CINXE.COM
Search results for: single unit heavy vehicle
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: single unit heavy vehicle</title> <meta name="description" content="Search results for: single unit heavy vehicle"> <meta name="keywords" content="single unit heavy vehicle"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="single unit heavy vehicle" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="single unit heavy vehicle"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9271</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: single unit heavy vehicle</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9271</span> Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babesse%20Saad">Babesse Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameddah%20Djemeleddine"> Ameddah Djemeleddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rollover" title="rollover">rollover</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20unit%20heavy%20vehicle" title=" single unit heavy vehicle"> single unit heavy vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20side%20force" title=" nonlinear side force "> nonlinear side force </a> </p> <a href="https://publications.waset.org/abstracts/13730/comparison-between-lqr-and-ann-active-anti-roll-control-of-a-single-unit-heavy-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9270</span> The Effect of Gross Vehicle Weight on the Stability of Heavy Vehicle during Cornering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurzaki%20Ikhsan">Nurzaki Ikhsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Saifizul%20Abdullah"> Ahmad Saifizul Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahizar%20Ramli"> Rahizar Ramli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the functions of the commercial heavy vehicle is to safely and efficiently transport goods and people. Due to its size and carrying capacity, it is important to study the vehicle dynamic stability during cornering. Study has shown that there are a number of overloaded heavy vehicles or permissible gross vehicle weight (GVW) violations recorded at selected areas in Malaysia assigned by its type and category. Thus, the objective of this study is to investigate the correlation and effect of the GVW on heavy vehicle stability during cornering event using simulation. Various selected heavy vehicle types and category are simulated using IPG/Truck Maker® with different GVW and road condition (coefficient of friction of road surface), while the speed, driver characteristic, center of gravity of load and road geometry are constant. Based on the analysis, the relationship between GVW and lateral acceleration were established. As expected, on the same value of coefficient of friction, the maximum lateral acceleration would be increased as the GVW increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20vehicle" title="heavy vehicle">heavy vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20safety" title=" road safety"> road safety</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20stability" title=" vehicle stability"> vehicle stability</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20acceleration" title=" lateral acceleration"> lateral acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=gross%20vehicle%20weight" title=" gross vehicle weight"> gross vehicle weight</a> </p> <a href="https://publications.waset.org/abstracts/29769/the-effect-of-gross-vehicle-weight-on-the-stability-of-heavy-vehicle-during-cornering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9269</span> Impact of Vehicle Travel Characteristics on Level of Service: A Comparative Analysis of Rural and Urban Freeways</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anwaar%20Ahmed">Anwaar Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Bilal%20Khurshid"> Muhammad Bilal Khurshid</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Labi"> Samuel Labi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of trucks on the level of service is determined by considering passenger car equivalents (PCE) of trucks. The current version of Highway Capacity Manual (HCM) uses a single PCE value for all tucks combined. However, the composition of truck traffic varies from location to location; therefore a single PCE-value for all trucks may not correctly represent the impact of truck traffic at specific locations. Consequently, present study developed separate PCE values for single-unit and combination trucks to replace the single value provided in the HCM on different freeways. Site specific PCE values, were developed using concept of spatial lagging headways (the distance from the rear bumper of a leading vehicle to the rear bumper of the following vehicle) measured from field traffic data. The study used data from four locations on a single urban freeway and three different rural freeways in Indiana. Three-stage-least-squares (3SLS) regression techniques were used to generate models that predicted lagging headways for passenger cars, single unit trucks (SUT), and combination trucks (CT). The estimated PCE values for single-unit and combination truck for basic urban freeways (level terrain) were: 1.35 and 1.60, respectively. For rural freeways the estimated PCE values for single-unit and combination truck were: 1.30 and 1.45, respectively. As expected, traffic variables such as vehicle flow rates and speed have significant impacts on vehicle headways. Study results revealed that the use of separate PCE values for different truck classes can have significant influence on the LOS estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=level%20of%20service" title="level of service">level of service</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20analysis" title=" capacity analysis"> capacity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lagging%20headway" title=" lagging headway"> lagging headway</a>, <a href="https://publications.waset.org/abstracts/search?q=trucks" title=" trucks"> trucks</a> </p> <a href="https://publications.waset.org/abstracts/10791/impact-of-vehicle-travel-characteristics-on-level-of-service-a-comparative-analysis-of-rural-and-urban-freeways" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9268</span> Heavy Vehicle Traffic Estimation Using Automatic Traffic Recorders/Weigh-In-Motion Data: Current Practice and Proposed Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Faizan%20Rehman%20Qureshi">Muhammad Faizan Rehman Qureshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al-Kaisy"> Ahmed Al-Kaisy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate estimation of traffic loads is critical for pavement and bridge design, among other transportation applications. Given the disproportional impact of heavier axle loads on pavement and bridge structures, truck and heavy vehicle traffic is expected to be a major determinant of traffic load estimation. Further, heavy vehicle traffic is also a major input in transportation planning and economic studies. The traditional method for estimating heavy vehicle traffic primarily relies on AADT estimation using Monthly Day of the Week (MDOW) adjustment factors as well as the percent heavy vehicles observed using statewide data collection programs. The MDOW factors are developed using daily and seasonal (or monthly) variation patterns for total traffic, consisting predominantly of passenger cars and other smaller vehicles. Therefore, while using these factors may yield reasonable estimates for total traffic (AADT), such estimates may involve a great deal of approximation when applied to heavy vehicle traffic. This research aims at assessing the approximation involved in estimating heavy vehicle traffic using MDOW adjustment factors for total traffic (conventional approach) along with three other methods of using MDOW adjustment factors for total trucks (class 5-13), combination-unit trucks (class 8-13), as well as adjustment factors for each vehicle class separately. Results clearly indicate that the conventional method was outperformed by the other three methods by a large margin. Further, using the most detailed and data intensive method (class-specific adjustment factors) does not necessarily yield a more accurate estimation of heavy vehicle traffic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20loads" title="traffic loads">traffic loads</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20vehicles" title=" heavy vehicles"> heavy vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=truck%20traffic" title=" truck traffic"> truck traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=adjustment%20factors" title=" adjustment factors"> adjustment factors</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20data%20collection" title=" traffic data collection"> traffic data collection</a> </p> <a href="https://publications.waset.org/abstracts/192471/heavy-vehicle-traffic-estimation-using-automatic-traffic-recordersweigh-in-motion-data-current-practice-and-proposed-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9267</span> Modeling the Road Pavement Dynamic Response Due to Heavy Vehicles Loadings and Kinematic Excitations General Asymmetries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josua%20K.%20Junias">Josua K. Junias</a>, <a href="https://publications.waset.org/abstracts/search?q=Fillemon%20N.%20Nangolo"> Fillemon N. Nangolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Petrina%20T.%20Johaness"> Petrina T. Johaness</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The deterioration of pavement can lead to the formation of potholes, which cause the wheels of a vehicle to experience unusual and uneven movement. In addition, improper loading practices of heavy vehicles can result in dynamic loading of the pavement due to the vehicle's response to the irregular movement caused by the potholes. Previous studies have only focused on the effects of either the road's uneven surface or the asymmetrical loading of the vehicle, but not both. This study aimed to model the pavement's dynamic response to heavy vehicles under different loading configurations and wheel movements. A sample of 225 cases with symmetrical and asymmetrical loading and kinematic movements was used, and 27 validated 3D pavement-vehicle interactive models were developed using SIMWISE 4D. The study found that the type of kinematic movement experienced by the heavy vehicle affects the pavement's dynamic loading, with eccentrically loaded, asymmetrically kinematic heavy vehicles having a statistically significant impact. The study also suggests that the mass of the vehicle's suspension system plays a role in the pavement's dynamic loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eccentricities" title="eccentricities">eccentricities</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20dynamic%20loading" title=" pavement dynamic loading"> pavement dynamic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20displacement%20dynamic%20response" title=" vertical displacement dynamic response"> vertical displacement dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20vehicles" title=" heavy vehicles"> heavy vehicles</a> </p> <a href="https://publications.waset.org/abstracts/166750/modeling-the-road-pavement-dynamic-response-due-to-heavy-vehicles-loadings-and-kinematic-excitations-general-asymmetries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9266</span> Heavy Vehicles Crash Injury Severity at T-Intersections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sivanandan%20Balakrishnan">Sivanandan Balakrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Moridpour"> Sara Moridpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Tay"> Richard Tay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy vehicles make a significant contribution to many developed economies, including Australia, because they are a major means of transporting goods within these countries. With the increase in road freight, there will be an increase in the heavy vehicle traffic proportion, and consequently, an increase in the possibility of collisions involving heavy vehicles. Crashes involving heavy vehicles are a major road safety concern because of the higher likelihood of fatal and serious injury, especially to any small vehicle occupant involved. The primary objective of this research is to identify the factors influencing injury severity to occupants in vehicle collisions involving heavy vehicle at T- intersection using a binary logit model in Victoria, Australia. Our results show that the factors influencing injury severity include occupants' gender, age and restraint use. Also, vehicles' type, movement, point-of-impact and damage, time-of-day, day-of-week and season, higher percentage of trucks in traffic volume, hit pedestrians, number of occupants involved and type of collisions are associated with severe injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20logit%20model" title="binary logit model">binary logit model</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20vehicle" title=" heavy vehicle"> heavy vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=injury%20severity" title=" injury severity"> injury severity</a>, <a href="https://publications.waset.org/abstracts/search?q=T-intersections" title=" T-intersections"> T-intersections</a> </p> <a href="https://publications.waset.org/abstracts/61455/heavy-vehicles-crash-injury-severity-at-t-intersections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9265</span> Analysis of Wheel Lock up Effects on Skidding Distance for Heavy Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdieh%20Zamzamzadeh">Mahdieh Zamzamzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Abdullah%20Saifizul"> Ahmad Abdullah Saifizul</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahizar%20Ramli"> Rahizar Ramli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The road accidents involving heavy vehicles have been showing worrying trends and, year after year, have increased the concern and awareness levels on safety of roads and transportations especially in developing countries like Malaysia. Statistics of road crashes continue to show that there are many contributing factors on the capability of a heavy vehicle to stop on safe distance and ultimately prevent traffic crashes. However, changes in the road condition due to weather variations and the vehicle dynamic specifications such as loading conditions and speed are the main risk factors because they will affect a heavy vehicle’s braking performance due to losing control and not being able to stop the vehicle, and in many cases will cause wheel lock up and accordingly skidding. Predicting heavy vehicle skidding distance is crucial for accident reconstruction and roadside safety engineers. Despite this, formal tools to study heavy vehicle skidding distance before stopping completely are totally limited, and most researchers have only considered braking distance in their studies. As a possible new tool, this work presents the iterative use of vehicle dynamic simulations to study heavy vehicle-roadway interaction in order to predict wheel lock up effects on skidding distance and safety. This research addresses the influence of the vehicle and road conditions on skidding distance after wheel lock up and presents a precise analysis of skidding phenomenon. The vehicle speed, vehicle loading condition and road friction parameters were all varied in a simulation-based analysis. In order to simulate the wheel lock up situation, a heavy vehicle model was constructed and simulated using multibody vehicle dynamics simulation software, and careful analysis was made on the conditions which caused the skidding distance to increase or decrease through a method using to predict skidding distance as part of braking distance. By applying many simulations, the results were quite revealing relation between the heavy vehicles loading condition, various sets of speed and road coefficient of friction and their interaction effect on the skidding distance. A number of results are presented which illustrate how the heavy vehicle overloading can seriously affect the skidding distance. Moreover, the results of simulation give the skid mark length, which is a necessary input data during accident reconstruction involving emergency braking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accident%20reconstruction" title="accident reconstruction">accident reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=Braking" title=" Braking"> Braking</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20vehicle" title=" heavy vehicle"> heavy vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=skidding%20distance" title=" skidding distance"> skidding distance</a>, <a href="https://publications.waset.org/abstracts/search?q=skid%20mark" title=" skid mark"> skid mark</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20lock%20up" title=" wheel lock up"> wheel lock up</a> </p> <a href="https://publications.waset.org/abstracts/29868/analysis-of-wheel-lock-up-effects-on-skidding-distance-for-heavy-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9264</span> Daylight Performance of a Single Unit in Distinct Arrangements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rifat%20Tabassoom">Rifat Tabassoom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently multistoried housing projects are accelerating in the capital of Bangladesh- Dhaka, to house its massive population. Insufficient background research leads to a building design trend where a single unit is designed and then multiplied all through the buildings. Therefore, although having identical designs, all the units cannot perform evenly considering daylight, which also alters their household activities. This paper aims to understand if a single unit can be an optimum solution regarding daylight for a selected housing project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylight" title="daylight">daylight</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation" title=" orientation"> orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=simulations" title=" simulations"> simulations</a> </p> <a href="https://publications.waset.org/abstracts/150690/daylight-performance-of-a-single-unit-in-distinct-arrangements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9263</span> Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazuyoshi%20Mori">Kazuyoshi Mori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factorization%20approach" title="factorization approach">factorization approach</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-time%20system" title=" discrete-time system"> discrete-time system</a>, <a href="https://publications.waset.org/abstracts/search?q=parameterization%20of%20stabilizing%20controllers" title=" parameterization of stabilizing controllers"> parameterization of stabilizing controllers</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20without%20unit-delay" title=" system without unit-delay"> system without unit-delay</a> </p> <a href="https://publications.waset.org/abstracts/74319/number-of-parametrization-of-discrete-time-systems-without-unit-delay-element-single-input-single-output-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9262</span> Review of Vehicle to Grid Applications in Recent Years</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afsane%20Amiri">Afsane Amiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric Vehicle (EV) technology is expected to take a major share in the light-vehicle market in the coming decades. Charging of EVs will put an extra burden on the distribution grid and in some cases adjustments will need to be made. In this paper a review of different plug-in and vehicle to grid (V2G) capable vehicles are given along with their power electronics topologies. The economic implication of charging the vehicle or sending power back to the utility is described in brief. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system" title="energy storage system">energy storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20unit" title=" battery unit"> battery unit</a>, <a href="https://publications.waset.org/abstracts/search?q=cost" title=" cost"> cost</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20sizing" title=" optimal sizing"> optimal sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=plug-in%20electric%20vehicles%20%28PEVs%29" title=" plug-in electric vehicles (PEVs)"> plug-in electric vehicles (PEVs)</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a> </p> <a href="https://publications.waset.org/abstracts/22824/review-of-vehicle-to-grid-applications-in-recent-years" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9261</span> Concept and Design of a Biomimetic Single-Wing Micro Aerial Vehicle (MAV)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Thomas">S. Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ho"> D. Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kerroux"> A. Kerroux</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Lixi"> L. Lixi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Rackham"> N. Rackham</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rosenfeld"> S. Rosenfeld</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this first paper, the different concepts and designs to build a single-wing MAV are discussed. Six scratch-building prototypes using three different designs have been tested regarding sufficient lift and weight distribution, of which various configurations were explored. Samare prototypes achieved wireless control over the motor and flap whilst obtaining data from the IMU, though obtaining an increase in lift was the key issue due to insufficient thrust. The final prototype was able to demonstrate an improvement in weight distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SAMARE" title="SAMARE">SAMARE</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20aerial%20vehicle%20%28MAV%29" title=" micro aerial vehicle (MAV)"> micro aerial vehicle (MAV)</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle%20%28UAV%29" title=" unmanned aerial vehicle (UAV)"> unmanned aerial vehicle (UAV)</a>, <a href="https://publications.waset.org/abstracts/search?q=mono-copter" title=" mono-copter"> mono-copter</a>, <a href="https://publications.waset.org/abstracts/search?q=single-wing" title=" single-wing"> single-wing</a>, <a href="https://publications.waset.org/abstracts/search?q=mono-wing" title=" mono-wing"> mono-wing</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20control" title=" flight control"> flight control</a>, <a href="https://publications.waset.org/abstracts/search?q=aerofoil" title=" aerofoil"> aerofoil</a>, <a href="https://publications.waset.org/abstracts/search?q=lift" title=" lift"> lift</a> </p> <a href="https://publications.waset.org/abstracts/12820/concept-and-design-of-a-biomimetic-single-wing-micro-aerial-vehicle-mav" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9260</span> Double Row Taper Roller Bearing Wheel-end System in Rigid Rear Drive Axle in Heavy Duty SUV Passenger Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Imtiaz%20S">Mohd Imtiaz S</a>, <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Jain"> Saurabh Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Pothiraj%20K."> Pothiraj K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today’s highly competitive passenger vehicle market, comfortable driving experience is one of the key parameters significantly weighed by the customer. Smooth ride and handling of the vehicle with exceptionally reliable wheel end solution is a paramount requirement in passenger Sports Utility Vehicle (SUV) vehicles subjected to challenging terrains and loads with rigid rear drive axle configuration. Traditional wheel-end bearing systems in passenger segment rigid rear drive axle utilizes the semi-floating layout, which imparts vertical bending loads and torsion to the axle shafts. The wheel-end bearing is usually a Single or Double Row Deep-Groove Ball Bearing (DRDGBB) or Double Row Angular Contact Ball Bearing (DRACBB). This solution is cost effective and simple in architecture. However, it lacks effectiveness against the heavy loads subjected to a SUV vehicle, especially the axial trust at high-speed cornering. This paper describes the solution of Double Row Taper Roller Bearing (DRTRB) wheel-end for a SUV vehicle in the rigid rear drive axle and improvement in terms of maximizing its load carrying capacity along with better reliability in terms of axial thrust in high-speed cornering. It describes the advantage of geometry of DRTRB over DRDGBB and DRACBB highlighting contact and load flow. The paper also highlights the vehicle level considerations affecting the B10 life of the bearing system for better selection of the DRTRB wheel-ends systems. This paper also describes real time vehicle level results along with theoretical improvements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20thrust" title="axial thrust">axial thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=b10%20life" title=" b10 life"> b10 life</a>, <a href="https://publications.waset.org/abstracts/search?q=deep-groove%20ball%20bearing" title=" deep-groove ball bearing"> deep-groove ball bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=taper%20roller%20bearing" title=" taper roller bearing"> taper roller bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-floating%20layout." title=" semi-floating layout."> semi-floating layout.</a> </p> <a href="https://publications.waset.org/abstracts/169297/double-row-taper-roller-bearing-wheel-end-system-in-rigid-rear-drive-axle-in-heavy-duty-suv-passenger-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9259</span> Packaging Improvement for Unit Cell Vanadium Redox Flow Battery (V-RFB)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Khor">A. C. Khor</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Mohamed"> M. R. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Sulaiman"> M. H. Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Daud"> M. R. Daud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Packaging for vanadium redox flow battery is one of the key elements for successful implementation of flow battery in the electrical energy storage system. Usually the bulky battery size and low energy densities make this technology not available for mobility application. Therefore RFB with improved packaging size and energy capacity are highly desirable. This paper focuses on the study of packaging improvement for unit cell V-RFB to the application on Series Hybrid Electric Vehicle. Two different designs of 25 cm2 and 100 cm2 unit cell V-RFB at same current density are used for the sample in this investigation. Further suggestions on packaging improvement are highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20flow%20battery" title=" redox flow battery"> redox flow battery</a>, <a href="https://publications.waset.org/abstracts/search?q=packaging" title=" packaging"> packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium" title=" vanadium"> vanadium</a> </p> <a href="https://publications.waset.org/abstracts/10696/packaging-improvement-for-unit-cell-vanadium-redox-flow-battery-v-rfb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9258</span> Mixed Traffic Speed–Flow Behavior under Influence of Road Side Friction and Non-Motorized Vehicles: A Comparative Study of Arterial Roads in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chetan%20R.%20Patel">Chetan R. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20J.%20Joshi"> G. J. Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is carried out on six lane divided urban arterial road in Patna and Pune city of India. Both the road having distinct differences in terms of the vehicle composition and the road side parking. Arterial road in Patan city has 33% of non-motorized mode, whereas Pune arterial road dominated by 65% of Two wheeler. Also road side parking is observed in Patna city. The field studies using vidiographic techniques are carried out for traffic data collection. Data are extracted for one minute duration for vehicle composition, speed variation and flow rate on selected arterial road of the two cities. Speed flow relationship is developed and capacity is determine. Equivalency factor in terms of dynamic car unit is determine to represent the vehicle is single unit. The variation in the capacity due to side friction, presence of non motorized traffic and effective utilization of lane width is compared at concluding remarks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arterial%20road" title="arterial road">arterial road</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity"> capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20equivalency%20factor" title=" dynamic equivalency factor"> dynamic equivalency factor</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20non%20motorized%20mode" title=" effect of non motorized mode"> effect of non motorized mode</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20friction" title=" side friction"> side friction</a> </p> <a href="https://publications.waset.org/abstracts/16039/mixed-traffic-speed-flow-behavior-under-influence-of-road-side-friction-and-non-motorized-vehicles-a-comparative-study-of-arterial-roads-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9257</span> Used MATLAB Code to Study the Vehicle Bridge Coupling Vibration Based On the Method of Newmark-β</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saidi%20Abdelkrim">Saidi Abdelkrim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamouine%20Abdelmadjid"> Hamouine Abdelmadjid</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellatif%20Megnounif"> Abdellatif Megnounif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of interaction between vehicles and bridge structures has become extremely important. Large deflections and vibration induced by heavy and high-speed vehicles affect significantly the safety and efficiency of bridge. The vibration of a bridge caused by passage of vehicles is one of the most imperative considerations in the design of a bridge as a common sort of transportation structure. A major goal of this study is to create a simplified model of a vehicle bridge system in MATLAB. The model will then be used to study the influence of parameters to vehicle-bridge vibrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicle-bridge%20interaction" title="vehicle-bridge interaction">vehicle-bridge interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Newmark-%CE%B2" title=" Newmark-β"> Newmark-β</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB%20code" title=" MATLAB code"> MATLAB code</a> </p> <a href="https://publications.waset.org/abstracts/29646/used-matlab-code-to-study-the-vehicle-bridge-coupling-vibration-based-on-the-method-of-newmark-v" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">618</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9256</span> Investigating Effects of Vehicle Speed and Road PSDs on Response of a 35-Ton Heavy Commercial Vehicle (HCV) Using Mathematical Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amal%20G.%20Kurian">Amal G. Kurian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of mathematical modeling has seen a considerable boost in recent times with the development of many advanced algorithms and mathematical modeling capabilities. The advantages this method has over other methods are that they are much closer to standard physics theories and thus represent a better theoretical model. They take lesser solving time and have the ability to change various parameters for optimization, which is a big advantage, especially in automotive industry. This thesis work focuses on a thorough investigation of the effects of vehicle speed and road roughness on a heavy commercial vehicle ride and structural dynamic responses. Since commercial vehicles are kept in operation continuously for longer periods of time, it is important to study effects of various physical conditions on the vehicle and its user. For this purpose, various experimental as well as simulation methodologies, are adopted ranging from experimental transfer path analysis to various road scenario simulations. To effectively investigate and eliminate several causes of unwanted responses, an efficient and robust technique is needed. Carrying forward this motivation, the present work focuses on the development of a mathematical model of a 4-axle configuration heavy commercial vehicle (HCV) capable of calculating responses of the vehicle on different road PSD inputs and vehicle speeds. Outputs from the model will include response transfer functions and PSDs and wheel forces experienced. A MATLAB code will be developed to implement the objectives in a robust and flexible manner which can be exploited further in a study of responses due to various suspension parameters, loading conditions as well as vehicle dimensions. The thesis work resulted in quantifying the effect of various physical conditions on ride comfort of the vehicle. An increase in discomfort is seen with velocity increase; also the effect of road profiles has a considerable effect on comfort of the driver. Details of dominant modes at each frequency are analysed and mentioned in work. The reduction in ride height or deflection of tire and suspension with loading along with load on each axle is analysed and it is seen that the front axle supports a greater portion of vehicle weight while more of payload weight comes on fourth and third axles. The deflection of the vehicle is seen to be well inside acceptable limits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title="mathematical modeling">mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=HCV" title=" HCV"> HCV</a>, <a href="https://publications.waset.org/abstracts/search?q=suspension" title=" suspension"> suspension</a>, <a href="https://publications.waset.org/abstracts/search?q=ride%20analysis" title=" ride analysis"> ride analysis</a> </p> <a href="https://publications.waset.org/abstracts/139231/investigating-effects-of-vehicle-speed-and-road-psds-on-response-of-a-35-ton-heavy-commercial-vehicle-hcv-using-mathematical-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9255</span> Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20Bodell">Victor Bodell</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Ekstrom"> Lukas Ekstrom</a>, <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Aghanavesi"> Somayeh Aghanavesi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=friedman%20test" title=" friedman test"> friedman test</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20hypothesis%20testing" title=" statistical hypothesis testing"> statistical hypothesis testing</a> </p> <a href="https://publications.waset.org/abstracts/128245/comparing-machine-learning-estimation-of-fuel-consumption-of-heavy-duty-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9254</span> Numerical Modeling on the Vehicle Interior Noise Produced by Rain-the-Roof Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zilong%20Peng">Zilong Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Fan"> Jun Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the improvement of the living standards, the requirement on the acoustic comfort of the vehicle interior environment is becoming higher. The rain-the-roof producing interior noise is a common phenomenon for the vehicle, which usually discourages the conversation, especially for the heavy rain. This paper presents some numerical results about the rain-the-roof noise. The impact of each water drop is modeled as a short pulse, and the excitation locations on the roof are generated randomly. The vehicle body is simplified to a box closed with some certain-thickness shells. According to the main frequency components of the rain excitation, the analyzing frequency range is divided as low, high and middle frequency domains, which makes the vehicle body are modeled using finite element method (FEM), statistical energy analysis (SEA) and hybrid FE-SEA method, respectively. Furthermore, the effect of spatial distribution density and size of the rain on the sound pressure level are also discussed. These results may provide a guide for designing a more silent vehicle in the special weather. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rain-the-roof%20noise" title="rain-the-roof noise">rain-the-roof noise</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20energy%20analysis" title=" statistical energy analysis"> statistical energy analysis</a> </p> <a href="https://publications.waset.org/abstracts/90695/numerical-modeling-on-the-vehicle-interior-noise-produced-by-rain-the-roof-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9253</span> Evaluation of Bucket Utility Truck In-Use Driving Performance and Electrified Power Take-Off Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20Prohaska">Robert Prohaska</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnaud%20Konan"> Arnaud Konan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Kelly"> Kenneth Kelly</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Ragatz"> Adam Ragatz</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Duran"> Adam Duran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an effort to evaluate the in-use performance of electrified Power Take-off (PTO) usage on bucket utility trucks operating under real-world conditions, data from 20 medium- and heavy-duty vehicles operating in California, USA were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team. In this paper, duty-cycle statistical analyses of class 5, medium-duty quick response trucks and class 8, heavy-duty material handler trucks are performed to examine and characterize vehicle dynamics trends and relationships based on collected in-use field data. With more than 100,000 kilometers of driving data collected over 880+ operating days, researchers have developed a robust methodology for identifying PTO operation from in-field vehicle data. Researchers apply this unique methodology to evaluate the performance and utilization of the conventional and electric PTO systems. Researchers also created custom representative drive-cycles for each vehicle configuration and performed modeling and simulation activities to evaluate the potential fuel and emissions savings for hybridization of the tractive driveline on these vehicles. The results of these analyses statistically and objectively define the vehicle dynamic and kinematic requirements for each vehicle configuration as well as show the potential for further system optimization through driveline hybridization. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relates specifically to medium- and heavy-duty utility vehicles operating under real-world conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drive%20cycle" title="drive cycle">drive cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy-duty%20%28HD%29" title=" heavy-duty (HD)"> heavy-duty (HD)</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=medium-duty%20%28MD%29" title=" medium-duty (MD)"> medium-duty (MD)</a>, <a href="https://publications.waset.org/abstracts/search?q=PTO" title=" PTO"> PTO</a>, <a href="https://publications.waset.org/abstracts/search?q=utility" title=" utility"> utility</a> </p> <a href="https://publications.waset.org/abstracts/55410/evaluation-of-bucket-utility-truck-in-use-driving-performance-and-electrified-power-take-off-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9252</span> Numerical Simulation of Truck Collision with Road Blocker </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Engin%20Metin%20Kaplan">Engin Metin Kaplan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Yaman"> Kemal Yaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the crash of a medium heavy vehicle onto a designed Road blocker (vehicle barrier) is studied numerically. Structural integrity of the Road blocker is studied by nonlinear dynamic methods under the loading conditions which are defined in the standards. NASTRAN® and LS-DYNA® which are commercial software are used to solve the problem. Outer geometry determination, alignment of the inner part and material properties of the road blocker are studied linearly to yield design parameters. Best design parameters are determined to achieve the most structurally optimized road blocker. Strain and stress values of the vehicle barrier are obtained by solving the partial differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicle%20barrier" title="vehicle barrier">vehicle barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=truck%20collision" title=" truck collision"> truck collision</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20blocker" title=" road blocker"> road blocker</a>, <a href="https://publications.waset.org/abstracts/search?q=crash%20analysis" title=" crash analysis"> crash analysis</a> </p> <a href="https://publications.waset.org/abstracts/35365/numerical-simulation-of-truck-collision-with-road-blocker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9251</span> Detection of Selected Heavy Metals in Raw Milk: Lahore, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huma%20Naeem">Huma Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Saif-Ur-Rehman%20Kashif"> Saif-Ur-Rehman Kashif</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nawaz%20Chaudhry"> Muhammad Nawaz Chaudhry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milk plays a significant role in the dietary requirements of human beings as it is a single source that provides various essential nutrients. A study was conducted to evaluate the heavy metal concentration in the raw milk marketed in Data Gunj Baksh Town of Lahore. A total of 180 samples of raw milk were collected in pre-monsoon, monsoon and post-monsoon season from five colonies of Data Gunj Baksh Town, Lahore. The milk samples were subjected to heavy metal analysis (Cr, Cu) by atomic absorption spectrophotometer. Results indicated high levels of Cr and Cu in post-monsoon seasons. Heavy metals were detected in milk in all samples under study and exceeded the standards given by FAO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20absorption%20spectrophotometer" title="atomic absorption spectrophotometer">atomic absorption spectrophotometer</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a> </p> <a href="https://publications.waset.org/abstracts/26373/detection-of-selected-heavy-metals-in-raw-milk-lahore-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9250</span> An Ensemble-based Method for Vehicle Color Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeedeh%20Barzegar%20Khalilsaraei">Saeedeh Barzegar Khalilsaraei</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoocheher%20Kelarestaghi"> Manoocheher Kelarestaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farshad%20Eshghi"> Farshad Eshghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vehicle%20Color%20Recognition" title="Vehicle Color Recognition">Vehicle Color Recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=Ensemble%20Algorithm" title="Ensemble Algorithm">Ensemble Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Stack%20Generalization" title="Stack Generalization">Stack Generalization</a>, <a href="https://publications.waset.org/abstracts/search?q=Convolutional%20Neural%20Network" title="Convolutional Neural Network">Convolutional Neural Network</a> </p> <a href="https://publications.waset.org/abstracts/146909/an-ensemble-based-method-for-vehicle-color-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9249</span> Application of Nanofiltration Membrane for River Nile Water Treatment in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20S.%20Jamil">Tarek S. Jamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Shaban"> Ahmed M. Shaban</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20S.%20Mansor"> Eman S. Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Karim"> Ahmed A. Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Azza%20M.%20Abdel%20Aty"> Azza M. Abdel Aty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this manuscript, 35 m³/d NF unit was designed and applied for surface water treatment of river Nile water. Intake of Embaba drinking water treatment plant was selected to install that unit at since; it has the lowest water quality index value through the examined 6 sites in greater Cairo area. The optimized operating conditions were feed and permeate flow, 40 and 7 m³/d, feed pressure 2.68 bar and flux rate 37.7 l/m2.h. The permeate water was drinkable according to Egyptian Ministerial decree 458/2007 for the tested parameters (physic-chemical, heavy metals, organic, algal, bacteriological and parasitological). Single and double sand filters were used as pretreatment for NF membranes, but continuous clogging for sand filters moved us to use UF membrane as pretreatment for NF membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=River%20Nile" title="River Nile">River Nile</a>, <a href="https://publications.waset.org/abstracts/search?q=NF%20membrane" title=" NF membrane"> NF membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=UF%20membrane" title=" UF membrane"> UF membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/61649/application-of-nanofiltration-membrane-for-river-nile-water-treatment-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">708</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9248</span> Effect of Traffic Composition on Delay and Saturation Flow at Signal Controlled Intersections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arpita%20Saha">Arpita Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Apoorv%20Jain"> Apoorv Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Chandra"> Satish Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Indrajit%20Ghosh"> Indrajit Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Level of service at a signal controlled intersection is directly measured from the delay. Similarly, saturation flow rate is a fundamental parameter to measure the intersection capacity. The present study calculates vehicle arrival rate, departure rate, and queue length for every five seconds interval in each cycle. Based on the queue lengths, the total delay of the cycle has been calculated using Simpson’s 1/3rd rule. Saturation flow has been estimated in terms of veh/hr of green/lane for every five seconds interval of the green period until at least three vehicles are left to cross the stop line. Vehicle composition shows an immense effect on total delay and saturation flow rate. The increase in two-wheeler proportion increases the saturation flow rate and reduces the total delay per vehicle significantly. Additionally, an increase in the heavy vehicle proportion reduces the saturation flow rate and increases the total delay for each vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay" title="delay">delay</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20flow" title=" saturation flow"> saturation flow</a>, <a href="https://publications.waset.org/abstracts/search?q=signalised%20intersection" title=" signalised intersection"> signalised intersection</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20composition" title=" vehicle composition"> vehicle composition</a> </p> <a href="https://publications.waset.org/abstracts/62341/effect-of-traffic-composition-on-delay-and-saturation-flow-at-signal-controlled-intersections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9247</span> Design and Construction of Vehicle Tracking System with Global Positioning System/Global System for Mobile Communication Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bala%20Adamu%20Malami">Bala Adamu Malami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The necessity of low-cost electronic vehicle/car security designed in coordination with other security measures is always there in our society to reduce the risk of vehicle intrusion. Keeping this problem in mind, we are designing an automatic GPS system which is technology to build an integrated and fully customized vehicle to detect the movement of the vehicle and also serve as a security system at a reasonable cost. Users can locate the vehicle's position via GPS by using the Google Maps application to show vehicle coordinates on a smartphone. The tracking system uses a Global System for Mobile Communication (GSM) modem for communication between the mobile station and the microcontroller to send and receive commands. Further design can be improved to capture the vehicle movement range and alert the vehicle owner when the vehicle is out of range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic" title="electronic">electronic</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=GSM%20modem" title=" GSM modem"> GSM modem</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a> </p> <a href="https://publications.waset.org/abstracts/159657/design-and-construction-of-vehicle-tracking-system-with-global-positioning-systemglobal-system-for-mobile-communication-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9246</span> Electromechanical-Traffic Model of Compression-Based Piezoelectric Energy Harvesting System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Gareh">Saleh Gareh</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20Kok"> B. C. Kok</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20Goh"> H. H. Goh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric energy harvesting has advantages over other alternative sources due to its large power density, ease of applications, and capability to be fabricated at different scales: macro, micro, and nano. This paper presents an electromechanical-traffic model for roadway compression-based piezoelectric energy harvesting system. A two-degree-of-freedom (2-DOF) electromechanical model has been developed for the piezoelectric energy harvesting unit to define its performance in power generation under a number of external excitations on road surface. Lead Zirconate Titanate (PZT-5H) is selected as the piezoelectric material to be used in this paper due to its high Piezoelectric Charge Constant (d) and Piezoelectric Voltage Constant (g) values. The main source of vibration energy that has been considered in this paper is the moving vehicle on the road. The effect of various frequencies on possible generated power caused by different vibration characteristics of moving vehicle has been studied. A single unit of circle-shape Piezoelectric Cymbal Transducer (PCT) with diameter of 32 mm and thickness of 0.3 mm be able to generate about 0.8 mW and 3 mW of electric power under 4 Hz and 20 Hz of excitation, respectively. The estimated power to be generated for multiple arrays of PCT is approximately 150 kW/ km. Thus, the developed electromechanical-traffic model has enormous potential to be used in estimating the macro scale of roadway power generation system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20energy%20harvesting" title="piezoelectric energy harvesting">piezoelectric energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=cymbal%20transducer" title=" cymbal transducer"> cymbal transducer</a>, <a href="https://publications.waset.org/abstracts/search?q=PZT%20%28lead%20zirconate%20titanate%29" title=" PZT (lead zirconate titanate)"> PZT (lead zirconate titanate)</a>, <a href="https://publications.waset.org/abstracts/search?q=2-DOF" title=" 2-DOF"> 2-DOF</a> </p> <a href="https://publications.waset.org/abstracts/45299/electromechanical-traffic-model-of-compression-based-piezoelectric-energy-harvesting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9245</span> An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20Charkoftakis">George Charkoftakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Liosatos"> Panagiotis Liosatos</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas-Alexander%20Tatlas"> Nicolas-Alexander Tatlas</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Goustouridis"> Dimitrios Goustouridis</a>, <a href="https://publications.waset.org/abstracts/search?q=Stelios%20M.%20Potirakis"> Stelios M. Potirakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> E-maintenance is a relatively new concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification by means of a global navigation satellite system (GNSS), cellular connectivity by means of 3G/long-term evolution (LTE) modem, connectivity to on-board diagnostics (OBD), and connectivity to analog and digital sensors by means of a novel design of expansion board. Specifically, the later provides eight analog plus three digital sensor channels, as well as one on-board temperature / relative humidity sensor. The specific device offers a number of adaptability features based on appropriate zero-ohm resistor placement and appropriate value selection for limited number of passive components. For example, although in the standard configuration four voltage analog channels with constant voltage sources for the power supply of the corresponding sensors are available, up to two of these voltage channels can be converted to provide power to the connected sensors by means of corresponding constant current source circuits, whereas all parameters of analog sensor power supply and matching circuits are fully configurable offering the advantage of covering a wide variety of industrial sensors. Note that a key feature of the proposed sensor node, ensuring the reliable operation of the connected sensors, is the appropriate supply of external power to the connected sensors and their proper matching to the IoT sensor node. In standard mode, the IoT sensor node communicates to the data center through 3G/LTE, transmitting all digital/digitized sensor data, IoT device identity, and position. Moreover, the proposed IoT sensor node offers WiFi connectivity to mobile devices (smartphones, tablets) equipped with an appropriate application for the manual registration of vehicle- and driver-specific information, and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware. It is programmed with a high-level language (Python) on top of a modern operating system (Linux). Acknowledgment: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH—CREATE—INNOVATE (project code: T1EDK- 01359, IntelligentLogger). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IoT%20sensor%20nodes" title="IoT sensor nodes">IoT sensor nodes</a>, <a href="https://publications.waset.org/abstracts/search?q=e-maintenance" title=" e-maintenance"> e-maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=single-board%20computers" title=" single-board computers"> single-board computers</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20expansion%20boards" title=" sensor expansion boards"> sensor expansion boards</a>, <a href="https://publications.waset.org/abstracts/search?q=on-board%20diagnostics" title=" on-board diagnostics"> on-board diagnostics</a> </p> <a href="https://publications.waset.org/abstracts/136533/an-e-maintenance-iot-sensor-node-designed-for-fleets-of-diverse-heavy-duty-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9244</span> Removal of Heavy Metals in Wastewater Treatment System of Suan Sunandha Rajabhat University</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pantip%20Kayee">Pantip Kayee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuwadee%20Yaponha"> Yuwadee Yaponha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiranit%20Pongtubthai"> Jiranit Pongtubthai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focused on the determination of heavy metal concentration in wastewater and the investigation of heavy metal removal of wastewater treatment system of Suan Sunandha Rajabhat University. Heavy metals (Pb, Cu, Mn, Ni and Zn) were found in wastewater of Suan Sunandha Rajabhat University. Wastewater treatment systems of Suan Sunandha Rajabhat University showed the performance to remove heavy metals. However, heavy metals were still presented in effluent but these residue heavy metals were not over the standard for industrial wastewater. Wastewater treatment system can remove heavy metal by different process such as bioaccumulation by microorganism and biosorption on activated sludge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=bioaccumulation" title=" bioaccumulation"> bioaccumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a> </p> <a href="https://publications.waset.org/abstracts/10681/removal-of-heavy-metals-in-wastewater-treatment-system-of-suan-sunandha-rajabhat-university" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9243</span> Investigation Effect of External Flow to Exhaust Gas Flow at Heavy Commercial Vehicle with CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Kanta%C5%9F">F. Kantaş</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Boyac%C4%B1"> D. Boyacı</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Din%C3%A7"> C. Dinç </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exhaust systems plays an important role in thermal heat management. Exhaust manifold picks burned gas from engine and exhaust pipes transmit exhaust gas to muffler, exhaust gas is reacted chemically to avoid noxious gas and sound is reduced in muffler then gas is threw out with tail pipe from muffler. Exhaust gas flows out from tail pipe and this hot gas flows to many parts that available around tail pipe and muffler, like spare tire, transmission, pipes etc. These parts are heated by hot exhaust gas. Also vehicle on ride, external flow effects exhaust gas flow and exhaust gas behavior is changed. It's impossible to understand which parts are heated by hot exhaust gas in tests. To understand this phenomena, exhaust gas flow is solved in CFD also external flow due to vehicle movement must be solved with exhaust gas flow. Because external flow effects exhaust gas flow behavior with many parameters. This paper investigates external flow effects exhaust gas flow behavior and other critical parameters effect exhaust gas flow behavior, like different tail pipe design, exhaust gas mass flow in critic vehicle driving situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust" title="exhaust">exhaust</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20flow" title=" gas flow"> gas flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20flow" title=" external flow "> external flow </a> </p> <a href="https://publications.waset.org/abstracts/17975/investigation-effect-of-external-flow-to-exhaust-gas-flow-at-heavy-commercial-vehicle-with-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9242</span> Autonomous Ground Vehicle Navigation Based on a Single Camera and Image Processing Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auday%20Al-Mayyahi">Auday Al-Mayyahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Phil%20Birch"> Phil Birch</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Wang"> William Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A vision system-based navigation for autonomous ground vehicle (AGV) equipped with a single camera in an indoor environment is presented. A proposed navigation algorithm has been utilized to detect obstacles represented by coloured mini- cones placed in different positions inside a corridor. For the recognition of the relative position and orientation of the AGV to the coloured mini cones, the features of the corridor structure are extracted using a single camera vision system. The relative position, the offset distance and steering angle of the AGV from the coloured mini-cones are derived from the simple corridor geometry to obtain a mapped environment in real world coordinates. The corridor is first captured as an image using the single camera. Hence, image processing functions are then performed to identify the existence of the cones within the environment. Using a bounding box surrounding each cone allows to identify the locations of cones in a pixel coordinate system. Thus, by matching the mapped and pixel coordinates using a projection transformation matrix, the real offset distances between the camera and obstacles are obtained. Real time experiments in an indoor environment are carried out with a wheeled AGV in order to demonstrate the validity and the effectiveness of the proposed algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20ground%20vehicle" title="autonomous ground vehicle">autonomous ground vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title=" obstacle avoidance"> obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20system" title=" vision system"> vision system</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20camera" title=" single camera"> single camera</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensor" title=" ultrasonic sensor"> ultrasonic sensor</a> </p> <a href="https://publications.waset.org/abstracts/48957/autonomous-ground-vehicle-navigation-based-on-a-single-camera-and-image-processing-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20unit%20heavy%20vehicle&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20unit%20heavy%20vehicle&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20unit%20heavy%20vehicle&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20unit%20heavy%20vehicle&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20unit%20heavy%20vehicle&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20unit%20heavy%20vehicle&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20unit%20heavy%20vehicle&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20unit%20heavy%20vehicle&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20unit%20heavy%20vehicle&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20unit%20heavy%20vehicle&page=309">309</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20unit%20heavy%20vehicle&page=310">310</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20unit%20heavy%20vehicle&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>