CINXE.COM
Search results for: topological data analysis
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: topological data analysis</title> <meta name="description" content="Search results for: topological data analysis"> <meta name="keywords" content="topological data analysis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="topological data analysis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="topological data analysis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 42224</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: topological data analysis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42224</span> Approximation of a Wanted Flow via Topological Sensitivity Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdelwahed">Mohamed Abdelwahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose an optimization algorithm for the geometric control of fluid flow. The used approach is based on the topological sensitivity analysis method. It consists in studying the variation of a cost function with respect to the insertion of a small obstacle in the domain. Some theoretical and numerical results are presented in 2D and 3D. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title="sensitivity analysis">sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20gradient" title=" topological gradient"> topological gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20optimization" title=" shape optimization"> shape optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=stokes%20equations" title=" stokes equations"> stokes equations</a> </p> <a href="https://publications.waset.org/abstracts/3510/approximation-of-a-wanted-flow-via-topological-sensitivity-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42223</span> Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasmeen%20A.%20S.%20Essawy">Yasmeen A. S. Essawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Nassar"> Khaled Nassar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modeling%20%28BIM%29" title="building information modeling (BIM)">building information modeling (BIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=elemental%20graph%20data%20model%20%28EGDM%29" title=" elemental graph data model (EGDM)"> elemental graph data model (EGDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20and%20topological%20data%20models" title=" geometric and topological data models"> geometric and topological data models</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20theory" title=" graph theory"> graph theory</a> </p> <a href="https://publications.waset.org/abstracts/70542/elemental-graph-data-model-a-semantic-and-topological-representation-of-building-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42222</span> Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maatoug%20Hassine">Maatoug Hassine</a>, <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Hrizi"> Mourad Hrizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometric%20inverse%20source%20problem" title="geometric inverse source problem">geometric inverse source problem</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20equation" title=" heat equation"> heat equation</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20optimization" title=" topological optimization"> topological optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20sensitivity" title=" topological sensitivity"> topological sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohn-Vogelius%20formulation" title=" Kohn-Vogelius formulation"> Kohn-Vogelius formulation</a> </p> <a href="https://publications.waset.org/abstracts/58295/topological-sensitivity-analysis-for-reconstruction-of-the-inverse-source-problem-from-boundary-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42221</span> On the Topological Entropy of Nonlinear Dynamical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Graziano%20Chesi">Graziano Chesi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The topological entropy plays a key role in linear dynamical systems, allowing one to establish the existence of stabilizing feedback controllers for linear systems in the presence of communications constraints. This paper addresses the determination of a robust value of the topological entropy in nonlinear dynamical systems, specifically the largest value of the topological entropy over all linearized models in a region of interest of the state space. It is shown that a sufficient condition for establishing upper bounds of the sought robust value of the topological entropy can be given in terms of a semidefinite program (SDP), which belongs to the class of convex optimization problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-linear%20system" title="non-linear system">non-linear system</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20constraint" title=" communication constraint"> communication constraint</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20entropy" title=" topological entropy"> topological entropy</a> </p> <a href="https://publications.waset.org/abstracts/45742/on-the-topological-entropy-of-nonlinear-dynamical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42220</span> A Non-Iterative Shape Reconstruction of an Interface from Boundary Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Hrizi">Mourad Hrizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the inverse problem of reconstructing an interior interface D appearing in the elliptic partial differential equation: Δu+χ(D)u=0 from the knowledge of the boundary measurements. This problem arises from a semiconductor transistor model. We propose a new shape reconstruction procedure that is based on the Kohn-Vogelius formulation and the topological sensitivity method. The inverse problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a function. The unknown subdomain D is reconstructed using a level-set curve of the topological gradient. Finally, we give several examples to show the viability of our proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title="inverse problem">inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20optimization" title=" topological optimization"> topological optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20gradient" title=" topological gradient"> topological gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohn-Vogelius%20formulation" title=" Kohn-Vogelius formulation"> Kohn-Vogelius formulation</a> </p> <a href="https://publications.waset.org/abstracts/69000/a-non-iterative-shape-reconstruction-of-an-interface-from-boundary-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42219</span> Mostar Type Indices and QSPR Analysis of Octane Isomers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Roopa%20Sri">B. Roopa Sri</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%20Lakshmi%20Naidu"> Y Lakshmi Naidu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical Graph Theory (CGT) is the branch of mathematical chemistry in which molecules are modeled to study their physicochemical properties using molecular descriptors. Amongst these descriptors, topological indices play a vital role in predicting the properties by defining the graph topology of the molecule. Recently, the bond-additive topological index known as the Mostar index has been proposed. In this paper, we compute the Mostar-type indices of octane isomers and use the data obtained to perform QSPR analysis. Furthermore, we show the correlation between the Mostar type indices and the properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20graph%20theory" title="chemical graph theory">chemical graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=mostar%20type%20indices" title=" mostar type indices"> mostar type indices</a>, <a href="https://publications.waset.org/abstracts/search?q=octane%20isomers" title=" octane isomers"> octane isomers</a>, <a href="https://publications.waset.org/abstracts/search?q=qspr%20analysis" title=" qspr analysis"> qspr analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20index" title=" topological index"> topological index</a> </p> <a href="https://publications.waset.org/abstracts/153959/mostar-type-indices-and-qspr-analysis-of-octane-isomers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42218</span> A Topological Approach for Motion Track Discrimination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tegan%20H.%20Emerson">Tegan H. Emerson</a>, <a href="https://publications.waset.org/abstracts/search?q=Colin%20C.%20Olson"> Colin C. Olson</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Stantchev"> George Stantchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20A.%20Edelberg"> Jason A. Edelberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Wilson"> Michael Wilson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detecting small targets at range is difficult because there is not enough spatial information present in an image sub-region containing the target to use correlation-based methods to differentiate it from dynamic confusers present in the scene. Moreover, this lack of spatial information also disqualifies the use of most state-of-the-art deep learning image-based classifiers. Here, we use characteristics of target tracks extracted from video sequences as data from which to derive distinguishing topological features that help robustly differentiate targets of interest from confusers. In particular, we calculate persistent homology from time-delayed embeddings of dynamic statistics calculated from motion tracks extracted from a wide field-of-view video stream. In short, we use topological methods to extract features related to target motion dynamics that are useful for classification and disambiguation and show that small targets can be detected at range with high probability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motion%20tracks" title="motion tracks">motion tracks</a>, <a href="https://publications.waset.org/abstracts/search?q=persistence%20images" title=" persistence images"> persistence images</a>, <a href="https://publications.waset.org/abstracts/search?q=time-delay%20embedding" title=" time-delay embedding"> time-delay embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis" title=" topological data analysis"> topological data analysis</a> </p> <a href="https://publications.waset.org/abstracts/128723/a-topological-approach-for-motion-track-discrimination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42217</span> Combination of Topology and Rough Set for Analysis of Power System Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamel%20El-Sayed">M. Kamel El-Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we have linked the concept of rough set and topological structure to the creation of a new topological structure that assists in the analysis of the information systems of some electrical engineering issues. We used non-specific information whose boundaries do not have an empty set in the top topological structure is rough set. It is characterized by the fact that it does not contain a large number of elements and facilitates the establishment of rules. We used this structure in reducing the specifications of electrical information systems. We have provided a detailed example of this method illustrating the steps used. This method opens the door to obtaining multiple topologies, each of which uses one of the non-defined groups (rough set) in the overall information system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20engineering" title="electrical engineering">electrical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20system" title=" information system"> information system</a>, <a href="https://publications.waset.org/abstracts/search?q=rough%20set" title=" rough set"> rough set</a>, <a href="https://publications.waset.org/abstracts/search?q=rough%20topology" title=" rough topology"> rough topology</a>, <a href="https://publications.waset.org/abstracts/search?q=topology" title=" topology"> topology</a> </p> <a href="https://publications.waset.org/abstracts/88084/combination-of-topology-and-rough-set-for-analysis-of-power-system-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42216</span> Hosoya Polynomials of Mycielskian Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanju%20Vaidya">Sanju Vaidya</a>, <a href="https://publications.waset.org/abstracts/search?q=Aihua%20Li"> Aihua Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vulnerability measures and topological indices are crucial in solving various problems such as the stability of the communication networks and development of mathematical models for chemical compounds. In 1947, Harry Wiener introduced a topological index related to molecular branching. Now there are more than 100 topological indices for graphs. For example, Hosoya polynomials (also called Wiener polynomials) were introduced to derive formulas for certain vulnerability measures and topological indices for various graphs. In this paper, we will find a relation between the Hosoya polynomials of any graph and its Mycielskian graph. Additionally, using this we will compute vulnerability measures, closeness and betweenness centrality, and extended Wiener indices. It is fascinating to see how Hosoya polynomials are useful in the two diverse fields, cybersecurity and chemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hosoya%20polynomial" title="hosoya polynomial">hosoya polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=mycielskian%20graph" title=" mycielskian graph"> mycielskian graph</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20vulnerability%20measure" title=" graph vulnerability measure"> graph vulnerability measure</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20index" title=" topological index"> topological index</a> </p> <a href="https://publications.waset.org/abstracts/172528/hosoya-polynomials-of-mycielskian-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42215</span> An Exhaustive All-Subsets Examination of Trade Theory on WTO Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Charkhabi">Masoud Charkhabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We examine trade theory with this motivation. The full set of World Trade Organization data are organized into country-year pairs, each treated as a different entity. Topological Data Analysis reveals that among the 16 region and 240 region-year pairs there exists in fact a distinguishable group of region-period pairs. The generally accepted periods of shifts from dissimilar-dissimilar to similar-similar trade in goods among regions are examined from this new perspective. The period breaks are treated as cumulative and are flexible. This type of all-subsets analysis is motivated from computer science and is made possible with Lossy Compression and Graph Theory. The results question many patterns in similar-similar to dissimilar-dissimilar trade. They also show indications of economic shifts that only later become evident in other economic metrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=econometrics" title="econometrics">econometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=globalization" title=" globalization"> globalization</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20science" title=" network science"> network science</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20data" title=" topological data"> topological data</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=trade%20theory" title=" trade theory"> trade theory</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=world%20trade" title=" world trade"> world trade</a> </p> <a href="https://publications.waset.org/abstracts/17584/an-exhaustive-all-subsets-examination-of-trade-theory-on-wto-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42214</span> The Relationship Study between Topological Indices in Contrast with Thermodynamic Properties of Amino Acids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esmat%20Mohammadinasab">Esmat Mohammadinasab</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Sadeghi"> Mostafa Sadeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study are computed some thermodynamic properties such as entropy and specific heat capacity, enthalpy, entropy and gibbs free energy in 10 type different Aminoacids using Gaussian software with DFT method and 6-311G basis set. Then some topological indices such as Wiener, shultz are calculated for mentioned molecules. Finaly is showed relationship between thermodynamic peoperties and above topological indices and with different curves is represented that there is a good correlation between some of the quantum properties with topological indices of them. The instructive example is directed to the design of the structure-property model for predicting the thermodynamic properties of the amino acids which are discussed here. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%20Method" title=" DFT Method"> DFT Method</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptor" title=" molecular descriptor"> molecular descriptor</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20properties" title=" thermodynamic properties "> thermodynamic properties </a> </p> <a href="https://publications.waset.org/abstracts/23718/the-relationship-study-between-topological-indices-in-contrast-with-thermodynamic-properties-of-amino-acids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42213</span> A Topological Study of an Urban Street Network and Its Use in Heritage Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20L.%20Oliver">Jose L. Oliver</a>, <a href="https://publications.waset.org/abstracts/search?q=Taras%20Agryzkov"> Taras Agryzkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Leandro%20Tortosa"> Leandro Tortosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20F.%20Vicent"> Jose F. Vicent</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Santacruz"> Javier Santacruz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to demonstrate how a topological study of an urban street network can be used as a tool to be applied to some heritage conservation areas in a city. In the last decades, we find different kinds of approaches in the discipline of Architecture and Urbanism based in the so-called Sciences of Complexity. In this context, this paper uses mathematics from the Network Theory. Hence, it proposes a methodology based in obtaining information from a graph, which is created from a network of urban streets. Then, it is used an algorithm that establishes a ranking of importance of the nodes of that network, from its topological point of view. The results are applied to a heritage area in a particular city, confronting the data obtained from the mathematical model, with the ones from the field work in the case study. As a result of this process, we may conclude the necessity of implementing some actions in the area, and where those actions would be more effective for the whole heritage site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphs" title="graphs">graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=heritage%20cities" title=" heritage cities"> heritage cities</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20analysis" title=" spatial analysis"> spatial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20networks" title=" urban networks"> urban networks</a> </p> <a href="https://publications.waset.org/abstracts/67220/a-topological-study-of-an-urban-street-network-and-its-use-in-heritage-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42212</span> TDApplied: An R Package for Machine Learning and Inference with Persistence Diagrams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shael%20Brown">Shael Brown</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Farivar"> Reza Farivar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Persistence diagrams capture valuable topological features of datasets that other methods cannot uncover. Still, their adoption in data pipelines has been limited due to the lack of publicly available tools in R (and python) for analyzing groups of them with machine learning and statistical inference. In an easy-to-use and scalable R package called TDApplied, we implement several applied analysis methods tailored to groups of persistence diagrams. The two main contributions of our package are comprehensiveness (most functions do not have implementations elsewhere) and speed (shown through benchmarking against other R packages). We demonstrate applications of the tools on simulated data to illustrate how easily practical analyses of any dataset can be enhanced with topological information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=persistence%20diagrams" title=" persistence diagrams"> persistence diagrams</a>, <a href="https://publications.waset.org/abstracts/search?q=R" title=" R"> R</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20inference" title=" statistical inference"> statistical inference</a> </p> <a href="https://publications.waset.org/abstracts/162711/tdapplied-an-r-package-for-machine-learning-and-inference-with-persistence-diagrams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42211</span> Computing Some Topological Descriptors of Single-Walled Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Bahrami">Amir Bahrami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the fields of chemical graph theory, molecular topology, and mathematical chemistry, a topological index or a descriptor index also known as a connectivity index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. Topological indices are used for example in the development of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure. In this paper some descriptor index (descriptor index) of single-walled carbon nanotubes, is determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20graph%20theory" title="chemical graph theory">chemical graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20topology" title=" molecular topology"> molecular topology</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptor" title=" molecular descriptor"> molecular descriptor</a>, <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotubes" title=" single-walled carbon nanotubes"> single-walled carbon nanotubes</a> </p> <a href="https://publications.waset.org/abstracts/39279/computing-some-topological-descriptors-of-single-walled-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42210</span> Algebraic Characterization of Sheaves over Boolean Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20M.%20Swamy">U. M. Swamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A compact Hausdorff and totally disconnected topological space are known as Boolean space in view of the stone duality between Boolean algebras and such topological spaces. A sheaf over X is a triple (S, p, X) where S and X are topological spaces and p is a local homeomorphism of S onto X (that is, for each element s in S, there exist open sets U and G containing s and p(s) in S and X respectively such that the restriction of p to U is a homeomorphism of U onto G). Here we mainly concern on sheaves over Boolean spaces. From a given sheaf over a Boolean space, we obtain an algebraic structure in such a way that there is a one-to-one correspondence between these algebraic structures and sheaves over Boolean spaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boolean%20algebra" title="Boolean algebra">Boolean algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=Boolean%20space" title=" Boolean space"> Boolean space</a>, <a href="https://publications.waset.org/abstracts/search?q=sheaf" title=" sheaf"> sheaf</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20duality" title=" stone duality"> stone duality</a> </p> <a href="https://publications.waset.org/abstracts/124439/algebraic-characterization-of-sheaves-over-boolean-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42209</span> MapReduce Algorithm for Geometric and Topological Information Extraction from 3D CAD Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Fradi">Ahmed Fradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a digital world in perpetual evolution and acceleration, data more and more voluminous, rich and varied, the new software solutions emerged with the Big Data phenomenon offer new opportunities to the company enabling it not only to optimize its business and to evolve its production model, but also to reorganize itself to increase competitiveness and to identify new strategic axes. Design and manufacturing industrial companies, like the others, face these challenges, data represent a major asset, provided that they know how to capture, refine, combine and analyze them. The objective of our paper is to propose a solution allowing geometric and topological information extraction from 3D CAD model (precisely STEP files) databases, with specific algorithm based on the programming paradigm MapReduce. Our proposal is the first step of our future approach to 3D CAD object retrieval. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Big%20Data" title="Big Data">Big Data</a>, <a href="https://publications.waset.org/abstracts/search?q=MapReduce" title=" MapReduce"> MapReduce</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20object%20retrieval" title=" 3D object retrieval"> 3D object retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD" title=" CAD"> CAD</a>, <a href="https://publications.waset.org/abstracts/search?q=STEP%20format" title=" STEP format"> STEP format</a> </p> <a href="https://publications.waset.org/abstracts/78347/mapreduce-algorithm-for-geometric-and-topological-information-extraction-from-3d-cad-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42208</span> Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Defne%20Akay">Defne Akay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekir%20S.%20Kandemir"> Bekir S. Kandemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coulomb%20impurity" title="coulomb impurity">coulomb impurity</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20cones" title=" graphene cones"> graphene cones</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20quantum%20dots" title=" graphene quantum dots"> graphene quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20defects" title=" topological defects"> topological defects</a> </p> <a href="https://publications.waset.org/abstracts/43687/magnetic-field-effects-on-parabolic-graphene-quantum-dots-with-topological-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42207</span> An Alternative Proof for the Topological Entropy of the Motzkin Shift</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alsharari">Fahad Alsharari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Salmi%20Md.%20Noorani"> Mohd Salmi Md. Noorani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Motzkin shift is a mathematical model for constraints on genetic sequences. In terms of the theory of symbolic dynamics, the Motzkin shift is nonsofic, and therefore, we cannot use the Perron-Frobenius theory to calculate its topological entropy. The Motzkin shift M(M,N) which comes from language theory, is defined to be the shift system over an alphabet A that consists of N negative symbols, N positive symbols and M neutral symbols. For an x in the full shift AZ, x is in M(M,N) if and only if every finite block appearing in x has a non-zero reduced form. Therefore, the constraint for x cannot be bounded in length. K. Inoue has shown that the entropy of the Motzkin shift M(M,N) is log(M + N + 1). In this paper, we find a new method of calculating the topological entropy of the Motzkin shift M(M,N) without any measure theoretical discussion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Motzkin%20shift" title=" Motzkin shift"> Motzkin shift</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=theory" title=" theory "> theory </a> </p> <a href="https://publications.waset.org/abstracts/21271/an-alternative-proof-for-the-topological-entropy-of-the-motzkin-shift" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42206</span> A Study of Families of Bistar and Corona Product of Graph: Reverse Topological Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gowtham%20Kalkere%20Jayanna">Gowtham Kalkere Jayanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Nazri%20Husin"> Mohamad Nazri Husin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graph theory, chemistry, and technology are all combined in cheminformatics. The structure and physiochemical properties of organic substances are linked using some useful graph invariants and the corresponding molecular graph. In this paper, we study specific reverse topological indices such as the reverse sum-connectivity index, the reverse Zagreb index, the reverse arithmetic-geometric, and the geometric-arithmetic, the reverse Sombor, the reverse Nirmala indices for the bistar graphs B (n: m) and the corona product Kₘ∘Kₙ', where Kₙ' Represent the complement of a complete graph Kₙ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20topological%20indices" title="reverse topological indices">reverse topological indices</a>, <a href="https://publications.waset.org/abstracts/search?q=bistar%20graph" title=" bistar graph"> bistar graph</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20corona%20product" title=" the corona product"> the corona product</a>, <a href="https://publications.waset.org/abstracts/search?q=graph" title=" graph"> graph</a> </p> <a href="https://publications.waset.org/abstracts/166540/a-study-of-families-of-bistar-and-corona-product-of-graph-reverse-topological-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42205</span> QTAIM View of Metal-Metal Bonding in Trinuclear Mixed-Metal Bridged Ligand Clusters Containing Ruthenium and Osmium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Ezzat%20Al-Kirbasee">Nadia Ezzat Al-Kirbasee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahlam%20Hussein%20Hassan"> Ahlam Hussein Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shatha%20Raheem%20Helal%20Alhimidi"> Shatha Raheem Helal Alhimidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Doaa%20Ezzat%20Al-Kirbasee"> Doaa Ezzat Al-Kirbasee</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhsen%20Abood%20Muhsen%20Al-Ibadi"> Muhsen Abood Muhsen Al-Ibadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through DFT/QTAIM calculations, we have provided new insights into the nature of the M-M, M-H, M-O, and M-C bonds of the (Cp*Ru)n(Cp*Os)3−n(μ3-O)2(μ-H)(Cp* = η5-C5Me5, n= 3,2,1,0). The topological analysis of the electron density reveals important details of the chemical bonding interactions in the clusters. Calculations confirm the absence of bond critical points (BCP) and the corresponding bond paths (BP) between Ru-Ru, Ru-Os, and Os-Os. The position of bridging hydrides and Oxo atoms coordinated to Ru-Ru, Ru-Os, and Os-Os determines the distribution of the electron densities and which strongly affects the formation of the bonds between these transition metal atoms. On the other hand, the results confirm that the four clusters contain a 6c–12e and 4c–2e bonding interaction delocalized over M3(μ-H)(μ-O)2 and M3(μ-H), respectively, as revealed by the non-negligible delocalization indexes calculations. The small values for electron density ρ(b) above zero, together with the small values, again above zero, for laplacian ∇2ρ(b) and the small negative values for total energy density H(b) are shown by the Ru-H, Os-H, Ru-O, and Os-O bonds in the four clusters are typical of open shell interactions. Also, the topological data for the bonds between Ru and Os atoms with the C atoms of the pentamethylcyclopentadienyl (Cp*) ring ligands are basically similar and show properties very consistent with open shell interactions in the QTAIM classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal-metal%20and%20metal-ligand%20interactions" title="metal-metal and metal-ligand interactions">metal-metal and metal-ligand interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=organometallic%20complexes" title=" organometallic complexes"> organometallic complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20analysis" title=" topological analysis"> topological analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%20and%20QTAIM%20analyses" title=" DFT and QTAIM analyses"> DFT and QTAIM analyses</a> </p> <a href="https://publications.waset.org/abstracts/145093/qtaim-view-of-metal-metal-bonding-in-trinuclear-mixed-metal-bridged-ligand-clusters-containing-ruthenium-and-osmium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42204</span> Approximation to the Hardy Operator on Topological Measure Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kairat%20T.%20Mynbaev">Kairat T. Mynbaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20N.%20Lomakina"> Elena N. Lomakina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider a Hardy-type operator generated by a family of open subsets of a Hausdorff topological space. The family is indexed with non-negative real numbers and is totally ordered. For this operator, we obtain two-sided bounds of its norm, a compactness criterion, and bounds for its approximation numbers. Previously, bounds for its approximation numbers have been established only in the one-dimensional case, while we do not impose any restrictions on the dimension of the Hausdorff space. The bounds for the norm and conditions for compactness earlier have been found using different methods by G. Sinnamon and K. Mynbaev. Our approach is different in that we use domain partitions for all problems under consideration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximation%20numbers" title="approximation numbers">approximation numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=boundedness%20and%20compactness" title=" boundedness and compactness"> boundedness and compactness</a>, <a href="https://publications.waset.org/abstracts/search?q=multidimensional%20Hardy%20operator" title=" multidimensional Hardy operator"> multidimensional Hardy operator</a>, <a href="https://publications.waset.org/abstracts/search?q=Hausdorff%20topological%20space" title=" Hausdorff topological space"> Hausdorff topological space</a> </p> <a href="https://publications.waset.org/abstracts/170957/approximation-to-the-hardy-operator-on-topological-measure-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42203</span> Aperiodic and Asymmetric Fibonacci Quasicrystals: Next Big Future in Quantum Computation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatindranath%20Gain">Jatindranath Gain</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhumita%20DasSarkar"> Madhumita DasSarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudakshina%20Kundu"> Sudakshina Kundu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. Topological quantum computation is concerned with two-dimensional many body systems that support excitations. Anyons are elementary building block of quantum computations. When anyons tunneling in a double-layer system can transition to an exotic non-Abelian state and produce Fibonacci anyons, which are powerful enough for universal topological quantum computation (TQC).Here the exotic behavior of Fibonacci Superlattice is studied by using analytical transfer matrix methods and hence Fibonacci anyons. This Fibonacci anyons can build a quantum computer which is very emerging and exciting field today’s in Nanophotonics and quantum computation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=quasicrystals" title=" quasicrystals"> quasicrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=Multiple%20Quantum%20wells%20%28MQWs%29" title=" Multiple Quantum wells (MQWs)"> Multiple Quantum wells (MQWs)</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix%20method" title=" transfer matrix method"> transfer matrix method</a>, <a href="https://publications.waset.org/abstracts/search?q=fibonacci%20anyons" title=" fibonacci anyons"> fibonacci anyons</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20hall%20effect" title=" quantum hall effect"> quantum hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=nanophotonics" title=" nanophotonics"> nanophotonics</a> </p> <a href="https://publications.waset.org/abstracts/41369/aperiodic-and-asymmetric-fibonacci-quasicrystals-next-big-future-in-quantum-computation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42202</span> Effect of Threshold Corrections on Proton Lifetime and Emergence of Topological Defects in Grand Unified Theories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rinku%20Maji">Rinku Maji</a>, <a href="https://publications.waset.org/abstracts/search?q=Joydeep%20Chakrabortty"> Joydeep Chakrabortty</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20F.%20King"> Stephen F. King</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The grand unified theory (GUT) rationales the arbitrariness of the standard model (SM) and explains many enigmas of nature at the outset of a single gauge group. The GUTs predict the proton decay and, the spontaneous symmetry breaking (SSB) of the higher symmetry group may lead to the formation of topological defects, which are indispensable in the context of the cosmological observations. The Super-Kamiokande (Super-K) experiment sets sacrosanct bounds on the partial lifetime (τ) of the proton decay for different channels, e.g., τ(p → e+ π0) > 1.6×10³⁴ years which is the most relevant channel to test the viability of the nonsupersymmetric GUTs. The GUTs based on the gauge groups SO(10) and E(6) are broken to the SM spontaneously through one and two intermediate gauge symmetries with the manifestation of the left-right symmetry at least at a single intermediate stage and the proton lifetime for these breaking chains has been computed. The impact of the threshold corrections, as a consequence of integrating out the heavy fields at the breaking scale alter the running of the gauge couplings, which eventually, are found to keep many GUTs off the Super-K bound. The possible topological defects arising in the course of SSB at different breaking scales for all breaking chains have been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grand%20unified%20theories" title="grand unified theories">grand unified theories</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20decay" title=" proton decay"> proton decay</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20correction" title=" threshold correction"> threshold correction</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20defects" title=" topological defects"> topological defects</a> </p> <a href="https://publications.waset.org/abstracts/109130/effect-of-threshold-corrections-on-proton-lifetime-and-emergence-of-topological-defects-in-grand-unified-theories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42201</span> Determining the Octanol-Water Partition Coefficient for Armchair Polyhex BN Nanotubes Using Topological Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esmat%20Mohammadinasab">Esmat Mohammadinasab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to investigate theoretically and establish a predictive model for determination LogP of armchair polyhex BN nanotubes by using simple descriptors. The relationship between the octanol-water partition coefficient (LogP) and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory (DFT) electric moments and physico-chemical properties of those nanotubes are calculated. The DFT method performed based on the Becke’s 3-parameter formulation with the Lee-Yang-Parr functional (B3LYP) method and 3-21G standard basis sets. For the first time, the relationship between partition coefficient and different properties of polyhex BN nanotubes is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topological%20indices" title="topological indices">topological indices</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20descriptors" title=" quantum descriptors"> quantum descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%20method" title=" DFT method"> DFT method</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotubes" title=" nanotubes"> nanotubes</a> </p> <a href="https://publications.waset.org/abstracts/23476/determining-the-octanol-water-partition-coefficient-for-armchair-polyhex-bn-nanotubes-using-topological-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42200</span> Electrical Transport in Bi₁Sb₁Te₁.₅Se₁.₅ /α-RuCl₃ Heterostructure Nanodevices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoubhik%20Mandal">Shoubhik Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Debarghya%20Mallick"> Debarghya Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Banerjee"> Abhishek Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ganesan"> R. Ganesan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Anil%20Kumar"> P. S. Anil Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report magnetotransport measurements in Bi₁Sb₁Te₁.₅Se₁.₅/RuCl₃ heterostructure nanodevices. Bi₁Sb₁Te₁.₅Se₁.₅ (BSTS) is a strong three-dimensional topological insulator (3D-TI) that hosts conducting topological surface states (TSS) enclosing an insulating bulk. α-RuCl₃ (namely, RuCl₃) is an anti-ferromagnet that is predicted to behave as a Kitaev-like quantum spin liquid carrying Majorana excitations. Temperature (T)-dependent resistivity measurements show the interplay between parallel bulk and surface transport channels. At T < 150 K, surface state transport dominates over bulk transport. Multi-channel weak anti-localization (WAL) is observed, as a sharp cusp in the magnetoconductivity, indicating strong spin-orbit coupling. The presence of top and bottom topological surface states (TSS), including a pair of electrically coupled Rashba surface states (RSS), are indicated. Non-linear Hall effect, explained by a two-band model, further supports this interpretation. Finally, a low-T logarithmic resistance upturn is analyzed using the Lu-Shen model, supporting the presence of gapless surface states with a π Berry phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topological%20materials" title="topological materials">topological materials</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20transport" title=" electrical transport"> electrical transport</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu-Shen%20model" title=" Lu-Shen model"> Lu-Shen model</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20spin%20liquid" title=" quantum spin liquid"> quantum spin liquid</a> </p> <a href="https://publications.waset.org/abstracts/149012/electrical-transport-in-bi1sb1te15se15-a-rucl3-heterostructure-nanodevices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42199</span> Topological Analysis of Hydrogen Bonds in Pyruvic Acid-Water Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferid%20Hammami">Ferid Hammami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The molecular geometries of the possible conformations of pyruvic acid-water complexes (PA-(H₂O)ₙ = 1- 4) have been fully optimized at DFT/B3LYP/6-311G ++ (d, p) levels of calculation. Among several optimized molecular clusters, the most stable molecular arrangements obtained when one, two, three, and four water molecules are hydrogen-bonded to a central pyruvic acid molecule are presented in this paper. Apposite topological and geometrical parameters are considered as primary indicators of H-bond strength. Atoms in molecules (AIM) analysis shows that pyruvic acid can form a ring structure with water, and the molecular structures are stabilized by both strong O-H...O and C-H...O hydrogen bonds. In large clusters, classical O-H...O hydrogen bonds still exist between water molecules, and a cage-like structure is built around some parts of the central molecule of pyruvic acid. The electrostatic potential energy map (MEP) and the HOMO-LUMO molecular orbital (highest occupied molecular orbital-lowest unoccupied molecular orbital) analysis has been performed for all considered complexes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyruvic%20acid" title="pyruvic acid">pyruvic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=PA-water%20complex" title=" PA-water complex"> PA-water complex</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20bonding" title=" hydrogen bonding"> hydrogen bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=AIM" title=" AIM"> AIM</a>, <a href="https://publications.waset.org/abstracts/search?q=MEP" title=" MEP"> MEP</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO-LUMO" title=" HOMO-LUMO"> HOMO-LUMO</a> </p> <a href="https://publications.waset.org/abstracts/139309/topological-analysis-of-hydrogen-bonds-in-pyruvic-acid-water-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42198</span> Chaotic Semiflows with General Acting Topological Monoids </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alica%20Miller">Alica Miller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A semiflow is a triple consisting of a Hausdorff topological space $X$, a commutative topological monoid $T$ and a continuous monoid action of $T$ on $X$. The acting monoid $T$ is usually either the discrete monoid $\N_0$ of nonnegative integers (in which case the semiflow can be defined as a pair $(X,f)$ consisting of a phase space $X$ and a continuous function $f:X\to X$), or the monoid $\R_+$ of nonnegative real numbers (the so-called one-parameter monoid). However, it turns out that there are real-life situations where it is useful to consider the acting monoids that are a combination of discrete and continuous monoids. That, for example, happens, when we are observing certain dynamical system at discrete moments, but after some time realize that it would be beneficial to continue our observations in real time. The acting monoid in that case would be $T=\{0, t_0, 2t_0, \dots, (n-1)t_0\} \cup [nt_0,\infty)$ with the operation and topology induced from real numbers. This partly explains the motivation for the level of generality which is pursued in our research. We introduce the PSP monoids, which include all but ``pathological'' monoids, and most of our statements hold for them. The topic of our presentation are some recent results about chaos-related properties in semiflows, indecomposability and sensitivity of semiflows in the described general context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaos" title="chaos">chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=indecomposability" title=" indecomposability"> indecomposability</a>, <a href="https://publications.waset.org/abstracts/search?q=PSP%20monoids" title=" PSP monoids"> PSP monoids</a>, <a href="https://publications.waset.org/abstracts/search?q=semiflow" title=" semiflow"> semiflow</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/81818/chaotic-semiflows-with-general-acting-topological-monoids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42197</span> Identification of Clinical Characteristics from Persistent Homology Applied to Tumor Imaging </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eashwar%20V.%20Somasundaram">Eashwar V. Somasundaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Raoul%20R.%20Wadhwa"> Raoul R. Wadhwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20G.%20Scott"> Jacob G. Scott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of radiomics in measuring geometric properties of tumor images such as size, surface area, and volume has been invaluable in assessing cancer diagnosis, treatment, and prognosis. In addition to analyzing geometric properties, radiomics would benefit from measuring topological properties using persistent homology. Intuitively, features uncovered by persistent homology may correlate to tumor structural features. One example is necrotic cavities (corresponding to 2D topological features), which are markers of very aggressive tumors. We develop a data pipeline in R that clusters tumors images based on persistent homology is used to identify meaningful clinical distinctions between tumors and possibly new relationships not captured by established clinical categorizations. A preliminary analysis was performed on 16 Magnetic Resonance Imaging (MRI) breast tissue segments downloaded from the 'Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis' (I-SPY TRIAL or ISPY1) collection in The Cancer Imaging Archive. Each segment represents a patient’s breast tumor prior to treatment. The ISPY1 dataset also provided the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status data. A persistent homology matrix up to 2-dimensional features was calculated for each of the MRI segmentation. Wasserstein distances were then calculated between all pairwise tumor image persistent homology matrices to create a distance matrix for each feature dimension. Since Wasserstein distances were calculated for 0, 1, and 2-dimensional features, three hierarchal clusters were constructed. The adjusted Rand Index was used to see how well the clusters corresponded to the ER/PR/HER2 status of the tumors. Triple-negative cancers (negative status for all three receptors) significantly clustered together in the 2-dimensional features dendrogram (Adjusted Rand Index of .35, p = .031). It is known that having a triple-negative breast tumor is associated with aggressive tumor growth and poor prognosis when compared to non-triple negative breast tumors. The aggressive tumor growth associated with triple-negative tumors may have a unique structure in an MRI segmentation, which persistent homology is able to identify. This preliminary analysis shows promising results in the use of persistent homology on tumor imaging to assess the severity of breast tumors. The next step is to apply this pipeline to other tumor segment images from The Cancer Imaging Archive at different sites such as the lung, kidney, and brain. In addition, whether other clinical parameters, such as overall survival, tumor stage, and tumor genotype data are captured well in persistent homology clusters will be assessed. If analyzing tumor MRI segments using persistent homology consistently identifies clinical relationships, this could enable clinicians to use persistent homology data as a noninvasive way to inform clinical decision making in oncology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20biology" title="cancer biology">cancer biology</a>, <a href="https://publications.waset.org/abstracts/search?q=oncology" title=" oncology"> oncology</a>, <a href="https://publications.waset.org/abstracts/search?q=persistent%20homology" title=" persistent homology"> persistent homology</a>, <a href="https://publications.waset.org/abstracts/search?q=radiomics" title=" radiomics"> radiomics</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis" title=" topological data analysis"> topological data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20imaging" title=" tumor imaging"> tumor imaging</a> </p> <a href="https://publications.waset.org/abstracts/125882/identification-of-clinical-characteristics-from-persistent-homology-applied-to-tumor-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42196</span> GeneNet: Temporal Graph Data Visualization for Gene Nomenclature and Relationships</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jake%20Gonzalez">Jake Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Tommy%20Dang"> Tommy Dang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a temporal graph approach to visualize and analyze the evolution of gene relationships and nomenclature over time. An interactive web-based tool implements this temporal graph, enabling researchers to traverse a timeline and observe coupled dynamics in network topology and naming conventions. Analysis of a real human genomic dataset reveals the emergence of densely interconnected functional modules over time, representing groups of genes involved in key biological processes. For example, the antimicrobial peptide DEFA1A3 shows increased connections to related alpha-defensins involved in infection response. Tracking degree and betweenness centrality shifts over timeline iterations also quantitatively highlight the reprioritization of certain genes’ topological importance as knowledge advances. Examination of the CNR1 gene encoding the cannabinoid receptor CB1 demonstrates changing synonymous relationships and consolidating naming patterns over time, reflecting its unique functional role discovery. The integrated framework interconnecting these topological and nomenclature dynamics provides richer contextual insights compared to isolated analysis methods. Overall, this temporal graph approach enables a more holistic study of knowledge evolution to elucidate complex biology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temporal%20graph" title="temporal graph">temporal graph</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20relationships" title=" gene relationships"> gene relationships</a>, <a href="https://publications.waset.org/abstracts/search?q=nomenclature%20evolution" title=" nomenclature evolution"> nomenclature evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=interactive%20visualization" title=" interactive visualization"> interactive visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20insights" title=" biological insights"> biological insights</a> </p> <a href="https://publications.waset.org/abstracts/179111/genenet-temporal-graph-data-visualization-for-gene-nomenclature-and-relationships" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42195</span> Fuzzy Ideal Topological Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Koam">Ali Koam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Ibedou"> Ismail Ibedou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Abbas"> S. E. Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, it is introduced the notion of r-fuzzy ideal separation axioms Tᵢi = 0; 1; 2 based on a fuzzy ideal I on a fuzzy topological space (X; τ). An r-fuzzy ideal connectedness related to the fuzzy ideal I is introduced which has relations with a previous r-fuzzy fuzzy connectedness. An r-fuzzy ideal compactness related to Ι is introduced which has also relations with many other types of fuzzy compactness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20ideal" title="fuzzy ideal">fuzzy ideal</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20separation%20axioms" title=" fuzzy separation axioms"> fuzzy separation axioms</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20compactness" title=" fuzzy compactness"> fuzzy compactness</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20connectedness" title=" fuzzy connectedness"> fuzzy connectedness</a> </p> <a href="https://publications.waset.org/abstracts/101746/fuzzy-ideal-topological-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis&page=1407">1407</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis&page=1408">1408</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=topological%20data%20analysis&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>