> </a> <ul id="toc-Formal_definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Partial_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Partial_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Partial functions</span> </div> </a> <ul id="toc-Partial_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multivariate_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multivariate_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Multivariate functions</span> </div> </a> <ul id="toc-Multivariate_functions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Notation</span> </div> </a> <button aria-controls="toc-Notation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Notation subsection</span> </button> <ul id="toc-Notation-sublist" class="vector-toc-list"> <li id="toc-Functional_notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Functional_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Functional notation</span> </div> </a> <ul id="toc-Functional_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Arrow_notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Arrow_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Arrow notation</span> </div> </a> <ul id="toc-Arrow_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Index_notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Index_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Index notation</span> </div> </a> <ul id="toc-Index_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dot_notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dot_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Dot notation</span> </div> </a> <ul id="toc-Dot_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Specialized_notations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Specialized_notations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Specialized notations</span> </div> </a> <ul id="toc-Specialized_notations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Functions_of_more_than_one_variable" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Functions_of_more_than_one_variable"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Functions of more than one variable</span> </div> </a> <ul id="toc-Functions_of_more_than_one_variable-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Other_terms" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Other_terms"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Other terms</span> </div> </a> <ul id="toc-Other_terms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Specifying_a_function" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Specifying_a_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Specifying a function</span> </div> </a> <button aria-controls="toc-Specifying_a_function-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Specifying a function subsection</span> </button> <ul id="toc-Specifying_a_function-sublist" class="vector-toc-list"> <li id="toc-By_listing_function_values" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#By_listing_function_values"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>By listing function values</span> </div> </a> <ul id="toc-By_listing_function_values-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-By_a_formula" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#By_a_formula"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>By a formula</span> </div> </a> <ul id="toc-By_a_formula-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inverse_and_implicit_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Inverse_and_implicit_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Inverse and implicit functions</span> </div> </a> <ul id="toc-Inverse_and_implicit_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Using_differential_calculus" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Using_differential_calculus"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Using differential calculus</span> </div> </a> <ul id="toc-Using_differential_calculus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-By_recurrence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#By_recurrence"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>By recurrence</span> </div> </a> <ul id="toc-By_recurrence-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Representing_a_function" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Representing_a_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Representing a function</span> </div> </a> <button aria-controls="toc-Representing_a_function-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Representing a function subsection</span> </button> <ul id="toc-Representing_a_function-sublist" class="vector-toc-list"> <li id="toc-Graphs_and_plots" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Graphs_and_plots"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Graphs and plots</span> </div> </a> <ul id="toc-Graphs_and_plots-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tables" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tables"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Tables</span> </div> </a> <ul id="toc-Tables-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bar_chart" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bar_chart"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Bar chart</span> </div> </a> <ul id="toc-Bar_chart-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-General_properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#General_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>General properties</span> </div> </a> <button aria-controls="toc-General_properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle General properties subsection</span> </button> <ul id="toc-General_properties-sublist" class="vector-toc-list"> <li id="toc-Standard_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Standard_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Standard functions</span> </div> </a> <ul id="toc-Standard_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Function_composition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Function_composition"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Function composition</span> </div> </a> <ul id="toc-Function_composition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Image_and_preimage" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Image_and_preimage"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Image and preimage</span> </div> </a> <ul id="toc-Image_and_preimage-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Injective,_surjective_and_bijective_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Injective,_surjective_and_bijective_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Injective, surjective and bijective functions</span> </div> </a> <ul id="toc-Injective,_surjective_and_bijective_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Restriction_and_extension" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Restriction_and_extension"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Restriction and extension</span> </div> </a> <ul id="toc-Restriction_and_extension-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-In_calculus" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#In_calculus"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>In calculus</span> </div> </a> <button aria-controls="toc-In_calculus-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle In calculus subsection</span> </button> <ul id="toc-In_calculus-sublist" class="vector-toc-list"> <li id="toc-Real_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Real_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Real function</span> </div> </a> <ul id="toc-Real_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vector-valued_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Vector-valued_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Vector-valued function</span> </div> </a> <ul id="toc-Vector-valued_function-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Function_space" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Function_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Function space</span> </div> </a> <ul id="toc-Function_space-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multi-valued_functions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Multi-valued_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Multi-valued functions</span> </div> </a> <ul id="toc-Multi-valued_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_the_foundations_of_mathematics" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#In_the_foundations_of_mathematics"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>In the foundations of mathematics</span> </div> </a> <ul id="toc-In_the_foundations_of_mathematics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_computer_science" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#In_computer_science"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>In computer science</span> </div> </a> <ul id="toc-In_computer_science-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>See also</span> </div> </a> <button aria-controls="toc-See_also-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle See also subsection</span> </button> <ul id="toc-See_also-sublist" class="vector-toc-list"> <li id="toc-Subpages" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Subpages"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.1</span> <span>Subpages</span> </div> </a> <ul id="toc-Subpages-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.2</span> <span>Generalizations</span> </div> </a> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Related_topics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Related_topics"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.3</span> <span>Related topics</span> </div> </a> <ul id="toc-Related_topics-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">17</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Function (mathematics)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 119 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-119" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">119 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Funksie" title="Funksie – Afrikaans" lang="af" hreflang="af" data-title="Funksie" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Funktion_(Mathematik)" title="Funktion (Mathematik) – Alemannic" lang="gsw" hreflang="gsw" data-title="Funktion (Mathematik)" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8A%A0%E1%88%B5%E1%88%A8%E1%8A%AB%E1%89%A2" title="አስረካቢ – Amharic" lang="am" hreflang="am" data-title="አስረካቢ" data-language-autonym="አማርኛ" data-language-local-name="Amharic" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-smn mw-list-item"><a href="https://smn.wikipedia.org/wiki/Funktio" title="Funktio – Inari Sami" lang="smn" hreflang="smn" data-title="Funktio" data-language-autonym="Anarâškielâ" data-language-local-name="Inari Sami" class="interlanguage-link-target"><span>Anarâškielâ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AF%D8%A7%D9%84%D8%A9" title="دالة – Arabic" lang="ar" hreflang="ar" data-title="دالة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Funci%C3%B3n_matematica" title="Función matematica – Aragonese" lang="an" hreflang="an" data-title="Función matematica" data-language-autonym="Aragonés" data-language-local-name="Aragonese" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Funci%C3%B3n_matem%C3%A1tica" title="Función matemática – Asturian" lang="ast" hreflang="ast" data-title="Función matemática" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Funksiya_(riyaziyyat)" title="Funksiya (riyaziyyat) – Azerbaijani" lang="az" hreflang="az" data-title="Funksiya (riyaziyyat)" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%85%E0%A6%AA%E0%A7%87%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A6%95_(%E0%A6%97%E0%A6%A3%E0%A6%BF%E0%A6%A4)" title="অপেক্ষক (গণিত) – Bangla" lang="bn" hreflang="bn" data-title="অপেক্ষক (গণিত)" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/H%C3%A2m-s%C3%B2%CD%98" title="Hâm-sò͘ – Minnan" lang="nan" hreflang="nan" data-title="Hâm-sò͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика) – Bashkir" lang="ba" hreflang="ba" data-title="Функция (математика)" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D1%8B%D1%8F_(%D0%BC%D0%B0%D1%82%D1%8D%D0%BC%D0%B0%D1%82%D1%8B%D0%BA%D0%B0)" title="Функцыя (матэматыка) – Belarusian" lang="be" hreflang="be" data-title="Функцыя (матэматыка)" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D1%8B%D1%8F_(%D0%BC%D0%B0%D1%82%D1%8D%D0%BC%D0%B0%D1%82%D1%8B%D0%BA%D0%B0)" title="Функцыя (матэматыка) – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Функцыя (матэматыка)" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%AB%E0%A4%82%E0%A4%95%E0%A5%8D%E0%A4%B6%E0%A4%A8_(%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4)" title="फंक्शन (गणित) – Bhojpuri" lang="bh" hreflang="bh" data-title="फंक्शन (गणित)" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Функция – Bulgarian" lang="bg" hreflang="bg" data-title="Функция" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Funkcija_(matematika)" title="Funkcija (matematika) – Bosnian" lang="bs" hreflang="bs" data-title="Funkcija (matematika)" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Funci%C3%B3" title="Funció – Catalan" lang="ca" hreflang="ca" data-title="Funció" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функци (математика) – Chuvash" lang="cv" hreflang="cv" data-title="Функци (математика)" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Funkce_(matematika)" title="Funkce (matematika) – Czech" lang="cs" hreflang="cs" data-title="Funkce (matematika)" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Murimo_(Masvomhu)" title="Murimo (Masvomhu) – Shona" lang="sn" hreflang="sn" data-title="Murimo (Masvomhu)" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Ffwythiant" title="Ffwythiant – Welsh" lang="cy" hreflang="cy" data-title="Ffwythiant" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Funktion_(matematik)" title="Funktion (matematik) – Danish" lang="da" hreflang="da" data-title="Funktion (matematik)" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-ary mw-list-item"><a href="https://ary.wikipedia.org/wiki/%D8%AF%D8%A7%D9%84%D8%A9" title="دالة – Moroccan Arabic" lang="ary" hreflang="ary" data-title="دالة" data-language-autonym="الدارجة" data-language-local-name="Moroccan Arabic" class="interlanguage-link-target"><span>الدارجة</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Funktion_(Mathematik)" title="Funktion (Mathematik) – German" lang="de" hreflang="de" data-title="Funktion (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Funktsioon_(matemaatika)" title="Funktsioon (matemaatika) – Estonian" lang="et" hreflang="et" data-title="Funktsioon (matemaatika)" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%85%CE%BD%CE%AC%CF%81%CF%84%CE%B7%CF%83%CE%B7" title="Συνάρτηση – Greek" lang="el" hreflang="el" data-title="Συνάρτηση" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Funci%C3%B3n_(matem%C3%A1tica)" title="Función (matemática) – Spanish" lang="es" hreflang="es" data-title="Función (matemática)" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Funkcio_(matematiko)" title="Funkcio (matematiko) – Esperanto" lang="eo" hreflang="eo" data-title="Funkcio (matematiko)" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Funtzio_(matematika)" title="Funtzio (matematika) – Basque" lang="eu" hreflang="eu" data-title="Funtzio (matematika)" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A7%D8%A8%D8%B9" title="تابع – Persian" lang="fa" hreflang="fa" data-title="تابع" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Function" title="Function – Fiji Hindi" lang="hif" hreflang="hif" data-title="Function" data-language-autonym="Fiji Hindi" data-language-local-name="Fiji Hindi" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Funksj%C3%B3n" title="Funksjón – Faroese" lang="fo" hreflang="fo" data-title="Funksjón" data-language-autonym="Føroyskt" data-language-local-name="Faroese" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Fonction_(math%C3%A9matiques)" title="Fonction (mathématiques) – French" lang="fr" hreflang="fr" data-title="Fonction (mathématiques)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Feidhm_(matamaitic)" title="Feidhm (matamaitic) – Irish" lang="ga" hreflang="ga" data-title="Feidhm (matamaitic)" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Funci%C3%B3n" title="Función – Galician" lang="gl" hreflang="gl" data-title="Función" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E5%87%BD%E6%95%B8" title="函數 – Gan" lang="gan" hreflang="gan" data-title="函數" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-xal mw-list-item"><a href="https://xal.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Функция – Kalmyk" lang="xal" hreflang="xal" data-title="Функция" data-language-autonym="Хальмг" data-language-local-name="Kalmyk" class="interlanguage-link-target"><span>Хальмг</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%95%A8%EC%88%98" title="함수 – Korean" lang="ko" hreflang="ko" data-title="함수" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%96%D5%B8%D6%82%D5%B6%D5%AF%D6%81%D5%AB%D5%A1_(%D5%B4%D5%A1%D5%A9%D5%A5%D5%B4%D5%A1%D5%BF%D5%AB%D5%AF%D5%A1)" title="Ֆունկցիա (մաթեմատիկա) – Armenian" lang="hy" hreflang="hy" data-title="Ֆունկցիա (մաթեմատիկա)" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AB%E0%A4%B2%E0%A4%A8" title="फलन – Hindi" lang="hi" hreflang="hi" data-title="फलन" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Funkcija_(matematika)" title="Funkcija (matematika) – Croatian" lang="hr" hreflang="hr" data-title="Funkcija (matematika)" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Funciono" title="Funciono – Ido" lang="io" hreflang="io" data-title="Funciono" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Fungsi_(matematika)" title="Fungsi (matematika) – Indonesian" lang="id" hreflang="id" data-title="Fungsi (matematika)" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Function_(mathematica)" title="Function (mathematica) – Interlingua" lang="ia" hreflang="ia" data-title="Function (mathematica)" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Fall_(st%C3%A6r%C3%B0fr%C3%A6%C3%B0i)" title="Fall (stærðfræði) – Icelandic" lang="is" hreflang="is" data-title="Fall (stærðfræði)" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Funzione_(matematica)" title="Funzione (matematica) – Italian" lang="it" hreflang="it" data-title="Funzione (matematica)" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%94" title="פונקציה – Hebrew" lang="he" hreflang="he" data-title="פונקציה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kbp mw-list-item"><a href="https://kbp.wikipedia.org/wiki/K%C9%A9lab%C9%A9m" title="Kɩlabɩm – Kabiye" lang="kbp" hreflang="kbp" data-title="Kɩlabɩm" data-language-autonym="Kabɩyɛ" data-language-local-name="Kabiye" class="interlanguage-link-target"><span>Kabɩyɛ</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A4%E1%83%A3%E1%83%9C%E1%83%A5%E1%83%AA%E1%83%98%E1%83%90_(%E1%83%9B%E1%83%90%E1%83%97%E1%83%94%E1%83%9B%E1%83%90%E1%83%A2%E1%83%98%E1%83%99%E1%83%90)" title="ფუნქცია (მათემატიკა) – Georgian" lang="ka" hreflang="ka" data-title="ფუნქცია (მათემატიკა)" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика) – Kazakh" lang="kk" hreflang="kk" data-title="Функция (математика)" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Fonksyon_(mat%C3%A9matik)" title="Fonksyon (matématik) – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Fonksyon (matématik)" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Functio" title="Functio – Latin" lang="la" hreflang="la" data-title="Functio" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Funkcija" title="Funkcija – Latvian" lang="lv" hreflang="lv" data-title="Funkcija" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Funktioun_(Mathematik)" title="Funktioun (Mathematik) – Luxembourgish" lang="lb" hreflang="lb" data-title="Funktioun (Mathematik)" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luxembourgish" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Funkcija_(matematika)" title="Funkcija (matematika) – Lithuanian" lang="lt" hreflang="lt" data-title="Funkcija (matematika)" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-jbo mw-list-item"><a href="https://jbo.wikipedia.org/wiki/fancu" title="fancu – Lojban" lang="jbo" hreflang="jbo" data-title="fancu" data-language-autonym="La .lojban." data-language-local-name="Lojban" class="interlanguage-link-target"><span>La .lojban.</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Fonzion_(matematega)" title="Fonzion (matematega) – Lombard" lang="lmo" hreflang="lmo" data-title="Fonzion (matematega)" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/F%C3%BCggv%C3%A9ny_(matematika)" title="Függvény (matematika) – Hungarian" lang="hu" hreflang="hu" data-title="Függvény (matematika)" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функција (математика) – Macedonian" lang="mk" hreflang="mk" data-title="Функција (математика)" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AB%E0%B4%99%E0%B5%8D%E0%B4%B7%E0%B5%BB" title="ഫങ്ഷൻ – Malayalam" lang="ml" hreflang="ml" data-title="ഫങ്ഷൻ" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Funzjonijiet_(matematika)" title="Funzjonijiet (matematika) – Maltese" lang="mt" hreflang="mt" data-title="Funzjonijiet (matematika)" data-language-autonym="Malti" data-language-local-name="Maltese" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%AB%E0%A4%B2_(%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4)" title="फल (गणित) – Marathi" lang="mr" hreflang="mr" data-title="फल (गणित)" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Fungsi" title="Fungsi – Malay" lang="ms" hreflang="ms" data-title="Fungsi" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA)" title="Функц (математик) – Mongolian" lang="mn" hreflang="mn" data-title="Функц (математик)" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%96%E1%80%94%E1%80%BA%E1%80%9B%E1%80%BE%E1%80%84%E1%80%BA" title="ဖန်ရှင် – Burmese" lang="my" hreflang="my" data-title="ဖန်ရှင်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-fj mw-list-item"><a href="https://fj.wikipedia.org/wiki/Cakacaka_(fika)" title="Cakacaka (fika) – Fijian" lang="fj" hreflang="fj" data-title="Cakacaka (fika)" data-language-autonym="Na Vosa Vakaviti" data-language-local-name="Fijian" class="interlanguage-link-target"><span>Na Vosa Vakaviti</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Functie_(wiskunde)" title="Functie (wiskunde) – Dutch" lang="nl" hreflang="nl" data-title="Functie (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E9%96%A2%E6%95%B0_(%E6%95%B0%E5%AD%A6)" title="関数 (数学) – Japanese" lang="ja" hreflang="ja" data-title="関数 (数学)" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Funksion" title="Funksion – Northern Frisian" lang="frr" hreflang="frr" data-title="Funksion" data-language-autonym="Nordfriisk" data-language-local-name="Northern Frisian" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Funksjon_(matematikk)" title="Funksjon (matematikk) – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Funksjon (matematikk)" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Matematisk_funksjon" title="Matematisk funksjon – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Matematisk funksjon" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Aplicacion_(matematicas)" title="Aplicacion (matematicas) – Occitan" lang="oc" hreflang="oc" data-title="Aplicacion (matematicas)" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Warroomii_(faankishinii)" title="Warroomii (faankishinii) – Oromo" lang="om" hreflang="om" data-title="Warroomii (faankishinii)" data-language-autonym="Oromoo" data-language-local-name="Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Funksiya_(matematika)" title="Funksiya (matematika) – Uzbek" lang="uz" hreflang="uz" data-title="Funksiya (matematika)" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%AB%E0%A9%B0%E0%A8%95%E0%A8%B8%E0%A8%BC%E0%A8%A8_(%E0%A8%B9%E0%A8%BF%E0%A8%B8%E0%A8%BE%E0%A8%AC)" title="ਫੰਕਸ਼ਨ (ਹਿਸਾਬ) – Punjabi" lang="pa" hreflang="pa" data-title="ਫੰਕਸ਼ਨ (ਹਿਸਾਬ)" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%81%D9%86%DA%A9%D8%B4%D9%86" title="فنکشن – Western Punjabi" lang="pnb" hreflang="pnb" data-title="فنکشن" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Fongshan_(matimatix)" title="Fongshan (matimatix) – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Fongshan (matimatix)" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Fonsion" title="Fonsion – Piedmontese" lang="pms" hreflang="pms" data-title="Fonsion" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Afbillen_(Mathematik)" title="Afbillen (Mathematik) – Low German" lang="nds" hreflang="nds" data-title="Afbillen (Mathematik)" data-language-autonym="Plattdüütsch" data-language-local-name="Low German" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Funkcja" title="Funkcja – Polish" lang="pl" hreflang="pl" data-title="Funkcja" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Fun%C3%A7%C3%A3o_(matem%C3%A1tica)" title="Função (matemática) – Portuguese" lang="pt" hreflang="pt" data-title="Função (matemática)" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Func%C8%9Bie" title="Funcție – Romanian" lang="ro" hreflang="ro" data-title="Funcție" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Kinraysuyu" title="Kinraysuyu – Quechua" lang="qu" hreflang="qu" data-title="Kinraysuyu" data-language-autonym="Runa Simi" data-language-local-name="Quechua" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика) – Russian" lang="ru" hreflang="ru" data-title="Функция (математика)" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F._%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_%D1%87%D1%8D%D1%80%D1%87%D0%B8%D1%82%D1%8D,_%D1%81%D1%83%D0%BE%D0%BB%D1%82%D0%B0%D0%BB%D0%B0%D1%80%D1%8B%D0%BD_%D1%82%D2%AF%D0%BC%D1%81%D1%8D%D1%8D%D0%BD%D1%8D" title="Функция. Функция чэрчитэ, суолталарын түмсээнэ – Yakut" lang="sah" hreflang="sah" data-title="Функция. Функция чэрчитэ, суолталарын түмсээнэ" data-language-autonym="Саха тыла" data-language-local-name="Yakut" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Function_(mathematics)" title="Function (mathematics) – Scots" lang="sco" hreflang="sco" data-title="Function (mathematics)" data-language-autonym="Scots" data-language-local-name="Scots" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Funksioni" title="Funksioni – Albanian" lang="sq" hreflang="sq" data-title="Funksioni" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Funzioni_(matim%C3%A0tica)" title="Funzioni (matimàtica) – Sicilian" lang="scn" hreflang="scn" data-title="Funzioni (matimàtica)" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Function_(mathematics)" title="Function (mathematics) – Simple English" lang="en-simple" hreflang="en-simple" data-title="Function (mathematics)" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Zobrazenie_(matematika)" title="Zobrazenie (matematika) – Slovak" lang="sk" hreflang="sk" data-title="Zobrazenie (matematika)" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Funkcija_(matematika)" title="Funkcija (matematika) – Slovenian" lang="sl" hreflang="sl" data-title="Funkcija (matematika)" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Funkcyjo" title="Funkcyjo – Silesian" lang="szl" hreflang="szl" data-title="Funkcyjo" data-language-autonym="Ślůnski" data-language-local-name="Silesian" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Shaqada_(xisaabta)" title="Shaqada (xisaabta) – Somali" lang="so" hreflang="so" data-title="Shaqada (xisaabta)" data-language-autonym="Soomaaliga" data-language-local-name="Somali" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%81%D8%A7%D9%86%DA%A9%D8%B4%D9%86_(%D9%85%D8%A7%D8%AA%D9%85%D8%A7%D8%AA%DB%8C%DA%A9)" title="فانکشن (ماتماتیک) – Central Kurdish" lang="ckb" hreflang="ckb" data-title="فانکشن (ماتماتیک)" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функција (математика) – Serbian" lang="sr" hreflang="sr" data-title="Функција (математика)" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Funkcija_(matematika)" title="Funkcija (matematika) – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Funkcija (matematika)" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Fungsi_(matematika)" title="Fungsi (matematika) – Sundanese" lang="su" hreflang="su" data-title="Fungsi (matematika)" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Funktio" title="Funktio – Finnish" lang="fi" hreflang="fi" data-title="Funktio" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Funktion" title="Funktion – Swedish" lang="sv" hreflang="sv" data-title="Funktion" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Punsiyon_(matematika)" title="Punsiyon (matematika) – Tagalog" lang="tl" hreflang="tl" data-title="Punsiyon (matematika)" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AE%BE%E0%AE%B0%E0%AF%8D%E0%AE%AA%E0%AF%81" title="சார்பு – Tamil" lang="ta" hreflang="ta" data-title="சார்பு" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Tas%C9%A3ent_(tusnakt)" title="Tasɣent (tusnakt) – Kabyle" lang="kab" hreflang="kab" data-title="Tasɣent (tusnakt)" data-language-autonym="Taqbaylit" data-language-local-name="Kabyle" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика) – Tatar" lang="tt" hreflang="tt" data-title="Функция (математика)" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%9F%E0%B8%B1%E0%B8%87%E0%B8%81%E0%B9%8C%E0%B8%8A%E0%B8%B1%E0%B8%99_(%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C)" title="ฟังก์ชัน (คณิตศาสตร์) – Thai" lang="th" hreflang="th" data-title="ฟังก์ชัน (คณิตศาสตร์)" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Fonksiyon" title="Fonksiyon – Turkish" lang="tr" hreflang="tr" data-title="Fonksiyon" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-udm mw-list-item"><a href="https://udm.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функция (математика) – Udmurt" lang="udm" hreflang="udm" data-title="Функция (математика)" data-language-autonym="Удмурт" data-language-local-name="Udmurt" class="interlanguage-link-target"><span>Удмурт</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D1%96%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Функція (математика) – Ukrainian" lang="uk" hreflang="uk" data-title="Функція (математика)" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AA%D9%81%D8%A7%D8%B9%D9%84_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA)" title="تفاعل (ریاضیات) – Urdu" lang="ur" hreflang="ur" data-title="تفاعل (ریاضیات)" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-ug mw-list-item"><a href="https://ug.wikipedia.org/wiki/%D9%81%DB%87%D9%86%D9%83%D8%B3%D9%89%D9%8A%DB%95" title="فۇنكسىيە – Uyghur" lang="ug" hreflang="ug" data-title="فۇنكسىيە" data-language-autonym="ئۇيغۇرچە / Uyghurche" data-language-local-name="Uyghur" class="interlanguage-link-target"><span>ئۇيغۇرچە / Uyghurche</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Funkcii_(matematik)" title="Funkcii (matematik) – Veps" lang="vep" hreflang="vep" data-title="Funkcii (matematik)" data-language-autonym="Vepsän kel’" data-language-local-name="Veps" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%C3%A0m_s%E1%BB%91" title="Hàm số – Vietnamese" lang="vi" hreflang="vi" data-title="Hàm số" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E6%98%A0%E5%B0%84" title="映射 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="映射" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Funsiyon_(matematika)" title="Funsiyon (matematika) – Waray" lang="war" hreflang="war" data-title="Funsiyon (matematika)" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%87%BD%E6%95%B0" title="函数 – Wu" lang="wuu" hreflang="wuu" data-title="函数" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%A2" title="פונקציע – Yiddish" lang="yi" hreflang="yi" data-title="פונקציע" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%87%BD%E6%95%B8" title="函數 – Cantonese" lang="yue" hreflang="yue" data-title="函數" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Funkc%C4%97j%C4%97" title="Funkcėjė – Samogitian" lang="sgs" hreflang="sgs" data-title="Funkcėjė" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%87%BD%E6%95%B0" title="函数 – Chinese" lang="zh" hreflang="zh" data-title="函数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zgh mw-list-item"><a href="https://zgh.wikipedia.org/wiki/%E2%B5%9C%E2%B4%B0%E2%B5%99%E2%B5%96%E2%B5%8F%E2%B5%9C_(%E2%B5%9C%E2%B5%93%E2%B5%99%E2%B5%8F%E2%B4%B0%E2%B4%BD%E2%B5%9C)" title="ⵜⴰⵙⵖⵏⵜ (ⵜⵓⵙⵏⴰⴽⵜ) – Standard Moroccan Tamazight" lang="zgh" hreflang="zgh" data-title="ⵜⴰⵙⵖⵏⵜ (ⵜⵓⵙⵏⴰⴽⵜ)" data-language-autonym="ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ" data-language-local-name="Standard Moroccan Tamazight" class="interlanguage-link-target"><span>ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11348#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Function_(mathematics)" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Function_(mathematics)" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Function_(mathematics)"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Function_(mathematics)&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Function_(mathematics)"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Function_(mathematics)&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Function_(mathematics)" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Function_(mathematics)" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Function_(mathematics)&amp;oldid=1277220748" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Function_(mathematics)&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Function_%28mathematics%29&amp;id=1277220748&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFunction_%28mathematics%29"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFunction_%28mathematics%29"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Function_%28mathematics%29&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Function_(mathematics)&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Functions_(mathematics)" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/Abstract_Algebra/Functions" hreflang="en"><span>Wikibooks</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11348" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Association of one output to each input</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"f(x)" redirects here. For the musical group, see <a href="/wiki/F(x)_(musical_group)" title="F(x) (musical group)">f(x) (musical group)</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar nomobile nowraplinks"><tbody><tr><th class="sidebar-title" style="letter-spacing:0.0125em; background-color:#FFCC99"><a class="mw-selflink selflink">Function</a></th></tr><tr><td class="sidebar-image"><span class="texhtml texhtml-big" style="font-size:250%;"><i>x</i> ↦ <i>f</i>&#8201;(<i>x</i>)</span></td></tr><tr><th class="sidebar-heading" style="font-size: 117%; letter-spacing: 0.0125em; font-weight: 500; border-top: 1px solid black; padding: 5px 0 3px"> <a href="/wiki/History_of_the_function_concept" title="History of the function concept">History of the function concept</a></th></tr><tr><th class="sidebar-heading" style="font-size: 117%; letter-spacing: 0.0125em; font-weight: 500; border-top: 1px solid black; padding: 5px 0 3px"> Types by <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a> and <a href="/wiki/Codomain" title="Codomain">codomain</a></th></tr><tr><td class="sidebar-content"> <div class="hlist"> <ul><li><a href="/wiki/Boolean-valued_function" title="Boolean-valued function"><span class="texhtml"><span title="arbitrary set"><var>X</var></span> → <span title="Codomain of Booleans">𝔹</span></span></a></li> <li><a href="/wiki/Ordered_pair" title="Ordered pair"> <span class="texhtml"><span title="Domain of Booleans">𝔹</span> → <span title="arbitrary set"><var>X</var></span></span></a></li> <li><a href="/wiki/Boolean_function" title="Boolean function"> <span class="texhtml"><span title="several Boolean variables">𝔹<sup><var>n</var></sup></span> → <span title="Codomain of natural numbers"><var>X</var></span></span></a></li> <li><a href="/wiki/Integer-valued_function" title="Integer-valued function"> <span class="texhtml"><span title="arbitrary set"><var>X</var></span> → <span title="integers">ℤ</span></span></a></li> <li><a href="/wiki/Sequence" title="Sequence"> <span class="texhtml"><span title="integers">ℤ</span> → <span title="arbitrary set"><var>X</var></span></span></a></li> <li><a href="/wiki/Real-valued_function" title="Real-valued function"> <span class="texhtml"><span title="arbitrary set"><var>X</var></span> → <span title="real numbers">ℝ</span></span></a></li> <li><a href="/wiki/Function_of_a_real_variable" title="Function of a real variable"> <span class="texhtml"><span title="real numbers">ℝ</span> → <span title="arbitrary set"><var>X</var></span></span></a></li> <li><a href="/wiki/Function_of_several_real_variables" title="Function of several real variables"> <span class="texhtml"><span title="real coordinate (or Euclidean) space">ℝ<sup><var>n</var></sup></span> → <span title="arbitrary set"><var>X</var></span></span></a></li> <li><a href="/wiki/Complex-valued_function" class="mw-redirect" title="Complex-valued function"> <span class="texhtml"><span title="arbitrary set"><var>X</var></span> → <span title="complex numbers">ℂ</span></span></a></li> <li><a href="/wiki/Function_of_a_complex_variable" class="mw-redirect" title="Function of a complex variable"> <span class="texhtml"><span title="complex numbers">ℂ</span> → <span title="arbitrary set"><var>X</var></span></span></a></li> <li><a href="/wiki/Function_of_several_complex_variables" title="Function of several complex variables"> <span class="texhtml"><span title="complex coordinate space">ℂ<sup><var>n</var></sup></span> → <span title="arbitrary set"><var>X</var></span></span></a></li></ul> </div></td> </tr><tr><th class="sidebar-heading" style="font-size: 117%; letter-spacing: 0.0125em; font-weight: 500; border-top: 1px solid black; padding: 5px 0 3px">  <a href="/wiki/List_of_types_of_functions" title="List of types of functions">Classes/properties</a> </th></tr><tr><td class="sidebar-content"> <div class="hlist"> <ul><li><a href="/wiki/Constant_function" title="Constant function">Constant</a></li> <li><a href="/wiki/Identity_function" title="Identity function">Identity</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear</a></li> <li><a href="/wiki/Polynomial" title="Polynomial">Polynomial</a></li> <li><a href="/wiki/Rational_function" title="Rational function">Rational</a></li> <li><a href="/wiki/Algebraic_function" title="Algebraic function">Algebraic</a></li> <li><a href="/wiki/Analytic_function" title="Analytic function">Analytic</a></li> <li><a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function">Smooth</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuous</a></li> <li><a href="/wiki/Measurable_function" title="Measurable function">Measurable</a></li> <li><a href="/wiki/Injective_function" title="Injective function">Injective</a></li> <li><a href="/wiki/Surjective_function" title="Surjective function">Surjective</a></li> <li><a href="/wiki/Bijection" title="Bijection">Bijective</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading" style="font-size: 117%; letter-spacing: 0.0125em; font-weight: 500; border-top: 1px solid black; padding: 5px 0 3px">   Constructions</th></tr><tr><td class="sidebar-content"> <div class="hlist"> <ul><li><a href="/wiki/Restriction_(mathematics)" title="Restriction (mathematics)">Restriction</a></li> <li><a href="/wiki/Function_composition" title="Function composition">Composition</a></li> <li><a href="/wiki/Lambda_calculus" title="Lambda calculus">λ</a></li> <li><a href="/wiki/Inverse_function" title="Inverse function">Inverse</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading" style="font-size: 117%; letter-spacing: 0.0125em; font-weight: 500; border-top: 1px solid black; padding: 5px 0 3px">   Generalizations  </th></tr><tr><td class="sidebar-content"> <div class="hlist"> <ul><li><a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">Relation</a> (<a href="/wiki/Binary_relation" title="Binary relation">Binary relation</a>)</li> <li><a href="/wiki/Set-valued_function" title="Set-valued function">Set-valued</a></li> <li><a href="/wiki/Multivalued_function" title="Multivalued function">Multivalued</a></li> <li><a href="/wiki/Partial_function" title="Partial function">Partial</a></li> <li><a href="/wiki/Implicit_function" title="Implicit function">Implicit</a></li> <li><a href="/wiki/Function_space" title="Function space">Space</a></li> <li><a href="/wiki/Higher-order_function" title="Higher-order function">Higher-order</a></li> <li><a href="/wiki/Morphism" title="Morphism">Morphism</a></li> <li><a href="/wiki/Functor" title="Functor">Functor</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading" style="font-size: 117%; letter-spacing: 0.0125em; font-weight: 500; border-top: 1px solid black; padding: 5px 0 3px">   <a href="/wiki/List_of_mathematical_functions" title="List of mathematical functions">List of specific functions</a></th></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Functions" title="Template:Functions"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Functions" title="Template talk:Functions"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Functions" title="Special:EditPage/Template:Functions"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a <b>function</b> from a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> <span class="texhtml mvar" style="font-style:italic;">X</span> to a set <span class="texhtml mvar" style="font-style:italic;">Y</span> assigns to each element of <span class="texhtml mvar" style="font-style:italic;">X</span> exactly one element of <span class="texhtml mvar" style="font-style:italic;">Y</span>.<sup id="cite_ref-halmos_1-0" class="reference"><a href="#cite_note-halmos-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> The set <span class="texhtml mvar" style="font-style:italic;">X</span> is called the <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a> of the function<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> and the set <span class="texhtml mvar" style="font-style:italic;">Y</span> is called the <a href="/wiki/Codomain" title="Codomain">codomain</a> of the function.<sup id="cite_ref-codomain_3-0" class="reference"><a href="#cite_note-codomain-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a <a href="/wiki/Planet" title="Planet">planet</a> is a <i>function</i> of time. <a href="/wiki/History_of_the_function_concept" title="History of the function concept">Historically</a>, the concept was elaborated with the <a href="/wiki/Infinitesimal_calculus" class="mw-redirect" title="Infinitesimal calculus">infinitesimal calculus</a> at the end of the 17th century, and, until the 19th century, the functions that were considered were <a href="/wiki/Differentiable_function" title="Differentiable function">differentiable</a> (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of <a href="/wiki/Set_theory" title="Set theory">set theory</a>, and this greatly increased the possible applications of the concept. </p><p>A function is often denoted by a letter such as <span class="texhtml mvar" style="font-style:italic;">f</span>, <span class="texhtml mvar" style="font-style:italic;">g</span> or <span class="texhtml mvar" style="font-style:italic;">h</span>. The value of a function <span class="texhtml mvar" style="font-style:italic;">f</span> at an element <span class="texhtml mvar" style="font-style:italic;">x</span> of its domain (that is, the element of the codomain that is associated with <span class="texhtml mvar" style="font-style:italic;">x</span>) is denoted by <span class="texhtml"><i>f</i>(<i>x</i>)</span>; for example, the value of <span class="texhtml mvar" style="font-style:italic;">f</span> at <span class="texhtml"><i>x</i> = 4</span> is denoted by <span class="texhtml"><i>f</i>(4)</span>. Commonly, a specific function is defined by means of an <a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">expression</a> depending on <span class="texhtml mvar" style="font-style:italic;">x</span>, such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{2}+1;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x^{2}+1;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5cfd777bae6ce11f1c33372d52fa61a5bb2d0df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.55ex; height:3.176ex;" alt="{\displaystyle f(x)=x^{2}+1;}"></span> in this case, some computation, called <b><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="function_evaluation"></span><span class="vanchor-text">function evaluation</span></span></b>, may be needed for deducing the value of the function at a particular value; for example, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{2}+1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x^{2}+1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31eec96067f891efa5a072d1781924daf9ed0003" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.55ex; height:3.176ex;" alt="{\displaystyle f(x)=x^{2}+1,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(4)=4^{2}+1=17.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>17.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(4)=4^{2}+1=17.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b38062c42739e5d2fdd7b53aa0c9a94617cdc881" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.639ex; height:3.176ex;" alt="{\displaystyle f(4)=4^{2}+1=17.}"></span> </p><p>Given its domain and its codomain, a function is uniquely represented by the set of all <a href="/wiki/Pair_(mathematics)" class="mw-redirect" title="Pair (mathematics)">pairs</a> <span class="texhtml">(<i>x</i>, <i>f</i>&#8202;(<i>x</i>))</span>, called the <i><a href="/wiki/Graph_of_a_function" title="Graph of a function">graph of the function</a></i>, a popular means of illustrating the function.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>note 1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> When the domain and the codomain are sets of real numbers, each such pair may be thought of as the <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a> of a point in the plane. </p><p>Functions are widely used in <a href="/wiki/Science" title="Science">science</a>, <a href="/wiki/Engineering" title="Engineering">engineering</a>, and in most fields of mathematics. It has been said that functions are "the central objects of investigation" in most fields of mathematics.<sup id="cite_ref-FOOTNOTESpivak200839_6-0" class="reference"><a href="#cite_note-FOOTNOTESpivak200839-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>The concept of a function has evolved significantly over centuries, from its informal origins in ancient mathematics to its formalization in the 19th century. See <a href="/wiki/History_of_the_function_concept" title="History of the function concept">History of the function concept</a> for details. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Function_machine2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Function_machine2.svg/220px-Function_machine2.svg.png" decoding="async" width="220" height="218" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Function_machine2.svg/330px-Function_machine2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Function_machine2.svg/440px-Function_machine2.svg.png 2x" data-file-width="191" data-file-height="189" /></a><figcaption>Schematic depiction of a function described metaphorically as a "machine" or "<a href="/wiki/Black_box" title="Black box">black box</a>" that for each input yields a corresponding output</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Example_Function.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Example_Function.png/220px-Example_Function.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Example_Function.png/330px-Example_Function.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/95/Example_Function.png/440px-Example_Function.png 2x" data-file-width="640" data-file-height="480" /></a><figcaption>The red curve is the <a href="/wiki/Graph_of_a_function" title="Graph of a function">graph of a function</a>, because any <a href="/wiki/Vertical_line_test" title="Vertical line test">vertical line</a> has exactly one crossing point with the curve.</figcaption></figure> <p>A <b>function</b> <span class="texhtml mvar" style="font-style:italic;">f</span> from a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> <span class="texhtml mvar" style="font-style:italic;">X</span> to a set <span class="texhtml mvar" style="font-style:italic;">Y</span> is an assignment of one element of <span class="texhtml mvar" style="font-style:italic;">Y</span> to each element of <span class="texhtml mvar" style="font-style:italic;">X</span>. The set <span class="texhtml mvar" style="font-style:italic;">X</span> is called the <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a> of the function and the set <span class="texhtml mvar" style="font-style:italic;">Y</span> is called the <a href="/wiki/Codomain" title="Codomain">codomain</a> of the function. </p><p>If the element <span class="texhtml mvar" style="font-style:italic;">y</span> in <span class="texhtml mvar" style="font-style:italic;">Y</span> is assigned to <span class="texhtml mvar" style="font-style:italic;">x</span> in <span class="texhtml mvar" style="font-style:italic;">X</span> by the function <span class="texhtml mvar" style="font-style:italic;">f</span>, one says that <span class="texhtml mvar" style="font-style:italic;">f</span> <i>maps</i> <span class="texhtml mvar" style="font-style:italic;">x</span> to <span class="texhtml mvar" style="font-style:italic;">y</span>, and this is commonly written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea153ca7e4a53e290c347ab731724265f98c0b60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.318ex; height:2.843ex;" alt="{\displaystyle y=f(x).}"></span> In this notation, <span class="texhtml mvar" style="font-style:italic;">x</span> is the <i><a href="/wiki/Argument_of_a_function" title="Argument of a function">argument</a></i> or <i><a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a></i> of the function. </p><p>A specific element <span class="texhtml mvar" style="font-style:italic;">x</span> of <span class="texhtml mvar" style="font-style:italic;">X</span> is a <i>value of the variable</i>, and the corresponding element of <span class="texhtml mvar" style="font-style:italic;">Y</span> is the <i>value of the function</i> at <span class="texhtml mvar" style="font-style:italic;">x</span>, or the <a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a> of <span class="texhtml mvar" style="font-style:italic;">x</span> under the function. The <i>image of a function</i>, sometimes called its <a href="/wiki/Range_of_a_function" title="Range of a function">range</a>, is the set of the images of all elements in the domain.<sup id="cite_ref-EOM_Function_7-0" class="reference"><a href="#cite_note-EOM_Function-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-T&amp;K_Calc_p.3_8-0" class="reference"><a href="#cite_note-T&amp;K_Calc_p.3-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Trench_RA_pp.30-32_9-0" class="reference"><a href="#cite_note-Trench_RA_pp.30-32-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-TBB_RA_pp.A4-A5_10-0" class="reference"><a href="#cite_note-TBB_RA_pp.A4-A5-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>A function <span class="texhtml mvar" style="font-style:italic;">f</span>, its domain <span class="texhtml mvar" style="font-style:italic;">X</span>, and its codomain <span class="texhtml mvar" style="font-style:italic;">Y</span> are often specified by the notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b918aeefba8721a6732102a5848bd4238615ec55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.23ex; height:2.509ex;" alt="{\displaystyle f:X\to Y.}"></span> One may write <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb2452f2d32e5424f3db361de033fd49a73f9dcc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.099ex; height:2.176ex;" alt="{\displaystyle x\mapsto y}"></span> instead of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2311a6a75c54b0ea085a381ba472c31d59321514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.672ex; height:2.843ex;" alt="{\displaystyle y=f(x)}"></span>, where the symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mapsto }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mapsto }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc09de045e7d82eef9fe078e7e7606576640c11b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \mapsto }"></span> (read '<a href="/wiki/Maps_to" title="Maps to">maps to</a>') is used to specify where a particular element <span class="texhtml mvar" style="font-style:italic;">x</span> in the domain is mapped to by <span class="texhtml mvar" style="font-style:italic;">f</span>. This allows the definition of a function without naming. For example, the <a href="/wiki/Square_function" class="mw-redirect" title="Square function">square function</a> is the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto x^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto x^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/724da729a8df718591408d7bdfb38ce2b47035db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.975ex; height:2.676ex;" alt="{\displaystyle x\mapsto x^{2}.}"></span> </p><p>The domain and codomain are not always explicitly given when a function is defined. In particular, it is common that one might only know, without some (possibly difficult) computation, that the domain of a specific function is contained in a larger set. For example, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} \to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} \to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e3a10a3ad05781f5cf9c2d875a02227e21a8448" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.186ex; height:2.509ex;" alt="{\displaystyle f:\mathbb {R} \to \mathbb {R} }"></span> is a <a href="/wiki/Real_function" class="mw-redirect" title="Real function">real function</a>, the determination of the domain of the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto 1/f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto 1/f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cde09bf037011b15f092d47999d05b417088dde1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.686ex; height:2.843ex;" alt="{\displaystyle x\mapsto 1/f(x)}"></span> requires knowing the <a href="/wiki/Zero_of_a_function" title="Zero of a function">zeros</a> of <span class="texhtml mvar" style="font-style:italic;">f.</span> This is one of the reasons for which, in <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, "a function <span class="nowrap">from <span class="texhtml mvar" style="font-style:italic;">X</span> to <span class="texhtml mvar" style="font-style:italic;">Y</span> "</span> may refer to a function having a proper subset of <span class="texhtml mvar" style="font-style:italic;">X</span> as a domain.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>note 2<span class="cite-bracket">&#93;</span></a></sup> For example, a "function from the reals to the reals" may refer to a <a href="/wiki/Real-valued_function" title="Real-valued function">real-valued</a> function of a <a href="/wiki/Function_of_a_real_variable" title="Function of a real variable">real variable</a> whose domain is a proper subset of the <a href="/wiki/Real_number" title="Real number">real numbers</a>, typically a subset that contains a non-empty <a href="/wiki/Open_interval" class="mw-redirect" title="Open interval">open interval</a>. Such a function is then called a <a href="/wiki/Partial_function" title="Partial function">partial function</a>. </p><p>A function <span class="texhtml mvar" style="font-style:italic;">f</span> on a set <span class="texhtml mvar" style="font-style:italic;">S</span> means a function from the domain <span class="texhtml mvar" style="font-style:italic;">S</span>, without specifying a codomain. However, some authors use it as shorthand for saying that the function is <span class="texhtml"><i>f</i>&#160;: <i>S</i> → <i>S</i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Formal_definition">Formal definition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=2" title="Edit section: Formal definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Injection_keine_Injektion_2a.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Injection_keine_Injektion_2a.svg/220px-Injection_keine_Injektion_2a.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Injection_keine_Injektion_2a.svg/330px-Injection_keine_Injektion_2a.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Injection_keine_Injektion_2a.svg/440px-Injection_keine_Injektion_2a.svg.png 2x" data-file-width="200" data-file-height="200" /></a><figcaption>Diagram of a function</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Injection_keine_Injektion_1.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Injection_keine_Injektion_1.svg/220px-Injection_keine_Injektion_1.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Injection_keine_Injektion_1.svg/330px-Injection_keine_Injektion_1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Injection_keine_Injektion_1.svg/440px-Injection_keine_Injektion_1.svg.png 2x" data-file-width="200" data-file-height="200" /></a><figcaption>Diagram of a relation that is not a function. One reason is that 2 is the first element in more than one ordered pair. Another reason is that neither 3 nor 4 are the first element (input) of any ordered pair therein</figcaption></figure> <p>The above definition of a function is essentially that of the founders of <a href="/wiki/Calculus" title="Calculus">calculus</a>, <a href="/wiki/Leibniz" class="mw-redirect" title="Leibniz">Leibniz</a>, <a href="/wiki/Isaac_Newton" title="Isaac Newton">Newton</a> and <a href="/wiki/Euler" class="mw-redirect" title="Euler">Euler</a>. However, it cannot be <a href="/wiki/Formal_proof" title="Formal proof">formalized</a>, since there is no mathematical definition of an "assignment". It is only at the end of the 19th century that the first formal definition of a function could be provided, in terms of <a href="/wiki/Set_theory" title="Set theory">set theory</a>. This set-theoretic definition is based on the fact that a function establishes a <i>relation</i> between the elements of the domain and some (possibly all) elements of the codomain. Mathematically, a <a href="/wiki/Binary_relation" title="Binary relation">binary relation</a> between two sets <span class="texhtml"><i>X</i></span> and <span class="texhtml"><i>Y</i></span> is a <a href="/wiki/Subset" title="Subset">subset</a> of the set of all <a href="/wiki/Ordered_pair" title="Ordered pair">ordered pairs</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e580967f68f36743e894aa7944f032dda6ea01d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.15ex; height:2.176ex;" alt="{\displaystyle x\in X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in Y.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Y</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in Y.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b14bc7ecf2f86320b4a930f4961919ae45a34d9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.416ex; height:2.509ex;" alt="{\displaystyle y\in Y.}"></span> The set of all these pairs is called the <a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a> of <span class="texhtml"><i>X</i></span> and <span class="texhtml"><i>Y</i></span> and denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\times Y.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x00D7;<!-- × --></mo> <mi>Y</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\times Y.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41f39ef78be28dc2b9015ff7f82e9a1ef719a9f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.241ex; height:2.176ex;" alt="{\displaystyle X\times Y.}"></span> Thus, the above definition may be formalized as follows. </p><p>A <i>function</i> with domain <span class="texhtml"><i>X</i></span> and codomain <span class="texhtml"><i>Y</i></span> is a binary relation <span class="texhtml mvar" style="font-style:italic;">R</span> between <span class="texhtml"><i>X</i></span> and <span class="texhtml"><i>Y</i></span> that satisfies the two following conditions:<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>For every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> there exists <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)\in R.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)\in R.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/421ae0833b9c96e25c691320faca968cfe9a3d4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.58ex; height:2.843ex;" alt="{\displaystyle (x,y)\in R.}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)\in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)\in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/564266a1c3efe90b1974df60a445161fdf58f14e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.933ex; height:2.843ex;" alt="{\displaystyle (x,y)\in R}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,z)\in R,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,z)\in R,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b26066404c28748e3db2e9e6c00255332fb3ce5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.513ex; height:2.843ex;" alt="{\displaystyle (x,z)\in R,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=z.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>z</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=z.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2d03c8b5a2276379635012caa46307f02a63e08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.989ex; height:2.009ex;" alt="{\displaystyle y=z.}"></span></li></ul> <p>This definition may be rewritten more formally, without referring explicitly to the concept of a relation, but using more notation (including <a href="/wiki/Set-builder_notation" title="Set-builder notation">set-builder notation</a>): </p><p>A function is formed by three sets, the <i>domain</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ba32eeb405f7f5f2bac1eb12987c47d2fd42df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.627ex; height:2.509ex;" alt="{\displaystyle X,}"></span> the <i>codomain</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3765557b7effa1a5f2f4dce9c80a25973b7009f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.42ex; height:2.509ex;" alt="{\displaystyle Y,}"></span> and the <i>graph</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> that satisfy the three following conditions. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\subseteq \{(x,y)\mid x\in X,y\in Y\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>,</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Y</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\subseteq \{(x,y)\mid x\in X,y\in Y\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c364ed56d7bba17484ddaf407c2741cde3f775b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.407ex; height:2.843ex;" alt="{\displaystyle R\subseteq \{(x,y)\mid x\in X,y\in Y\}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x\in X,\exists y\in Y,\left(x,y\right)\in R\qquad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>,</mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Y</mi> <mo>,</mo> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mspace width="2em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x\in X,\exists y\in Y,\left(x,y\right)\in R\qquad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbc8b441d7668696926e1ff3b9acbc4576bc6b51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.151ex; height:2.843ex;" alt="{\displaystyle \forall x\in X,\exists y\in Y,\left(x,y\right)\in R\qquad }"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)\in R\land (x,z)\in R\implies y=z\qquad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi>y</mi> <mo>=</mo> <mi>z</mi> <mspace width="2em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)\in R\land (x,z)\in R\implies y=z\qquad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f2294cdf37e849e059f75d1826cda8b5fef7231" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.755ex; height:2.843ex;" alt="{\displaystyle (x,y)\in R\land (x,z)\in R\implies y=z\qquad }"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Partial_functions">Partial functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=3" title="Edit section: Partial functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Partial_function" title="Partial function">Partial function</a></div> <p>Partial functions are defined similarly to ordinary functions, with the "total" condition removed. That is, a <i>partial function</i> from <span class="texhtml mvar" style="font-style:italic;">X</span> to <span class="texhtml mvar" style="font-style:italic;">Y</span> is a binary relation <span class="texhtml mvar" style="font-style:italic;">R</span> between <span class="texhtml mvar" style="font-style:italic;">X</span> and <span class="texhtml mvar" style="font-style:italic;">Y</span> such that, for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3ebdb0a09f0721ccdd0b779e0a21caf386be82a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.797ex; height:2.509ex;" alt="{\displaystyle x\in X,}"></span> there is <i>at most one</i> <span class="texhtml mvar" style="font-style:italic;">y</span> in <span class="texhtml mvar" style="font-style:italic;">Y</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)\in R.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)\in R.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/421ae0833b9c96e25c691320faca968cfe9a3d4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.58ex; height:2.843ex;" alt="{\displaystyle (x,y)\in R.}"></span> </p><p>Using functional notation, this means that, given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3ebdb0a09f0721ccdd0b779e0a21caf386be82a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.797ex; height:2.509ex;" alt="{\displaystyle x\in X,}"></span> either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> is in <span class="texhtml mvar" style="font-style:italic;">Y</span>, or it is undefined. </p><p>The set of the elements of <span class="texhtml mvar" style="font-style:italic;">X</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> is defined and belongs to <span class="texhtml mvar" style="font-style:italic;">Y</span> is called the <i>domain of definition</i> of the function. A partial function from <span class="texhtml mvar" style="font-style:italic;">X</span> to <span class="texhtml mvar" style="font-style:italic;">Y</span> is thus a ordinary function that has as its domain a subset of <span class="texhtml mvar" style="font-style:italic;">X</span> called the domain of definition of the function. If the domain of definition equals <span class="texhtml mvar" style="font-style:italic;">X</span>, one often says that the partial function is a <i>total function</i>. </p><p>In several areas of mathematics the term "function" refers to partial functions rather than to ordinary functions. This is typically the case when functions may be specified in a way that makes difficult or even impossible to determine their domain. </p><p>In <a href="/wiki/Calculus" title="Calculus">calculus</a>, a <i>real-valued function of a real variable</i> or <i><a href="/wiki/Real_function" class="mw-redirect" title="Real function">real function</a></i> is a partial function from the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> of the <a href="/wiki/Real_number" title="Real number">real numbers</a> to itself. Given a real function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:x\mapsto f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:x\mapsto f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c6abc5d2f5d3b6f1ed1d94c74c2b9f255fc118e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.577ex; height:2.843ex;" alt="{\displaystyle f:x\mapsto f(x)}"></span> its <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">multiplicative inverse</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto 1/f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto 1/f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cde09bf037011b15f092d47999d05b417088dde1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.686ex; height:2.843ex;" alt="{\displaystyle x\mapsto 1/f(x)}"></span> is also a real function. The determination of the domain of definition of a multiplicative inverse of a (partial) function amounts to compute the <a href="/wiki/Zero_of_a_function" title="Zero of a function">zeros</a> of the function, the values where the function is defined but not its multiplicative inverse. </p><p>Similarly, a <i><a href="/wiki/Function_of_a_complex_variable" class="mw-redirect" title="Function of a complex variable">function of a complex variable</a></i> is generally a partial function with a domain of definition included in the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> of the <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>. The difficulty of determining the domain of definition of a <a href="/wiki/Complex_function" class="mw-redirect" title="Complex function">complex function</a> is illustrated by the multiplicative inverse of the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a>: the determination of the domain of definition of the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\mapsto 1/\zeta (z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\mapsto 1/\zeta (z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/328b3ae5767865f93350e2f503cce630ec5e968b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.02ex; height:2.843ex;" alt="{\displaystyle z\mapsto 1/\zeta (z)}"></span> is more or less equivalent to the proof or disproof of one of the major open problems in mathematics, the <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a>. </p><p>In <a href="/wiki/Computability_theory" title="Computability theory">computability theory</a>, a <a href="/wiki/General_recursive_function" title="General recursive function">general recursive function</a> is a partial function from the integers to the integers whose values can be computed by an <a href="/wiki/Algorithm" title="Algorithm">algorithm</a> (roughly speaking). The domain of definition of such a function is the set of inputs for which the algorithm does not run forever. A fundamental theorem of computability theory is that there cannot exist an algorithm that takes an arbitrary general recursive function as input and tests whether <span class="texhtml">0</span> belongs to its domain of definition (see <a href="/wiki/Halting_problem" title="Halting problem">Halting problem</a>). </p> <div class="mw-heading mw-heading3"><h3 id="Multivariate_functions">Multivariate functions <span class="anchor" id="MULTIVARIATE_FUNCTION"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=4" title="Edit section: Multivariate functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Multivalued_function" title="Multivalued function">Multivalued function</a>.</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Binary_operations_as_black_box.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Binary_operations_as_black_box.svg/220px-Binary_operations_as_black_box.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Binary_operations_as_black_box.svg/330px-Binary_operations_as_black_box.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/79/Binary_operations_as_black_box.svg/440px-Binary_operations_as_black_box.svg.png 2x" data-file-width="142" data-file-height="142" /></a><figcaption>A binary operation is a typical example of a bivariate function which assigns to each pair <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span> the result <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\circ y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\circ y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2ba86902ee98c41deb1275ddb8693977f27e1da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.68ex; height:2.009ex;" alt="{\displaystyle x\circ y}"></span>.</figcaption></figure> <p>A <b>multivariate function</b>, <b>multivariable function</b>, or <b>function of several variables</b> is a function that depends on several arguments. Such functions are commonly encountered. For example, the position of a car on a road is a function of the time travelled and its average speed. </p><p>Formally, a function of <span class="texhtml mvar" style="font-style:italic;">n</span> variables is a function whose domain is a set of <span class="texhtml mvar" style="font-style:italic;">n</span>-tuples.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>note 3<span class="cite-bracket">&#93;</span></a></sup> For example, multiplication of <a href="/wiki/Integer" title="Integer">integers</a> is a function of two variables, or <b>bivariate function</b>, whose domain is the set of all <a href="/wiki/Ordered_pairs" class="mw-redirect" title="Ordered pairs">ordered pairs</a> (2-tuples) of integers, and whose codomain is the set of integers. The same is true for every <a href="/wiki/Binary_operation" title="Binary operation">binary operation</a>. The graph of a bivariate surface over a two-dimensional real domain may be interpreted as defining a <a href="/wiki/Surface_(mathematics)#Graph_of_a_bivariate_function" title="Surface (mathematics)">parametric surface</a>, as used in, e.g., <a href="/wiki/Bivariate_interpolation" class="mw-redirect" title="Bivariate interpolation">bivariate interpolation</a>. </p><p>Commonly, an <span class="texhtml mvar" style="font-style:italic;">n</span>-tuple is denoted enclosed between parentheses, such as in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1,2,\ldots ,n).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1,2,\ldots ,n).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a956b235b4d9e7046aeabf286c020fa1020e0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.388ex; height:2.843ex;" alt="{\displaystyle (1,2,\ldots ,n).}"></span> When using <a href="/wiki/Functional_notation" class="mw-redirect" title="Functional notation">functional notation</a>, one usually omits the parentheses surrounding tuples, writing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{1},\ldots ,x_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{1},\ldots ,x_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61d6311d8c66acc1a5755c4c7cb688d3b1fa0fcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.198ex; height:2.843ex;" alt="{\displaystyle f(x_{1},\ldots ,x_{n})}"></span> instead of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f((x_{1},\ldots ,x_{n})).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f((x_{1},\ldots ,x_{n})).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07ea486934809be3b7f5d97c159b9a116ef18837" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.654ex; height:2.843ex;" alt="{\displaystyle f((x_{1},\ldots ,x_{n})).}"></span> </p><p>Given <span class="texhtml mvar" style="font-style:italic;">n</span> sets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\ldots ,X_{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\ldots ,X_{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b0ca82f7c1f167358d7122823318450410ae5d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.946ex; height:2.509ex;" alt="{\displaystyle X_{1},\ldots ,X_{n},}"></span> the set of all <span class="texhtml mvar" style="font-style:italic;">n</span>-tuples <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{1},\ldots ,x_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{1},\ldots ,x_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7935f7983d8a5ae59fea84efe65415235fa7c47b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.92ex; height:2.843ex;" alt="{\displaystyle (x_{1},\ldots ,x_{n})}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}\in X_{1},\ldots ,x_{n}\in X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}\in X_{1},\ldots ,x_{n}\in X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6041cb619899bcfa55a26ff377e7eb55ffbfdae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.913ex; height:2.509ex;" alt="{\displaystyle x_{1}\in X_{1},\ldots ,x_{n}\in X_{n}}"></span> is called the <a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\ldots ,X_{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\ldots ,X_{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b0ca82f7c1f167358d7122823318450410ae5d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.946ex; height:2.509ex;" alt="{\displaystyle X_{1},\ldots ,X_{n},}"></span> and denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}\times \cdots \times X_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}\times \cdots \times X_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b9332eafc39443cb3785081f0d3e889b64b0961" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.172ex; height:2.509ex;" alt="{\displaystyle X_{1}\times \cdots \times X_{n}.}"></span> </p><p>Therefore, a multivariate function is a function that has a Cartesian product or a <a href="/wiki/Proper_subset" class="mw-redirect" title="Proper subset">proper subset</a> of a Cartesian product as a domain. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:U\to Y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>U</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:U\to Y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c2bd504d53f52b40bbc45ebb2bae1ab5336723f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.033ex; height:2.509ex;" alt="{\displaystyle f:U\to Y,}"></span></dd></dl> <p>where the domain <span class="texhtml mvar" style="font-style:italic;">U</span> has the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\subseteq X_{1}\times \cdots \times X_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>&#x2286;<!-- ⊆ --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\subseteq X_{1}\times \cdots \times X_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28ced9a7c3754c3f7bdb7949396b20124a6ff96d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.053ex; height:2.509ex;" alt="{\displaystyle U\subseteq X_{1}\times \cdots \times X_{n}.}"></span></dd></dl> <p>If all the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af4a0955af42beb5f85aa05fb8c07abedc13990d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.724ex; height:2.509ex;" alt="{\displaystyle X_{i}}"></span> are equal to the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> of the <a href="/wiki/Real_number" title="Real number">real numbers</a> or to the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> of the <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>, one talks respectively of a <a href="/wiki/Function_of_several_real_variables" title="Function of several real variables">function of several real variables</a> or of a <a href="/wiki/Function_of_several_complex_variables" title="Function of several complex variables">function of several complex variables</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Notation">Notation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=5" title="Edit section: Notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are various standard ways for denoting functions. The most commonly used notation is functional notation, which is the first notation described below. </p> <div class="mw-heading mw-heading3"><h3 id="Functional_notation">Functional notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=6" title="Edit section: Functional notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The functional notation requires that a name is given to the function, which, in the case of a unspecified function is often the letter <span class="texhtml mvar" style="font-style:italic;">f</span>. Then, the application of the function to an argument is denoted by its name followed by its argument (or, in the case of a multivariate functions, its arguments) enclosed between parentheses, such as in </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x),\quad \sin(3),\quad {\text{or}}\quad f(x^{2}+1).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>or</mtext> </mrow> <mspace width="1em" /> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x),\quad \sin(3),\quad {\text{or}}\quad f(x^{2}+1).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c30f49866bcc96fc4b8daf973844abe48f0eee0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.476ex; height:3.176ex;" alt="{\displaystyle f(x),\quad \sin(3),\quad {\text{or}}\quad f(x^{2}+1).}"></span></dd></dl> <p>The argument between the parentheses may be a <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a>, often <span class="texhtml mvar" style="font-style:italic;">x</span>, that represents an arbitrary element of the domain of the function, a specific element of the domain (<span class="texhtml">3</span> in the above example), or an <a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">expression</a> that can be evaluated to an element of the domain (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92a3a8d23f9f8123651e496dcf8490990c65cf9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.387ex; height:2.843ex;" alt="{\displaystyle x^{2}+1}"></span> in the above example). The use of a unspecified variable between parentheses is useful for defining a function explicitly such as in "let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\sin(x^{2}+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\sin(x^{2}+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba3b1c9d9e56b3327baceebfd1e530cc5b132a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.568ex; height:3.176ex;" alt="{\displaystyle f(x)=\sin(x^{2}+1)}"></span>". </p><p>When the symbol denoting the function consists of several characters and no ambiguity may arise, the parentheses of functional notation might be omitted. For example, it is common to write <span class="texhtml">sin <i>x</i></span> instead of <span class="texhtml">sin(<i>x</i>)</span>. </p><p>Functional notation was first used by <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> in 1734.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> Some widely used functions are represented by a symbol consisting of several letters (usually two or three, generally an abbreviation of their name). In this case, a <a href="/wiki/Roman_type" title="Roman type">roman type</a> is customarily used instead, such as "<span class="texhtml">sin</span>" for the <a href="/wiki/Sine_function" class="mw-redirect" title="Sine function">sine function</a>, in contrast to italic font for single-letter symbols. </p><p>The functional notation is often used colloquially for referring to a function and simultaneously naming its argument, such as in "let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> be a function". This is an <a href="/wiki/Abuse_of_notation" title="Abuse of notation">abuse of notation</a> that is useful for a simpler formulation. </p> <div class="mw-heading mw-heading3"><h3 id="Arrow_notation">Arrow notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=7" title="Edit section: Arrow notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Arrow notation defines the rule of a function inline, without requiring a name to be given to the function. It uses the ↦ arrow symbol, pronounced "<a href="/wiki/Maps_to" title="Maps to">maps to</a>". For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto x+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto x+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/092c91a7a2ccb9481d3da9c5e59cd410c66dd87f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.276ex; height:2.343ex;" alt="{\displaystyle x\mapsto x+1}"></span> is the function which takes a real number as input and outputs that number plus 1. Again, a domain and codomain of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> is implied. </p><p>The domain and codomain can also be explicitly stated, for example: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {sqr} \colon \mathbb {Z} &amp;\to \mathbb {Z} \\x&amp;\mapsto x^{2}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>sqr</mi> <mo>&#x003A;<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mtd> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {sqr} \colon \mathbb {Z} &amp;\to \mathbb {Z} \\x&amp;\mapsto x^{2}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c83da8e3fd28ad40fade38a4a75b3de3be02e792" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:13.036ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {sqr} \colon \mathbb {Z} &amp;\to \mathbb {Z} \\x&amp;\mapsto x^{2}.\end{aligned}}}"></span></dd></dl> <p>This defines a function <span class="texhtml">sqr</span> from the integers to the integers that returns the square of its input. </p><p>As a common application of the arrow notation, suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\times X\to Y;\;(x,t)\mapsto f(x,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo>&#x00D7;<!-- × --></mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> <mo>;</mo> <mspace width="thickmathspace" /> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\times X\to Y;\;(x,t)\mapsto f(x,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b4649a27b503cf52487d3e9252faf20b362db2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32ex; height:2.843ex;" alt="{\displaystyle f:X\times X\to Y;\;(x,t)\mapsto f(x,t)}"></span> is a function in two variables, and we want to refer to a <a href="/wiki/Partial_application" title="Partial application">partially applied function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/290b16963d52e4a7995aae01ee854b97a6ea10c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.367ex; height:2.176ex;" alt="{\displaystyle X\to Y}"></span> produced by fixing the second argument to the value <span class="texhtml"><i>t</i><sub>0</sub></span> without introducing a new function name. The map in question could be denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto f(x,t_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto f(x,t_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7063c8d624a28d6798322fb19c71a580adfcbd68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.289ex; height:2.843ex;" alt="{\displaystyle x\mapsto f(x,t_{0})}"></span> using the arrow notation. The expression <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto f(x,t_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto f(x,t_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7063c8d624a28d6798322fb19c71a580adfcbd68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.289ex; height:2.843ex;" alt="{\displaystyle x\mapsto f(x,t_{0})}"></span> (read: "the map taking <span class="texhtml mvar" style="font-style:italic;">x</span> to <span class="texhtml mvar" style="font-style:italic;">f</span> of <span class="texhtml mvar" style="font-style:italic;">x</span> comma <span class="texhtml mvar" style="font-style:italic;">t</span> nought") represents this new function with just one argument, whereas the expression <span class="texhtml"><i>f</i>(<i>x</i><sub>0</sub>, <i>t</i><sub>0</sub>)</span> refers to the value of the function <span class="texhtml mvar" style="font-style:italic;">f</span> at the <span class="nowrap">point <span class="texhtml">(<i>x</i><sub>0</sub>, <i>t</i><sub>0</sub>)</span>.</span> </p> <div class="mw-heading mw-heading3"><h3 id="Index_notation">Index notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=8" title="Edit section: Index notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Index notation may be used instead of functional notation. That is, instead of writing <span class="texhtml"><i>f</i>&#8202;(<i>x</i>)</span>, one writes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{x}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{x}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04a7e56cbda7f3fa285ea6a6500af7901cbf58d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.959ex; height:2.509ex;" alt="{\displaystyle f_{x}.}"></span> </p><p>This is typically the case for functions whose domain is the set of the <a href="/wiki/Natural_number" title="Natural number">natural numbers</a>. Such a function is called a <a href="/wiki/Sequence_(mathematics)" class="mw-redirect" title="Sequence (mathematics)">sequence</a>, and, in this case the element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2702450f0458a5e01a698e248af552a7fab2b50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.358ex; height:2.509ex;" alt="{\displaystyle f_{n}}"></span> is called the <span class="texhtml mvar" style="font-style:italic;">n</span>th element of the sequence. </p><p>The index notation can also be used for distinguishing some variables called <i><a href="/wiki/Parameter_(mathematics)" class="mw-redirect" title="Parameter (mathematics)">parameters</a></i> from the "true variables". In fact, parameters are specific variables that are considered as being fixed during the study of a problem. For example, the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto f(x,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto f(x,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e82a8366e1505166fcef3257f1fec8f056140157" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.235ex; height:2.843ex;" alt="{\displaystyle x\mapsto f(x,t)}"></span> (see above) would be denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/874c306411e808e8191e8aeb95e3440e1c68d6e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.965ex; height:2.509ex;" alt="{\displaystyle f_{t}}"></span> using index notation, if we define the collection of maps <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/874c306411e808e8191e8aeb95e3440e1c68d6e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.965ex; height:2.509ex;" alt="{\displaystyle f_{t}}"></span> by the formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{t}(x)=f(x,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{t}(x)=f(x,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee02b1f83705d1df5a9414b665d3e0eead9e786c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.494ex; height:2.843ex;" alt="{\displaystyle f_{t}(x)=f(x,t)}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,t\in X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,t\in X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9b32f7879b9ed63837691bf63021ba6d450daca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.024ex; height:2.509ex;" alt="{\displaystyle x,t\in X}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Dot_notation">Dot notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=9" title="Edit section: Dot notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto f(x),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto f(x),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3322446e350dec66a9be262d198979af3d1c0da0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.008ex; height:2.843ex;" alt="{\displaystyle x\mapsto f(x),}"></span> the symbol <span class="texhtml mvar" style="font-style:italic;">x</span> does not represent any value; it is simply a <a href="/wiki/Placeholder_name" title="Placeholder name">placeholder</a>, meaning that, if <span class="texhtml mvar" style="font-style:italic;">x</span> is replaced by any value on the left of the arrow, it should be replaced by the same value on the right of the arrow. Therefore, <span class="texhtml mvar" style="font-style:italic;">x</span> may be replaced by any symbol, often an <a href="/wiki/Interpunct" title="Interpunct">interpunct</a> "<span class="texhtml"> ⋅ </span>". This may be useful for distinguishing the function <span class="texhtml"><i>f</i>&#8202;(⋅)</span> from its value <span class="texhtml"><i>f</i>&#8202;(<i>x</i>)</span> at <span class="texhtml mvar" style="font-style:italic;">x</span>. </p><p>For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(\cdot )^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(\cdot )^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e8095cc4a24833a2d13ab6afe89cf29873c13b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.74ex; height:3.176ex;" alt="{\displaystyle a(\cdot )^{2}}"></span> may stand for the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto ax^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto ax^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dab922de5eb858b22ba59ddfcab0ed41db3e259d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.557ex; height:2.676ex;" alt="{\displaystyle x\mapsto ax^{2}}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int _{a}^{\,(\cdot )}f(u)\,du}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int _{a}^{\,(\cdot )}f(u)\,du}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba9e4e970c8a3275e4c0fcceb79a3a55815f73b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.608ex; height:3.676ex;" alt="{\textstyle \int _{a}^{\,(\cdot )}f(u)\,du}"></span> may stand for a function defined by an integral with variable upper bound: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x\mapsto \int _{a}^{x}f(u)\,du}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x\mapsto \int _{a}^{x}f(u)\,du}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fca324c6d96cbfbeb58d21833ee4321420a712c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.368ex; height:3.176ex;" alt="{\textstyle x\mapsto \int _{a}^{x}f(u)\,du}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Specialized_notations">Specialized notations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=10" title="Edit section: Specialized notations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are other, specialized notations for functions in sub-disciplines of mathematics. For example, in <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a> and <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a>, <a href="/wiki/Linear_form" title="Linear form">linear forms</a> and the <a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">vectors</a> they act upon are denoted using a <a href="/wiki/Dual_pair" class="mw-redirect" title="Dual pair">dual pair</a> to show the underlying <a href="/wiki/Duality_(mathematics)" title="Duality (mathematics)">duality</a>. This is similar to the use of <a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">bra–ket notation</a> in quantum mechanics. In <a href="/wiki/Mathematical_logic" title="Mathematical logic">logic</a> and the <a href="/wiki/Theory_of_computation" title="Theory of computation">theory of computation</a>, the function notation of <a href="/wiki/Lambda_calculus" title="Lambda calculus">lambda calculus</a> is used to explicitly express the basic notions of function <a href="/wiki/Abstraction_(computer_science)" title="Abstraction (computer science)">abstraction</a> and <a href="/wiki/Function_application" title="Function application">application</a>. In <a href="/wiki/Category_theory" title="Category theory">category theory</a> and <a href="/wiki/Homological_algebra" title="Homological algebra">homological algebra</a>, networks of functions are described in terms of how they and their compositions <a href="/wiki/Commutative_property" title="Commutative property">commute</a> with each other using <a href="/wiki/Commutative_diagram" title="Commutative diagram">commutative diagrams</a> that extend and generalize the arrow notation for functions described above. </p> <div class="mw-heading mw-heading3"><h3 id="Functions_of_more_than_one_variable">Functions of more than one variable</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=11" title="Edit section: Functions of more than one variable"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In some cases the argument of a function may be an ordered pair of elements taken from some set or sets. For example, a function <span class="texhtml mvar" style="font-style:italic;">f</span> can be defined as mapping any pair of real numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span> to the sum of their squares, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+y^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+y^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f455605b597282c27d7cf2238821bc331479a7e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.439ex; height:3.009ex;" alt="{\displaystyle x^{2}+y^{2}}"></span>. Such a function is commonly written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x,y)=x^{2}+y^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x,y)=x^{2}+y^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62cd27ae17a5f4e156905fdcee054a41d15fa36f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.144ex; height:3.176ex;" alt="{\displaystyle f(x,y)=x^{2}+y^{2}}"></span> and referred to as "a function of two variables". Likewise one can have a function of three or more variables, with notations such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(w,x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>w</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(w,x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e55642fd8a3e6f2d566c81564b0a3481d4bfaf2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.305ex; height:2.843ex;" alt="{\displaystyle f(w,x,y)}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(w,x,y,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>w</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(w,x,y,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/580ec13f912c2810fd8d118acc67daad3924b005" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.427ex; height:2.843ex;" alt="{\displaystyle f(w,x,y,z)}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Other_terms">Other terms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=12" title="Edit section: Other terms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">For broader coverage of this topic, see <a href="/wiki/Map_(mathematics)" title="Map (mathematics)">Map (mathematics)</a>.</div> <table class="wikitable floatright" style="width: 50%"> <tbody><tr> <th>Term </th> <th>Distinction from "function" </th></tr> <tr> <td rowspan="3"><a href="/wiki/Map_(mathematics)" title="Map (mathematics)">Map/Mapping</a> </td> <td>None; the terms are synonymous.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>A map can have <i>any set</i> as its codomain, while, in some contexts, typically in older books, the codomain of a function is specifically the set of <a href="/wiki/Real_number" title="Real number">real</a> or <a href="/wiki/Complex_number" title="Complex number">complex</a> numbers.<sup id="cite_ref-Lang87p43_16-0" class="reference"><a href="#cite_note-Lang87p43-16"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Alternatively, a map is associated with a <i>special structure</i> (e.g. by explicitly specifying a structured codomain in its definition). For example, a <a href="/wiki/Linear_map" title="Linear map">linear map</a>.<sup id="cite_ref-Apostol81p35_17-0" class="reference"><a href="#cite_note-Apostol81p35-17"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Homomorphism" title="Homomorphism">Homomorphism</a> </td> <td>A function between two <a href="/wiki/Structure_(mathematics)" class="mw-redirect" title="Structure (mathematics)">structures</a> of the same type that preserves the operations of the structure (e.g. a <a href="/wiki/Group_homomorphism" title="Group homomorphism">group homomorphism</a>).<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Morphism" title="Morphism">Morphism</a> </td> <td>A generalisation of homomorphisms to any <a href="/wiki/Category_(mathematics)" title="Category (mathematics)">category</a>, even when the objects of the category are not sets (for example, a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> defines a category with only one object, which has the elements of the group as morphisms; see <a href="/wiki/Category_(mathematics)#Examples" title="Category (mathematics)">Category (mathematics) §&#160;Examples</a> for this example and other similar ones).<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </td></tr></tbody></table> <p>A function may also be called a <b>map</b> or a <b>mapping</b>, but some authors make a distinction between the term "map" and "function". For example, the term "map" is often reserved for a "function" with some sort of special structure (e.g. <a href="/wiki/Maps_of_manifolds" title="Maps of manifolds">maps of manifolds</a>). In particular <i>map</i> may be used in place of <i>homomorphism</i> for the sake of succinctness (e.g., <a href="/wiki/Linear_map" title="Linear map">linear map</a> or <i>map from <span class="texhtml mvar" style="font-style:italic;">G</span> to <span class="texhtml mvar" style="font-style:italic;">H</span></i> instead of <i><a href="/wiki/Group_homomorphism" title="Group homomorphism">group homomorphism</a> from <span class="texhtml mvar" style="font-style:italic;">G</span> to <span class="texhtml mvar" style="font-style:italic;">H</span></i>). Some authors<sup id="cite_ref-Apostol81p35_17-1" class="reference"><a href="#cite_note-Apostol81p35-17"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> reserve the word <i>mapping</i> for the case where the structure of the codomain belongs explicitly to the definition of the function. </p><p>Some authors, such as <a href="/wiki/Serge_Lang" title="Serge Lang">Serge Lang</a>,<sup id="cite_ref-Lang87p43_16-1" class="reference"><a href="#cite_note-Lang87p43-16"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> use "function" only to refer to maps for which the <a href="/wiki/Codomain" title="Codomain">codomain</a> is a subset of the <a href="/wiki/Real_number" title="Real number">real</a> or <a href="/wiki/Complex_number" title="Complex number">complex</a> numbers, and use the term <i>mapping</i> for more general functions. </p><p>In the theory of <a href="/wiki/Dynamical_system" title="Dynamical system">dynamical systems</a>, a map denotes an <a href="/wiki/Discrete-time_dynamical_system" class="mw-redirect" title="Discrete-time dynamical system">evolution function</a> used to create <a href="/wiki/Dynamical_system#Maps" title="Dynamical system">discrete dynamical systems</a>. See also <a href="/wiki/Poincar%C3%A9_map" title="Poincaré map">Poincaré map</a>. </p><p>Whichever definition of <i>map</i> is used, related terms like <i><a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a></i>, <i><a href="/wiki/Codomain" title="Codomain">codomain</a></i>, <i><a href="/wiki/Injective_function" title="Injective function">injective</a></i>, <i><a href="/wiki/Continuous_function" title="Continuous function">continuous</a></i> have the same meaning as for a function. </p> <div class="mw-heading mw-heading2"><h2 id="Specifying_a_function">Specifying a function</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=13" title="Edit section: Specifying a function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, by definition, to each element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> of the domain of the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, there is a unique element associated to it, the value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>. There are several ways to specify or describe how <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is related to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>, both explicitly and implicitly. Sometimes, a theorem or an <a href="/wiki/Axiom" title="Axiom">axiom</a> asserts the existence of a function having some properties, without describing it more precisely. Often, the specification or description is referred to as the definition of the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="By_listing_function_values">By listing function values</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=14" title="Edit section: By listing function values"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>On a finite set a function may be defined by listing the elements of the codomain that are associated to the elements of the domain. For example, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\{1,2,3\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=\{1,2,3\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75709a44930c3f020087d434e9bb260a0c46a0c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.722ex; height:2.843ex;" alt="{\displaystyle A=\{1,2,3\}}"></span>, then one can define a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:A\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:A\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29b96eb73b42abe3f9b5fc1b9a94dece18f9abf5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.251ex; height:2.509ex;" alt="{\displaystyle f:A\to \mathbb {R} }"></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(1)=2,f(2)=3,f(3)=4.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(1)=2,f(2)=3,f(3)=4.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d48eb562511cd44c4a8d161d225c74e1a3cc626d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.248ex; height:2.843ex;" alt="{\displaystyle f(1)=2,f(2)=3,f(3)=4.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="By_a_formula">By a formula</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=15" title="Edit section: By a formula"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Functions are often defined by an <a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">expression</a> that describes a combination of <a href="/wiki/Arithmetic_operations" class="mw-redirect" title="Arithmetic operations">arithmetic operations</a> and previously defined functions; such a formula allows computing the value of the function from the value of any element of the domain. For example, in the above example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> can be defined by the formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)=n+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)=n+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13080ea3fb204650e60021bcd68f35b7cb82cd50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.979ex; height:2.843ex;" alt="{\displaystyle f(n)=n+1}"></span>, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \{1,2,3\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \{1,2,3\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7fd153aab97fa5d1cd50604f5b61c15bda65a87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.116ex; height:2.843ex;" alt="{\displaystyle n\in \{1,2,3\}}"></span>. </p><p>When a function is defined this way, the determination of its domain is sometimes difficult. If the formula that defines the function contains divisions, the values of the variable for which a denominator is zero must be excluded from the domain; thus, for a complicated function, the determination of the domain passes through the computation of the <a href="/wiki/Zero_of_a_function" title="Zero of a function">zeros</a> of auxiliary functions. Similarly, if <a href="/wiki/Square_root" title="Square root">square roots</a> occur in the definition of a function from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0522388d36b55de7babe4bbfc49475eaf590c2bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.325ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} ,}"></span> the domain is included in the set of the values of the variable for which the arguments of the square roots are nonnegative. </p><p>For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\sqrt {1+x^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)={\sqrt {1+x^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79c34c2d3762de89fa5bfe544076a6f7d8ca57e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.227ex; height:3.509ex;" alt="{\displaystyle f(x)={\sqrt {1+x^{2}}}}"></span> defines a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} \to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} \to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e3a10a3ad05781f5cf9c2d875a02227e21a8448" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.186ex; height:2.509ex;" alt="{\displaystyle f:\mathbb {R} \to \mathbb {R} }"></span> whose domain is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0522388d36b55de7babe4bbfc49475eaf590c2bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.325ex; height:2.509ex;" alt="{\displaystyle \mathbb {R} ,}"></span> because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee93a0bc45fd86054d8ac256bb58866c0ffb6336" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.387ex; height:2.843ex;" alt="{\displaystyle 1+x^{2}}"></span> is always positive if <span class="texhtml mvar" style="font-style:italic;">x</span> is a real number. On the other hand, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\sqrt {1-x^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)={\sqrt {1-x^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b779387bbccf8dcb6c6a52a8e052ae04529956c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.227ex; height:3.509ex;" alt="{\displaystyle f(x)={\sqrt {1-x^{2}}}}"></span> defines a function from the reals to the reals whose domain is reduced to the interval <span class="texhtml">&#91;−1, 1&#93;</span>. (In old texts, such a domain was called the <i>domain of definition</i> of the function.) </p><p>Functions can be classified by the nature of formulas that define them: </p> <ul><li>A <a href="/wiki/Quadratic_function" title="Quadratic function">quadratic function</a> is a function that may be written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=ax^{2}+bx+c,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=ax^{2}+bx+c,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba19534f962564659c4c764c520a9b1c2583290" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.791ex; height:3.176ex;" alt="{\displaystyle f(x)=ax^{2}+bx+c,}"></span> where <span class="texhtml"><i>a</i>, <i>b</i>, <i>c</i></span> are <a href="/wiki/Constant_(mathematics)" title="Constant (mathematics)">constants</a>.</li> <li>More generally, a <a href="/wiki/Polynomial_function" class="mw-redirect" title="Polynomial function">polynomial function</a> is a function that can be defined by a formula involving only additions, subtractions, multiplications, and <a href="/wiki/Exponentiation" title="Exponentiation">exponentiation</a> to nonnegative integer powers. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{3}-3x-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x^{3}-3x-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f7a70ffe2450e80f1d0a91cb1279ecf82ffe0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.235ex; height:3.176ex;" alt="{\displaystyle f(x)=x^{3}-3x-1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=(x-1)(x^{3}+1)+2x^{2}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=(x-1)(x^{3}+1)+2x^{2}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/329ca932140f4c467b17cf1426e063090257e515" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.244ex; height:3.176ex;" alt="{\displaystyle f(x)=(x-1)(x^{3}+1)+2x^{2}-1}"></span> are polynomial functions of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>.</li> <li>A <a href="/wiki/Rational_function" title="Rational function">rational function</a> is the same, with divisions also allowed, such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\frac {x-1}{x+1}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)={\frac {x-1}{x+1}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1175bc3324fa6a9f39bdc801c5cfa9e59e0eace" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.332ex; height:5.343ex;" alt="{\displaystyle f(x)={\frac {x-1}{x+1}},}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\frac {1}{x+1}}+{\frac {3}{x}}-{\frac {2}{x-1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mi>x</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)={\frac {1}{x+1}}+{\frac {3}{x}}-{\frac {2}{x-1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d4091d575d27d2f4262b6643c8cd73a0ec82547" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:28.347ex; height:5.343ex;" alt="{\displaystyle f(x)={\frac {1}{x+1}}+{\frac {3}{x}}-{\frac {2}{x-1}}.}"></span></li> <li>An <a href="/wiki/Algebraic_function" title="Algebraic function">algebraic function</a> is the same, with <a href="/wiki/Nth_root" title="Nth root"><span class="texhtml mvar" style="font-style:italic;">n</span>th roots</a> and <a href="/wiki/Zero_of_a_function" title="Zero of a function">roots of polynomials</a> also allowed.</li> <li>An <a href="/wiki/Elementary_function" title="Elementary function">elementary function</a><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>note 4<span class="cite-bracket">&#93;</span></a></sup> is the same, with <a href="/wiki/Logarithm" title="Logarithm">logarithms</a> and <a href="/wiki/Exponential_functions" class="mw-redirect" title="Exponential functions">exponential functions</a> allowed.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Inverse_and_implicit_functions">Inverse and implicit functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=16" title="Edit section: Inverse and implicit functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43b6b077a3059ca728f62c163fec3d93b8429769" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.23ex; height:2.509ex;" alt="{\displaystyle f:X\to Y,}"></span> with domain <span class="texhtml mvar" style="font-style:italic;">X</span> and codomain <span class="texhtml mvar" style="font-style:italic;">Y</span>, is <a href="/wiki/Bijective" class="mw-redirect" title="Bijective">bijective</a>, if for every <span class="texhtml mvar" style="font-style:italic;">y</span> in <span class="texhtml mvar" style="font-style:italic;">Y</span>, there is one and only one element <span class="texhtml mvar" style="font-style:italic;">x</span> in <span class="texhtml mvar" style="font-style:italic;">X</span> such that <span class="texhtml"><i>y</i> = <i>f</i>(<i>x</i>)</span>. In this case, the <a href="/wiki/Inverse_function" title="Inverse function">inverse function</a> of <span class="texhtml mvar" style="font-style:italic;">f</span> is the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}:Y\to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>:</mo> <mi>Y</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}:Y\to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e989122f1ec4c60658a0bb4b619b1473da820393" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.958ex; height:3.009ex;" alt="{\displaystyle f^{-1}:Y\to X}"></span> that maps <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cee1c0ec36a82f33f5e3d7434d5667881b4ec323" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.769ex; height:2.509ex;" alt="{\displaystyle y\in Y}"></span> to the element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e580967f68f36743e894aa7944f032dda6ea01d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.15ex; height:2.176ex;" alt="{\displaystyle x\in X}"></span> such that <span class="texhtml"><i>y</i> = <i>f</i>(<i>x</i>)</span>. For example, the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a> is a bijective function from the positive real numbers to the real numbers. It thus has an inverse, called the <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a>, that maps the real numbers onto the positive numbers. </p><p>If a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd1e080abef4bbdab67b43819c6431e7561361c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.583ex; height:2.509ex;" alt="{\displaystyle f:X\to Y}"></span> is not bijective, it may occur that one can select subsets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\subseteq X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\subseteq X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4359fae89639fe08a113bd9154bff6b52047c7c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.854ex; height:2.343ex;" alt="{\displaystyle E\subseteq X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\subseteq Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\subseteq Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d26bfc0333372b856bcce14daf66a1086ca46270" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.613ex; height:2.343ex;" alt="{\displaystyle F\subseteq Y}"></span> such that the <a href="/wiki/Restriction_of_a_function" class="mw-redirect" title="Restriction of a function">restriction</a> of <span class="texhtml mvar" style="font-style:italic;">f</span> to <span class="texhtml mvar" style="font-style:italic;">E</span> is a bijection from <span class="texhtml mvar" style="font-style:italic;">E</span> to <span class="texhtml mvar" style="font-style:italic;">F</span>, and has thus an inverse. The <a href="/wiki/Inverse_trigonometric_functions" title="Inverse trigonometric functions">inverse trigonometric functions</a> are defined this way. For example, the <a href="/wiki/Cosine_function" class="mw-redirect" title="Cosine function">cosine function</a> induces, by restriction, a bijection from the <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">interval</a> <span class="texhtml">&#91;0, <i>π</i>&#93;</span> onto the interval <span class="texhtml">&#91;−1, 1&#93;</span>, and its inverse function, called <a href="/wiki/Arccosine" class="mw-redirect" title="Arccosine">arccosine</a>, maps <span class="texhtml">&#91;−1, 1&#93;</span> onto <span class="texhtml">&#91;0, <i>π</i>&#93;</span>. The other inverse trigonometric functions are defined similarly. </p><p>More generally, given a <a href="/wiki/Binary_relation" title="Binary relation">binary relation</a> <span class="texhtml mvar" style="font-style:italic;">R</span> between two sets <span class="texhtml mvar" style="font-style:italic;">X</span> and <span class="texhtml mvar" style="font-style:italic;">Y</span>, let <span class="texhtml mvar" style="font-style:italic;">E</span> be a subset of <span class="texhtml mvar" style="font-style:italic;">X</span> such that, for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in E,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>E</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in E,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac74fb0c2e4233f6f7171ba8efbc87da28a8ff02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.593ex; height:2.509ex;" alt="{\displaystyle x\in E,}"></span> there is some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cee1c0ec36a82f33f5e3d7434d5667881b4ec323" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.769ex; height:2.509ex;" alt="{\displaystyle y\in Y}"></span> such that <span class="texhtml"><i>x R y</i></span>. If one has a criterion allowing selecting such a <span class="texhtml mvar" style="font-style:italic;">y</span> for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in E,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>E</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in E,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac74fb0c2e4233f6f7171ba8efbc87da28a8ff02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.593ex; height:2.509ex;" alt="{\displaystyle x\in E,}"></span> this defines a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:E\to Y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>E</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:E\to Y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9b5356c234a6fda8ca6a341339b83609ff327f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.026ex; height:2.509ex;" alt="{\displaystyle f:E\to Y,}"></span> called an <a href="/wiki/Implicit_function" title="Implicit function">implicit function</a>, because it is implicitly defined by the relation <span class="texhtml mvar" style="font-style:italic;">R</span>. </p><p>For example, the equation of the <a href="/wiki/Unit_circle" title="Unit circle">unit circle</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+y^{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+y^{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec84b90236512e8d27ff1a8f7707b60b63327de1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.7ex; height:3.009ex;" alt="{\displaystyle x^{2}+y^{2}=1}"></span> defines a relation on real numbers. If <span class="texhtml">−1 &lt; <i>x</i> &lt; 1</span> there are two possible values of <span class="texhtml mvar" style="font-style:italic;">y</span>, one positive and one negative. For <span class="texhtml"><i>x</i> = ± 1</span>, these two values become both equal to 0. Otherwise, there is no possible value of <span class="texhtml mvar" style="font-style:italic;">y</span>. This means that the equation defines two implicit functions with domain <span class="texhtml">&#91;−1, 1&#93;</span> and respective codomains <span class="texhtml">&#91;0, +∞)</span> and <span class="texhtml">(−∞, 0&#93;</span>. </p><p>In this example, the equation can be solved in <span class="texhtml mvar" style="font-style:italic;">y</span>, giving <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=\pm {\sqrt {1-x^{2}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=\pm {\sqrt {1-x^{2}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d2200b08e3d1e0047706d8545856c4637fd3bac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.419ex; height:3.509ex;" alt="{\displaystyle y=\pm {\sqrt {1-x^{2}}},}"></span> but, in more complicated examples, this is impossible. For example, the relation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y^{5}+y+x=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y^{5}+y+x=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9d82fbc2ad8b2a28d99505ba655143535160a9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.642ex; height:3.009ex;" alt="{\displaystyle y^{5}+y+x=0}"></span> defines <span class="texhtml mvar" style="font-style:italic;">y</span> as an implicit function of <span class="texhtml mvar" style="font-style:italic;">x</span>, called the <a href="/wiki/Bring_radical" title="Bring radical">Bring radical</a>, which has <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> as domain and range. The Bring radical cannot be expressed in terms of the four arithmetic operations and <a href="/wiki/Nth_root" title="Nth root"><span class="texhtml mvar" style="font-style:italic;">n</span>th roots</a>. </p><p>The <a href="/wiki/Implicit_function_theorem" title="Implicit function theorem">implicit function theorem</a> provides mild <a href="/wiki/Differentiability" class="mw-redirect" title="Differentiability">differentiability</a> conditions for existence and uniqueness of an implicit function in the neighborhood of a point. </p> <div class="mw-heading mw-heading3"><h3 id="Using_differential_calculus">Using differential calculus</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=17" title="Edit section: Using differential calculus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Many functions can be defined as the <a href="/wiki/Antiderivative" title="Antiderivative">antiderivative</a> of another function. This is the case of the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a>, which is the antiderivative of <span class="texhtml">1/<i>x</i></span> that is 0 for <span class="texhtml"><i>x</i> = 1</span>. Another common example is the <a href="/wiki/Error_function" title="Error function">error function</a>. </p><p>More generally, many functions, including most <a href="/wiki/Special_function" class="mw-redirect" title="Special function">special functions</a>, can be defined as solutions of <a href="/wiki/Differential_equation" title="Differential equation">differential equations</a>. The simplest example is probably the <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a>, which can be defined as the unique function that is equal to its derivative and takes the value 1 for <span class="texhtml"><i>x</i> = 0</span>. </p><p><a href="/wiki/Power_series" title="Power series">Power series</a> can be used to define functions on the domain in which they converge. For example, the <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a> is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle e^{x}=\sum _{n=0}^{\infty }{x^{n} \over n!}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle e^{x}=\sum _{n=0}^{\infty }{x^{n} \over n!}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0933c92fd40ead20121e8de3ad48c04ff6fcfb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:14.256ex; height:3.843ex;" alt="{\textstyle e^{x}=\sum _{n=0}^{\infty }{x^{n} \over n!}}"></span>. However, as the coefficients of a series are quite arbitrary, a function that is the sum of a convergent series is generally defined otherwise, and the sequence of the coefficients is the result of some computation based on another definition. Then, the power series can be used to enlarge the domain of the function. Typically, if a function for a real variable is the sum of its <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a> in some interval, this power series allows immediately enlarging the domain to a subset of the <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>, the <a href="/wiki/Disc_of_convergence" class="mw-redirect" title="Disc of convergence">disc of convergence</a> of the series. Then <a href="/wiki/Analytic_continuation" title="Analytic continuation">analytic continuation</a> allows enlarging further the domain for including almost the whole <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a>. This process is the method that is generally used for defining the <a href="/wiki/Logarithm" title="Logarithm">logarithm</a>, the <a href="/wiki/Exponential_function" title="Exponential function">exponential</a> and the <a href="/wiki/Trigonometric_functions" title="Trigonometric functions">trigonometric functions</a> of a complex number. </p> <div class="mw-heading mw-heading3"><h3 id="By_recurrence">By recurrence</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=18" title="Edit section: By recurrence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Recurrence_relation" title="Recurrence relation">Recurrence relation</a></div> <p>Functions whose domain are the nonnegative integers, known as <a href="/wiki/Sequence" title="Sequence">sequences</a>, are sometimes defined by <a href="/wiki/Recurrence_relation" title="Recurrence relation">recurrence relations</a>. </p><p>The <a href="/wiki/Factorial" title="Factorial">factorial</a> function on the nonnegative integers (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\mapsto n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\mapsto n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d43615cae2b2eb2b4402bcd0b2bd7642eb855e5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.05ex; height:2.176ex;" alt="{\displaystyle n\mapsto n!}"></span>) is a basic example, as it can be defined by the recurrence relation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!=n(n-1)!\quad {\text{for}}\quad n&gt;0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>=</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for</mtext> </mrow> <mspace width="1em" /> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!=n(n-1)!\quad {\text{for}}\quad n&gt;0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12bc6067e14b24bf50711c08808b7b2b3b7387d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.122ex; height:2.843ex;" alt="{\displaystyle n!=n(n-1)!\quad {\text{for}}\quad n&gt;0,}"></span></dd></dl> <p>and the initial condition </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0!=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>!</mo> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0!=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73b6aeeba784d2992f64addf82d9cbbf7962a722" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.717ex; height:2.176ex;" alt="{\displaystyle 0!=1.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Representing_a_function">Representing a function</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=19" title="Edit section: Representing a function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Graph_of_a_function" title="Graph of a function">graph</a> is commonly used to give an intuitive picture of a function. As an example of how a graph helps to understand a function, it is easy to see from its graph whether a function is increasing or decreasing. Some functions may also be represented by <a href="/wiki/Bar_chart" title="Bar chart">bar charts</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Graphs_and_plots">Graphs and plots</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=20" title="Edit section: Graphs and plots"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Graph_of_a_function" title="Graph of a function">Graph of a function</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Motor_vehicle_deaths_in_the_US.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Motor_vehicle_deaths_in_the_US.svg/220px-Motor_vehicle_deaths_in_the_US.svg.png" decoding="async" width="220" height="149" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Motor_vehicle_deaths_in_the_US.svg/330px-Motor_vehicle_deaths_in_the_US.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Motor_vehicle_deaths_in_the_US.svg/440px-Motor_vehicle_deaths_in_the_US.svg.png 2x" data-file-width="692" data-file-height="469" /></a><figcaption>The function mapping each year to its US motor vehicle death count, shown as a <a href="/wiki/Line_chart" title="Line chart">line chart</a></figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Motor_vehicle_deaths_in_the_US_histogram.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Motor_vehicle_deaths_in_the_US_histogram.svg/220px-Motor_vehicle_deaths_in_the_US_histogram.svg.png" decoding="async" width="220" height="126" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Motor_vehicle_deaths_in_the_US_histogram.svg/330px-Motor_vehicle_deaths_in_the_US_histogram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Motor_vehicle_deaths_in_the_US_histogram.svg/440px-Motor_vehicle_deaths_in_the_US_histogram.svg.png 2x" data-file-width="700" data-file-height="400" /></a><figcaption>The same function, shown as a bar chart</figcaption></figure> <p>Given a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43b6b077a3059ca728f62c163fec3d93b8429769" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.23ex; height:2.509ex;" alt="{\displaystyle f:X\to Y,}"></span> its <i>graph</i> is, formally, the set </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=\{(x,f(x))\mid x\in X\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=\{(x,f(x))\mid x\in X\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0f60a64d69fdc91d64307936f7d9970d9f3ec6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.575ex; height:2.843ex;" alt="{\displaystyle G=\{(x,f(x))\mid x\in X\}.}"></span></dd></dl> <p>In the frequent case where <span class="texhtml mvar" style="font-style:italic;">X</span> and <span class="texhtml mvar" style="font-style:italic;">Y</span> are subsets of the <a href="/wiki/Real_number" title="Real number">real numbers</a> (or may be identified with such subsets, e.g. <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">intervals</a>), an element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)\in G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)\in G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/124f43d066e62e8deeb05b6a0c75922786573fad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.996ex; height:2.843ex;" alt="{\displaystyle (x,y)\in G}"></span> may be identified with a point having coordinates <span class="texhtml"><i>x</i>, <i>y</i></span> in a 2-dimensional coordinate system, e.g. the <a href="/wiki/Cartesian_plane" class="mw-redirect" title="Cartesian plane">Cartesian plane</a>. Parts of this may create a <a href="/wiki/Plot_(graphics)" title="Plot (graphics)">plot</a> that represents (parts of) the function. The use of plots is so ubiquitous that they too are called the <i>graph of the function</i>. Graphic representations of functions are also possible in other coordinate systems. For example, the graph of the <a href="/wiki/Square_function" class="mw-redirect" title="Square function">square function</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto x^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto x^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91ec217e885b4ff48e302d65301cf25c6fc7c447" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.975ex; height:3.009ex;" alt="{\displaystyle x\mapsto x^{2},}"></span></dd></dl> <p>consisting of all points with coordinates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,x^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,x^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f624b81d622794760acd0cd347602595fa2504f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.557ex; height:3.176ex;" alt="{\displaystyle (x,x^{2})}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \mathbb {R} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \mathbb {R} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc20967d7838bbfb6e9df31756dc24de3573ae3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.495ex; height:2.509ex;" alt="{\displaystyle x\in \mathbb {R} ,}"></span> yields, when depicted in Cartesian coordinates, the well known <a href="/wiki/Parabola" title="Parabola">parabola</a>. If the same quadratic function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto x^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto x^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91ec217e885b4ff48e302d65301cf25c6fc7c447" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.975ex; height:3.009ex;" alt="{\displaystyle x\mapsto x^{2},}"></span> with the same formal graph, consisting of pairs of numbers, is plotted instead in <a href="/wiki/Polar_coordinates" class="mw-redirect" title="Polar coordinates">polar coordinates</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (r,\theta )=(x,x^{2}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (r,\theta )=(x,x^{2}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4d4a9e5ffd2cb2f9c274ea62034dc8e17d454e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.284ex; height:3.176ex;" alt="{\displaystyle (r,\theta )=(x,x^{2}),}"></span> the plot obtained is <a href="/wiki/Fermat%27s_spiral" title="Fermat&#39;s spiral">Fermat's spiral</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Tables">Tables</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=21" title="Edit section: Tables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Mathematical_table" title="Mathematical table">Mathematical table</a></div> <p>A function can be represented as a table of values. If the domain of a function is finite, then the function can be completely specified in this way. For example, the multiplication function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\{1,\ldots ,5\}^{2}\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mn>5</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\{1,\ldots ,5\}^{2}\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75c6d1fa74d7c5be5592115baba6e7311dc3fcc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.39ex; height:3.176ex;" alt="{\displaystyle f:\{1,\ldots ,5\}^{2}\to \mathbb {R} }"></span> defined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x,y)=xy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x,y)=xy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3ee958d3d5aa49d9e3954ebf344a2bddd4f4485" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.191ex; height:2.843ex;" alt="{\displaystyle f(x,y)=xy}"></span> can be represented by the familiar <a href="/wiki/Multiplication_table" title="Multiplication table">multiplication table</a> </p> <table class="wikitable" style="text-align: center;"> <tbody><tr> <th style="background:var(--background-color-neutral,#eaecf0);color:inherit;background:linear-gradient(to top right,var(--background-color-neutral,#eaecf0) 49%,var(--border-color-base,#a2a9b1) 49.5%,var(--border-color-base,#a2a9b1) 50.5%,var(--background-color-neutral,#eaecf0) 51%);line-height:1.2;padding:0.1em 0.4em;"><div style="margin-left:2em;text-align:right"><span class="texhtml mvar" style="font-style:italic;">y</span></div><div style="margin-right:2em;text-align:left"><span class="texhtml mvar" style="font-style:italic;">x</span></div> </th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5 </th></tr> <tr> <th>1 </th> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5 </td></tr> <tr> <th>2 </th> <td>2</td> <td>4</td> <td>6</td> <td>8</td> <td>10 </td></tr> <tr> <th>3 </th> <td>3</td> <td>6</td> <td>9</td> <td>12</td> <td>15 </td></tr> <tr> <th>4 </th> <td>4</td> <td>8</td> <td>12</td> <td>16</td> <td>20 </td></tr> <tr> <th>5 </th> <td>5</td> <td>10</td> <td>15</td> <td>20</td> <td>25 </td></tr></tbody></table> <p>On the other hand, if a function's domain is continuous, a table can give the values of the function at specific values of the domain. If an intermediate value is needed, <a href="/wiki/Interpolation" title="Interpolation">interpolation</a> can be used to estimate the value of the function. For example, a portion of a table for the sine function might be given as follows, with values rounded to 6 decimal places: </p> <table class="wikitable" style="text-align: center;"> <tbody><tr> <th><span class="texhtml mvar" style="font-style:italic;">x</span></th> <th><span class="texhtml">sin <i>x</i></span> </th></tr> <tr> <td>1.289</td> <td>0.960557 </td></tr> <tr> <td>1.290</td> <td>0.960835 </td></tr> <tr> <td>1.291</td> <td>0.961112 </td></tr> <tr> <td>1.292</td> <td>0.961387 </td></tr> <tr> <td>1.293</td> <td>0.961662 </td></tr></tbody></table> <p>Before the advent of handheld calculators and personal computers, such tables were often compiled and published for functions such as logarithms and trigonometric functions. </p> <div class="mw-heading mw-heading3"><h3 id="Bar_chart">Bar chart</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=22" title="Edit section: Bar chart"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Bar_chart" title="Bar chart">Bar chart</a></div> <p>A bar chart can represent a function whose domain is a finite set, the <a href="/wiki/Natural_number" title="Natural number">natural numbers</a>, or the <a href="/wiki/Integer" title="Integer">integers</a>. In this case, an element <span class="texhtml mvar" style="font-style:italic;">x</span> of the domain is represented by an <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">interval</a> of the <span class="texhtml mvar" style="font-style:italic;">x</span>-axis, and the corresponding value of the function, <span class="texhtml"><i>f</i>(<i>x</i>)</span>, is represented by a <a href="/wiki/Rectangle" title="Rectangle">rectangle</a> whose base is the interval corresponding to <span class="texhtml mvar" style="font-style:italic;">x</span> and whose height is <span class="texhtml"><i>f</i>(<i>x</i>)</span> (possibly negative, in which case the bar extends below the <span class="texhtml mvar" style="font-style:italic;">x</span>-axis). </p> <div class="mw-heading mw-heading2"><h2 id="General_properties">General properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=23" title="Edit section: General properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This section describes general properties of functions, that are independent of specific properties of the domain and the codomain. </p> <div class="mw-heading mw-heading3"><h3 id="Standard_functions">Standard functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=24" title="Edit section: Standard functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are a number of standard functions that occur frequently: </p> <ul><li>For every set <span class="texhtml mvar" style="font-style:italic;">X</span>, there is a unique function, called the <b><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="empty_function"></span><span class="vanchor-text">empty function</span></span></b>, or <b>empty map</b>, from the <a href="/wiki/Empty_set" title="Empty set">empty set</a> to <span class="texhtml mvar" style="font-style:italic;">X</span>. The graph of an empty function is the empty set.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>note 5<span class="cite-bracket">&#93;</span></a></sup> The existence of empty functions is needed both for the coherency of the theory and for avoiding exceptions concerning the empty set in many statements. Under the usual set-theoretic definition of a function as an <a href="/wiki/Tuple" title="Tuple">ordered triplet</a> (or equivalent ones), there is exactly one empty function for each set, thus the empty function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varnothing \to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x2205;<!-- ∅ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varnothing \to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cbc0203001f6a0e2648aa18ed1500c6a7637ab9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.402ex; height:2.176ex;" alt="{\displaystyle \varnothing \to X}"></span> is not equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varnothing \to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x2205;<!-- ∅ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varnothing \to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9dbe760456d1e87721560f1fa4a96e63db2407b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.196ex; height:2.176ex;" alt="{\displaystyle \varnothing \to Y}"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\neq Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\neq Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be749f23597a5705f52b2c13f89cde4389ff7f0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.852ex; height:2.676ex;" alt="{\displaystyle X\neq Y}"></span>, although their graphs are both the <a href="/wiki/Empty_set" title="Empty set">empty set</a>.</li> <li>For every set <span class="texhtml mvar" style="font-style:italic;">X</span> and every <a href="/wiki/Singleton_set" class="mw-redirect" title="Singleton set">singleton set</a> <span class="texhtml">{<i>s</i>}</span>, there is a unique function from <span class="texhtml mvar" style="font-style:italic;">X</span> to <span class="texhtml">{<i>s</i>}</span>, which maps every element of <span class="texhtml mvar" style="font-style:italic;">X</span> to <span class="texhtml mvar" style="font-style:italic;">s</span>. This is a surjection (see below) unless <span class="texhtml mvar" style="font-style:italic;">X</span> is the empty set.</li> <li>Given a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43b6b077a3059ca728f62c163fec3d93b8429769" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.23ex; height:2.509ex;" alt="{\displaystyle f:X\to Y,}"></span> the <i>canonical surjection</i> of <span class="texhtml mvar" style="font-style:italic;">f</span> onto its image <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(X)=\{f(x)\mid x\in X\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(X)=\{f(x)\mid x\in X\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca3316d91530b49bc3304209486939bad604be85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.996ex; height:2.843ex;" alt="{\displaystyle f(X)=\{f(x)\mid x\in X\}}"></span> is the function from <span class="texhtml mvar" style="font-style:italic;">X</span> to <span class="texhtml"><i>f</i>(<i>X</i>)</span> that maps <span class="texhtml mvar" style="font-style:italic;">x</span> to <span class="texhtml"><i>f</i>(<i>x</i>)</span>.</li> <li>For every <a href="/wiki/Subset" title="Subset">subset</a> <span class="texhtml mvar" style="font-style:italic;">A</span> of a set <span class="texhtml mvar" style="font-style:italic;">X</span>, the <a href="/wiki/Inclusion_map" title="Inclusion map">inclusion map</a> of <span class="texhtml mvar" style="font-style:italic;">A</span> into <span class="texhtml mvar" style="font-style:italic;">X</span> is the injective (see below) function that maps every element of <span class="texhtml mvar" style="font-style:italic;">A</span> to itself.</li> <li>The <a href="/wiki/Identity_function" title="Identity function">identity function</a> on a set <span class="texhtml mvar" style="font-style:italic;">X</span>, often denoted by <span class="texhtml">id<sub><i>X</i></sub></span>, is the inclusion of <span class="texhtml mvar" style="font-style:italic;">X</span> into itself.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Function_composition">Function composition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=25" title="Edit section: Function composition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Function_composition" title="Function composition">Function composition</a></div> <p>Given two functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd1e080abef4bbdab67b43819c6431e7561361c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.583ex; height:2.509ex;" alt="{\displaystyle f:X\to Y}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:Y\to Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <mi>Y</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:Y\to Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44e7e6d2116baaa7aa88d1adbf796ade5997a237" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.121ex; height:2.509ex;" alt="{\displaystyle g:Y\to Z}"></span> such that the domain of <span class="texhtml mvar" style="font-style:italic;">g</span> is the codomain of <span class="texhtml mvar" style="font-style:italic;">f</span>, their <i>composition</i> is the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\circ f:X\rightarrow Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\circ f:X\rightarrow Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68801eb2856ac23fc685a20fc4a4761873d9d9eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.801ex; height:2.509ex;" alt="{\displaystyle g\circ f:X\rightarrow Z}"></span> defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g\circ f)(x)=g(f(x)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g\circ f)(x)=g(f(x)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50410f65ec5a8654714720d54c21fcaa3d2d2916" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.626ex; height:2.843ex;" alt="{\displaystyle (g\circ f)(x)=g(f(x)).}"></span></dd></dl> <p>That is, the value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\circ f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\circ f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10b5ad4985af48d0fb7efa3c8afa5ad7d42bfc92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle g\circ f}"></span> is obtained by first applying <span class="texhtml"><i>f</i></span> to <span class="texhtml"><i>x</i></span> to obtain <span class="texhtml"><i>y</i> = <i>f</i>(<i>x</i>)</span> and then applying <span class="texhtml"><i>g</i></span> to the result <span class="texhtml mvar" style="font-style:italic;">y</span> to obtain <span class="texhtml"><i>g</i>(<i>y</i>) = <i>g</i>(<i>f</i>(<i>x</i>))</span>. In this notation, the function that is applied first is always written on the right. </p><p>The composition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\circ f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\circ f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10b5ad4985af48d0fb7efa3c8afa5ad7d42bfc92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle g\circ f}"></span> is an <a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">operation</a> on functions that is defined only if the codomain of the first function is the domain of the second one. Even when both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\circ f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\circ f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10b5ad4985af48d0fb7efa3c8afa5ad7d42bfc92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle g\circ f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\circ g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\circ g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2f61ca7838709fbae07dce9c0d513770f10cfae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle f\circ g}"></span> satisfy these conditions, the composition is not necessarily <a href="/wiki/Commutative_property" title="Commutative property">commutative</a>, that is, the functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\circ f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\circ f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10b5ad4985af48d0fb7efa3c8afa5ad7d42bfc92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle g\circ f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\circ g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\circ g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2f61ca7838709fbae07dce9c0d513770f10cfae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle f\circ g}"></span> need not be equal, but may deliver different values for the same argument. For example, let <span class="texhtml"><i>f</i>(<i>x</i>) = <i>x</i><sup>2</sup></span> and <span class="texhtml"><i>g</i>(<i>x</i>) = <i>x</i> + 1</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(f(x))=x^{2}+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(f(x))=x^{2}+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9050d0a90f81df4de49249892dcbf3bffca33fbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.828ex; height:3.176ex;" alt="{\displaystyle g(f(x))=x^{2}+1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(g(x))=(x+1)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(g(x))=(x+1)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ea84d7ee047fd301242a46fbdf5c994605eb660" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.637ex; height:3.176ex;" alt="{\displaystyle f(g(x))=(x+1)^{2}}"></span> agree just for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71320d636c7a43546bf4e94edb94649c5b2e82b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.237ex; height:2.176ex;" alt="{\displaystyle x=0.}"></span> </p><p>The function composition is <a href="/wiki/Associative_property" title="Associative property">associative</a> in the sense that, if one of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (h\circ g)\circ f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>h</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (h\circ g)\circ f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c227490c73a1fd0ed1ef9a3f9d989398e2aca797" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.932ex; height:2.843ex;" alt="{\displaystyle (h\circ g)\circ f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\circ (g\circ f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>&#x2218;<!-- ∘ --></mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\circ (g\circ f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0e05ca5e3aeb39bf0b062d3f4ebcfc2e339c16f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.932ex; height:2.843ex;" alt="{\displaystyle h\circ (g\circ f)}"></span> is defined, then the other is also defined, and they are equal, that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (h\circ g)\circ f=h\circ (g\circ f).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>h</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo>=</mo> <mi>h</mi> <mo>&#x2218;<!-- ∘ --></mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (h\circ g)\circ f=h\circ (g\circ f).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/463113c07156c96f462e121f73e238e185ee0134" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.61ex; height:2.843ex;" alt="{\displaystyle (h\circ g)\circ f=h\circ (g\circ f).}"></span> Therefore, it is usual to just write <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\circ g\circ f.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\circ g\circ f.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f903279fd25d031541feb82152f1592e2086598" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.77ex; height:2.509ex;" alt="{\displaystyle h\circ g\circ f.}"></span> </p><p>The <a href="/wiki/Identity_function" title="Identity function">identity functions</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {id} _{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {id} _{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/623b238853010f9319f926446bc6cb2253e53e02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.572ex; height:2.509ex;" alt="{\displaystyle \operatorname {id} _{X}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {id} _{Y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {id} _{Y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f280c0425786426a2cac3d1df83e73a5cdb4d1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.426ex; height:2.509ex;" alt="{\displaystyle \operatorname {id} _{Y}}"></span> are respectively a <a href="/wiki/Right_identity" class="mw-redirect" title="Right identity">right identity</a> and a <a href="/wiki/Left_identity" class="mw-redirect" title="Left identity">left identity</a> for functions from <span class="texhtml mvar" style="font-style:italic;">X</span> to <span class="texhtml mvar" style="font-style:italic;">Y</span>. That is, if <span class="texhtml mvar" style="font-style:italic;">f</span> is a function with domain <span class="texhtml mvar" style="font-style:italic;">X</span>, and codomain <span class="texhtml mvar" style="font-style:italic;">Y</span>, one has <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\circ \operatorname {id} _{X}=\operatorname {id} _{Y}\circ f=f.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2218;<!-- ∘ --></mo> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo>=</mo> <mi>f</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\circ \operatorname {id} _{X}=\operatorname {id} _{Y}\circ f=f.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae14fa7c63c808ffaf93f6df9b16baf3f87f6cff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.421ex; height:2.509ex;" alt="{\displaystyle f\circ \operatorname {id} _{X}=\operatorname {id} _{Y}\circ f=f.}"></span> </p> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 285px"> <div class="thumb" style="width: 280px; height: 330px;"><span typeof="mw:File"><a href="/wiki/File:Function_machine5.svg" class="mw-file-description" title="A composite function g(f(x)) can be visualized as the combination of two &quot;machines&quot;."><img alt="A composite function g(f(x)) can be visualized as the combination of two &quot;machines&quot;." src="//upload.wikimedia.org/wikipedia/commons/thumb/2/21/Function_machine5.svg/201px-Function_machine5.svg.png" decoding="async" width="201" height="300" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/21/Function_machine5.svg/302px-Function_machine5.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/21/Function_machine5.svg/402px-Function_machine5.svg.png 2x" data-file-width="257" data-file-height="383" /></a></span></div> <div class="gallerytext">A composite function <i>g</i>(<i>f</i>(<i>x</i>)) can be visualized as the combination of two "machines".</div> </li> <li class="gallerybox" style="width: 285px"> <div class="thumb" style="width: 280px; height: 330px;"><span typeof="mw:File"><a href="/wiki/File:Example_for_a_composition_of_two_functions.svg" class="mw-file-description" title="A simple example of a function composition"><img alt="A simple example of a function composition" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Example_for_a_composition_of_two_functions.svg/249px-Example_for_a_composition_of_two_functions.svg.png" decoding="async" width="249" height="300" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Example_for_a_composition_of_two_functions.svg/374px-Example_for_a_composition_of_two_functions.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/38/Example_for_a_composition_of_two_functions.svg/499px-Example_for_a_composition_of_two_functions.svg.png 2x" data-file-width="450" data-file-height="541" /></a></span></div> <div class="gallerytext">A simple example of a function composition</div> </li> <li class="gallerybox" style="width: 285px"> <div class="thumb" style="width: 280px; height: 330px;"><span typeof="mw:File"><a href="/wiki/File:Compfun.svg" class="mw-file-description" title="Another composition. In this example, (g ∘ f )(c) = #."><img alt="Another composition. In this example, (g ∘ f )(c) = #." src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Compfun.svg/250px-Compfun.svg.png" decoding="async" width="250" height="125" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Compfun.svg/375px-Compfun.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Compfun.svg/500px-Compfun.svg.png 2x" data-file-width="600" data-file-height="300" /></a></span></div> <div class="gallerytext">Another composition. In this example, <span class="texhtml">(<i>g</i> ∘ <i>f</i> )(c) = #</span>.</div> </li> </ul> <div class="mw-heading mw-heading3"><h3 id="Image_and_preimage">Image and preimage</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=26" title="Edit section: Image and preimage"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Image_(mathematics)" title="Image (mathematics)">Image (mathematics)</a></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b918aeefba8721a6732102a5848bd4238615ec55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.23ex; height:2.509ex;" alt="{\displaystyle f:X\to Y.}"></span> The <i>image</i> under <span class="texhtml mvar" style="font-style:italic;">f</span> of an element <span class="texhtml mvar" style="font-style:italic;">x</span> of the domain <span class="texhtml mvar" style="font-style:italic;">X</span> is <span class="texhtml"><i>f</i>(<i>x</i>)</span>.<sup id="cite_ref-EOM_Function_7-1" class="reference"><a href="#cite_note-EOM_Function-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> If <span class="texhtml"><i>A</i></span> is any subset of <span class="texhtml"><i>X</i></span>, then the <i>image</i> of <span class="texhtml mvar" style="font-style:italic;">A</span> under <span class="texhtml mvar" style="font-style:italic;">f</span>, denoted <span class="texhtml"><i>f</i>(<i>A</i>)</span>, is the subset of the codomain <span class="texhtml"><i>Y</i></span> consisting of all images of elements of <span class="texhtml mvar" style="font-style:italic;">A</span>,<sup id="cite_ref-EOM_Function_7-2" class="reference"><a href="#cite_note-EOM_Function-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> that is, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(A)=\{f(x)\mid x\in A\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2223;<!-- ∣ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(A)=\{f(x)\mid x\in A\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95793cb619ae7bd33c59c5d5de5fd02ee1b092d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.169ex; height:2.843ex;" alt="{\displaystyle f(A)=\{f(x)\mid x\in A\}.}"></span></dd></dl> <p>The <i>image</i> of <span class="texhtml"><i>f</i></span> is the image of the whole domain, that is, <span class="texhtml"><i>f</i>(<i>X</i>)</span>.<sup id="cite_ref-PCM_p.11_22-0" class="reference"><a href="#cite_note-PCM_p.11-22"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> It is also called the <a href="/wiki/Range_of_a_function" title="Range of a function">range</a> of <span class="texhtml mvar" style="font-style:italic;">f</span>,<sup id="cite_ref-EOM_Function_7-3" class="reference"><a href="#cite_note-EOM_Function-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-T&amp;K_Calc_p.3_8-1" class="reference"><a href="#cite_note-T&amp;K_Calc_p.3-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Trench_RA_pp.30-32_9-1" class="reference"><a href="#cite_note-Trench_RA_pp.30-32-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-TBB_RA_pp.A4-A5_10-1" class="reference"><a href="#cite_note-TBB_RA_pp.A4-A5-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> although the term <i>range</i> may also refer to the codomain.<sup id="cite_ref-TBB_RA_pp.A4-A5_10-2" class="reference"><a href="#cite_note-TBB_RA_pp.A4-A5-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-PCM_p.11_22-1" class="reference"><a href="#cite_note-PCM_p.11-22"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-standard_23-0" class="reference"><a href="#cite_note-standard-23"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p><p>On the other hand, the <i><a href="/wiki/Inverse_image" class="mw-redirect" title="Inverse image">inverse image</a></i> or <i><a href="/wiki/Preimage" class="mw-redirect" title="Preimage">preimage</a></i> under <span class="texhtml mvar" style="font-style:italic;">f</span> of an element <span class="texhtml mvar" style="font-style:italic;">y</span> of the codomain <span class="texhtml mvar" style="font-style:italic;">Y</span> is the set of all elements of the domain <span class="texhtml"><i>X</i></span> whose images under <span class="texhtml mvar" style="font-style:italic;">f</span> equal <span class="texhtml mvar" style="font-style:italic;">y</span>.<sup id="cite_ref-EOM_Function_7-4" class="reference"><a href="#cite_note-EOM_Function-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> In symbols, the preimage of <span class="texhtml mvar" style="font-style:italic;">y</span> is denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b357745fa4a2178733a502b4432072be8222fd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.618ex; height:3.176ex;" alt="{\displaystyle f^{-1}(y)}"></span> and is given by the equation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(y)=\{x\in X\mid f(x)=y\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(y)=\{x\in X\mid f(x)=y\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce7e4068e7e4675fb278d2098f3eeb0ec67c2881" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.447ex; height:3.176ex;" alt="{\displaystyle f^{-1}(y)=\{x\in X\mid f(x)=y\}.}"></span></dd></dl> <p>Likewise, the preimage of a subset <span class="texhtml"><i>B</i></span> of the codomain <span class="texhtml"><i>Y</i></span> is the set of the preimages of the elements of <span class="texhtml"><i>B</i></span>, that is, it is the subset of the domain <span class="texhtml"><i>X</i></span> consisting of all elements of <span class="texhtml"><i>X</i></span> whose images belong to <span class="texhtml"><i>B</i></span>.<sup id="cite_ref-EOM_Function_7-5" class="reference"><a href="#cite_note-EOM_Function-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> It is denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/572ddad8cd0a0758fb98e1c94c432dc2f7a06636" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.227ex; height:3.176ex;" alt="{\displaystyle f^{-1}(B)}"></span> and is given by the equation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(B)=\{x\in X\mid f(x)\in B\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(B)=\{x\in X\mid f(x)\in B\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/485f68954316eb2c28391474d3df7c40fd589413" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.407ex; height:3.176ex;" alt="{\displaystyle f^{-1}(B)=\{x\in X\mid f(x)\in B\}.}"></span></dd></dl> <p>For example, the preimage of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{4,9\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>4</mn> <mo>,</mo> <mn>9</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{4,9\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44b235effd45a537b68a200facce95137756ab04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.684ex; height:2.843ex;" alt="{\displaystyle \{4,9\}}"></span> under the <a href="/wiki/Square_function" class="mw-redirect" title="Square function">square function</a> is the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{-3,-2,2,3\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{-3,-2,2,3\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132441f34cc733c4645d0fa80d8544fc90262d9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.693ex; height:2.843ex;" alt="{\displaystyle \{-3,-2,2,3\}}"></span>. </p><p>By definition of a function, the image of an element <span class="texhtml"><i>x</i></span> of the domain is always a single element of the codomain. However, the preimage <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b357745fa4a2178733a502b4432072be8222fd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.618ex; height:3.176ex;" alt="{\displaystyle f^{-1}(y)}"></span> of an element <span class="texhtml mvar" style="font-style:italic;">y</span> of the codomain may be <a href="/wiki/Empty_set" title="Empty set">empty</a> or contain any number of elements. For example, if <span class="texhtml mvar" style="font-style:italic;">f</span> is the function from the integers to themselves that maps every integer to 0, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(0)=\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(0)=\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32720d89ba91ec2b5d5b706db20ee12420f187da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.274ex; height:3.176ex;" alt="{\displaystyle f^{-1}(0)=\mathbb {Z} }"></span>. </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd1e080abef4bbdab67b43819c6431e7561361c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.583ex; height:2.509ex;" alt="{\displaystyle f:X\to Y}"></span> is a function, <span class="texhtml"><i>A</i></span> and <span class="texhtml"><i>B</i></span> are subsets of <span class="texhtml"><i>X</i></span>, and <span class="texhtml"><i>C</i></span> and <span class="texhtml"><i>D</i></span> are subsets of <span class="texhtml"><i>Y</i></span>, then one has the following properties: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subseteq B\Longrightarrow f(A)\subseteq f(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>B</mi> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subseteq B\Longrightarrow f(A)\subseteq f(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74aab63eb9c503ca1d6168cba3d4a956f1aaaf45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.483ex; height:2.843ex;" alt="{\displaystyle A\subseteq B\Longrightarrow f(A)\subseteq f(B)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C\subseteq D\Longrightarrow f^{-1}(C)\subseteq f^{-1}(D)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>D</mi> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C\subseteq D\Longrightarrow f^{-1}(C)\subseteq f^{-1}(D)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e57c217e011000e3e367cf58c8f8911cec1fb7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.599ex; height:3.176ex;" alt="{\displaystyle C\subseteq D\Longrightarrow f^{-1}(C)\subseteq f^{-1}(D)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subseteq f^{-1}(f(A))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subseteq f^{-1}(f(A))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7745c86e833c00204c441b3420ecdf3a4e86bbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.135ex; height:3.176ex;" alt="{\displaystyle A\subseteq f^{-1}(f(A))}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C\supseteq f(f^{-1}(C))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>&#x2287;<!-- ⊇ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C\supseteq f(f^{-1}(C))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20f0c665d4fd411c57fc15878a0407b5e74ec8c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.182ex; height:3.176ex;" alt="{\displaystyle C\supseteq f(f^{-1}(C))}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(f^{-1}(f(A)))=f(A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(f^{-1}(f(A)))=f(A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b57dc6b4af65497aea87a51de455949fb31fdf6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.311ex; height:3.176ex;" alt="{\displaystyle f(f^{-1}(f(A)))=f(A)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(f(f^{-1}(C)))=f^{-1}(C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(f(f^{-1}(C)))=f^{-1}(C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d05d156017b8ab2055e098ee863bc393efd2373" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.107ex; height:3.176ex;" alt="{\displaystyle f^{-1}(f(f^{-1}(C)))=f^{-1}(C)}"></span></li></ul> <p>The preimage by <span class="texhtml mvar" style="font-style:italic;">f</span> of an element <span class="texhtml mvar" style="font-style:italic;">y</span> of the codomain is sometimes called, in some contexts, the <a href="/wiki/Fiber_(mathematics)" title="Fiber (mathematics)">fiber</a> of <span class="texhtml"><i>y</i></span> under <span class="texhtml mvar" style="font-style:italic;"><i>f</i></span>. </p><p>If a function <span class="texhtml mvar" style="font-style:italic;">f</span> has an inverse (see below), this inverse is denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63d2b575826d75cfdbc1bea2f34ccfa71f1c59b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.3ex; height:3.009ex;" alt="{\displaystyle f^{-1}.}"></span> In this case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecc65ae260d9fcb0f29161fe1d5a8301c7616721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.229ex; height:3.176ex;" alt="{\displaystyle f^{-1}(C)}"></span> may denote either the image by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e5cfa2f5c08d6fe7d046b73faa6e3f213acc802" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.653ex; height:3.009ex;" alt="{\displaystyle f^{-1}}"></span> or the preimage by <span class="texhtml mvar" style="font-style:italic;">f</span> of <span class="texhtml mvar" style="font-style:italic;">C</span>. This is not a problem, as these sets are equal. The notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2711c647e5397c7016ee21bbcea53565480bd5e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.831ex; height:2.843ex;" alt="{\displaystyle f(A)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecc65ae260d9fcb0f29161fe1d5a8301c7616721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.229ex; height:3.176ex;" alt="{\displaystyle f^{-1}(C)}"></span> may be ambiguous in the case of sets that contain some subsets as elements, such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{x,\{x\}\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo fence="false" stretchy="false">}</mo> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{x,\{x\}\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/532d1022eef8f5f427703de9c6dd5b8d38d86316" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.99ex; height:2.843ex;" alt="{\displaystyle \{x,\{x\}\}.}"></span> In this case, some care may be needed, for example, by using square brackets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[A],f^{-1}[C]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mi>A</mi> <mo stretchy="false">]</mo> <mo>,</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">[</mo> <mi>C</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[A],f^{-1}[C]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d728b72b3681c1a33529ac867bc49952dc812a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.063ex; height:3.176ex;" alt="{\displaystyle f[A],f^{-1}[C]}"></span> for images and preimages of subsets and ordinary parentheses for images and preimages of elements. </p> <div class="mw-heading mw-heading3"><h3 id="Injective,_surjective_and_bijective_functions"><span id="Injective.2C_surjective_and_bijective_functions"></span>Injective, surjective and bijective functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=27" title="Edit section: Injective, surjective and bijective functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Bijection,_injection_and_surjection" title="Bijection, injection and surjection">Bijection, injection and surjection</a></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd1e080abef4bbdab67b43819c6431e7561361c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.583ex; height:2.509ex;" alt="{\displaystyle f:X\to Y}"></span> be a function. </p><p>The function <span class="texhtml mvar" style="font-style:italic;">f</span> is <i><a href="/wiki/Injective_function" title="Injective function">injective</a></i> (or <i>one-to-one</i>, or is an <i>injection</i>) if <span class="texhtml"><i>f</i>(<i>a</i>) ≠ <i>f</i>(<i>b</i>)</span> for every two different elements <span class="texhtml"><i>a</i></span> and <span class="texhtml mvar" style="font-style:italic;"><i>b</i></span> of <span class="texhtml mvar" style="font-style:italic;">X</span>.<sup id="cite_ref-PCM_p.11_22-2" class="reference"><a href="#cite_note-PCM_p.11-22"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-EOM_Injection_24-0" class="reference"><a href="#cite_note-EOM_Injection-24"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> Equivalently, <span class="texhtml mvar" style="font-style:italic;">f</span> is injective if and only if, for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in Y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in Y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75e1353f0febe9bcf693d849ec82ce8d94e5f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.416ex; height:2.509ex;" alt="{\displaystyle y\in Y,}"></span> the preimage <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b357745fa4a2178733a502b4432072be8222fd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.618ex; height:3.176ex;" alt="{\displaystyle f^{-1}(y)}"></span> contains at most one element. An empty function is always injective. If <span class="texhtml mvar" style="font-style:italic;">X</span> is not the empty set, then <span class="texhtml mvar" style="font-style:italic;">f</span> is injective if and only if there exists a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:Y\to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <mi>Y</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:Y\to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10a9844999dbfd6d1ba60a6d5d37779df277a74f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.421ex; height:2.509ex;" alt="{\displaystyle g:Y\to X}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\circ f=\operatorname {id} _{X},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo>=</mo> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\circ f=\operatorname {id} _{X},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f5645c27403915e3d21d6eca5fad99cdcd5561b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.906ex; height:2.509ex;" alt="{\displaystyle g\circ f=\operatorname {id} _{X},}"></span> that is, if <span class="texhtml mvar" style="font-style:italic;">f</span> has a <a href="/wiki/Left_inverse_function" class="mw-redirect" title="Left inverse function">left inverse</a>.<sup id="cite_ref-EOM_Injection_24-1" class="reference"><a href="#cite_note-EOM_Injection-24"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> <i>Proof</i>: If <span class="texhtml mvar" style="font-style:italic;">f</span> is injective, for defining <span class="texhtml mvar" style="font-style:italic;">g</span>, one chooses an element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> in <span class="texhtml mvar" style="font-style:italic;">X</span> (which exists as <span class="texhtml mvar" style="font-style:italic;">X</span> is supposed to be nonempty),<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>note 6<span class="cite-bracket">&#93;</span></a></sup> and one defines <span class="texhtml mvar" style="font-style:italic;">g</span> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(y)=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(y)=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b60bb15cd66fb9d9f721d9892b67c01cddd153be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.509ex; height:2.843ex;" alt="{\displaystyle g(y)=x}"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2311a6a75c54b0ea085a381ba472c31d59321514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.672ex; height:2.843ex;" alt="{\displaystyle y=f(x)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(y)=x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(y)=x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5c58233f69bc7034d7b59fc99d4ada7ddc50243" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.563ex; height:2.843ex;" alt="{\displaystyle g(y)=x_{0}}"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\not \in f(X).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2209;</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\not \in f(X).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2d355db1cec99772b7d696063b1ef77d712d48f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.711ex; height:2.843ex;" alt="{\displaystyle y\not \in f(X).}"></span> Conversely, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\circ f=\operatorname {id} _{X},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo>=</mo> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\circ f=\operatorname {id} _{X},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f5645c27403915e3d21d6eca5fad99cdcd5561b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.906ex; height:2.509ex;" alt="{\displaystyle g\circ f=\operatorname {id} _{X},}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(x),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(x),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9867a6ecb3cc19e19e0af39fb46523e69e616c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.318ex; height:2.843ex;" alt="{\displaystyle y=f(x),}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=g(y),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=g(y),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af2f479eab87e0bc784a0ed4246fa429c6164392" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.156ex; height:2.843ex;" alt="{\displaystyle x=g(y),}"></span> and thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(y)=\{x\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(y)=\{x\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c6684307f77a0709f6a253a27a719b9d8bf8a5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.018ex; height:3.176ex;" alt="{\displaystyle f^{-1}(y)=\{x\}.}"></span> </p><p>The function <span class="texhtml mvar" style="font-style:italic;">f</span> is <i><a href="/wiki/Surjective" class="mw-redirect" title="Surjective">surjective</a></i> (or <i>onto</i>, or is a <i>surjection</i>) if its range <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b884e2d65b3356219702968b6751485fb8f38570" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.068ex; height:2.843ex;" alt="{\displaystyle f(X)}"></span> equals its codomain <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>, that is, if, for each element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> of the codomain, there exists some element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> of the domain such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a5080a8b0a963407ea74ffa50702563771518d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.672ex; height:2.843ex;" alt="{\displaystyle f(x)=y}"></span> (in other words, the preimage <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b357745fa4a2178733a502b4432072be8222fd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.618ex; height:3.176ex;" alt="{\displaystyle f^{-1}(y)}"></span> of every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cee1c0ec36a82f33f5e3d7434d5667881b4ec323" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.769ex; height:2.509ex;" alt="{\displaystyle y\in Y}"></span> is nonempty).<sup id="cite_ref-PCM_p.11_22-3" class="reference"><a href="#cite_note-PCM_p.11-22"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-EOM_Surjection_26-0" class="reference"><a href="#cite_note-EOM_Surjection-26"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> If, as usual in modern mathematics, the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a> is assumed, then <span class="texhtml mvar" style="font-style:italic;">f</span> is surjective if and only if there exists a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:Y\to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <mi>Y</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:Y\to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10a9844999dbfd6d1ba60a6d5d37779df277a74f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.421ex; height:2.509ex;" alt="{\displaystyle g:Y\to X}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\circ g=\operatorname {id} _{Y},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>g</mi> <mo>=</mo> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\circ g=\operatorname {id} _{Y},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/307ae8225c2aa1e6d08f0bc76bf698729263f9da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.76ex; height:2.509ex;" alt="{\displaystyle f\circ g=\operatorname {id} _{Y},}"></span> that is, if <span class="texhtml mvar" style="font-style:italic;">f</span> has a <a href="/wiki/Right_inverse_function" class="mw-redirect" title="Right inverse function">right inverse</a>.<sup id="cite_ref-EOM_Surjection_26-1" class="reference"><a href="#cite_note-EOM_Surjection-26"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> The axiom of choice is needed, because, if <span class="texhtml mvar" style="font-style:italic;">f</span> is surjective, one defines <span class="texhtml mvar" style="font-style:italic;">g</span> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(y)=x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(y)=x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a68c9ed4e962731675c415d078cad57281ae86b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.156ex; height:2.843ex;" alt="{\displaystyle g(y)=x,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is an <i>arbitrarily chosen</i> element of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9041b1fe9d0edbeee6a144fc971a4d51b9e5dda9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.265ex; height:3.176ex;" alt="{\displaystyle f^{-1}(y).}"></span> </p><p>The function <span class="texhtml mvar" style="font-style:italic;">f</span> is <i><a href="/wiki/Bijective" class="mw-redirect" title="Bijective">bijective</a></i> (or is a <i>bijection</i> or a <i>one-to-one correspondence</i>) if it is both injective and surjective.<sup id="cite_ref-PCM_p.11_22-4" class="reference"><a href="#cite_note-PCM_p.11-22"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-EOM_Bijection_27-0" class="reference"><a href="#cite_note-EOM_Bijection-27"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> That is, <span class="texhtml mvar" style="font-style:italic;">f</span> is bijective if, for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in Y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in Y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75e1353f0febe9bcf693d849ec82ce8d94e5f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.416ex; height:2.509ex;" alt="{\displaystyle y\in Y,}"></span> the preimage <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b357745fa4a2178733a502b4432072be8222fd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.618ex; height:3.176ex;" alt="{\displaystyle f^{-1}(y)}"></span> contains exactly one element. The function <span class="texhtml mvar" style="font-style:italic;">f</span> is bijective if and only if it admits an <a href="/wiki/Inverse_function" title="Inverse function">inverse function</a>, that is, a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:Y\to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <mi>Y</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:Y\to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10a9844999dbfd6d1ba60a6d5d37779df277a74f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.421ex; height:2.509ex;" alt="{\displaystyle g:Y\to X}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\circ f=\operatorname {id} _{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo>=</mo> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\circ f=\operatorname {id} _{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2935e82106a6aeb3c354d02246be16fe2ac7e4a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.259ex; height:2.509ex;" alt="{\displaystyle g\circ f=\operatorname {id} _{X}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\circ g=\operatorname {id} _{Y}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>g</mi> <mo>=</mo> <msub> <mi>id</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\circ g=\operatorname {id} _{Y}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/340d648bc681ff51cbcd847e207a453baccd313b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.76ex; height:2.509ex;" alt="{\displaystyle f\circ g=\operatorname {id} _{Y}.}"></span><sup id="cite_ref-EOM_Bijection_27-1" class="reference"><a href="#cite_note-EOM_Bijection-27"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> (Contrarily to the case of surjections, this does not require the axiom of choice; the proof is straightforward). </p><p>Every function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd1e080abef4bbdab67b43819c6431e7561361c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.583ex; height:2.509ex;" alt="{\displaystyle f:X\to Y}"></span> may be <a href="/wiki/Factorization" title="Factorization">factorized</a> as the composition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\circ s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\circ s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34c1d5fd76a33e0efee96d289ac9422fcc23ef43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.088ex; height:2.176ex;" alt="{\displaystyle i\circ s}"></span> of a surjection followed by an injection, where <span class="texhtml mvar" style="font-style:italic;">s</span> is the canonical surjection of <span class="texhtml mvar" style="font-style:italic;">X</span> onto <span class="texhtml"><i>f</i>(<i>X</i>)</span> and <span class="texhtml mvar" style="font-style:italic;">i</span> is the canonical injection of <span class="texhtml"><i>f</i>(<i>X</i>)</span> into <span class="texhtml mvar" style="font-style:italic;">Y</span>. This is the <i>canonical factorization</i> of <span class="texhtml mvar" style="font-style:italic;">f</span>. </p><p>"One-to-one" and "onto" are terms that were more common in the older English language literature; "injective", "surjective", and "bijective" were originally coined as French words in the second quarter of the 20th century by the <a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">Bourbaki group</a> and imported into English.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> As a word of caution, "a one-to-one function" is one that is injective, while a "one-to-one correspondence" refers to a bijective function. Also, the statement "<span class="texhtml"><i>f</i></span> maps <span class="texhtml"><i>X</i></span> <i>onto</i> <span class="texhtml"><i>Y</i></span>" differs from "<span class="texhtml"><i>f</i></span> maps <span class="texhtml"><i>X</i></span> <i>into</i> <span class="texhtml"><i>B</i></span>", in that the former implies that <span class="texhtml"><i>f</i></span> is surjective, while the latter makes no assertion about the nature of <span class="texhtml"><i>f</i></span>. In a complicated reasoning, the one letter difference can easily be missed. Due to the confusing nature of this older terminology, these terms have declined in popularity relative to the Bourbakian terms, which have also the advantage of being more symmetrical. </p> <div class="mw-heading mw-heading3"><h3 id="Restriction_and_extension">Restriction and extension <span class="anchor" id="Restrictions_and_extensions"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=28" title="Edit section: Restriction and extension"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Restriction_(mathematics)" title="Restriction (mathematics)">Restriction (mathematics)</a></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd1e080abef4bbdab67b43819c6431e7561361c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.583ex; height:2.509ex;" alt="{\displaystyle f:X\to Y}"></span> is a function and <span class="texhtml"><i>S</i></span> is a subset of <span class="texhtml"><i>X</i></span>, then the <i>restriction</i> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> to <i>S</i>, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f|_{S}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f|_{S}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dd8f943a75adb4c382a271541c010eb0d60b3b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.218ex; height:3.009ex;" alt="{\displaystyle f|_{S}}"></span>, is the function from <span class="texhtml"><i>S</i></span> to <span class="texhtml"><i>Y</i></span> defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f|_{S}(x)=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f|_{S}(x)=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dda9855e14e326136e924a70d0b0218a736bb7c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.873ex; height:3.009ex;" alt="{\displaystyle f|_{S}(x)=f(x)}"></span></dd></dl> <p>for all <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>S</i></span>. Restrictions can be used to define partial <a href="/wiki/Inverse_function" title="Inverse function">inverse functions</a>: if there is a <a href="/wiki/Subset" title="Subset">subset</a> <span class="texhtml"><i>S</i></span> of the domain of a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f|_{S}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f|_{S}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dd8f943a75adb4c382a271541c010eb0d60b3b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.218ex; height:3.009ex;" alt="{\displaystyle f|_{S}}"></span> is injective, then the canonical surjection of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f|_{S}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f|_{S}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dd8f943a75adb4c382a271541c010eb0d60b3b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.218ex; height:3.009ex;" alt="{\displaystyle f|_{S}}"></span> onto its image <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f|_{S}(S)=f(S)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f|_{S}(S)=f(S)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bac2730187f424f13f20378bbff79347e40dcea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.212ex; height:3.009ex;" alt="{\displaystyle f|_{S}(S)=f(S)}"></span> is a bijection, and thus has an inverse function from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(S)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(S)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99a865d36b32ea1d60f15dc3093f5b28093f192b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.587ex; height:2.843ex;" alt="{\displaystyle f(S)}"></span> to <span class="texhtml"><i>S</i></span>. One application is the definition of <a href="/wiki/Inverse_trigonometric_functions" title="Inverse trigonometric functions">inverse trigonometric functions</a>. For example, the <a href="/wiki/Cosine" class="mw-redirect" title="Cosine">cosine</a> function is injective when restricted to the <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">interval</a> <span class="texhtml">&#91;0, <i>π</i>&#93;</span>. The image of this restriction is the interval <span class="texhtml">&#91;−1, 1&#93;</span>, and thus the restriction has an inverse function from <span class="texhtml">&#91;−1, 1&#93;</span> to <span class="texhtml">&#91;0, <i>π</i>&#93;</span>, which is called <a href="/wiki/Arccosine" class="mw-redirect" title="Arccosine">arccosine</a> and is denoted <span class="texhtml">arccos</span>. </p><p>Function restriction may also be used for "gluing" functions together. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle X=\bigcup _{i\in I}U_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <munder> <mo>&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle X=\bigcup _{i\in I}U_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b87cdc2074a4c87a94344669b3d5d69c8228252a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.513ex; height:3.009ex;" alt="{\textstyle X=\bigcup _{i\in I}U_{i}}"></span> be the decomposition of <span class="texhtml mvar" style="font-style:italic;">X</span> as a <a href="/wiki/Set_union" class="mw-redirect" title="Set union">union</a> of subsets, and suppose that a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{i}:U_{i}\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>:</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{i}:U_{i}\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/767ac1e7aabcf452776449785782fd0f36fec9c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.651ex; height:2.509ex;" alt="{\displaystyle f_{i}:U_{i}\to Y}"></span> is defined on each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b21a6f475b0e68475c6019abe1fed0b415e0e42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.387ex; height:2.509ex;" alt="{\displaystyle U_{i}}"></span> such that for each pair <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i,j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i,j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4cbf8bbc622154cda8208d6e339495fe16a1f9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.794ex; height:2.509ex;" alt="{\displaystyle i,j}"></span> of indices, the restrictions of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65da883ca3d16b461e46c94777b0d9c4aa010e79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.939ex; height:2.509ex;" alt="{\displaystyle f_{i}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acc195ab3f9d65994b47774eb013601d09217aee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.049ex; height:2.843ex;" alt="{\displaystyle f_{j}}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{i}\cap U_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{i}\cap U_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be592e07a07b4ce92cc30774ae3a8d984eca426e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.467ex; height:2.843ex;" alt="{\displaystyle U_{i}\cap U_{j}}"></span> are equal. Then this defines a unique function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\to Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\to Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd1e080abef4bbdab67b43819c6431e7561361c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.583ex; height:2.509ex;" alt="{\displaystyle f:X\to Y}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f|_{U_{i}}=f_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f|_{U_{i}}=f_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92463d8f349ef5f9731495571ea43612abc5efd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:8.942ex; height:3.176ex;" alt="{\displaystyle f|_{U_{i}}=f_{i}}"></span> for all <span class="texhtml mvar" style="font-style:italic;">i</span>. This is the way that functions on <a href="/wiki/Manifold" title="Manifold">manifolds</a> are defined. </p><p>An <i>extension</i> of a function <span class="texhtml mvar" style="font-style:italic;">f</span> is a function <span class="texhtml mvar" style="font-style:italic;">g</span> such that <span class="texhtml mvar" style="font-style:italic;">f</span> is a restriction of <span class="texhtml mvar" style="font-style:italic;">g</span>. A typical use of this concept is the process of <a href="/wiki/Analytic_continuation" title="Analytic continuation">analytic continuation</a>, that allows extending functions whose domain is a small part of the <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a> to functions whose domain is almost the whole complex plane. </p><p>Here is another classical example of a function extension that is encountered when studying <a href="/wiki/Homography" title="Homography">homographies</a> of the <a href="/wiki/Real_line" class="mw-redirect" title="Real line">real line</a>. A <i>homography</i> is a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x)={\frac {ax+b}{cx+d}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <mrow> <mi>c</mi> <mi>x</mi> <mo>+</mo> <mi>d</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x)={\frac {ax+b}{cx+d}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30ea2d0884deecb78aa8fcff23d688b6cc0f512d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:14.81ex; height:5.676ex;" alt="{\displaystyle h(x)={\frac {ax+b}{cx+d}}}"></span> such that <span class="texhtml"><i>ad</i> − <i>bc</i> ≠ 0</span>. Its domain is the set of all <a href="/wiki/Real_number" title="Real number">real numbers</a> different from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -d/c,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -d/c,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1fe216fd10ada1d567e72ed5f059bfe97f1a1ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.84ex; height:2.843ex;" alt="{\displaystyle -d/c,}"></span> and its image is the set of all real numbers different from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a/c.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a/c.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff6eba9778a4571d653a0173b97d104de1ef7216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.046ex; height:2.843ex;" alt="{\displaystyle a/c.}"></span> If one extends the real line to the <a href="/wiki/Projectively_extended_real_line" title="Projectively extended real line">projectively extended real line</a> by including <span class="texhtml">∞</span>, one may extend <span class="texhtml mvar" style="font-style:italic;">h</span> to a bijection from the extended real line to itself by setting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(\infty )=a/c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(\infty )=a/c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/993cd2447b94a4bbf667f8524f89ac64114d7fb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.97ex; height:2.843ex;" alt="{\displaystyle h(\infty )=a/c}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(-d/c)=\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(-d/c)=\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0b4e44944640076eadf15cd9062568526a2f868" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.764ex; height:2.843ex;" alt="{\displaystyle h(-d/c)=\infty }"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="In_calculus">In calculus</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=29" title="Edit section: In calculus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/History_of_the_function_concept" title="History of the function concept">History of the function concept</a></div> <p>The idea of function, starting in the 17th century, was fundamental to the new <a href="/wiki/Infinitesimal_calculus" class="mw-redirect" title="Infinitesimal calculus">infinitesimal calculus</a>. At that time, only <a href="/wiki/Real-valued_function" title="Real-valued function">real-valued</a> functions of a <a href="/wiki/Function_of_a_real_variable" title="Function of a real variable">real variable</a> were considered, and all functions were assumed to be <a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function">smooth</a>. But the definition was soon extended to <a href="#Multivariate_function">functions of several variables</a> and to <a href="/wiki/Functions_of_a_complex_variable" class="mw-redirect" title="Functions of a complex variable">functions of a complex variable</a>. In the second half of the 19th century, the mathematically rigorous definition of a function was introduced, and functions with arbitrary domains and codomains were defined. </p><p>Functions are now used throughout all areas of mathematics. In introductory <a href="/wiki/Calculus" title="Calculus">calculus</a>, when the word <i>function</i> is used without qualification, it means a real-valued function of a single real variable. The more general definition of a function is usually introduced to second or third year college students with <a href="/wiki/STEM" class="mw-redirect" title="STEM">STEM</a> majors, and in their senior year they are introduced to calculus in a larger, more rigorous setting in courses such as <a href="/wiki/Real_analysis" title="Real analysis">real analysis</a> and <a href="/wiki/Complex_analysis" title="Complex analysis">complex analysis</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Real_function">Real function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=30" title="Edit section: Real function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Gerade.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/76/Gerade.svg/220px-Gerade.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/76/Gerade.svg/330px-Gerade.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/76/Gerade.svg/440px-Gerade.svg.png 2x" data-file-width="600" data-file-height="600" /></a><figcaption>Graph of a linear function</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Polynomialdeg2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Polynomialdeg2.svg/220px-Polynomialdeg2.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Polynomialdeg2.svg/330px-Polynomialdeg2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Polynomialdeg2.svg/440px-Polynomialdeg2.svg.png 2x" data-file-width="320" data-file-height="320" /></a><figcaption>Graph of a polynomial function, here a quadratic function.</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Sine_cosine_one_period.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/71/Sine_cosine_one_period.svg/220px-Sine_cosine_one_period.svg.png" decoding="async" width="220" height="88" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/71/Sine_cosine_one_period.svg/330px-Sine_cosine_one_period.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/71/Sine_cosine_one_period.svg/440px-Sine_cosine_one_period.svg.png 2x" data-file-width="600" data-file-height="240" /></a><figcaption>Graph of two trigonometric functions: <a href="/wiki/Sine" class="mw-redirect" title="Sine">sine</a> and <a href="/wiki/Cosine" class="mw-redirect" title="Cosine">cosine</a>.</figcaption></figure> <p>A <i>real function</i> is a <a href="/wiki/Real-valued_function" title="Real-valued function">real-valued</a> <a href="/wiki/Function_of_a_real_variable" title="Function of a real variable">function of a real variable</a>, that is, a function whose codomain is the <a href="/wiki/Real_number" title="Real number">field of real numbers</a> and whose domain is a set of <a href="/wiki/Real_number" title="Real number">real numbers</a> that contains an <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">interval</a>. In this section, these functions are simply called <i>functions</i>. </p><p>The functions that are most commonly considered in mathematics and its applications have some regularity, that is they are <a href="/wiki/Continuous_function" title="Continuous function">continuous</a>, <a href="/wiki/Differentiable_function" title="Differentiable function">differentiable</a>, and even <a href="/wiki/Analytic_function" title="Analytic function">analytic</a>. This regularity insures that these functions can be visualized by their <a href="#Graph_and_plots">graphs</a>. In this section, all functions are differentiable in some interval. </p><p>Functions enjoy <a href="/wiki/Pointwise_operation" class="mw-redirect" title="Pointwise operation">pointwise operations</a>, that is, if <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> are functions, their sum, difference and product are functions defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(f+g)(x)&amp;=f(x)+g(x)\\(f-g)(x)&amp;=f(x)-g(x)\\(f\cdot g)(x)&amp;=f(x)\cdot g(x)\\\end{aligned}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>f</mi> <mo>+</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2212;<!-- − --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(f+g)(x)&amp;=f(x)+g(x)\\(f-g)(x)&amp;=f(x)-g(x)\\(f\cdot g)(x)&amp;=f(x)\cdot g(x)\\\end{aligned}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e426d18a2bc5fb702b5ba0497477739c65f1a667" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:26.193ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}(f+g)(x)&amp;=f(x)+g(x)\\(f-g)(x)&amp;=f(x)-g(x)\\(f\cdot g)(x)&amp;=f(x)\cdot g(x)\\\end{aligned}}.}"></span></dd></dl> <p>The domains of the resulting functions are the <a href="/wiki/Set_intersection" class="mw-redirect" title="Set intersection">intersection</a> of the domains of <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span>. The quotient of two functions is defined similarly by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {f}{g}}(x)={\frac {f(x)}{g(x)}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>f</mi> <mi>g</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {f}{g}}(x)={\frac {f(x)}{g(x)}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3f8c6b970bb8c30650eaea1922c3921aec7d659" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.253ex; height:6.509ex;" alt="{\displaystyle {\frac {f}{g}}(x)={\frac {f(x)}{g(x)}},}"></span></dd></dl> <p>but the domain of the resulting function is obtained by removing the <a href="/wiki/Zero_of_a_function" title="Zero of a function">zeros</a> of <span class="texhtml mvar" style="font-style:italic;">g</span> from the intersection of the domains of <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span>. </p><p>The <a href="/wiki/Polynomial_function" class="mw-redirect" title="Polynomial function">polynomial functions</a> are defined by <a href="/wiki/Polynomial" title="Polynomial">polynomials</a>, and their domain is the whole set of real numbers. They include <a href="/wiki/Constant_function" title="Constant function">constant functions</a>, <a href="/wiki/Linear_function" title="Linear function">linear functions</a> and <a href="/wiki/Quadratic_function" title="Quadratic function">quadratic functions</a>. <a href="/wiki/Rational_function" title="Rational function">Rational functions</a> are quotients of two polynomial functions, and their domain is the real numbers with a finite number of them removed to avoid <a href="/wiki/Division_by_zero" title="Division by zero">division by zero</a>. The simplest rational function is the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto {\frac {1}{x}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto {\frac {1}{x}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/669c4e870914fd443f1c2264450695a3b98fa040" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.756ex; height:5.176ex;" alt="{\displaystyle x\mapsto {\frac {1}{x}},}"></span> whose graph is a <a href="/wiki/Hyperbola" title="Hyperbola">hyperbola</a>, and whose domain is the whole <a href="/wiki/Real_line" class="mw-redirect" title="Real line">real line</a> except for 0. </p><p>The <a href="/wiki/Derivative" title="Derivative">derivative</a> of a real differentiable function is a real function. An <a href="/wiki/Antiderivative" title="Antiderivative">antiderivative</a> of a continuous real function is a real function that has the original function as a derivative. For example, the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x\mapsto {\frac {1}{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x\mapsto {\frac {1}{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4e512047f779008dd32f5b041baceb2c4dfa9a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.72ex; height:3.343ex;" alt="{\textstyle x\mapsto {\frac {1}{x}}}"></span> is continuous, and even differentiable, on the positive real numbers. Thus one antiderivative, which takes the value zero for <span class="texhtml"><i>x</i> = 1</span>, is a differentiable function called the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a>. </p><p>A real function <span class="texhtml mvar" style="font-style:italic;">f</span> is <a href="/wiki/Monotonic_function" title="Monotonic function">monotonic</a> in an interval if the sign of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {f(x)-f(y)}{x-y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {f(x)-f(y)}{x-y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/857bf1f8402b34ead332926a1050dff7f421bc3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:12.337ex; height:6.176ex;" alt="{\displaystyle {\frac {f(x)-f(y)}{x-y}}}"></span> does not depend of the choice of <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> in the interval. If the function is differentiable in the interval, it is monotonic if the sign of the derivative is constant in the interval. If a real function <span class="texhtml mvar" style="font-style:italic;">f</span> is monotonic in an interval <span class="texhtml mvar" style="font-style:italic;">I</span>, it has an <a href="/wiki/Inverse_function" title="Inverse function">inverse function</a>, which is a real function with domain <span class="texhtml"><i>f</i>(<i>I</i>)</span> and image <span class="texhtml mvar" style="font-style:italic;">I</span>. This is how <a href="/wiki/Inverse_trigonometric_functions" title="Inverse trigonometric functions">inverse trigonometric functions</a> are defined in terms of <a href="/wiki/Trigonometric_functions" title="Trigonometric functions">trigonometric functions</a>, where the trigonometric functions are monotonic. Another example: the natural logarithm is monotonic on the positive real numbers, and its image is the whole real line; therefore it has an inverse function that is a <a href="/wiki/Bijection" title="Bijection">bijection</a> between the real numbers and the positive real numbers. This inverse is the <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a>. </p><p>Many other real functions are defined either by the <a href="/wiki/Implicit_function_theorem" title="Implicit function theorem">implicit function theorem</a> (the inverse function is a particular instance) or as solutions of <a href="/wiki/Differential_equation" title="Differential equation">differential equations</a>. For example, the <a href="/wiki/Sine" class="mw-redirect" title="Sine">sine</a> and the <a href="/wiki/Cosine" class="mw-redirect" title="Cosine">cosine</a> functions are the solutions of the <a href="/wiki/Linear_differential_equation" title="Linear differential equation">linear differential equation</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y''+y=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mo>&#x2033;</mo> </msup> <mo>+</mo> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y''+y=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95ca5e3d2957217ee417aff328d32fbff2de8d27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.554ex; height:2.843ex;" alt="{\displaystyle y&#039;&#039;+y=0}"></span></dd></dl> <p>such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin 0=0,\quad \cos 0=1,\quad {\frac {\partial \sin x}{\partial x}}(0)=1,\quad {\frac {\partial \cos x}{\partial x}}(0)=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>0</mn> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="1em" /> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>0</mn> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin 0=0,\quad \cos 0=1,\quad {\frac {\partial \sin x}{\partial x}}(0)=1,\quad {\frac {\partial \cos x}{\partial x}}(0)=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bd7b575eed317bfdd3cbf64c5411ae3fcf72764" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:57.252ex; height:5.509ex;" alt="{\displaystyle \sin 0=0,\quad \cos 0=1,\quad {\frac {\partial \sin x}{\partial x}}(0)=1,\quad {\frac {\partial \cos x}{\partial x}}(0)=0.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Vector-valued_function">Vector-valued function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=31" title="Edit section: Vector-valued function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Vector-valued_function" title="Vector-valued function">Vector-valued function</a> and <a href="/wiki/Vector_field" title="Vector field">Vector field</a></div> <p>When the elements of the codomain of a function are <a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">vectors</a>, the function is said to be a vector-valued function. These functions are particularly useful in applications, for example modeling physical properties. For example, the function that associates to each point of a fluid its <a href="/wiki/Velocity_vector" class="mw-redirect" title="Velocity vector">velocity vector</a> is a vector-valued function. </p><p>Some vector-valued functions are defined on a subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> or other spaces that share geometric or <a href="/wiki/Topological" class="mw-redirect" title="Topological">topological</a> properties of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>, such as <a href="/wiki/Manifolds" class="mw-redirect" title="Manifolds">manifolds</a>. These vector-valued functions are given the name <i>vector fields</i>. </p> <div class="mw-heading mw-heading2"><h2 id="Function_space">Function space</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=32" title="Edit section: Function space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Function_space" title="Function space">Function space</a> and <a href="/wiki/Functional_analysis" title="Functional analysis">Functional analysis</a></div> <p>In <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, and more specifically in <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a>, a <b>function space</b> is a set of <a href="/wiki/Scalar-valued_function" class="mw-redirect" title="Scalar-valued function">scalar-valued</a> or <a href="/wiki/Vector-valued_function" title="Vector-valued function">vector-valued functions</a>, which share a specific property and form a <a href="/wiki/Topological_vector_space" title="Topological vector space">topological vector space</a>. For example, the real <a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function">smooth functions</a> with a <a href="/wiki/Compact_support" class="mw-redirect" title="Compact support">compact support</a> (that is, they are zero outside some <a href="/wiki/Compact_set" class="mw-redirect" title="Compact set">compact set</a>) form a function space that is at the basis of the theory of <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">distributions</a>. </p><p>Function spaces play a fundamental role in advanced mathematical analysis, by allowing the use of their algebraic and <a href="/wiki/Topology" title="Topology">topological</a> properties for studying properties of functions. For example, all theorems of existence and uniqueness of solutions of <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary</a> or <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equations</a> result of the study of function spaces. </p> <div class="mw-heading mw-heading2"><h2 id="Multi-valued_functions">Multi-valued functions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=33" title="Edit section: Multi-valued functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Multi-valued_function" class="mw-redirect" title="Multi-valued function">Multi-valued function</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Function_with_two_values_1.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Function_with_two_values_1.svg/220px-Function_with_two_values_1.svg.png" decoding="async" width="220" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Function_with_two_values_1.svg/330px-Function_with_two_values_1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Function_with_two_values_1.svg/440px-Function_with_two_values_1.svg.png 2x" data-file-width="440" data-file-height="320" /></a><figcaption>Together, the two square roots of all nonnegative real numbers form a single smooth curve.</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Xto3minus3x.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/da/Xto3minus3x.svg/220px-Xto3minus3x.svg.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/da/Xto3minus3x.svg/330px-Xto3minus3x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/da/Xto3minus3x.svg/440px-Xto3minus3x.svg.png 2x" data-file-width="319" data-file-height="239" /></a><figcaption></figcaption></figure> <p>Several methods for specifying functions of real or complex variables start from a local definition of the function at a point or on a <a href="/wiki/Neighbourhood_(mathematics)" title="Neighbourhood (mathematics)">neighbourhood</a> of a point, and then extend by continuity the function to a much larger domain. Frequently, for a starting point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8b35dd572e629881da4083ad1681bc7cf420304" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.031ex; height:2.009ex;" alt="{\displaystyle x_{0},}"></span> there are several possible starting values for the function. </p><p>For example, in defining the <a href="/wiki/Square_root" title="Square root">square root</a> as the inverse function of the square function, for any positive real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8b35dd572e629881da4083ad1681bc7cf420304" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.031ex; height:2.009ex;" alt="{\displaystyle x_{0},}"></span> there are two choices for the value of the square root, one of which is positive and denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {x_{0}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {x_{0}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43d17683413882a6695d00f6e2d49ba450ab4446" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:4.967ex; height:3.009ex;" alt="{\displaystyle {\sqrt {x_{0}}},}"></span> and another which is negative and denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\sqrt {x_{0}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\sqrt {x_{0}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d50109ab6da5d52c015b69ef106459324ba333e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:6.775ex; height:3.009ex;" alt="{\displaystyle -{\sqrt {x_{0}}}.}"></span> These choices define two continuous functions, both having the nonnegative real numbers as a domain, and having either the nonnegative or the nonpositive real numbers as images. When looking at the graphs of these functions, one can see that, together, they form a single <a href="/wiki/Smooth_curve" class="mw-redirect" title="Smooth curve">smooth curve</a>. It is therefore often useful to consider these two square root functions as a single function that has two values for positive <span class="texhtml mvar" style="font-style:italic;">x</span>, one value for 0 and no value for negative <span class="texhtml mvar" style="font-style:italic;">x</span>. </p><p>In the preceding example, one choice, the positive square root, is more natural than the other. This is not the case in general. For example, let consider the <a href="/wiki/Implicit_function" title="Implicit function">implicit function</a> that maps <span class="texhtml mvar" style="font-style:italic;">y</span> to a <a href="/wiki/Root_of_a_function" class="mw-redirect" title="Root of a function">root</a> <span class="texhtml mvar" style="font-style:italic;">x</span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{3}-3x-y=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{3}-3x-y=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2b2ac300ad197f4bf3deae55b4b2e95ff3a03e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.973ex; height:3.009ex;" alt="{\displaystyle x^{3}-3x-y=0}"></span> (see the figure on the right). For <span class="texhtml"><i>y</i> = 0</span> one may choose either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0,{\sqrt {3}},{\text{ or }}-{\sqrt {3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;or&#xA0;</mtext> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0,{\sqrt {3}},{\text{ or }}-{\sqrt {3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c03884332a438b88000c08a603f510e1cb1afb7d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.503ex; height:2.843ex;" alt="{\displaystyle 0,{\sqrt {3}},{\text{ or }}-{\sqrt {3}}}"></span> for <span class="texhtml mvar" style="font-style:italic;">x</span>. By the <a href="/wiki/Implicit_function_theorem" title="Implicit function theorem">implicit function theorem</a>, each choice defines a function; for the first one, the (maximal) domain is the interval <span class="texhtml">&#91;−2, 2&#93;</span> and the image is <span class="texhtml">&#91;−1, 1&#93;</span>; for the second one, the domain is <span class="texhtml">&#91;−2, ∞)</span> and the image is <span class="texhtml">&#91;1, ∞)</span>; for the last one, the domain is <span class="texhtml">(−∞, 2&#93;</span> and the image is <span class="texhtml">(−∞, −1&#93;</span>. As the three graphs together form a smooth curve, and there is no reason for preferring one choice, these three functions are often considered as a single <i>multi-valued function</i> of <span class="texhtml mvar" style="font-style:italic;">y</span> that has three values for <span class="texhtml">−2 &lt; <i>y</i> &lt; 2</span>, and only one value for <span class="texhtml"><i>y</i> ≤ −2</span> and <span class="texhtml"><i>y</i> ≥ −2</span>. </p><p>Usefulness of the concept of multi-valued functions is clearer when considering complex functions, typically <a href="/wiki/Analytic_function" title="Analytic function">analytic functions</a>. The domain to which a complex function may be extended by <a href="/wiki/Analytic_continuation" title="Analytic continuation">analytic continuation</a> generally consists of almost the whole <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a>. However, when extending the domain through two different paths, one often gets different values. For example, when extending the domain of the square root function, along a path of complex numbers with positive imaginary parts, one gets <span class="texhtml mvar" style="font-style:italic;">i</span> for the square root of −1; while, when extending through complex numbers with negative imaginary parts, one gets <span class="texhtml">−<i>i</i></span>. There are generally two ways of solving the problem. One may define a function that is not <a href="/wiki/Continuous_function" title="Continuous function">continuous</a> along some curve, called a <a href="/wiki/Branch_cut" class="mw-redirect" title="Branch cut">branch cut</a>. Such a function is called the <a href="/wiki/Principal_value" title="Principal value">principal value</a> of the function. The other way is to consider that one has a <i>multi-valued function</i>, which is analytic everywhere except for isolated singularities, but whose value may "jump" if one follows a closed loop around a singularity. This jump is called the <a href="/wiki/Monodromy" title="Monodromy">monodromy</a>. </p> <div class="mw-heading mw-heading2"><h2 id="In_the_foundations_of_mathematics">In the foundations of mathematics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=34" title="Edit section: In the foundations of mathematics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The definition of a function that is given in this article requires the concept of <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a>, since the domain and the codomain of a function must be a set. This is not a problem in usual mathematics, as it is generally not difficult to consider only functions whose domain and codomain are sets, which are well defined, even if the domain is not explicitly defined. However, it is sometimes useful to consider more general functions. </p><p>For example, the <a href="/wiki/Singleton_set" class="mw-redirect" title="Singleton set">singleton set</a> may be considered as a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto \{x\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto \{x\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b393766c20d0e835b81a0f3fd5007f5746eb1a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.245ex; height:2.843ex;" alt="{\displaystyle x\mapsto \{x\}.}"></span> Its domain would include all sets, and therefore would not be a set. In usual mathematics, one avoids this kind of problem by specifying a domain, which means that one has many singleton functions. However, when establishing foundations of mathematics, one may have to use functions whose domain, codomain or both are not specified, and some authors, often logicians, give precise definitions for these weakly specified functions.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p><p>These generalized functions may be critical in the development of a formalization of the <a href="/wiki/Foundations_of_mathematics" title="Foundations of mathematics">foundations of mathematics</a>. For example, <a href="/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory" title="Von Neumann–Bernays–Gödel set theory">Von Neumann–Bernays–Gödel set theory</a>, is an extension of the set theory in which the collection of all sets is a <a href="/wiki/Class_(set_theory)" title="Class (set theory)">class</a>. This theory includes the <a href="/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory#NBG&#39;s_axiom_of_replacement" title="Von Neumann–Bernays–Gödel set theory">replacement axiom</a>, which may be stated as: If <span class="texhtml mvar" style="font-style:italic;">X</span> is a set and <span class="texhtml mvar" style="font-style:italic;">F</span> is a function, then <span class="texhtml"><i>F</i>[<i>X</i>]</span> is a set. </p><p>In alternative formulations of the foundations of mathematics using <a href="/wiki/Type_theory" title="Type theory">type theory</a> rather than set theory, functions are taken as <a href="/wiki/Primitive_notion" title="Primitive notion">primitive notions</a> rather than defined from other kinds of object. They are the inhabitants of <a href="/wiki/Function_type" title="Function type">function types</a>, and may be constructed using expressions in the <a href="/wiki/Lambda_calculus" title="Lambda calculus">lambda calculus</a>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="In_computer_science">In computer science</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=35" title="Edit section: In computer science"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Function_(computer_programming)" title="Function (computer programming)">Function (computer programming)</a> and <a href="/wiki/Lambda_calculus" title="Lambda calculus">Lambda calculus</a></div> <p>In <a href="/wiki/Computer_programming" title="Computer programming">computer programming</a>, a <a href="/wiki/Function_(programming)" class="mw-redirect" title="Function (programming)">function</a> is, in general, a piece of a <a href="/wiki/Computer_program" title="Computer program">computer program</a>, which <a href="/wiki/Implementation" title="Implementation">implements</a> the abstract concept of function. That is, it is a program unit that produces an output for each input. However, in many <a href="/wiki/Programming_language" title="Programming language">programming languages</a> every <a href="/wiki/Subroutine" class="mw-redirect" title="Subroutine">subroutine</a> is called a function, even when there is no output, and when the functionality consists simply of modifying some data in the <a href="/wiki/Computer_memory" title="Computer memory">computer memory</a>. </p><p><a href="/wiki/Functional_programming" title="Functional programming">Functional programming</a> is the <a href="/wiki/Programming_paradigm" title="Programming paradigm">programming paradigm</a> consisting of building programs by using only subroutines that behave like mathematical functions. For example, <code>if_then_else</code> is a function that takes three functions as arguments, and, depending on the result of the first function (<i>true</i> or <i>false</i>), returns the result of either the second or the third function. An important advantage of functional programming is that it makes easier <a href="/wiki/Program_proof" class="mw-redirect" title="Program proof">program proofs</a>, as being based on a well founded theory, the <a href="/wiki/Lambda_calculus" title="Lambda calculus">lambda calculus</a> (see below). </p><p>Except for computer-language terminology, "function" has the usual mathematical meaning in <a href="/wiki/Computer_science" title="Computer science">computer science</a>. In this area, a property of major interest is the <a href="/wiki/Computable_function" title="Computable function">computability</a> of a function. For giving a precise meaning to this concept, and to the related concept of <a href="/wiki/Algorithm" title="Algorithm">algorithm</a>, several <a href="/wiki/Models_of_computation" class="mw-redirect" title="Models of computation">models of computation</a> have been introduced, the old ones being <a href="/wiki/%CE%9C-recursive_function" class="mw-redirect" title="Μ-recursive function">general recursive functions</a>, <a href="/wiki/Lambda_calculus" title="Lambda calculus">lambda calculus</a> and <a href="/wiki/Turing_machine" title="Turing machine">Turing machine</a>. The fundamental theorem of <a href="/wiki/Computability_theory" title="Computability theory">computability theory</a> is that these three models of computation define the same set of computable functions, and that all the other models of computation that have ever been proposed define the same set of computable functions or a smaller one. The <a href="/wiki/Church%E2%80%93Turing_thesis" title="Church–Turing thesis">Church–Turing thesis</a> is the claim that every philosophically acceptable definition of a <i>computable function</i> defines also the same functions. </p><p>General recursive functions are <a href="/wiki/Partial_function" title="Partial function">partial functions</a> from integers to integers that can be defined from </p> <ul><li><a href="/wiki/Constant_function" title="Constant function">constant functions</a>,</li> <li><a href="/wiki/Successor_function" title="Successor function">successor</a>, and</li> <li><a href="/wiki/Projection_function" class="mw-redirect" title="Projection function">projection</a> functions</li></ul> <p>via the operators </p> <ul><li><a href="#Function_composition">composition</a>,</li> <li><a href="/wiki/Primitive_recursion" class="mw-redirect" title="Primitive recursion">primitive recursion</a>, and</li> <li><a href="/wiki/%CE%9C_operator" title="Μ operator">minimization</a>.</li></ul> <p>Although defined only for functions from integers to integers, they can model any computable function as a consequence of the following properties: </p> <ul><li>a computation is the manipulation of finite sequences of symbols (digits of numbers, formulas, ...),</li> <li>every sequence of symbols may be coded as a sequence of <a href="/wiki/Bit" title="Bit">bits</a>,</li> <li>a bit sequence can be interpreted as the <a href="/wiki/Binary_representation" class="mw-redirect" title="Binary representation">binary representation</a> of an integer.</li></ul> <p><a href="/wiki/Lambda_calculus" title="Lambda calculus">Lambda calculus</a> is a theory that defines computable functions without using <a href="/wiki/Set_theory" title="Set theory">set theory</a>, and is the theoretical background of functional programming. It consists of <i>terms</i> that are either variables, function definitions (<i>𝜆</i>-terms), or applications of functions to terms. Terms are manipulated through some rules, (the <span class="texhtml"><i>α</i></span>-equivalence, the <span class="texhtml mvar" style="font-style:italic;">β</span>-reduction, and the <span class="texhtml mvar" style="font-style:italic;">η</span>-conversion), which are the <a href="/wiki/Axiom" title="Axiom">axioms</a> of the theory and may be interpreted as rules of computation. </p><p>In its original form, lambda calculus does not include the concepts of domain and codomain of a function. Roughly speaking, they have been introduced in the theory under the name of <i>type</i> in <a href="/wiki/Typed_lambda_calculus" title="Typed lambda calculus">typed lambda calculus</a>. Most kinds of typed lambda calculi can define fewer functions than untyped lambda calculus. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=36" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Subpages">Subpages</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=37" title="Edit section: Subpages"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 22em;"> <ul><li><a href="/wiki/History_of_the_function_concept" title="History of the function concept">History of the function concept</a></li> <li><a href="/wiki/List_of_types_of_functions" title="List of types of functions">List of types of functions</a></li> <li><a href="/wiki/List_of_functions" class="mw-redirect" title="List of functions">List of functions</a></li> <li><a href="/wiki/Function_fitting" class="mw-redirect" title="Function fitting">Function fitting</a></li> <li><a href="/wiki/Implicit_function" title="Implicit function">Implicit function</a></li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="Generalizations">Generalizations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=38" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1184024115"><div class="div-col" style="column-width: 22em;"> <ul><li><a href="/wiki/Higher-order_function" title="Higher-order function">Higher-order function</a></li> <li><a href="/wiki/Homomorphism" title="Homomorphism">Homomorphism</a></li> <li><a href="/wiki/Morphism" title="Morphism">Morphism</a></li> <li><a href="/wiki/Microfunction" class="mw-redirect" title="Microfunction">Microfunction</a></li> <li><a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">Distribution</a></li> <li><a href="/wiki/Functor" title="Functor">Functor</a></li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="Related_topics">Related topics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=39" title="Edit section: Related topics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1184024115"><div class="div-col" style="column-width: 22em;"> <ul><li><a href="/wiki/Associative_array" title="Associative array">Associative array</a></li> <li><a href="/wiki/Closed-form_expression" title="Closed-form expression">Closed-form expression</a></li> <li><a href="/wiki/Elementary_function" title="Elementary function">Elementary function</a></li> <li><a href="/wiki/Functional_(mathematics)" title="Functional (mathematics)">Functional</a></li> <li><a href="/wiki/Functional_decomposition" title="Functional decomposition">Functional decomposition</a></li> <li><a href="/wiki/Functional_predicate" title="Functional predicate">Functional predicate</a></li> <li><a href="/wiki/Functional_programming" title="Functional programming">Functional programming</a></li> <li><a href="/wiki/Parametric_equation" title="Parametric equation">Parametric equation</a></li> <li><a href="/wiki/Set_function" title="Set function">Set function</a></li> <li><a href="/wiki/Simple_function" title="Simple function">Simple function</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=40" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">This definition of "graph" refers to a <i>set</i> of pairs of objects. Graphs, in the sense of <i>diagrams</i>, are most applicable to functions from the real numbers to themselves. All functions can be described by sets of pairs but it may not be practical to construct a diagram for functions between other sets (such as sets of matrices).</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">The true domain of such a function is often called the <i>domain of definition</i> of the function.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><span class="texhtml mvar" style="font-style:italic;">n</span> may also be 1, thus subsuming functions as defined above. For <span class="texhtml"><i>n</i> = 0</span>, each <a href="/wiki/Constant_(mathematics)" title="Constant (mathematics)">constant</a> is a special case of a multivariate function, too.</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">Here "elementary" has not exactly its common sense: although most functions that are encountered in elementary courses of mathematics are elementary in this sense, some elementary functions are not elementary for the common sense, for example, those that involve roots of polynomials of high degree.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">By definition, the graph of the empty function to <span class="texhtml mvar" style="font-style:italic;">X</span> is a subset of the Cartesian product <span class="texhtml">∅ × <i>X</i></span>, and this product is empty.</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text">The <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a> is not needed here, as the choice is done in a single set.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=41" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-halmos-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-halmos_1-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1970">Halmos 1970</a>, p.&#160;30; the words <i>map</i>, <i>mapping</i>, <i>transformation</i>, <i>correspondence</i>, and <i>operator</i> are sometimes used synonymously.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1970">Halmos 1970</a></span> </li> <li id="cite_note-codomain-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-codomain_3-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation cs1"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Mapping&amp;oldid=37940">"Mapping"</a>. <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>. <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>. 2001 [1994].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Mapping&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DMapping%26oldid%3D37940&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.britannica.com/science/function-mathematics">"function | Definition, Types, Examples, &amp; Facts"</a>. <i>Encyclopedia Britannica</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-17</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Encyclopedia+Britannica&amp;rft.atitle=function+%7C+Definition%2C+Types%2C+Examples%2C+%26+Facts&amp;rft_id=https%3A%2F%2Fwww.britannica.com%2Fscience%2Ffunction-mathematics&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTESpivak200839-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESpivak200839_6-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSpivak2008">Spivak 2008</a>, p.&#160;39.</span> </li> <li id="cite_note-EOM_Function-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-EOM_Function_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-EOM_Function_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-EOM_Function_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-EOM_Function_7-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-EOM_Function_7-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-EOM_Function_7-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKudryavtsev2001" class="citation cs1">Kudryavtsev, L.D. (2001) [1994]. <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Function&amp;oldid=36823">"Function"</a>. <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>. <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Function&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.aulast=Kudryavtsev&amp;rft.aufirst=L.D.&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DFunction%26oldid%3D36823&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-T&amp;K_Calc_p.3-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-T&amp;K_Calc_p.3_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-T&amp;K_Calc_p.3_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaalmanKohn2014" class="citation book cs1"><a href="/wiki/Laura_Taalman" title="Laura Taalman">Taalman, Laura</a>; Kohn, Peter (2014). <i>Calculus</i>. <a href="/wiki/New_York_City" title="New York City">New York City</a>: <a href="/wiki/W._H._Freeman_and_Company" title="W. H. Freeman and Company">W. H. Freeman and Company</a>. p.&#160;3. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4292-4186-1" title="Special:BookSources/978-1-4292-4186-1"><bdi>978-1-4292-4186-1</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2012947365">2012947365</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/856545590">856545590</a>. <a href="/wiki/OL_(identifier)" class="mw-redirect" title="OL (identifier)">OL</a>&#160;<a rel="nofollow" class="external text" href="https://openlibrary.org/books/OL27544563M">27544563M</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Calculus&amp;rft.place=New+York+City&amp;rft.pages=3&amp;rft.pub=W.+H.+Freeman+and+Company&amp;rft.date=2014&amp;rft_id=info%3Aoclcnum%2F856545590&amp;rft_id=info%3Alccn%2F2012947365&amp;rft_id=https%3A%2F%2Fopenlibrary.org%2Fbooks%2FOL27544563M%23id-name%3DOL&amp;rft.isbn=978-1-4292-4186-1&amp;rft.aulast=Taalman&amp;rft.aufirst=Laura&amp;rft.au=Kohn%2C+Peter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Trench_RA_pp.30-32-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Trench_RA_pp.30-32_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Trench_RA_pp.30-32_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrench2013" class="citation book cs1">Trench, William F. (2013) [2003]. <a rel="nofollow" class="external text" href="https://digitalcommons.trinity.edu/mono/7/"><i>Introduction to Real Analysis</i></a> (2.04th&#160;ed.). <a href="/wiki/Pearson_Education" title="Pearson Education">Pearson Education</a> (originally; self-republished by the author). pp.&#160;<span class="nowrap">30–</span>32. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-13-045786-8" title="Special:BookSources/0-13-045786-8"><bdi>0-13-045786-8</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2002032369">2002032369</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/953799815">953799815</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:1204.00023">1204.00023</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Real+Analysis&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E30-%3C%2Fspan%3E32&amp;rft.edition=2.04th&amp;rft.pub=Pearson+Education+%28originally%3B+self-republished+by+the+author%29&amp;rft.date=2013&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1204.00023%23id-name%3DZbl&amp;rft_id=info%3Alccn%2F2002032369&amp;rft_id=info%3Aoclcnum%2F953799815&amp;rft.isbn=0-13-045786-8&amp;rft.aulast=Trench&amp;rft.aufirst=William+F.&amp;rft_id=https%3A%2F%2Fdigitalcommons.trinity.edu%2Fmono%2F7%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-TBB_RA_pp.A4-A5-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-TBB_RA_pp.A4-A5_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-TBB_RA_pp.A4-A5_10-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-TBB_RA_pp.A4-A5_10-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomsonBrucknerBruckner2008" class="citation book cs1">Thomson, Brian S.; Bruckner, Judith B.; <a href="/wiki/Andrew_M._Bruckner" title="Andrew M. Bruckner">Bruckner, Andrew M.</a> (2008) [2001]. <a rel="nofollow" class="external text" href="https://www.classicalrealanalysis.info/com/documents/TBB-AllChapters-Portrait.pdf"><i>Elementary Real Analysis</i></a> <span class="cs1-format">(PDF)</span> (2nd&#160;ed.). <a href="/wiki/Prentice_Hall" title="Prentice Hall">Prentice Hall</a> (originally; 2nd ed. self-republished by the authors). pp.&#160;<span class="nowrap">A-4 –</span> <span class="nowrap">A-5</span>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4348-4367-8" title="Special:BookSources/978-1-4348-4367-8"><bdi>978-1-4348-4367-8</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1105855173">1105855173</a>. <a href="/wiki/OL_(identifier)" class="mw-redirect" title="OL (identifier)">OL</a>&#160;<a rel="nofollow" class="external text" href="https://openlibrary.org/books/OL31844948M">31844948M</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0872.26001">0872.26001</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elementary+Real+Analysis&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3EA-4+-%3C%2Fspan%3E+%3Cspan+class%3D%22nowrap%22%3EA-5%3C%2Fspan%3E&amp;rft.edition=2nd&amp;rft.pub=Prentice+Hall+%28originally%3B+2nd+ed.+self-republished+by+the+authors%29&amp;rft.date=2008&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0872.26001%23id-name%3DZbl&amp;rft_id=https%3A%2F%2Fopenlibrary.org%2Fbooks%2FOL31844948M%23id-name%3DOL&amp;rft_id=info%3Aoclcnum%2F1105855173&amp;rft.isbn=978-1-4348-4367-8&amp;rft.aulast=Thomson&amp;rft.aufirst=Brian+S.&amp;rft.au=Bruckner%2C+Judith+B.&amp;rft.au=Bruckner%2C+Andrew+M.&amp;rft_id=https%3A%2F%2Fwww.classicalrealanalysis.info%2Fcom%2Fdocuments%2FTBB-AllChapters-Portrait.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalmos1974" class="citation book cs1">Halmos, Paul R. (1974). <i>Naive Set Theory</i>. Springer. pp.&#160;<span class="nowrap">30–</span>33.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Naive+Set+Theory&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E30-%3C%2Fspan%3E33&amp;rft.pub=Springer&amp;rft.date=1974&amp;rft.aulast=Halmos&amp;rft.aufirst=Paul+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarsonEdwards2010" class="citation book cs1">Larson, Ron; Edwards, Bruce H. (2010). <i>Calculus of a Single Variable</i>. Cengage Learning. p.&#160;19. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-538-73552-0" title="Special:BookSources/978-0-538-73552-0"><bdi>978-0-538-73552-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Calculus+of+a+Single+Variable&amp;rft.pages=19&amp;rft.pub=Cengage+Learning&amp;rft.date=2010&amp;rft.isbn=978-0-538-73552-0&amp;rft.aulast=Larson&amp;rft.aufirst=Ron&amp;rft.au=Edwards%2C+Bruce+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Map.html">"Map"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2019-06-12</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=mathworld.wolfram.com&amp;rft.atitle=Map&amp;rft.aulast=Weisstein&amp;rft.aufirst=Eric+W.&amp;rft_id=http%3A%2F%2Fmathworld.wolfram.com%2FMap.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Lang87p43-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lang87p43_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lang87p43_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang1987" class="citation book cs1">Lang, Serge (1987). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0DUXym7QWfYC&amp;pg=PA43">"III §1. Mappings"</a>. <i>Linear Algebra</i> (3rd&#160;ed.). Springer. p.&#160;43. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-96412-6" title="Special:BookSources/978-0-387-96412-6"><bdi>978-0-387-96412-6</bdi></a>. <q>A function is a special type of mapping, namely it is a mapping from a set into the set of numbers, i.e. into, <b>R</b>, or <b>C</b> or into a field <i>K</i>.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=III+%C2%A71.+Mappings&amp;rft.btitle=Linear+Algebra&amp;rft.pages=43&amp;rft.edition=3rd&amp;rft.pub=Springer&amp;rft.date=1987&amp;rft.isbn=978-0-387-96412-6&amp;rft.aulast=Lang&amp;rft.aufirst=Serge&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0DUXym7QWfYC%26pg%3DPA43&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-Apostol81p35-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-Apostol81p35_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Apostol81p35_17-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApostol1981" class="citation book cs1">Apostol, T.M. (1981). <i>Mathematical Analysis</i> (2nd&#160;ed.). Addison-Wesley. p.&#160;35. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-201-00288-1" title="Special:BookSources/978-0-201-00288-1"><bdi>978-0-201-00288-1</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/928947543">928947543</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Analysis&amp;rft.pages=35&amp;rft.edition=2nd&amp;rft.pub=Addison-Wesley&amp;rft.date=1981&amp;rft_id=info%3Aoclcnum%2F928947543&amp;rft.isbn=978-0-201-00288-1&amp;rft.aulast=Apostol&amp;rft.aufirst=T.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJamesJames1992" class="citation book cs1"><a href="/wiki/Robert_C._James" title="Robert C. James">James, Robert C.</a>; James, Glenn (1992). <i>Mathematics dictionary</i> (5th&#160;ed.). Van Nostrand Reinhold. p.&#160;202. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-442-00741-8" title="Special:BookSources/0-442-00741-8"><bdi>0-442-00741-8</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/25409557">25409557</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+dictionary&amp;rft.pages=202&amp;rft.edition=5th&amp;rft.pub=Van+Nostrand+Reinhold&amp;rft.date=1992&amp;rft_id=info%3Aoclcnum%2F25409557&amp;rft.isbn=0-442-00741-8&amp;rft.aulast=James&amp;rft.aufirst=Robert+C.&amp;rft.au=James%2C+Glenn&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><a href="#CITEREFJamesJames1992">James &amp; James 1992</a>, p.&#160;48</span> </li> <li id="cite_note-PCM_p.11-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-PCM_p.11_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-PCM_p.11_22-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-PCM_p.11_22-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-PCM_p.11_22-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-PCM_p.11_22-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGowersBarrow-GreenLeader2008" class="citation book cs1"><a href="/wiki/Timothy_Gowers" title="Timothy Gowers">Gowers, Timothy</a>; <a href="/wiki/June_Barrow-Green" title="June Barrow-Green">Barrow-Green, June</a>; <a href="/wiki/Imre_Leader" title="Imre Leader">Leader, Imre</a>, eds. (2008). <i><a href="/wiki/The_Princeton_Companion_to_Mathematics" title="The Princeton Companion to Mathematics">The Princeton Companion to Mathematics</a></i>. <a href="/wiki/Princeton,_New_Jersey" title="Princeton, New Jersey">Princeton, New Jersey</a>: <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>. p.&#160;11. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2F9781400830398">10.1515/9781400830398</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-11880-2" title="Special:BookSources/978-0-691-11880-2"><bdi>978-0-691-11880-2</bdi></a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/j.ctt7sd01">j.ctt7sd01</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2008020450">2008020450</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2467561">2467561</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/227205932">227205932</a>. <a href="/wiki/OL_(identifier)" class="mw-redirect" title="OL (identifier)">OL</a>&#160;<a rel="nofollow" class="external text" href="https://openlibrary.org/books/OL19327100M">19327100M</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:1242.00016">1242.00016</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Princeton+Companion+to+Mathematics&amp;rft.place=Princeton%2C+New+Jersey&amp;rft.pages=11&amp;rft.pub=Princeton+University+Press&amp;rft.date=2008&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1242.00016%23id-name%3DZbl&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2Fj.ctt7sd01%23id-name%3DJSTOR&amp;rft_id=https%3A%2F%2Fopenlibrary.org%2Fbooks%2FOL19327100M%23id-name%3DOL&amp;rft_id=info%3Adoi%2F10.1515%2F9781400830398&amp;rft_id=info%3Aoclcnum%2F227205932&amp;rft_id=info%3Alccn%2F2008020450&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2467561%23id-name%3DMR&amp;rft.isbn=978-0-691-11880-2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-standard-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-standard_23-0">^</a></b></span> <span class="reference-text"><i>Quantities and Units - Part 2: Mathematical signs and symbols to be used in the natural sciences and technology</i>, p. 15. ISO 80000-2 (ISO/IEC 2009-12-01)</span> </li> <li id="cite_note-EOM_Injection-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-EOM_Injection_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-EOM_Injection_24-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIvanova2001" class="citation cs1">Ivanova, O.A. (2001) [1994]. <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Injection&amp;oldid=30986">"Injection"</a>. <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>. <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Injection&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.aulast=Ivanova&amp;rft.aufirst=O.A.&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DInjection%26oldid%3D30986&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-EOM_Surjection-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-EOM_Surjection_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-EOM_Surjection_26-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIvanova2001" class="citation cs1">Ivanova, O.A. (2001) [1994]. <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Surjection&amp;oldid=35689">"Surjection"</a>. <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>. <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Surjection&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.aulast=Ivanova&amp;rft.aufirst=O.A.&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DSurjection%26oldid%3D35689&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-EOM_Bijection-27"><span class="mw-cite-backlink">^ <a href="#cite_ref-EOM_Bijection_27-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-EOM_Bijection_27-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIvanova2001" class="citation cs1">Ivanova, O.A. (2001) [1994]. <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Bijection&amp;oldid=30987">"Bijection"</a>. <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>. <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Bijection&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.aulast=Ivanova&amp;rft.aufirst=O.A.&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DBijection%26oldid%3D30987&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHartnett2020" class="citation web cs1">Hartnett, Kevin (9 November 2020). <a rel="nofollow" class="external text" href="https://www.quantamagazine.org/inside-the-secret-math-society-known-as-nicolas-bourbaki-20201109/">"Inside the Secret Math Society Known Simply as Nicolas Bourbaki"</a>. <i>Quanta Magazine</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-06-05</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Quanta+Magazine&amp;rft.atitle=Inside+the+Secret+Math+Society+Known+Simply+as+Nicolas+Bourbaki&amp;rft.date=2020-11-09&amp;rft.aulast=Hartnett&amp;rft.aufirst=Kevin&amp;rft_id=https%3A%2F%2Fwww.quantamagazine.org%2Finside-the-secret-math-society-known-as-nicolas-bourbaki-20201109%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><a href="#CITEREFGödel1940">Gödel 1940</a>, p.&#160;16; <a href="#CITEREFJech2003">Jech 2003</a>, p.&#160;11; <a href="#CITEREFCunningham2016">Cunningham 2016</a>, p.&#160;57</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlev2019" class="citation book cs1">Klev, Ansten (2019). "A comparison of type theory with set theory". In Centrone, Stefania; Kant, Deborah; Sarikaya, Deniz (eds.). <i>Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts</i>. Synthese Library. Vol.&#160;407. Cham: Springer. pp.&#160;<span class="nowrap">271–</span>292. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-030-15655-8_12">10.1007/978-3-030-15655-8_12</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-030-15654-1" title="Special:BookSources/978-3-030-15654-1"><bdi>978-3-030-15654-1</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=4352345">4352345</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=A+comparison+of+type+theory+with+set+theory&amp;rft.btitle=Reflections+on+the+Foundations+of+Mathematics%3A+Univalent+Foundations%2C+Set+Theory+and+General+Thoughts&amp;rft.place=Cham&amp;rft.series=Synthese+Library&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E271-%3C%2Fspan%3E292&amp;rft.pub=Springer&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D4352345%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-030-15655-8_12&amp;rft.isbn=978-3-030-15654-1&amp;rft.aulast=Klev&amp;rft.aufirst=Ansten&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Sources">Sources</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=42" title="Edit section: Sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBartle1976" class="citation book cs1"><a href="/wiki/Robert_G._Bartle" title="Robert G. Bartle">Bartle, Robert</a> (1976). <i>The Elements of Real Analysis</i> (2nd&#160;ed.). Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-05465-8" title="Special:BookSources/978-0-471-05465-8"><bdi>978-0-471-05465-8</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/465115030">465115030</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Elements+of+Real+Analysis&amp;rft.edition=2nd&amp;rft.pub=Wiley&amp;rft.date=1976&amp;rft_id=info%3Aoclcnum%2F465115030&amp;rft.isbn=978-0-471-05465-8&amp;rft.aulast=Bartle&amp;rft.aufirst=Robert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBloch2011" class="citation book cs1">Bloch, Ethan D. (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QJ_537n8zKYC"><i>Proofs and Fundamentals: A First Course in Abstract Mathematics</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4419-7126-5" title="Special:BookSources/978-1-4419-7126-5"><bdi>978-1-4419-7126-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Proofs+and+Fundamentals%3A+A+First+Course+in+Abstract+Mathematics&amp;rft.pub=Springer&amp;rft.date=2011&amp;rft.isbn=978-1-4419-7126-5&amp;rft.aulast=Bloch&amp;rft.aufirst=Ethan+D.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQJ_537n8zKYC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCunningham2016" class="citation book cs1">Cunningham, Daniel W. (2016). <i>Set theory: A First Course</i>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-12032-7" title="Special:BookSources/978-1-107-12032-7"><bdi>978-1-107-12032-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Set+theory%3A+A+First+Course&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2016&amp;rft.isbn=978-1-107-12032-7&amp;rft.aulast=Cunningham&amp;rft.aufirst=Daniel+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGödel1940" class="citation book cs1"><a href="/wiki/Kurt_G%C3%B6del" title="Kurt Gödel">Gödel, Kurt</a> (1940). <i>The Consistency of the Continuum Hypothesis</i>. Princeton University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-07927-1" title="Special:BookSources/978-0-691-07927-1"><bdi>978-0-691-07927-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Consistency+of+the+Continuum+Hypothesis&amp;rft.pub=Princeton+University+Press&amp;rft.date=1940&amp;rft.isbn=978-0-691-07927-1&amp;rft.aulast=G%C3%B6del&amp;rft.aufirst=Kurt&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalmos1970" class="citation book cs1"><a href="/wiki/Paul_Halmos" title="Paul Halmos">Halmos, Paul R.</a> (1970). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=x6cZBQ9qtgoC"><i>Naive Set Theory</i></a>. Springer-Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-90092-6" title="Special:BookSources/978-0-387-90092-6"><bdi>978-0-387-90092-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Naive+Set+Theory&amp;rft.pub=Springer-Verlag&amp;rft.date=1970&amp;rft.isbn=978-0-387-90092-6&amp;rft.aulast=Halmos&amp;rft.aufirst=Paul+R.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dx6cZBQ9qtgoC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJech2003" class="citation book cs1"><a href="/wiki/Thomas_Jech" title="Thomas Jech">Jech, Thomas</a> (2003). <i>Set theory</i> (3rd&#160;ed.). <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-44085-7" title="Special:BookSources/978-3-540-44085-7"><bdi>978-3-540-44085-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Set+theory&amp;rft.edition=3rd&amp;rft.pub=Springer-Verlag&amp;rft.date=2003&amp;rft.isbn=978-3-540-44085-7&amp;rft.aulast=Jech&amp;rft.aufirst=Thomas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpivak2008" class="citation book cs1"><a href="/wiki/Michael_Spivak" title="Michael Spivak">Spivak, Michael</a> (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=7JKVu_9InRUC"><i>Calculus</i></a> (4th&#160;ed.). Publish or Perish. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-914098-91-1" title="Special:BookSources/978-0-914098-91-1"><bdi>978-0-914098-91-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Calculus&amp;rft.edition=4th&amp;rft.pub=Publish+or+Perish&amp;rft.date=2008&amp;rft.isbn=978-0-914098-91-1&amp;rft.aulast=Spivak&amp;rft.aufirst=Michael&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D7JKVu_9InRUC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=43" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnton1980" class="citation book cs1">Anton, Howard (1980). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/studentssolution00anto"><i>Calculus with Analytical Geometry</i></a></span>. <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">Wiley</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-03248-9" title="Special:BookSources/978-0-471-03248-9"><bdi>978-0-471-03248-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Calculus+with+Analytical+Geometry&amp;rft.pub=Wiley&amp;rft.date=1980&amp;rft.isbn=978-0-471-03248-9&amp;rft.aulast=Anton&amp;rft.aufirst=Howard&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fstudentssolution00anto&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBartle1976" class="citation book cs1">Bartle, Robert G. (1976). <i>The Elements of Real Analysis</i> (2nd&#160;ed.). Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-05464-1" title="Special:BookSources/978-0-471-05464-1"><bdi>978-0-471-05464-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Elements+of+Real+Analysis&amp;rft.edition=2nd&amp;rft.pub=Wiley&amp;rft.date=1976&amp;rft.isbn=978-0-471-05464-1&amp;rft.aulast=Bartle&amp;rft.aufirst=Robert+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDubinskyHarel1992" class="citation book cs1">Dubinsky, Ed; Harel, Guershon (1992). <i>The Concept of Function: Aspects of Epistemology and Pedagogy</i>. Mathematical Association of America. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-88385-081-7" title="Special:BookSources/978-0-88385-081-7"><bdi>978-0-88385-081-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Concept+of+Function%3A+Aspects+of+Epistemology+and+Pedagogy&amp;rft.pub=Mathematical+Association+of+America&amp;rft.date=1992&amp;rft.isbn=978-0-88385-081-7&amp;rft.aulast=Dubinsky&amp;rft.aufirst=Ed&amp;rft.au=Harel%2C+Guershon&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHammack2009" class="citation book cs1">Hammack, Richard (2009). <a rel="nofollow" class="external text" href="https://www.people.vcu.edu/~rhammack/BookOfProof/Main.pdf#page=235">"12. Functions"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://www.people.vcu.edu/~rhammack/BookOfProof/"><i>Book of Proof</i></a>. <a href="/wiki/Virginia_Commonwealth_University" title="Virginia Commonwealth University">Virginia Commonwealth University</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2012-08-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=12.+Functions&amp;rft.btitle=Book+of+Proof&amp;rft.pub=Virginia+Commonwealth+University&amp;rft.date=2009&amp;rft.aulast=Hammack&amp;rft.aufirst=Richard&amp;rft_id=https%3A%2F%2Fwww.people.vcu.edu%2F~rhammack%2FBookOfProof%2FMain.pdf%23page%3D235&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHusch2001" class="citation book cs1">Husch, Lawrence S. (2001). <a rel="nofollow" class="external text" href="http://archives.math.utk.edu/visual.calculus/"><i>Visual Calculus</i></a>. <a href="/wiki/University_of_Tennessee" title="University of Tennessee">University of Tennessee</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2007-09-27</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Visual+Calculus&amp;rft.pub=University+of+Tennessee&amp;rft.date=2001&amp;rft.aulast=Husch&amp;rft.aufirst=Lawrence+S.&amp;rft_id=http%3A%2F%2Farchives.math.utk.edu%2Fvisual.calculus%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatz1964" class="citation book cs1">Katz, Robert (1964). <i>Axiomatic Analysis</i>. <a href="/wiki/D._C._Heath_and_Company" title="D. C. Heath and Company">D. C. Heath and Company</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Axiomatic+Analysis&amp;rft.pub=D.+C.+Heath+and+Company&amp;rft.date=1964&amp;rft.aulast=Katz&amp;rft.aufirst=Robert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleiner1989" class="citation journal cs1">Kleiner, Israel (1989). "Evolution of the Function Concept: A Brief Survey". <i>The College Mathematics Journal</i>. <b>20</b> (4): <span class="nowrap">282–</span>300. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.6352">10.1.1.113.6352</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2686848">10.2307/2686848</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2686848">2686848</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+College+Mathematics+Journal&amp;rft.atitle=Evolution+of+the+Function+Concept%3A+A+Brief+Survey&amp;rft.volume=20&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E282-%3C%2Fspan%3E300&amp;rft.date=1989&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.113.6352%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2686848%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F2686848&amp;rft.aulast=Kleiner&amp;rft.aufirst=Israel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLützen2003" class="citation book cs1">Lützen, Jesper (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=B3WvWhJTTX8C&amp;pg=PA468">"Between rigor and applications: Developments in the concept of function in mathematical analysis"</a>. In Porter, Roy (ed.). <i>The Cambridge History of Science: The modern physical and mathematical sciences</i>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-57199-9" title="Special:BookSources/978-0-521-57199-9"><bdi>978-0-521-57199-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Between+rigor+and+applications%3A+Developments+in+the+concept+of+function+in+mathematical+analysis&amp;rft.btitle=The+Cambridge+History+of+Science%3A+The+modern+physical+and+mathematical+sciences&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2003&amp;rft.isbn=978-0-521-57199-9&amp;rft.aulast=L%C3%BCtzen&amp;rft.aufirst=Jesper&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DB3WvWhJTTX8C%26pg%3DPA468&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span> An approachable and diverting historical presentation.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMalik1980" class="citation journal cs1">Malik, M. A. (1980). "Historical and pedagogical aspects of the definition of function". <i>International Journal of Mathematical Education in Science and Technology</i>. <b>11</b> (4): <span class="nowrap">489–</span>492. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F0020739800110404">10.1080/0020739800110404</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Mathematical+Education+in+Science+and+Technology&amp;rft.atitle=Historical+and+pedagogical+aspects+of+the+definition+of+function&amp;rft.volume=11&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E489-%3C%2Fspan%3E492&amp;rft.date=1980&amp;rft_id=info%3Adoi%2F10.1080%2F0020739800110404&amp;rft.aulast=Malik&amp;rft.aufirst=M.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReichenbach1947" class="citation book cs1">Reichenbach, Hans (1947). <i>Elements of Symbolic Logic</i>. Dover. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-24004-5" title="Special:BookSources/0-486-24004-5"><bdi>0-486-24004-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Symbolic+Logic&amp;rft.pub=Dover&amp;rft.date=1947&amp;rft.isbn=0-486-24004-5&amp;rft.aulast=Reichenbach&amp;rft.aufirst=Hans&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRuthing1984" class="citation journal cs1">Ruthing, D. (1984). "Old Intelligencer: Some definitions of the concept of function from Bernoulli, Joh. to Bourbaki, N.". <i>Mathematical Intelligencer</i>. <b>6</b> (4): <span class="nowrap">71–</span>78. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF03026743">10.1007/BF03026743</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:189883712">189883712</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematical+Intelligencer&amp;rft.atitle=Old+Intelligencer%3A+Some+definitions+of+the+concept+of+function+from+Bernoulli%2C+Joh.+to+Bourbaki%2C+N.&amp;rft.volume=6&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E71-%3C%2Fspan%3E78&amp;rft.date=1984&amp;rft_id=info%3Adoi%2F10.1007%2FBF03026743&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A189883712%23id-name%3DS2CID&amp;rft.aulast=Ruthing&amp;rft.aufirst=D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomasFinney1995" class="citation book cs1">Thomas, George B.; Finney, Ross L. (1995). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/calculusanalytic00geor_0"><i>Calculus and Analytic Geometry</i></a></span> (9th&#160;ed.). <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-201-53174-9" title="Special:BookSources/978-0-201-53174-9"><bdi>978-0-201-53174-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Calculus+and+Analytic+Geometry&amp;rft.edition=9th&amp;rft.pub=Addison-Wesley&amp;rft.date=1995&amp;rft.isbn=978-0-201-53174-9&amp;rft.aulast=Thomas&amp;rft.aufirst=George+B.&amp;rft.au=Finney%2C+Ross+L.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcalculusanalytic00geor_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AFunction+%28mathematics%29" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Function_(mathematics)&amp;action=edit&amp;section=44" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Functions_(mathematics)" class="extiw" title="commons:Category:Functions (mathematics)">Functions (mathematics)</a></span>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://functions.wolfram.com/">The Wolfram Functions</a> – website giving formulae and visualizations of many mathematical functions</li> <li><a rel="nofollow" class="external text" href="https://dlmf.nist.gov/">NIST Digital Library of Mathematical Functions</a></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Major_topics_in_mathematical_analysis88" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Analysis-footer" title="Template:Analysis-footer"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Analysis-footer" title="Template talk:Analysis-footer"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Analysis-footer" title="Special:EditPage/Template:Analysis-footer"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Major_topics_in_mathematical_analysis88" style="font-size:114%;margin:0 4em">Major topics in <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><b><a href="/wiki/Calculus" title="Calculus">Calculus</a></b>: <a href="/wiki/Integral" title="Integral">Integration</a></li> <li><a href="/wiki/Derivative" title="Derivative">Differentiation</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Differential equations</a> <ul><li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial</a></li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">stochastic</a></li></ul></li> <li><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">Fundamental theorem of calculus</a></li> <li><a href="/wiki/Calculus_of_variations" title="Calculus of variations">Calculus of variations</a></li> <li><a href="/wiki/Vector_calculus" title="Vector calculus">Vector calculus</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li> <li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix calculus</a></li> <li><a href="/wiki/Lists_of_integrals" title="Lists of integrals">Lists of integrals</a></li> <li><a href="/wiki/Table_of_derivatives" class="mw-redirect" title="Table of derivatives">Table of derivatives</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></li> <li><a href="/wiki/Complex_analysis" title="Complex analysis">Complex analysis</a></li> <li><a href="/wiki/Hypercomplex_analysis" title="Hypercomplex analysis">Hypercomplex analysis</a> (<a href="/wiki/Quaternionic_analysis" title="Quaternionic analysis">quaternionic analysis</a>)</li> <li><a href="/wiki/Functional_analysis" title="Functional analysis">Functional analysis</a></li> <li><a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a></li> <li><a href="/wiki/Least-squares_spectral_analysis" title="Least-squares spectral analysis">Least-squares spectral analysis</a></li> <li><a href="/wiki/Harmonic_analysis" title="Harmonic analysis">Harmonic analysis</a></li> <li><a href="/wiki/P-adic_analysis" title="P-adic analysis">P-adic analysis</a> (<a href="/wiki/P-adic_number" title="P-adic number">P-adic numbers</a>)</li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure theory</a></li> <li><a href="/wiki/Representation_theory" title="Representation theory">Representation theory</a></li></ul> <ul><li><a class="mw-selflink selflink">Functions</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuous function</a></li> <li><a href="/wiki/Special_functions" title="Special functions">Special functions</a></li> <li><a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">Limit</a></li> <li><a href="/wiki/Series_(mathematics)" title="Series (mathematics)">Series</a></li> <li><a href="/wiki/Infinity" title="Infinity">Infinity</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><b><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></b></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox1420" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q11348#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4071510-3">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85052327">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Fonctions (mathématiques)"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11946892t">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Fonctions (mathématiques)"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11946892t">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00564960">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="funkce"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph114594&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.nli.org.il/en/authorities/987007553160705171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐7d44b9cd95‐95wzt Cached time: 20250223114603 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.631 seconds Real time usage: 1.973 seconds Preprocessor visited node count: 15578/1000000 Post‐expand include size: 163231/2097152 bytes Template argument size: 19755/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 23/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 177128/5000000 bytes Lua time usage: 0.756/10.000 seconds Lua memory usage: 8358705/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1400.257 1 -total 24.00% 336.075 2 Template:Reflist 14.11% 197.573 138 Template:Math 12.79% 179.029 5 Template:Eom 9.98% 139.806 22 Template:Cite_book 9.05% 126.749 1 Template:Functions 8.94% 125.187 1 Template:Short_description 8.81% 123.300 1 Template:Sidebar 6.73% 94.189 2 Template:Pagetype 4.58% 64.201 1 Template:Commons_category --> <!-- Saved in parser cache with key enwiki:pcache:185427:|#|:idhash:canonical and timestamp 20250223114624 and revision id 1277220748. Rendering was triggered because: page-edit --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Function_(mathematics)&amp;oldid=1277220748">https://en.wikipedia.org/w/index.php?title=Function_(mathematics)&amp;oldid=1277220748</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Functions_and_mappings" title="Category:Functions and mappings">Functions and mappings</a></li><li><a href="/wiki/Category:Basic_concepts_in_set_theory" title="Category:Basic concepts in set theory">Basic concepts in set theory</a></li><li><a href="/wiki/Category:Elementary_mathematics" title="Category:Elementary mathematics">Elementary mathematics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 23 February 2025, at 11:46<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Function_(mathematics)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Function (mathematics)</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>119 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-d8647bfd6-vvbxw","wgBackendResponseTime":125,"wgPageParseReport":{"limitreport":{"cputime":"1.631","walltime":"1.973","ppvisitednodes":{"value":15578,"limit":1000000},"postexpandincludesize":{"value":163231,"limit":2097152},"templateargumentsize":{"value":19755,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":23,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":177128,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1400.257 1 -total"," 24.00% 336.075 2 Template:Reflist"," 14.11% 197.573 138 Template:Math"," 12.79% 179.029 5 Template:Eom"," 9.98% 139.806 22 Template:Cite_book"," 9.05% 126.749 1 Template:Functions"," 8.94% 125.187 1 Template:Short_description"," 8.81% 123.300 1 Template:Sidebar"," 6.73% 94.189 2 Template:Pagetype"," 4.58% 64.201 1 Template:Commons_category"]},"scribunto":{"limitreport-timeusage":{"value":"0.756","limit":"10.000"},"limitreport-memusage":{"value":8358705,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAnton1980\"] = 1,\n [\"CITEREFApostol1981\"] = 1,\n [\"CITEREFBartle1976\"] = 2,\n [\"CITEREFBloch2011\"] = 1,\n [\"CITEREFCunningham2016\"] = 1,\n [\"CITEREFDubinskyHarel1992\"] = 1,\n [\"CITEREFGödel1940\"] = 1,\n [\"CITEREFHalmos1970\"] = 1,\n [\"CITEREFHalmos1974\"] = 1,\n [\"CITEREFHammack2009\"] = 1,\n [\"CITEREFHartnett2020\"] = 1,\n [\"CITEREFHusch2001\"] = 1,\n [\"CITEREFJamesJames1992\"] = 1,\n [\"CITEREFJech2003\"] = 1,\n [\"CITEREFKatz1964\"] = 1,\n [\"CITEREFKleiner1989\"] = 1,\n [\"CITEREFKlev2019\"] = 1,\n [\"CITEREFLang1987\"] = 1,\n [\"CITEREFLarsonEdwards2010\"] = 1,\n [\"CITEREFLützen2003\"] = 1,\n [\"CITEREFMalik1980\"] = 1,\n [\"CITEREFReichenbach1947\"] = 1,\n [\"CITEREFRuthing1984\"] = 1,\n [\"CITEREFSpivak2008\"] = 1,\n [\"CITEREFThomasFinney1995\"] = 1,\n [\"CITEREFWeisstein\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 1,\n [\"=\"] = 1,\n [\"Analysis-footer\"] = 1,\n [\"Authority control\"] = 1,\n [\"Broader\"] = 1,\n [\"Cite book\"] = 22,\n [\"Cite journal\"] = 3,\n [\"Cite web\"] = 3,\n [\"Closed-closed\"] = 12,\n [\"Closed-open\"] = 3,\n [\"Commons category\"] = 1,\n [\"Diagonal split header\"] = 1,\n [\"Distinguish\"] = 1,\n [\"Div col\"] = 3,\n [\"Div col end\"] = 3,\n [\"Eom\"] = 5,\n [\"Functions\"] = 1,\n [\"Further\"] = 1,\n [\"GBurl\"] = 1,\n [\"Hair space\"] = 4,\n [\"Harvnb\"] = 6,\n [\"Lambda\"] = 1,\n [\"Main\"] = 13,\n [\"Math\"] = 108,\n [\"Mset\"] = 2,\n [\"Mvar\"] = 224,\n [\"Nowrap\"] = 2,\n [\"Open-closed\"] = 3,\n [\"Princeton Companion to Mathematics\"] = 1,\n [\"R\"] = 3,\n [\"Redirect\"] = 1,\n [\"Refbegin\"] = 2,\n [\"Refend\"] = 2,\n [\"Reflist\"] = 2,\n [\"See also\"] = 1,\n [\"Sfn\"] = 1,\n [\"Short description\"] = 1,\n [\"Slink\"] = 1,\n [\"Taalman Kohn Calculus\"] = 1,\n [\"Thomson Bruckner Bruckner Elementary Real Analysis\"] = 1,\n [\"Trench Intro Real Analysis\"] = 1,\n [\"Vanchor\"] = 2,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-api-ext.codfw.main-7d44b9cd95-95wzt","timestamp":"20250223114603","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Function (mathematics)","url":"https:\/\/en.wikipedia.org\/wiki\/Function_(mathematics)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11348","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11348","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-02-20T00:03:25Z","dateModified":"2025-02-23T11:46:01Z","headline":"association of a single output to each input"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10