CINXE.COM
Search results for: Bifidobacterium longum
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Bifidobacterium longum</title> <meta name="description" content="Search results for: Bifidobacterium longum"> <meta name="keywords" content="Bifidobacterium longum"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Bifidobacterium longum" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Bifidobacterium longum"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Bifidobacterium longum</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> The Survival of Bifidobacterium longum in Frozen Yoghurt Ice Cream and Its Properties Affected by Prebiotics (Galacto-Oligosaccharides and Fructo-Oligosaccharides) and Fat Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Thaiudom">S. Thaiudom</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Toommuangpak"> W. Toommuangpak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Yoghurt ice cream (YIC) containing prebiotics and probiotics seems to be much more recognized among consumers who concern for their health. Not only can it be a benefit on consumers’ health but also its taste and freshness provide people easily accept. However, the survival of such probiotic especially Bifidobacterium longum, found in human gastrointestinal tract and to be benefit to human gut, was still needed to study in the severe condition as whipping and freezing in ice cream process. Low and full-fat yoghurt ice cream containing 2 and 10% (w/w) fat content (LYIC and FYIC), respectively was produced by mixing 20% yoghurt containing B. longum into milk ice cream mix. Fructo-oligosaccharides (FOS) or galacto-oligosaccharides (GOS) at 0, 1, and 2% (w/w) were separately used as prebiotic in order to improve the survival of B. longum. Survival of this bacteria as a function of ice cream storage time and ice cream properties were investigated. The results showed that prebiotic; especially FOS could improve viable count of B. longum. The more concentration of prebiotic used, the more is the survival of B. Longum. These prebiotics could prolong the survival of B. longum up to 60 days, and the amount of survival number was still in the recommended level (106 cfu per gram). Fat content and prebiotic did not significantly affect the total acidity and the overrun of all samples, but an increase of fat content significantly increased the fat particle size which might be because of partial coalescence found in FYIC rather than in LYIC. However, addition of GOS or FOS could reduce the fat particle size, especially in FYIC. GOS seemed to reduce the hardness of YIC rather than FOS. High fat content (10% fat) significantly influenced on lowering the melting rate of YIC better than 2% fat content due to the 3-dimension networks of fat partial coalescence theoretically occurring more in FYIC than in LYIC. However, FOS seemed to retard the melting rate of ice cream better than GOS. In conclusion, GOS and FOS in YIC with different fat content can enhance the survival of B. longum and affect physical and chemical properties of such yoghurt ice cream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bifidobacterium%20longum" title="Bifidobacterium longum">Bifidobacterium longum</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotic" title=" prebiotic"> prebiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=survival" title=" survival"> survival</a>, <a href="https://publications.waset.org/abstracts/search?q=yoghurt%20ice%20cream" title=" yoghurt ice cream"> yoghurt ice cream</a> </p> <a href="https://publications.waset.org/abstracts/90605/the-survival-of-bifidobacterium-longum-in-frozen-yoghurt-ice-cream-and-its-properties-affected-by-prebiotics-galacto-oligosaccharides-and-fructo-oligosaccharides-and-fat-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Growth and Some Physiological Properties of Three Selected Species of Bifidobacteria in Admixture of Soy Milk and Goat Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Zahran">Ahmed Zahran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bifidobacterium breve ATCC 15700, Bifidobacterium adolescents ATCC 15704 and Bifidobacterium longum ATCC 15707 were tested for their growth, acid production, bile tolerance, antibiotic resistance and adherence to columnar epithelial cells of the small intestine of goat. The growth of all studied species was determined in the MRSL medium. B.longum 15707 was the most active species in comparison with the other two species; it was also more resistant to bile acids. The adhesion of the studied species to the columnar epithelial cells was studied. All the studied species showed some degree of adhesion; however, B.longum adhered more than the other two species. This species was resistant to four types of antibiotics and was sensitive to chloramphenicol 30 µg. The activity of Bifidobacterium species in soymilk was evaluated by measuring the development of titratalle acidity. B.longum 15707 was the most active species in terms of growth and activity of soymilk. So, soymilk containing bifidobacteria could be added to goat milk to produce acceptable functional soy yogurt, using the ratio of (1:4) soy milk to goat milk. This product could be of unique health benefits, especially in the case of high cholesterol levels and replenishment of intestinal flora after antibiotic therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bifidobacteria%20physiological%20properties" title="bifidobacteria physiological properties">bifidobacteria physiological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=soy%20milk" title=" soy milk"> soy milk</a>, <a href="https://publications.waset.org/abstracts/search?q=goat%20milk" title=" goat milk"> goat milk</a>, <a href="https://publications.waset.org/abstracts/search?q=attachment%20epithelial%20cells" title=" attachment epithelial cells"> attachment epithelial cells</a>, <a href="https://publications.waset.org/abstracts/search?q=columnar%20tissues" title=" columnar tissues"> columnar tissues</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic%20food" title=" probiotic food"> probiotic food</a> </p> <a href="https://publications.waset.org/abstracts/168851/growth-and-some-physiological-properties-of-three-selected-species-of-bifidobacteria-in-admixture-of-soy-milk-and-goat-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Development of a Symbiotic Milk Chocolate Using Inulin and Bifidobacterium Lactis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guity%20Karim">Guity Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Valiollah%20Ayareh"> Valiollah Ayareh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Probiotic dairy products are those that contain biologically active components that may affect beneficially one or more target functions in the body, beyond their adequate nutritional effects. As far as chocolate milk is a popular dairy product in the country especially among children and youth, production of a symbiotic (probiotic + peribiotic) new product using chocolate milk, Bifidobacterium lactis (DSM, Netherland) and inulin (Bene, Belgium) would help to promote the nutritional and functional properties of this product. Bifidobacterium Lactis is used as a probiotic in a variety of foods, particularly dairy products like yogurt and as a probiotic bacterium has benefit effects on the human health. Inulin as a peribiotic agent is considered as functional food ingredient. Experimental studies have shown its use as bifidogenic agent. Chocolate milk with different percent of fat (1 and 2 percent), 6 % of sugar and 0.9 % cacao was made, sterilized (UHT) and supplemented with Bifidobacterium lactis and inulin (0.5 %) after cooling . A sample was made without inulin as a control. Bifidobacterium lactis population was enumerated at days 0, 4, 8 and 12 together with measurement of pH, acidity and viscosity of the samples. Also sensory property of the product was evaluated by a 15 panel testers. The number of live bacterial cells was maintained at the functional level of 106-108 cfu/ml after keeping for 12 days in refrigerated temperature (4°C). Coliforms were found to be absent in the products during the storage. Chocolate milk containing 1% fat and inulin has the best effect on the survival and number of B. lactis at day 8 and after that. Moreover, the addition of inulin did not affect the sensorial quality of the product. In this work, chocolate has been evaluated as a potential protective carrier for oral delivery of B. lactis and inulin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chocolate%20milk" title="chocolate milk">chocolate milk</a>, <a href="https://publications.waset.org/abstracts/search?q=synbiotic" title=" synbiotic"> synbiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=bifidobacterium%20lactis" title=" bifidobacterium lactis"> bifidobacterium lactis</a>, <a href="https://publications.waset.org/abstracts/search?q=inulin" title=" inulin "> inulin </a> </p> <a href="https://publications.waset.org/abstracts/22905/development-of-a-symbiotic-milk-chocolate-using-inulin-and-bifidobacterium-lactis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Bifidobacterium lactis Fermented Milk Was Not Effective to Eradication of Helicobacter Pylori Infection: A Prospective, Randomized, Double-Blind, Controlled Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Barbuti">R. C. Barbuti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Oliveira"> M. N. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Perina"> N. P. Perina</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Haro"> C. Haro</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Bosch"> P. Bosch</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Bogsan"> C. S. Bogsan</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20N.%20Eisig"> J. N. Eisig</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Navarro-Rodriguez"> T. Navarro-Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The management of Helicobacter pylori (H. pylori) eradication is still a matter of discussion, full effectiveness is rarely achieved and it has many adverse effects. Probiotics are believed to have a role in eradicating and possibly preventing H. pylori infection as an adjunctive treatment. The present clinical study was undertaken to see the efficacy of a specially designed fermented milk product containing Bifidobacterium lactis B420 on the eradication of H. pylori infection in a prospective, randomized, double-blind, controlled study in humans. Method: Four test products were specially designed fermented milks, counts of viable cells in all products were 1010 Log CFU. 100 mL-1 for Bifidobacterium lactis-Bifidobacterium species 420, and 1011 Log CFU. 100 mL-1 for Streptococcus thermophiles were administered to subjects infected with H. pylori with a previous diagnosis of functional dyspepsia according to the Rome III criteria in a prospective, randomized, double-blind, placebo-controlled study in humans. Results: After FM supplementation, not all subjects showed a reduction in H. pylori colonization. Conclusion: Bifidobacterium lactis B420, administered twice a day for 90 days did not show an increase in H. pylori eradication effectiveness in Brazilian patients with functional dyspepsia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20therapy" title="antibacterial therapy">antibacterial therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=Bifidobacteria%20fermented%20milk" title=" Bifidobacteria fermented milk"> Bifidobacteria fermented milk</a>, <a href="https://publications.waset.org/abstracts/search?q=Helicobacter%20pylori" title=" Helicobacter pylori"> Helicobacter pylori</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics "> probiotics </a> </p> <a href="https://publications.waset.org/abstracts/19963/bifidobacterium-lactis-fermented-milk-was-not-effective-to-eradication-of-helicobacter-pylori-infection-a-prospective-randomized-double-blind-controlled-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> The Use of Nano-Crystalline Starch in Probiotic Yogurt and Its Effects on the Physicochemical and Biological Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Seirafi">Ali Seirafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to investigate the effect and application of starch nanocrystals on physicochemical and microbial properties in the industrial production of probiotic yogurt. In this study, probiotic yoghurt was manufactured by industrial method with the optimization and control of the technological factors affecting the probabilistic biomass, using probiotic bacteria Lactobacillus acidophilus and Bifidobacterium bifidum with commonly used yogurt primers. Afterwards, the effects of different levels of fat (1.3%, 2.5 and 4%), as well as the effects of various perbiotic compounds include starch nanocrystals (0.5%, 1 and 1.5%), galactolegalosaccharide (0.5% 1 and 1.5%) and fructooligosaccharide (0.5%, 1 and 1.5%) were evaluated. In addition, the effect of packaging (polyethylene and glass) was studied, while the effect of pH changes and final acidity were studied at each stage. In this research, all experiments were performed in 3 replications and the results were analyzed in a completely randomized design with SAS version 9.1 software. The results of this study showed that the addition of starch nanocrystal compounds as well as the use of glass packaging had the most positive effects on the survival of Lactobacillus acidophilus bacteria and the addition of nano-crystals and the increase in the cooling rate of the product, had the most positive effects on the survival of bacteria Bifidobacterium bifidum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bifidobacterium%20bifidum" title="Bifidobacterium bifidum">Bifidobacterium bifidum</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactobacillus%20acidophilus" title=" Lactobacillus acidophilus"> Lactobacillus acidophilus</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotics" title=" prebiotics"> prebiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic%20yogurt" title=" probiotic yogurt"> probiotic yogurt</a> </p> <a href="https://publications.waset.org/abstracts/96054/the-use-of-nano-crystalline-starch-in-probiotic-yogurt-and-its-effects-on-the-physicochemical-and-biological-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Relation of Electromyography, Strength and Fatigue During Ramp Isometric Contractions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Ferreira%20Amorim">Cesar Ferreira Amorim</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamotsu%20Hirata"> Tamotsu Hirata</a>, <a href="https://publications.waset.org/abstracts/search?q=Runer%20Augusto%20Marson"> Runer Augusto Marson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to determine the effect of strength ramp isometric contraction on changes in surface electromyography (sEMG) signal characteristics of the hamstrings muscles. All measurements were obtained from 20 healthy well trained healthy adults (age 19.5 ± 0.8 yrs, body mass 63.4 ± 1.5 kg, height: 1.65 ± 0.05 m). Subjects had to perform isometric ramp contractions in knee flexion with the force gradually increasing from 0 to 40% of the maximal voluntary contraction (MVC) in a 20s period. The root mean square (RMS) amplitude of sEMG signals obtained from the biceps femoris (caput longum) were calculated at four different strength levels (10, 20, 30, and 40% MVC) from the ramp isometric contractions (5s during the 20s task %MVC). The main results were a more pronounced increase non-linear in sEMG-RMS amplitude for the muscles. The protocol described here may provide a useful index for measuring of strength neuromuscular fatigue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosignal" title="biosignal">biosignal</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20electromyography" title=" surface electromyography"> surface electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=ramp%20contractions" title=" ramp contractions"> ramp contractions</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/32275/relation-of-electromyography-strength-and-fatigue-during-ramp-isometric-contractions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Effects of Brewer's Yeast Peptide Extract on the Growth of Probiotics and Gut Microbiota</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manuela%20Amorim">Manuela Amorim</a>, <a href="https://publications.waset.org/abstracts/search?q=Cl%C3%A1udia%20S.%20Marques"> Cláudia S. Marques</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Concei%C3%A7%C3%A3o%20Calhau"> Maria Conceição Calhau</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9lder%20J.%20Pinheiro"> Hélder J. Pinheiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Manuela%20Pintado"> Maria Manuela Pintado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently it has been recognized peptides from different food sources with biological activities. However, no relevant study has proven the potential of brewer yeast peptides in the modulation of gut microbiota. The importance of human intestinal microbiota in maintaining host health is well known. Probiotics, prebiotics and the combination of these two components, can contribute to support an adequate balance of the bacterial population in the human large intestine. The survival of many bacterial species inhabiting the large bowel depends essentially on the substrates made available to them, most of which come directly from the diet. Some of these substrates can be selectively considered as prebiotics, which are food ingredients that can stimulate beneficial bacteria such as Lactobacilli or Bifidobacteria growth in the colon. Moreover, conventional food can be used as vehicle to intake bioactive compounds that provide those health benefits and increase people well-being. In this way, the main objective of this work was to study the potential prebiotic activity of brewer yeast peptide extract (BYP) obtained via hydrolysis of yeast proteins by cardosins present in Cynara cardunculus extract for possible use as a functional ingredient. To evaluate the effect of BYP on the modulation of gut microbiota in diet-induced obesity model, Wistar rats were fed either with a standard or a high-fat diet. Quantified via 16S ribosomal RNA (rRNA) expression by quantitative PCR (qPCR), genera of beneficial bacteria (Lactobacillus spp. and Bifidobacterium spp.) and three main phyla (Firmicutes, Bacteroidetes and Actinobacteria) were assessed. Results showed relative abundance of Lactobacillus spp., Bifidobacterium spp. and Bacteroidetes was significantly increased (P < 0.05) by BYP. Consequently, the potential health-promoting effects of WPE through modulation of gut microbiota were demonstrated in vivo. Altogether, these findings highlight the possible intervention of BYP as gut microbiota enhancer, promoting healthy life style, and the incorporation in new food products, leads them bringing associated benefits endorsing a new trend in the improvement of new value-added food products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20ingredients" title="functional ingredients">functional ingredients</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title=" gut microbiota"> gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotics" title=" prebiotics"> prebiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=brewer%20yeast%20peptide%20extract" title=" brewer yeast peptide extract"> brewer yeast peptide extract</a> </p> <a href="https://publications.waset.org/abstracts/31141/effects-of-brewers-yeast-peptide-extract-on-the-growth-of-probiotics-and-gut-microbiota" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Acclimatation of Bacterial Communities for Biohydrogen Production by Co-Digestion Process in Batch and Continuous Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%B3mez%20Romero%20Jacob">Gómez Romero Jacob</a>, <a href="https://publications.waset.org/abstracts/search?q=Garc%C3%ADa%20Pe%C3%B1a%20Elvia%20In%C3%A9s"> García Peña Elvia Inés</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The co-digestion process of crude cheese whey (CCW) with fruit vegetable waste (FVW) for biohydrogen production was investigated in batch and continuous systems, in stirred 1.8 L bioreactors at 37°C. Five different C/N ratios (7, 17, 21, 31, and 46) were tested in batch systems. While, in continuous system eight conditions were evaluated, hydraulic retention time (from 60 to 10 h) and organic load rate (from 21.96 to 155.87 g COD/L d). Data in batch tests showed a maximum specific biohydrogen production rate of 10.68 mmol H2/Lh and a biohydrogen yield of 449.84 mL H2/g COD at a C/N ratio of 21. In continuous co-digestion system, the optimum hydraulic retention time and organic loading rate were 17.5 h and 80.02 g COD/L d, respectively. Under these conditions, the highest volumetric production hydrogen rate (VPHR) and hydrogen yield were 11.02 mmol H2/L h, 800 mL H2/COD, respectively. A pyrosequencing analysis showed that the main acclimated microbial communities for co-digestion studies consisted of Bifidobacterium, with 85.4% of predominance. Hydrogen producing bacteria such as Klebsiella (9.1%), Lactobacillus (0.97%), Citrobacter (0.21%), Enterobacter (0.27%), and Clostridium (0.18%) were less abundant at this culture period. The microbial population structure was correlated with the lactate, acetate, and butyrate profiles obtained. Results demonstrated that the co-digestion of CCW with FVW improves biohydrogen production due to a better nutrient balance and improvement of the system’s buffering capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acclimatation" title="acclimatation">acclimatation</a>, <a href="https://publications.waset.org/abstracts/search?q=biohydrogen" title=" biohydrogen"> biohydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=co-digestion" title=" co-digestion"> co-digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20community" title=" microbial community"> microbial community</a> </p> <a href="https://publications.waset.org/abstracts/19282/acclimatation-of-bacterial-communities-for-biohydrogen-production-by-co-digestion-process-in-batch-and-continuous-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Effect of Probiotics and Vitamin B on Plasma Interferon-Gamma and Interleukin-6 Levels in Active Pulmonary Tuberculosis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yulistiani%20Yulistiani">Yulistiani Yulistiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Zamrotul%20Izzah"> Zamrotul Izzah</a>, <a href="https://publications.waset.org/abstracts/search?q=Lintang%20Bismantara"> Lintang Bismantara</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenny%20Putri%20Nilamsari"> Wenny Putri Nilamsari</a>, <a href="https://publications.waset.org/abstracts/search?q=Arif%20Bachtiar"> Arif Bachtiar</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20Suprapti"> Budi Suprapti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interferon-gamma (IFN-γ) and interleukin-6 (IL-6) are pro-inflammatory cytokines, which have the protective immune response against Tuberculosis (TB). Indeed, pro-inflammatory cytokines Mycobacterium tuberculosis antigen-specific CD4+ and CD8+ T cells and NK cells increase the level of production of IFN-γ, a cytokine critical for augmenting the microbicidal activity of phagocytes. On the other hand, M. tuberculosis reduces the effects of IFN-γ by inhibiting the transcription of IFN-γ- responsive genes and by inducing the secretion of IL-6, which inhibits IFN-γ signaling. Probiotics Lactobacillus sp. and Bifidobacterium sp. were known to increase IFN-γ production in vivo, while vitamin B1, B6, and B12 worked on macrophages and releasing cytokines. Therefore, the present study was to evaluate the effect of probiotics and vitamin B supplement on changes of plasma cytokine levels in active pulmonary TB. From October to November 2016, twelve M. tuberculosis-infected patients starting anti-TB drugs were recruited, then divided into two groups. Seven patients were given a combination of probiotics and vitamin B, while five patients were in the control group. Plasma IFN-γ and IL-6 levels were measured by the ELISA kit before and a month after treatment. IFN-γ levels raised in four patients receiving the supplement (P = 0.743), while IL-6 increased in three patients in this group until day 30 of treatment (P = 0.298). Taken together, these results show the promising effect of probiotics and vitamin B on stimulation of IFN-γ and IL-6 production during intensive therapy of TB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interferon-gamma" title="interferon-gamma">interferon-gamma</a>, <a href="https://publications.waset.org/abstracts/search?q=interleukin-6" title=" interleukin-6"> interleukin-6</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic" title=" probiotic"> probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis" title=" tuberculosis"> tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/62781/effect-of-probiotics-and-vitamin-b-on-plasma-interferon-gamma-and-interleukin-6-levels-in-active-pulmonary-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Effects of Probiotics on Specific Immunity in Broiler Chicken in Syria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moussa%20Majed">Moussa Majed</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Yaser"> Omar Yaser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this experiment was to study the impact of Probiotic compound on the specific immunity as the case study of infectious bursal disease. Total of 8000 one-day old Ross 108 broiler were randomly divided into two experimental groups; control group (4500 birds) and experimental group (3500 birds). Birds in two groups were reared under similar environmental conditions. Birds in control group received basal diets without probiotic whereas the birds in experimental one were fed basal diets supplemented with a commercial probiotic mixture) probiotic lacting k, which contains bacteria cells beyond to lactobacillus, Streptococcus and bifidobacterium genus that are isolated from gut microflora in healthy chickens(. The commercial probiotic were used according to the manufacturer instruction. 400 blood samples for each group were collected from wing vein every 5-7 days as interval period till 42 days old. Indirect Enzyme-Linked Immunosorbent Assay (ELISA) test was performed to detect the level of infectious bursal disease virus (IBDV) antibodies. The results clearly showed that the mean of immune titers was significantly (p= 0.03) higher in trail group than control one. The coefficient of variance percentages were 55% and 39% for control and trial groups respectively, this illustrates that homogeneity of immunity titers in the trail group was much better comparing with control group. The values of geometric means of titers in the control group and trial group were reported 3820 and 8133, respectively. The crude mortality rate in the experimental group was two times lower comparing with control group (14% and 28% respectively, p = 0.005 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probiotic" title="probiotic">probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20chicken" title=" broiler chicken"> broiler chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=infectious%20bursal%20disease" title=" infectious bursal disease"> infectious bursal disease</a>, <a href="https://publications.waset.org/abstracts/search?q=immunity" title=" immunity"> immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA%20test" title=" ELISA test"> ELISA test</a> </p> <a href="https://publications.waset.org/abstracts/168103/effects-of-probiotics-on-specific-immunity-in-broiler-chicken-in-syria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Culturable Microbial Diversity of Agave Artisanal Fermentations from Central Mexico</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thal%C3%ADa%20Moreno-Garc%C3%ADa%20Malo">Thalía Moreno-García Malo</a>, <a href="https://publications.waset.org/abstracts/search?q=Santiago%20Torres-R%C3%ADos"> Santiago Torres-Ríos</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20G.%20Gonz%C3%A1lez-Cruz"> María G. González-Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20M.%20Hern%C3%A1ndez-Arroyo"> María M. Hernández-Arroyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20R.%20Trejo-Estrada"> Sergio R. Trejo-Estrada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agave atrovirens is the main source of agave sap, the raw material for the production of pulque, an artisanal fermented beverage, traditional since prehispanic times in the highlands of central Mexico. Agave sap is rich in glucose, sucrose and fructooligosaccharides, and strongly differs from agave syrup from A. tequilana, which is mostly a high molecular weight fructan. Agave sap is converted into pulque by a highly diverse microbial community which includes bacteria, yeast and even filamentous fungi. The bacterial diversity has been recently studied. But the composition of consortia derived from directed enrichments differs sharply from the whole fermentative consortium. Using classical microbiology methods, and selective liquid and solid media formulations, either bacterial or fungal consortia were developed and analyzed. Bacterial consortia able to catabolize specific prebiotic saccharides were selected and preserved for future developments. Different media formulations, selective for bacterial genera such as Bifidobacterium, Lactobacillus, Pediococcus, Lactococcus and Enterococcus were also used. For yeast, specific media, osmotic pressure and unique carbon sources were used as selective agents. Results show that most groups are represented in the enrichment cultures; although very few are recoverable from the whole consortium in artisanal pulque. Diversity and abundance vary among consortia. Potential bacterial probiotics obtained from agave sap and agave juices show tolerance to hydrochloric acid, as well as strong antimicrobial activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agave" title="Agave">Agave</a>, <a href="https://publications.waset.org/abstracts/search?q=pulque" title=" pulque"> pulque</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20consortia" title=" microbial consortia"> microbial consortia</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotic%20activity" title=" prebiotic activity"> prebiotic activity</a> </p> <a href="https://publications.waset.org/abstracts/17953/culturable-microbial-diversity-of-agave-artisanal-fermentations-from-central-mexico" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Humic Acid and Azadirachtin Derivatives for the Management of Crop Pests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Giraddi">R. S. Giraddi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Poleshi"> C. M. Poleshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic cultivation of crops is gaining importance consumer awareness towards pesticide residue free foodstuffs is increasing globally. This is also because of high costs of synthetic fertilizers and pesticides, making the conventional farming non-remunerative. In India, organic manures (such as vermicompost) are an important input in organic agriculture. Though vermicompost obtained through earthworm and microbe-mediated processes is known to comprise most of the crop nutrients, but they are in small amounts thus necessitating enrichment of nutrients so that crop nourishment is complete. Another characteristic of organic manures is that the pest infestations are kept under check due to induced resistance put up by the crop plants. In the present investigation, deoiled neem cake containing azadirachtin, copper ore tailings (COT), a source of micro-nutrients and microbial consortia were added for enrichment of vermicompost. Neem cake is a by-product obtained during the process of oil extraction from neem plant seeds. Three enriched vermicompost blends were prepared using vermicompost (at 70, 65 and 60%), deoiled neem cake (25, 30 and 35%), microbial consortia and COTwastes (5%). Enriched vermicompost was thoroughly mixed, moistened (25+5%), packed and incubated for 15 days at room temperature. In the crop response studies, the field trials on chili (<em>Capsicum annum</em> var. longum) and soybean, (<em>Glycine max </em>cv JS 335) were conducted during <em>Kharif</em> 2015 at the Main Agricultural Research Station, UAS, Dharwad-Karnataka, India. The vermicompost blend enriched with neem cake (known to possess higher amounts of nutrients) and vermicompost were applied to the crops and at two dosages and at two intervals of crop cycle (at sowing and 30 days after sowing) as per the treatment plan along with 50% recommended dose of fertilizer (RDF). 10 plants selected randomly in each plot were studied for pest density and plant damage. At maturity, crops were harvested, and the yields were recorded as per the treatments, and the data were analyzed using appropriate statistical tools and procedures. In the crops, chili and soybean, crop nourishment with neem enriched vermicompost reduced insect density and plant damage significantly compared to other treatments. These treatments registered as much yield (16.7 to 19.9 q/ha) as that realized in conventional chemical control (18.2 q/ha) in soybean, while 72 to 77 q/ha of green chili was harvested in the same treatments, being comparable to the chemical control (74 q/ha). The yield superiority of the treatments was of the order neem enriched vermicompost>conventional chemical control>neem cake>vermicompost>untreated control. The significant features of the result are that it reduces use of inorganic manures by 50% and synthetic chemical insecticides by 100%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=humic%20acid" title="humic acid">humic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=azadirachtin" title=" azadirachtin"> azadirachtin</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=insect-pest" title=" insect-pest"> insect-pest</a> </p> <a href="https://publications.waset.org/abstracts/79931/humic-acid-and-azadirachtin-derivatives-for-the-management-of-crop-pests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Direct Fed Microbes: A Better Approach to Maximize Utilization of Roughages in Tropical Ruminants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Adeel%20Arshad">Muhammad Adeel Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaukat%20Ali%20Bhatti"> Shaukat Ali Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Faiz-ul%20Hassan"> Faiz-ul Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manipulating microbial ecosystem in the rumen is considered as an important strategy to optimize production efficiency in ruminants. In the past, antibiotics and synthetic chemical compounds have been used for the manipulation of rumen fermentation. However, since the non-therapeutic use of antibiotics has been banned, efforts are being focused to search out safe alternative products. In tropics, crop residues and forage grazing are major dietary sources for ruminants. Poor digestibility and utilization of these feedstuffs by animals is a limiting factor to exploit the full potential of ruminants in this area. Hence, there is a need to enhance the utilization of these available feeding resources. One of the potential strategies in this regard is the use of direct-fed microbes. Bacteria and fungi are mostly used as direct-fed microbes to improve animal health and productivity. Commonly used bacterial species include lactic acid-producing and utilizing bacteria (Lactobacillus, Streptococcus, Enterococcus, Bifidobacterium, and Bacillus) and fungal species of yeast are Saccharomyces and Aspergillus. Direct-fed microbes modulate microbial balance in the gastrointestinal tract through the competitive exclusion of pathogenic species and favoring beneficial microbes. Improvement in weight gain and feed efficiency has been observed as a result of feeding direct-fed bacteria. The use of fungi as a direct-fed microbe may prevent excessive production of lactate and harmful oxygen in the rumen leading to better feed digestibility. However, the mechanistic mode of action for bacterial or fungal direct-fed microbes has not been established yet. Various reports have confirmed an increase in dry matter intake, milk yield, and milk contents in response to the administration of direct-fed microbes. However, the application of a direct-fed microbe has shown variable responses mainly attributed to dosages and strains of microbes. Nonetheless, it is concluded that the inclusion of direct-fed microbes may mediate the rumen ecosystem to manage lactic acid production and utilization in both clinical and sub-acute rumen acidosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbes" title="microbes">microbes</a>, <a href="https://publications.waset.org/abstracts/search?q=roughages" title=" roughages"> roughages</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen" title=" rumen"> rumen</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20efficiency" title=" feed efficiency"> feed efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/115319/direct-fed-microbes-a-better-approach-to-maximize-utilization-of-roughages-in-tropical-ruminants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Compositional Assessment of Fermented Rice Bran and Rice Bran Oil and Their Effect on High Fat Diet Induced Animal Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ali%20Siddiquee">Muhammad Ali Siddiquee</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Alauddin"> Md. Alauddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Omar%20Faruque"> Md. Omar Faruque</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakir%20Hossain%20Howlader"> Zakir Hossain Howlader</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Asaduzzaman"> Mohammad Asaduzzaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice bran (RB) and rice bran oil (RBO) are explored as prominent food components worldwide. In this study, fermented rice bran (FRB) was produced by employing edible gram-positive bacteria (Lactobacillus acidophilus, Lactobacillus bulgaricus, and Bifidobacterium bifidum) at 125 x 10⁵ spore g⁻¹ of rice bran, and investigated to evaluate nutritional quality. The crude rice bran oil (CRBO) was extracted from RB, and its quality was also investigated compared to market-available rice bran oil (MRBO) in Bangladesh. We found that fermentation of rice bran with lactic acid bacteria increased total proteins (29.52%), fat (5.38%), ash (48.47%), crude fiber (38.96%), and moisture (61.04%) and reduced the carbohydrate content (36.61%). We also found that essential amino acids (methionine, tryptophan, threonine, valine, leucine, lysine, histidine, and phenylalanine) and non-essential amino acids (alanine, aspartate, glycine, glutamine, proline, serine, and tyrosine) were increased in FRB except methionine and proline. Moreover, total phenolic content, tannin content, flavonoid content, and antioxidant activity were increased in FRB. The RBO analysis showed that γ-oryzanol content (10.00mg/g) was found in CRBO compared to MRBO (ranging from 7.40 to 12.70 mg/g) and Vitamin-E content 0.20% was found higher in CRBO compared to MRBO (ranging 0.097 to 0.12%). The total saturated (25.16%) and total unsaturated fatty acids (74.44%) were found in CRBO, whereas MRBO contained total saturated (22.08 to 24.13%) and total unsaturated fatty acids (71.91 to 83.29%), respectively. The physiochemical parameters were found satisfactory in all samples except acid value and peroxide value higher in CRBO. Finally, animal experiments showed that FRB and CRBO reduce the body weight, glucose, and lipid profile in high-fat diet-induced animal models. Thus, FRB and RBO could be value-added food supplements for human health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermented%20rice%20bran" title="fermented rice bran">fermented rice bran</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20rice%20bran%20oil" title=" crude rice bran oil"> crude rice bran oil</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title=" amino acids"> amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma-oryzanol" title=" gamma-oryzanol"> gamma-oryzanol</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=physiochemical%20parameters" title=" physiochemical parameters"> physiochemical parameters</a> </p> <a href="https://publications.waset.org/abstracts/177244/compositional-assessment-of-fermented-rice-bran-and-rice-bran-oil-and-their-effect-on-high-fat-diet-induced-animal-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Exploration of Probiotics and Anti-Microbial Agents in Fermented Milk from Pakistani Camel spp. Breeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deeba%20N.%20Baig">Deeba N. Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Ateeqa%20Ijaz"> Ateeqa Ijaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Saloome%20Rafiq"> Saloome Rafiq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Camel is a religious and culturally significant animal in Asian and African regions. In Pakistan Dromedary and Bactrian are common camel breeds. Other than the transportation use, it is a pivotal source of milk and meat. The quality of its milk and meat is predominantly dependent on the geographical location and variety of vegetation available for the diet. Camel milk (CM) is highly nutritious because of its reduced cholesterol and sugar contents along with enhanced minerals and vitamins level. The absence of beta-lactoglobulin (like human milk), makes CM a safer alternative for infants and children having Cow Milk Allergy (CMA). In addition to this, it has a unique probiotic profile both in raw and fermented form. Number of Lactic acid bacteria (LAB) including lactococcus, lactobacillus, enterococcus, streptococcus, weissella, pediococcus and many other bacteria have been detected. From these LAB Lactobacilli, Bifidobacterium and Enterococcus are widely used commercially for fermentation purpose. CM has high therapeutic value as its effectiveness is known against various ailments like fever, arthritis, asthma, gastritis, hepatitis, Jaundice, constipation, postpartum care of women, anti-venom, dropsy etc. It also has anti-diabetic, anti-microbial, antitumor potential along with its robust efficacy in the treatment of auto-immune disorders. Recently, the role of CM has been explored in brain-gut axis for the therapeutics of neurodevelopmental disorders. In this connection, a lot of grey area was available to explore the probiotics and therapeutics latent in the CM available in Pakistan. Thus, current study was designed to explore the predominant probiotic flora and antimicrobial potential of CM from different local breeds of Pakistan. The probiotics have been identified through biochemical, physiological and ribo-typing methods. In addition to this, bacteriocins (antimicrobial-agents) were screened through PCR-based approach. Results of this study revealed that CM from different breeds of camel depicted a number of similar probiotic candidates along with the range of limited variability. However, the nucleotide sequence analysis of selected anti-listerial bacteriocins exposed least variability. As a conclusion, the CM has sufficient probiotic availability and significant anti-microbial potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteriocins" title="bacteriocins">bacteriocins</a>, <a href="https://publications.waset.org/abstracts/search?q=camel%20milk" title=" camel milk"> camel milk</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics%20potential" title=" probiotics potential"> probiotics potential</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutics" title=" therapeutics"> therapeutics</a> </p> <a href="https://publications.waset.org/abstracts/103336/exploration-of-probiotics-and-anti-microbial-agents-in-fermented-milk-from-pakistani-camel-spp-breeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Microorganisms in Fresh and Stored Bee Pollen Originated from Slovakia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladim%C3%ADra%20K%C5%88azovick%C3%A1">Vladimíra Kňazovická</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A1ria%20Dovi%C4%8Di%C4%8Dov%C3%A1"> Mária Dovičičová</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslava%20Ka%C4%8D%C3%A1niov%C3%A1"> Miroslava Kačániová</a>, <a href="https://publications.waset.org/abstracts/search?q=Margita%20%C4%8Canigov%C3%A1"> Margita Čanigová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to test the storage of bee pollen at room temperature and in cold store, and to describe microorganisms originated from it. Fresh bee pollen originating in West Slovakia was collected in May 2010. It was tested for presence of particular microbial groups using dilution plating method, and divided into two parts with different storage (in cold store and at room temperature). Microbial analyses of pollen were repeated after one year of storage. Several bacterial strains were isolated and tested using Gram staining, for catalase and fructose-6-phosphate-phosphoketolase presence, and by rapid ID 32A (BioMérieux, France). Micromycetes were identified at genus level. Fresh pollen contained coliform bacteria, which were not detected after one year of storage in both ways. Total plate count (TPC) of aerobes and anaerobes and of yeasts in fresh bee pollen exceeded 5.00 log CFU/g. TPC of aerobes and anaerobes decreased below 2.00 log CFU/g after one year of storage in both ways. Count of yeasts decreased to 2.32 log CFU/g (at room temperature) and to 3.66 log CFU/g (in cold store). Microscopic filamentous fungi decreased from 3.41 log CFU/g (fresh bee pollen) to 1.13 log CFU/g (at room temperature) and to 1.89 log CFU/g (in cold store). In fresh bee pollen, 12 genera of micromycetes were identified in the following order according to their relative density: Penicillium > Mucor > Absidia > Cladosporium, Fusarium > Alternaria > Eurotium > Aspergillus, Rhizopus > Emericella > Arthrinium and Mycelium sterilium. After one year at room temperature, only three genera were detected in bee pollen (Penicillium > Aspergillus, Mucor) and after one year in cold store, seven genera were detected (Mucor > Penicillium, Emericella > Aspergillus, Absidia > Arthrinium, Eurotium). From the plates designated for anaerobes, eight colonies originating in fresh bee pollen were isolated. Among them, a single yeast isolate occurred. Other isolates were G+ bacteria, with a total of five rod shaped. In three out of these five, catalase was absent and fructose-6-phosphate-phosphoketolase was present. Bacterial isolates originating in fresh pollen belonged probably to genus Bifidobacterium or relative genera, but their identity was not confirmed unequivocally. In general, cold conditions are suitable for maintaining the natural properties of foodstuffs for a longer time. Slight decrease of microscopic fungal number and diversity was recorded in cold temperatures compared with storage at room temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=bee%20product" title=" bee product"> bee product</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20fungi" title=" microscopic fungi"> microscopic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=biosystems%20engineering" title=" biosystems engineering"> biosystems engineering</a> </p> <a href="https://publications.waset.org/abstracts/5155/microorganisms-in-fresh-and-stored-bee-pollen-originated-from-slovakia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> In Vitro Fermentation Of Rich In B-glucan Pleurotus Eryngii Mushroom: Impact On Faecal Bacterial Populations And Intestinal Barrier In Autistic Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgia%20Saxami">Georgia Saxami</a>, <a href="https://publications.waset.org/abstracts/search?q=Evangelia%20N.%20Kerezoudi"> Evangelia N. Kerezoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Evdokia%20K.%20Mitsou"> Evdokia K. Mitsou</a>, <a href="https://publications.waset.org/abstracts/search?q=Marigoula%20Vlassopoulou"> Marigoula Vlassopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Zervakis"> Georgios Zervakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Adamantini%20Kyriacou"> Adamantini Kyriacou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autism Spectrum Disorder (ASD) is a complex group of developmental disorders of the brain, characterized by social and communication dysfunctions, stereotypes and repetitive behaviors. The potential interaction between gut microbiota (GM) and autism has not been fully elucidated. Children with autism often suffer gastrointestinal dysfunctions, while alterations or dysbiosis of GM have also been observed. Treatment with dietary components has been postulated to regulate GM and improve gastrointestinal symptoms, but there is a lack of evidence for such approaches in autism, especially for prebiotics. This study assessed the effects of Pleurotus eryngii mushroom (candidate prebiotic) and inulin (known prebiotic compound) on gut microbial composition, using faecal samples from autistic children in an in vitro batch culture fermentation system. Selected members of GM were enumerated at baseline (0 h) and after 24 h fermentation by quantitative PCR. After 24 h fermentation, inulin and P. eryngii mushroom induced a significant increase in total bacteria and Faecalibacterium prausnitzii compared to the negative control (gut microbiota of each autistic donor with no carbohydrate source), whereas both treatments induced a significant increase in levels of total bacteria, Bifidobacterium spp. and Prevotella spp. compared to baseline (t=0h) (p for all <0.05). Furthermore, this study evaluated the impact of fermentation supernatants (FSs), derived from P. eryngii mushroom or inulin, on the expression levels of tight junctions’ genes (zonulin-1, occludin and claudin-1) in Caco-2 cells stimulated by bacterial lipopolysaccharides (LPS). Pre-incubation of Caco-2 cells with FS from P. eryngii mushroom led to a significant increase in the expression levels of zonulin-1, occludin and claudin-1 genes compared to the untreated cells, the cells that were subjected to LPS and the cells that were challenged with FS from negative control (p for all <0.05). In addition, incubation with FS from P. eryngii mushroom led to the highest mean expression values for zonulin-1 and claudin-1 genes, which differed significantly compared to inulin (p for all <0.05). Overall, this research highlighted the beneficial in vitro effects of P. eryngii mushroom on the composition of GM of autistic children after 24 h of fermentation. Also, our data highlighted the potential preventive effect of P. eryngii FSs against dysregulation of the intestinal barrier, through upregulation of tight junctions’ genes associated with the integrity and function of the intestinal barrier. This research has been financed by "Supporting Researchers with Emphasis on Young Researchers - Round B", Operational Program "Human Resource Development, Education and Lifelong Learning." <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title="gut microbiota">gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=intestinal%20barrier" title=" intestinal barrier"> intestinal barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20disorders" title=" autism spectrum disorders"> autism spectrum disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=Pleurotus%20Eryngii" title=" Pleurotus Eryngii"> Pleurotus Eryngii</a> </p> <a href="https://publications.waset.org/abstracts/143526/in-vitro-fermentation-of-rich-in-b-glucan-pleurotus-eryngii-mushroom-impact-on-faecal-bacterial-populations-and-intestinal-barrier-in-autistic-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Regulation Effect of Intestinal Microbiota by Fermented Processing Wastewater of Yuba</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ting%20Wu">Ting Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feiting%20Hu"> Feiting Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinyue%20Zhang"> Xinyue Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuxin%20Tang"> Shuxin Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyun%20Xu"> Xiaoyun Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a by-product of yuba, processing wastewater of Yuba (PWY) contains many bioactive components such as soybean isoflavones, soybean polysaccharides and soybean oligosaccharides, which is a good source of prebiotics and has a potential of high value utilization. The use of Lactobacillus plantarum to ferment PWY can be considered as a potential biogenic element, which can regulate the balance of intestinal microbiota. In this study, firstly, Lactobacillus plantarum was used to ferment PWY to improve its content of active components and antioxidant activity. Then, the health effect of fermented processing wastewater of yuba (FPWY) was measured in vitro. Finally, microencapsulation technology was used applied to improve the sustained release of FPWY and reduce the loss of active components in the digestion process, as well as to improving the activity of FPWY. The main results are as follows: (1) FPWY presented a good antioxidant capacity with DPPH free radical scavenging ability (0.83 ± 0.01 mmol Trolox/L), ABTS free radical scavenging ability (7.47 ± 0.35 mmol Trolox/L) and iron ion reducing ability (1.11 ± 0.07 mmol Trolox/L). Compared with non-fermented processing wastewater of yuba (NFPWY), there was no significant difference in the content of total soybean isoflavones, but the content of glucoside soybean isoflavones decreased, and aglyconic soybean isoflavones increased significantly. After fermentation, PWY can effectively reduce the soluble monosaccharides, disaccharides and oligosaccharides, such as glucose, fructose, galactose, trehalose, stachyose, maltose, raffinose and sucrose. (2) FPWY can significantly enhance the growth of beneficial bacteria such as Bifidobacterium, Ruminococcus and Akkermansia, significantly inhibit the growth of harmful bacteria E.coli, regulate the structure of intestinal microbiota, and significantly increase the content of short-chain fatty acids such as acetic acid, propionic acid, butyric acid, isovaleric acid. Higher amount of lactic acid in the gut can be further broken down into short chain fatty acids. (3) In order to improve the stability of soybean isoflavones in FPWY during digestion, sodium alginate and chitosan were used as wall materials for embedding. The FPWY freeze-dried powder was embedded by the method of acute-coagulation bath. The results show that when the core wall ratio is 3:1, the concentration of chitosan is 1.5%, the concentration of sodium alginate is 2.0%, and the concentration of calcium is 3%, the embossing rate is 53.20%. In the simulated in vitro digestion stage, the release rate of microcapsules reached 59.36% at the end of gastric digestion and 82.90% at the end of intestinal digestion. Therefore, the core materials with good sustained-release performance of microcapsules were almost all released. The structural analysis results of FPWY microcapsules show that the microcapsules have good mechanical properties. Its hardness, springness, cohesiveness, gumminess, chewiness and resilience were 117.75± 0.21 g, 0.76±0.02, 0.54±0.01, 63.28±0.71 g·sec, 48.03±1.37 g·sec, 0.31±0.01, respectively. Compared with the unembedded FPWY, the infrared spectrum results showed that the microcapsules had embedded effect on the FPWY freeze-dried powder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=processing%20wastewater%20of%20yuba" title="processing wastewater of yuba">processing wastewater of yuba</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus%20plantarum" title=" lactobacillus plantarum"> lactobacillus plantarum</a>, <a href="https://publications.waset.org/abstracts/search?q=intestinal%20microbiota" title=" intestinal microbiota"> intestinal microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=microcapsule" title=" microcapsule"> microcapsule</a> </p> <a href="https://publications.waset.org/abstracts/165744/regulation-effect-of-intestinal-microbiota-by-fermented-processing-wastewater-of-yuba" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>