CINXE.COM

{"title":"Bioremediation Potential in Recalcitrant Areas of PCE in Alluvial Fan Deposits","authors":"J. Herrero, D. Puigserver, I. Nijenhuis, K. Kuntze, J. M. Carmona","volume":148,"journal":"International Journal of Environmental and Ecological Engineering","pagesStart":203,"pagesEnd":212,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10010222","abstract":"<p>In the transition zone between aquifers and basal aquitards, the perchloroethene (PCE)-pools are more recalcitrant than those elsewhere in the aquifer. Although biodegradation of chloroethenes occur in this zone, it is a slow process and a remediation strategy is needed. The aim of this study is to demonstrate that combined strategy of biostimulation and <em>in situ<\/em> chemical reduction (ISCR) is more efficient than the two separated strategies. Four different microcosm experiments with sediment and groundwater of a selected field site where an aged pool exists at the bottom of a transition zone were designed under i) natural conditions, ii) biostimulation with lactic acid, iii) ISCR with zero-value iron (ZVI) and under iv) a combined strategy with lactic acid and ZVI. Biotic and abiotic dehalogenation, terminal electron acceptor processes and evolution of microbial communities were determined for each experiment. The main results were: i) reductive dehalogenation of PCE-pools occurs under sulfate-reducing conditions; ii) biostimulation with lactic acid supports more pronounced reductive dehalogenation of PCE and trichloroethene (TCE), but results in an accumulation of 1,2-cis-dichloroethene (cDCE); iii) ISCR with ZVI produces a sustained dehalogenation of PCE and its metabolites iv) combined strategy of biostimulation and ISCR results in a fast dehalogenation of PCE and TCE and a sustained dehalogenation of cisDCE. These findings suggest that biostimulation and ISCR with ZVI are the most suitable strategies for a complete reductive dehalogenation of PCE-pools in the transition zone and further to enable the dissolution of dense non-aqueous phase liquids.<\/p>\r\n","references":"[1]\tA. Tiehm and K. R. Schmidt, \u201cSequential anaerobic\/aerobic biodegradation of chloroethenes--aspects of field application.,\u201d Curr. Opin. Biotechnol., vol. 22, no. 3, pp. 415\u201321, Jun. 2011.\r\n[2]\tM. J. Moran, J. S. Zogorski, and B. L. Rowe, \u201cApproach to an assessment of volatile organic compounds in the nation\u2019s ground water and drinking-water supply wells,\u201d Open-File Rep., 2006.\r\n[3]\tUSEPA, \u201cNational Primary Drinking Water Regulations. U.S. Environmental Protection. EPA 816-F-09-004.,\u201d in National Service Center for Environmental Publications, 2009.\r\n[4]\tB. L. Parker, J. A. Cherry, S. W. Chapman, and M. A. Guilbeault, \u201cReview and analysis of chlorinated solvent dense nonaqueous phase liquid distributions in five sandy aquifers,\u201d Vadose Zo. J., vol. 2, no. 2, pp. 116\u2013137, 2003.\r\n[5]\tT. H. Wiedemeier et al., \u201cTechnical protocol for evaluating natural attenuation of chlorinated solvents in ground water,\u201d Natl. Risk Manag. Res. Lab. EPA, no. September, p. EPA\/600\/R-98\/128.pag, 1998.\r\n[6]\tP. M. Bradley, \u201cHistory and Ecology of Chloroethene Biodegradation: A Review,\u201d Bioremediat. J., vol. 7, no. 2, pp. 81\u2013109, Apr. 2003.\r\n[7]\tP. M. Bradley and F. H. Chapelle, \u201cMicrobial Mineralization of Dichloroethene and Vinyl Chloride under Hypoxic Conditions,\u201d Ground Water Monit. Remediat., vol. 31, no. 4, pp. 39\u201349, Nov. 2011.\r\n[8]\tL. Adrian and F. E. L\u00f6ffler, \u201cOrganohalide-Respiring Bacteria\u2014An Introduction,\u201d in Organohalide-Respiring Bacteria, Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 3\u20136.\r\n[9]\tE. Bouwer, \u201cBioremediation of chlorinated solvents using alternate electron acceptors,\u201d Handb. bioremediation, 1994.\r\n[10]\tT. M. Vogel, C. S. Criddle, and P. L. McCarty, \u201cES Critical Reviews: Transformations of halogenated aliphatic compounds,\u201d Environ. Sci. Technol., vol. 21, no. 8, pp. 722\u201336, Aug. 1987.\r\n[11]\tS. Atashgahi, Y. Lu, and H. Smidt, \u201cOverview of Known Organohalide-Respiring Bacteria\u2014Phylogenetic Diversity and Environmental Distribution,\u201d in Organohalide-Respiring Bacteria, Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 63\u2013105.\r\n[12]\tI. Nijenhuis and K. Kuntze, \u201cAnaerobic microbial dehalogenation of organohalides \u2014 state of the art and remediation strategies,\u201d Curr. Opin. Biotechnol., vol. 38, pp. 33\u201338, Apr. 2016.\r\n[13]\tS. H. Zinder, \u201cThe Genus Dehalococcoides,\u201d in Organohalide-Respiring Bacteria, Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 107\u2013136.\r\n[14]\tX. Maym\u00f3-Gatell, Y. Chien, J. M. Gossett, and S. H. Zinder, \u201cIsolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene,\u201d Science (80-.)., vol. 276, no. 5318, pp. 1568\u20131571, 1997.\r\n[15]\tB. van der Zaan et al., \u201cCorrelation of Dehalococcoides 16S rRNA and chloroethene-reductive dehalogenase genes with geochemical conditions in chloroethene-contaminated groundwater.,\u201d Appl. Environ. Microbiol., vol. 76, no. 3, pp. 843\u201350, Feb. 2010.\r\n[16]\tP. M. Bradley and F. H. Chapelle, \u201cAnaerobic mineralization of vinyl chloride in Fe (III) -Reducing , aquifer sediments,\u201d Env. Sci Technol., vol. 30, no. 6, pp. 2084\u20132086, 1996.\r\n[17]\tF. Aulenta, A. Pera, S. Rossetti, M. Petrangeli Papini, and M. Majone, \u201cRelevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors.,\u201d Water Res., vol. 41, no. 1, pp. 27\u201338, Jan. 2007.\r\n[18]\tN. Wei and K. T. Finneran, \u201cInfluence of ferric iron on complete dechlorination of trichloroethylene (TCE) to ethene: Fe (III) reduction does not always inhibit complete dechlorination,\u201d Environ. Sci. Technol., vol. 45, no. 17, pp. 7422\u20137430, 2011.\r\n[19]\tNational Research Council, \u201cImproving management of persistent of contaminants. Groundwater and soil cleanup,\u201d Natl. Acad. Press., pp. 113\u2013174, 1999.\r\n[20]\tJ. Philips, P. J. Haest, D. Springael, and E. Smolders, \u201cInhibition of Geobacter Dechlorinators at Elevated Trichloroethene Concentrations Is Explained by a Reduced Activity Rather than by an Enhanced Cell Decay,\u201d Environ. Sci. Technol., p. 130115145641003, Jan. 2013.\r\n[21]\tS. K. Haack and B. A. Bekins, \u201cMicrobial populations in contaminant plumes,\u201d Hydrogeol. J., vol. 8, no. 1, pp. 63\u201376, Mar. 2000.\r\n[22]\tB. E. Sleep et al., \u201cBiological enhancement of tetrachloroethene dissolution and associated microbial community changes,\u201d Environ. Sci. Technol., vol. Environmen, no. 40, pp. 3623\u20133633, 2006.\r\n[23]\tC. Holliger et al., \u201cDehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra-and trichloroethene in an anaerobic respiration,\u201d Arch. Microbiol., vol. 169, no. 4, pp. 313\u2013321, 1998.\r\n[24]\tL. R. Krumholz, \u201cDesulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors,\u201d Int. J. Syst. Bacteriol., vol. 47, no. 4, pp. 1262\u20131263, 1997.\r\n[25]\tM. L. G. C. Luijten et al., \u201cDescription of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov.,\u201d Int. J. Syst. Evol. Microbiol., vol. 53, no. 3, pp. 787\u2013793, 2003.\r\n[26]\tX. Maym\u00f3-Gatell, I. Nijenhuis, and S. H. Zinder, \u201cReductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by \u2018Dehalococcoides ethenogenes\u2019.,\u201d Environ. Sci. Technol., vol. 35, no. 3, pp. 516\u201321, Feb. 2001.\r\n[27]\tA. Suyama, R. Iwakiri, K. Kai, T. Tokunaga, N. Sera, and K. Furukawa, \u201cIsolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes.,\u201d Biosci. Biotechnol. Biochem., vol. 65, no. 7, pp. 1474\u201381, Jul. 2001.\r\n[28]\tY. C. Chang, M. Hatsu, K. Jung, Y. S. Yoo, and K. Takamizawa, \u201cIsolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1,\u201d J. Biosci. Bioeng., vol. 89, no. 5, pp. 489\u2013491, 2000.\r\n[29]\tP. K. Sharma and P. L. McCarty, \u201cIsolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1, 2-dichloroethene.,\u201d Appl. Environ. Microbiol., vol. 62, no. 3, pp. 761\u2013765, 1996.\r\n[30]\tY. Sung et al., \u201cCharacterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov.,\u201d Appl. Environ. Microbiol., vol. 69, no. 5, pp. 2964\u20132974, 2003.\r\n[31]\tY. Yang and P. L. McCarty, \u201cComparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution,\u201d Environ. Sci. Technol., vol. 36, pp. 3400\u20133404, 2002.\r\n[32]\tR. Gillham and S. O\u2019Hannesin, \u201cEnhanced degradation of halogenated aliphatics by zero\u2010valent iron,\u201d Ground Water, vol. 32, pp. 958\u2013967, 1994.\r\n[33]\tW. S. Orth and R. W. Gillham, \u201cDechlorination of trichloroethene in aqueous solution using Fe 0,\u201d Env. Sci Technol., vol. 30, no. 1, pp. 66\u201371, 1996.\r\n[34]\tT. J. Campbell, D. R. Burris, A. L. Roberts, and J. R. Wells, \u201cTrichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system,\u201d Environ. Toxicol. Chem., vol. 16, no. 4, pp. 625\u2013630, 1997.\r\n[35]\tR. A. Brown, \u201cChemical oxidation and resuction for chlorinated solvent remediation,\u201d in In situ Remediation of Chlorinated Solvent Plumes, no. 1, 2010.\r\n[36]\tB. M. Henry, \u201cBiostimulation for anaerobic bioremediation of chlorinated solvents,\u201d in In situ Remediation of Chlorinated Solvent Plumesemediation of chlorinated solvent plume, 2010.\r\n[37]\tM. M. Lorah, E. H. Majcher, E. J. Jones, and M. a Voytek, \u201cMicrobial consortia development and microcosm and column experiments for enhanced bioremediation of chlorinated volatile organic compounds, West Branch Canal Creek wetland area, Aberdeen Proving Ground, Maryland.,\u201d 2008.\r\n[38]\tD. E. Ellis et al., \u201cBioaugmentation for accelerated in situ anaerobic bioremediation,\u201d Environ. Sci. Technol., vol. 34, no. 11, pp. 2254\u20132260, Jun. 2000.\r\n[39]\tD. Puigserver et al., \u201cTemporal hydrochemical and microbial variations in microcosm experiments from sites contaminated with chloromethanes under biostimulation with lactic acid,\u201d Bioremediat. J., vol. 20, no. 1, pp. 54\u201370, Jan. 2016.\r\n[40]\tD. Hunkeler and R. Aravena, \u201cInvestigating the origin and fate of organic contaminant in groundwater using stable isotope analysis,\u201d in Environmental isotopes in biodegradation and bioremediation, no. 8, C. M. Aelion, P. H\u00f6hener, D. Hunkeler, and R. Aravena, Eds. Boca Raton, Fla.: CRC Press, 2010, p. 450.\r\n[41]\tD. Hunkeler, R. U. Meckenstock, B. Sherwood Lollar, T. C. Schmidt, and J. T. Wilson, \u201cA guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis ( CSIA ),\u201d PA 600\/R-08\/148, no. December. 2008.\r\n[42]\tS. J. Flynn, F. E. L\u00f6ffler, and J. M. Tiedje, \u201cMicrobial community changes associated with a shift from reductive dechlorination of PCE to reductive dechlorination of cis-DCE and VC,\u201d Environ. Sci. Technol., vol. 34, no. 6, pp. 1056\u20131061, 2000.\r\n[43]\tS. R\u00e9v\u00e9sz et al., \u201cBacterial community changes in TCE biodegradation detected in microcosm experiments,\u201d Int. Biodeterior. Biodegradation, vol. 58, no. 3, pp. 239\u2013247, 2006.\r\n[44]\t\u00c9. M\u00e9sz\u00e1ros, R. Sipos, R. P\u00e1l, C. Romsics, and K. M\u00e1rialigeti, \u201cStimulation of trichloroethene biodegradation in anaerobic three-phase microcosms,\u201d Int. Biodeterior. Biodegradation, vol. 84, pp. 126\u2013133, Oct. 2013.\r\n[45]\tR. E. Richardson, V. K. Bhupathiraju, D. L. Song, T. A. Goulet, and L. Alvarez-Cohen, \u201cPhylogenetic characterization of microbial communities that reductively dechlorinate TCE based upon a combination of molecular techniques,\u201d Environ. Sci. Technol., vol. 36, no. 12, pp. 2652\u20132662, 2002.\r\n[46]\tJ. M. Lendvay et al., \u201cBioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation,\u201d Environ. Sci. Technol., vol. 37, no. 7, pp. 1422\u20131431, 2003.\r\n[47]\tT. W. Macbeth, D. E. Cummings, S. Spring, L. M. Petzke, and K. S. Sorenson, \u201cMolecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture,\u201d Appl. Environ. Microbiol., vol. 70, no. 12, pp. 7329\u20137341, 2004.\r\n[48]\tITRC, Strategies for Monitoring the Performance of DNAPL Source Zone Remedies, Technical\/Regulatory Guidelines, Interstate Technology and Regulatory Council, 206 pages, August 2004, Washington, DC.\r\n[49]\tJ. J. Morse et al., \u201cA treatability test for evaluating the potential applicability of the reductive anaerobic biological in situ treatment technology (RABITT) to remediate chloroethenes,\u201d Draft Tech. Protoc. Environ. Secur. Technol. Certif. Program. Arlington, VA Environ. Secur. Technol. Program., 1998.\r\n[50]\tX. Lu, J. T. Wilson, and D. H. Kampbell, \u201cComparison of an assay for Dehalococcoides DNA and a microcosm study in predicting reductive dechlorination of chlorinated ethenes in the field.,\u201d Environ. Pollut., vol. 157, no. 3, pp. 809\u201315, Mar. 2009.\r\n[51]\tD. Puigserver et al., \u201cReductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards,\u201d Environ. Sci. Pollut. Res., vol. 23, no. 18, pp. 18724\u201318741, Sep. 2016.\r\n[52]\tJ. T. Trevors, \u201cSterilization and inhibition of microbial activity in soil,\u201d J. Microbiol. Methods, vol. 26, pp. 53\u201359, 1996.\r\n[53]\t. Herrero, D. Puigserver, I. Nijenhuis, K. Kuntze, and J. M. Carmona, \u201cEvolution of degradation of chloroethenes as a function of the biogeochemical interactions taking place in the source zone-plume zone,\u201d unpublished.\r\n[54]\tY. D. Chen, J. F. Barker, and L. Gui, \u201cA strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.,\u201d J. Contam. Hydrol., vol. 96, no. 1\u20134, pp. 17\u201331, Feb. 2008.\r\n[55]\tJ. Palau, A. Soler, P. Teixidor, and R. Aravena, \u201cCompound-specific carbon isotope analysis of volatile organic compounds in water using solid-phase microextraction,\u201d J. Chromatogr. A, vol. 1163, no. 1, pp. 260\u2013268, 2007.\r\n[56]\tD. J. Lane, \u201c16S\/23S rRNA Sequencing,\u201d in Nucleic acid techniques in bacterial systematics, E. Stackebrandt and M. Goodfellow, Eds. New York: Wiley, 1991.\r\n[57]\tH. Heuer, M. Krsek, P. Baker, K. Smalla, and E. Wellington, \u201cAnalysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients,\u201d Appl. Envir. Microbiol., vol. 63, no. 8, pp. 3233\u20133241, Aug. 1997.\r\n[58]\tG. Imfeld et al., \u201cCharacterization of microbial communities in the aqueous phase of a constructed model wetland treating 1,2-dichloroethene-contaminated groundwater.,\u201d FEMS Microbiol. Ecol., vol. 72, no. 1, pp. 74\u201388, Apr. 2010.\r\n[59]\tW.-T. Liu, T. L. Marsh, H. Cheng, and L. J. Forney, \u201cCharacterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA.,\u201d Appl. Environ. Microbiol., vol. 63, no. 11, pp. 4516\u20134522, 1997.\r\n[60]\tT. L. Marsh, P. Saxman, J. Cole, and J. Tiedje, \u201cTerminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis,\u201d Appl. Environ. Microbiol., vol. 66, no. 8, pp. 3616\u20133620, 2000.\r\n[61]\thttp:\/\/www.ncbi.nlm.nih.gov\/blast\/.\r\n[62]\tD. H. Huson, S. Mitra, H. J. Ruscheweyh, N. Weber, and S. C. Schuster, \u201cIntegrative analysis of environmental sequences using MEGAN 4,\u201d Genome Res., vol. 21, pp. 1552\u20131560, 2011.\r\n[63]\tD. Hunkeler and B. Morasch, \u201cIsotope fractionation during transformation processes,\u201d in Environmental isotopes in biodegradation and bioremediation, C. M. Aelion, P. H\u00f6hener, D. Hunkeler, and R. Aravena, Eds. CRC Press, 2010, pp. 79\u2013125.\r\n[64]\tS. S. Patil, E. M. Adetutu, A. Aburto-Medina, I. R. Menz, and A. S. Ball, \u201cBiostimulation of indigenous communities for the successful dechlorination of tetrachloroethene (perchloroethylene)-contaminated groundwater.,\u201d Biotechnol. Lett., vol. 36, no. 1, pp. 75\u201383, Jan. 2014.\r\n[65]\tH. I. Boga, R. Ji, W. Ludwig, and A. Brune, \u201cSporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite,\u201d Arch. Microbiol., vol. 187, pp. 15\u201327, 2007.\r\n[66]\tE. S. Shelobolina et al., \u201cGeobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses,\u201d Int. J. Syst. Evol. Microbiol., vol. 57, pp. 126\u2013135, 2007.\r\n[67]\tW. Robertson, J. Bowman, P. Franzmann, and B. Mee, \u201cDesulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater,\u201d Int J Syst Evol Microbiol, vol. 51, no. 1, pp. 133\u2013140, Jan. 2001.\r\n[68]\tL. Hallbeck and K. Pedersen, \u201cAutotrophic and mixotrophic growth of Gallionella ferruginea,\u201d Journal of General Microbiology, vol. 137. pp. 2657\u20132661, 1991.\r\n[69]\tB. Sercu et al., \u201cThe influence of in situ chemical oxidation on microbial community composition in groundwater contaminated with chlorinated solvents,\u201d Microb. Ecol., vol. 65, no. 1, pp. 39\u201349, 2013.\r\n[70]\tW. W. Mohn and K. J. Kennedy, \u201cReductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1.,\u201d Appl. Environ. Microbiol., vol. 58, no. 4, pp. 1367\u20131370, 1992.\r\n[71]\tF. L\u00f6ffler, J. Cole, K. Ritalahti, and J. Tiedje, \u201cDiversity of dechlorinating bacteria,\u201d in Dehalogenation: microbial processes and environmental application, M. Haggblom and I. Bossert, Eds. 2003, pp. 53\u201387.\r\n[72]\tD. M. Bagley and J. M. Gossett, \u201cTetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate-reducing enrichment cultures,\u201d Appl. Environ. Microbiol., vol. 56, pp. 2511\u20132516, 1990.\r\n[73]\tN. Yoshida, K. Asahi, Y. Sakakibara, K. Miyake, and A. Katayama, \u201cIsolation and quantitative detection of tetrachloroethene (PCE)-dechlorinating bacteria in unsaturated subsurface soils contaminated with chloroethenes,\u201d J. Biosci. Bioeng., vol. 104, no. 2, pp. 91\u201397, 2007.\r\n[74]\tK. Dowideit et al., \u201cSpatial heterogeneity of dechlorinating bacteria and limiting factors for in situ trichloroethene dechlorination revealed by analyses of sediment cores from a polluted field site,\u201d FEMS Microbiol. Ecol., vol. 71, pp. 444\u2013459, 2010.\r\n[75]\tJ. F. Heidelberg et al., \u201cThe genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.,\u201d Nat. Biotechnol., vol. 22, no. 5, pp. 554\u20139, May 2004.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 148, 2019"}