CINXE.COM

Search results for: memetic algorithm

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: memetic algorithm</title> <meta name="description" content="Search results for: memetic algorithm"> <meta name="keywords" content="memetic algorithm"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="memetic algorithm" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="memetic algorithm"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3597</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: memetic algorithm</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3567</span> An Algorithm for Herding Cows by a Swarm of Quadcopters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeryes%20Danial">Jeryes Danial</a>, <a href="https://publications.waset.org/abstracts/search?q=Yosi%20Ben%20Asher"> Yosi Ben Asher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algorithms for controlling a swarm of robots is an active research field, out of which cattle herding is one of the most complex problems to solve. In this paper, we derive an independent herding algorithm that is specifically designed for a swarm of quadcopters. The algorithm works by devising flight trajectories that cause the cows to run-away in the desired direction and hence herd cows that are distributed in a given field towards a common gathering point. Unlike previously proposed swarm herding algorithms, this algorithm does not use a flocking model but rather stars each cow separately. The effectiveness of this algorithm is verified experimentally using a simulator. We use a special set of experiments attempting to demonstrate that the herding times of this algorithm correspond to field diameter small constant regardless of the number of cows in the field. This is an optimal result indicating that the algorithm groups the cows into intermediate groups and herd them as one forming ever closing bigger groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swarm" title="swarm">swarm</a>, <a href="https://publications.waset.org/abstracts/search?q=independent" title=" independent"> independent</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed" title=" distributed"> distributed</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a> </p> <a href="https://publications.waset.org/abstracts/134795/an-algorithm-for-herding-cows-by-a-swarm-of-quadcopters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3566</span> A Review Paper on Data Mining and Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sikander%20Singh%20Cheema">Sikander Singh Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmeen%20Kaur"> Jasmeen Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the concept of data mining is summarized and its one of the important process i.e KDD is summarized. The data mining based on Genetic Algorithm is researched in and ways to achieve the data mining Genetic Algorithm are surveyed. This paper also conducts a formal review on the area of data mining tasks and genetic algorithm in various fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=KDD" title=" KDD"> KDD</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=descriptive%20mining" title=" descriptive mining"> descriptive mining</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20mining" title=" predictive mining"> predictive mining</a> </p> <a href="https://publications.waset.org/abstracts/43637/a-review-paper-on-data-mining-and-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3565</span> Optimum Design of Grillage Systems Using Firefly Algorithm Optimization Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Erdal">F. Erdal</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Dogan"> E. Dogan</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20E.%20Uz"> F. E. Uz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, firefly optimization based optimum design algorithm is presented for the grillage systems. Naming of the algorithm is derived from the fireflies, whose sense of movement is taken as a model in the development of the algorithm. Fireflies’ being unisex and attraction between each other constitute the basis of the algorithm. The design algorithm considers the displacement and strength constraints which are implemented from LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Construction). It selects the appropriate W (Wide Flange)-sections for the transverse and longitudinal beams of the grillage system among 272 discrete W-section designations given in LRFD-AISC so that the design limitations described in LRFD are satisfied and the weight of the system is confined to be minimal. Number of design examples is considered to demonstrate the efficiency of the algorithm presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%EF%AC%82y%20algorithm" title="firefly algorithm">firefly algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20grillage%20systems" title=" steel grillage systems"> steel grillage systems</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20design" title=" optimum design"> optimum design</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20search%20techniques" title=" stochastic search techniques"> stochastic search techniques</a> </p> <a href="https://publications.waset.org/abstracts/14634/optimum-design-of-grillage-systems-using-firefly-algorithm-optimization-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3564</span> Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roshanak%20Khodabakhsh%20Jolfaei">Roshanak Khodabakhsh Jolfaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Akbari%20Torkestani"> Javad Akbari Torkestani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20grid" title="computational grid">computational grid</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20scheduling" title=" job scheduling"> job scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20automata" title=" learning automata"> learning automata</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20scheduling" title=" dynamic scheduling"> dynamic scheduling</a> </p> <a href="https://publications.waset.org/abstracts/40508/presenting-a-job-scheduling-algorithm-based-on-learning-automata-in-computational-grid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3563</span> A Hybrid Tabu Search Algorithm for the Multi-Objective Job Shop Scheduling Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Teymourifar">Aydin Teymourifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurkan%20Ozturk"> Gurkan Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a hybrid Tabu Search (TS) algorithm is suggested for the multi-objective job shop scheduling problems (MO-JSSPs). The algorithm integrates several shifting bottleneck based neighborhood structures with the Giffler & Thompson algorithm, which improve efficiency of the search. Diversification and intensification are provided with local and global left shift algorithms application and also new semi-active, active, and non-delay schedules creation. The suggested algorithm is tested in the MO-JSSPs benchmarks from the literature based on the Pareto optimality concept. Different performances criteria are used for the multi-objective algorithm evaluation. The proposed algorithm is able to find the Pareto solutions of the test problems in shorter time than other algorithm of the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tabu%20search" title="tabu search">tabu search</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristics" title=" heuristics"> heuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20shop%20scheduling" title=" job shop scheduling"> job shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Pareto%20optimality" title=" Pareto optimality"> Pareto optimality</a> </p> <a href="https://publications.waset.org/abstracts/71920/a-hybrid-tabu-search-algorithm-for-the-multi-objective-job-shop-scheduling-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3562</span> A Learning-Based EM Mixture Regression Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Cheng%20Tian">Yi-Cheng Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Miin-Shen%20Yang"> Miin-Shen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=EM%20algorithm" title=" EM algorithm"> EM algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20mixture%20model" title=" Gaussian mixture model"> Gaussian mixture model</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20regression%20model" title=" mixture regression model"> mixture regression model</a> </p> <a href="https://publications.waset.org/abstracts/25163/a-learning-based-em-mixture-regression-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3561</span> Quick Sequential Search Algorithm Used to Decode High-Frequency Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20M.%20Siddeq">Mohammed M. Siddeq</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20H.%20Rasheed"> Mohammed H. Rasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20M.%20Salih"> Omar M. Salih</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcos%20A.%20Rodrigues"> Marcos A. Rodrigues</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research proposes a data encoding and decoding method based on the Matrix Minimization algorithm. This algorithm is applied to high-frequency coefficients for compression/encoding. The algorithm starts by converting every three coefficients to a single value; this is accomplished based on three different keys. The decoding/decompression uses a search method called QSS (Quick Sequential Search) Decoding Algorithm presented in this research based on the sequential search to recover the exact coefficients. In the next step, the decoded data are saved in an auxiliary array. The basic idea behind the auxiliary array is to save all possible decoded coefficients; this is because another algorithm, such as conventional sequential search, could retrieve encoded/compressed data independently from the proposed algorithm. The experimental results showed that our proposed decoding algorithm retrieves original data faster than conventional sequential search algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=matrix%20minimization%20algorithm" title="matrix minimization algorithm">matrix minimization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=decoding%20sequential%20search%20algorithm" title=" decoding sequential search algorithm"> decoding sequential search algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title=" image compression"> image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=DCT" title=" DCT"> DCT</a>, <a href="https://publications.waset.org/abstracts/search?q=DWT" title=" DWT"> DWT</a> </p> <a href="https://publications.waset.org/abstracts/151394/quick-sequential-search-algorithm-used-to-decode-high-frequency-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3560</span> ACOPIN: An ACO Algorithm with TSP Approach for Clustering Proteins in Protein Interaction Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamaludin%20Sallim">Jamaludin Sallim</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozlina%20Mohamed"> Rozlina Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Roslina%20Abdul%20Hamid"> Roslina Abdul Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed an Ant Colony Optimization (ACO) algorithm together with Traveling Salesman Problem (TSP) approach to investigate the clustering problem in Protein Interaction Networks (PIN). We named this combination as ACOPIN. The purpose of this work is two-fold. First, to test the efficacy of ACO in clustering PIN and second, to propose the simple generalization of the ACO algorithm that might allow its application in clustering proteins in PIN. We split this paper to three main sections. First, we describe the PIN and clustering proteins in PIN. Second, we discuss the steps involved in each phase of ACO algorithm. Finally, we present some results of the investigation with the clustering patterns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20optimization%20algorithm" title="ant colony optimization algorithm">ant colony optimization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=searching%20algorithm" title=" searching algorithm"> searching algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20functional%20module" title=" protein functional module"> protein functional module</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20interaction%20network" title=" protein interaction network "> protein interaction network </a> </p> <a href="https://publications.waset.org/abstracts/22367/acopin-an-aco-algorithm-with-tsp-approach-for-clustering-proteins-in-protein-interaction-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3559</span> Text Based Shuffling Algorithm on Graphics Processing Unit for Digital Watermarking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zayar%20Phyo">Zayar Phyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ei%20Chaw%20Htoon"> Ei Chaw Htoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a New-LSB based Steganography method, the Fisher-Yates algorithm is used to permute an existing array randomly. However, that algorithm performance became slower and occurred memory overflow problem while processing the large dimension of images. Therefore, the Text-Based Shuffling algorithm aimed to select only necessary pixels as hiding characters at the specific position of an image according to the length of the input text. In this paper, the enhanced text-based shuffling algorithm is presented with the powered of GPU to improve more excellent performance. The proposed algorithm employs the OpenCL Aparapi framework, along with XORShift Kernel including the Pseudo-Random Number Generator (PRNG) Kernel. PRNG is applied to produce random numbers inside the kernel of OpenCL. The experiment of the proposed algorithm is carried out by practicing GPU that it can perform faster-processing speed and better efficiency without getting the disruption of unnecessary operating system tasks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LSB%20based%20steganography" title="LSB based steganography">LSB based steganography</a>, <a href="https://publications.waset.org/abstracts/search?q=Fisher-Yates%20algorithm" title=" Fisher-Yates algorithm"> Fisher-Yates algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=text-based%20shuffling%20algorithm" title=" text-based shuffling algorithm"> text-based shuffling algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenCL" title=" OpenCL"> OpenCL</a>, <a href="https://publications.waset.org/abstracts/search?q=XORShiftKernel" title=" XORShiftKernel"> XORShiftKernel</a> </p> <a href="https://publications.waset.org/abstracts/112629/text-based-shuffling-algorithm-on-graphics-processing-unit-for-digital-watermarking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3558</span> An Algorithm for the Map Labeling Problem with Two Kinds of Priorities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noboru%20Abe">Noboru Abe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshinori%20Amai"> Yoshinori Amai</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshinori%20Nakatake"> Toshinori Nakatake</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumio%20Masuda"> Sumio Masuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuaki%20Yamaguchi"> Kazuaki Yamaguchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider the problem of placing labels of the points on a plane. For each point, its position, the size of its label and a priority are given. Moreover, several candidates of its label positions are prespecified, and each of such label positions is assigned a priority. The objective of our problem is to maximize the total sum of priorities of placed labels and their points. By refining a labeling algorithm that can use these priorities, we propose a new heuristic algorithm which is more suitable for treating the assigned priorities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=map%20labeling" title="map labeling">map labeling</a>, <a href="https://publications.waset.org/abstracts/search?q=greedy%20algorithm" title=" greedy algorithm"> greedy algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithm" title=" heuristic algorithm"> heuristic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=priority" title=" priority"> priority</a> </p> <a href="https://publications.waset.org/abstracts/5013/an-algorithm-for-the-map-labeling-problem-with-two-kinds-of-priorities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3557</span> A Hybrid Distributed Algorithm for Multi-Objective Dynamic Flexible Job Shop Scheduling Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Teymourifar">Aydin Teymourifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurkan%20Ozturk"> Gurkan Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a hybrid distributed algorithm has been suggested for multi-objective dynamic flexible job shop scheduling problem. The proposed algorithm is high level, in which several algorithms search the space on different machines simultaneously also it is a hybrid algorithm that takes advantages of the artificial intelligence, evolutionary and optimization methods. Distribution is done at different levels and new approaches are used for design of the algorithm. Apache spark and Hadoop frameworks have been used for the distribution of the algorithm. The Pareto optimality approach is used for solving the multi-objective benchmarks. The suggested algorithm that is able to solve large-size problems in short times has been compared with the successful algorithms of the literature. The results prove high speed and efficiency of the algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms" title="distributed algorithms">distributed algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=apache-spark" title=" apache-spark"> apache-spark</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadoop" title=" Hadoop"> Hadoop</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20dynamic%20job%20shop%20scheduling" title=" flexible dynamic job shop scheduling"> flexible dynamic job shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a> </p> <a href="https://publications.waset.org/abstracts/72319/a-hybrid-distributed-algorithm-for-multi-objective-dynamic-flexible-job-shop-scheduling-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3556</span> A Variant of a Double Structure-Preserving QR Algorithm for Symmetric and Hamiltonian Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Salam">Ahmed Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Haithem%20Benkahla"> Haithem Benkahla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, an efficient backward-stable algorithm for computing eigenvalues and vectors of a symmetric and Hamiltonian matrix has been proposed. The method preserves the symmetric and Hamiltonian structures of the original matrix, during the whole process. In this paper, we revisit the method. We derive a way for implementing the reduction of the matrix to the appropriate condensed form. Then, we construct a novel version of the implicit QR-algorithm for computing the eigenvalues and vectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20implicit%20QR%20algorithm" title="block implicit QR algorithm">block implicit QR algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=preservation%20of%20a%20double%20structure" title=" preservation of a double structure"> preservation of a double structure</a>, <a href="https://publications.waset.org/abstracts/search?q=QR%20algorithm" title=" QR algorithm"> QR algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetric%20and%20Hamiltonian%20structures" title=" symmetric and Hamiltonian structures"> symmetric and Hamiltonian structures</a> </p> <a href="https://publications.waset.org/abstracts/61018/a-variant-of-a-double-structure-preserving-qr-algorithm-for-symmetric-and-hamiltonian-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3555</span> A New Tool for Global Optimization Problems: Cuttlefish Algorithm </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Sabry%20Eesa">Adel Sabry Eesa</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Mohsin%20Abdulazeez%20Brifcani"> Adnan Mohsin Abdulazeez Brifcani</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Orman"> Zeynep Orman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new meta-heuristic bio-inspired optimization algorithm which is called Cuttlefish Algorithm (CFA). The algorithm mimics the mechanism of color changing behavior of the cuttlefish to solve numerical global optimization problems. The colors and patterns of the cuttlefish are produced by reflected light from three different layers of cells. The proposed algorithm considers mainly two processes: reflection and visibility. Reflection process simulates light reflection mechanism used by these layers, while visibility process simulates visibility of matching patterns of the cuttlefish. To show the effectiveness of the algorithm, it is tested with some other popular bio-inspired optimization algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Bees Algorithm (BA) that have been previously proposed in the literature. Simulations and obtained results indicate that the proposed CFA is superior when compared with these algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cuttlefish%20Algorithm" title="Cuttlefish Algorithm">Cuttlefish Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-inspired%20algorithms" title=" bio-inspired algorithms"> bio-inspired algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20optimization%20problems" title=" global optimization problems"> global optimization problems</a> </p> <a href="https://publications.waset.org/abstracts/11956/a-new-tool-for-global-optimization-problems-cuttlefish-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3554</span> Using Genetic Algorithms and Rough Set Based Fuzzy K-Modes to Improve Centroid Model Clustering Performance on Categorical Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishabh%20Srivastav">Rishabh Srivastav</a>, <a href="https://publications.waset.org/abstracts/search?q=Divyam%20%20Sharma"> Divyam Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose an algorithm to cluster categorical data named as ‘Genetic algorithm initialized rough set based fuzzy K-Modes for categorical data’. We propose an amalgamation of the simple K-modes algorithm, the Rough and Fuzzy set based K-modes and the Genetic Algorithm to form a new algorithm,which we hypothesise, will provide better Centroid Model clustering results, than existing standard algorithms. In the proposed algorithm, the initialization and updation of modes is done by the use of genetic algorithms while the membership values are calculated using the rough set and fuzzy logic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=categorical%20data" title="categorical data">categorical data</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=K%20modes%20clustering" title=" K modes clustering"> K modes clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=rough%20sets" title=" rough sets"> rough sets</a> </p> <a href="https://publications.waset.org/abstracts/128558/using-genetic-algorithms-and-rough-set-based-fuzzy-k-modes-to-improve-centroid-model-clustering-performance-on-categorical-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3553</span> An Improved Ant Colony Algorithm for Genome Rearrangements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Essam%20Al%20Daoud">Essam Al Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genome rearrangement is an important area in computational biology and bioinformatics. The basic problem in genome rearrangements is to compute the edit distance, i.e., the minimum number of operations needed to transform one genome into another. Unfortunately, unsigned genome rearrangement problem is NP-hard. In this study an improved ant colony optimization algorithm to approximate the edit distance is proposed. The main idea is to convert the unsigned permutation to signed permutation and evaluate the ants by using Kaplan algorithm. Two new operations are added to the standard ant colony algorithm: Replacing the worst ants by re-sampling the ants from a new probability distribution and applying the crossover operations on the best ants. The proposed algorithm is tested and compared with the improved breakpoint reversal sort algorithm by using three datasets. The results indicate that the proposed algorithm achieves better accuracy ratio than the previous methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20algorithm" title="ant colony algorithm">ant colony algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=edit%20distance" title=" edit distance"> edit distance</a>, <a href="https://publications.waset.org/abstracts/search?q=genome%0D%0Abreakpoint" title=" genome breakpoint"> genome breakpoint</a>, <a href="https://publications.waset.org/abstracts/search?q=genome%20rearrangement" title=" genome rearrangement"> genome rearrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=reversal%20sort" title=" reversal sort"> reversal sort</a> </p> <a href="https://publications.waset.org/abstracts/5601/an-improved-ant-colony-algorithm-for-genome-rearrangements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3552</span> Developing New Algorithm and Its Application on Optimal Control of Pumps in Water Distribution Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Rajabpour">R. Rajabpour</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Talebbeydokhti"> N. Talebbeydokhti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Ahmadi"> M. H. Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, new techniques for solving complex problems in engineering are proposed. One of these techniques is JPSO algorithm. With innovative changes in the nature of the jump algorithm JPSO, it is possible to construct a graph-based solution with a new algorithm called G-JPSO. In this paper, a new algorithm to solve the optimal control problem Fletcher-Powell and optimal control of pumps in water distribution network was evaluated. Optimal control of pumps comprise of optimum timetable operation (status on and off) for each of the pumps at the desired time interval. Maximum number of status on and off for each pumps imposed to the objective function as another constraint. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The proposed algorithm results were compared well with the ant colony algorithm, genetic and JPSO results. This shows the robustness of proposed algorithm in finding near optimum solutions with reasonable computational cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=G-JPSO" title="G-JPSO">G-JPSO</a>, <a href="https://publications.waset.org/abstracts/search?q=operation" title=" operation"> operation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=pumping%20station" title=" pumping station"> pumping station</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20distribution%20networks" title=" water distribution networks"> water distribution networks</a> </p> <a href="https://publications.waset.org/abstracts/36259/developing-new-algorithm-and-its-application-on-optimal-control-of-pumps-in-water-distribution-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3551</span> A Fast Silhouette Detection Algorithm for Shadow Volumes in Augmented Reality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoshang%20Kolivand">Hoshang Kolivand</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahyar%20Kolivand"> Mahyar Kolivand</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Shahrizal%20Sunar"> Mohd Shahrizal Sunar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Azhar%20M.%20Arsad"> Mohd Azhar M. Arsad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Real-time shadow generation in virtual environments and Augmented Reality (AR) was always a hot topic in the last three decades. Lots of calculation for shadow generation among AR needs a fast algorithm to overcome this issue and to be capable of implementing in any real-time rendering. In this paper, a silhouette detection algorithm is presented to generate shadows for AR systems. &Delta;+ algorithm is presented based on extending edges of occluders to recognize which edges are silhouettes in the case of real-time rendering. An accurate comparison between the proposed algorithm and current algorithms in silhouette detection is done to show the reduction calculation by presented algorithm. The algorithm is tested in both virtual environments and AR systems. We think that this algorithm has the potential to be a fundamental algorithm for shadow generation in all complex environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silhouette%20detection" title="silhouette detection">silhouette detection</a>, <a href="https://publications.waset.org/abstracts/search?q=shadow%20volumes" title=" shadow volumes"> shadow volumes</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20shadows" title=" real-time shadows"> real-time shadows</a>, <a href="https://publications.waset.org/abstracts/search?q=rendering" title=" rendering"> rendering</a>, <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title=" augmented reality"> augmented reality</a> </p> <a href="https://publications.waset.org/abstracts/46127/a-fast-silhouette-detection-algorithm-for-shadow-volumes-in-augmented-reality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3550</span> An Enhanced Harmony Search (ENHS) Algorithm for Solving Optimization Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talha%20A.%20Taj">Talha A. Taj</a>, <a href="https://publications.waset.org/abstracts/search?q=Talha%20A.%20Khan"> Talha A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Imran%20Khalid"> M. Imran Khalid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimization techniques attract researchers to formulate a problem and determine its optimum solution. This paper presents an Enhanced Harmony Search (ENHS) algorithm for solving optimization problems. The proposed algorithm increases the convergence and is more efficient than the standard Harmony Search (HS) algorithm. The paper discusses the novel techniques in detail and also provides the strategy for tuning the decisive parameters that affects the efficiency of the ENHS algorithm. The algorithm is tested on various benchmark functions, a real world optimization problem and a constrained objective function. Also, the results of ENHS are compared to standard HS, and various other optimization algorithms. The ENHS algorithms prove to be significantly better and more efficient than other algorithms. The simulation and testing of the algorithms is performed in MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=harmony%20search%20algorithm" title=" harmony search algorithm"> harmony search algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic" title=" electronic"> electronic</a> </p> <a href="https://publications.waset.org/abstracts/3244/an-enhanced-harmony-search-enhs-algorithm-for-solving-optimization-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3549</span> A Novel Algorithm for Production Scheduling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mohammadi%20Bolban%20Abad">Ali Mohammadi Bolban Abad</a>, <a href="https://publications.waset.org/abstracts/search?q=Fariborz%20Ahmadi"> Fariborz Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimization in manufacture is a method to use limited resources to obtain the best performance and reduce waste. In this paper a new algorithm based on eurygaster life is introduced to obtain a plane in which task order and completion time of resources are defined. Evaluation results show our approach has less make span when the resources are allocated with some products in comparison to genetic algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20computation" title="evolutionary computation">evolutionary computation</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=NP-Hard%20problems" title=" NP-Hard problems"> NP-Hard problems</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20scheduling" title=" production scheduling"> production scheduling</a> </p> <a href="https://publications.waset.org/abstracts/23914/a-novel-algorithm-for-production-scheduling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3548</span> Downscaling Daily Temperature with Neuroevolutionary Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Shi">Min Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> State of the art research with Artificial Neural Networks for the downscaling of General Circulation Models (GCMs) mainly uses back-propagation algorithm as a training approach. This paper introduces another training approach of ANNs, Evolutionary Algorithm. The combined algorithm names neuroevolutionary (NE) algorithm. We investigate and evaluate the use of the NE algorithms in statistical downscaling by generating temperature estimates at interior points given information from a lattice of surrounding locations. The results of our experiments indicate that NE algorithms can be efficient alternative downscaling methods for daily temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature" title="temperature">temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=downscaling" title=" downscaling"> downscaling</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20algorithms" title=" evolutionary algorithms"> evolutionary algorithms</a> </p> <a href="https://publications.waset.org/abstracts/29051/downscaling-daily-temperature-with-neuroevolutionary-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3547</span> An Optimization Algorithm Based on Dynamic Schema with Dissimilarities and Similarities of Chromosomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhwan%20Yousif%20Sedik%20Al-Jawadi">Radhwan Yousif Sedik Al-Jawadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimization is necessary for finding appropriate solutions to a range of real-life problems. In particular, genetic (or more generally, evolutionary) algorithms have proved very useful in solving many problems for which analytical solutions are not available. In this paper, we present an optimization algorithm called Dynamic Schema with Dissimilarity and Similarity of Chromosomes (DSDSC) which is a variant of the classical genetic algorithm. This approach constructs new chromosomes from a schema and pairs of existing ones by exploring their dissimilarities and similarities. To show the effectiveness of the algorithm, it is tested and compared with the classical GA, on 15 two-dimensional optimization problems taken from literature. We have found that, in most cases, our method is better than the classical genetic algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromosome%20injection" title="chromosome injection">chromosome injection</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20schema" title=" dynamic schema"> dynamic schema</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20and%20dissimilarity" title=" similarity and dissimilarity"> similarity and dissimilarity</a> </p> <a href="https://publications.waset.org/abstracts/54193/an-optimization-algorithm-based-on-dynamic-schema-with-dissimilarities-and-similarities-of-chromosomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3546</span> Simulation Approach for a Comparison of Linked Cluster Algorithm and Clusterhead Size Algorithm in Ad Hoc Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ameen%20Jameel%20Alawneh">Ameen Jameel Alawneh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Mobile ad-hoc network (MANET) is a collection of wireless mobile hosts that dynamically form a temporary network without the aid of a system administrator. It has neither fixed infrastructure nor wireless ad hoc sessions. It inherently reaches several nodes with a single transmission, and each node functions as both a host and a router. The network maybe represented as a set of clusters each managed by clusterhead. The cluster size is not fixed and it depends on the movement of nodes. We proposed a clusterhead size algorithm (CHSize). This clustering algorithm can be used by several routing algorithms for ad hoc networks. An elected clusterhead is assigned for communication with all other clusters. Analysis and simulation of the algorithm has been implemented using GloMoSim networks simulator, MATLAB and MAPL11 proved that the proposed algorithm achieves the goals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=MANET" title=" MANET"> MANET</a>, <a href="https://publications.waset.org/abstracts/search?q=Ad-hoc" title=" Ad-hoc"> Ad-hoc</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20head%20size" title=" cluster head size"> cluster head size</a>, <a href="https://publications.waset.org/abstracts/search?q=linked%20cluster%20algorithm" title=" linked cluster algorithm"> linked cluster algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20and%20dropped%20packets" title=" loss and dropped packets"> loss and dropped packets</a> </p> <a href="https://publications.waset.org/abstracts/41610/simulation-approach-for-a-comparison-of-linked-cluster-algorithm-and-clusterhead-size-algorithm-in-ad-hoc-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3545</span> Hybrid Algorithm for Frequency Channel Selection in Wi-Fi Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Hern%C3%A1ndez">Cesar Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Giral"> Diego Giral</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrid%20P%C3%A1ez"> Ingrid Páez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article proposes a hybrid algorithm for spectrum allocation in cognitive radio networks based on the algorithms Analytical Hierarchical Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to improve the performance of the spectrum mobility of secondary users in cognitive radio networks. To calculate the level of performance of the proposed algorithm a comparative analysis between the proposed AHP-TOPSIS, Grey Relational Analysis (GRA) and Multiplicative Exponent Weighting (MEW) algorithm is performed. Four evaluation metrics is used. These metrics are the accumulative average of failed handoffs, the accumulative average of handoffs performed, the accumulative average of transmission bandwidth, and the accumulative average of the transmission delay. The results of the comparison show that AHP-TOPSIS Algorithm provides 2.4 times better performance compared to a GRA Algorithm and, 1.5 times better than the MEW Algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm" title=" hybrid algorithm"> hybrid algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20handoff" title=" spectrum handoff"> spectrum handoff</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20networks" title=" wireless networks"> wireless networks</a> </p> <a href="https://publications.waset.org/abstracts/34830/hybrid-algorithm-for-frequency-channel-selection-in-wi-fi-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3544</span> Modified Active (MA) Algorithm to Generate Semantic Web Related Clustered Hierarchy for Keyword Search</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Leena%20Giri">G. Leena Giri</a>, <a href="https://publications.waset.org/abstracts/search?q=Archana%20Mathur"> Archana Mathur</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Manjula"> S. H. Manjula</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Venugopal"> K. R. Venugopal</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Patnaik"> L. M. Patnaik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Keyword search in XML documents is based on the notion of lowest common ancestors in the labelled trees model of XML documents and has recently gained a lot of research interest in the database community. In this paper, we propose the Modified Active (MA) algorithm which is an improvement over the active clustering algorithm by taking into consideration the entity aspect of the nodes to find the level of the node pertaining to a particular keyword input by the user. A portion of the bibliography database is used to experimentally evaluate the modified active algorithm and results show that it performs better than the active algorithm. Our modification improves the response time of the system and thereby increases the efficiency of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=keyword%20matching%20patterns" title="keyword matching patterns">keyword matching patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=MA%20algorithm" title=" MA algorithm"> MA algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20search" title=" semantic search"> semantic search</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management" title=" knowledge management"> knowledge management</a> </p> <a href="https://publications.waset.org/abstracts/6608/modified-active-ma-algorithm-to-generate-semantic-web-related-clustered-hierarchy-for-keyword-search" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3543</span> Cuckoo Search (CS) Optimization Algorithm for Solving Constrained Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sait%20Ali%20Uymaz">Sait Ali Uymaz</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BClay%20Tezel"> Gülay Tezel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the comparison results on the performance of the Cuckoo Search (CS) algorithm for constrained optimization problems. For constraint handling, CS algorithm uses penalty method. CS algorithm is tested on thirteen well-known test problems and the results obtained are compared to Particle Swarm Optimization (PSO) algorithm. Mean, best, median and worst values were employed for the analyses of performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cuckoo%20search" title="cuckoo search">cuckoo search</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=constrained%20optimization%20problems" title=" constrained optimization problems"> constrained optimization problems</a>, <a href="https://publications.waset.org/abstracts/search?q=penalty%20method" title=" penalty method"> penalty method</a> </p> <a href="https://publications.waset.org/abstracts/13991/cuckoo-search-cs-optimization-algorithm-for-solving-constrained-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3542</span> Left to Right-Right Most Parsing Algorithm with Lookahead</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamil%20Ahmed">Jamil Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Left to Right-Right Most (LR) parsing algorithm is a widely used algorithm of syntax analysis. It is contingent on a parsing table, whereas the parsing tables are extracted from the grammar. The parsing table specifies the actions to be taken during parsing. It requires that the parsing table should have no action conflicts for the same input symbol. This requirement imposes a condition on the class of grammars over which the LR algorithms work. However, there are grammars for which the parsing tables hold action conflicts. In such cases, the algorithm needs a capability of scanning (looking-ahead) next input symbols ahead of the current input symbol. In this paper, a ‘Left to Right’-‘Right Most’ parsing algorithm with lookahead capability is introduced. The 'look-ahead' capability in the LR parsing algorithm is the major contribution of this paper. The practicality of the proposed algorithm is substantiated by the parser implementation of the Context Free Grammar (CFG) of an already proposed programming language 'State Controlled Object Oriented Programming' (SCOOP). SCOOP’s Context Free Grammar has 125 productions and 192 item sets. This algorithm parses SCOOP while the grammar requires to ‘look ahead’ the input symbols due to action conflicts in its parsing table. Proposed LR parsing algorithm with lookahead capability can be viewed as an optimization of ‘Simple Left to Right’-‘Right Most’ (SLR) parsing algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=left%20to%20right-right%20most%20parsing" title="left to right-right most parsing">left to right-right most parsing</a>, <a href="https://publications.waset.org/abstracts/search?q=syntax%20analysis" title=" syntax analysis"> syntax analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=bottom-up%20parsing%20algorithm" title=" bottom-up parsing algorithm"> bottom-up parsing algorithm</a> </p> <a href="https://publications.waset.org/abstracts/128733/left-to-right-right-most-parsing-algorithm-with-lookahead" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3541</span> Improved Whale Algorithm Based on Information Entropy and Its Application in Truss Structure Optimization Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serges%20Mendomo%20%20Meye">Serges Mendomo Meye</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Guowei"> Li Guowei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shen%20Zhenzhong"> Shen Zhenzhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Gan%20Lei"> Gan Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Liqun"> Xu Liqun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given the limitations of the original whale optimization algorithm (WAO) in local optimum and low convergence accuracy in truss structure optimization problems, based on the fundamental whale algorithm, an improved whale optimization algorithm (SWAO) based on information entropy is proposed. The information entropy itself is an uncertain measure. It is used to control the range of whale searches in path selection. It can overcome the shortcomings of the basic whale optimization algorithm (WAO) and can improve the global convergence speed of the algorithm. Taking truss structure as the optimization research object, the mathematical model of truss structure optimization is established; the cross-sectional area of truss is taken as the design variable; the objective function is the weight of truss structure; and an improved whale optimization algorithm (SWAO) is used for optimization design, which provides a new idea and means for its application in large and complex engineering structure optimization design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20entropy" title="information entropy">information entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title=" structural optimization"> structural optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=truss%20structure" title=" truss structure"> truss structure</a>, <a href="https://publications.waset.org/abstracts/search?q=whale%20algorithm" title=" whale algorithm"> whale algorithm</a> </p> <a href="https://publications.waset.org/abstracts/139986/improved-whale-algorithm-based-on-information-entropy-and-its-application-in-truss-structure-optimization-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3540</span> Parallel Version of Reinhard’s Color Transfer Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Bhardwaj">Abhishek Bhardwaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Bajpai"> Manish Kumar Bajpai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An image with its content and schema of colors presents an effective mode of information sharing and processing. By changing its color schema different visions and prospect are discovered by the users. This phenomenon of color transfer is being used by Social media and other channel of entertainment. Reinhard et al’s algorithm was the first one to solve this problem of color transfer. In this paper, we make this algorithm efficient by introducing domain parallelism among different processors. We also comment on the factors that affect the speedup of this problem. In the end by analyzing the experimental data we claim to propose a novel and efficient parallel Reinhard’s algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reinhard%20et%20al%E2%80%99s%20algorithm" title="Reinhard et al’s algorithm">Reinhard et al’s algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20transferring" title=" color transferring"> color transferring</a>, <a href="https://publications.waset.org/abstracts/search?q=parallelism" title=" parallelism"> parallelism</a>, <a href="https://publications.waset.org/abstracts/search?q=speedup" title=" speedup"> speedup</a> </p> <a href="https://publications.waset.org/abstracts/21874/parallel-version-of-reinhards-color-transfer-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3539</span> A Filtering Algorithm for a Nonlinear State-Space Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Eqal%20Al%20Mazrooei">Abdullah Eqal Al Mazrooei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kalman filter is a famous algorithm that utilizes to estimate the state in the linear systems. It has numerous applications in technology and science. Since of the most of applications in real life can be described by nonlinear systems. So, Kalman filter does not work with the nonlinear systems because it is suitable to linear systems only. In this work, a nonlinear filtering algorithm is presented which is suitable to use with the special kinds of nonlinear systems. This filter generalizes the Kalman filter. This means that this filter also can be used for the linear systems. Our algorithm depends on a special linearization of the second degree. We introduced the nonlinear algorithm with a bilinear state-space model. A simulation example is presented to illustrate the efficiency of the algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title="Kalman filter">Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering%20algorithm" title=" filtering algorithm"> filtering algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=state-space%20model" title=" state-space model"> state-space model</a> </p> <a href="https://publications.waset.org/abstracts/74331/a-filtering-algorithm-for-a-nonlinear-state-space-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3538</span> Chemical Reaction Algorithm for Expectation Maximization Clustering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Ni">Li Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Pen%20ManMan"> Pen ManMan</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20KenLi"> Li KenLi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction%20optimization" title="chemical reaction optimization">chemical reaction optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=expection%20maimization" title=" expection maimization"> expection maimization</a>, <a href="https://publications.waset.org/abstracts/search?q=initia" title=" initia"> initia</a>, <a href="https://publications.waset.org/abstracts/search?q=objective%20function%20clustering" title=" objective function clustering"> objective function clustering</a> </p> <a href="https://publications.waset.org/abstracts/54706/chemical-reaction-algorithm-for-expectation-maximization-clustering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">713</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm&amp;page=119">119</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm&amp;page=120">120</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10