CINXE.COM

Search results for: N20 latency

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: N20 latency</title> <meta name="description" content="Search results for: N20 latency"> <meta name="keywords" content="N20 latency"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="N20 latency" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="N20 latency"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 177</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: N20 latency</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> A New Verification Based Congestion Control Scheme in Mobile Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Guha%20Thakurta">P. K. Guha Thakurta</a>, <a href="https://publications.waset.org/abstracts/search?q=Shouvik%20Roy"> Shouvik Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhawana%20Raj"> Bhawana Raj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A congestion control scheme in mobile networks is proposed in this paper through a verification based model. The model proposed in this work is represented through performance metric like buffer Occupancy, latency and packet loss rate. Based on pre-defined values, each of the metric is introduced in terms of three different states. A Markov chain based model for the proposed work is introduced to monitor the occurrence of the corresponding state transitions. Thus, the estimation of the network status is obtained in terms of performance metric. In addition, the improved performance of our proposed model over existing works is shown with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=congestion" title="congestion">congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20networks" title=" mobile networks"> mobile networks</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer" title=" buffer"> buffer</a>, <a href="https://publications.waset.org/abstracts/search?q=delay" title=" delay"> delay</a>, <a href="https://publications.waset.org/abstracts/search?q=call%20drop" title=" call drop"> call drop</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20chain" title=" markov chain"> markov chain</a> </p> <a href="https://publications.waset.org/abstracts/19020/a-new-verification-based-congestion-control-scheme-in-mobile-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Parallelization of Random Accessible Progressive Streaming of Compressed 3D Models over Web</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aayushi%20Somani">Aayushi Somani</a>, <a href="https://publications.waset.org/abstracts/search?q=Siba%20P.%20Samal"> Siba P. Samal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three-dimensional (3D) meshes are data structures, which store geometric information of an object or scene, generally in the form of vertices and edges. Current technology in laser scanning and other geometric data acquisition technologies acquire high resolution sampling which leads to high resolution meshes. While high resolution meshes give better quality rendering and hence is used often, the processing, as well as storage of 3D meshes, is currently resource-intensive. At the same time, web applications for data processing have become ubiquitous owing to their accessibility. For 3D meshes, the advancement of 3D web technologies, such as WebGL, WebVR, has enabled high fidelity rendering of huge meshes. However, there exists a gap in ability to stream huge meshes to a native client and browser application due to high network latency. Also, there is an inherent delay of loading WebGL pages due to large and complex models. The focus of our work is to identify the challenges faced when such meshes are streamed into and processed on hand-held devices, owing to its limited resources. One of the solutions that are conventionally used in the graphics community to alleviate resource limitations is mesh compression. Our approach deals with a two-step approach for random accessible progressive compression and its parallel implementation. The first step includes partition of the original mesh to multiple sub-meshes, and then we invoke data parallelism on these sub-meshes for its compression. Subsequent threaded decompression logic is implemented inside the Web Browser Engine with modification of WebGL implementation in Chromium open source engine. This concept can be used to completely revolutionize the way e-commerce and Virtual Reality technology works for consumer electronic devices. These objects can be compressed in the server and can be transmitted over the network. The progressive decompression can be performed on the client device and rendered. Multiple views currently used in e-commerce sites for viewing the same product from different angles can be replaced by a single progressive model for better UX and smoother user experience. Can also be used in WebVR for commonly and most widely used activities like virtual reality shopping, watching movies and playing games. Our experiments and comparison with existing techniques show encouraging results in terms of latency (compressed size is ~10-15% of the original mesh), processing time (20-22% increase over serial implementation) and quality of user experience in web browser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20compression" title="3D compression">3D compression</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20mesh" title=" 3D mesh"> 3D mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20web" title=" 3D web"> 3D web</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=client-server%20architecture" title=" client-server architecture"> client-server architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=e-commerce" title=" e-commerce"> e-commerce</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20of%20details" title=" level of details"> level of details</a>, <a href="https://publications.waset.org/abstracts/search?q=parallelization" title=" parallelization"> parallelization</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20compression" title=" progressive compression"> progressive compression</a>, <a href="https://publications.waset.org/abstracts/search?q=WebGL" title=" WebGL"> WebGL</a>, <a href="https://publications.waset.org/abstracts/search?q=WebVR" title=" WebVR"> WebVR</a> </p> <a href="https://publications.waset.org/abstracts/77011/parallelization-of-random-accessible-progressive-streaming-of-compressed-3d-models-over-web" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Study on the Efficient Routing Algorithms in Delay-Tolerant Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Si-Gwan%20Kim">Si-Gwan Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Delay Tolerant Networks (DTN), there may not exist an end-to-end path between source and destination at the time of message transmission. Employing ‘Store Carry and Forward’ delivery mechanism for message transmission in such networks usually incurs long message delays. In this paper, we present the modified Binary Spray and Wait (BSW) routing protocol that enhances the performance of the original one. Our proposed algorithm adjusts the number of forward messages depending on the number of neighbor nodes. By using beacon messages periodically, the number of neighbor nodes can be managed. The simulation using ONE simulator results shows that our modified version gives higher delivery ratio and less latency as compared to BSW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay%20tolerant%20networks" title="delay tolerant networks">delay tolerant networks</a>, <a href="https://publications.waset.org/abstracts/search?q=store%20carry%20and%20forward" title=" store carry and forward"> store carry and forward</a>, <a href="https://publications.waset.org/abstracts/search?q=one%20simulator" title=" one simulator"> one simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20spray%20and%20wait" title=" binary spray and wait"> binary spray and wait</a> </p> <a href="https://publications.waset.org/abstracts/97723/study-on-the-efficient-routing-algorithms-in-delay-tolerant-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Event Related Potentials in Terms of Visual and Auditory Stimuli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seokbeen%20Lim">Seokbeen Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=KyeongSeok%20Sim"> KyeongSeok Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=DaKyeong%20Shin"> DaKyeong Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilwon%20Yoon"> Gilwon Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Event-related potential (ERP) is one of the useful tools for investigating cognitive reactions. In this study, the potential of ERP components detected after auditory and visual stimuli was examined. Subjects were asked to respond upon stimuli that were of three categories; Target, Non-Target and Standard stimuli. The ERP after stimulus was measured. In the experiment of visual evoked potentials (VEPs), the subjects were asked to gaze at a center point on the monitor screen where the stimuli were provided by the reversal pattern of the checkerboard. In consequence of the VEP experiments, we observed consistent reactions. Each peak voltage could be measured when the ensemble average was applied. Visual stimuli had smaller amplitude and a longer latency compared to that of auditory stimuli. The amplitude was the highest with Target and the smallest with Standard in both stimuli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auditory%20stimulus" title="auditory stimulus">auditory stimulus</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=event%20related%20potential" title=" event related potential"> event related potential</a>, <a href="https://publications.waset.org/abstracts/search?q=oddball%20task" title=" oddball task"> oddball task</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20stimulus" title=" visual stimulus"> visual stimulus</a> </p> <a href="https://publications.waset.org/abstracts/62590/event-related-potentials-in-terms-of-visual-and-auditory-stimuli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> A Taxonomy of Routing Protocols in Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kardi">A. Kardi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Zagrouba"> R. Zagrouba</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Alqahtani"> M. Alqahtani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Internet of Everything (IoE) presents today a very attractive and motivating field of research. It is basically based on Wireless Sensor Networks (WSNs) in which the routing task is the major analysis topic. In fact, it directly affects the effectiveness and the lifetime of the network. This paper, developed from recent works and based on extensive researches, proposes a taxonomy of routing protocols in WSNs. Our main contribution is that we propose a classification model based on nine classes namely application type, delivery mode, initiator of communication, network architecture, path establishment (route discovery), network topology (structure), protocol operation, next hop selection and latency-awareness and energy-efficient routing protocols. In order to provide a total classification pattern to serve as reference for network designers, each class is subdivided into possible subclasses, presented, and discussed using different parameters such as purposes and characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=routing" title="routing">routing</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=survey" title=" survey"> survey</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=WSNs" title=" WSNs"> WSNs</a> </p> <a href="https://publications.waset.org/abstracts/86073/a-taxonomy-of-routing-protocols-in-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Working Memory and Audio-Motor Synchronization in Children with Different Degrees of Central Nervous System&#039;s Lesions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20V.%20Kovaleva">Anastasia V. Kovaleva</a>, <a href="https://publications.waset.org/abstracts/search?q=Alena%20A.%20Ryabova"> Alena A. Ryabova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20N.%20Kasatkin"> Vladimir N. Kasatkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The most simple form of entrainment to a sensory (typically auditory) rhythmic stimulus involves perceiving and synchronizing movements with an isochronous beat with one level of periodicity, such as that produced by a metronome. Children with pediatric cancer usually treated with chemo- and radiotherapy. Because of such treatment, psychologists and health professionals declare cognitive and motor abilities decline in cancer patients. The purpose of our study was to measure working memory characteristics with association with audio-motor synchronization tasks, also involved some memory resources, in children with different degrees of central nervous system lesions: posterior fossa tumors, acute lymphoblastic leukemia, and healthy controls. Methods: Our sample consisted of three groups of children: children treated for posterior fossa tumors (PFT-group, n=42, mean age 12.23), children treated for acute lymphoblastic leukemia (ALL-group, n=11, mean age 11.57) and neurologically healthy children (control group, n=36, mean age 11.67). Participants were tested for working memory characteristics with Cambridge Neuropsychological Test Automated Battery (CANTAB). Pattern recognition memory (PRM) and spatial working memory (SWM) tests were applied. Outcome measures of PRM test include the number and percentage of correct trials and latency (speed of participant’s response), and measures of SWM include errors, strategy, and latency. In the synchronization tests, the instruction was to tap out a regular beat (40, 60, 90 and 120 beats per minute) in synchrony with the rhythmic sequences that were played. This meant that for the sequences with an isochronous beat, participants were required to tap into every auditory event. Variations of inter-tap-intervals and deviations of children’s taps from the metronome were assessed. Results: Analysis of variance revealed the significant effect of group (ALL, PFT and control) on such parameters as short-term PRM, SWM strategy and errors. Healthy controls demonstrated more correctly retained elements, better working memory strategy, compared to cancer patients. Interestingly that ALL patients chose the bad strategy, but committed significantly less errors in SWM test then PFT and controls did. As to rhythmic ability, significant associations of working memory were found out only with 40 bpm rhythm: the less variable were inter-tap-intervals of the child, the more elements in memory he/she could retain. The ability to audio-motor synchronization may be related to working memory processes mediated by the prefrontal cortex whereby each sensory event is actively retrieved and monitored during rhythmic sequencing. Conclusion: Our results suggest that working memory, tested with appropriate cognitive methods, is associated with the ability to synchronize movements with rhythmic sounds, especially in sub-second intervals (40 per minute). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20lymphoblastic%20leukemia%20%28ALL%29" title="acute lymphoblastic leukemia (ALL)">acute lymphoblastic leukemia (ALL)</a>, <a href="https://publications.waset.org/abstracts/search?q=audio-motor%20synchronization" title=" audio-motor synchronization"> audio-motor synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=posterior%20fossa%20tumor" title=" posterior fossa tumor"> posterior fossa tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a> </p> <a href="https://publications.waset.org/abstracts/90547/working-memory-and-audio-motor-synchronization-in-children-with-different-degrees-of-central-nervous-systems-lesions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Modern Machine Learning Conniptions for Automatic Speech Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Jagadeesh%20Kumar">S. Jagadeesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This expose presents a luculent of recent machine learning practices as employed in the modern and as pertinent to prospective automatic speech recognition schemes. The aspiration is to promote additional traverse ablution among the machine learning and automatic speech recognition factions that have transpired in the precedent. The manuscript is structured according to the chief machine learning archetypes that are furthermore trendy by now or have latency for building momentous hand-outs to automatic speech recognition expertise. The standards offered and convoluted in this article embraces adaptive and multi-task learning, active learning, Bayesian learning, discriminative learning, generative learning, supervised and unsupervised learning. These learning archetypes are aggravated and conferred in the perspective of automatic speech recognition tools and functions. This manuscript bequeaths and surveys topical advances of deep learning and learning with sparse depictions; further limelight is on their incessant significance in the evolution of automatic speech recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20speech%20recognition" title="automatic speech recognition">automatic speech recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning%20methods" title=" deep learning methods"> deep learning methods</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20archetypes" title=" machine learning archetypes"> machine learning archetypes</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20learning" title=" Bayesian learning"> Bayesian learning</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20and%20unsupervised%20learning" title=" supervised and unsupervised learning"> supervised and unsupervised learning</a> </p> <a href="https://publications.waset.org/abstracts/71467/modern-machine-learning-conniptions-for-automatic-speech-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Auditory Brainstem Response in Wave VI for the Detection of Learning Disabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Isabel%20Garcia-Planas">Maria Isabel Garcia-Planas</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Victoria%20Garcia-Camba"> Maria Victoria Garcia-Camba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of brain stem auditory evoked potential (BAEP) is a common way to study the auditory function of people, a way to learn the functionality of a part of the brain neuronal groups that intervene in the learning process by studying the behaviour of wave VI. The latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of innocuous, low-cost, and easy-access techniques such as, among others, the BAEP that can help us to detect early possible neurodevelopmental difficulties for their subsequent assessment and cure. To date and to the authors' best knowledge, only the latency data obtained, observing the first to V waves and mainly in the left ear, were taken into account. This work shows that it is essential to take into account both ears; with these latest data, it has been possible had diagnosed more precise some cases than with the previous data had been diagnosed as 'normal' despite showing signs of some alteration that motivated the new consultation to the specialist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ear" title="ear">ear</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodevelopment" title=" neurodevelopment"> neurodevelopment</a>, <a href="https://publications.waset.org/abstracts/search?q=auditory%20evoked%20potentials" title=" auditory evoked potentials"> auditory evoked potentials</a>, <a href="https://publications.waset.org/abstracts/search?q=intervals%20of%20normality" title=" intervals of normality"> intervals of normality</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20disabilities" title=" learning disabilities"> learning disabilities</a> </p> <a href="https://publications.waset.org/abstracts/132905/auditory-brainstem-response-in-wave-vi-for-the-detection-of-learning-disabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> VANETs Geographic Routing Protocols: A survey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Karimi">Ramin Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of common highly mobile wireless ad hoc networks is Vehicular Ad Hoc Networks. Hence routing in vehicular ad hoc network (VANET) has attracted much attention during the last few years. VANET is characterized by its high mobility of nodes and specific topology patterns. Moreover these networks encounter a significant loss rate and a very short duration of communication. In vehicular ad hoc networks, one of challenging is routing of data due to high speed mobility and changing topology of vehicles. Geographic routing protocols are becoming popular due to advancement and availability of GPS devices. Delay Tolerant Networks (DTNs) are a class of networks that enable communication where connectivity issues like sparse connectivity, intermittent connectivity; high latency, long delay, high error rates, asymmetric data rate, and even no end-to-end connectivity exist. In this paper, we review the existing Geographic Routing Protocols for VANETs and also provide a qualitative comparison of them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicular%20ad%20hoc%20networks" title="vehicular ad hoc networks">vehicular ad hoc networks</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20routing" title=" geographic routing"> geographic routing</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20tolerant%20networks" title=" delay tolerant networks"> delay tolerant networks</a> </p> <a href="https://publications.waset.org/abstracts/34821/vanets-geographic-routing-protocols-a-survey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Auditory Function in Hypothyroidism as Compared to Controls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mrunal%20Phatak">Mrunal Phatak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Thyroid hormone is important for the normal function of the auditory system. Hearing impairment can occur insidiously in subclinical hypothyroidism. The present study was undertaken with the aim of evaluating audiological tests like tuning fork tests, pure tone audiometry, brainstem evoked auditory potentials (BAEPs), and auditory reaction time (ART) in hypothyroid women and in age and sex-matched controls to evaluate the effect of thyroid hormone on hearing. The objective of the study was to investigate hearing status by the audiological profile in hypothyroidism (group 1) and healthy controls (group 2) to compare the audiological profile between these groups and find the correlation of levels of TSH, T3 and T4 with the above parameters. Material and methods: A total sample size of 124 women in the age group of 30 to 50 years was recruited and divided into the Cases group comprising 62 newly diagnosed hypothyroid women and a Control group having 62 women with normal thyroid profiles. Otoscopic examination, tuning fork tests, Pure tone audiometry tests (PTA). Brain Stem Auditory Evoked Potential (BAEP) and Auditory Reaction Time (ART) were done in both ears, i.e., a total of 248 ears of all subjects. Results: By BAEPs, hearing impairment was detected in a total of 64 years (51.61%). A significant increase was seen in Wave V latency, IPL I-V and IPL III-V, and the decrease was seen in the amplitude of Wave I and V in both the ears cases. A positive correlation of Wave V latency of the Right and Left ears is seen with TSH levels (p < 0.001) and a negative correlation with T3 (>0.05) and with T4 (p < 0.01). The negative correlation of wave V amplitude of the Right and Left ears is seen with TSH levels (p < 0.001), and a significant positive correlation is seen with T3 and T4. Pure tone audiometry parameters showed hearing impairment of conductive (31.29%), sensorineural (36.29%), as well as mixed type (15.32%). Hearing loss was mild in 65.32% of ears and moderate in 17.74% of ears. Pure tone averages (PTA) were significantly increased in cases than in controls in both ears. A significant positive correlation of PTA of Right and Left ears is seen with TSH levels (p<0.05). A negative correlation between T3 and T4 is seen. A significant increase in HF ART and LF ART is seen in cases as compared to controls. A positive correlation between ART of high frequency and low frequency is seen with TSH levels and a negative correlation with T3 and T4 (p > 0.05). Conclusion: The abnormal BAEPs in hypothyroid women suggest an impaired central auditory pathway. BAEP abnormalities are indicative of a nonspecific injury in the bulbo-ponto-mesencephalic centers. The results of auditory investigations suggest a causal relationship between hypothyroidism and hearing loss. The site of lesion in the auditory pathway is probably at several levels, namely, in the middle ear and at cochlear and retrocochlear sites. Prolonged ART also suggests an impairment in central processing mechanisms. The results of the present study conclude that the probable reason for hearing impairment in hypothyroidism may be delayed impulse conduction in the acoustic nerve up to the level of the midbrain (IPL I-V, III-V), particularly the inferior colliculus (wave V). There is also impairment in central processing mechanisms, as shown by prolonged ART. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypothyroidism" title="hypothyroidism">hypothyroidism</a>, <a href="https://publications.waset.org/abstracts/search?q=deafness" title=" deafness"> deafness</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20tone%20audiometry" title=" pure tone audiometry"> pure tone audiometry</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20stem%20auditory%20evoked%20potential" title=" brain stem auditory evoked potential"> brain stem auditory evoked potential</a> </p> <a href="https://publications.waset.org/abstracts/186644/auditory-function-in-hypothyroidism-as-compared-to-controls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Chaos Cryptography in Cloud Architectures with Lower Latency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Alia">Mohammad A. Alia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid evolution of the internet applications, cloud computing becomes one of today’s hottest research areas due to its ability to reduce costs associated with computing. Cloud is, therefore, increasing flexibility and scalability for computing services in the internet. Cloud computing is Internet based computing due to shared resources and information which are dynamically delivered to consumers. As cloud computing share resources via the open network, hence cloud outsourcing is vulnerable to attack. Therefore, this paper will explore data security of cloud computing by implementing chaotic cryptography. The proposal scenario develops a problem transformation technique that enables customers to secretly transform their information. This work proposes the chaotic cryptographic algorithms have been applied to enhance the security of the cloud computing accessibility. However, the proposed scenario is secure, easy and straightforward process. The chaotic encryption and digital signature systems ensure the security of the proposed scenario. Though, the choice of the key size becomes crucial to prevent a brute force attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaos" title="chaos">chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a> </p> <a href="https://publications.waset.org/abstracts/79408/chaos-cryptography-in-cloud-architectures-with-lower-latency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Auditory Profile Function in Hypothyroidism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mrunal%20Phatak">Mrunal Phatak</a>, <a href="https://publications.waset.org/abstracts/search?q=Suvarna%20Raut"> Suvarna Raut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Thyroid hormone is important for the normal function of the auditory system. Hearing impairment can occur insidiously in subclinical hypothyroidism. The present study was undertaken with the aims of evaluating audiological tests like tuning fork tests, pure tone audiometry, brainstem evoked auditory potentials (BAEPs), and auditory reaction time (ART) in hypothyroid women and in age and sex matched controls so as to evaluate the effect of thyroid hormone on hearing. The objective of the study was to investigate hearing status by the audiological profile in hypothyroidism (group 1) and healthy controls ( group 2) to compare the audiological profile between these groups and find the correlation of levels of TSH, T3, and T4 with the above parameters. Material and methods: A total sample size of 124 women in the age group of 30 to 50 years was recruited and divided into the Cases group comprising of 62 newly diagnosed hypothyroid women and the Control group having 62 women with normal thyroid profile. Otoscopic examination, tuning fork tests, Pure tone audiometry tests (PTA). Brain Stem Auditory Evoked Potential (BAEP) and Auditory Reaction Time (ART) were done in both ears, i.e. total 248 ears of all subjects. Results: By BAEPs, hearing impairment was detected in total 64 ears (51.61%). A significant increase was seen in Wave V latency, IPL I-V, and IPL III-V, and the decrease was seen in the amplitude of Wave I and V in both the ears in cases. Positive correlation of Wave V latency of Right and Left ears is seen with TSH levels (p < 0.001) and a negative correlation with T3 (>0.05) and with T4 (p < 0.01). Negative correlation of wave V amplitude of Right and Left ears is seen with TSH levels (p < 0.001), and a significant positive correlation is seen with T3 and T4. Pure tone audiometry parameters showed hearing impairment of conductive (31.29%), sensorineural (36.29%), as well as the mixed type (15.32%). Hearing loss was mild in 65.32% of ears and moderate in 17.74% of ears. Pure tone averages (PTA) were significantly increased in cases than in controls in both the ears. Significant positive correlation of PTA of Right and Left ears is seen with TSH levels (p<0.05). Negative correlation with T3 and T4 is seen. A significant increase in HF ART and LF ART is seen in cases as compared to controls. Positive correlation of ART of high frequency and low frequency is seen with TSH levels and a negative correlation with T3 and T4 (p > 0.05). Conclusion: The abnormal BAEPs in hypothyroid women suggest an impaired central auditory pathway. BAEP abnormalities are indicative of a nonspecific injury in the bulbo-ponto-mesencephalic centres. The results of auditory investigations suggest a causal relationship between hypothyroidism and hearing loss. The site of lesion in the auditory pathway is probably at several levels, namely, in the middle ear and at cochlear and retrocochlear sites. Prolonged ART also suggests the impairment in central processing mechanisms. The results of the present study conclude that the probable reason for hearing impairment in hypothyroidism may be delayed impulse conduction in acoustic nerve up to the level of the midbrain (IPL I-V, III-V), particularly inferior colliculus (wave V). There is also impairment in central processing mechanisms, as shown by prolonged ART. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deafness" title="deafness">deafness</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20tone%20audiometry" title=" pure tone audiometry"> pure tone audiometry</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20stem%20auditory%20evoked%20potential" title=" brain stem auditory evoked potential"> brain stem auditory evoked potential</a>, <a href="https://publications.waset.org/abstracts/search?q=hyopothyroidism" title=" hyopothyroidism"> hyopothyroidism</a> </p> <a href="https://publications.waset.org/abstracts/152449/auditory-profile-function-in-hypothyroidism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Parallel Vector Processing Using Multi Level Orbital DATA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagi%20Mekhiel">Nagi Mekhiel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many applications use vector operations by applying single instruction to multiple data that map to different locations in conventional memory. Transferring data from memory is limited by access latency and bandwidth affecting the performance gain of vector processing. We present a memory system that makes all of its content available to processors in time so that processors need not to access the memory, we force each location to be available to all processors at a specific time. The data move in different orbits to become available to other processors in higher orbits at different time. We use this memory to apply parallel vector operations to data streams at first orbit level. Data processed in the first level move to upper orbit one data element at a time, allowing a processor in that orbit to apply another vector operation to deal with serial code limitations inherited in all parallel applications and interleaved it with lower level vector operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Memory%20Organization" title="Memory Organization">Memory Organization</a>, <a href="https://publications.waset.org/abstracts/search?q=Parallel%20Processors" title=" Parallel Processors"> Parallel Processors</a>, <a href="https://publications.waset.org/abstracts/search?q=Serial%0D%0ACode" title=" Serial Code"> Serial Code</a>, <a href="https://publications.waset.org/abstracts/search?q=Vector%20Processing" title=" Vector Processing"> Vector Processing</a> </p> <a href="https://publications.waset.org/abstracts/59115/parallel-vector-processing-using-multi-level-orbital-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Blockchain’s Feasibility in Military Data Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brenden%20M.%20Shutt">Brenden M. Shutt</a>, <a href="https://publications.waset.org/abstracts/search?q=Lubjana%20Beshaj"> Lubjana Beshaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20L.%20Goethals"> Paul L. Goethals</a>, <a href="https://publications.waset.org/abstracts/search?q=Ambrose%20Kam"> Ambrose Kam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Communication security is of particular interest to military data networks. A relatively novel approach to network security is blockchain, a cryptographically secured distribution ledger with a decentralized consensus mechanism for data transaction processing. Recent advances in blockchain technology have proposed new techniques for both data validation and trust management, as well as different frameworks for managing dataflow. The purpose of this work is to test the feasibility of different blockchain architectures as applied to military command and control networks. Various architectures are tested through discrete-event simulation and the feasibility is determined based upon a blockchain design&rsquo;s ability to maintain long-term stable performance at industry standards of throughput, network latency, and security. This work proposes a consortium blockchain architecture with a computationally inexpensive consensus mechanism, one that leverages a Proof-of-Identity (PoI) concept and a reputation management mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=consensus%20mechanism" title=" consensus mechanism"> consensus mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-event%20simulation" title=" discrete-event simulation"> discrete-event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fog%20computing" title=" fog computing"> fog computing</a> </p> <a href="https://publications.waset.org/abstracts/130951/blockchains-feasibility-in-military-data-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> The Effect of Closed Circuit Television Image Patch Layout on Performance of a Simulated Train-Platform Departure Task </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aaron%20J.%20Small">Aaron J. Small</a>, <a href="https://publications.waset.org/abstracts/search?q=Craig%20A.%20Fletcher"> Craig A. Fletcher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effect of closed circuit television (CCTV) image patch layout on performance of a simulated train-platform departure task. The within-subjects experimental design measures target detection rate and response latency during a CCTV visual search task conducted as part of the procedure for safe train dispatch. Three interface designs were developed by manipulating CCTV image patch layout. Eye movements, perceived workload and system usability were measured across experimental conditions. Task performance was compared to identify significant differences between conditions. The results of this study have not been determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rail%20human%20factors" title="rail human factors">rail human factors</a>, <a href="https://publications.waset.org/abstracts/search?q=workload" title=" workload"> workload</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20circuit%20television" title=" closed circuit television"> closed circuit television</a>, <a href="https://publications.waset.org/abstracts/search?q=platform%20departure" title=" platform departure"> platform departure</a>, <a href="https://publications.waset.org/abstracts/search?q=attention" title=" attention"> attention</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20processing" title=" information processing"> information processing</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20design" title=" interface design"> interface design</a> </p> <a href="https://publications.waset.org/abstracts/90945/the-effect-of-closed-circuit-television-image-patch-layout-on-performance-of-a-simulated-train-platform-departure-task" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Performance Analysis of Heterogeneous Cellular Networks with Multiple Connectivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungkyung%20Kim">Sungkyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jee-Hyeon%20Na"> Jee-Hyeon Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Seung%20Kwon"> Dong-Seung Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Future mobile networks following 5th generation will be characterized by one thousand times higher gains in capacity; connections for at least one hundred billion devices; user experience capable of extremely low latency and response times. To be close to the capacity requirements and higher reliability, advanced technologies have been studied, such as multiple connectivity, small cell enhancement, heterogeneous networking, and advanced interference and mobility management. This paper is focused on the multiple connectivity in heterogeneous cellular networks. We investigate the performance of coverage and user throughput in several deployment scenarios. Using the stochastic geometry approach, the SINR distributions and the coverage probabilities are derived in case of dual connection. Also, to compare the user throughput enhancement among the deployment scenarios, we calculate the spectral efficiency and discuss our results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20networks" title="heterogeneous networks">heterogeneous networks</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20connectivity" title=" multiple connectivity"> multiple connectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20cell%20enhancement" title=" small cell enhancement"> small cell enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20geometry" title=" stochastic geometry"> stochastic geometry</a> </p> <a href="https://publications.waset.org/abstracts/25414/performance-analysis-of-heterogeneous-cellular-networks-with-multiple-connectivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Smart Surveillance with 5G: A Performance Study in Adama City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shenko%20Chura%20Aredo">Shenko Chura Aredo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hailu%20Belay"> Hailu Belay</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20T.%20Kornegay"> Kevin T. Kornegay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In light of Adama City’s smart city development vision, this study thoroughly investigates the performance of smart security systems with Fifth Generation (5G) network capabilities. It can be logistically difficult to install a lot of cabling, particularly in big or dynamic settings. Moreover, latency issues might affect linked systems, making it difficult for them to monitor in real time. Through a focused analysis that employs Adama City as a case study, the performance has been evaluated in terms of spectrum and energy efficiency using empirical data and basic signal processing formulations at different frequency resources. The findings also demonstrate that cameras working at higher 5G frequencies have more capacity than those operating at sub-6 GHz, notwithstanding frequency-related issues. It has also been noted that when the beams of such cameras are adaptively focussed based on the distance of the last cell edge user rather than the maximum cell radius, less energy is required than with conventional fixed power ramping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5G" title="5G">5G</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20security" title=" smart security"> smart security</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20efficiency" title=" spectral efficiency"> spectral efficiency</a> </p> <a href="https://publications.waset.org/abstracts/193079/smart-surveillance-with-5g-a-performance-study-in-adama-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Simulation of a Cost Model Response Requests for Replication in Data Grid Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaddi%20Mohammed">Kaddi Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benatiallah"> A. Benatiallah</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Benatiallah"> D. Benatiallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data grid is a technology that has full emergence of new challenges, such as the heterogeneity and availability of various resources and geographically distributed, fast data access, minimizing latency and fault tolerance. Researchers interested in this technology address the problems of the various systems related to the industry such as task scheduling, load balancing and replication. The latter is an effective solution to achieve good performance in terms of data access and grid resources and better availability of data cost. In a system with duplication, a coherence protocol is used to impose some degree of synchronization between the various copies and impose some order on updates. In this project, we present an approach for placing replicas to minimize the cost of response of requests to read or write, and we implement our model in a simulation environment. The placement techniques are based on a cost model which depends on several factors, such as bandwidth, data size and storage nodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=response%20time" title="response time">response time</a>, <a href="https://publications.waset.org/abstracts/search?q=query" title=" query"> query</a>, <a href="https://publications.waset.org/abstracts/search?q=consistency" title=" consistency"> consistency</a>, <a href="https://publications.waset.org/abstracts/search?q=bandwidth" title=" bandwidth"> bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20capacity" title=" storage capacity"> storage capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=CERN" title=" CERN"> CERN</a> </p> <a href="https://publications.waset.org/abstracts/47895/simulation-of-a-cost-model-response-requests-for-replication-in-data-grid-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Android Graphics System: Study of Dual-Software VSync Synchronization Architecture and Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prafulla%20Kumar%20Choubey">Prafulla Kumar Choubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Kishor%20Jha"> Krishna Kishor Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Vaisakh%20Punnekkattu%20Chirayil"> S. B. Vaisakh Punnekkattu Chirayil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Graphics-display subsystem, frame buffers are shared between producer i.e. content rendering and consumer i.e. display. If a common buffer is operated by both producer and consumer simultaneously, their processing rates mismatch can cause tearing effect in displayed content. Therefore, Android OS employs triple buffered system, taking in to account an additional composition stage. Three stages-rendering, composition and display refresh, operate synchronously on three different buffers, which is achieved by using vsync pulses. This synchronization, however, brings in to the pipeline an additional latency of up to 26ms. The present study details about the existing synchronization mechanism of android graphics-display pipeline and discusses a new adaptive architecture which reduces the wait time to 5ms-16ms in all the use-cases. The proposed method uses two adaptive software vsyncs (PLL) for achieving the same result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Android%20graphics%20system" title="Android graphics system">Android graphics system</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20synchronization" title=" vertical synchronization"> vertical synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=atrace" title=" atrace"> atrace</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20system" title=" adaptive system"> adaptive system</a> </p> <a href="https://publications.waset.org/abstracts/38338/android-graphics-system-study-of-dual-software-vsync-synchronization-architecture-and-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Optimizing Data Transfer and Processing in Multi-Cloud Environments for Big Data Workloads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Kumar%20Sinha">Gaurav Kumar Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an era defined by the proliferation of data and the utilization of cloud computing environments, the efficient transfer and processing of big data workloads across multi-cloud platforms have emerged as critical challenges. This research paper embarks on a comprehensive exploration of the complexities associated with managing and optimizing big data in a multi-cloud ecosystem.The foundation of this study is rooted in the recognition that modern enterprises increasingly rely on multiple cloud providers to meet diverse business needs, enhance redundancy, and reduce vendor lock-in. As a consequence, managing data across these heterogeneous cloud environments has become intricate, necessitating innovative approaches to ensure data integrity, security, and performance.The primary objective of this research is to investigate strategies and techniques for enhancing the efficiency of data transfer and processing in multi-cloud scenarios. It recognizes that big data workloads are characterized by their sheer volume, variety, velocity, and complexity, making traditional data management solutions insufficient for harnessing the full potential of multi-cloud architectures.The study commences by elucidating the challenges posed by multi-cloud environments in the context of big data. These challenges encompass data fragmentation, latency, security concerns, and cost optimization. To address these challenges, the research explores a range of methodologies and solutions. One of the key areas of focus is data transfer optimization. The paper delves into techniques for minimizing data movement latency, optimizing bandwidth utilization, and ensuring secure data transmission between different cloud providers. It evaluates the applicability of dedicated data transfer protocols, intelligent data routing algorithms, and edge computing approaches in reducing transfer times.Furthermore, the study examines strategies for efficient data processing across multi-cloud environments. It acknowledges that big data processing requires distributed and parallel computing capabilities that span across cloud boundaries. The research investigates containerization and orchestration technologies, serverless computing models, and interoperability standards that facilitate seamless data processing workflows.Security and data governance are paramount concerns in multi-cloud environments. The paper explores methods for ensuring data security, access control, and compliance with regulatory frameworks. It considers encryption techniques, identity and access management, and auditing mechanisms as essential components of a robust multi-cloud data security strategy.The research also evaluates cost optimization strategies, recognizing that the dynamic nature of multi-cloud pricing models can impact the overall cost of data transfer and processing. It examines approaches for workload placement, resource allocation, and predictive cost modeling to minimize operational expenses while maximizing performance.Moreover, this study provides insights into real-world case studies and best practices adopted by organizations that have successfully navigated the challenges of multi-cloud big data management. It presents a comparative analysis of various multi-cloud management platforms and tools available in the market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-cloud%20environments" title="multi-cloud environments">multi-cloud environments</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data%20workloads" title=" big data workloads"> big data workloads</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20transfer%20optimization" title=" data transfer optimization"> data transfer optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20processing%20strategies" title=" data processing strategies"> data processing strategies</a> </p> <a href="https://publications.waset.org/abstracts/173725/optimizing-data-transfer-and-processing-in-multi-cloud-environments-for-big-data-workloads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Cellular Architecture of Future Wireless Communication Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Yahaghifar">Mohammad Yahaghifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays Wireless system designers have been facing the continuously increasing demand for high data rates and mobility required by new wireless applications. Evolving future communication network generation cellular wireless networks are envisioned to overcome the fundamental challenges of existing cellular networks, for example, higher data rates, excellent end-to-end performance, and user coverage in hot-spots and crowded areas with lower latency,energy consumption and cost per information transfer. In this paper we propose a potential cellular architecture that separates indoor and outdoor scenarios and discuss various promising technologies for future wireless communication systemssystems, such as massive MIMO, energy-efficient communications,cognitive radio networks, and visible light communications and we disscuse about 5G that is next generation of wireless networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=future%20challenges%20in%20networks" title="future challenges in networks">future challenges in networks</a>, <a href="https://publications.waset.org/abstracts/search?q=cellur%20architecture" title=" cellur architecture"> cellur architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light%20communication" title=" visible light communication"> visible light communication</a>, <a href="https://publications.waset.org/abstracts/search?q=5G%20wireless%20technologies" title=" 5G wireless technologies"> 5G wireless technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20modulation" title=" spatial modulation"> spatial modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=massiva%20mimo" title=" massiva mimo"> massiva mimo</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio%20network" title=" cognitive radio network"> cognitive radio network</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20communications" title=" green communications "> green communications </a> </p> <a href="https://publications.waset.org/abstracts/19938/cellular-architecture-of-future-wireless-communication-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Scenario Based Reaction Time Analysis for Seafarers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umut%20Tac">Umut Tac</a>, <a href="https://publications.waset.org/abstracts/search?q=Leyla%20Tavacioglu"> Leyla Tavacioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pelin%20Bolat"> Pelin Bolat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human factor has been one of the elements that cause vulnerabilities which can be resulted with accidents in maritime transportation. When the roots of human factor based accidents are analyzed, gaps in performing cognitive abilities (reaction time, attention, memory…) are faced as the main reasons for the vulnerabilities in complex environment of maritime systems. Thus cognitive processes in maritime systems have arisen important subject that should be investigated comprehensively. At this point, neurocognitive tests such as reaction time analysis tests have been used as coherent tools that enable us to make valid assessments for cognitive status. In this respect, the aim of this study is to evaluate the reaction time (response time or latency) of seafarers due to their occupational experience and age. For this study, reaction time for different maneuverers has been taken while the participants were performing a sea voyage through a simulator which was run up with a certain scenario. After collecting the data for reaction time, a statistical analyze has been done to understand the relation between occupational experience and cognitive abilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20abilities" title="cognitive abilities">cognitive abilities</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20factor" title=" human factor"> human factor</a>, <a href="https://publications.waset.org/abstracts/search?q=neurocognitive%20test%20battery" title=" neurocognitive test battery"> neurocognitive test battery</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20time" title=" reaction time"> reaction time</a> </p> <a href="https://publications.waset.org/abstracts/57613/scenario-based-reaction-time-analysis-for-seafarers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Impact Evaluation of Discriminant Analysis on Epidemic Protocol in Warships’s Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davi%20Marinho%20de%20Araujo%20Falc%C3%A3o">Davi Marinho de Araujo Falcão</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronaldo%20Moreira%20Salles"> Ronaldo Moreira Salles</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Henrique%20Maranh%C3%A3o"> Paulo Henrique Maranhão</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disruption Tolerant Networks (DTN) are an evolution of Mobile Adhoc Networks (MANET) and work good in scenarioswhere nodes are sparsely distributed, with low density, intermittent connections and an end-to-end infrastructure is not possible to guarantee. Therefore, DTNs are recommended for high latency applications that can last from hours to days. The maritime scenario has mobility characteristics that contribute to a DTN network approach, but the concern with data security is also a relevant aspect in such scenarios. Continuing the previous work, which evaluated the performance of some DTN protocols (Epidemic, Spray and Wait, and Direct Delivery) in three warship scenarios and proposed the application of discriminant analysis, as a classification technique for secure connections, in the Epidemic protocol, thus, the current article proposes a new analysis of the directional discriminant function with opening angles smaller than 90 degrees, demonstrating that the increase in directivity influences the selection of a greater number of secure connections by the directional discriminant Epidemic protocol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DTN" title="DTN">DTN</a>, <a href="https://publications.waset.org/abstracts/search?q=discriminant%20function" title=" discriminant function"> discriminant function</a>, <a href="https://publications.waset.org/abstracts/search?q=epidemic%20protocol" title=" epidemic protocol"> epidemic protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=tactical%20messages" title=" tactical messages"> tactical messages</a>, <a href="https://publications.waset.org/abstracts/search?q=warship%20scenario" title=" warship scenario"> warship scenario</a> </p> <a href="https://publications.waset.org/abstracts/141488/impact-evaluation-of-discriminant-analysis-on-epidemic-protocol-in-warshipss-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Data Collection with Bounded-Sized Messages in Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Kyung%20An">Min Kyung An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20collection" title="data collection">data collection</a>, <a href="https://publications.waset.org/abstracts/search?q=collision-free" title=" collision-free"> collision-free</a>, <a href="https://publications.waset.org/abstracts/search?q=interference-free" title=" interference-free"> interference-free</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20interference%20model" title=" physical interference model"> physical interference model</a>, <a href="https://publications.waset.org/abstracts/search?q=SINR" title=" SINR"> SINR</a>, <a href="https://publications.waset.org/abstracts/search?q=approximation" title=" approximation"> approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=bounded-sized%20message%20model" title=" bounded-sized message model"> bounded-sized message model</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a> </p> <a href="https://publications.waset.org/abstracts/44172/data-collection-with-bounded-sized-messages-in-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Availability Strategy of Medical Information for Telemedicine Services</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rozo%20D.%20Juan%20Felipe">Rozo D. Juan Felipe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%C3%ADrez%20L.%20Leonardo%20Juan"> Ramírez L. Leonardo Juan</a>, <a href="https://publications.waset.org/abstracts/search?q=Puerta%20A.%20Gabriel%20Alberto"> Puerta A. Gabriel Alberto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The telemedicine services require correct computing resource management to guarantee productivity and efficiency for medical and non-medical staff. The aim of this study was to examine web management strategies to ensure the availability of resources and services in telemedicine so as to provide medical information management with an accessible strategy. In addition, to evaluate the quality-of-service parameters, the followings were measured: delays, throughput, jitter, latency, available bandwidth, percent of access and denial of services based of web management performance map with profiles permissions and database management. Through 24 different test scenarios, the results show 100% in availability of medical information, in relation to access of medical staff to web services, and quality of service (QoS) of 99% because of network delay and performance of computer network. The findings of this study suggest that the proposed strategy of web management is an ideal solution to guarantee the availability, reliability, and accessibility of medical information. Finally, this strategy offers seven user profile used at telemedicine center of Bogota-Colombia keeping QoS parameters suitable to telemedicine services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=availability" title="availability">availability</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20information" title=" medical information"> medical information</a>, <a href="https://publications.waset.org/abstracts/search?q=QoS" title=" QoS"> QoS</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=telemedicine" title=" telemedicine"> telemedicine</a> </p> <a href="https://publications.waset.org/abstracts/99707/availability-strategy-of-medical-information-for-telemedicine-services" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Evaluation of the Diagnostic Potential of IL-2 as Biomarker for the Discrimination of Active and Latent Tuberculosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shima%20Mahmoudi">Shima Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Setareh%20Mamishi"> Setareh Mamishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Pourakbari"> Babak Pourakbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Marjani"> Majid Marjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last years, the potential role of distinct T-cell subsets as biomarkers of active tuberculosis TB and/or latent tuberculosis infection (LTBI) has been studied. The aim of this study was to investigate the potential role of interleukin-2 (IL-2) in whole blood stimulated with M. tuberculosis-specific antigens in the QuantiFERON-TB Gold In Tube (QFT-G-IT) for the discrimination of active and latent tuberculosis. After 72-h of stimulation by antigens from the QFT-G-IT assay, IL-2 secretion was quantitated in supernatants by using ELISA (Mabtech AB, Sweden). Observing the level of IL-2 released after 72-h of incubation, we found that the level of IL-2 were significantly higher in LTBI group than in patients with active TB infection or control group (P value=0.019, Kruskal–Wallis test). The discrimination performance (assessed by the area under ROC curve) between LTBI and patients with active TB was 0.816 (95%CI: 0.72-0.97). Maximum discrimination was reached at a cut-off of 13.9 pg/mL for IL-2 following stimulation with 82% sensitivity and 86% specificity. In conclusion, although cytokine analysis has greatly contributed to the understanding of TB pathogenesis, data on cytokine profiles that might distinguish progression from latency of TB infection are scarce and even controversial. Our data indicate that the concomitant evaluation of IFN- γ and IL-2 could be instrumental in discriminating of active and latent TB infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interleukin-2" title="interleukin-2">interleukin-2</a>, <a href="https://publications.waset.org/abstracts/search?q=discrimination" title=" discrimination"> discrimination</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20TB" title=" active TB"> active TB</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20TB" title=" latent TB"> latent TB</a> </p> <a href="https://publications.waset.org/abstracts/21198/evaluation-of-the-diagnostic-potential-of-il-2-as-biomarker-for-the-discrimination-of-active-and-latent-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Latency-Based Motion Detection in Spiking Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saleh%20Vahdatpour">Mohammad Saleh Vahdatpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanqing%20Zhang"> Yanqing Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title="neural network">neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20detection" title=" motion detection"> motion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=signature%20detection" title=" signature detection"> signature detection</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a> </p> <a href="https://publications.waset.org/abstracts/174855/latency-based-motion-detection-in-spiking-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> High Performance Field Programmable Gate Array-Based Stochastic Low-Density Parity-Check Decoder Design for IEEE 802.3an Standard </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghania%20Zerari">Ghania Zerari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrezak%20Guessoum"> Abderrezak Guessoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Beguenane"> Rachid Beguenane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces high-performance architecture for fully parallel stochastic Low-Density Parity-Check (LDPC) field programmable gate array (FPGA) based LDPC decoder. The new approach is designed to decrease the decoding latency and to reduce the FPGA logic utilisation. To accomplish the target logic utilisation reduction, the routing of the proposed sub-variable node (VN) internal memory is designed to utilize one slice distributed RAM. Furthermore, a VN initialization, using the channel input probability, is achieved to enhance the decoder convergence, without extra resources and without integrating the output saturated-counters. The Xilinx FPGA implementation, of IEEE 802.3an standard LDPC code, shows that the proposed decoding approach attain high performance along with reduction of FPGA logic utilisation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-density%20parity-check%20%28LDPC%29%20decoder" title="low-density parity-check (LDPC) decoder">low-density parity-check (LDPC) decoder</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20decoding" title=" stochastic decoding"> stochastic decoding</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20programmable%20gate%20array%20%28FPGA%29" title=" field programmable gate array (FPGA)"> field programmable gate array (FPGA)</a>, <a href="https://publications.waset.org/abstracts/search?q=IEEE%20802.3an%20standard" title=" IEEE 802.3an standard"> IEEE 802.3an standard</a> </p> <a href="https://publications.waset.org/abstracts/81538/high-performance-field-programmable-gate-array-based-stochastic-low-density-parity-check-decoder-design-for-ieee-8023an-standard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Machine Learning Assisted Performance Optimization in Memory Tiering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Derssie%20Mebratu">Derssie Mebratu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a large variety of micro services, web services, social graphic applications, and media applications are continuously developed, it is substantially vital to design and build a reliable, efficient, and faster memory tiering system. Despite limited design, implementation, and deployment in the last few years, several techniques are currently developed to improve a memory tiering system in a cloud. Some of these techniques are to develop an optimal scanning frequency; improve and track pages movement; identify pages that recently accessed; store pages across each tiering, and then identify pages as a hot, warm, and cold so that hot pages can store in the first tiering Dynamic Random Access Memory (DRAM) and warm pages store in the second tiering Compute Express Link(CXL) and cold pages store in the third tiering Non-Volatile Memory (NVM). Apart from the current proposal and implementation, we also develop a new technique based on a machine learning algorithm in that the throughput produced 25% improved performance compared to the performance produced by the baseline as well as the latency produced 95% improved performance compared to the performance produced by the baseline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian%20optimization" title=" bayesian optimization"> bayesian optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20tiering" title=" memory tiering"> memory tiering</a>, <a href="https://publications.waset.org/abstracts/search?q=CXL" title=" CXL"> CXL</a>, <a href="https://publications.waset.org/abstracts/search?q=DRAM" title=" DRAM"> DRAM</a> </p> <a href="https://publications.waset.org/abstracts/156985/machine-learning-assisted-performance-optimization-in-memory-tiering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Schiff Bases of Isatin and Admantane-1-Carbohydrazide: Synthesis, Characterization, and Anticonvulsant Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hind%20O.%20Osman">Hind O. Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Tilal%20Elsaman"> Tilal Elsaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Bashir%20A.%20Yousef"> Bashir A. Yousef</a>, <a href="https://publications.waset.org/abstracts/search?q=Esraa%20Elhadi"> Esraa Elhadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aimun%20A.%20E.%20Ahmed"> Aimun A. E. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Eyman%20Mohamed%20Eltayib"> Eyman Mohamed Eltayib</a>, <a href="https://publications.waset.org/abstracts/search?q=Malik%20Suliman%20Mohamed"> Malik Suliman Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdi%20Awadalla%20Mohamed"> Magdi Awadalla Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epilepsy is the most common neurological condition and cause of substantial morbidity and mortality. In the present study, the molecular hybridization tool was adopted to obtain six Schiff bases of isatin and adamantane-1-carbohydrazide (18–23). Then, their anticonvulsant activity was evaluated using a pentylenetetrazole- (PTZ-) induced seizure model using phenobarbitone as a positive control. Our findings showed that compounds 18–23 provided significant protection against PTZ-induced seizure, and maximum activities were associated with compound 23. Moreover, all investigated compounds increased the latency of induced convulsion and reduced the duration of epilepsy, with compound 23 being the best. Interestingly, most of the synthesized molecules showed a reduction in neurological symptoms and severity of the seizure. Molecular docking studies suggest GABA-A receptor as a potential target, and in silico ADME screening revealed that the pharmaceutical properties of compound 23 are within the specified limit. Thus, compound 23 was identified as a promising candidate that warrants further drug discovery processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isatin%20and%20adamantane" title="isatin and adamantane">isatin and adamantane</a>, <a href="https://publications.waset.org/abstracts/search?q=anticonvulsant%20activity" title=" anticonvulsant activity"> anticonvulsant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=PTZ-induced%20seizure" title=" PTZ-induced seizure"> PTZ-induced seizure</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a> </p> <a href="https://publications.waset.org/abstracts/145055/schiff-bases-of-isatin-and-admantane-1-carbohydrazide-synthesis-characterization-and-anticonvulsant-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=N20%20latency&amp;page=2" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=N20%20latency&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=N20%20latency&amp;page=2">2</a></li> <li class="page-item active"><span class="page-link">3</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=N20%20latency&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=N20%20latency&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=N20%20latency&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=N20%20latency&amp;page=4" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10