CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 113 results for author: <span class="mathjax">Bernstein, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/nucl-ex" aria-role="search"> Searching in archive <strong>nucl-ex</strong>. <a href="/search/?searchtype=author&amp;query=Bernstein%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bernstein, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bernstein%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bernstein, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bernstein%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bernstein%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bernstein%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bernstein%2C+A&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17893">arXiv:2402.17893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.17893">pdf</a>, <a href="https://arxiv.org/format/2402.17893">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Measurement of Proton-Induced Reactions on Lanthanum from 55--200 MeV by Stacked-Foil Activation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Morrell%2C+J+T">Jonathan T. Morrell</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=O%27Brien%2C+E+M">Ellen M. O&#39;Brien</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Skulski%2C+M">Michael Skulski</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Voyles%2C+A+S">Andrew S. Voyles</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Medvedev%2C+D+G">Dmitri G. Medvedev</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Mocko%2C+V">Veronika Mocko</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">Lee A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Vermeulen%2C+C+E">C. Etienne Vermeulen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17893v1-abstract-short" style="display: inline;"> Cerium-134 is an isotope desired for applications as a chemical analogue to the promising therapeutic radionuclide $^{225}$Ac, for use in bio-distribution assays as an in vivo generator of the short-lived positron-emitting isotope $^{134}$La. In the 50-100 MeV energy range relevant to the production of $^{134}$Ce by means of high-energy proton bombardment of lanthanum, existing cross section data&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17893v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17893v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17893v1-abstract-full" style="display: none;"> Cerium-134 is an isotope desired for applications as a chemical analogue to the promising therapeutic radionuclide $^{225}$Ac, for use in bio-distribution assays as an in vivo generator of the short-lived positron-emitting isotope $^{134}$La. In the 50-100 MeV energy range relevant to the production of $^{134}$Ce by means of high-energy proton bombardment of lanthanum, existing cross section data are discrepant and have gaps at important energies. To address these deficiencies, a series of 17 $^{139}$La foils (99.919% natural abundance) were irradiated in two stacked-target experiments: one at the LANL&#39;s Isotope Production Facility with an incident proton energy of 100 MeV, and a second at BNL&#39;s Brookhaven Linac Isotope Producer with an incident proton energy of 200 MeV - a complete energy range spanning approximately 55-200 MeV. Cross sections are reported for 30 products of $^{139}$La(p,x) reactions (representing up to 55% of the total non-elastic cross section), in addition to 24 residual products measured in the $^{nat}$Cu and $^{nat}$Ti foils that were used as proton flux monitors. The measured production cross sections for $^{139}$La reactions were compared to literature data as well as default calculations from the nuclear reaction modeling codes TALYS, EMPIRE and ALICE, as well as the TENDL-2023 library. The default calculations typically exhibited poor predictive capability, due to the complexity of multiple interacting physics models in this energy range, and deficiencies in preequilibrium reaction modeling. Building upon previous efforts to evaluate proton-induced reactions in this energy range, a parameter adjustment procedure was performed upon the optical model and the two-component exciton model using the TALYS-2.0 code. This resulted in an improvement in $^{139}$La(p,x) cross sections for applications including isotope production, over default predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17893v1-abstract-full').style.display = 'none'; document.getElementById('2402.17893v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14110">arXiv:2312.14110</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.14110">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Global Characterization of a Laser-Generated Neutron Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Higginson%2C+D+P">D. P. Higginson</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Leli%C3%A8vre%2C+R">R. Leli猫vre</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Vassura%2C+L">L. Vassura</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gugiu%2C+M+M">M. M. Gugiu</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Borghesi%2C+M">M. Borghesi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">L. A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bleuel%2C+D+L">D. L. Bleuel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Goldblum%2C+B+L">B. L. Goldblum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Green%2C+A">A. Green</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hannachi%2C+F">F. Hannachi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kar%2C+S">S. Kar</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kisyov%2C+S">S. Kisyov</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Quentin%2C+L">L. Quentin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Schroer%2C+M">M. Schroer</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tarisien%2C+M">M. Tarisien</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Willi%2C+O">O. Willi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Antici%2C+P">P. Antici</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Negoita%2C+F">F. Negoita</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Allaoua%2C+A">A. Allaoua</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Fuchs%2C+J">J. Fuchs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14110v1-abstract-short" style="display: inline;"> Laser-driven neutron sources are routinely produced by the interaction of laser-accelerated protons with a converter. They present complementary characteristics to those of conventional accelerator-based neutron sources (e.g. short pulse durations, enabling novel applications like radiography). We present here results from an experiment aimed at performing a global characterization of the neutrons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14110v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14110v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14110v1-abstract-full" style="display: none;"> Laser-driven neutron sources are routinely produced by the interaction of laser-accelerated protons with a converter. They present complementary characteristics to those of conventional accelerator-based neutron sources (e.g. short pulse durations, enabling novel applications like radiography). We present here results from an experiment aimed at performing a global characterization of the neutrons produced using the Titan laser at the Jupiter Laser Facility (Livermore, USA), where protons were accelerated from 23 $渭m$ thick plastic targets and directed onto a LiF converter to produce neutrons. For this purpose, several diagnostics were used to measure these neutron emissions, such as CR-39, activation foils, Time-of-Flight detectors and direct measurement of $^{7}$Be residual activity in the LiF converters. The use of these different, independently operating diagnostics enables comparison of the various measurements performed to provide a robust characterization. These measurements led to a neutron yield of $2.10^{9}$ neutrons per shot with a modest angular dependence, close to that simulated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14110v1-abstract-full').style.display = 'none'; document.getElementById('2312.14110v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.00218">arXiv:2212.00218</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.00218">pdf</a>, <a href="https://arxiv.org/format/2212.00218">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Secondary Neutron Production from Thick Target Deuteron Breakup </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Morrell%2C+J+T">Jonathan T. Morrell</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Voyles%2C+A+S">Andrew S. Voyles</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Batchelder%2C+J+C">Jon C. Batchelder</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Brown%2C+J+A">Joshua A. Brown</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">Lee A. Bernstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.00218v1-abstract-short" style="display: inline;"> Thick target deuteron breakup is a variable-energy accelerator-based source of high-energy neutrons, with applications in fundamental and applied nuclear science and engineering. However, the breakup mechanism remains poorly understood, and data on neutron yields from thick target breakup remains relatively scarce. In this work, the double-differential neutron yields from deuteron breakup have bee&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00218v1-abstract-full').style.display = 'inline'; document.getElementById('2212.00218v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.00218v1-abstract-full" style="display: none;"> Thick target deuteron breakup is a variable-energy accelerator-based source of high-energy neutrons, with applications in fundamental and applied nuclear science and engineering. However, the breakup mechanism remains poorly understood, and data on neutron yields from thick target breakup remains relatively scarce. In this work, the double-differential neutron yields from deuteron breakup have been measured on a thick beryllium target at $蔚_d=33$ and 40 MeV, using both time-of-flight and activation techniques. We have also introduced a simple hybrid model for the double-differential deuteron breakup cross section, applicable in the $蔚_d=10$--$100$ MeV energy range on light ($Z\leq 6$) targets. This model features four empirical parameters that have been fit to reproduce experimental breakup measurements on beryllium targets, using the method of least-squares. It was shown that these parameters extrapolate well to higher energies, and to other low-Z target materials. We also include optimization of the parameters that modify the Kalbach systematics for compound and pre-equilibrium reactions, in order to better reproduce the experimental data for beryllium targets at large angles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00218v1-abstract-full').style.display = 'none'; document.getElementById('2212.00218v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.11969">arXiv:2211.11969</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.11969">pdf</a>, <a href="https://arxiv.org/format/2211.11969">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/02/P02009">10.1088/1748-0221/18/02/P02009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> EOS: a demonstrator of hybrid optical detector technology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Anderson%2C+T">T. Anderson</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Anderssen%2C+E">E. Anderssen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Askins%2C+M">M. Askins</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bacon%2C+A+J">A. J. Bacon</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bagdasarian%2C+Z">Z. Bagdasarian</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Baldoni%2C+A">A. Baldoni</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Barros%2C+N">N. Barros</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bartoszek%2C+L">L. Bartoszek</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bergevin%2C+M">M. Bergevin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Blucher%2C+E">E. Blucher</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Boissevain%2C+J">J. Boissevain</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bonventre%2C+R">R. Bonventre</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Brown%2C+D">D. Brown</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Callaghan%2C+E+J">E. J. Callaghan</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Cowen%2C+D+F">D. F. Cowen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dazeley%2C+S">S. Dazeley</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Diwan%2C+M">M. Diwan</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Duce%2C+M">M. Duce</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Fleming%2C+D">D. Fleming</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Frankiewicz%2C+K">K. Frankiewicz</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gooding%2C+D+M">D. M. Gooding</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Grant%2C+C">C. Grant</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Juechter%2C+J">J. Juechter</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kaptanoglu%2C+T">T. Kaptanoglu</a> , et al. (39 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.11969v2-abstract-short" style="display: inline;"> EOS is a technology demonstrator, designed to explore the capabilities of hybrid event detection technology, leveraging both Cherenkov and scintillation light simultaneously. With a fiducial mass of four tons, EOS is designed to operate in a high-precision regime, with sufficient size to utilize time-of-flight information for full event reconstruction, flexibility to demonstrate a range of cutting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11969v2-abstract-full').style.display = 'inline'; document.getElementById('2211.11969v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.11969v2-abstract-full" style="display: none;"> EOS is a technology demonstrator, designed to explore the capabilities of hybrid event detection technology, leveraging both Cherenkov and scintillation light simultaneously. With a fiducial mass of four tons, EOS is designed to operate in a high-precision regime, with sufficient size to utilize time-of-flight information for full event reconstruction, flexibility to demonstrate a range of cutting edge technologies, and simplicity of design to facilitate potential future deployment at alternative sites. Results from EOS can inform the design of future neutrino detectors for both fundamental physics and nonproliferation applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11969v2-abstract-full').style.display = 'none'; document.getElementById('2211.11969v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.05534">arXiv:2204.05534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.05534">pdf</a>, <a href="https://arxiv.org/format/2204.05534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167207">10.1016/j.nima.2022.167207 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improvement in light collection of a photomultiplier tube using a wavelength-shifting plate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Mullen%2C+A">Austin Mullen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Akindele%2C+O">Oluwatomi Akindele</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bergevin%2C+M">Marc Bergevin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">Adam Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dazeley%2C+S">Steven Dazeley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.05534v1-abstract-short" style="display: inline;"> Large-volume water-Cherenkov neutrino detectors are a light-starved environment, as each interaction produces only $\sim 50-100$ photons per MeV. As such, maximizing the light collection efficiency of the detector is vital to performance. Since Cherenkov emission is heavily weighted towards the near UV, one method to maximize overall detector light collection without increasing the number of photo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05534v1-abstract-full').style.display = 'inline'; document.getElementById('2204.05534v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.05534v1-abstract-full" style="display: none;"> Large-volume water-Cherenkov neutrino detectors are a light-starved environment, as each interaction produces only $\sim 50-100$ photons per MeV. As such, maximizing the light collection efficiency of the detector is vital to performance. Since Cherenkov emission is heavily weighted towards the near UV, one method to maximize overall detector light collection without increasing the number of photomultiplier tubes is to couple each tube to a wavelength-shifting plastic plate, thus shifting photon wavelengths to a regime better suited to maximize photomultiplier efficiency and potentially detecting photons that miss the photocathode. To better understand the behavior of such plates, a scan of a rectangular wavelength-shifting plate was performed, and the results were used to calculate the overall percentage improvement in light collection that could be expected for individual PMTs in a large water-Cherenkov detector. Measurements of a 15.1 in. by 11.5 in. wavelength-shifting plate using a 365 nm LED were found to increase overall light collection at the photomultiplier tube by $7.4\pm0.7\%$. A simulation tuned to reproduce these results was used to predict the behavior of a wavelength shifting plate exposed to Cherenkov spectrum light and found increases in light collection that were linear with edge length, assuming square geometries. These results demonstrate the potential of wavelength-shifting plates to increase the overall light collection efficiency in a large detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05534v1-abstract-full').style.display = 'none'; document.getElementById('2204.05534v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures, Preprint submitted to Nuclear Instruments and Methods in Physics Research Section A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-831975 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07479">arXiv:2203.07479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07479">pdf</a>, <a href="https://arxiv.org/format/2203.07479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Future Advances in Photon-Based Neutrino Detectors: A SNOWMASS White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Klein%2C+J+R">Joshua R. Klein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Akindele%2C+T">Tomi Akindele</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">Adam Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Biller%2C+S">Steven Biller</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bowden%2C+N">Nathaniel Bowden</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Brodsky%2C+J">Jason Brodsky</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Cowen%2C+D+F">D. F. Cowen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ford%2C+M">Michael Ford</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gruszko%2C+J">Julieta Gruszko</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lebenowski%2C+L">Logan Lebenowski</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Li%2C+A">Aobo Li</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Li%2C+V+A">Viacheslav A. Li</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Mu%2C+W">Wei Mu</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ochoa-Ricoux%2C+J+P">J. Pedro Ochoa-Ricoux</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gann%2C+G+D+O">Gabriel D. Orebi Gann</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sanchez%2C+M">Mayly Sanchez</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Svoboda%2C+R">Robert Svoboda</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Wetstein%2C+M">Matthew Wetstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Wurm%2C+M">Michael Wurm</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Yeh%2C+M">Minfang Yeh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07479v1-abstract-short" style="display: inline;"> We discuss here new, enabling technologies for future photon-based neutrino detectors. These technologies touch nearly every aspect of such detectors: new scintillating materials, new methods of loading isotopes, new photon sensors and collectors, new approaches to simulation and analysis, and new front-end electronics and DAQ ideas. Of particular interest are technologies that enable broad physic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07479v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07479v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07479v1-abstract-full" style="display: none;"> We discuss here new, enabling technologies for future photon-based neutrino detectors. These technologies touch nearly every aspect of such detectors: new scintillating materials, new methods of loading isotopes, new photon sensors and collectors, new approaches to simulation and analysis, and new front-end electronics and DAQ ideas. Of particular interest are technologies that enable broad physics programs in hybrid Cherenkov/scintillation detectors, such as slow fluors, water-based liquid scintillator, and spectral sorting of photons. Several new large-scale detector ideas are also discussed, including hybrid detectors like Theia, ArTEMIS, and generic slow-fluor detectors, as well as the very different SLIPs and LiquidO approaches to instrumenting photon-based detectors. A program of demonstrators for future detectors, including ANNIE, Eos, and NuDOT are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07479v1-abstract-full').style.display = 'none'; document.getElementById('2203.07479v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.12839">arXiv:2202.12839</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.12839">pdf</a>, <a href="https://arxiv.org/format/2202.12839">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Theia: Summary of physics program. Snowmass White Paper Submission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Askins%2C+M">M. Askins</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bagdasarian%2C+Z">Z. Bagdasarian</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Barros%2C+N">N. Barros</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Beier%2C+E+W">E. W. Beier</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Blucher%2C+E">E. Blucher</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bonventre%2C+R">R. Bonventre</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bourret%2C+E">E. Bourret</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Callaghan%2C+E+J">E. J. Callaghan</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Caravaca%2C+J">J. Caravaca</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Diwan%2C+M">M. Diwan</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dye%2C+S+T">S. T. Dye</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Eisch%2C+J">J. Eisch</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Elagin%2C+A">A. Elagin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Enqvist%2C+T">T. Enqvist</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Fahrendholz%2C+U">U. Fahrendholz</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Fischer%2C+V">V. Fischer</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Frankiewicz%2C+K">K. Frankiewicz</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Grant%2C+C">C. Grant</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Guffanti%2C+D">D. Guffanti</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hagner%2C+C">C. Hagner</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hallin%2C+A">A. Hallin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Jackson%2C+C+M">C. M. Jackson</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Jiang%2C+R">R. Jiang</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kaptanoglu%2C+T">T. Kaptanoglu</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.12839v1-abstract-short" style="display: inline;"> Theia would be a novel, &#34;hybrid&#34; optical neutrino detector, with a rich physics program. This paper is intended to provide a brief overview of the concepts and physics reach of Theia. Full details can be found in the Theia white paper [1]. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.12839v1-abstract-full" style="display: none;"> Theia would be a novel, &#34;hybrid&#34; optical neutrino detector, with a rich physics program. This paper is intended to provide a brief overview of the concepts and physics reach of Theia. Full details can be found in the Theia white paper [1]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.12839v1-abstract-full').style.display = 'none'; document.getElementById('2202.12839v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.07625">arXiv:2202.07625</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.07625">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.166854">10.1016/j.nima.2022.166854 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulse-shape discrimination in water-based scintillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Ford%2C+M+J">Michael J. Ford</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Zaitseva%2C+N+P">Natalia P. Zaitseva</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Carman%2C+M+L">M. Leslie Carman</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dazeley%2C+S+A">Steven A. Dazeley</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">Adam Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Glenn%2C+A">Andrew Glenn</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Akindele%2C+O+A">Oluwatomi A. Akindele</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.07625v1-abstract-short" style="display: inline;"> This work describes a class of liquid scintillators that contain mostly water (&gt;50 wt. % of the entire composition) and can discriminate between interactions induced by neutrons and gamma rays. By balancing the interface interactions between the components of the formulation, these scintillators form emulsions that can be thermodynamically stable. This approach, which considers a quantity known as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07625v1-abstract-full').style.display = 'inline'; document.getElementById('2202.07625v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.07625v1-abstract-full" style="display: none;"> This work describes a class of liquid scintillators that contain mostly water (&gt;50 wt. % of the entire composition) and can discriminate between interactions induced by neutrons and gamma rays. By balancing the interface interactions between the components of the formulation, these scintillators form emulsions that can be thermodynamically stable. This approach, which considers a quantity known as the hydrophilic-lipophilic difference, requires consideration of the salinity and temperature as well as characterization of the surfactants and oil phase. Emulsions comprised of water and various oils were characterized first. Then, the effect of scintillating dyes in the oil phase was considered, followed by the construction of partial phase diagrams of the emulsions. For transparent oil-in-water emulsions with a single phase, the scintillation light yield and properties of pulse-shape discrimination were measured. The best performing scintillators contained 33 wt. % of a scintillating oil phase and exhibited a light yield that was as high as 18% of the light yield of a commercially available liquid scintillator that does not contain water (EJ-309). These water-based liquid scintillators exhibited a figure of merit of neutron/gamma ray discrimination as high as 1.79 at about 1500 keVee. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07625v1-abstract-full').style.display = 'none'; document.getElementById('2202.07625v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05524">arXiv:2106.05524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.05524">pdf</a>, <a href="https://arxiv.org/format/2106.05524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Preparation and Characterization of Thin Arsenic Targets for Stacked-Target Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Voyles%2C+A+S">Andrew S. Voyles</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Fox%2C+M+B">Morgan B. Fox</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Morrell%2C+J+T">Jonathan T. Morrell</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Zach%2C+M+P">Michael P. Zach</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Still%2C+E+K">Evan K. Still</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">Lee A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Frey%2C+W+D">Wesley D. Frey</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Mehciz%2C+B+J">Burton J. Mehciz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05524v2-abstract-short" style="display: inline;"> Thin, uniform arsenic targets suitable for high-fidelity cross section measurements in stacked-target experiments were prepared by electrodeposition of arsenic on titanium backings from aqueous solutions. Electrolytic cells were constructed and capable of arsenic deposits ranging in mass from approximately 1$\unicode{x2013}$29 mg (0.32$\unicode{x2013}$7.2 mg/cm$^2$, 0.57$\unicode{x2013}$13 $渭$m).&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05524v2-abstract-full').style.display = 'inline'; document.getElementById('2106.05524v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05524v2-abstract-full" style="display: none;"> Thin, uniform arsenic targets suitable for high-fidelity cross section measurements in stacked-target experiments were prepared by electrodeposition of arsenic on titanium backings from aqueous solutions. Electrolytic cells were constructed and capable of arsenic deposits ranging in mass from approximately 1$\unicode{x2013}$29 mg (0.32$\unicode{x2013}$7.2 mg/cm$^2$, 0.57$\unicode{x2013}$13 $渭$m). Examination of electrodeposit surface morphology by scanning electron microscopy and microanalysis was performed to investigate the uniformity of produced targets. Brief studies of plating growth dynamics and structural properties through cyclic voltammetry were also undertaken. Alternative target fabrication approaches by vapor deposition and electrodeposition from a deep eutectic solvent were additionally conducted. We further introduce a non-destructive characterization method for thin targets by neutron activation, which is independent of neutron flux shape, environmental factors, and source geometry, while correcting for any potential scatter or absorption effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05524v2-abstract-full').style.display = 'none'; document.getElementById('2106.05524v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages (+4 for references/acknowledgments), 11 figures, preprint prepared for NIM-B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.04115">arXiv:2106.04115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.04115">pdf</a>, <a href="https://arxiv.org/format/2106.04115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.104.064615">10.1103/PhysRevC.104.064615 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement and Modeling of Proton-Induced Reactions on Arsenic from 35 to 200 MeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Fox%2C+M+B">Morgan B. Fox</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Voyles%2C+A+S">Andrew S. Voyles</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Morrell%2C+J+T">Jonathan T. Morrell</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">Lee A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Batchelder%2C+J+C">Jon C. Batchelder</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Birnbaum%2C+E+R">Eva R. Birnbaum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Cutler%2C+C+S">Cathy S. Cutler</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Koning%2C+A+J">Arjan J. Koning</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lewis%2C+A+M">Amanda M. Lewis</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Medvedev%2C+D+G">Dmitri G. Medvedev</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Nortier%2C+F+M">Francois M. Nortier</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=O%27Brien%2C+E+M">Ellen M. O&#39;Brien</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Vermeulen%2C+C">Christiaan Vermeulen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.04115v2-abstract-short" style="display: inline;"> $^{72}$As is a promising positron emitter for diagnostic imaging that can be employed locally using a $^{72}$Se generator. However, current reaction pathways to $^{72}&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04115v2-abstract-full').style.display = 'inline'; document.getElementById('2106.04115v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.04115v2-abstract-full" style="display: none;"> $^{72}$As is a promising positron emitter for diagnostic imaging that can be employed locally using a $^{72}$Se generator. However, current reaction pathways to $^{72}$Se have insufficient nuclear data for efficient production using regional 100-200 MeV high-intensity proton accelerators. In order to address this deficiency, stacked-target irradiations were performed at LBNL, LANL, and BNL to measure the production of the $^{72}$Se/$^{72}$As PET generator system via $^{75}$As(p,x) between 35 and 200 MeV. This work provides the most well-characterized excitation function for $^{75}$As(p,4n)$^{72}$Se starting from threshold. Additional focus was given to report the first measurements of $^{75}$As(p,x)$^{68}$Ge and bolster an already robust production capability for the highly valuable $^{68}$Ge/$^{68}$Ga PET generator. Thick target yield comparisons with prior established formation routes to both generators are made. In total, high-energy proton-induced cross sections are reported for 55 measured residual products from $^{75}$As, Cu, and Ti targets, where the latter two materials were present as monitor foils. These results were compared with literature data as well as the default theoretical calculations of the nuclear model codes TALYS, CoH, EMPIRE, and ALICE. Reaction modeling at these energies is typically unsatisfactory due to few prior published data and many interacting physics models. Therefore, a detailed assessment of the TALYS code was performed with simultaneous parameter adjustments applied according to a standardized procedure. Particular attention was paid to the formulation of the two-component exciton model in the transition between the compound and pre-equilibrium regions, with a linked investigation of level density models for nuclei off of stability and their impact on modeling predictive power. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04115v2-abstract-full').style.display = 'none'; document.getElementById('2106.04115v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages (+5 for references), 69 figures, preprint prepared for Physical Review Journals, minor revisions for references to recently published work</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.13374">arXiv:2104.13374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.13374">pdf</a>, <a href="https://arxiv.org/format/2104.13374">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.104.065501">10.1103/PhysRevC.104.065501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Projected sensitivity of the LUX-ZEPLIN (LZ) experiment to the two-neutrino and neutrinoless double beta decays of $^{134}$Xe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=LUX-ZEPLIN%2C+T">The LUX-ZEPLIN</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Collaboration"> Collaboration</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ames%2C+A">A. Ames</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Angelides%2C+N">N. Angelides</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Araujo%2C+H+M">H. M. Araujo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bai%2C+X">X. Bai</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Balashov%2C+S">S. Balashov</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bang%2C+J">J. Bang</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bauer%2C+D">D. Bauer</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Baxter%2C+A">A. Baxter</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Biekert%2C+A">A. Biekert</a> , et al. (172 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.13374v3-abstract-short" style="display: inline;"> The projected sensitivity of the LUX-ZEPLIN (LZ) experiment to two-neutrino and neutrinoless double beta decay of $^{134}$Xe is presented. LZ is a 10-tonne xenon time projection chamber optimized for the detection of dark matter particles, that is expected to start operating in 2021 at Sanford Underground Research Facility, USA. Its large mass of natural xenon provides an exceptional opportunity t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13374v3-abstract-full').style.display = 'inline'; document.getElementById('2104.13374v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.13374v3-abstract-full" style="display: none;"> The projected sensitivity of the LUX-ZEPLIN (LZ) experiment to two-neutrino and neutrinoless double beta decay of $^{134}$Xe is presented. LZ is a 10-tonne xenon time projection chamber optimized for the detection of dark matter particles, that is expected to start operating in 2021 at Sanford Underground Research Facility, USA. Its large mass of natural xenon provides an exceptional opportunity to search for the double beta decay of $^{134}$Xe, for which xenon detectors enriched in $^{136}$Xe are less effective. For the two-neutrino decay mode, LZ is predicted to exclude values of the half-life up to 1.7$\times$10$^{24}$ years at 90% confidence level (CL), and has a three-sigma observation potential of 8.7$\times$10$^{23}$ years, approaching the predictions of nuclear models. For the neutrinoless decay mode LZ, is projected to exclude values of the half-life up to 7.3$\times$10$^{24}$ years at 90% CL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13374v3-abstract-full').style.display = 'none'; document.getElementById('2104.13374v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted for publication in Phys. Rev. C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.10843">arXiv:2012.10843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.10843">pdf</a>, <a href="https://arxiv.org/format/2012.10843">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> International Workshop on Next Generation Gamma-Ray Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Howell%2C+C+R">C. R. Howell</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ahmed%2C+M+W">M. W. Ahmed</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Afanasev%2C+A">A. Afanasev</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Alesini%2C+D">D. Alesini</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Annand%2C+J+R+M">J. R. M. Annand</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Aprahamian%2C+A">A. Aprahamian</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Balabanski%2C+D+L">D. L. Balabanski</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Benson%2C+S+V">S. V. Benson</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Brune%2C+C+R">C. R. Brune</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Byrd%2C+J">J. Byrd</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Carlsten%2C+B+E">B. E. Carlsten</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Champagne%2C+A+E">A. E. Champagne</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Chattopadhyay%2C+S">S. Chattopadhyay</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Davis%2C+D">D. Davis</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Downie%2C+E+J">E. J. Downie</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Durham%2C+M+J">M. J. Durham</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Feldman%2C+G">G. Feldman</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gao%2C+H">H. Gao</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Geddes%2C+C+G+R">C. G. R. Geddes</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Griesshammer%2C+H+W">H. W. Griesshammer</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hajima%2C+R">R. Hajima</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hao%2C+H">H. Hao</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hornidge%2C+D">D. Hornidge</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Isaak%2C+J">J. Isaak</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.10843v1-abstract-short" style="display: inline;"> A workshop on The Next Generation Gamma-Ray Sources sponsored by the Office of Nuclear Physics at the Department of Energy, was held November 17--19, 2016 in Bethesda, Maryland. The goals of the workshop were to identify basic and applied research opportunities at the frontiers of nuclear physics that would be made possible by the beam capabilities of an advanced laser Compton beam facility. To an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10843v1-abstract-full').style.display = 'inline'; document.getElementById('2012.10843v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.10843v1-abstract-full" style="display: none;"> A workshop on The Next Generation Gamma-Ray Sources sponsored by the Office of Nuclear Physics at the Department of Energy, was held November 17--19, 2016 in Bethesda, Maryland. The goals of the workshop were to identify basic and applied research opportunities at the frontiers of nuclear physics that would be made possible by the beam capabilities of an advanced laser Compton beam facility. To anchor the scientific vision to realistically achievable beam specifications using proven technologies, the workshop brought together experts in the fields of electron accelerators, lasers, and optics to examine the technical options for achieving the beam specifications required by the most compelling parts of the proposed research programs. An international assembly of participants included current and prospective $纬$-ray beam users, accelerator and light-source physicists, and federal agency program managers. Sessions were organized to foster interactions between the beam users and facility developers, allowing for information sharing and mutual feedback between the two groups. The workshop findings and recommendations are summarized in this whitepaper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10843v1-abstract-full').style.display = 'none'; document.getElementById('2012.10843v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.12790">arXiv:2010.12790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.12790">pdf</a>, <a href="https://arxiv.org/format/2010.12790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.103.034601">10.1103/PhysRevC.103.034601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigating High-Energy Proton-Induced Reactions on Spherical Nuclei: Implications for the Pre-Equilibrium Exciton Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Fox%2C+M+B">Morgan B. Fox</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Voyles%2C+A+S">Andrew S. Voyles</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Morrell%2C+J+T">Jonathan T. Morrell</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">Lee A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lewis%2C+A+M">Amanda M. Lewis</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Koning%2C+A+J">Arjan J. Koning</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Batchelder%2C+J+C">Jon C. Batchelder</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Birnbaum%2C+E+R">Eva R. Birnbaum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Cutler%2C+C+S">Cathy S. Cutler</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Medvedev%2C+D+G">Dmitri G. Medvedev</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Nortier%2C+F+M">Francois M. Nortier</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=O%27Brien%2C+E+M">Ellen M. O&#39;Brien</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Vermeulen%2C+C">Christiaan Vermeulen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.12790v2-abstract-short" style="display: inline;"> A number of accelerator-based isotope production facilities utilize 100- to 200-MeV proton beams due to the high production rates enabled by high-intensity beam capabilities and the greater diversity of isotope production brought on by the long range of high-energy protons. However, nuclear reaction modeling at these energies can be challenging because of the interplay between different reaction m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12790v2-abstract-full').style.display = 'inline'; document.getElementById('2010.12790v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.12790v2-abstract-full" style="display: none;"> A number of accelerator-based isotope production facilities utilize 100- to 200-MeV proton beams due to the high production rates enabled by high-intensity beam capabilities and the greater diversity of isotope production brought on by the long range of high-energy protons. However, nuclear reaction modeling at these energies can be challenging because of the interplay between different reaction modes and a lack of existing guiding cross section data. A Tri-lab collaboration has been formed among the Lawrence Berkeley, Los Alamos, and Brookhaven National Laboratories to address these complexities by characterizing charged-particle nuclear reactions relevant to the production of established and novel radioisotopes. In the inaugural collaboration experiments, stacked-targets of niobium foils were irradiated at the Brookhaven Linac Isotope Producer (E$_p$=200 MeV) and the Los Alamos Isotope Production Facility (E$_p$=100 MeV) to measure $^{93}$Nb(p,x) cross sections between 50 and 200 MeV. The measured cross-section results were compared with literature data as well as the default calculations of the nuclear model codes TALYS, CoH, EMPIRE, and ALICE. We developed a standardized procedure that determines the reaction model parameters that best reproduce the most prominent reaction channels in a physically justifiable manner. The primary focus of the procedure was to determine the best parametrization for the pre-equilibrium two-component exciton model. This modeling study revealed a trend toward a relative decrease for internal transition rates at intermediate proton energies (E$_p$=20-60 MeV) in the current exciton model as compared to the default values. The results of this work are instrumental for the planning, execution, and analysis essential to isotope production. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12790v2-abstract-full').style.display = 'none'; document.getElementById('2010.12790v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 62 figures. Revised version, published in Physical Review C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C, vol. 103, no. 3, p. 034601, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02337">arXiv:2010.02337</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.02337">pdf</a>, <a href="https://arxiv.org/format/2010.02337">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2017.09.051">10.1016/j.nima.2017.09.051 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron Spectroscopy for Pulsed Beams with Frame Overlap using a Double Time-of-Flight Technique </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Harrig%2C+K+P">K. P. Harrig</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Goldblum%2C+B+L">B. L. Goldblum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Brown%2C+J+A">J. A. Brown</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bleuel%2C+D+L">D. L. Bleuel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">L. A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bevins%2C+J">J. Bevins</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Harasty%2C+M">M. Harasty</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Laplace%2C+T+A">T. A. Laplace</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Matthews%2C+E+F">E. F. Matthews</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02337v1-abstract-short" style="display: inline;"> A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02337v1-abstract-full').style.display = 'inline'; document.getElementById('2010.02337v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02337v1-abstract-full" style="display: none;"> A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02337v1-abstract-full').style.display = 'none'; document.getElementById('2010.02337v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 877 (2018): 359-366 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.06304">arXiv:2004.06304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.06304">pdf</a>, <a href="https://arxiv.org/format/2004.06304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.112002">10.1103/PhysRevD.102.112002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discrimination of electronic recoils from nuclear recoils in two-phase xenon time projection chambers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Alsum%2C+S">S. Alsum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bai%2C+X">X. Bai</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Baxter%2C+A">A. Baxter</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Boxer%2C+B">B. Boxer</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Burdin%2C+S">S. Burdin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Byram%2C+D">D. Byram</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Chan%2C+C">C. Chan</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Fan%2C+A">A. Fan</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ghag%2C+C">C. Ghag</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gilchriese%2C+M+G+D">M. G. D. Gilchriese</a> , et al. (72 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.06304v3-abstract-short" style="display: inline;"> We present a comprehensive analysis of electronic recoil vs. nuclear recoil discrimination in liquid/gas xenon time projection chambers, using calibration data from the 2013 and 2014-16 runs of the Large Underground Xenon (LUX) experiment. We observe strong charge-to-light discrimination enhancement with increased event energy. For events with S1 = 120 detected photons, i.e. equivalent to a nuclea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.06304v3-abstract-full').style.display = 'inline'; document.getElementById('2004.06304v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.06304v3-abstract-full" style="display: none;"> We present a comprehensive analysis of electronic recoil vs. nuclear recoil discrimination in liquid/gas xenon time projection chambers, using calibration data from the 2013 and 2014-16 runs of the Large Underground Xenon (LUX) experiment. We observe strong charge-to-light discrimination enhancement with increased event energy. For events with S1 = 120 detected photons, i.e. equivalent to a nuclear recoil energy of $\sim$100 keV, we observe an electronic recoil background acceptance of $&lt;10^{-5}$ at a nuclear recoil signal acceptance of 50%. We also observe modest electric field dependence of the discrimination power, which peaks at a field of around 300 V/cm over the range of fields explored in this study (50-500 V/cm). In the WIMP search region of S1 = 1-80 phd, the minimum electronic recoil leakage we observe is ${(7.3\pm0.6)\times10^{-4}}$, which is obtained for a drift field of 240-290 V/cm. Pulse shape discrimination is utilized to improve our results, and we find that, at low energies and low fields, there is an additional reduction in background leakage by a factor of up to 3. We develop an empirical model for recombination fluctuations which, when used alongside the Noble Element Scintillation Technique (NEST) simulation package, correctly reproduces the skewness of the electronic recoil data. We use this updated simulation to study the width of the electronic recoil band, finding that its dominant contribution comes from electron-ion recombination fluctuations, followed in magnitude of contribution by fluctuations in the S1 signal, fluctuations in the S2 signal, and fluctuations in the total number of quanta produced for a given energy deposition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.06304v3-abstract-full').style.display = 'none'; document.getElementById('2004.06304v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 33 figures; minor typos corrected, references updated</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 112002 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.04602">arXiv:2002.04602</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.04602">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> An Integral Experiment on Polyethylene Using Radiative Capture in Indium Foils in a High Flux D-D Neutron Generator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Nnamani%2C+N">Nnaemeka Nnamani</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=van+Bibber%2C+K">Karl van Bibber</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">Lee A Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Vujic%2C+J+L">Jasmina L Vujic</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Morrell%2C+J+T">Jonathan T. Morrell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.04602v1-abstract-short" style="display: inline;"> The Department of Nuclear Engineering, University of California Berkeley built a D-D neutron generator called the High Flux Neutron Generator (HFNG). It operates in the range of 100-125 keV of accelerating voltage. The generator produces neutron current of about 10^8 per second. These neutrons have energies between 2.2-2.8 MeV. We report here the results of a measurement of the scattered vs unscat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04602v1-abstract-full').style.display = 'inline'; document.getElementById('2002.04602v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.04602v1-abstract-full" style="display: none;"> The Department of Nuclear Engineering, University of California Berkeley built a D-D neutron generator called the High Flux Neutron Generator (HFNG). It operates in the range of 100-125 keV of accelerating voltage. The generator produces neutron current of about 10^8 per second. These neutrons have energies between 2.2-2.8 MeV. We report here the results of a measurement of the scattered vs unscattered neutron fluence on polyethylene determined via neutron activation of multiple natural indium foils from a D-D neutron generator. Both the angle-integrated spectrum and the angle differential results are consistent with the predictions of the Monte Carlo N-Particle Transport (MCNP) code, using the ENDF/B-VII.1. This supports shielding calculations in the fast energy region with high density polyethylene (HDPE). To the best of our knowledge no integral benchmark experiment has been performed on polyethylene using D(D,n)alpha neutron spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04602v1-abstract-full').style.display = 'none'; document.getElementById('2002.04602v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.11140">arXiv:2001.11140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.11140">pdf</a>, <a href="https://arxiv.org/format/2001.11140">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165095">10.1016/j.nima.2021.165095 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Baghdad Atlas: A relational database of inelastic neutron-scattering $(n,n&#39;纬)$ data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Hurst%2C+A+M">A. M. Hurst</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">L. A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kawano%2C+T">T. Kawano</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lewis%2C+A+M">A. M. Lewis</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Song%2C+K">K. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.11140v3-abstract-short" style="display: inline;"> A relational database has been developed based on the original ($n,n&#39;纬$) work carried out by A. M. Demidov $et$ $al$., at the Nuclear Research Institute in Baghdad, Iraq [$&#34;Atlas$ $of$ $Gamma$-$Ray$ $Spectra$ $from$ $the$ $Inelastic$ $Scattering$ $of$ $Reactor$ $Fast$ $Neutrons&#34;$, Nuclear Research Institute, Baghdad, Iraq (Moscow, Atomizdat 1978)] for 105 independent measurements comprising 76 ele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11140v3-abstract-full').style.display = 'inline'; document.getElementById('2001.11140v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.11140v3-abstract-full" style="display: none;"> A relational database has been developed based on the original ($n,n&#39;纬$) work carried out by A. M. Demidov $et$ $al$., at the Nuclear Research Institute in Baghdad, Iraq [$&#34;Atlas$ $of$ $Gamma$-$Ray$ $Spectra$ $from$ $the$ $Inelastic$ $Scattering$ $of$ $Reactor$ $Fast$ $Neutrons&#34;$, Nuclear Research Institute, Baghdad, Iraq (Moscow, Atomizdat 1978)] for 105 independent measurements comprising 76 elemental samples of natural composition and 29 isotopically-enriched samples. The information from this Atlas includes: $纬$-ray energies and relative intensities; nuclide and level data corresponding to the residual nucleus and meta data associated with the target sample that allows for the extraction of the flux-weighted ($n,n&#39;纬$) cross sections for a given transition relative to a defined value. The optimized angular-distribution-corrected fast-neutron flux-weighted partial $纬$-ray cross section for the production of the 846.8-keV $2^{+}_{1} \rightarrow 0^{+}_{\rm gs}$ $纬$-ray transition in $^{56}$Fe, determined to be $\langle 蟽_纬 \rangle = 143(29)$ mb, is used for this purpose. However, different values for the adopted cross section can be readily implemented to accommodate user preference based on revised determinations of this quantity. The Atlas ($n,n&#39;纬$) data has been compiled into a series of CSV-style ASCII data sets and a suite of Python scripts have been developed to build and install the database locally. The database can then be accessed directly through the SQLite engine, or using alternative methods such as the Jupyter Notebook Python-browser interface. Several examples exploiting different interaction methodologies are distributed with the complete software package. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11140v3-abstract-full').style.display = 'none'; document.getElementById('2001.11140v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.04248">arXiv:1912.04248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.04248">pdf</a>, <a href="https://arxiv.org/format/1912.04248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.102.014602">10.1103/PhysRevC.102.014602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Projected sensitivity of the LUX-ZEPLIN experiment to the $0谓尾尾$ decay of $^{136}$Xe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Alqahtani%2C+A">A. Alqahtani</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Angelides%2C+N">N. Angelides</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bai%2C+X">X. Bai</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Balashov%2C+S">S. Balashov</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bang%2C+J">J. Bang</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Baxter%2C+A">A. Baxter</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bensinger%2C+J">J. Bensinger</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Biekert%2C+A">A. Biekert</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Boast%2C+K+E">K. E. Boast</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Boxer%2C+B">B. Boxer</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Buckley%2C+J+H">J. H. Buckley</a> , et al. (167 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.04248v2-abstract-short" style="display: inline;"> The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double beta decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to $^{136}$Xe neutrinoless double beta decay, taking advantage of the significant ($&gt;$600 kg) $^{136}$Xe mass contained within the active volume of LZ without isotopic enrichment. After 1000 l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.04248v2-abstract-full').style.display = 'inline'; document.getElementById('1912.04248v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.04248v2-abstract-full" style="display: none;"> The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double beta decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to $^{136}$Xe neutrinoless double beta decay, taking advantage of the significant ($&gt;$600 kg) $^{136}$Xe mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of $^{136}$Xe is projected to be 1.06$\times$10$^{26}$ years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with $^{136}$Xe at 1.06$\times$10$^{27}$ years. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.04248v2-abstract-full').style.display = 'none'; document.getElementById('1912.04248v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, 2 tables, version 2 changes: additional clarifications requested by referee on Sections II.A, III.C, III.E, III.F and IV.B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 102, 014602 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.02742">arXiv:1912.02742</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.02742">pdf</a>, <a href="https://arxiv.org/format/1912.02742">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ab9c2d">10.1088/1361-6471/ab9c2d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for two neutrino double electron capture of $^{124}$Xe and $^{126}$Xe in the full exposure of the LUX detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Alsum%2C+S">S. Alsum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bai%2C+X">X. Bai</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Baxter%2C+A">A. Baxter</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Boxer%2C+B">B. Boxer</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Burdin%2C+S">S. Burdin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Byram%2C+D">D. Byram</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Chan%2C+C">C. Chan</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Fan%2C+A">A. Fan</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ghag%2C+C">C. Ghag</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gilchriese%2C+M+G+D">M. G. D. Gilchriese</a> , et al. (74 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.02742v2-abstract-short" style="display: inline;"> Two-neutrino double electron capture is a process allowed in the Standard Model of Particle Physics. This rare decay has been observed in $^{78}$Kr, $^{130}$Ba and more recently in $^{124}$Xe. In this publication we report on the search for this process in $^{124}$Xe and $^{126}$Xe using the full exposure of the Large Underground Xenon (LUX) experiment, in a total of of 27769.5~kg-days. No evidenc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.02742v2-abstract-full').style.display = 'inline'; document.getElementById('1912.02742v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.02742v2-abstract-full" style="display: none;"> Two-neutrino double electron capture is a process allowed in the Standard Model of Particle Physics. This rare decay has been observed in $^{78}$Kr, $^{130}$Ba and more recently in $^{124}$Xe. In this publication we report on the search for this process in $^{124}$Xe and $^{126}$Xe using the full exposure of the Large Underground Xenon (LUX) experiment, in a total of of 27769.5~kg-days. No evidence of a signal was observed, allowing us to set 90\% C.L. lower limits for the half-lives of these decays of $2.0\times10^{21}$~years for $^{124}$Xe and $1.9\times10^{21}$~years for $^{126}$Xe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.02742v2-abstract-full').style.display = 'none'; document.getElementById('1912.02742v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J.Phys.G 47 (2020) 10, 105105 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.11135">arXiv:1910.11135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.11135">pdf</a>, <a href="https://arxiv.org/format/1910.11135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Proton-induced reactions on Fe, Cu, &amp; Ti from threshold to 55 MeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Voyles%2C+A+S">Andrew S. Voyles</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lewis%2C+A+M">Amanda M. Lewis</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Morrell%2C+J+T">Jonathan T. Morrell</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Basunia%2C+M+S">M. Shamsuzzoha Basunia</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">Lee A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Engle%2C+J+W">Jonathan W. Engle</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Graves%2C+S+A">Stephen A. Graves</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Matthews%2C+E+F">Eric F. Matthews</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.11135v1-abstract-short" style="display: inline;"> Theoretical models often differ significantly from measured data in their predictions of the magnitude of nuclear reactions that produce radionuclides for medical, research, and national security applications. In this paper, we compare a priori predictions from several state-of-the-art reaction modeling packages (CoH, EMPIRE, TALYS, and ALICE) to cross sections measured using the stacked-target ac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11135v1-abstract-full').style.display = 'inline'; document.getElementById('1910.11135v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.11135v1-abstract-full" style="display: none;"> Theoretical models often differ significantly from measured data in their predictions of the magnitude of nuclear reactions that produce radionuclides for medical, research, and national security applications. In this paper, we compare a priori predictions from several state-of-the-art reaction modeling packages (CoH, EMPIRE, TALYS, and ALICE) to cross sections measured using the stacked-target activation method. The experiment was performed using the LBNL 88-Inch Cyclotron with beams of 25 and 55 MeV protons on a stack of iron, copper, and titanium foils. 34 excitation functions were measured for 4 &lt; Ep &lt; 55 MeV, including the first measurement of the independent cross sections for natFe(p,x) 49,51Cr, 51,52m,52g,56Mn, and 58m,58gCo. All of the models failed to reproduce the isomer-to-ground state ratio for reaction channels at compound and pre-compound energies, suggesting issues in modeling the deposition or distribution of angular momentum in these residual nuclei. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11135v1-abstract-full').style.display = 'none'; document.getElementById('1910.11135v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Phys Rev C, 25 pages, 41 figures. arXiv admin note: text overlap with arXiv:1804.06548</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.07113">arXiv:1908.07113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.07113">pdf</a>, <a href="https://arxiv.org/format/1908.07113">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/RevModPhys.92.011003">10.1103/RevModPhys.92.011003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino Detectors as Tools for Nuclear Security </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">Adam Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bowden%2C+N">Nathaniel Bowden</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Goldblum%2C+B+L">Bethany L. Goldblum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Huber%2C+P">Patrick Huber</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Jovanovic%2C+I">Igor Jovanovic</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Mattingly%2C+J">John Mattingly</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.07113v3-abstract-short" style="display: inline;"> For over 40 years, physicists have considered possible uses for neutrino detectors in nuclear nonproliferation, arms control, and fissile materials security. Neutrinos are an attractive fission signature because they readily pass through matter. The same property makes neutrinos challenging to detect in systems that would be practical for nuclear security applications. This colloquium presents a b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07113v3-abstract-full').style.display = 'inline'; document.getElementById('1908.07113v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.07113v3-abstract-full" style="display: none;"> For over 40 years, physicists have considered possible uses for neutrino detectors in nuclear nonproliferation, arms control, and fissile materials security. Neutrinos are an attractive fission signature because they readily pass through matter. The same property makes neutrinos challenging to detect in systems that would be practical for nuclear security applications. This colloquium presents a broad overview of several potential neutrino applications, including the near-field monitoring of known reactors, far-field monitoring of known or discovery of undeclared reactors, detection of reactor waste streams, and detection of nuclear explosions. We conclude that recent detector advances have made near-field monitoring feasible. Farther-field reactor detection and waste stream detection monitoring are possible in some cases with further research and development. Very long-range reactor monitoring and nuclear explosion detection do not appear feasible for the foreseeable future due to considerable physical and/or practical constraints. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07113v3-abstract-full').style.display = 'none'; document.getElementById('1908.07113v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Mod. Phys. 92 (2020) no.1, 011003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.04431">arXiv:1907.04431</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.04431">pdf</a>, <a href="https://arxiv.org/format/1907.04431">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/s10050-019-00010-0">10.1140/epja/s10050-019-00010-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of $^{139}$La(p,x) Cross Sections from 35-60 MeV by Stacked-Target Activation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Morrell%2C+J+T">Jonathan T. Morrell</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Voyles%2C+A+S">Andrew S. Voyles</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Basunia%2C+M+S">M. S. Basunia</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Batchelder%2C+J+C">Jon C. Batchelder</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Matthews%2C+E+F">Eric F. Matthews</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">Lee A. Bernstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.04431v2-abstract-short" style="display: inline;"> A stacked-target of natural lanthanum foils (99.9119% $^{139}$La) was irradiated using a 60 MeV proton beam at the LBNL 88-Inch Cyclotron. $^{139}$La(p,x) cross sections are reported between 35-60 MeV for nine radionuclides. The primary motivation for this measurement was the need to quantify the production of $^{134}$Ce. As a positron-emitting analogue of the promising medical radionuclide&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.04431v2-abstract-full').style.display = 'inline'; document.getElementById('1907.04431v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.04431v2-abstract-full" style="display: none;"> A stacked-target of natural lanthanum foils (99.9119% $^{139}$La) was irradiated using a 60 MeV proton beam at the LBNL 88-Inch Cyclotron. $^{139}$La(p,x) cross sections are reported between 35-60 MeV for nine radionuclides. The primary motivation for this measurement was the need to quantify the production of $^{134}$Ce. As a positron-emitting analogue of the promising medical radionuclide $^{225}$Ac, $^{134}$Ce is desirable for in vivo applications of bio-distribution assays for this emerging radio-pharmaceutical. The results of this measurement were compared to the nuclear model codes TALYS, EMPIRE and ALICE (using default parameters), which showed significant deviation from the measured values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.04431v2-abstract-full').style.display = 'none'; document.getElementById('1907.04431v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.02932">arXiv:1904.02932</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.02932">pdf</a>, <a href="https://arxiv.org/format/1904.02932">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.100.024305">10.1103/PhysRevC.100.024305 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Restricted spin-range correction in the Oslo Method: The example of nuclear level density and $纬$-ray strength function from $^{239}\mathrm{Pu}(\mathrm{d,p}纬)^{240}\mathrm{Pu}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Zeiser%2C+F">F. Zeiser</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tveten%2C+G+M">G. M. Tveten</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Potel%2C+G">G. Potel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Larsen%2C+A+C">A. C. Larsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Guttormsen%2C+M">M. Guttormsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Laplace%2C+T+A">T. A. Laplace</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Siem%2C+S">S. Siem</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bleuel%2C+D+L">D. L. Bleuel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Goldblum%2C+B+L">B. L. Goldblum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">L. A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Garrote%2C+F+L+B">F. L. Bello Garrote</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Campo%2C+L+C">L. Crespo Campo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Eriksen%2C+T+K">T. K. Eriksen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=G%C3%B6rgen%2C+A">A. G枚rgen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hadynska-Klek%2C+K">K. Hadynska-Klek</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ingeberg%2C+V+W">V. W. Ingeberg</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Midtb%C3%B8%2C+J+E">J. E. Midtb酶</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sahin%2C+E">E. Sahin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tornyi%2C+T">T. Tornyi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Voinov%2C+A">A. Voinov</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Wiedeking%2C+M">M. Wiedeking</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Wilson%2C+J">J. Wilson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.02932v2-abstract-short" style="display: inline;"> The Oslo Method has been applied to particle-$纬$ coincidences following the $^{239}\mathrm{Pu}$(d,p) reaction to obtain the nuclear level density (NLD) and $纬$-ray strength function ($纬$SF) of $^{240}\mathrm{Pu}$. The experiment was conducted with a 12 MeV deuteron beam at the Oslo Cyclotron Laboratory. The low spin transfer of this reaction leads to a spin-parity mismatch between populated and in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02932v2-abstract-full').style.display = 'inline'; document.getElementById('1904.02932v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.02932v2-abstract-full" style="display: none;"> The Oslo Method has been applied to particle-$纬$ coincidences following the $^{239}\mathrm{Pu}$(d,p) reaction to obtain the nuclear level density (NLD) and $纬$-ray strength function ($纬$SF) of $^{240}\mathrm{Pu}$. The experiment was conducted with a 12 MeV deuteron beam at the Oslo Cyclotron Laboratory. The low spin transfer of this reaction leads to a spin-parity mismatch between populated and intrinsic levels. This is a challenge for the Oslo Method as it can have a significant impact on the extracted NLD and $纬$SF. We have developed an iterative approach to ensure consistent results even for cases with a large spin-parity mismatch, in which we couple Green&#39;s Function Transfer calculations of the spin-parity dependent population cross-section to the nuclear decay code RAINIER. The resulting $纬$SF shows a pronounced enhancement between 2-4 MeV that is consistent with the location of the low-energy orbital $M1$ scissors mode. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02932v2-abstract-full').style.display = 'none'; document.getElementById('1904.02932v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 100, 024305 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.05529">arXiv:1903.05529</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.05529">pdf</a>, <a href="https://arxiv.org/format/1903.05529">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2019.134884">10.1016/j.physletb.2019.134884 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High Precision Measurement of Compton Scattering in the 5 GeV region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Ambrozewicz%2C+P">P. Ambrozewicz</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ye%2C+L">L. Ye</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Prok%2C+Y">Y. Prok</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Larin%2C+I">I. Larin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ahmidouch%2C+A">A. Ahmidouch</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Baker%2C+K">K. Baker</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Baturin%2C+V">V. Baturin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Benton%2C+L">L. Benton</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Burkert%2C+V">V. Burkert</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Clinton%2C+E">E. Clinton</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Cole%2C+P+L">P. L. Cole</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Collins%2C+P">P. Collins</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dale%2C+D">D. Dale</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Danagoulian%2C+S">S. Danagoulian</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Davidenko%2C+G">G. Davidenko</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Demirchyan%2C+R">R. Demirchyan</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Deur%2C+A">A. Deur</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dolgolenko%2C+A">A. Dolgolenko</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dutta%2C+D">D. Dutta</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dzyubenko%2C+G">G. Dzyubenko</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Evdokimov%2C+A">A. Evdokimov</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Fedotov%2C+G">G. Fedotov</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Feng%2C+J">J. Feng</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gabrielyan%2C+M">M. Gabrielyan</a> , et al. (72 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.05529v5-abstract-short" style="display: inline;"> The cross section of atomic electron Compton scattering $纬+ e \rightarrow 纬^\prime + e^\prime $ was measured in the 4.40--5.475 GeV photon beam energy region by the {\em PrimEx} collaboration at Jefferson Lab with an accuracy of 2\% and less. The results are consistent with theoretical predictions that include next-to-leading order radiative corrections. The measurements provide the first high pre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.05529v5-abstract-full').style.display = 'inline'; document.getElementById('1903.05529v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.05529v5-abstract-full" style="display: none;"> The cross section of atomic electron Compton scattering $纬+ e \rightarrow 纬^\prime + e^\prime $ was measured in the 4.40--5.475 GeV photon beam energy region by the {\em PrimEx} collaboration at Jefferson Lab with an accuracy of 2\% and less. The results are consistent with theoretical predictions that include next-to-leading order radiative corrections. The measurements provide the first high precision test of this elementary QED process at beam energies greater than 0.1 GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.05529v5-abstract-full').style.display = 'none'; document.getElementById('1903.05529v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett B797, 134884 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.02966">arXiv:1902.02966</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.02966">pdf</a>, <a href="https://arxiv.org/format/1902.02966">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-030-58082-7_23">10.1007/978-3-030-58082-7_23 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of restricted spin-ranges in the Oslo Method: The example of (d,p)$^{240}\mathrm{Pu}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Zeiser%2C+F">F. Zeiser</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Potel%2C+G">G. Potel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tveten%2C+G+M">G. M. Tveten</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Larsen%2C+A+C">A. C. Larsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Guttormsen%2C+M">M. Guttormsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Laplace%2C+T+A">T. A. Laplace</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Siem%2C+S">S. Siem</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bleuel%2C+D+L">D. L. Bleuel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Goldblum%2C+B+L">B. L. Goldblum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">L. A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Garrote%2C+F+L+B">F. L. Bello Garrote</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Campo%2C+L+C">L. Crespo Campo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Eriksen%2C+T+K">T. K. Eriksen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=G%C3%B6rgen%2C+A">A. G枚rgen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hadynska-Klek%2C+K">K. Hadynska-Klek</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Midtb%C3%B8%2C+J+E">J. E. Midtb酶</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Renstr%C3%B8m%2C+T">T. Renstr酶m</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sahin%2C+E">E. Sahin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tornyi%2C+T">T. Tornyi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Voinov%2C+A">A. Voinov</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Wiedeking%2C+M">M. Wiedeking</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.02966v2-abstract-short" style="display: inline;"> In this paper we present the first systematic analysis of the impact of the populated vs. intrinsic spin distribution on the nuclear level density and $纬$-ray strength function retrieved through the Oslo Method. We illustrate the effect of the spin distribution on the recently performed $^{239}\mathrm{Pu}$(d,p$纬$)$^{240}\mathrm{Pu}$ experiment using a 12 MeV deuteron beam performed at the Oslo Cyc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.02966v2-abstract-full').style.display = 'inline'; document.getElementById('1902.02966v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.02966v2-abstract-full" style="display: none;"> In this paper we present the first systematic analysis of the impact of the populated vs. intrinsic spin distribution on the nuclear level density and $纬$-ray strength function retrieved through the Oslo Method. We illustrate the effect of the spin distribution on the recently performed $^{239}\mathrm{Pu}$(d,p$纬$)$^{240}\mathrm{Pu}$ experiment using a 12 MeV deuteron beam performed at the Oslo Cyclotron Lab. In the analysis we couple state-of-the-art calculations for the populated spin-distributions with the Monte-Carlo nuclear decay code RAINIER to compare Oslo Method results to the known input. We find that good knowledge of the populated spin distribution is crucial and show that the populated distribution has a significant impact on the extracted nuclear level density and $纬$-ray strength function for the $^{239}\mathrm{Pu}$(d,p$纬$)$^{240}\mathrm{Pu}$ case. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.02966v2-abstract-full').style.display = 'none'; document.getElementById('1902.02966v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at the 6th International Workshop on Compound-Nuclear Reactions and Related Topics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Compound-Nuclear Reactions. Springer Proceedings in Physics, vol 254 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.11565">arXiv:1810.11565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.11565">pdf</a>, <a href="https://arxiv.org/format/1810.11565">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.99.024310">10.1103/PhysRevC.99.024310 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiative-capture cross sections for the $^{139}$La($n,纬$) reactionusing thermal neutrons and structural properties of $^{140}$La </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Hurst%2C+A+M">A. M. Hurst</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sweet%2C+A">A. Sweet</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Goldblum%2C+B+L">B. L. Goldblum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Firestone%2C+R+B">R. B. Firestone</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Basunia%2C+M+S">M. S. Basunia</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">L. A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Revay%2C+Z">Zs. Revay</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Szentmiklosi%2C+L">L. Szentmiklosi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Belgya%2C+T">T. Belgya</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Escher%2C+J+E">J. E. Escher</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Harsanyi%2C+I">I. Harsanyi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Krticka%2C+M">M. Krticka</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sleaford%2C+B+W">B. W. Sleaford</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Vujic%2C+J">J. Vujic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.11565v1-abstract-short" style="display: inline;"> A set of prompt partial $纬$-ray production cross sections from thermal neutron-capture were measured for the $^{139}$La($n,纬$) reaction using a guided beam of subthermal (thermal and cold) neutrons incident upon a $^{\rm nat}$La$_{2}$O$_{3}$ target at the Prompt Gamma Activation Analysis facility of the Budapest Research Reactor. Absolute $^{140}$La cross sections were determined relative to the w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11565v1-abstract-full').style.display = 'inline'; document.getElementById('1810.11565v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.11565v1-abstract-full" style="display: none;"> A set of prompt partial $纬$-ray production cross sections from thermal neutron-capture were measured for the $^{139}$La($n,纬$) reaction using a guided beam of subthermal (thermal and cold) neutrons incident upon a $^{\rm nat}$La$_{2}$O$_{3}$ target at the Prompt Gamma Activation Analysis facility of the Budapest Research Reactor. Absolute $^{140}$La cross sections were determined relative to the well-known comparator $^{35}$Cl($n,纬$) cross sections from the irradiation of a stoichiometric $^{\rm nat}$LaCl$_{3}$ sample. The total cross section for radiative thermal neutron-capture on $^{139}$La from the sum of experimentally measured cross sections observed to directly feed the $^{140}$La ground state was determined to be $蟽_{0}^{\rm expt} = 8.58(50)$ b. To assess completeness of the decay scheme and as a consistency check, the measured cross sections for transitions feeding the ground state from levels below a critical energy of $E_{c} = 285$ keV were combined with a modeled contribution accounting for ground-state feeding from the quasicontinuum to arrive at a total cross section of $蟽_{0} = 9.36(74)$ b. In addition, a neutron-separation energy of $S_{n} = 5161.005(21)$ keV was determined from a least-squares fit of the measured primary $纬$-ray energies to the low-lying levels of the $^{140}$La decay scheme. Furthermore, several nuclear structure improvements are proposed for the decay scheme. The measured cross-section and separation-energy results are comparable to earlier measurements of these quantities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11565v1-abstract-full').style.display = 'none'; document.getElementById('1810.11565v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 11 figures, 8 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 99, 024310 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.06548">arXiv:1804.06548</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.06548">pdf</a>, <a href="https://arxiv.org/format/1804.06548">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nimb.2018.05.028">10.1016/j.nimb.2018.05.028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Excitation functions for (p,x) reactions of niobium in the energy range of E$_{\text{p}}$ = 40-90 MeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Voyles%2C+A+S">Andrew S. Voyles</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">Lee A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Birnbaum%2C+E+R">Eva R. Birnbaum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Engle%2C+J+W">Jonathan W. Engle</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Graves%2C+S+A">Stephen A. Graves</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kawano%2C+T">Toshihiko Kawano</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lewis%2C+A+M">Amanda M. Lewis</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Nortier%2C+F+M">Francois M. Nortier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.06548v2-abstract-short" style="display: inline;"> A stack of thin Nb foils was irradiated with the 100 MeV proton beam at Los Alamos National Laboratory&#39;s Isotope Production Facility, to investigate the $^{93}$Nb(p,4n)$^{90}$Mo nuclear reaction as a monitor for intermediate energy proton experiments and to benchmark state-of-the-art reaction model codes. A set of 38 measured cross sections for $^{\text{nat}}$Nb(p,x) and $^{\text{nat}}$Cu(p,x) rea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.06548v2-abstract-full').style.display = 'inline'; document.getElementById('1804.06548v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.06548v2-abstract-full" style="display: none;"> A stack of thin Nb foils was irradiated with the 100 MeV proton beam at Los Alamos National Laboratory&#39;s Isotope Production Facility, to investigate the $^{93}$Nb(p,4n)$^{90}$Mo nuclear reaction as a monitor for intermediate energy proton experiments and to benchmark state-of-the-art reaction model codes. A set of 38 measured cross sections for $^{\text{nat}}$Nb(p,x) and $^{\text{nat}}$Cu(p,x) reactions between 40-90 MeV, as well as 5 independent measurements of isomer branching ratios, are reported. These are useful in medical and basic science radionuclide productions at intermediate energies. The $^{\text{nat}}$Cu(p,x)$^{56}$Co, $^{\text{nat}}$Cu(p,x)$^{62}$Zn, and $^{\text{nat}}$Cu(p,x)$^{65}$Zn reactions were used to determine proton fluence, and all activities were quantified using HPGe spectrometry. Variance minimization techniques were employed to reduce systematic uncertainties in proton energy and fluence, improving the reliability of these measurements. The measured cross sections are shown to be in excellent agreement with literature values, and have been measured with improved precision compared with previous measurements. This work also reports the first measurement of the $^{\text{nat}}$Nb(p,x)$^{82\text{m}}$Rb reaction, and of the independent cross sections for $^{\text{nat}}$Cu(p,x)$^{52\text{g}}$Mn and $^{\text{nat}}$Nb(p,x)$^{85\text{g}}$Y in the 40-90 MeV region. The effects of $^{\text{nat}}$Si(p,x)$^{22,24}$Na contamination, arising from silicone adhesive in the Kapton tape used to encapsulate the aluminum monitor foils, is also discussed as a cautionary note to future stacked-target cross section measurements. \emph{A priori} predictions of the reaction modeling codes CoH, EMPIRE, and TALYS are compared with experimentally measured values and used to explore the differences between codes for the $^{\text{nat}}$Nb(p,x) and $^{\text{nat}}$Cu(p,x) reactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.06548v2-abstract-full').style.display = 'none'; document.getElementById('1804.06548v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, submitted to NIM-B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-18-22980 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Instruments and Methods in Physics Research B, 429 (2018) 53-74 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.09668">arXiv:1801.09668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.09668">pdf</a>, <a href="https://arxiv.org/format/1801.09668">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.97.024327">10.1103/PhysRevC.97.024327 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Understanding the Low-Energy Enhancement of the $纬$-ray Strength Function of $^{56}$Fe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Jones%2C+M+D">M. D. Jones</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Macchiavelli%2C+A+O">A. O. Macchiavelli</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Wiedeking%2C+M">M. Wiedeking</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">L. A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Crawford%2C+H+L">H. L. Crawford</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Campbell%2C+C+M">C. M. Campbell</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Clark%2C+R+M">R. M. Clark</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Cromaz%2C+M">M. Cromaz</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Fallon%2C+P">P. Fallon</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lee%2C+I+Y">I. Y. Lee</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Salathe%2C+M">M. Salathe</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Wiens%2C+A">A. Wiens</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ayangeakaa%2C+A+D">A. D. Ayangeakaa</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bleuel%2C+D+L">D. L. Bleuel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bottoni%2C+S">S. Bottoni</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Carpenter%2C+M+P">M. P. Carpenter</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Davids%2C+H+M">H. M. Davids</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Elson%2C+J">J. Elson</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=G%C3%B6rgen%2C+A">A. G枚rgen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Guttormsen%2C+M">M. Guttormsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Janssens%2C+R+V+F">R. V. F. Janssens</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kinnison%2C+J+E">J. E. Kinnison</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kirsch%2C+L">L. Kirsch</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Larsen%2C+A+C">A. C. Larsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lauritsen%2C+T">T. Lauritsen</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.09668v1-abstract-short" style="display: inline;"> A model-independent technique was used to determine the $纬$-ray Strength Function ($纬$SF) of $^{56}$Fe down to $纬$-ray energies less than 1 MeV for the first time with GRETINA using the $(p,p&#39;)$ reaction at 16 MeV. No difference was observed in the energy dependence of the $纬$SF built on $2^{+}$ and $4^{+}$ final states, supporting the Brink hypothesis. In addition, angular distribution and polari&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09668v1-abstract-full').style.display = 'inline'; document.getElementById('1801.09668v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.09668v1-abstract-full" style="display: none;"> A model-independent technique was used to determine the $纬$-ray Strength Function ($纬$SF) of $^{56}$Fe down to $纬$-ray energies less than 1 MeV for the first time with GRETINA using the $(p,p&#39;)$ reaction at 16 MeV. No difference was observed in the energy dependence of the $纬$SF built on $2^{+}$ and $4^{+}$ final states, supporting the Brink hypothesis. In addition, angular distribution and polarization measurements were performed. The angular distributions are consistent with dipole radiation. The polarization results show a small bias towards magnetic character in the region of the enhancement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09668v1-abstract-full').style.display = 'none'; document.getElementById('1801.09668v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 97, 024327 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.04001">arXiv:1712.04001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.04001">pdf</a>, <a href="https://arxiv.org/format/1712.04001">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.10.024014">10.1103/PhysRevApplied.10.024014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity of seismically cued antineutrino detectors to nuclear explosions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Carr%2C+R">Rachel Carr</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dalnoki-Veress%2C+F">Ferenc Dalnoki-Veress</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">Adam Bernstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.04001v2-abstract-short" style="display: inline;"> We evaluate the sensitivity of large, gadolinium-doped water detectors to antineutrinos released by nuclear fission explosions, using updated signal and background models and taking advantage of the capacity for seismic observations to provide an analysis trigger. Under certain realistic conditions, the antineutrino signature of a 250-kiloton pure fission explosion could be identified several hund&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.04001v2-abstract-full').style.display = 'inline'; document.getElementById('1712.04001v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.04001v2-abstract-full" style="display: none;"> We evaluate the sensitivity of large, gadolinium-doped water detectors to antineutrinos released by nuclear fission explosions, using updated signal and background models and taking advantage of the capacity for seismic observations to provide an analysis trigger. Under certain realistic conditions, the antineutrino signature of a 250-kiloton pure fission explosion could be identified several hundred kilometers away in a detector about the size of the largest module currently proposed for a basic physics experiment. In principle, such an observation could provide rapid confirmation that the seismic signal coincided with a fission event, possibly useful for international monitoring of nuclear weapon tests. We discuss the limited potential for seismically cued antineutrino observations to constrain fission yield, differentiate pure fission from fusion-enhanced weapon tests, indicate that the seismic evidence of an explosion had been intentionally masked, or verify the absence of explosive testing in a targeted area. We conclude that advances in seismic monitoring and neutrino physics have made the detection of explosion-derived antineutrinos more conceivable than previously asserted, but the size and cost of sufficiently sensitive detectors continue to limit applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.04001v2-abstract-full').style.display = 'none'; document.getElementById('1712.04001v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 10, 024014 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.01651">arXiv:1707.01651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.01651">pdf</a>, <a href="https://arxiv.org/format/1707.01651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.96.014601">10.1103/PhysRevC.96.014601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy dependence of the prompt $纬$-ray emission from the $(d,p)$-induced fission of $^{234}\mathrm{U}^{*}$ and $^{240}\mathrm{Pu}^{*}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Rose%2C+S+J">S. J. Rose</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Zeiser%2C+F">F. Zeiser</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Wilson%2C+J+N">J. N. Wilson</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Oberstedt%2C+A">A. Oberstedt</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Oberstedt%2C+S">S. Oberstedt</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Siem%2C+S">S. Siem</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tveten%2C+G+M">G. M. Tveten</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">L. A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bleuel%2C+D+L">D. L. Bleuel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Brown%2C+J+A">J. A. Brown</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Campo%2C+L+C">L. Crespo Campo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Giacoppo%2C+F">F. Giacoppo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=G%C3%B6rgen%2C+A">A. G枚rgen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Guttormsen%2C+M">M. Guttormsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hady%C5%84ska%2C+K">K. Hady艅ska</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hafreager%2C+A">A. Hafreager</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hagen%2C+T+W">T. W. Hagen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Klintefjord%2C+M">M. Klintefjord</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Laplace%2C+T+A">T. A. Laplace</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Larsen%2C+A+C">A. C. Larsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Renstr%C3%B8m%2C+T">T. Renstr酶m</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sahin%2C+E">E. Sahin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Schmitt%2C+C">C. Schmitt</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tornyi%2C+T+G">T. G. Tornyi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Wiedeking%2C+M">M. Wiedeking</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.01651v1-abstract-short" style="display: inline;"> Prompt fission $纬$-rays are responsible for approximately 5\% of the total energy released in fission, and therefore important to understand when modelling nuclear reactors. In this work we present prompt $纬$-ray emission characteristics in fission, for the first time as a function of the nuclear excitation energy of the fissioning system. Emitted $纬$-ray spectra were measured, and $纬$-ray multipl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.01651v1-abstract-full').style.display = 'inline'; document.getElementById('1707.01651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.01651v1-abstract-full" style="display: none;"> Prompt fission $纬$-rays are responsible for approximately 5\% of the total energy released in fission, and therefore important to understand when modelling nuclear reactors. In this work we present prompt $纬$-ray emission characteristics in fission, for the first time as a function of the nuclear excitation energy of the fissioning system. Emitted $纬$-ray spectra were measured, and $纬$-ray multiplicities and average and total $纬$ energies per fission were determined for the $^{233}$U(d,pf) reaction for excitation energies between 4.8 and 10 MeV, and for the $^{239}$Pu(d,pf) reaction between 4.5 and 9 MeV. The spectral characteristics show no significant change as a function of excitation energy above the fission barrier, despite the fact that an extra $\sim$5 MeV of energy is potentially available in the excited fragments for $纬$-decay. The measured results are compared to model calculations made for prompt $纬$-ray emission with the fission model code GEF. Further comparison with previously obtained results from thermal neutron induced fission is made to characterize possible differences arising from using the surrogate (d,p) reaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.01651v1-abstract-full').style.display = 'none'; document.getElementById('1707.01651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C. 96, 014601 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.03712">arXiv:1701.03712</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.03712">pdf</a>, <a href="https://arxiv.org/ps/1701.03712">ps</a>, <a href="https://arxiv.org/format/1701.03712">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.95.045805">10.1103/PhysRevC.95.045805 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $^{137,138,139}$La($n$, $纬$) cross sections constrained with statistical decay properties of $^{138,139,140}$La nuclei </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Kheswa%2C+B+V">Bonginkosi Vincent Kheswa</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Wiedeking%2C+M">Mathis Wiedeking</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Brown%2C+J">Josh Brown</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Larsen%2C+A">Ann-Cecilie Larsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Goriely%2C+S">Stephane Goriely</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Guttormsen%2C+M">Magne Guttormsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Garrote%2C+F+L+B">Frank L Bello Garrote</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">Lee A Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bleuel%2C+D+L">Darren L. Bleuel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Eriksen%2C+T+K">Tomas K Eriksen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Giacoppo%2C+F">Francesca Giacoppo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=G%C3%B6rgen%2C+A">Andreas G枚rgen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Goldblum%2C+B+L">Bethany L Goldblum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hagen%2C+T">Trine Hagen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Koehler%2C+P+E">Paul E Koehler</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Klintefjord%2C+M">Malin Klintefjord</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Malatji%2C+K+L">Kgashane L Malatji</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Midtb%C3%B8%2C+J+E">J酶rgen E Midtb酶</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Nyhus%2C+H">Hilde-Therese Nyhus</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Papka%2C+P">Paul Papka</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Renstr%C3%B8m%2C+T">Therese Renstr酶m</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Rose%2C+S+J">Sunniva J Rose</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sahin%2C+E">Eda Sahin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Siem%2C+S">Sunniva Siem</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tornyi%2C+T">Tam谩s Tornyi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.03712v1-abstract-short" style="display: inline;"> The nuclear level densities and $纬$-ray strength functions of $^{138,139,140}$La were measured using the $^{139}$La($^{3}$He, $伪$), $^{139}$La($^{3}$He, $^{3}$He$^\prime$) and $^{139}$La(d, p) reactions. The particle-$纬$ coincidences were recorded with the silicon particle telescope (SiRi) and NaI(Tl) (CACTUS) arrays. In the context of these experimental results, the low-energy enhancement in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.03712v1-abstract-full').style.display = 'inline'; document.getElementById('1701.03712v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.03712v1-abstract-full" style="display: none;"> The nuclear level densities and $纬$-ray strength functions of $^{138,139,140}$La were measured using the $^{139}$La($^{3}$He, $伪$), $^{139}$La($^{3}$He, $^{3}$He$^\prime$) and $^{139}$La(d, p) reactions. The particle-$纬$ coincidences were recorded with the silicon particle telescope (SiRi) and NaI(Tl) (CACTUS) arrays. In the context of these experimental results, the low-energy enhancement in the A$\sim$140 region is discussed. The $^{137,138,139}$La($n, 纬)$ cross sections were calculated at $s$- and $p$-process temperatures using the experimentally measured nuclear level densities and $纬$-ray strength functions. Good agreement is found between $^{139}$La($n, 纬)$ calculated cross sections and previous measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.03712v1-abstract-full').style.display = 'none'; document.getElementById('1701.03712v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.00540">arXiv:1612.00540</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.00540">pdf</a>, <a href="https://arxiv.org/format/1612.00540">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.9.014003">10.1103/PhysRevApplied.9.014003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reactors as a source of antineutrinos: the effect of fuel loading and burnup for mixed oxide fuels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">Adam Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bowden%2C+N">Nathaniel Bowden</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Erickson%2C+A">Anna Erickson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.00540v2-abstract-short" style="display: inline;"> In a conventional light water reactor loaded with a range of uranium and plutonium-based fuel mixtures, the variation in antineutrino production over the cycle reflects both the initial core fissile inventory and its evolution. Under the assumption of constant thermal power, we calculate the rate at which antineutrinos are emitted from variously fueled cores, and the evolution of that rate as meas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.00540v2-abstract-full').style.display = 'inline'; document.getElementById('1612.00540v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.00540v2-abstract-full" style="display: none;"> In a conventional light water reactor loaded with a range of uranium and plutonium-based fuel mixtures, the variation in antineutrino production over the cycle reflects both the initial core fissile inventory and its evolution. Under the assumption of constant thermal power, we calculate the rate at which antineutrinos are emitted from variously fueled cores, and the evolution of that rate as measured by a representative ton-scale antineutrino detector. We find that antineutrino flux decreases with burnup for Low Enriched Uranium cores, increases for full mixed-oxide (MOX) cores, and does not appreciably change for cores with a MOX fraction of approximately 75%. Accounting for uncertainties in the fission yields, in the emitted antineutrino spectra, and the detector response function, we show that the difference in core-wide MOX fractions at least as small as 8% can be distinguished using a hypothesis test. The test compares the evolution of the antineutrino rate relative to an initial value over part or all of the cycle. The use of relative rates reduces the sensitivity of the test to an independent thermal power measurement, making the result more robust against possible countermeasures. This rate-only approach also offers the potential advantage of reducing the cost and complexity of the antineutrino detectors used to verify the diversion, compared to methods that depend on the use of the antineutrino spectrum. A possible application is the verification of the disposition of surplus plutonium in nuclear reactors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.00540v2-abstract-full').style.display = 'none'; document.getElementById('1612.00540v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-712137 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 9, 014003 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.04914">arXiv:1609.04914</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.04914">pdf</a>, <a href="https://arxiv.org/ps/1609.04914">ps</a>, <a href="https://arxiv.org/format/1609.04914">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.94.024332">10.1103/PhysRevC.94.024332 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nature of low-lying electric dipole resonance excitations in 74Ge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Negi%2C+D">D. Negi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Wiedeking%2C+M">M. Wiedeking</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lanza%2C+E+G">E. G. Lanza</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Litvinova%2C+E">E. Litvinova</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Vitturi%2C+A">A. Vitturi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bark%2C+R+A">R. A. Bark</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">L. A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bleuel%2C+D+L">D. L. Bleuel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bvumbi%2C+S">S. Bvumbi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bucher%2C+T+D">T. D. Bucher</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Daub%2C+B+H">B. H. Daub</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dinoko%2C+T+S">T. S. Dinoko</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Easton%2C+J+L">J. L. Easton</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gorgen%2C+A">A. Gorgen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Guttormsen%2C+M">M. Guttormsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Jones%2C+P">P. Jones</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kheswa%2C+B+V">B. V. Kheswa</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Khumalo%2C+N+A">N. A. Khumalo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Larsen%2C+A+C">A. C. Larsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lawrie%2C+E+A">E. A. Lawrie</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lawrie%2C+J+J">J. J. Lawrie</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Majola%2C+S+N+T">S. N. T. Majola</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Masiteng%2C+L+P">L. P. Masiteng</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Nchodu%2C+M+R">M. R. Nchodu</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ndayishimye%2C+J">J. Ndayishimye</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.04914v1-abstract-short" style="display: inline;"> Isospin properties of dipole excitations in 74 Ge are investigated using the (伪,伪&#39;纬) reaction and compared to (纬,纬) data. The results indicate that the dipole excitations in the energy region of 6 to 9 MeV adhere to the scenario of the recently found splitting of the region of dipole excitations into two separated parts: one at low energy, being populated by both isoscalar and isovector probes, an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.04914v1-abstract-full').style.display = 'inline'; document.getElementById('1609.04914v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.04914v1-abstract-full" style="display: none;"> Isospin properties of dipole excitations in 74 Ge are investigated using the (伪,伪&#39;纬) reaction and compared to (纬,纬) data. The results indicate that the dipole excitations in the energy region of 6 to 9 MeV adhere to the scenario of the recently found splitting of the region of dipole excitations into two separated parts: one at low energy, being populated by both isoscalar and isovector probes, and the other at high energy, excited only by the electromagnetic probe. Relativistic quasiparticle time blocking approximation (RQTBA) calculations show a reduction in the isoscalar E1 strength with an increase in excitation energy, which is consistent with the measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.04914v1-abstract-full').style.display = 'none'; document.getElementById('1609.04914v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review C 94 (2016) 024332 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.07012">arXiv:1605.07012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.07012">pdf</a>, <a href="https://arxiv.org/format/1605.07012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.94.025804">10.1103/PhysRevC.94.025804 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Completing the nuclear reaction puzzle of the nucleosynthesis of 92Mo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Tveten%2C+G+M">G. M. Tveten</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Spyrou%2C+A">A. Spyrou</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Schwengner%2C+R">R. Schwengner</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Naqvi%2C+F">F. Naqvi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Larsen%2C+A+C">A. C. Larsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Eriksen%2C+T+K">T. K. Eriksen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Garrote%2C+F+L+B">F. L. Bello Garrote</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">L. A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bleuel%2C+D+L">D. L. Bleuel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Campo%2C+L+C">L. Crespo Campo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Guttormsen%2C+M">M. Guttormsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Giacoppo%2C+F">F. Giacoppo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=G%C3%B6rgen%2C+A">A. G枚rgen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hagen%2C+T+W">T. W. Hagen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hadynska-Klek%2C+K">K. Hadynska-Klek</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Klintefjord%2C+M">M. Klintefjord</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Meyer%2C+B+S">B. S. Meyer</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Nyhus%2C+H+T">H. T. Nyhus</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Renstr%C3%B8m%2C+T">T. Renstr酶m</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Rose%2C+S+J">S. J. Rose</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sahin%2C+E">E. Sahin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Siem%2C+S">S. Siem</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tornyi%2C+T+G">T. G. Tornyi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.07012v2-abstract-short" style="display: inline;"> One of the greatest questions for modern physics to address is how elements heavier than iron are created in extreme, astrophysical environments. A particularly challenging part of that question is the creation of the so-called p-nuclei, which are believed to be mainly produced in some types of supernovae. The lack of needed nuclear data presents an obstacle in nailing down the precise site and as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.07012v2-abstract-full').style.display = 'inline'; document.getElementById('1605.07012v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.07012v2-abstract-full" style="display: none;"> One of the greatest questions for modern physics to address is how elements heavier than iron are created in extreme, astrophysical environments. A particularly challenging part of that question is the creation of the so-called p-nuclei, which are believed to be mainly produced in some types of supernovae. The lack of needed nuclear data presents an obstacle in nailing down the precise site and astrophysical conditions. In this work, we present for the first time measurements on the nuclear level density and average strength function of $^{92}$Mo. State-of-the-art p-process calculations systematically underestimate the observed solar abundance of this isotope. Our data provide stringent constraints on the $^{91}$Nb$(p,纬)^{92}$Mo reaction rate, which is the last unmeasured reaction in the nucleosynthesis puzzle of $^{92}$Mo. Based on our results, we conclude that the $^{92}$Mo abundance anomaly is not due to the nuclear physics input to astrophysical model calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.07012v2-abstract-full').style.display = 'none'; document.getElementById('1605.07012v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to PRC</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.02412">arXiv:1601.02412</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.02412">pdf</a>, <a href="https://arxiv.org/format/1601.02412">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.93.045808">10.1103/PhysRevC.93.045808 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Model-independent determination of the astrophysical S-factor in laser-induced fusion plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Lattuada%2C+D">D. Lattuada</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Barbarino%2C+M">M. Barbarino</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bonasera%2C+A">A. Bonasera</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bang%2C+W">W. Bang</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Quevedo%2C+H+J">H. J. Quevedo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Warren%2C+M">M. Warren</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Consoli%2C+F">F. Consoli</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=De+Angelis%2C+R">R. De Angelis</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Andreoli%2C+P">P. Andreoli</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kimura%2C+S">S. Kimura</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dyer%2C+G">G. Dyer</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A+C">A. C. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hagel%2C+K">K. Hagel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Barbui%2C+M">M. Barbui</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Schmidt%2C+K">K. Schmidt</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gaul%2C+E">E. Gaul</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Donovan%2C+M+E">M. E. Donovan</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Natowitz%2C+J+B">J. B. Natowitz</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ditmire%2C+T">T. Ditmire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.02412v2-abstract-short" style="display: inline;"> In this work, we present a new and general method for measuring the astrophysical S-factor of nuclear reactions in laser-induced plasmas and we apply it to d(d,n)$^{3}$He. The experiment was performed with the Texas Petawatt laser, which delivered 150-270 fs pulses of energy ranging from 90 to 180 J to D$_{2}$ or CD$_{4}$ molecular clusters. After removing the background noise, we used the measure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.02412v2-abstract-full').style.display = 'inline'; document.getElementById('1601.02412v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.02412v2-abstract-full" style="display: none;"> In this work, we present a new and general method for measuring the astrophysical S-factor of nuclear reactions in laser-induced plasmas and we apply it to d(d,n)$^{3}$He. The experiment was performed with the Texas Petawatt laser, which delivered 150-270 fs pulses of energy ranging from 90 to 180 J to D$_{2}$ or CD$_{4}$ molecular clusters. After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S-factor using the measured energy distribution of the ions, the measured volume of the fusion plasma and the measured fusion yields. This method is model-independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution especially at high energies and of the relevant fusion yields. In the d(d,n)$^{3}$He and $^{3}$He(d,p)$^{4}$He cases discussed here, it is very important to apply the background subtraction for the energetic ions and to measure the fusion yields with high precision. While the available data on both ion distribution and fusion yields allow us to determine with good precision the S-factor in the d+d case (lower Gamow energies), for the d+$^3$He case the data are not precise enough to obtain the S-factor using this method. Our results agree with other experiments within the experimental error, even though smaller values of the S-factor were obtained. This might be due to the plasma environment differing from the beam target conditions in a conventional accelerator experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.02412v2-abstract-full').style.display = 'none'; document.getElementById('1601.02412v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 93, 045808 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.00794">arXiv:1512.00794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.00794">pdf</a>, <a href="https://arxiv.org/format/1512.00794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2016.03.014">10.1016/j.nima.2016.03.014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A search for cosmogenic production of $尾$-neutron emitting radionuclides in water </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Dazeley%2C+S">S. Dazeley</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Askins%2C+M">M. Askins</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bergevin%2C+M">M. Bergevin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bowden%2C+N+S">N. S. Bowden</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Jaffke%2C+P">P. Jaffke</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Rountree%2C+S+D">S. D. Rountree</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Shokair%2C+T+M">T. M. Shokair</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sweany%2C+M">M. Sweany</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.00794v2-abstract-short" style="display: inline;"> Here we present the first results of WATCHBOY, a water Cherenkov detector designed to measure the yield of $尾$-neutron emitting radionuclides produced by cosmic ray muons in water. In addition to the $尾$-neutron measurement, we also provide a first look at isolating single-$尾$ producing radionuclides following muon-induced hadronic showers as a check of the detection capabilities of WATCHBOY. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.00794v2-abstract-full').style.display = 'inline'; document.getElementById('1512.00794v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.00794v2-abstract-full" style="display: none;"> Here we present the first results of WATCHBOY, a water Cherenkov detector designed to measure the yield of $尾$-neutron emitting radionuclides produced by cosmic ray muons in water. In addition to the $尾$-neutron measurement, we also provide a first look at isolating single-$尾$ producing radionuclides following muon-induced hadronic showers as a check of the detection capabilities of WATCHBOY. The data taken over $207$ live days indicates a $^{9}$Li production yield upper limit of $1.9\times10^{-7}渭^{-1}g^{-1}\mathrm{cm}^2$ at $\sim400$ meters water equivalent (m.w.e.) overburden at the $90\%$ confidence level. In this work the $^{9}$Li signal in WATCHBOY was used as a proxy for the combined search for $^{9}$Li and $^{8}$He production. This result will provide a constraint on estimates of antineutrino-like backgrounds in future water-based antineutrino detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.00794v2-abstract-full').style.display = 'none'; document.getElementById('1512.00794v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-677613 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.00527">arXiv:1512.00527</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.00527">pdf</a>, <a href="https://arxiv.org/format/1512.00527">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2016.10.027">10.1016/j.nima.2016.10.027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Hellfeld%2C+D">D. Hellfeld</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dazeley%2C+S">S. Dazeley</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Marianno%2C+C">C. Marianno</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.00527v3-abstract-short" style="display: inline;"> The potential of elastic antineutrino-electron scattering in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13-km standoff from a 3.758-GWt light water nuclear reactor and the detector respon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.00527v3-abstract-full').style.display = 'inline'; document.getElementById('1512.00527v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.00527v3-abstract-full" style="display: none;"> The potential of elastic antineutrino-electron scattering in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13-km standoff from a 3.758-GWt light water nuclear reactor and the detector response was modeled using a Geant4-based simulation package. Background was estimated via independent simulations and by scaling published measurements from similar detectors. Background contributions were estimated for solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclides, water-borne radon, and gamma rays from the photomultiplier tubes (PMTs), detector walls, and surrounding rock. We show that with the use of low background PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. Directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. The results provide a list of experimental conditions that, if satisfied in practice, would enable antineutrino directional reconstruction at 3$蟽$ significance in large Gd-doped water Cherenkov detectors with greater than 10-km standoff from a nuclear reactor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.00527v3-abstract-full').style.display = 'none'; document.getElementById('1512.00527v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.03242">arXiv:1511.03242</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.03242">pdf</a>, <a href="https://arxiv.org/format/1511.03242">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> The pi0, eta, eta&#39; -&gt; gamma gamma*(Q^2) Decay Rates and Radii </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A+M">A. M. Bernstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.03242v2-abstract-short" style="display: inline;"> The low $Q^2$ slopes of the the transition form factors provide a unique method to measure the sizes of the neutral pseudo-scalar mesons, since they do not have electromagnetic form factors. From the slope one obtains the &#34;axial transition RMS radius&#34; $ R_{PS,A} = \sqrt{&lt;r^2&gt;}$ for each PS meson. The present status of theory and experiment for these quantities are presented. A comparison of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.03242v2-abstract-full').style.display = 'inline'; document.getElementById('1511.03242v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.03242v2-abstract-full" style="display: none;"> The low $Q^2$ slopes of the the transition form factors provide a unique method to measure the sizes of the neutral pseudo-scalar mesons, since they do not have electromagnetic form factors. From the slope one obtains the &#34;axial transition RMS radius&#34; $ R_{PS,A} = \sqrt{&lt;r^2&gt;}$ for each PS meson. The present status of theory and experiment for these quantities are presented. A comparison of the $ R_{PS,A}$ is presented along with the electromagnetic and scalar radii of the $蟺^{\pm}$ mesons and the proton. We observe the striking similarity of the values of axial transition radii of all of the pseudoscalar mesons to each other and to the charge radius of the $蟺^{\pm}$. In the $Q^2$ = 0 limit the transition form factor is a measure of the pseudo-scalar meson radiative width (lifetime) and is a possible fourth (unexploited) method to perform such a measurement. The $蟺^{0} \rightarrow 纬纬$ decay rate is a test of QCD at the confinement scale. There is a firm QCD prediction with a theoretical uncertainty of $\simeq $ 1 \% which calls for an experimental test at the same level of accuracy. There are three methods that have been utilized to perform this measurement and the present status of the experimental tests are outlined. The current accuracy is significantly less than the theoretical uncertainty. The efforts to improve this are briefly summarized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.03242v2-abstract-full').style.display = 'none'; document.getElementById('1511.03242v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures: Internation Workshop on Chiral Dynamics, 29June-3July 2015, Pisa, Italy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.01981">arXiv:1511.01981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.01981">pdf</a>, <a href="https://arxiv.org/ps/1511.01981">ps</a>, <a href="https://arxiv.org/format/1511.01981">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.93.014323">10.1103/PhysRevC.93.014323 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Statistical properties of $^{243}$Pu, and $^{242}$Pu(n,$纬$) cross section calculation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Laplace%2C+T+A">T. A. Laplace</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Zeiser%2C+F">F. Zeiser</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Guttormsen%2C+M">M. Guttormsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Larsen%2C+A+C">A. C. Larsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bleuel%2C+D+L">D. L. Bleuel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">L. A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Goldblum%2C+B+L">B. L. Goldblum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Siem%2C+S">S. Siem</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Garotte%2C+F+L+B">F. L. Bello Garotte</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Brown%2C+J+A">J. A. Brown</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Campo%2C+L+C">L. Crespo Campo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Eriksen%2C+T+K">T. K. Eriksen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Giacoppo%2C+F">F. Giacoppo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=G%C3%B6rgen%2C+A">A. G枚rgen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hady%C5%84ska-Kl%C8%A9k%2C+K">K. Hady艅ska-Kl醛k</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Henderson%2C+R+A">R. A. Henderson</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Klintefjord%2C+M">M. Klintefjord</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lebois%2C+M">M. Lebois</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Renstr%C3%B8m%2C+T">T. Renstr酶m</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Rose%2C+S+J">S. J. Rose</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sahin%2C+E">E. Sahin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tornyi%2C+T+G">T. G. Tornyi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tveten%2C+G+M">G. M. Tveten</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Voinov%2C+A">A. Voinov</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Wiedeking%2C+M">M. Wiedeking</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.01981v2-abstract-short" style="display: inline;"> The level density and gamma-ray strength function (gammaSF) of 243Pu have been measured in the quasi-continuum using the Oslo method. Excited states in 243Pu were populated using the 242Pu(d,p) reaction. The level density closely follows the constant-temperature level density formula for excitation energies above the pairing gap. The gammaSF displays a double-humped resonance at low energy as also&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.01981v2-abstract-full').style.display = 'inline'; document.getElementById('1511.01981v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.01981v2-abstract-full" style="display: none;"> The level density and gamma-ray strength function (gammaSF) of 243Pu have been measured in the quasi-continuum using the Oslo method. Excited states in 243Pu were populated using the 242Pu(d,p) reaction. The level density closely follows the constant-temperature level density formula for excitation energies above the pairing gap. The gammaSF displays a double-humped resonance at low energy as also seen in previous investigations of actinide isotopes. The structure is interpreted as the scissors resonance and has a centroid of omega_{SR}=2.42(5)MeV and a total strength of B_{SR}=10.1(15)mu_N^2, which is in excellent agreement with sum-rule estimates. The measured level density and gammaSF were used to calculate the 242Pu(n,gamma) cross section in a neutron energy range for which there were previously no measured data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.01981v2-abstract-full').style.display = 'none'; document.getElementById('1511.01981v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C93, 014323 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.05219">arXiv:1510.05219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.05219">pdf</a>, <a href="https://arxiv.org/format/1510.05219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.93.064302">10.1103/PhysRevC.93.064302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy enhancement in the 纬-ray strength functions of $^{73,74}$Ge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Renstr%C3%B8m%2C+T">T. Renstr酶m</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Nyhus%2C+H+-">H. -T. Nyhus</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Utsumoniya%2C+H">H. Utsumoniya</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Schwengner%2C+R">R. Schwengner</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Goriely%2C+S">S. Goriely</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Larsen%2C+A+C">A. C. Larsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Filipescu%2C+D+M">D. M. Filipescu</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gheorghe%2C+I">I. Gheorghe</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">L. A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bleuel%2C+D+L">D. L. Bleuel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Glodariu%2C+T">T. Glodariu</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=G%C3%B6rgen%2C+A">A. G枚rgen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Guttormsen%2C+M">M. Guttormsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hagen%2C+T+W">T. W. Hagen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kheswa%2C+B+V">B. V. Kheswa</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lui%2C+Y+-+.">Y. -W . Lui</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Negi%2C+D">D. Negi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ruud%2C+I+E">I. E. Ruud</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Shima%2C+T">T. Shima</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Siem%2C+S">S. Siem</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Takahisa%2C+K">K. Takahisa</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tesileanu%2C+O">O. Tesileanu</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tornyi%2C+T+G">T. G. Tornyi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tveten%2C+G+M">G. M. Tveten</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Wiedeking%2C+M">M. Wiedeking</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.05219v1-abstract-short" style="display: inline;"> The $纬$-ray strength functions and level densities of $^{73,74}$Ge have been extracted up to the neutron separation energy S$_n$ from particle-$纬$ coincidence data using the Oslo method. Moreover, the $纬$-ray strength function of $^{74}$Ge above S$_n$ has been determined from photo-neutron measurements, hence these two experiments cover the range of E$_纬\approx$ 1-13 MeV for $^{74}$Ge. The obtaine&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.05219v1-abstract-full').style.display = 'inline'; document.getElementById('1510.05219v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.05219v1-abstract-full" style="display: none;"> The $纬$-ray strength functions and level densities of $^{73,74}$Ge have been extracted up to the neutron separation energy S$_n$ from particle-$纬$ coincidence data using the Oslo method. Moreover, the $纬$-ray strength function of $^{74}$Ge above S$_n$ has been determined from photo-neutron measurements, hence these two experiments cover the range of E$_纬\approx$ 1-13 MeV for $^{74}$Ge. The obtained data show that both $^{73,74}$Ge display an increase in strength at low $纬$ energies. The experimental $纬$-ray strength functions are compared with $M1$ strength functions deduced from average $B(M1)$ values calculated within the shell model for a large number of transitions. The observed low-energy enhancements in $^{73,74}$Ge are adopted in the calculations of the $^{72,73}$Ge(n,$纬$) cross sections, where there are no direct experimental data. Calculated reaction rates for more neutron-rich germanium isotopes are shown to be strongly dependent on the presence of the low-energy enhancement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.05219v1-abstract-full').style.display = 'none'; document.getElementById('1510.05219v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.06637">arXiv:1503.06637</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.06637">pdf</a>, <a href="https://arxiv.org/format/1503.06637">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The Intermediate Neutrino Program </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Alonso%2C+J+R">J. R. Alonso</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ankowski%2C+A+M">A. M. Ankowski</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Asaadi%2C+J+A">J. A. Asaadi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ashenfelter%2C+J">J. Ashenfelter</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Axani%2C+S+N">S. N. Axani</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Babu%2C+K">K. Babu</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Backhouse%2C+C">C. Backhouse</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Barros%2C+N">N. Barros</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Betancourt%2C+M">M. Betancourt</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Blucher%2C+E">E. Blucher</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bouffard%2C+J">J. Bouffard</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bowden%2C+N">N. Bowden</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Brice%2C+S">S. Brice</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bryan%2C+C">C. Bryan</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Carlson%2C+J">J. Carlson</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Carr%2C+R+E">R. E. Carr</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Chatterjee%2C+A">A. Chatterjee</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Chen%2C+M">M. Chen</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.06637v2-abstract-short" style="display: inline;"> The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermedia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.06637v2-abstract-full').style.display = 'inline'; document.getElementById('1503.06637v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.06637v2-abstract-full" style="display: none;"> The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&amp;D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&amp;D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.06637v2-abstract-full').style.display = 'none'; document.getElementById('1503.06637v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">pdfLaTeX, 31 pages, 1 figure, minor modification to 0nuBB discussion</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.03300">arXiv:1503.03300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.03300">pdf</a>, <a href="https://arxiv.org/format/1503.03300">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2015-15170-4">10.1140/epja/i2015-15170-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental level densities of atomic nuclei </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Guttormsen%2C+M">M. Guttormsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Aiche%2C+M">M. Aiche</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Garrote%2C+F+L+B">F. L. Bello Garrote</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">L. A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bleuel%2C+D+L">D. L. Bleuel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Byun%2C+Y">Y. Byun</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ducasse%2C+Q">Q. Ducasse</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Eriksen%2C+T+K">T. K. Eriksen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Giacoppo%2C+F">F. Giacoppo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=G%C3%B6rgen%2C+A">A. G枚rgen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gunsing%2C+F">F. Gunsing</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hagen%2C+T+W">T. W. Hagen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Jurado%2C+B">B. Jurado</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Klintefjord%2C+M">M. Klintefjord</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Larsen%2C+A+C">A. C. Larsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lebois%2C+L">L. Lebois</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Leniau%2C+B">B. Leniau</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Nyhus%2C+H+T">H. T. Nyhus</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Renstr%C3%B8m%2C+T">T. Renstr酶m</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Rose%2C+S+J">S. J. Rose</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sahin%2C+E">E. Sahin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Siem%2C+S">S. Siem</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tornyi%2C+T+G">T. G. Tornyi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tveten%2C+G+M">G. M. Tveten</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Voinov%2C+A">A. Voinov</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.03300v1-abstract-short" style="display: inline;"> It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.03300v1-abstract-full').style.display = 'inline'; document.getElementById('1503.03300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.03300v1-abstract-full" style="display: none;"> It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. From the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.03300v1-abstract-full').style.display = 'none'; document.getElementById('1503.03300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.01132">arXiv:1502.01132</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.01132">pdf</a>, <a href="https://arxiv.org/ps/1502.01132">ps</a>, <a href="https://arxiv.org/format/1502.01132">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The Physics and Nuclear Nonproliferation Goals of WATCHMAN: A WAter CHerenkov Monitor for ANtineutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Askins%2C+M">M. Askins</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bergevin%2C+M">M. Bergevin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dazeley%2C+S">S. Dazeley</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dye%2C+S+T">S. T. Dye</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Handler%2C+T">T. Handler</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hatzikoutelis%2C+A">A. Hatzikoutelis</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hellfeld%2C+D">D. Hellfeld</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Jaffke%2C+P">P. Jaffke</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kamyshkov%2C+Y">Y. Kamyshkov</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Land%2C+B+J">B. J. Land</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Learned%2C+J+G">J. G. Learned</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Marleau%2C+P">P. Marleau</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Mauger%2C+C">C. Mauger</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gann%2C+G+D+O">G. D. Orebi Gann</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Roecker%2C+C">C. Roecker</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Rountree%2C+S+D">S. D. Rountree</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Shokair%2C+T+M">T. M. Shokair</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Smy%2C+M+B">M. B. Smy</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Svoboda%2C+R">R. Svoboda</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sweany%2C+M">M. Sweany</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Vagins%2C+M+R">M. R. Vagins</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=van+Bibber%2C+K+A">K. A. van Bibber</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Vogelaar%2C+R+B">R. B. Vogelaar</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Wetstein%2C+M+J">M. J. Wetstein</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.01132v1-abstract-short" style="display: inline;"> This article describes the physics and nonproliferation goals of WATCHMAN, the WAter Cherenkov Monitor for ANtineutrinos. The baseline WATCHMAN design is a kiloton scale gadolinium-doped (Gd) light water Cherenkov detector, placed 13 kilometers from a civil nuclear reactor in the United States. In its first deployment phase, WATCHMAN will be used to remotely detect a change in the operational stat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.01132v1-abstract-full').style.display = 'inline'; document.getElementById('1502.01132v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.01132v1-abstract-full" style="display: none;"> This article describes the physics and nonproliferation goals of WATCHMAN, the WAter Cherenkov Monitor for ANtineutrinos. The baseline WATCHMAN design is a kiloton scale gadolinium-doped (Gd) light water Cherenkov detector, placed 13 kilometers from a civil nuclear reactor in the United States. In its first deployment phase, WATCHMAN will be used to remotely detect a change in the operational status of the reactor, providing a first- ever demonstration of the potential of large Gd-doped water detectors for remote reactor monitoring for future international nuclear nonproliferation applications. During its first phase, the detector will provide a critical large-scale test of the ability to tag neutrons and thus distinguish low energy electron neutrinos and antineutrinos. This would make WATCHMAN the only detector capable of providing both direction and flavor identification of supernova neutrinos. It would also be the third largest supernova detector, and the largest underground in the western hemisphere. In a follow-on phase incorporating the IsoDAR neutrino beam, the detector would have world-class sensitivity to sterile neutrino signatures and to non-standard electroweak interactions (NSI). WATCHMAN will also be a major, U.S. based integration platform for a host of technologies relevant for the Long-Baseline Neutrino Facility (LBNF) and other future large detectors. This white paper describes the WATCHMAN conceptual design,and presents the results of detailed simulations of sensitivity for the project&#39;s nonproliferation and physics goals. It also describes the advanced technologies to be used in WATCHMAN, including high quantum efficiency photomultipliers, Water-Based Liquid Scintillator (WbLS), picosecond light sensors such as the Large Area Picosecond Photo Detector (LAPPD), and advanced pattern recognition and particle identification methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.01132v1-abstract-full').style.display = 'none'; document.getElementById('1502.01132v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.05607">arXiv:1501.05607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.05607">pdf</a>, <a href="https://arxiv.org/ps/1501.05607">ps</a>, <a href="https://arxiv.org/format/1501.05607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.192503">10.1103/PhysRevLett.114.192503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A precision measurement of the $p$($e,e^\prime p\,$)$蟺^0$ reaction at threshold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Chirapatpimol%2C+K">K. Chirapatpimol</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Shabestari%2C+M+H">M. H. Shabestari</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lindgren%2C+R+A">R. A. Lindgren</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Smith%2C+L+C">L. C. Smith</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Annand%2C+J+R+M">J. R. M. Annand</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Higinbotham%2C+D+W">D. W. Higinbotham</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Moffit%2C+B">B. Moffit</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Nelyubin%2C+V">V. Nelyubin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Norum%2C+B+E">B. E. Norum</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Allada%2C+K">K. Allada</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Aniol%2C+K">K. Aniol</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ardashev%2C+K">K. Ardashev</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Armstrong%2C+D+S">D. S. Armstrong</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Arndt%2C+R+A">R. A. Arndt</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Benmokhtar%2C+F">F. Benmokhtar</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A+M">A. M. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bertozzi%2C+W">W. Bertozzi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Briscoe%2C+W+J">W. J. Briscoe</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bimbot%2C+L">L. Bimbot</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Camsonne%2C+A">A. Camsonne</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Chen%2C+J+-">J. -P. Chen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Choi%2C+S">S. Choi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Chudakov%2C+E">E. Chudakov</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Cisbani%2C+E">E. Cisbani</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Cusanno%2C+F">F. Cusanno</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.05607v3-abstract-short" style="display: inline;"> New results are reported from a measurement of $蟺^0$ electroproduction near threshold using the $p(e,e^{\prime} p)蟺^0$ reaction. The experiment was designed to determine precisely the energy dependence of $s-$ and $p-$wave electromagnetic multipoles as a stringent test of the predictions of Chiral Perturbation Theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.05607v3-abstract-full').style.display = 'inline'; document.getElementById('1501.05607v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.05607v3-abstract-full" style="display: none;"> New results are reported from a measurement of $蟺^0$ electroproduction near threshold using the $p(e,e^{\prime} p)蟺^0$ reaction. The experiment was designed to determine precisely the energy dependence of $s-$ and $p-$wave electromagnetic multipoles as a stringent test of the predictions of Chiral Perturbation Theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time, complete coverage of the $蠁^*_蟺$ and $胃^*_蟺$ angles in the $p 蟺^0$ center-of-mass was obtained for invariant energies above threshold from 0.5 MeV up to 15 MeV. The 4-momentum transfer $Q^2$ coverage ranges from 0.05 to 0.155 (GeV/c)$^2$ in fine steps. A simple phenomenological analysis of our data shows strong disagreement with $p-$wave predictions from ChPT for $Q^2&gt;0.07$ (GeV/c)$^2$, while the $s-$wave predictions are in reasonable agreement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.05607v3-abstract-full').style.display = 'none'; document.getElementById('1501.05607v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 114, 192503 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.5864">arXiv:1409.5864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.5864">pdf</a>, <a href="https://arxiv.org/format/1409.5864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Alonso%2C+J+R">J. R. Alonso</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Barros%2C+N">N. Barros</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bergevin%2C+M">M. Bergevin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bignell%2C+L">L. Bignell</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Blucher%2C+E">E. Blucher</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Calaprice%2C+F">F. Calaprice</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Conrad%2C+J+M">J. M. Conrad</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Descamps%2C+F+B">F. B. Descamps</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dwyer%2C+D+A">D. A. Dwyer</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dye%2C+S+T">S. T. Dye</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Elagin%2C+A">A. Elagin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Feng%2C+P">P. Feng</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Grant%2C+C">C. Grant</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Grullon%2C+S">S. Grullon</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hans%2C+S">S. Hans</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Jaffe%2C+D+E">D. E. Jaffe</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kettell%2C+S+H">S. H. Kettell</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Klein%2C+J+R">J. R. Klein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Lande%2C+K">K. Lande</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Learned%2C+J+G">J. G. Learned</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Luk%2C+K+B">K. B. Luk</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Maricic%2C+J">J. Maricic</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Marleau%2C+P">P. Marleau</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.5864v3-abstract-short" style="display: inline;"> The recent development of Water-based Liquid Scintillator (WbLS), and the concurrent development of high-efficiency and high-precision-timing light sensors, has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would include determination of the neutrino mass hierarchy and observation of CP violation with long-baseline neutrino&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.5864v3-abstract-full').style.display = 'inline'; document.getElementById('1409.5864v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.5864v3-abstract-full" style="display: none;"> The recent development of Water-based Liquid Scintillator (WbLS), and the concurrent development of high-efficiency and high-precision-timing light sensors, has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would include determination of the neutrino mass hierarchy and observation of CP violation with long-baseline neutrinos, searches for proton decay, ultra-precise solar neutrino measurements, geo- and supernova neutrinos including diffuse supernova antineutrinos, and neutrinoless double beta decay. We outline here the basic requirements of the Advanced Scintillation Detector Concept (ASDC), which combines the use of WbLS, doping with a number of potential isotopes for a range of physics goals, high efficiency and ultra-fast timing photosensors, and a deep underground location. We are considering such a detector at the Long Baseline Neutrino Facility (LBNF) far site, where the ASDC could operate in conjunction with the liquid argon tracking detector proposed by the LBNE collaboration. The goal is the deployment of a 30-100 kiloton-scale detector, the basic elements of which are being developed now in experiments such as WATCHMAN, ANNIE, SNO+, and EGADS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.5864v3-abstract-full').style.display = 'none'; document.getElementById('1409.5864v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BNL-106082-2014-JA </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.6173">arXiv:1408.6173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.6173">pdf</a>, <a href="https://arxiv.org/format/1408.6173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.90.054330">10.1103/PhysRevC.90.054330 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Level densities and thermodynamical properties of Pt and Au isotopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Giacoppo%2C+F">F. Giacoppo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Garrote%2C+F+L+B">F. L. Bello Garrote</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+L+A">L. A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bleuel%2C+D+L">D. L. Bleuel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Eriksen%2C+T+K">T. K. Eriksen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Firestone%2C+R+B">R. B. Firestone</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=G%C3%B6rgen%2C+A">A. G枚rgen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Guttormsen%2C+M">M. Guttormsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hagen%2C+T+W">T. W. Hagen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kheswa%2C+B+V">B. V. Kheswa</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Klintefjord%2C+M">M. Klintefjord</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Koehler%2C+P+E">P. E. Koehler</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Larsen%2C+A+C">A. C. Larsen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Nyhus%2C+H+T">H. T. Nyhus</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Renstr%C3%B8m%2C+T">T. Renstr酶m</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sahin%2C+E">E. Sahin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Siem%2C+S">S. Siem</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Tornyi%2C+T">T. Tornyi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.6173v2-abstract-short" style="display: inline;"> The nuclear level densities of $^{194-196}$Pt and $^{197,198}$Au below the neutron separation energy have been measured using transfer and scattering reactions. All the level density distributions follow the constant-temperature description. Each group of isotopes is characterized by the same temperature above the energy threshold corresponding to the breaking of the first Cooper pair. A constant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.6173v2-abstract-full').style.display = 'inline'; document.getElementById('1408.6173v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.6173v2-abstract-full" style="display: none;"> The nuclear level densities of $^{194-196}$Pt and $^{197,198}$Au below the neutron separation energy have been measured using transfer and scattering reactions. All the level density distributions follow the constant-temperature description. Each group of isotopes is characterized by the same temperature above the energy threshold corresponding to the breaking of the first Cooper pair. A constant entropy excess $螖S=1.9$ and $1.1$ $k_B$ is observed in $^{195}$Pt and $^{198}$Au with respect to $^{196}$Pt and $^{197}$Au, respectively, giving information on the available single-particle level space for the last unpaired valence neutron. The breaking of nucleon Cooper pairs is revealed by sequential peaks in the microcanonical caloric curve. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.6173v2-abstract-full').style.display = 'none'; document.getElementById('1408.6173v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.3274">arXiv:1408.3274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.3274">pdf</a>, <a href="https://arxiv.org/ps/1408.3274">ps</a>, <a href="https://arxiv.org/format/1408.3274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.102001">10.1103/PhysRevLett.113.102001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the transverse target and beam-target asymmetries in $畏$ meson photoproduction at MAMI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Akondi%2C+C+S">C. S. Akondi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Annand%2C+J+R+M">J. R. M. Annand</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Arends%2C+H+J">H. J. Arends</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Beck%2C+R">R. Beck</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Borisov%2C+N">N. Borisov</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Braghieri%2C+A">A. Braghieri</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Briscoe%2C+W+J">W. J. Briscoe</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Cherepnya%2C+S">S. Cherepnya</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Collicott%2C+C">C. Collicott</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Costanza%2C+S">S. Costanza</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Downie%2C+E+J">E. J. Downie</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dieterle%2C+M">M. Dieterle</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Fix%2C+A">A. Fix</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Fil%27kov%2C+L+V">L. V. Fil&#39;kov</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Garni%2C+S">S. Garni</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Glazier%2C+D+I">D. I. Glazier</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gradl%2C+W">W. Gradl</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gurevich%2C+G">G. Gurevich</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Barrientos%2C+P+H">P. Hall Barrientos</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hamilton%2C+D">D. Hamilton</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hornidge%2C+D">D. Hornidge</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Howdle%2C+D">D. Howdle</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Huber%2C+G+M">G. M. Huber</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kashevarov%2C+V+L">V. L. Kashevarov</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.3274v1-abstract-short" style="display: inline;"> We present new data for the transverse target asymmetry T and the very first data for the beam-target asymmetry F in the $\vec 纬\vec p\to畏p$ reaction up to a center-of-mass energy of W=1.9 GeV. The data were obtained with the Crystal-Ball/TAPS detector setup at the Glasgow tagged photon facility of the Mainz Microtron MAMI. All existing model predictions fail to reproduce the new data indicating a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.3274v1-abstract-full').style.display = 'inline'; document.getElementById('1408.3274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.3274v1-abstract-full" style="display: none;"> We present new data for the transverse target asymmetry T and the very first data for the beam-target asymmetry F in the $\vec 纬\vec p\to畏p$ reaction up to a center-of-mass energy of W=1.9 GeV. The data were obtained with the Crystal-Ball/TAPS detector setup at the Glasgow tagged photon facility of the Mainz Microtron MAMI. All existing model predictions fail to reproduce the new data indicating a significant impact on our understanding of the underlying dynamics of $畏$ meson photoproduction. The peculiar nodal structure observed in existing T data close to threshold is not confirmed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.3274v1-abstract-full').style.display = 'none'; document.getElementById('1408.3274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, accepted for publication in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRL 113, 102001 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.1576">arXiv:1408.1576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.1576">pdf</a>, <a href="https://arxiv.org/ps/1408.1576">ps</a>, <a href="https://arxiv.org/format/1408.1576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.112501">10.1103/PhysRevLett.114.112501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurements of Double-Polarized Compton Scattering Asymmetries and Extraction of the Proton Spin Polarizabilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Martel%2C+P+P">P. P. Martel</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Miskimen%2C+R">R. Miskimen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Aguar-Bartolome%2C+P">P. Aguar-Bartolome</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Ahrens%2C+J">J. Ahrens</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Akondi%2C+C+S">C. S. Akondi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Annand%2C+J+R+M">J. R. M. Annand</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Arends%2C+H+J">H. J. Arends</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Barnes%2C+W">W. Barnes</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Beck%2C+R">R. Beck</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Borisov%2C+N">N. Borisov</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Braghieri%2C+A">A. Braghieri</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Briscoe%2C+W+J">W. J. Briscoe</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Cherepnya%2C+S">S. Cherepnya</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Collicott%2C+C">C. Collicott</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Costanza%2C+S">S. Costanza</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Denig%2C+A">A. Denig</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Dieterle%2C+M">M. Dieterle</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Downie%2C+E+J">E. J. Downie</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Fil%27kov%2C+L+V">L. V. Fil&#39;kov</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Garni%2C+S">S. Garni</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Glazier%2C+D+I">D. I. Glazier</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gradl%2C+W">W. Gradl</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Gurevich%2C+G">G. Gurevich</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Barrientos%2C+P+H">P. Hall Barrientos</a> , et al. (54 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.1576v3-abstract-short" style="display: inline;"> The spin polarizabilities of the nucleon describe how the spin of the nucleon responds to an incident polarized photon. The most model-independent way to measure the nucleon spin polarizabilities is through polarized Compton scattering. Double-polarized Compton scattering asymmetries on the proton were measured in the $螖(1232)$ region using circularly polarized incident photons and a transversely&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.1576v3-abstract-full').style.display = 'inline'; document.getElementById('1408.1576v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.1576v3-abstract-full" style="display: none;"> The spin polarizabilities of the nucleon describe how the spin of the nucleon responds to an incident polarized photon. The most model-independent way to measure the nucleon spin polarizabilities is through polarized Compton scattering. Double-polarized Compton scattering asymmetries on the proton were measured in the $螖(1232)$ region using circularly polarized incident photons and a transversely polarized proton target at the Mainz Microtron. Fits to asymmetry data were performed using a dispersion model calculation and a baryon chiral perturbation theory calculation, and a separation of all four proton spin polarizabilities in the multipole basis was achieved. The analysis based on a dispersion model calculation yields $纬_{E1E1} = -3.5 \pm 1.2$, $纬_{M1M1}= 3.16 \pm 0.85$, $纬_{E1M2} = -0.7 \pm 1.2$, and $纬_{M1E2} = 1.99 \pm 0.29$, in units of $10^{-4}$ fm$^4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.1576v3-abstract-full').style.display = 'none'; document.getElementById('1408.1576v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 114, 112501 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.1285">arXiv:1403.1285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.1285">pdf</a>, <a href="https://arxiv.org/format/1403.1285">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nimb.2014.04.008">10.1016/j.nimb.2014.04.008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and demonstration of a quasi-monoenergetic neutron source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Joshi%2C+T+H">T. H. Joshi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sangiorgio%2C+S">S. Sangiorgio</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Mozin%2C+V">V. Mozin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Norman%2C+E+B">E. B. Norman</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sorensen%2C+P">P. Sorensen</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Foxe%2C+M">M. Foxe</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bench%2C+G">G. Bench</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.1285v2-abstract-short" style="display: inline;"> The design of a neutron source capable of producing 24 and 70 keV neutron beams with narrow energy spread is presented. The source exploits near-threshold kinematics of the $^{7}$Li(p,n)$^{7}$Be reaction while taking advantage of the interference `notches&#39; found in the scattering cross-sections of iron. The design was implemented and characterized at the Center for Accelerator Mass Spectrometry at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.1285v2-abstract-full').style.display = 'inline'; document.getElementById('1403.1285v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.1285v2-abstract-full" style="display: none;"> The design of a neutron source capable of producing 24 and 70 keV neutron beams with narrow energy spread is presented. The source exploits near-threshold kinematics of the $^{7}$Li(p,n)$^{7}$Be reaction while taking advantage of the interference `notches&#39; found in the scattering cross-sections of iron. The design was implemented and characterized at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory. Alternative filters such as vanadium and manganese are also explored and the possibility of studying the response of different materials to low-energy nuclear recoils using the resultant neutron beams is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.1285v2-abstract-full').style.display = 'none'; document.getElementById('1403.1285v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Meth. Phys. Res., Sect. B 333 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.2037">arXiv:1402.2037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.2037">pdf</a>, <a href="https://arxiv.org/format/1402.2037">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.171303">10.1103/PhysRevLett.112.171303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First measurement of the ionization yield of nuclear recoils in liquid argon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/nucl-ex?searchtype=author&amp;query=Joshi%2C+T+H">T. H. Joshi</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sangiorgio%2C+S">S. Sangiorgio</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Foxe%2C+M">M. Foxe</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Hagmann%2C+C">C. Hagmann</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Jovanovic%2C+I">I. Jovanovic</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Kazkaz%2C+K">K. Kazkaz</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Mozin%2C+V">V. Mozin</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Norman%2C+E+B">E. B. Norman</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Pereverzev%2C+S+V">S. V. Pereverzev</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Rebassoo%2C+F">F. Rebassoo</a>, <a href="/search/nucl-ex?searchtype=author&amp;query=Sorensen%2C+P">P. Sorensen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.2037v2-abstract-short" style="display: inline;"> This Letter details a measurement of the ionization yield ($Q_y$) of 6.7 keV $^{40}Ar$ atoms stopping in a liquid argon detector. The $Q_y$ of 3.6-6.3 detected $e^{-}/\mbox{keV}$, for applied electric fields in the range 240--2130 V/cm, is encouraging for the use of this detector medium to search for the signals from hypothetical dark matter particle interactions and from coherent elastic neutrino&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.2037v2-abstract-full').style.display = 'inline'; document.getElementById('1402.2037v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.2037v2-abstract-full" style="display: none;"> This Letter details a measurement of the ionization yield ($Q_y$) of 6.7 keV $^{40}Ar$ atoms stopping in a liquid argon detector. The $Q_y$ of 3.6-6.3 detected $e^{-}/\mbox{keV}$, for applied electric fields in the range 240--2130 V/cm, is encouraging for the use of this detector medium to search for the signals from hypothetical dark matter particle interactions and from coherent elastic neutrino nucleus scattering. A significant dependence of $Q_y$ on the applied electric field is observed and explained in the context of ion recombination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.2037v2-abstract-full').style.display = 'none'; document.getElementById('1402.2037v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-646478 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 171303 (2014) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bernstein%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bernstein%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bernstein%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bernstein%2C+A&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10