CINXE.COM
Search results for: water infiltration
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: water infiltration</title> <meta name="description" content="Search results for: water infiltration"> <meta name="keywords" content="water infiltration"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="water infiltration" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="water infiltration"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8808</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: water infiltration</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8808</span> Investigation of Steady State Infiltration Rate for Different Head Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nour%20Aljafari">Nour Aljafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam"> Mariam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Maani"> S. Maani</a>, <a href="https://publications.waset.org/abstracts/search?q=Serter%20Atabay"> Serter Atabay</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarig%20Ali"> Tarig Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Daker"> Said Daker</a>, <a href="https://publications.waset.org/abstracts/search?q=Lara%20Daher"> Lara Daher</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20Bukhammas"> Hamad Bukhammas</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abou%20Shakra"> Mohammed Abou Shakra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at determining the soil characteristics that influence the irrigation process of green landscapes and deciding on the optimum amount of water needed for irrigation. The laboratory experiments were conducted using the constant head methodology to determine the soil infiltration rates. The steady state infiltration rate was reached after 10 minutes of infiltration at a rate of 200 mm/hr. The effects of different water heads on infiltration rates were also investigated, and the head of 11 cm was found to be the optimum head for the test. The experimental results showed consistent infiltration results for the range between 11 cm and 15 cm. The study also involved finding the initial moisture content, which ranged between 5% and 25%, and finding the organic content, which occupied 1% to 2% of the soil. These results will be later utilized, using the water balance approach, to estimate the optimum amount of water needed for irrigation for changing weather conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infiltration%20rate" title="infiltration rate">infiltration rate</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=grass%20type" title=" grass type"> grass type</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20content" title=" organic content"> organic content</a> </p> <a href="https://publications.waset.org/abstracts/52538/investigation-of-steady-state-infiltration-rate-for-different-head-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8807</span> Determining Water Infiltration Zone Using 2-D Resistivity Imaging Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azim%20Hilmy%20Mohamad%20Yusof">Azim Hilmy Mohamad Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Iqbal%20Mubarak%20Faharul%20Azman"> Muhamad Iqbal Mubarak Faharul Azman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Azwin%20Ismail"> Nur Azwin Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Noer%20El%20Hidayah%20Ismail"> Noer El Hidayah Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infiltration is the process by which precipitation or water soaks into subsurface soils and moves into rocks through cracks and pore spaces. This paper explains how the water infiltration will be identified using 2-D resistivity imaging. Padang Minden, in Universiti Sains Malaysia, Penang has been chosen as the survey area during this study. The study area consists of microcline granite with grain size of medium to coarse. 2-D Resistivity Imaging survey is used to detect subsurface layer for many years by making measurements on the ground surface. The result shows that resistivity value of 0.015 Ωm - 10 Ωm represent the salt water intrusion zone while the resistivity value of 11 Ωm - 100 Ωm is suggested as the boundary zone between the salt water intrusion zone and low saturated zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-D%20resistivity%20imaging" title="2-D resistivity imaging">2-D resistivity imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=microcline%20granite" title=" microcline granite"> microcline granite</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20water%20intrusion" title=" salt water intrusion"> salt water intrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20infiltration" title=" water infiltration"> water infiltration</a> </p> <a href="https://publications.waset.org/abstracts/62800/determining-water-infiltration-zone-using-2-d-resistivity-imaging-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8806</span> Experimental Testing of a Synthetic Mulch to Reduce Runoff and Evaporative Water Losses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasmeen%20Saleem">Yasmeen Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20%20Berliner"> Pedro Berliner</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurit%20Agam"> Nurit Agam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most severe limitation for plant production in arid areas is water. Rainfall events are rare but can have pulses of high intensity. As a result, crusts are formed, which decreases infiltration into the soil, and results additionally in erosive losses of soil. Direct evaporation of water from the wetted soil can account for large fractions of the water stored in the soil. Different kinds of mulches have been used to decrease the loss of water in arid and semi-arid region. This study aims to evaluate the effect of polystyrene styrofoam pellets mulch on soil infiltration, runoff, and evaporation as a more efficient and economically viable mulch alternative. Polystyrene styrofoam pellets of two sizes (0.5 and 1 cm diameter) will be placed on top of the soil in two mulch layer depths (1 and 2 cm), in addition to the non-mulched treatment. The rainfall simulator will be used as an artificial source of rain. The preliminary results in the prototype experiment indicate that polystyrene styrofoam pellets decreased runoff, increased soil-water infiltration. We are still testing the effect of these pellets on decreasing the soil-water evaporation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20mulch" title="synthetic mulch">synthetic mulch</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration" title=" infiltration"> infiltration</a> </p> <a href="https://publications.waset.org/abstracts/113759/experimental-testing-of-a-synthetic-mulch-to-reduce-runoff-and-evaporative-water-losses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8805</span> Influence of Rainfall Intensity on Infiltration and Deformation of Unsaturated Soil Slopes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouziane%20Mohamed%20Tewfik">Bouziane Mohamed Tewfik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve the understanding of the influence of rainfall intensity on infiltration and deformation behaviour of unsaturated soil slopes, numerical 2D analyses are carried out by a three phase elasto-viscoplastic seepage-deformation coupled method. From the numerical results, it is shown that regardless of the saturated permeability of the soil slope, the increase in the pore water pressure (reduction in suction) during rainfall infiltration is localized close to the slope surface. In addition, the generation of the pore water pressure and the lateral displacement are mainly controlled by the ratio of the rainfall intensity to the saturated permeability of the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soil" title="unsaturated soil">unsaturated soil</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20infiltration" title=" rainfall infiltration"> rainfall infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/7217/influence-of-rainfall-intensity-on-infiltration-and-deformation-of-unsaturated-soil-slopes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8804</span> Determination of the Quantity of Water Absorbed by the Plant When Irrigating by Infiltration in Arid Regions (Case of Ouargla in Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Benlarbi">Mehdi Benlarbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Oulhaci"> Dalila Oulhaci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several physical, human and economic factors come into play in the choice of an irrigation system for developing arid and semi-arid regions. Since it is impossible to define or weight quantitatively all the relevant factors in each case, the choice of the system is often based on subjective preferences rather than explicit analysis. Over the past decade, irrational irrigation in the Ouargla region has evolved to a certain extent based largely on water wastage and which may pose risks to the environment both off-site and at the site. In the whole region, the environment is damaged by excess water because the water tables that tend to be high form swamps that pollute nature on the surface. The purpose of our work is a comparison between sprinkler irrigation and drip irrigation using bottles. By irrigating with the aid of the bottle and giving a volume of 4 liters with a flow rate of one (1) liter per hour, the watering dose received varies between 6 and 7 mm without infiltration losses. And for the case of sprinkler irrigation, the dose received may not exceed 2.5mm. E in some cases, we have a quantity of water lost by infiltration. This shows that irrigation using the bottle is much more efficient than sprinkling. Because, on the one hand, a large amount of water is absorbed by the plant and on the other hand, there is no loss by infiltration. The results obtained are very significant because, on the one hand, we reuse local products, and on the other hand, as the bottles are buried, we avoid water losses by evaporation, especially in dry periods and salinization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resources" title="resources">resources</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=arid" title=" arid"> arid</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration" title=" infiltration"> infiltration</a> </p> <a href="https://publications.waset.org/abstracts/169669/determination-of-the-quantity-of-water-absorbed-by-the-plant-when-irrigating-by-infiltration-in-arid-regions-case-of-ouargla-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8803</span> Detection of Intravenous Infiltration Using Impedance Parameters in Patients in a Long-Term Care Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ihn%20Sook%20Jeong">Ihn Sook Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun%20Joo%20Lee"> Eun Joo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Hyung%20Kim"> Jae Hyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gun%20Ho%20Kim"> Gun Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Jun%20Hwang"> Young Jun Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated intravenous (IV) infiltration using bioelectrical impedance for 27 hospitalized patients in a long-term care hospital. Impedance parameters showed significant differences before and after infiltration as follows. First, the resistance (R) after infiltration significantly decreased compared to the initial resistance. This indicates that the IV solution flowing from the vein due to infiltration accumulates in the extracellular fluid (ECF). Second, the relative resistance at 50 kHz was 0.94 ± 0.07 in 9 subjects without infiltration and was 0.75 ± 0.12 in 18 subjects with infiltration. Third, the magnitude of the reactance (Xc) decreased after infiltration. This is because IV solution and blood components released from the vein tend to aggregate in the cell membrane (and acts analogously to the linear/parallel circuit), thereby increasing the capacitance (Cm) of the cell membrane and reducing the magnitude of reactance. Finally, the data points plotted in the R-Xc graph were distributed on the upper right before infiltration but on the lower left after infiltration. This indicates that the infiltration caused accumulation of fluid or blood components in the epidermal and subcutaneous tissues, resulting in reduced resistance and reactance, thereby lowering integrity of the cell membrane. Our findings suggest that bioelectrical impedance is an effective method for detection of infiltration in a noninvasive and quantitative manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intravenous%20infiltration" title="intravenous infiltration">intravenous infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance" title=" impedance"> impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters" title=" parameters"> parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=reactance" title=" reactance"> reactance</a> </p> <a href="https://publications.waset.org/abstracts/96899/detection-of-intravenous-infiltration-using-impedance-parameters-in-patients-in-a-long-term-care-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8802</span> Rainwater Harvesting and Management of Ground Water (Case Study Weather Modification Project in Iran)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Poormohammadi">Samaneh Poormohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Golkar"> Farid Golkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahideh%20Khatibi%20Sarabi"> Vahideh Khatibi Sarabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change and consecutive droughts have increased the importance of using rainwater harvesting methods. One of the methods of rainwater harvesting and, in other words, the management of atmospheric water resources is the use of weather modification technologies. Weather modification (also known as weather control) is the act of intentionally manipulating or altering the weather. The most common form of weather modification is cloud seeding, which increases rain or snow, usually for the purpose of increasing the local water supply. Cloud seeding operations in Iran have been married since 1999 in central Iran with the aim of harvesting rainwater and reducing the effects of drought. In this research, we analyze the results of cloud seeding operations in the Simindashtplain in northern Iran. Rainwater harvesting with the help of cloud seeding technology has been evaluated through its effects on surface water and underground water. For this purpose, two different methods have been used to estimate runoff. The first method is the US Soil Conservation Service (SCS) curve number method. Another method, known as the reasoning method, has also been used. In order to determine the infiltration rate of underground water, the balance reports of the comprehensive water plan of the country have been used. In this regard, the study areas located in the target area of each province have been extracted by drawing maps of the influence coefficients of each area in the GIS software. It should be mentioned that the infiltration coefficients were taken from the balance sheet reports of the country's comprehensive water plan. Then, based on the area of each study area, the weighted average of the infiltration coefficient of the study areas located in the target area of each province is considered as the infiltration coefficient of that province. Results show that the amount of water extracted from the rain with the help of cloud seeding projects in Simindasht is as follows: an increase in runoff 63.9 million cubic meters (with SCS equation) or 51.2 million cubic meters (with logical equation) and an increase in ground water resources: 40.5 million cubic meters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rainwater%20harvesting" title="rainwater harvesting">rainwater harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20water" title=" ground water"> ground water</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20water%20resources" title=" atmospheric water resources"> atmospheric water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20modification" title=" weather modification"> weather modification</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20seeding" title=" cloud seeding"> cloud seeding</a> </p> <a href="https://publications.waset.org/abstracts/158437/rainwater-harvesting-and-management-of-ground-water-case-study-weather-modification-project-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8801</span> Conjunctive Use of Shallow Groundwater for Irrigation Purpose: The Case of Wonji Shoa Sugar Estate, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Megersa%20Olumana%20Dinka">Megersa Olumana Dinka</a>, <a href="https://publications.waset.org/abstracts/search?q=Kassahun%20Birhanu%20Tadesse"> Kassahun Birhanu Tadesse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Irrigation suitability of shallow groundwater (SGW) was investigated by taking thirty groundwater samples from piezometers and hand-dug wells in Wonji Shoa Sugar Estate (WSSE) (Ethiopia). Many physicochemical parameters (Mg²⁺, Na⁺, Ca²⁺, K⁺, CO₃-, SO4²⁻, HCO₃⁻, Cl⁻, TH, EC, TDS and pH) were analyzed following standard procedures. Different irrigation indices (MAR, SSP, SAR, RSC, KR, and PI) were also used for SGW suitability assessment. If all SGW are blended and used for irrigation, the salinity problem would be slight to moderate, and 100% of potential sugarcane yield could be obtained. The infiltration and sodium ion toxicity problems of the blended water would be none to moderate, and slight to moderate, respectively. As sugarcane is semi-tolerant to sodium toxicity, no significant sodium toxicity problem would be expected from the use of blended water. Blending SGW would also reduce each chloride and boron ion toxicity to none. In general, the rating of SGW was good to excellent for irrigation in terms of average EC (salinity), and excellent in terms of average SAR (infiltration). The SGW of the WSSE was categorized under C3S1 (high salinity and low sodium hazard). In conclusion, the conjunctive use of groundwater for irrigation would help to reduce the potential effect of waterlogging and salinization and their associated problems on soil and sugarcane production and productivity. However, a high value of SSP and RSC indicate a high possibility of infiltration problem. Hence, it is advisable to use the SGW for irrigation after blending with surface water. In this case, the optimum blending ratio of the surface to SGW sources has to be determined for sustainable sugarcane productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blending" title="blending">blending</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration" title=" infiltration"> infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=sodicity" title=" sodicity"> sodicity</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane" title=" sugarcane"> sugarcane</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/81841/conjunctive-use-of-shallow-groundwater-for-irrigation-purpose-the-case-of-wonji-shoa-sugar-estate-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8800</span> Quantification and Detection of Non-Sewer Water Infiltration and Inflow in Urban Sewer Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Beheshti">M. Beheshti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Saegrov"> S. Saegrov</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Muthanna"> T. M. Muthanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Separated sewer systems are designed to transfer the wastewater from houses and industrial sections to wastewater treatment plants. Unwanted water in the sewer systems is a well-known problem, i.e. storm-water inflow is around 50% of the foul sewer, and groundwater infiltration to the sewer system can exceed 50% of total wastewater volume in deteriorated networks. Infiltration and inflow of non-sewer water (I/I) into sewer systems is unfavorable in separated sewer systems and can trigger overloading the system and reducing the efficiency of wastewater treatment plants. Moreover, I/I has negative economic, environmental, and social impacts on urban areas. Therefore, for having sustainable management of urban sewer systems, I/I of unwanted water into the urban sewer systems should be considered carefully and maintenance and rehabilitation plan should be implemented on these water infrastructural assets. This study presents a methodology to identify and quantify the level of I/I into the sewer system. Amount of I/I is evaluated by accurate flow measurement in separated sewer systems for specified isolated catchments in Trondheim city (Norway). Advanced information about the characteristics of I/I is gained by CCTV inspection of sewer pipelines with high I/I contribution. Achieving enhanced knowledge about the detection and localization of non-sewer water in foul sewer system during the wet and dry weather conditions will enable the possibility for finding the problem of sewer system and prioritizing them and taking decisions for rehabilitation and renewal planning in the long-term. Furthermore, preventive measures and optimization of sewer systems functionality and efficiency can be executed by maintenance of sewer system. In this way, the exploitation of sewer system can be improved by maintenance and rehabilitation of existing pipelines in a sustainable way by more practical cost-effective and environmental friendly way. This study is conducted on specified catchments with different properties in Trondheim city. Risvollan catchment is one of these catchments with a measuring station to investigate hydrological parameters through the year, which also has a good database. For assessing the infiltration in a separated sewer system, applying the flow rate measurement method can be utilized in obtaining a general view of the network condition from infiltration point of view. This study discusses commonly used and advanced methods of localizing and quantifying I/I in sewer systems. A combination of these methods give sewer operators the possibility to compare different techniques and obtain reliable and accurate I/I data which is vital for long-term rehabilitation plans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20rate%20measurement" title="flow rate measurement">flow rate measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20and%20inflow%20%28I%2FI%29" title=" infiltration and inflow (I/I)"> infiltration and inflow (I/I)</a>, <a href="https://publications.waset.org/abstracts/search?q=non-sewer%20water" title=" non-sewer water"> non-sewer water</a>, <a href="https://publications.waset.org/abstracts/search?q=separated%20sewer%20systems" title=" separated sewer systems"> separated sewer systems</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20management" title=" sustainable management"> sustainable management</a> </p> <a href="https://publications.waset.org/abstracts/20178/quantification-and-detection-of-non-sewer-water-infiltration-and-inflow-in-urban-sewer-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8799</span> Evaluation of the Conditions of Managed Aquifer Recharge in the West African Basement Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Palingba%20Aim%C3%A9%20Marie%20Doilkom">Palingba Aimé Marie Doilkom</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahamadou%20Ko%C3%AFta"> Mahamadou Koïta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-michel%20Vouillamoz"> Jean-michel Vouillamoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Angelbert%20Biaou"> Angelbert Biaou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most African populations rely on groundwater in rural areas for their consumption. Indeed, in the face of climate change and strong demographic growth, groundwater, particularly in the basement, is increasingly in demand. The question of the sustainability of water resources in this type of environment is therefore becoming a major issue. Groundwater recharge can be natural or artificial. Unlike natural recharge, which often results from the natural infiltration of surface water (e.g. a share of rainfall), artificial recharge consists of causing water infiltration through appropriate developments to artificially replenish the water stock of an aquifer. Artificial recharge is, therefore, one of the measures that can be implemented to secure water supply, combat the effects of climate change, and, more generally, contribute to improving the quantitative status of groundwater bodies. It is in this context that the present research is conducted with the aim of developing artificial recharge in order to contribute to the sustainability of basement aquifers in a context of climatic variability and constantly increasing water needs of populations. In order to achieve the expected results, it is therefore important to determine the characteristics of the infiltration basins and to identify the areas suitable for their implementation. The geometry of the aquifer was reproduced, and the hydraulic properties of the aquifer were collected and characterized, including boundary conditions, hydraulic conductivity, effective porosity, recharge, Van Genuchten parameters, and saturation indices. The aquifer of the Sanon experimental site is made up of three layers, namely the saprolite, the fissured horizon, and the healthy basement. Indeed, the saprolite and the fissured medium were considered for the simulations. The first results with FEFLOW model show that the water table reacts continuously for the first 100 days before stabilizing. The hydraulic charge increases by an average of 1 m. The further away from the basin, the less the water table reacts. However, if a variable hydraulic head is imposed on the basins, it can be seen that the response of the water table is not uniform over time. The lower the basin hydraulic head, the less it affects the water table. These simulations must be continued by improving the characteristics of the basins in order to obtain the appropriate characteristics for a good recharge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basement%20area" title="basement area">basement area</a>, <a href="https://publications.waset.org/abstracts/search?q=FEFLOW" title=" FEFLOW"> FEFLOW</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20basin" title=" infiltration basin"> infiltration basin</a>, <a href="https://publications.waset.org/abstracts/search?q=MAR" title=" MAR"> MAR</a> </p> <a href="https://publications.waset.org/abstracts/162819/evaluation-of-the-conditions-of-managed-aquifer-recharge-in-the-west-african-basement-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8798</span> The Influence of Different Technologies on the Infiltration Properties and Soil Surface Crusting Processing in the North Bohemia Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Dumbrovsky">Miroslav Dumbrovsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucie%20Larisova"> Lucie Larisova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The infiltration characteristic of the soil surface is one of the major factors that determines the potential soil degradation risk. The physical, chemical and biological characteristic of soil is changed by the processing of soil. The infiltration soil ability has an important role in soil and water conservation. The subject of the contribution is the evaluation of the influence of the conventional tillage and reduced tillage technology on soil surface crusting processing and infiltration properties of the soil in the North Bohemia region. Field experimental work at the area was carried out in the years 2013-2016 on Cambisol district medium-heavy clayey soil. The research was conducted on sloping erosion-endangered blocks of compacted arable land. The areas were chosen each year in the way that one of the experimental areas was handled by conventional tillage technologies and the other by reduced tillage technologies. Intact soil samples were taken into Kopecký´s cylinders in the three landscape positions, at a depth of 10 cm (representing topsoil) and 30 cm (representing subsoil). The cumulative infiltration was measured using a mini-disc infiltrometer near the consumption points. The Zhang method (1997), which provides an estimate of the unsaturated hydraulic conductivity K(h), was used for the evaluation of the infiltration tests of the mini-disc infiltrometer. The soil profile processed by conventional tillage showed a higher degree of compaction and soil crusting processing. The bulk density was between 1.10–1.67 g.cm⁻³, compared to the land processed by the reduced tillage technology, where the values were between 0.80–1.29 g.cm⁻³. Unsaturated hydraulic conductivity values were about one-third higher within the reduced tillage technology soil processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20crusting%20processing" title="soil crusting processing">soil crusting processing</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20hydraulic%20conductivity" title=" unsaturated hydraulic conductivity"> unsaturated hydraulic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20infiltration" title=" cumulative infiltration"> cumulative infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20density" title=" bulk density"> bulk density</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a> </p> <a href="https://publications.waset.org/abstracts/75019/the-influence-of-different-technologies-on-the-infiltration-properties-and-soil-surface-crusting-processing-in-the-north-bohemia-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8797</span> Assessment the Capacity of Retention of a Natural Material for the Protection of Ground Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hakim%20Aguedal">Hakim Aguedal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Iddou"> Abdelkader Iddou</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdalla%20Aziz"> Abdalla Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhadi%20Bentouami"> Abdelhadi Bentouami</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Bensalah"> Ferhat Bensalah</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Bensadek"> Salah Bensadek </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major environmental risk of soil pollution is the contamination of groundwater by infiltration of organic and inorganic pollutants that can cause a serious pollution. To prevent the migration of this pollution through this structure, many studies propose the installation of layers, which play a role of a barrier that inhibiting the contamination of groundwater by limiting or slowing the flow of rainwater carrying pollution through the layers of soil. However, it is practically impossible to build a barrier layer that let through only water, but it is possible to design a structure with low permeability, which reduces the infiltration of dangerous pollutant. In an environmental context of groundwater protection, the main objective of this study was to investigate the environmental and appropriate suitability method to preserve groundwater, by establishment of a permeable reactive barrier (PRB) intermediate in soil. Followed the influence of several parameters allow us to find the most effective materials and the most appropriate way to incorporate this barrier in the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ground%20water" title="Ground water">Ground water</a>, <a href="https://publications.waset.org/abstracts/search?q=protection" title=" protection"> protection</a>, <a href="https://publications.waset.org/abstracts/search?q=permeable%20reactive%20Barrier" title=" permeable reactive Barrier"> permeable reactive Barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20pollution." title=" soil pollution."> soil pollution.</a> </p> <a href="https://publications.waset.org/abstracts/22346/assessment-the-capacity-of-retention-of-a-natural-material-for-the-protection-of-ground-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8796</span> Decision Tree Analysis of Risk Factors for Intravenous Infiltration among Hospitalized Children: A Retrospective Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soon-Mi%20Park">Soon-Mi Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihn%20Sook%20Jeong"> Ihn Sook Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This retrospective study was aimed to identify risk factors of intravenous (IV) infiltration for hospitalized children. The participants were 1,174 children for test and 424 children for validation, who admitted to a general hospital, received peripheral intravenous injection therapy at least once and had complete records. Data were analyzed with frequency and percentage or mean and standard deviation were calculated, and decision tree analysis was used to screen for the most important risk factors for IV infiltration for hospitalized children. The decision tree analysis showed that the most important traditional risk factors for IV infiltration were the use of ampicillin/sulbactam, IV insertion site (lower extremities), and medical department (internal medicine) both in the test sample and validation sample. The correct classification was 92.2% in the test sample and 90.1% in the validation sample. More careful attention should be made to patients who are administered ampicillin/sulbactam, have IV site in lower extremities and have internal medical problems to prevent or detect infiltration occurrence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree%20analysis" title="decision tree analysis">decision tree analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=intravenous%20infiltration" title=" intravenous infiltration"> intravenous infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=child" title=" child"> child</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a> </p> <a href="https://publications.waset.org/abstracts/96898/decision-tree-analysis-of-risk-factors-for-intravenous-infiltration-among-hospitalized-children-a-retrospective-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8795</span> A Case Study of Rainfall Derived Inflow/Infiltration in a Separate Sewer System in Gwangju, Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bumjo%20Kim">Bumjo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Jin%20Kim"> Hyun Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon%20Ha%20Kim"> Joon Ha Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The separate sewer system is that collects the wastewater as a sewer pipe and rainfall as a stormwater pipe separately, and then sewage is treated in the wastewater treatment plant, the stormwater is discharged to rivers or lakes through stormwater drainage pipes. Unfortunately, even for separate sewer systems, it is not possible to prevent Rainfall Driven Inflow/Infiltration(RDII) completely to the sewer pipe. Even if the sewerage line is renovated, there is an ineluctable RDII due to the combined sewer system in the house or the difficulty of sewage maintenance in private areas. The basic statistical analysis was performed using environmental data including rainfall, sewage, water qualities and groundwater level in the strict of Gwangju in South Korea. During rainfall in the target area, RDII showed an increased rate of 13.4 ~ 53.0% compared to that of a clear day and showed a rapid hydrograph response of 0.3 ~ 3.0 hr. As a result of water quality analysis, BOD5 concentration decreased by 17.3 % and salinity concentration decreased by 8.8 % at the representative spot in the project area compared to the sunny day during rainfall. In contrast to the seasonal fluctuation range of 0.38 m ~ 0.55 m in groundwater in Gwangju area and 0.58 m ~ 0.78 m in monthly fluctuation range, while the difference between groundwater level and the depth of sewer pipe laying was 2.70 m on average, which is larger than the range of fluctuation. Comprehensively, it can be concluded that the increasing of flowrate at sewer line is due to not infiltration water caused by groundwater level rise, construction failure, cracking due to joint failure or conduit deterioration, rainfall was directly inflowed into the sewer line rapidly. Acknowledgements: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20water" title="ground water">ground water</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20driven%20inflow%2Finfiltration" title=" rainfall driven inflow/infiltration"> rainfall driven inflow/infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=separate%20sewer%20system" title=" separate sewer system"> separate sewer system</a> </p> <a href="https://publications.waset.org/abstracts/85961/a-case-study-of-rainfall-derived-inflowinfiltration-in-a-separate-sewer-system-in-gwangju-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8794</span> An Approach towards Smart Future: Ict Infrastructure Integrated into Urban Water Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahsan%20Ali">Ahsan Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayank%20Ostwal"> Mayank Ostwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Agarwal"> Nikhil Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract—According to a World Bank report, millions of people across the globe still do not have access to improved water services. With uninterrupted growth of cities and urban inhabitants, there is a mounting need to safeguard the sustainable expansion of cities. Efficient functioning of the urban components and high living standards of the residents are needed to be ensured. The water and sanitation network of an urban development is one of its most essential parts of its critical infrastructure. The growth in urban population is leading towards increased water demand, and thus, the local water resources are severely strained. 'Smart water' is referred to water and waste water infrastructure that is able to manage the limited resources and the energy used to transport it. It enables the sustainable consumption of water resources through co-ordinate water management system, by integrating Information Communication Technology (ICT) solutions, intended at maximizing the socioeconomic benefits without compromising the environmental values. This paper presents a case study from a medium sized city in North-western Pakistan. Currently, water is getting contaminated due to the proximity between water and sewer pipelines in the study area, leading to public health issues. Due to unsafe grey water infiltration, the scarce ground water is also getting polluted. This research takes into account the design of smart urban water network by integrating ICT (Information and Communication Technology) with urban water network. The proximity between the existing water supply network and sewage network is analyzed and a design of new water supply system is proposed. Real time mapping of the existing urban utility networks will be projected with the help of GIS applications. The issue of grey water infiltration is addressed by providing sustainable solutions with the help of locally available materials, keeping in mind the economic condition of the area. To deal with the current growth of urban population, it is vital to develop new water resources. Hence, distinctive and cost effective procedures to harness rain water would be suggested as a part of the research study experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20water" title=" smart water"> smart water</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20water%20management" title=" urban water management"> urban water management</a> </p> <a href="https://publications.waset.org/abstracts/55154/an-approach-towards-smart-future-ict-infrastructure-integrated-into-urban-water-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8793</span> Water Balance in the Forest Basins Essential for the Water Supply in Central America</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Listo%20Ubeda">Elena Listo Ubeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Marchamalo%20Sacristan"> Miguel Marchamalo Sacristan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for water doubles every twenty years, at a rate which is twice as fast as the world´s population growth. Despite it´s great importance, water is one of the most degraded natural resources in the world, mainly because of the reduction of natural vegetation coverage, population growth, contamination and changes in the soil use which reduces its capacity to collect water. This situation is especially serious in Central America, as reflected in the Human Development reports. The objective of this project is to assist in the improvement of water production and quality in Central America. In order to do these two watersheds in Costa Rica were selected as experiments: that of the Virilla-Durazno River, located in the extreme north east of the central valley which has an Atlantic influence; and that of the Jabillo River, which flows directly into the Pacific. The Virilla river watershed is located over andisols, and that of the Jabillo River is over alfisols, and both are of great importance for water supply to the Greater Metropolitan Area and the future tourist resorts respectively, as well as for the production of agriculture, livestock and hydroelectricity. The hydrological reaction in different soil-cover complexes, varying from the secondary forest to natural vegetation and degraded pasture, was analyzed according to the evaluation of the properties of the soil, infiltration, soil compaction, as well as the effects of the soil cover complex on erosion, calculated by the C factor of the Revised Universal Soil Loss Equation (RUSLE). A water balance was defined for each watershed, in which the volume of water that enters and leaves were estimated, as well as the evapotranspiration, runoff, and infiltration. Two future scenarios, representing the implementation of reforestation and deforestation plans, were proposed, and were analyzed for the effects of the soil cover complex on the water balance in each case. The results obtained show an increase of the ground water recharge in the humid forest areas, and an extension of the study of the dry areas is proposed since the ground water recharge here is diminishing. These results are of great significance for the planning, design of Payment Schemes for Environmental Services and the improvement of the existing water supply systems. In Central America spatial planning is a priority, as are the watersheds, in order to assess the water resource socially and economically, and securing its availability for the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Costa%20Rica" title="Costa Rica">Costa Rica</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration" title=" infiltration"> infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/33045/water-balance-in-the-forest-basins-essential-for-the-water-supply-in-central-america" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8792</span> The Influence of Infiltration and Exfiltration Processes on Maximum Wave Run-Up: A Field Study on Trinidad Beaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shani%20Brathwaite">Shani Brathwaite</a>, <a href="https://publications.waset.org/abstracts/search?q=Deborah%20Villarroel-Lamb"> Deborah Villarroel-Lamb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wave run-up may be defined as the time-varying position of the landward extent of the water’s edge, measured vertically from the mean water level position. The hydrodynamics of the swash zone and the accurate prediction of maximum wave run-up, play a critical role in the study of coastal engineering. The understanding of these processes is necessary for the modeling of sediment transport, beach recovery and the design and maintenance of coastal engineering structures. However, due to the complex nature of the swash zone, there remains a lack of detailed knowledge in this area. Particularly, there has been found to be insufficient consideration of bed porosity and ultimately infiltration/exfiltration processes, in the development of wave run-up models. Theoretically, there should be an inverse relationship between maximum wave run-up and beach porosity. The greater the rate of infiltration during an event, associated with a larger bed porosity, the lower the magnitude of the maximum wave run-up. Additionally, most models have been developed using data collected on North American or Australian beaches and may have limitations when used for operational forecasting in Trinidad. This paper aims to assess the influence and significance of infiltration and exfiltration processes on wave run-up magnitudes within the swash zone. It also seeks to pay particular attention to how well various empirical formulae can predict maximum run-up on contrasting beaches in Trinidad. Traditional surveying techniques will be used to collect wave run-up and cross-sectional data on various beaches. Wave data from wave gauges and wave models will be used as well as porosity measurements collected using a double ring infiltrometer. The relationship between maximum wave run-up and differing physical parameters will be investigated using correlation analyses. These physical parameters comprise wave and beach characteristics such as wave height, wave direction, period, beach slope, the magnitude of wave setup, and beach porosity. Most parameterizations to determine the maximum wave run-up are described using differing parameters and do not always have a good predictive capability. This study seeks to improve the formulation of wave run-up by using the aforementioned parameters to generate a formulation with a special focus on the influence of infiltration/exfiltration processes. This will further contribute to the improvement of the prediction of sediment transport, beach recovery and design of coastal engineering structures in Trinidad. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beach%20porosity" title="beach porosity">beach porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20models" title=" empirical models"> empirical models</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration" title=" infiltration"> infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=swash" title=" swash"> swash</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20run-up" title=" wave run-up "> wave run-up </a> </p> <a href="https://publications.waset.org/abstracts/56508/the-influence-of-infiltration-and-exfiltration-processes-on-maximum-wave-run-up-a-field-study-on-trinidad-beaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8791</span> Modeling Approach for Evaluating Infiltration Rate of a Large-Scale Housing Stock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azzam%20Alosaimi">Azzam Alosaimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different countries attempt to reduce energy demands and Greenhouse Gas (GHG) emissions to mitigate global warming potential. They set different building codes to regulate excessive building’s energy losses. Energy losses occur due to pressure difference between the indoor and outdoor environments, and thus, heat transfers from one region to another. One major sources of energy loss is known as building airtightness. Building airtightness is the fundamental feature of the building envelope that directly impacts infiltration. Most of international building codes require minimum performance for new construction to ensure acceptable airtightness. The execution of airtightness required standards has become more challenging in recent years due to a lack of expertise and equipment, making it costly and time-consuming. Hence, researchers have developed predictive models to predict buildings infiltration rates to meet building codes and to reduce energy and cost. This research applies a theoretical modeling approach using Matlab software to predict mean infiltration rate distributions and total heat loss of Saudi Arabia’s housing stock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infiltration%20rate" title="infiltration rate">infiltration rate</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20demands" title=" energy demands"> energy demands</a>, <a href="https://publications.waset.org/abstracts/search?q=heating%20loss" title=" heating loss"> heating loss</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20loss" title=" cooling loss"> cooling loss</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title=" carbon emissions"> carbon emissions</a> </p> <a href="https://publications.waset.org/abstracts/144883/modeling-approach-for-evaluating-infiltration-rate-of-a-large-scale-housing-stock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8790</span> The Damage and Durability of a Sport Synthetic Resin Floor: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Paglia">C. Paglia</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Mosca"> C. Mosca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic resin floorsare often used in sport infrastructure. These organic materials are often in contact with a bituminous substrate, which in turn is placed on the ground. In this work, the damage of a basket resin field surface was characterized by means of visual inspection, optical microscopy, resin thickness measurements, adhesion strength, water vapor transmission capacity, capillary water adsorption, granulometry of the bituminous conglomerate, the surface properties, and the water ground infiltration speed. The infiltration speed indicates water pemeability. This was due to its composition: clean sand mixed with gravel. Relatively good adhesion was present between the synthetic resin and the bituminous layer. The adhesion resistance of the bituminous layer was relatively low. According to the required bitumoniousasphalt-concrete mixes AC 11 S, the placed material was more porous. Insufficient constipation was present. The spaces values were above the standard limits, while the apparent densities were lower compared to the conventional AC 11 mixtures. The microstructure outlines the high permeability and porosity of the bituminous layer. The synthetic resin wasvapourproof and did not exhibit capillary adsorption. It exhibited a lower thickness as required, and no multiple placing steps were observed. Multiple cavities were detected along with the interface between the bituminous layer and the resin coating with no intermediate layers. The layer for the pore filling in the bituminous surface was not properly applied. The swelling bubbles on the synthetic pavement were caused by the humidity in the bituminous layer. Water or humidity were present prior to the application of the resin, and the effect was worsened by the upward movement of the water from the ground. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resin" title="resin">resin</a>, <a href="https://publications.waset.org/abstracts/search?q=floor" title=" floor"> floor</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/142209/the-damage-and-durability-of-a-sport-synthetic-resin-floor-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8789</span> Permeable Asphalt Pavement as a Measure of Urban Green Infrastructure in the Extreme Events Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%C3%A1rcia%20Afonso">Márcia Afonso</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Fael"> Cristina Fael</a>, <a href="https://publications.waset.org/abstracts/search?q=Marisa%20Dinis-Almeida"> Marisa Dinis-Almeida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Population growth in cities has led to an increase in the infrastructures construction, including buildings and roadways. This aspect leads directly to the soils waterproofing. In turn, changes in precipitation patterns are developing into higher and more frequent intensities. Thus, these two conjugated aspects decrease the rainwater infiltration into soils and increase the volume of surface runoff. The practice of green and sustainable urban solutions has encouraged research in these areas. The porous asphalt pavement, as a green infrastructure, is part of practical solutions set to address urban challenges related to land use and adaptation to climate change. In this field, permeable pavements with porous asphalt mixtures (PA) have several advantages in terms of reducing the runoff generated by the floods. The porous structure of these pavements, compared to a conventional asphalt pavement, allows the rainwater infiltration in the subsoil, and consequently, the water quality improvement. This green infrastructure solution can be applied in cities, particularly in streets or parking lots to mitigate the floods effects. Over the years, the pores of these pavements can be filled by sediment, reducing their function in the rainwater infiltration. Thus, double layer porous asphalt (DLPA) was developed to mitigate the clogging effect and facilitate the water infiltration into the lower layers. This study intends to deepen the knowledge of the performance of DLPA when subjected to clogging. The experimental methodology consisted on four evaluation phases of the DLPA infiltration capacity submitted to three precipitation events (100, 200 and 300 mm/h) in each phase. The evaluation first phase determined the behavior after DLPA construction. In phases two and three, two 500 g/m<sup>2</sup> clogging cycles were performed, totaling a 1000 g/m<sup>2</sup> final simulation. Sand with gradation accented in fine particles was used as clogging material. In the last phase, the DLPA was subjected to simple sweeping and vacuuming maintenance. A precipitation simulator, type sprinkler, capable of simulating the real precipitation was developed for this purpose. The main conclusions show that the DLPA has the capacity to drain the water, even after two clogging cycles. The infiltration results of flows lead to an efficient performance of the DPLA in the surface runoff attenuation, since this was not observed in any of the evaluation phases, even at intensities of 200 and 300 mm/h, simulating intense precipitation events. The infiltration capacity under clogging conditions decreased about 7% on average in the three intensities relative to the initial performance that is after construction. However, this was restored when subjected to simple maintenance, recovering the DLPA hydraulic functionality. In summary, the study proved the efficacy of using a DLPA when it retains thicker surface sediments and limits the fine sediments entry to the remaining layers. At the same time, it is guaranteed the rainwater infiltration and the surface runoff reduction and is therefore a viable solution to put into practice in permeable pavements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clogging" title="clogging">clogging</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20layer%20porous%20asphalt" title=" double layer porous asphalt"> double layer porous asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20capacity" title=" infiltration capacity"> infiltration capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20intensity" title=" rainfall intensity"> rainfall intensity</a> </p> <a href="https://publications.waset.org/abstracts/77185/permeable-asphalt-pavement-as-a-measure-of-urban-green-infrastructure-in-the-extreme-events-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8788</span> Environmental Implications of Groundwater Quality in Irrigated Agriculture in Kebbi State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20I.%20Ojo">O. I. Ojo</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20B.%20R.%20Graham"> W. B. R. Graham</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20W.%20Pishiria"> I. W. Pishiria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of groundwater used for irrigation in Kebbi State, northwestern Nigeria was evaluated. Open-well, tube-well and borehole water samples were collected from various locations in the State. The water samples analyzed had pH values below the normal range for irrigation water and very low to moderate salinity (electrical conductivity 0.05-0.82 dS.m-1). The adjusted sodium adsorption ratio values in all the samples were also very low (<0.2), indicating very low sodicity hazards. However, irrigation water of very low salinity (<0.2dS.m-1) and low SAR can lead to problems of infiltration into soils. The Ca: Mg ratio (<1) in most of the samples may lead to Ca deficiency in soils after long term use. The nitrate concentration in most of the samples was high ranging from 4.5 to >50mg/L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20water%20quality" title="ground water quality">ground water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristics" title=" characteristics"> characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20drainage" title=" soil drainage"> soil drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadama" title=" Fadama"> Fadama</a> </p> <a href="https://publications.waset.org/abstracts/7196/environmental-implications-of-groundwater-quality-in-irrigated-agriculture-in-kebbi-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8787</span> Assessment the Infiltration of the Wastewater Ponds and Its Impact on the Water Quality of Pleistocene Aquifer at El Sadat City Using 2-D Electrical Resistivity Tomography and Water Chemistry </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20A.%20Kenawy">Abeer A. Kenawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Usama%20Massoud"> Usama Massoud</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Said%20A.%20Ragab"> El-Said A. Ragab</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20M.%20El-Kosery"> Heba M. El-Kosery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 2-D Electrical Resistivity Tomography (ERT) and hydrochemical study have been conducted at El Sadat industrial city. The study aims to investigate the area around the wastewater ponds to determine the possibility of water percolation from the wastewater ponds to the Pleistocene aquifer and to inspect the effect of this seepage on the groundwater chemistry. Pleistocene aquifer is the main groundwater reservoir in this area, where El Sadat city and its vicinities depend totally on this aquifer for water supplies needed for drinking, agricultural, and industrial activities. In this concern, seven ERT profiles were measured around the wastewater ponds. Besides, 10 water samples were collected from the ponds and the nearby groundwater wells. The water samples have been chemically analyzed for major cations, anions, nutrients, and heavy elements. Also, the physical parameters (pH, Alkalinity, EC, TDS) of the water samples were measured. Inspection of the ERT sections shows that they exhibit lower resistivity values towards the water ponds and higher values in opposite sides. In addition, the water table was detected at shallower depths at the same sides of lower resistivity. This could indicate a wastewater infiltration to the groundwater aquifer near the oxidation ponds. Correlation of the physical parameters and ionic concentrations of the wastewater samples with those of the groundwater samples indicates that; the ionic levels are randomly varying and no specific trend could be obtained. In addition, the wastewater samples shows some ionic levels lower than those detected in other groundwater samples. Besides, the nitrate level is higher in samples taken from the cultivated land than the wastewater samples due to the over using of nitrogen fertilizers. Then, we can say that the infiltrated water from wastewater ponds are not the main controller of the groundwater chemistry in this area, but rather the variable ionic concentrations could be attributed to local, natural, and anthropogenic processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Sadat%20city" title="El Sadat city">El Sadat city</a>, <a href="https://publications.waset.org/abstracts/search?q=ERT" title=" ERT"> ERT</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrochemistry" title=" hydrochemistry"> hydrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=percolation" title=" percolation"> percolation</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20ponds" title=" wastewater ponds"> wastewater ponds</a> </p> <a href="https://publications.waset.org/abstracts/38051/assessment-the-infiltration-of-the-wastewater-ponds-and-its-impact-on-the-water-quality-of-pleistocene-aquifer-at-el-sadat-city-using-2-d-electrical-resistivity-tomography-and-water-chemistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8786</span> Clay Develop Plasticity With Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boualla%20Nabila">Boualla Nabila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problems created by the water in Civil Engineering are sometimes neglected or often badly posed when they are not completely ignored, and yet they are fundamental as regards both the conditions of execution of the worksites and the stability. Several damages were caused by the infiltration of water in the soils, in particular in clay regions which can swell under the effect of an increase in their water content as in the case of the Oued Tlelat clay which is made up of yellow-colored marly clays and red-colored El Maleh area. This study was carried out on soil from a site, located near the city of Oran and the city of Ain Tmouchent (northern Algeria) where we encounter many problems of cracking of buildings and bottom uplift of excavations. The study consists first of all in determining the mechanical and physical characteristics of the clay, namely the parameters of sheer, simple compression, and that of the odometer. Then the study focused on a comparison of the influence of water type on the mechanical and physical properties of swelling clay soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=liquidity%20limit" title=" liquidity limit"> liquidity limit</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20limit" title=" plastic limit"> plastic limit</a> </p> <a href="https://publications.waset.org/abstracts/150577/clay-develop-plasticity-with-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8785</span> Long Term Effect of FYM and Green Manure on Infiltration Characteristics Under Vertisol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tripti%20Nayak">Tripti Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Bajpai"> R. K. Bajpai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An ongoing field experiment was conducted at Long term fertilizer experiment, Raipur, to study the Effect of fertilization (both organic and inorganic) on soil Physical properties (infiltration rate) of Vertisol of ten treatments viz. The treatment combinations for were T1(Control),T2(50%NPK), T3(100%NPK), T4(150%NPK), T5(100%NPK+Zn), T6(100%NP), T7(100%N), T8(100%NPK+FYM), T9 (50%NPK+BGA) and T10(50%NPK+GM). Farmyard manure and green manure is applied at the treatment of T8 (100%NPK+FYM) and T10 (50%NPK+GM). Result showed that the highest infiltration rate recorded T8(100%NPK+FYM) and T10 (50%NPK+GM). These considerations have led to a renewed interest in the organic manures such as FYM, compost and green manures, which are formulations helps in sustainable agriculture production either by providing plants with fixed nitrogen, available P or by other plant growth promoting substances. Organic matter (OM) is the life of the soil because it contains all the essential elements required for plant growth. It also serves as food for soil bacteria. Decomposed OM, known as humus, improves the soil tilth, quality and helps the plant to grow. In general among all the other treatments and control gave poorest infiltration rate. Incorporation of organic sources considerably improved the soil physical properties such as decrease in bulk density and increase in infiltration rate and available NPK status of the soil. Study showed that wherever, nitrogen was substituted through GM, FYM or crop residue (rice straw) in rice, Corresponding decrease in bulk density favorably enhanced the infiltration rate and it was found to be highest in the green-manured plot, FYM and lowest in control. Concluded that Continuous monitoring of physical properties should be carried out for maintaining soil health and enhancing the crop production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=long%20term%20effect" title="long term effect">long term effect</a>, <a href="https://publications.waset.org/abstracts/search?q=FYM" title=" FYM"> FYM</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20manure" title=" green manure"> green manure</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20rate" title=" infiltration rate"> infiltration rate</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20productivity" title=" crop productivity"> crop productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=vertisol" title=" vertisol"> vertisol</a> </p> <a href="https://publications.waset.org/abstracts/23781/long-term-effect-of-fym-and-green-manure-on-infiltration-characteristics-under-vertisol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8784</span> Microstructure Characterization on Silicon Carbide Formation from Natural Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Leha%20Abdul%20Rahman">Noor Leha Abdul Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Koay%20Mei%20Hyie"> Koay Mei Hyie</a>, <a href="https://publications.waset.org/abstracts/search?q=Anizah%20Kalam"> Anizah Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Husna%20Elias"> Husna Elias</a>, <a href="https://publications.waset.org/abstracts/search?q=Teng%20Wang%20Dung"> Teng Wang Dung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dark Red Meranti and Kapur, kinds of important type of wood in Malaysia were used as a precursor to fabricate porous silicon carbide. A carbon template is produced by pyrolysis at 850°C in an oxygen free atmosphere. The carbon template then further subjected to infiltration with silicon by silicon melt infiltration method. The infiltration process was carried out in tube furnace in argon flow at 1500°C, at two different holding time; 2 hours and 3 hours. Thermo gravimetric analysis was done to investigate the decomposition behavior of two species of plants. The resulting silicon carbide was characterized by XRD which was found the formation of silicon carbide and also excess silicon. The microstructure was characterized by scanning electron microscope (SEM) and the density was determined by the Archimedes method. An increase in holding time during infiltration will increased the density as well as formation of silicon carbide. Dark Red Meranti precursor is likely suitable for production of silicon carbide compared to Kapur. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density" title="density">density</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD "> XRD </a> </p> <a href="https://publications.waset.org/abstracts/30071/microstructure-characterization-on-silicon-carbide-formation-from-natural-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8783</span> Combined Synchrotron Radiography and Diffraction for in Situ Study of Reactive Infiltration of Aluminum into Iron Porous Preform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Djaziri">S. Djaziri</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Sket"> F. Sket</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hynowska"> A. Hynowska</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Milenkovic"> S. Milenkovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of Fe-Al based intermetallics as an alternative to Cr/Ni based stainless steels is very promising for industrial applications that use critical raw materials parts under extreme conditions. However, the development of advanced Fe-Al based intermetallics with appropriate mechanical properties presents several challenges that involve appropriate processing and microstructure control. A processing strategy is being developed which aims at producing a net-shape porous Fe-based preform that is infiltrated with molten Al or Al-alloy. In the present work, porous Fe-based preforms produced by two different methods (selective laser melting (SLM) and Kochanek-process (KE)) are studied during infiltration with molten aluminum. In the objective to elucidate the mechanisms underlying the formation of Fe-Al intermetallic phases during infiltration, an in-house furnace has been designed for in situ observation of infiltration at synchrotron facilities combining x-ray radiography (XR) and x-ray diffraction (XRD) techniques. The feasibility of this approach has been demonstrated, and information about the melt flow front propagation has been obtained. In addition, reactive infiltration has been achieved where a bi-phased intermetallic layer has been identified to be formed between the solid Fe and liquid Al. In particular, a tongue-like Fe₂Al₅ phase adhering to the Fe and a needle-like Fe₄Al₁₃ phase adhering to the Al were observed. The growth of the intermetallic compound was found to be dependent on the temperature gradient present along the preform as well as on the reaction time which will be discussed in view of the different obtained results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20synchrotron%20radiography%20and%20diffraction" title="combined synchrotron radiography and diffraction">combined synchrotron radiography and diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-Al%20intermetallic%20compounds" title=" Fe-Al intermetallic compounds"> Fe-Al intermetallic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20molten%20Al%20infiltration" title=" in-situ molten Al infiltration"> in-situ molten Al infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20solid%20Fe%20preforms" title=" porous solid Fe preforms"> porous solid Fe preforms</a> </p> <a href="https://publications.waset.org/abstracts/94238/combined-synchrotron-radiography-and-diffraction-for-in-situ-study-of-reactive-infiltration-of-aluminum-into-iron-porous-preform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8782</span> Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins of North Gaza Emergency Sewage Treatment Plant as Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadi%20Ali">Sadi Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Kishawi"> Yaser Kishawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l, and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20aquifer%20treatment" title="soil aquifer treatment">soil aquifer treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20and%20reuse%20scheme" title=" recovery and reuse scheme"> recovery and reuse scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20basins" title=" infiltration basins"> infiltration basins</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Gaza" title=" North Gaza"> North Gaza</a> </p> <a href="https://publications.waset.org/abstracts/21919/monitoring-and-improving-performance-of-soil-aquifer-treatment-system-and-infiltration-basins-of-north-gaza-emergency-sewage-treatment-plant-as-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8781</span> Contamination of the Groundwater by the Flow of the Discharge in Khouribga City (Morocco) and the Danger It Presents to the Health of the Surrounding Population.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najih%20Amina">Najih Amina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our study focuses on monitoring the spatial evolution of a number of physico-chemical parameters of wells waters located at different distances from the discharge of the city of Khouribga (S0 upstream station, S1, S2 et S3 are respectively located at 5.5, 7.5, 11 Km away from solid waste discharge of the city). The absence of a source of drinking water in this region involves the population to feeding on its groundwater wells. Through the results, we note that most of the analyzed parameters exceed the potable water standards from S1. At this source of water, we find that the conductivity (1290 μmScm-1; Standard 1000 μmScm-1), Total Hardness TH (67.2°F/ Standard 50° F), Ca2 + (146 mg l-1 standard 60 mg l-1), Cl- (369 mg l-1 standard 150 mg l-1), NaCl (609 mgl-1), Methyl orange alakanity “M. alk” (280 mg l-1) greatly exceed the drinking water standards. By following these parameters, it is obvious that some values have decreased in the downstream stations, while others become important. We find that the conductivity is always higher than 950 μmScm-1; the TH registers 72°F in S3; Ca 2+ is in the range of 153 mg l-1 in S3, Cl- and NaCl- reached 426 mg l-1 and 702 mg l-1 respectively in S2, M alk becomes higher and reaches 430 to 350 in S3. At the wells S2, we found that the nitrites are well beyond the standard 1.05 mg l-1. Whereas, at the control station S0, the values are lower or at the limit of drinking water standards: conductivity (452 μmScm-1), TH (34 F°), Ca2+ (68 mg l-1), Cl- (157 mg l-1), NaCl- (258 mg l-1), M alk (220 mg l-1). Thus, the diagnosis reveals the presence of a high pollution caused by the leachates of the household waste discharge and by the effluents of the sewage waste water plant (SWWP). The phenomenon of the water hardness could, also, be generated by the processes of erosion, leaching and soil infiltration in the region (phosphate layers, intercalated layers of marl and limestone), phenomenons also caused by the acidity due to this surrounding pollution. The source S1 is the nearest surrounding site of the discharge and the most affected by the phenomenon of pollution, especially, it is near to a superficial water source S’1 polluted by the effluents coming from the sewage waste water plant of the city. In the light of these data, we can deduce that the consumption of this water from S1 does not conform the standards of drinking waters, and could affect the human health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physico-chemical%20parameters" title="physico-chemical parameters">physico-chemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20water%20wells" title=" ground water wells"> ground water wells</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration" title=" infiltration"> infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=leachate%20discharge%20effluent%20SWWP" title=" leachate discharge effluent SWWP"> leachate discharge effluent SWWP</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20health." title=" human health."> human health.</a> </p> <a href="https://publications.waset.org/abstracts/19380/contamination-of-the-groundwater-by-the-flow-of-the-discharge-in-khouribga-city-morocco-and-the-danger-it-presents-to-the-health-of-the-surrounding-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8780</span> Impact of El-Matrouha Landfill on Oued El-Kebir (North East of Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Djalil%20Zaafour">Mohamed Djalil Zaafour</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Chekchaki"> Samir Chekchaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benslama"> Mohamed Benslama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Landfill of El Matrouha is located in El-Tarf town (extreme north east of Algeria), the Landfill is present as a gigantic wild dump. This waste dump occupies an area of over four hectares, tons of rubbish that is sent daily are scattered over kilometers, reaching farmland located west of the town, the landfill is close to a temporary Oued, which supply Oued Guergour the last tributary Oued El Kebir. The landfills are causing serious environmental damage, following the infiltration of leachates, which contribute to the degradation of water quality, in the context of this problem, the purpose of the work is focused on assessing the impact of this landfill on Oued El-Kebir, for this a series of sampling and analysis of the soil and water of this Oued was performed; The results show that the soil collected reveal the sandy texture facilitating infiltration and percolation of leachate from the landfill; the physicochemical analysis of the quality of the river water reveals high levels of sulfates in fact this element is one of the essential constituents of the mineral fraction of the waste presenting a risk of pollution by this element, The recorded values for nutrients are sub-standard, for trace elements analysis shows very low metal load on the river except for lead, which is present at high concentrations exceeding all standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Algeria" title="Algeria">Algeria</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill" title=" landfill"> landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=leachates" title=" leachates"> leachates</a>, <a href="https://publications.waset.org/abstracts/search?q=Oued%20El-kebir" title=" Oued El-kebir"> Oued El-kebir</a> </p> <a href="https://publications.waset.org/abstracts/40268/impact-of-el-matrouha-landfill-on-oued-el-kebir-north-east-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8779</span> Framework for Enhancing Water Literacy and Sustainable Management in Southwest Nova Scotia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Etienne%20Mfoumou">Etienne Mfoumou</a>, <a href="https://publications.waset.org/abstracts/search?q=Mo%20Shamma"> Mo Shamma</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Tango"> Martin Tango</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Locke"> Michael Locke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water literacy is essential for addressing emerging water management challenges in southwest Nova Scotia (SWNS), where growing concerns over water scarcity and sustainability have highlighted the need for improved educational frameworks. Current approaches often fail to fully represent the complexity of water systems, focusing narrowly on the water cycle while neglecting critical aspects such as groundwater infiltration and the interconnectedness of surface and subsurface water systems. To address these gaps, this paper proposes a comprehensive framework for water literacy that integrates the physical dimensions of water systems with key aspects of understanding, including processes, energy, scale, and human dependency. Moreover, a suggested tool to enhance this framework is a real-time hydrometric data map supported by a network of water level monitoring devices deployed across the province. These devices, particularly for monitoring dug wells, would provide critical data on groundwater levels and trends, offering stakeholders actionable insights into water availability and sustainability. This real-time data would facilitate deeper understanding and engagement with local water issues, complementing the educational framework and empowering stakeholders to make informed decisions. By integrating this tool, the proposed framework offers a practical, interdisciplinary approach to improving water literacy and promoting sustainable water management in SWNS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20education" title="water education">water education</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20literacy" title=" water literacy"> water literacy</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20systems" title=" water systems"> water systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Southwest%20Nova%20Scotia" title=" Southwest Nova Scotia"> Southwest Nova Scotia</a> </p> <a href="https://publications.waset.org/abstracts/191248/framework-for-enhancing-water-literacy-and-sustainable-management-in-southwest-nova-scotia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20infiltration&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20infiltration&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20infiltration&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20infiltration&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20infiltration&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20infiltration&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20infiltration&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20infiltration&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20infiltration&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20infiltration&page=293">293</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20infiltration&page=294">294</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20infiltration&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>