CINXE.COM
Complex getal - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="nl" dir="ltr"> <head> <meta charset="UTF-8"> <title>Complex getal - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )nlwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","januari","februari","maart","april","mei","juni","juli","augustus","september","oktober","november","december"],"wgRequestId":"cb575a89-a072-45c8-b801-2254f217059f","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Complex_getal","wgTitle":"Complex getal","wgCurRevisionId":67818937,"wgRevisionId":67818937,"wgArticleId":7653,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Complex getal","Complexe analyse"],"wgPageViewLanguage":"nl","wgPageContentLanguage":"nl","wgPageContentModel":"wikitext","wgRelevantPageName":"Complex_getal","wgRelevantArticleId":7653,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Complexe_getallen","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault" :true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"nl","pageLanguageDir":"ltr","pageVariantFallbacks":"nl"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgInternalRedirectTargetUrl":"/wiki/Complex_getal","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11567","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles": "ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.Direct-link-to-Commons","ext.gadget.ProtectionTemplates","ext.gadget.InterProjectLinks","ext.gadget.hoofdbetekenis-titelwijziging","ext.gadget.switcher","ext.gadget.OpenStreetMapFrame","ext.gadget.subpages","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init", "ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=nl&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=nl&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=nl&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Complex getal - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//nl.m.wikipedia.org/wiki/Complex_getal"> <link rel="alternate" type="application/x-wiki" title="Bewerken" href="/w/index.php?title=Complex_getal&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (nl)"> <link rel="EditURI" type="application/rsd+xml" href="//nl.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://nl.wikipedia.org/wiki/Complex_getal"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.nl"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom-feed" href="/w/index.php?title=Speciaal:RecenteWijzigingen&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Complex_getal rootpage-Complex_getal skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Naar inhoud springen</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Hoofdmenu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Hoofdmenu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Hoofdmenu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">naar zijbalk verplaatsen</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">verbergen</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigatie </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Hoofdpagina" title="Naar de hoofdpagina gaan [z]" accesskey="z"><span>Hoofdpagina</span></a></li><li id="n-zoekartikel" class="mw-list-item"><a href="/wiki/Portaal:Navigatie"><span>Vind een artikel</span></a></li><li id="n-today" class="mw-list-item"><a href="/wiki/28_november"><span>Vandaag</span></a></li><li id="n-Etalage" class="mw-list-item"><a href="/wiki/Wikipedia:Etalage"><span>Etalage</span></a></li><li id="n-categories" class="mw-list-item"><a href="/wiki/Categorie:Alles"><span>Categorieën</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speciaal:RecenteWijzigingen" title="Een lijst met recente wijzigingen in deze wiki. [r]" accesskey="r"><span>Recente wijzigingen</span></a></li><li id="n-newpages" class="mw-list-item"><a href="/wiki/Speciaal:NieuwePaginas"><span>Nieuwe artikelen</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speciaal:Willekeurig" title="Een willekeurige pagina bekijken [x]" accesskey="x"><span>Willekeurige pagina</span></a></li> </ul> </div> </div> <div id="p-navigation2" class="vector-menu mw-portlet mw-portlet-navigation2" > <div class="vector-menu-heading"> Informatie </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Portaal:Gebruikersportaal" title="Informatie over het project: wat u kunt doen, waar u dingen kunt vinden"><span>Gebruikersportaal</span></a></li><li id="n-Snelcursus" class="mw-list-item"><a href="/wiki/Wikipedia:Snelcursus"><span>Snelcursus</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Portaal:Hulp_en_beheer" title="Hulpinformatie over deze wiki"><span>Hulp en contact</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Hoofdpagina" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="de vrije encyclopedie" src="/static/images/mobile/copyright/wikipedia-tagline-nl.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speciaal:Zoeken" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Doorzoek Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Zoeken</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Doorzoek Wikipedia" aria-label="Doorzoek Wikipedia" autocapitalize="sentences" title="Doorzoek Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciaal:Zoeken"> </div> <button class="cdx-button cdx-search-input__end-button">Zoeken</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Persoonlijke hulpmiddelen"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Uiterlijk"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="De lettergrootte, breedte en kleur van de pagina wijzigen" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Uiterlijk" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Uiterlijk</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_nl.wikipedia.org&uselang=nl" class=""><span>Doneren</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciaal:GebruikerAanmaken&returnto=Complex+getal" title="Registreer u vooral en meld u aan. Dit is echter niet verplicht." class=""><span>Account aanmaken</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciaal:Aanmelden&returnto=Complex+getal" title="U wordt van harte uitgenodigd om aan te melden, maar dit is niet verplicht [o]" accesskey="o" class=""><span>Aanmelden</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Meer opties" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Persoonlijke hulpmiddelen" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Persoonlijke hulpmiddelen</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Gebruikersmenu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_nl.wikipedia.org&uselang=nl"><span>Doneren</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciaal:GebruikerAanmaken&returnto=Complex+getal" title="Registreer u vooral en meld u aan. Dit is echter niet verplicht."><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Account aanmaken</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciaal:Aanmelden&returnto=Complex+getal" title="U wordt van harte uitgenodigd om aan te melden, maar dit is niet verplicht [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Aanmelden</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pagina's voor uitgelogde redacteuren <a href="/wiki/Help:Inleiding" aria-label="Meer leren over bewerken"><span>meer lezen</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speciaal:MijnBijdragen" title="Bijdragen IP-adres [y]" accesskey="y"><span>Bijdragen</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speciaal:MijnOverleg" title="Overlegpagina van de anonieme gebruiker van dit IP-adres [n]" accesskey="n"><span>Overleg</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Inhoud" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Inhoud</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">naar zijbalk verplaatsen</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">verbergen</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Top</div> </a> </li> <li id="toc-Geschiedenis" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Geschiedenis"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Geschiedenis</span> </div> </a> <ul id="toc-Geschiedenis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definitie" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definitie"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definitie</span> </div> </a> <button aria-controls="toc-Definitie-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Definitie-subkopje inklappen</span> </button> <ul id="toc-Definitie-sublist" class="vector-toc-list"> <li id="toc-Definitie_door_introductie_van_een_nieuw_getal_i" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definitie_door_introductie_van_een_nieuw_getal_i"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Definitie door introductie van een nieuw getal <span><i>i</i></span></span> </div> </a> <ul id="toc-Definitie_door_introductie_van_een_nieuw_getal_i-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definitie_als_koppel_reële_getallen_of_als_tweedimensionale_vector" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definitie_als_koppel_reële_getallen_of_als_tweedimensionale_vector"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Definitie als koppel reële getallen of als tweedimensionale vector</span> </div> </a> <ul id="toc-Definitie_als_koppel_reële_getallen_of_als_tweedimensionale_vector-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Voorstelling" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Voorstelling"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Voorstelling</span> </div> </a> <button aria-controls="toc-Voorstelling-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Voorstelling-subkopje inklappen</span> </button> <ul id="toc-Voorstelling-sublist" class="vector-toc-list"> <li id="toc-Voorbeelden" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Voorbeelden"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Voorbeelden</span> </div> </a> <ul id="toc-Voorbeelden-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notaties_voor_complexe_getallen" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notaties_voor_complexe_getallen"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Notaties voor complexe getallen</span> </div> </a> <button aria-controls="toc-Notaties_voor_complexe_getallen-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Notaties voor complexe getallen-subkopje inklappen</span> </button> <ul id="toc-Notaties_voor_complexe_getallen-sublist" class="vector-toc-list"> <li id="toc-Cartesische_of_algebraïsche_notatie" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cartesische_of_algebraïsche_notatie"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Cartesische of algebraïsche notatie</span> </div> </a> <ul id="toc-Cartesische_of_algebraïsche_notatie-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notatie_met_poolcoördinaten" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Notatie_met_poolcoördinaten"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Notatie met poolcoördinaten</span> </div> </a> <ul id="toc-Notatie_met_poolcoördinaten-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matrixvoorstelling" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Matrixvoorstelling"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Matrixvoorstelling</span> </div> </a> <ul id="toc-Matrixvoorstelling-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Gerelateerde_waarden" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Gerelateerde_waarden"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Gerelateerde waarden</span> </div> </a> <button aria-controls="toc-Gerelateerde_waarden-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Gerelateerde waarden-subkopje inklappen</span> </button> <ul id="toc-Gerelateerde_waarden-sublist" class="vector-toc-list"> <li id="toc-Complex_geconjugeerde" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Complex_geconjugeerde"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Complex geconjugeerde</span> </div> </a> <ul id="toc-Complex_geconjugeerde-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Modulus" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Modulus"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Modulus</span> </div> </a> <ul id="toc-Modulus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voorbeelden_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Voorbeelden_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Voorbeelden</span> </div> </a> <ul id="toc-Voorbeelden_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Modulus_van_de_complex_geconjugeerde" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Modulus_van_de_complex_geconjugeerde"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Modulus van de complex geconjugeerde</span> </div> </a> <ul id="toc-Modulus_van_de_complex_geconjugeerde-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Ordening" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Ordening"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Ordening</span> </div> </a> <ul id="toc-Ordening-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rekenen_met_complexe_getallen" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Rekenen_met_complexe_getallen"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Rekenen met complexe getallen</span> </div> </a> <button aria-controls="toc-Rekenen_met_complexe_getallen-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Rekenen met complexe getallen-subkopje inklappen</span> </button> <ul id="toc-Rekenen_met_complexe_getallen-sublist" class="vector-toc-list"> <li id="toc-Optellen_en_aftrekken" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Optellen_en_aftrekken"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Optellen en aftrekken</span> </div> </a> <ul id="toc-Optellen_en_aftrekken-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vermenigvuldigen_en_delen" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Vermenigvuldigen_en_delen"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Vermenigvuldigen en delen</span> </div> </a> <ul id="toc-Vermenigvuldigen_en_delen-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Logaritme_en_e-macht" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Logaritme_en_e-macht"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Logaritme en e-macht</span> </div> </a> <ul id="toc-Logaritme_en_e-macht-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Machtsverheffen" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Machtsverheffen"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Machtsverheffen</span> </div> </a> <ul id="toc-Machtsverheffen-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sinus_en_cosinus" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sinus_en_cosinus"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.5</span> <span>Sinus en cosinus</span> </div> </a> <ul id="toc-Sinus_en_cosinus-sublist" class="vector-toc-list"> <li id="toc-Stelling_van_De_Moivre" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Stelling_van_De_Moivre"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.5.1</span> <span>Stelling van De Moivre</span> </div> </a> <ul id="toc-Stelling_van_De_Moivre-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Sinus_hyperbolicus_en_cosinus_hyperbolicus" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sinus_hyperbolicus_en_cosinus_hyperbolicus"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.6</span> <span>Sinus hyperbolicus en cosinus hyperbolicus</span> </div> </a> <ul id="toc-Sinus_hyperbolicus_en_cosinus_hyperbolicus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Complexe_wortelfuncties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Complexe_wortelfuncties"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.7</span> <span>Complexe wortelfuncties</span> </div> </a> <ul id="toc-Complexe_wortelfuncties-sublist" class="vector-toc-list"> <li id="toc-Voorbeeld" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Voorbeeld"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.7.1</span> <span>Voorbeeld</span> </div> </a> <ul id="toc-Voorbeeld-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hoofdwaarde" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Hoofdwaarde"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.7.2</span> <span>Hoofdwaarde</span> </div> </a> <ul id="toc-Hoofdwaarde-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Eenheidswortels" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Eenheidswortels"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.7.3</span> <span>Eenheidswortels</span> </div> </a> <ul id="toc-Eenheidswortels-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Toepassingen" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Toepassingen"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Toepassingen</span> </div> </a> <button aria-controls="toc-Toepassingen-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toepassingen-subkopje inklappen</span> </button> <ul id="toc-Toepassingen-sublist" class="vector-toc-list"> <li id="toc-Trillings-_en_golfverschijnselen" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Trillings-_en_golfverschijnselen"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Trillings- en golfverschijnselen</span> </div> </a> <ul id="toc-Trillings-_en_golfverschijnselen-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Elektrotechniek_en_elektronica" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Elektrotechniek_en_elektronica"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Elektrotechniek en elektronica</span> </div> </a> <ul id="toc-Elektrotechniek_en_elektronica-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Natuurkunde" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Natuurkunde"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Natuurkunde</span> </div> </a> <ul id="toc-Natuurkunde-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativiteit" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relativiteit"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.4</span> <span>Relativiteit</span> </div> </a> <ul id="toc-Relativiteit-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Meetkunde" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Meetkunde"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.5</span> <span>Meetkunde</span> </div> </a> <ul id="toc-Meetkunde-sublist" class="vector-toc-list"> <li id="toc-Fractals" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Fractals"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.5.1</span> <span>Fractals</span> </div> </a> <ul id="toc-Fractals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Driehoeken" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Driehoeken"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.5.2</span> <span>Driehoeken</span> </div> </a> <ul id="toc-Driehoeken-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Externe_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Externe_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Externe links</span> </div> </a> <ul id="toc-Externe_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Inhoud" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Inhoudsopgave omschakelen" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Inhoudsopgave omschakelen</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Complex getal</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Ga naar een artikel in een andere taal. Beschikbaar in 132 talen" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-132" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">132 talen</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Komplekse_getal" title="Komplekse getal – Afrikaans" lang="af" hreflang="af" data-title="Komplekse getal" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Komplexe_Zahl" title="Komplexe Zahl – Zwitserduits" lang="gsw" hreflang="gsw" data-title="Komplexe Zahl" data-language-autonym="Alemannisch" data-language-local-name="Zwitserduits" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8B%A8%E1%8A%A0%E1%89%85%E1%8C%A3%E1%8C%AB_%E1%89%81%E1%8C%A5%E1%88%AD" title="የአቅጣጫ ቁጥር – Amhaars" lang="am" hreflang="am" data-title="የአቅጣጫ ቁጥር" data-language-autonym="አማርኛ" data-language-local-name="Amhaars" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Numero_complexo" title="Numero complexo – Aragonees" lang="an" hreflang="an" data-title="Numero complexo" data-language-autonym="Aragonés" data-language-local-name="Aragonees" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-anp mw-list-item"><a href="https://anp.wikipedia.org/wiki/%E0%A4%B8%E0%A4%AE%E0%A4%BF%E0%A4%B6%E0%A5%8D%E0%A4%B0_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="समिश्र संख्या – Angika" lang="anp" hreflang="anp" data-title="समिश्र संख्या" data-language-autonym="अंगिका" data-language-local-name="Angika" class="interlanguage-link-target"><span>अंगिका</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D9%85%D8%B1%D9%83%D8%A8" title="عدد مركب – Arabisch" lang="ar" hreflang="ar" data-title="عدد مركب" data-language-autonym="العربية" data-language-local-name="Arabisch" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%9C%E0%A6%9F%E0%A6%BF%E0%A6%B2_%E0%A6%B8%E0%A6%82%E0%A6%96%E0%A7%8D%E0%A6%AF%E0%A6%BE" title="জটিল সংখ্যা – Assamees" lang="as" hreflang="as" data-title="জটিল সংখ্যা" data-language-autonym="অসমীয়া" data-language-local-name="Assamees" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/N%C3%BAmberu_complexu" title="Númberu complexu – Asturisch" lang="ast" hreflang="ast" data-title="Númberu complexu" data-language-autonym="Asturianu" data-language-local-name="Asturisch" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Kompleks_%C9%99d%C9%99dl%C9%99r" title="Kompleks ədədlər – Azerbeidzjaans" lang="az" hreflang="az" data-title="Kompleks ədədlər" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbeidzjaans" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%DA%A9%D9%88%D9%85%D9%BE%D9%84%DA%A9%D8%B3_%D8%B3%D8%A7%DB%8C%DB%8C%D9%84%D8%A7%D8%B1" title="کومپلکس ساییلار – South Azerbaijani" lang="azb" hreflang="azb" data-title="کومپلکس ساییلار" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BB%D1%8B_%D2%BB%D0%B0%D0%BD" title="Комплекслы һан – Basjkiers" lang="ba" hreflang="ba" data-title="Комплекслы һан" data-language-autonym="Башҡортса" data-language-local-name="Basjkiers" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Kuompleks%C4%97nis_skaitlios" title="Kuompleksėnis skaitlios – Samogitisch" lang="sgs" hreflang="sgs" data-title="Kuompleksėnis skaitlios" data-language-autonym="Žemaitėška" data-language-local-name="Samogitisch" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D1%8B_%D0%BB%D1%96%D0%BA" title="Камплексны лік – Belarussisch" lang="be" hreflang="be" data-title="Камплексны лік" data-language-autonym="Беларуская" data-language-local-name="Belarussisch" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D1%8B_%D0%BB%D1%96%D0%BA" title="Камплексны лік – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Камплексны лік" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%BE_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Комплексно число – Bulgaars" lang="bg" hreflang="bg" data-title="Комплексно число" data-language-autonym="Български" data-language-local-name="Bulgaars" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%9C%E0%A6%9F%E0%A6%BF%E0%A6%B2_%E0%A6%B8%E0%A6%82%E0%A6%96%E0%A7%8D%E0%A6%AF%E0%A6%BE" title="জটিল সংখ্যা – Bengaals" lang="bn" hreflang="bn" data-title="জটিল সংখ্যা" data-language-autonym="বাংলা" data-language-local-name="Bengaals" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Kompleksan_broj" title="Kompleksan broj – Bosnisch" lang="bs" hreflang="bs" data-title="Kompleksan broj" data-language-autonym="Bosanski" data-language-local-name="Bosnisch" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81_%D1%82%D0%BE%D0%BE" title="Комплекс тоо – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Комплекс тоо" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Nombre_complex" title="Nombre complex – Catalaans" lang="ca" hreflang="ca" data-title="Nombre complex" data-language-autonym="Català" data-language-local-name="Catalaans" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%98%D9%85%D8%A7%D8%B1%DB%95%DB%8C_%D8%A6%D8%A7%D9%88%DB%8E%D8%AA%DB%95" title="ژمارەی ئاوێتە – Soranî" lang="ckb" hreflang="ckb" data-title="ژمارەی ئاوێتە" data-language-autonym="کوردی" data-language-local-name="Soranî" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Komplexn%C3%AD_%C4%8D%C3%ADslo" title="Komplexní číslo – Tsjechisch" lang="cs" hreflang="cs" data-title="Komplexní číslo" data-language-autonym="Čeština" data-language-local-name="Tsjechisch" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BB%C4%83_%D1%85%D0%B8%D1%81%D0%B5%D0%BF" title="Комплекслă хисеп – Tsjoevasjisch" lang="cv" hreflang="cv" data-title="Комплекслă хисеп" data-language-autonym="Чӑвашла" data-language-local-name="Tsjoevasjisch" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Rhif_cymhlyg" title="Rhif cymhlyg – Welsh" lang="cy" hreflang="cy" data-title="Rhif cymhlyg" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da badge-Q17559452 badge-recommendedarticle mw-list-item" title="aanbevolen artikel"><a href="https://da.wikipedia.org/wiki/Komplekse_tal" title="Komplekse tal – Deens" lang="da" hreflang="da" data-title="Komplekse tal" data-language-autonym="Dansk" data-language-local-name="Deens" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Komplexe_Zahl" title="Komplexe Zahl – Duits" lang="de" hreflang="de" data-title="Komplexe Zahl" data-language-autonym="Deutsch" data-language-local-name="Duits" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Amaro_kompleks" title="Amaro kompleks – Zazaki" lang="diq" hreflang="diq" data-title="Amaro kompleks" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9C%CE%B9%CE%B3%CE%B1%CE%B4%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Μιγαδικός αριθμός – Grieks" lang="el" hreflang="el" data-title="Μιγαδικός αριθμός" data-language-autonym="Ελληνικά" data-language-local-name="Grieks" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/N%C3%B3mmer_cumpl%C3%AAs" title="Nómmer cumplês – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Nómmer cumplês" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Complex_number" title="Complex number – Engels" lang="en" hreflang="en" data-title="Complex number" data-language-autonym="English" data-language-local-name="Engels" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Kompleksa_nombro" title="Kompleksa nombro – Esperanto" lang="eo" hreflang="eo" data-title="Kompleksa nombro" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/N%C3%BAmero_complejo" title="Número complejo – Spaans" lang="es" hreflang="es" data-title="Número complejo" data-language-autonym="Español" data-language-local-name="Spaans" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Kompleksarv" title="Kompleksarv – Estisch" lang="et" hreflang="et" data-title="Kompleksarv" data-language-autonym="Eesti" data-language-local-name="Estisch" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Zenbaki_konplexu" title="Zenbaki konplexu – Baskisch" lang="eu" hreflang="eu" data-title="Zenbaki konplexu" data-language-autonym="Euskara" data-language-local-name="Baskisch" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D9%85%D8%AE%D8%AA%D9%84%D8%B7" title="عدد مختلط – Perzisch" lang="fa" hreflang="fa" data-title="عدد مختلط" data-language-autonym="فارسی" data-language-local-name="Perzisch" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Kompleksiluku" title="Kompleksiluku – Fins" lang="fi" hreflang="fi" data-title="Kompleksiluku" data-language-autonym="Suomi" data-language-local-name="Fins" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Kompleksarv" title="Kompleksarv – Võro" lang="vro" hreflang="vro" data-title="Kompleksarv" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Komplekst_tal" title="Komplekst tal – Faeröers" lang="fo" hreflang="fo" data-title="Komplekst tal" data-language-autonym="Føroyskt" data-language-local-name="Faeröers" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Nombre_complexe" title="Nombre complexe – Frans" lang="fr" hreflang="fr" data-title="Nombre complexe" data-language-autonym="Français" data-language-local-name="Frans" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Kompleks_taal" title="Kompleks taal – Noord-Fries" lang="frr" hreflang="frr" data-title="Kompleks taal" data-language-autonym="Nordfriisk" data-language-local-name="Noord-Fries" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-fy mw-list-item"><a href="https://fy.wikipedia.org/wiki/Kompleks_getal" title="Kompleks getal – Fries" lang="fy" hreflang="fy" data-title="Kompleks getal" data-language-autonym="Frysk" data-language-local-name="Fries" class="interlanguage-link-target"><span>Frysk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Uimhir_choimpl%C3%A9ascach" title="Uimhir choimpléascach – Iers" lang="ga" hreflang="ga" data-title="Uimhir choimpléascach" data-language-autonym="Gaeilge" data-language-local-name="Iers" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E8%A4%87%E6%95%B8" title="複數 – Ganyu" lang="gan" hreflang="gan" data-title="複數" data-language-autonym="贛語" data-language-local-name="Ganyu" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Nonm_kompleks" title="Nonm kompleks – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Nonm kompleks" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/N%C3%BAmero_complexo" title="Número complexo – Galicisch" lang="gl" hreflang="gl" data-title="Número complexo" data-language-autonym="Galego" data-language-local-name="Galicisch" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gn mw-list-item"><a href="https://gn.wikipedia.org/wiki/Papapy_rypy%27%C5%A9" title="Papapy rypy'ũ – Guaraní" lang="gn" hreflang="gn" data-title="Papapy rypy'ũ" data-language-autonym="Avañe'ẽ" data-language-local-name="Guaraní" class="interlanguage-link-target"><span>Avañe'ẽ</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%B8%E0%AA%82%E0%AA%95%E0%AA%B0_%E0%AA%B8%E0%AA%82%E0%AA%96%E0%AB%8D%E0%AA%AF%E0%AA%BE%E0%AA%93" title="સંકર સંખ્યાઓ – Gujarati" lang="gu" hreflang="gu" data-title="સંકર સંખ્યાઓ" data-language-autonym="ગુજરાતી" data-language-local-name="Gujarati" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A1%D7%A4%D7%A8_%D7%9E%D7%A8%D7%95%D7%9B%D7%91" title="מספר מרוכב – Hebreeuws" lang="he" hreflang="he" data-title="מספר מרוכב" data-language-autonym="עברית" data-language-local-name="Hebreeuws" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%AE%E0%A4%BF%E0%A4%B6%E0%A5%8D%E0%A4%B0_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="समिश्र संख्या – Hindi" lang="hi" hreflang="hi" data-title="समिश्र संख्या" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Jatil_ginti" title="Jatil ginti – Fijisch Hindi" lang="hif" hreflang="hif" data-title="Jatil ginti" data-language-autonym="Fiji Hindi" data-language-local-name="Fijisch Hindi" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Kompleksni_broj" title="Kompleksni broj – Kroatisch" lang="hr" hreflang="hr" data-title="Kompleksni broj" data-language-autonym="Hrvatski" data-language-local-name="Kroatisch" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Komplex_sz%C3%A1mok" title="Komplex számok – Hongaars" lang="hu" hreflang="hu" data-title="Komplex számok" data-language-autonym="Magyar" data-language-local-name="Hongaars" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BF%D5%B8%D5%B4%D5%BA%D5%AC%D5%A5%D6%84%D5%BD_%D5%A9%D5%AB%D5%BE" title="Կոմպլեքս թիվ – Armeens" lang="hy" hreflang="hy" data-title="Կոմպլեքս թիվ" data-language-autonym="Հայերեն" data-language-local-name="Armeens" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Numero_complexe" title="Numero complexe – Interlingua" lang="ia" hreflang="ia" data-title="Numero complexe" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-iba mw-list-item"><a href="https://iba.wikipedia.org/wiki/Lumur_kompleks" title="Lumur kompleks – Iban" lang="iba" hreflang="iba" data-title="Lumur kompleks" data-language-autonym="Jaku Iban" data-language-local-name="Iban" class="interlanguage-link-target"><span>Jaku Iban</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Bilangan_kompleks" title="Bilangan kompleks – Indonesisch" lang="id" hreflang="id" data-title="Bilangan kompleks" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesisch" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Komplexa_nombro" title="Komplexa nombro – Ido" lang="io" hreflang="io" data-title="Komplexa nombro" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Tvinnt%C3%B6lur" title="Tvinntölur – IJslands" lang="is" hreflang="is" data-title="Tvinntölur" data-language-autonym="Íslenska" data-language-local-name="IJslands" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Numero_complesso" title="Numero complesso – Italiaans" lang="it" hreflang="it" data-title="Numero complesso" data-language-autonym="Italiano" data-language-local-name="Italiaans" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%A4%87%E7%B4%A0%E6%95%B0" title="複素数 – Japans" lang="ja" hreflang="ja" data-title="複素数" data-language-autonym="日本語" data-language-local-name="Japans" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Komplex_nomba" title="Komplex nomba – Jamaicaans Creools" lang="jam" hreflang="jam" data-title="Komplex nomba" data-language-autonym="Patois" data-language-local-name="Jamaicaans Creools" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-jbo mw-list-item"><a href="https://jbo.wikipedia.org/wiki/relcimdyna%27u" title="relcimdyna'u – Lojban" lang="jbo" hreflang="jbo" data-title="relcimdyna'u" data-language-autonym="La .lojban." data-language-local-name="Lojban" class="interlanguage-link-target"><span>La .lojban.</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%99%E1%83%9D%E1%83%9B%E1%83%9E%E1%83%9A%E1%83%94%E1%83%A5%E1%83%A1%E1%83%A3%E1%83%A0%E1%83%98_%E1%83%A0%E1%83%98%E1%83%AA%E1%83%AE%E1%83%95%E1%83%98" title="კომპლექსური რიცხვი – Georgisch" lang="ka" hreflang="ka" data-title="კომპლექსური რიცხვი" data-language-autonym="ქართული" data-language-local-name="Georgisch" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Am%E1%B8%8Dan_asemlal" title="Amḍan asemlal – Kabylisch" lang="kab" hreflang="kab" data-title="Amḍan asemlal" data-language-autonym="Taqbaylit" data-language-local-name="Kabylisch" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-kbp mw-list-item"><a href="https://kbp.wikipedia.org/wiki/Nd%C9%A9_nd%C9%A9_%C3%B1%CA%8A%C5%8B" title="Ndɩ ndɩ ñʊŋ – Kabiye" lang="kbp" hreflang="kbp" data-title="Ndɩ ndɩ ñʊŋ" data-language-autonym="Kabɩyɛ" data-language-local-name="Kabiye" class="interlanguage-link-target"><span>Kabɩyɛ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9A%D0%B5%D1%88%D0%B5%D0%BD_%D1%81%D0%B0%D0%BD" title="Кешен сан – Kazachs" lang="kk" hreflang="kk" data-title="Кешен сан" data-language-autonym="Қазақша" data-language-local-name="Kazachs" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%85%E1%9F%86%E1%9E%93%E1%9E%BD%E1%9E%93%E1%9E%80%E1%9E%BB%E1%9F%86%E1%9E%95%E1%9F%92%E1%9E%9B%E1%9E%B7%E1%9E%85" title="ចំនួនកុំផ្លិច – Khmer" lang="km" hreflang="km" data-title="ចំនួនកុំផ្លិច" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B3%B5%EC%86%8C%EC%88%98" title="복소수 – Koreaans" lang="ko" hreflang="ko" data-title="복소수" data-language-autonym="한국어" data-language-local-name="Koreaans" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-kw mw-list-item"><a href="https://kw.wikipedia.org/wiki/Niver_kompleth" title="Niver kompleth – Cornish" lang="kw" hreflang="kw" data-title="Niver kompleth" data-language-autonym="Kernowek" data-language-local-name="Cornish" class="interlanguage-link-target"><span>Kernowek</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D1%82%D2%AF%D2%AF_%D1%81%D0%B0%D0%BD" title="Комплекстүү сан – Kirgizisch" lang="ky" hreflang="ky" data-title="Комплекстүү сан" data-language-autonym="Кыргызча" data-language-local-name="Kirgizisch" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Numerus_complexus" title="Numerus complexus – Latijn" lang="la" hreflang="la" data-title="Numerus complexus" data-language-autonym="Latina" data-language-local-name="Latijn" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Complex_getal" title="Complex getal – Limburgs" lang="li" hreflang="li" data-title="Complex getal" data-language-autonym="Limburgs" data-language-local-name="Limburgs" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Numer_compless" title="Numer compless – Lombardisch" lang="lmo" hreflang="lmo" data-title="Numer compless" data-language-autonym="Lombard" data-language-local-name="Lombardisch" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BA%88%E0%BA%B3%E0%BA%99%E0%BA%A7%E0%BA%99%E0%BA%AA%E0%BA%BB%E0%BA%99" title="ຈຳນວນສົນ – Laotiaans" lang="lo" hreflang="lo" data-title="ຈຳນວນສົນ" data-language-autonym="ລາວ" data-language-local-name="Laotiaans" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Kompleksinis_skai%C4%8Dius" title="Kompleksinis skaičius – Litouws" lang="lt" hreflang="lt" data-title="Kompleksinis skaičius" data-language-autonym="Lietuvių" data-language-local-name="Litouws" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Komplekss_skaitlis" title="Komplekss skaitlis – Lets" lang="lv" hreflang="lv" data-title="Komplekss skaitlis" data-language-autonym="Latviešu" data-language-local-name="Lets" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Isa_haro" title="Isa haro – Malagassisch" lang="mg" hreflang="mg" data-title="Isa haro" data-language-autonym="Malagasy" data-language-local-name="Malagassisch" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%B5%D0%BD_%D0%B1%D1%80%D0%BE%D1%98" title="Комплексен број – Macedonisch" lang="mk" hreflang="mk" data-title="Комплексен број" data-language-autonym="Македонски" data-language-local-name="Macedonisch" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AE%E0%B4%BF%E0%B4%B6%E0%B5%8D%E0%B4%B0%E0%B4%B8%E0%B4%82%E0%B4%96%E0%B5%8D%E0%B4%AF" title="മിശ്രസംഖ്യ – Malayalam" lang="ml" hreflang="ml" data-title="മിശ്രസംഖ്യ" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81_%D1%82%D0%BE%D0%BE" title="Комплекс тоо – Mongools" lang="mn" hreflang="mn" data-title="Комплекс тоо" data-language-autonym="Монгол" data-language-local-name="Mongools" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B8%E0%A4%82%E0%A4%AE%E0%A4%BF%E0%A4%B6%E0%A5%8D%E0%A4%B0_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="संमिश्र संख्या – Marathi" lang="mr" hreflang="mr" data-title="संमिश्र संख्या" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Nombor_kompleks" title="Nombor kompleks – Maleis" lang="ms" hreflang="ms" data-title="Nombor kompleks" data-language-autonym="Bahasa Melayu" data-language-local-name="Maleis" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%80%E1%80%BD%E1%80%94%E1%80%BA%E1%80%95%E1%80%9C%E1%80%80%E1%80%BA%E1%80%85%E1%80%BA%E1%80%80%E1%80%AD%E1%80%94%E1%80%BA%E1%80%B8" title="ကွန်ပလက်စ်ကိန်း – Birmaans" lang="my" hreflang="my" data-title="ကွန်ပလက်စ်ကိန်း" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Birmaans" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Komplexe_Tall" title="Komplexe Tall – Nedersaksisch" lang="nds" hreflang="nds" data-title="Komplexe Tall" data-language-autonym="Plattdüütsch" data-language-local-name="Nedersaksisch" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Komplekse_tal" title="Komplekse tal – Noors - Nynorsk" lang="nn" hreflang="nn" data-title="Komplekse tal" data-language-autonym="Norsk nynorsk" data-language-local-name="Noors - Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Komplekst_tall" title="Komplekst tall – Noors - Bokmål" lang="nb" hreflang="nb" data-title="Komplekst tall" data-language-autonym="Norsk bokmål" data-language-local-name="Noors - Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Nombre_compl%C3%A8xe" title="Nombre complèxe – Occitaans" lang="oc" hreflang="oc" data-title="Nombre complèxe" data-language-autonym="Occitan" data-language-local-name="Occitaans" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Lakkoofsa_Xaxxamaa" title="Lakkoofsa Xaxxamaa – Afaan Oromo" lang="om" hreflang="om" data-title="Lakkoofsa Xaxxamaa" data-language-autonym="Oromoo" data-language-local-name="Afaan Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-os mw-list-item"><a href="https://os.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BE%D0%BD_%D0%BD%D1%8B%D0%BC%C3%A6%D1%86" title="Комплексон нымæц – Ossetisch" lang="os" hreflang="os" data-title="Комплексон нымæц" data-language-autonym="Ирон" data-language-local-name="Ossetisch" class="interlanguage-link-target"><span>Ирон</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%95%E0%A9%B0%E0%A8%AA%E0%A8%B2%E0%A9%88%E0%A8%95%E0%A8%B8_%E0%A8%A8%E0%A9%B0%E0%A8%AC%E0%A8%B0" title="ਕੰਪਲੈਕਸ ਨੰਬਰ – Punjabi" lang="pa" hreflang="pa" data-title="ਕੰਪਲੈਕਸ ਨੰਬਰ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Liczby_zespolone" title="Liczby zespolone – Pools" lang="pl" hreflang="pl" data-title="Liczby zespolone" data-language-autonym="Polski" data-language-local-name="Pools" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/N%C3%B9mer_compless" title="Nùmer compless – Piëmontees" lang="pms" hreflang="pms" data-title="Nùmer compless" data-language-autonym="Piemontèis" data-language-local-name="Piëmontees" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%DA%A9%D9%85%D9%BE%D9%84%DB%8C%DA%A9%D8%B3_%D9%86%D9%85%D8%A8%D8%B1" title="کمپلیکس نمبر – Western Punjabi" lang="pnb" hreflang="pnb" data-title="کمپلیکس نمبر" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/N%C3%BAmero_complexo" title="Número complexo – Portugees" lang="pt" hreflang="pt" data-title="Número complexo" data-language-autonym="Português" data-language-local-name="Portugees" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Num%C4%83r_complex" title="Număr complex – Roemeens" lang="ro" hreflang="ro" data-title="Număr complex" data-language-autonym="Română" data-language-local-name="Roemeens" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru badge-Q17437796 badge-featuredarticle mw-list-item" title="uitgelicht artikel"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Комплексное число – Russisch" lang="ru" hreflang="ru" data-title="Комплексное число" data-language-autonym="Русский" data-language-local-name="Russisch" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-rue mw-list-item"><a href="https://rue.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%B5_%D1%87%D1%96%D1%81%D0%BB%D0%BE" title="Комплексне чісло – Roetheens" lang="rue" hreflang="rue" data-title="Комплексне чісло" data-language-autonym="Русиньскый" data-language-local-name="Roetheens" class="interlanguage-link-target"><span>Русиньскый</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81_%D0%B0%D1%85%D1%81%D0%B0%D0%B0%D0%BD" title="Комплекс ахсаан – Jakoets" lang="sah" hreflang="sah" data-title="Комплекс ахсаан" data-language-autonym="Саха тыла" data-language-local-name="Jakoets" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/N%C3%B9mmuru_cumplessu" title="Nùmmuru cumplessu – Siciliaans" lang="scn" hreflang="scn" data-title="Nùmmuru cumplessu" data-language-autonym="Sicilianu" data-language-local-name="Siciliaans" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Complex_nummer" title="Complex nummer – Schots" lang="sco" hreflang="sco" data-title="Complex nummer" data-language-autonym="Scots" data-language-local-name="Schots" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Kompleksan_broj" title="Kompleksan broj – Servo-Kroatisch" lang="sh" hreflang="sh" data-title="Kompleksan broj" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Servo-Kroatisch" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B7%83%E0%B6%82%E0%B6%9A%E0%B7%93%E0%B6%BB%E0%B7%8A%E0%B6%AB_%E0%B7%83%E0%B6%82%E0%B6%9B%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B7%8F" title="සංකීර්ණ සංඛ්යා – Singalees" lang="si" hreflang="si" data-title="සංකීර්ණ සංඛ්යා" data-language-autonym="සිංහල" data-language-local-name="Singalees" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Complex_number" title="Complex number – Simple English" lang="en-simple" hreflang="en-simple" data-title="Complex number" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Komplexn%C3%A9_%C4%8D%C3%ADslo" title="Komplexné číslo – Slowaaks" lang="sk" hreflang="sk" data-title="Komplexné číslo" data-language-autonym="Slovenčina" data-language-local-name="Slowaaks" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Kompleksno_%C5%A1tevilo" title="Kompleksno število – Sloveens" lang="sl" hreflang="sl" data-title="Kompleksno število" data-language-autonym="Slovenščina" data-language-local-name="Sloveens" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-smn mw-list-item"><a href="https://smn.wikipedia.org/wiki/Kompleksloho" title="Kompleksloho – Inari-Samisch" lang="smn" hreflang="smn" data-title="Kompleksloho" data-language-autonym="Anarâškielâ" data-language-local-name="Inari-Samisch" class="interlanguage-link-target"><span>Anarâškielâ</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Thiin_kakan" title="Thiin kakan – Somalisch" lang="so" hreflang="so" data-title="Thiin kakan" data-language-autonym="Soomaaliga" data-language-local-name="Somalisch" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Numrat_kompleks%C3%AB" title="Numrat kompleksë – Albanees" lang="sq" hreflang="sq" data-title="Numrat kompleksë" data-language-autonym="Shqip" data-language-local-name="Albanees" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD_%D0%B1%D1%80%D0%BE%D1%98" title="Комплексан број – Servisch" lang="sr" hreflang="sr" data-title="Комплексан број" data-language-autonym="Српски / srpski" data-language-local-name="Servisch" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Komplexa_tal" title="Komplexa tal – Zweeds" lang="sv" hreflang="sv" data-title="Komplexa tal" data-language-autonym="Svenska" data-language-local-name="Zweeds" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Namba_changamano" title="Namba changamano – Swahili" lang="sw" hreflang="sw" data-title="Namba changamano" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AE%BF%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AE%B2%E0%AF%86%E0%AE%A3%E0%AF%8D" title="சிக்கலெண் – Tamil" lang="ta" hreflang="ta" data-title="சிக்கலெண்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%B8%E0%B0%82%E0%B0%95%E0%B1%80%E0%B0%B0%E0%B1%8D%E0%B0%A3_%E0%B0%B8%E0%B0%82%E0%B0%96%E0%B1%8D%E0%B0%AF%E0%B0%B2%E0%B1%81" title="సంకీర్ణ సంఖ్యలు – Telugu" lang="te" hreflang="te" data-title="సంకీర్ణ సంఖ్యలు" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%90%D0%B4%D0%B0%D0%B4%D0%B8_%D0%BA%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D3%A3" title="Адади комплексӣ – Tadzjieks" lang="tg" hreflang="tg" data-title="Адади комплексӣ" data-language-autonym="Тоҷикӣ" data-language-local-name="Tadzjieks" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%88%E0%B8%B3%E0%B8%99%E0%B8%A7%E0%B8%99%E0%B9%80%E0%B8%8A%E0%B8%B4%E0%B8%87%E0%B8%8B%E0%B9%89%E0%B8%AD%E0%B8%99" title="จำนวนเชิงซ้อน – Thai" lang="th" hreflang="th" data-title="จำนวนเชิงซ้อน" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Komplikadong_bilang" title="Komplikadong bilang – Tagalog" lang="tl" hreflang="tl" data-title="Komplikadong bilang" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Karma%C5%9F%C4%B1k_say%C4%B1" title="Karmaşık sayı – Turks" lang="tr" hreflang="tr" data-title="Karmaşık sayı" data-language-autonym="Türkçe" data-language-local-name="Turks" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81_%D1%81%D0%B0%D0%BD" title="Комплекс сан – Tataars" lang="tt" hreflang="tt" data-title="Комплекс сан" data-language-autonym="Татарча / tatarça" data-language-local-name="Tataars" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Комплексне число – Oekraïens" lang="uk" hreflang="uk" data-title="Комплексне число" data-language-autonym="Українська" data-language-local-name="Oekraïens" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D8%AE%D9%84%D9%88%D8%B7_%D8%B9%D8%AF%D8%AF" title="مخلوط عدد – Urdu" lang="ur" hreflang="ur" data-title="مخلوط عدد" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Kompleks_sonlar" title="Kompleks sonlar – Oezbeeks" lang="uz" hreflang="uz" data-title="Kompleks sonlar" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Oezbeeks" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Numaro_conpleso" title="Numaro conpleso – Venetiaans" lang="vec" hreflang="vec" data-title="Numaro conpleso" data-language-autonym="Vèneto" data-language-local-name="Venetiaans" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/S%E1%BB%91_ph%E1%BB%A9c" title="Số phức – Vietnamees" lang="vi" hreflang="vi" data-title="Số phức" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamees" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-vls mw-list-item"><a href="https://vls.wikipedia.org/wiki/Complexe_getalln" title="Complexe getalln – West-Vlaams" lang="vls" hreflang="vls" data-title="Complexe getalln" data-language-autonym="West-Vlams" data-language-local-name="West-Vlaams" class="interlanguage-link-target"><span>West-Vlams</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Komplikado_nga_ihap" title="Komplikado nga ihap – Waray" lang="war" hreflang="war" data-title="Komplikado nga ihap" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%A4%8D%E6%95%B0%EF%BC%88%E6%95%B0%E5%AD%A6%EF%BC%89" title="复数(数学) – Wuyu" lang="wuu" hreflang="wuu" data-title="复数(数学)" data-language-autonym="吴语" data-language-local-name="Wuyu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xal mw-list-item"><a href="https://xal.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%B8%D0%BD_%D1%82%D0%BE%D0%B9%D0%B3" title="Комплексин тойг – Kalmuks" lang="xal" hreflang="xal" data-title="Комплексин тойг" data-language-autonym="Хальмг" data-language-local-name="Kalmuks" class="interlanguage-link-target"><span>Хальмг</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A7%D7%90%D7%9E%D7%A4%D7%9C%D7%A2%D7%A7%D7%A1%D7%A2_%D7%A6%D7%90%D7%9C" title="קאמפלעקסע צאל – Jiddisch" lang="yi" hreflang="yi" data-title="קאמפלעקסע צאל" data-language-autonym="ייִדיש" data-language-local-name="Jiddisch" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-yo mw-list-item"><a href="https://yo.wikipedia.org/wiki/N%E1%BB%8D%CC%81mb%C3%A0_t%C3%B3%E1%B9%A3%C3%B2ro" title="Nọ́mbà tóṣòro – Yoruba" lang="yo" hreflang="yo" data-title="Nọ́mbà tóṣòro" data-language-autonym="Yorùbá" data-language-local-name="Yoruba" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%A4%8D%E6%95%B0_(%E6%95%B0%E5%AD%A6)" title="复数 (数学) – Chinees" lang="zh" hreflang="zh" data-title="复数 (数学)" data-language-autonym="中文" data-language-local-name="Chinees" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E8%A4%87%E6%95%B8" title="複數 – Klassiek Chinees" lang="lzh" hreflang="lzh" data-title="複數" data-language-autonym="文言" data-language-local-name="Klassiek Chinees" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Ho%CC%8Dk-cha%CC%8Dp-s%C3%B2%CD%98" title="Ho̍k-cha̍p-sò͘ – Minnanyu" lang="nan" hreflang="nan" data-title="Ho̍k-cha̍p-sò͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnanyu" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%A4%87%E6%95%B8" title="複數 – Kantonees" lang="yue" hreflang="yue" data-title="複數" data-language-autonym="粵語" data-language-local-name="Kantonees" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11567#sitelinks-wikipedia" title="Taalkoppelingen bewerken" class="wbc-editpage">Koppelingen bewerken</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Naamruimten"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Complex_getal" title="Inhoudspagina bekijken [c]" accesskey="c"><span>Artikel</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Overleg:Complex_getal" rel="discussion" title="Overleg over deze pagina [t]" accesskey="t"><span>Overleg</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Taalvariant wijzigen" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Nederlands</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Weergaven"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Complex_getal"><span>Lezen</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Complex_getal&veaction=edit" title="Deze pagina bewerken [v]" accesskey="v"><span>Bewerken</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Complex_getal&action=edit" title="Broncode van deze pagina bewerken [e]" accesskey="e"><span>Brontekst bewerken</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Complex_getal&action=history" title="Eerdere versies van deze pagina [h]" accesskey="h"><span>Geschiedenis weergeven</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Paginahulpmiddelen"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Hulpmiddelen" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Hulpmiddelen</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Hulpmiddelen</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">naar zijbalk verplaatsen</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">verbergen</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Meer opties" > <div class="vector-menu-heading"> Handelingen </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Complex_getal"><span>Lezen</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Complex_getal&veaction=edit" title="Deze pagina bewerken [v]" accesskey="v"><span>Bewerken</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Complex_getal&action=edit" title="Broncode van deze pagina bewerken [e]" accesskey="e"><span>Brontekst bewerken</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Complex_getal&action=history"><span>Geschiedenis weergeven</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Algemeen </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speciaal:VerwijzingenNaarHier/Complex_getal" title="Lijst met alle pagina's die naar deze pagina verwijzen [j]" accesskey="j"><span>Links naar deze pagina</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speciaal:RecenteWijzigingenGelinkt/Complex_getal" rel="nofollow" title="Recente wijzigingen in pagina's waar deze pagina naar verwijst [k]" accesskey="k"><span>Gerelateerde wijzigingen</span></a></li><li id="t-upload" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard?uselang=nl" title="Bestanden uploaden [u]" accesskey="u"><span>Bestand uploaden</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speciaal:SpecialePaginas" title="Lijst met alle speciale pagina's [q]" accesskey="q"><span>Speciale pagina's</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Complex_getal&oldid=67818937" title="Permanente koppeling naar deze versie van deze pagina"><span>Permanente koppeling</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Complex_getal&action=info" title="Meer informatie over deze pagina"><span>Paginagegevens</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speciaal:Citeren&page=Complex_getal&id=67818937&wpFormIdentifier=titleform" title="Informatie over hoe u deze pagina kunt citeren"><span>Deze pagina citeren</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speciaal:UrlShortener&url=https%3A%2F%2Fnl.wikipedia.org%2Fwiki%2FComplex_getal"><span>Verkorte URL verkrijgen</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speciaal:QrCode&url=https%3A%2F%2Fnl.wikipedia.org%2Fwiki%2FComplex_getal"><span>QR-code downloaden</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Afdrukken/exporteren </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speciaal:Boek&bookcmd=book_creator&referer=Complex+getal"><span>Boek aanmaken</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speciaal:DownloadAsPdf&page=Complex_getal&action=show-download-screen"><span>Downloaden als PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Complex_getal&printable=yes" title="Printvriendelijke versie van deze pagina [p]" accesskey="p"><span>Afdrukversie</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In andere projecten </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Complex_numbers" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11567" title="Koppeling naar item in verbonden gegevensrepository [g]" accesskey="g"><span>Wikidata-item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Paginahulpmiddelen"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Uiterlijk"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Uiterlijk</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">naar zijbalk verplaatsen</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">verbergen</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Uit Wikipedia, de vrije encyclopedie</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Doorverwezen vanaf <a href="/w/index.php?title=Complexe_getallen&redirect=no" class="mw-redirect" title="Complexe getallen">Complexe getallen</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="nl" dir="ltr"><table class="infobox" cellpadding="1" cellspacing="1"> <tbody><tr> <th class="infobox-kop notheme" colspan="3"><a href="/wiki/Getal_(wiskunde)" title="Getal (wiskunde)">Getalverzamelingen</a> </th></tr> <tr> <td colspan="3"> <ul><li><a href="/wiki/Natuurlijk_getal" title="Natuurlijk getal">Natuurlijke getallen</a></li> <li><a href="/wiki/Geheel_getal" title="Geheel getal">Gehele getallen</a></li> <li><a href="/wiki/Rationaal_getal" title="Rationaal getal">Rationale getallen</a></li> <li><a href="/wiki/Re%C3%ABel_getal" title="Reëel getal">Reële getallen</a></li> <li><a class="mw-selflink selflink">Complexe getallen</a></li> <li><a href="/wiki/Quaternion" title="Quaternion">Quaternionen</a></li> <li><a href="/wiki/P-adisch_getal" title="P-adisch getal"><i>p</i>-adische getallen</a></li> <li><a href="/w/index.php?title=Hyperre%C3%ABel_getal&action=edit&redlink=1" class="new" title="Hyperreëel getal (de pagina bestaat niet)">Hyperreële getallen</a></li> <li><a href="/wiki/Surre%C3%ABel_getal" title="Surreëel getal">Surreële getallen</a></li> <li><a href="/wiki/Transfiniet_getal" title="Transfiniet getal">Transfiniete getallen</a></li></ul> </td></tr> <tr> <th class="infobox-kop notheme" colspan="3"> </th></tr> <tr> <td colspan="3"> <ul><li><a href="/wiki/Irrationaal_getal" title="Irrationaal getal">Irrationale getallen</a></li> <li><a href="/wiki/Algebra%C3%AFsch_getal" title="Algebraïsch getal">Algebraïsche getallen</a></li> <li><a href="/wiki/Transcendent_getal" title="Transcendent getal">Transcendente getallen</a></li> <li><a href="/wiki/Imaginair_getal" title="Imaginair getal">Imaginaire getallen</a></li></ul> </td></tr> </tbody></table> <p>In de wiskunde zijn <b>complexe getallen</b> een <a href="/wiki/Lichaamsuitbreiding_(Ned)_/_Velduitbreiding_(Be)" title="Lichaamsuitbreiding (Ned) / Velduitbreiding (Be)">uitbreiding</a> van de <a href="/wiki/Re%C3%ABel_getal" title="Reëel getal">reële getallen</a>. Zoals de reële getallen overeenkomen met punten op een rechte <a href="/wiki/Lijn_(meetkunde)" title="Lijn (meetkunde)">lijn</a>, correspondeert ieder complex getal met een <a href="/wiki/Punt_(wiskunde)" title="Punt (wiskunde)">punt</a> op het <a href="/wiki/Complexe_vlak" title="Complexe vlak">complexe vlak</a>. Een complex getal is zodoende een paar reële getallen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>, dat gewoonlijk wordt weergegeven als <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92f853c2c9235c06be640b91b7c75e2a907cbda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.87ex; height:2.343ex;" alt="{\displaystyle a+bi}"></span>. Hierin is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>, soms wordt ook <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span> gebruikt, een bijzonder complex getal, de <a href="/wiki/Imaginaire_eenheid" title="Imaginaire eenheid">imaginaire eenheid</a>, met als eigenschap <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88e98a401d352e5037d5043028e2d7f449e83fa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.926ex; height:2.843ex;" alt="{\displaystyle i^{2}=-1}"></span>. Met complexe getallen in de vorm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92f853c2c9235c06be640b91b7c75e2a907cbda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.87ex; height:2.343ex;" alt="{\displaystyle a+bi}"></span> kan gewoon gerekend worden, met de extra rekenregel dat overal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcbdba3a6ca89c9c3e3eeb0cc8a7c6e3f2a0d822" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.857ex; height:2.676ex;" alt="{\displaystyle i^{2}}"></span> vervangen wordt door −1. </p><p>De schrijfwijze <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef52538a0077e8dff45f937a232364d68ca6124" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.057ex; height:2.343ex;" alt="{\displaystyle z=a+bi}"></span> laat zien dat een complex getal de som is van een reëel getal en een <a href="/wiki/Imaginair_getal" title="Imaginair getal">imaginair getal</a>, of anders gezegd, een <a href="/wiki/Lineaire_combinatie" title="Lineaire combinatie">lineaire combinatie</a> met reële coëfficiënten van 1 en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>. </p><p>De extra mogelijkheden die het rekenen met complexe getallen biedt, hebben geleid tot allerlei nuttige toepassingen in vooral alles wat met <a href="/wiki/Trilling" title="Trilling">trillingen</a> en <a href="/wiki/Golf_(natuurkunde)" title="Golf (natuurkunde)">golven</a> te maken heeft, zoals het grootste deel van de <a href="/wiki/Natuurkunde" title="Natuurkunde">natuurkunde</a>, de <a href="/wiki/Elektrotechniek" title="Elektrotechniek">elektrotechniek</a>, de <a href="/wiki/Meet-_en_regeltechniek" title="Meet- en regeltechniek">meet- en regeltechniek</a> en vele andere technische disciplines. </p><p>Uit de definitie van complexe getallen blijkt dat reële getallen ook complexe getallen zijn. Binnen een context waarin nog niet is gespecificeerd of alleen reële of alle complexe getallen worden beschouwd betekent "complex getal" meestal "niet noodzakelijk reëel complex getal". Afhankelijk van de context wordt met een complex getal ook weleens bedoeld een niet-reëel complex getal. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Geschiedenis">Geschiedenis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=1" title="Bewerk dit kopje: Geschiedenis" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=1" title="De broncode bewerken van de sectie: Geschiedenis"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>De formule van de Italiaanse wiskundigen <a href="/wiki/Scipione_del_Ferro" title="Scipione del Ferro">Scipione del Ferro</a> en <a href="/wiki/Niccol%C3%B2_Tartaglia" title="Niccolò Tartaglia">Niccolò Tartaglia</a> voor de oplossingen van de <a href="/wiki/Derdegraadsvergelijking" title="Derdegraadsvergelijking">derdegraadsvergelijking</a> plaatste de wiskundigen van de zestiende eeuw voor een enorm nieuw probleem. Wanneer zo'n vergelijking drie verschillende (reële) oplossingen heeft, komen in die formule namelijk <a href="/wiki/Wortel_(wiskunde)" title="Wortel (wiskunde)">wortels</a> voor uit <a href="/wiki/Negatief_getal" title="Negatief getal">negatieve getallen</a>. En in die tijd waren wortels uit negatieve getallen nog niet gedefinieerd. Het is geen wonder dat de naam 'imaginaire getallen' snel gevonden was, en de gewone getallen heetten vanaf toen 'reëel'. Aan het einde van de <a href="/wiki/18e_eeuw" title="18e eeuw">18e eeuw</a> legden de grote wiskundigen <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> en <a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a> de basis voor de getallenleer en de <a href="/wiki/Functietheorie" title="Functietheorie">functietheorie</a> waarmee dit probleem en vele andere zouden worden opgelost. </p><p>De eigenschappen van complexe getallen hebben tot gevolg dat een <a href="/wiki/Polynoom" title="Polynoom">polynoom</a> van graad <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> in de complexe getallen precies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> nulpunten heeft, in plaats van ten hoogste <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> nulpunten zoals bij de reële getallen het geval is. Dit is de <a href="/wiki/Hoofdstelling_van_de_algebra" title="Hoofdstelling van de algebra">hoofdstelling van de algebra</a>. Ook geldt dat de vergelijking <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{n}=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{n}=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4f72f2b21e69fe32e9d348b1768bb5bd017fa1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.876ex; height:2.343ex;" alt="{\displaystyle x^{n}=a}"></span> voor negatieve getallen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> een oplossing heeft voor alle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> ongelijk aan 0 in plaats van alleen maar voor oneven waarden van <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Definitie">Definitie</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=2" title="Bewerk dit kopje: Definitie" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=2" title="De broncode bewerken van de sectie: Definitie"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Complexe getallen voorzien in de behoefte <a href="/wiki/Oplossen_van_vergelijkingen" title="Oplossen van vergelijkingen">oplossingen</a> te hebben van alle (algebraïsche) <a href="/wiki/Vergelijking_(wiskunde)" title="Vergelijking (wiskunde)">vergelijkingen</a>, dus bijvoorbeeld ook vergelijkingen van de vorm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84ec36f24323a33792732a4d54506ae8aeeac550" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.489ex; height:2.676ex;" alt="{\displaystyle x^{2}=c}"></span> voor <a href="/wiki/Negatief_getal" title="Negatief getal">negatieve getallen</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>. </p><p>Eén benadering is het introduceren van een denkbeeldige, imaginaire oplossing, aangeduid met <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>, van imaginair, van de vergelijking <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20d687ce8b19e0ef0d8f872a4e0bfdcf3a6665a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.453ex; height:2.843ex;" alt="{\displaystyle x^{2}=-1}"></span>. Men stelt dus dat deze vergelijking per definitie een oplossing heeft. Die oplossing wordt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> genoemd. Door de <a href="/wiki/Re%C3%ABel_getal" title="Reëel getal">reële getallen</a> uit te breiden met dit denkbeeldige getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>, waarmee verder op de normale manier wordt gerekend, ontstaat de verzameling <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> van de complexe getallen. Deze uitbreiding bevat met <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> vanzelf ook alle uitdrukkingen van de vorm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92f853c2c9235c06be640b91b7c75e2a907cbda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.87ex; height:2.343ex;" alt="{\displaystyle a+bi}"></span> waarin <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> reële getallen zijn. Hiermee is het gewenste resultaat bereikt: binnen de complexe getallen is elke algebraïsche vergelijking oplosbaar. </p><p>De andere benadering is het construeren van de verzameling, waardoor het beeld verdwijnt dat de nieuwe getallen niet echt bestaan. De aanduiding imaginair, overgenomen van de eerste benadering, wordt wel gebruikt, maar hoeft niet letterlijk te worden genomen. Wel is het zo dat klassieke natuurkundige grootheden een reële numerieke waarde hebben. Dit neemt niet weg dat complexe getallen daarbij een handig hulpmiddel kunnen zijn, zie onder. </p> <div class="mw-heading mw-heading3"><h3 id="Definitie_door_introductie_van_een_nieuw_getal_i">Definitie door introductie van een nieuw getal <span style="font-family:'Times New Roman', 'Nimbus Roman No9 L', Times, serif; font-size:118%; white-space:nowrap;"><i>i</i></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=3" title="Bewerk dit kopje: Definitie door introductie van een nieuw getal i" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=3" title="De broncode bewerken van de sectie: Definitie door introductie van een nieuw getal i"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Een complex getal is een uitdrukking van de vorm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92f853c2c9235c06be640b91b7c75e2a907cbda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.87ex; height:2.343ex;" alt="{\displaystyle a+bi}"></span>, waarin <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> beide reële getallen zijn en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> een nieuw getal voorstelt, de <a href="/wiki/Imaginaire_eenheid" title="Imaginaire eenheid">imaginaire eenheid</a>, met de eigenschap (rekenregel): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88e98a401d352e5037d5043028e2d7f449e83fa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.926ex; height:2.843ex;" alt="{\displaystyle i^{2}=-1}"></span></dd></dl> <p><a href="/wiki/Rafael_Bombelli" title="Rafael Bombelli">Rafael Bombelli</a>, de bedenker van de imaginaire getallen, stelde de rekenregels op voor complexe getallen. Hierbij stelde hij als <a href="/wiki/Axioma" title="Axioma">axioma</a> de genoemde eigenschap van het complexe getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>. </p><p>Het getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> noemt men het <a href="/wiki/Re%C3%ABel_deel" title="Reëel deel">reële deel</a> en het getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> het <a href="/wiki/Imaginair_deel" title="Imaginair deel">imaginaire deel</a> van het complexe getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92f853c2c9235c06be640b91b7c75e2a907cbda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.87ex; height:2.343ex;" alt="{\displaystyle a+bi}"></span>, en noteert </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=\Re (a+bi)={\rm {Re}}(a+bi)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi mathvariant="normal">ℜ<!-- ℜ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=\Re (a+bi)={\rm {Re}}(a+bi)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/206131772be132c16335fee156604f6ef1e2bddf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.453ex; height:2.843ex;" alt="{\displaystyle a=\Re (a+bi)={\rm {Re}}(a+bi)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=\Im (a+bi)={\rm {Im}}(a+bi)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mi mathvariant="normal">ℑ<!-- ℑ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=\Im (a+bi)={\rm {Im}}(a+bi)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66a1dde1875d1f351248df22c73999a86e190a9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.617ex; height:2.843ex;" alt="{\displaystyle b=\Im (a+bi)={\rm {Im}}(a+bi)}"></span></dd></dl> <p>De verzameling van de complexe getallen wordt genoteerd als <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>. </p><p>De reële getallen vormen een deel van de complexe getallen; het zijn de complexe getallen met imaginair deel gelijk aan 0. Getallen waarvan het reële deel 0 is noemt men zuiver imaginair. </p> <div class="mw-heading mw-heading3"><h3 id="Definitie_als_koppel_reële_getallen_of_als_tweedimensionale_vector"><span id="Definitie_als_koppel_re.C3.ABle_getallen_of_als_tweedimensionale_vector"></span>Definitie als koppel reële getallen of als tweedimensionale vector</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=4" title="Bewerk dit kopje: Definitie als koppel reële getallen of als tweedimensionale vector" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=4" title="De broncode bewerken van de sectie: Definitie als koppel reële getallen of als tweedimensionale vector"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Een complex getal is een getal dat bestaat uit twee reële getallen. Dit leidt tot een alternatieve definitie, waarin het paar reële getallen zelf als complex getal opgevat wordt en vermeden wordt vooraf de imaginaire eenheid <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> in te voeren. </p><p>Dit paar reële getallen kan vervolgens worden opgevat als een <a href="/wiki/Vector_(wiskunde)" title="Vector (wiskunde)">vector</a> in een tweedimensionale ruimte, het <a href="/wiki/Complexe_vlak" title="Complexe vlak">complexe vlak</a>, waarmee kan worden gerekend zoals met gewone vectoren maar met een extra definitie voor de vermenigvuldiging, zie hieronder, met het karakter van een combinatie van een verschaling en een rotatie. Deze definitie heeft tot gevolg dat het kwadraat van een zuiver imaginair getal een reëel getal oplevert. </p><p>De alternatieve definitie luidt: </p><p>Een complex getal is een <a href="/wiki/Koppel_(wiskunde)" title="Koppel (wiskunde)">geordend paar</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> van reële getallen, met de gebruikelijke optelling: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)+(c,d)=(a+c,b+d)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo>,</mo> <mi>b</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)+(c,d)=(a+c,b+d)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a427192a7477dd41aa915f664310d2189676175e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.05ex; height:2.843ex;" alt="{\displaystyle (a,b)+(c,d)=(a+c,b+d)}"></span></dd></dl> <p>en de vermenigvuldiging: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)\cdot (c,d)=(ac-bd,ad+bc)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>d</mi> <mo>,</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)\cdot (c,d)=(ac-bd,ad+bc)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9958946d2defb9f0daeac3049be6665d3fc36133" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.338ex; height:2.843ex;" alt="{\displaystyle (a,b)\cdot (c,d)=(ac-bd,ad+bc)}"></span></dd></dl> <p>Het getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> heet ook hier het reële deel en het getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> het imaginaire deel van het complexe getal. </p><p>Het koppel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c79c6838e423c1ed3c7ea532a56dc9f9dae8290b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.168ex; height:2.843ex;" alt="{\displaystyle (0,1)}"></span> wordt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> genoemd. Het koppel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb7e272c21fb886ae2ab806119c8cd35c2a52754" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.236ex; height:2.843ex;" alt="{\displaystyle (a,0)}"></span> wordt vereenzelvigd met het reële getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>. Het koppel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> is daarmee te schrijven als <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92f853c2c9235c06be640b91b7c75e2a907cbda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.87ex; height:2.343ex;" alt="{\displaystyle a+bi}"></span>. Men kan hiermee rekenen met de gebruikelijke rekenregels, aangevuld met de regel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88e98a401d352e5037d5043028e2d7f449e83fa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.926ex; height:2.843ex;" alt="{\displaystyle i^{2}=-1}"></span>. Het is dan niet nodig de genoemde definitie van vermenigvuldiging te onthouden en expliciet toe te passen. Voor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90d476e5e765a5d77bbcff32e4584579207ec7d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.491ex; height:2.176ex;" alt="{\displaystyle a=0}"></span> is het getal van de vorm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15767baf886d1bba7f8bad83618f7ade5715e7a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.8ex; height:2.176ex;" alt="{\displaystyle bi}"></span>; dit heet een <i>zuiver imaginair getal</i>. Deze getallen vormen de verticale as van het complexe vlak. </p> <div class="mw-heading mw-heading2"><h2 id="Voorstelling">Voorstelling</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=5" title="Bewerk dit kopje: Voorstelling" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=5" title="De broncode bewerken van de sectie: Voorstelling"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/Bestand:Complexe_eenheidscirkel.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Complexe_eenheidscirkel.svg/250px-Complexe_eenheidscirkel.svg.png" decoding="async" width="250" height="188" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Complexe_eenheidscirkel.svg/375px-Complexe_eenheidscirkel.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Complexe_eenheidscirkel.svg/500px-Complexe_eenheidscirkel.svg.png 2x" data-file-width="640" data-file-height="480" /></a><figcaption>Complexe eenheidscirkel</figcaption></figure> <p>De alternatieve definitie stoelt op de voorstelling van de complexe getallen in het platte vlak. De abstracte definitie roept de vraag op of er ook een concrete voorstelling is van complexe getallen. Omdat de complexe getallen een <a href="/wiki/Vectorruimte" title="Vectorruimte">vectorruimte</a> vormen, voortgebracht door 1 en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> en een complex getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92f853c2c9235c06be640b91b7c75e2a907cbda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.87ex; height:2.343ex;" alt="{\displaystyle a+bi}"></span> eenduidig verbonden is met het <a href="/wiki/Koppel_(wiskunde)" title="Koppel (wiskunde)">geordend paar</a> reële getallen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> als de coördinaten ten opzichte van de basis gevormd door 1 en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>, ligt het voor de hand om <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} \times \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} \times \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb99f01c438a62e4ac5af8cff4eb402739ed67a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.197ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} \times \mathbb {R} }"></span> als kandidaat te bezien en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> op te vatten als het complexe getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92f853c2c9235c06be640b91b7c75e2a907cbda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.87ex; height:2.343ex;" alt="{\displaystyle a+bi}"></span>. Optellen gaat dus als volgt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)+(c,d)=(a+c,b+d)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo>,</mo> <mi>b</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)+(c,d)=(a+c,b+d)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a427192a7477dd41aa915f664310d2189676175e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.05ex; height:2.843ex;" alt="{\displaystyle (a,b)+(c,d)=(a+c,b+d)}"></span></dd></dl> <p>Nu rest nog de vraag of er een geschikte vermenigvuldiging gedefinieerd kan worden voor paren reële getallen, die overeenkomt met de vermenigvuldiging voor complexe getallen. Omdat: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+bi)(c+di)=ac-bd+(ad+bc)i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>d</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <mo stretchy="false">)</mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+bi)(c+di)=ac-bd+(ad+bc)i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd5861806828736087c7c81fc34797fcf19b7787" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.486ex; height:2.843ex;" alt="{\displaystyle (a+bi)(c+di)=ac-bd+(ad+bc)i}"></span> (zie onder),</dd></dl> <p>zullen we de vermenigvuldiging moeten definiëren als: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)\cdot (c,d)=(ac-bd,ad+bc)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>d</mi> <mo>,</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)\cdot (c,d)=(ac-bd,ad+bc)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9958946d2defb9f0daeac3049be6665d3fc36133" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.338ex; height:2.843ex;" alt="{\displaystyle (a,b)\cdot (c,d)=(ac-bd,ad+bc)}"></span></dd></dl> <p>Dan geldt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1,0)\cdot (1,0)=(1,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1,0)\cdot (1,0)=(1,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aacf39b278123a5f4d5e647535f0d5ddeed26f38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.282ex; height:2.843ex;" alt="{\displaystyle (1,0)\cdot (1,0)=(1,0)}"></span></dd></dl> <p>en </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,1)\cdot (0,1)=(-1,0)=-(1,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,1)\cdot (0,1)=(-1,0)=-(1,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1245d23ba423f6cad55dde778498ad217fd644a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.165ex; height:2.843ex;" alt="{\displaystyle (0,1)\cdot (0,1)=(-1,0)=-(1,0)}"></span></dd></dl> <p>Met de identificatie van (1,0) = 1 en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,1)=i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,1)=i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d6c5d4c6a8258c48f8bca514cc050e29bb7c782" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.069ex; height:2.843ex;" alt="{\displaystyle (0,1)=i}"></span> is aan de regels voor complexe getallen voldaan. </p><p>De verzameling <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> is, na uitbreiding met de hierboven gedefinieerde vermenigvuldiging, <a href="/wiki/Isomorfisme" title="Isomorfisme">isomorf</a> met de verzameling <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>. Deze constructie levert een <a href="/wiki/Meetkunde" title="Meetkunde">meetkundige</a> voorstelling van de complexe getallen op, het <a href="/wiki/Complexe_vlak" title="Complexe vlak">complexe vlak</a> genoemd. Deze manier van voorstellen werd in 1806 bedacht door de Zwitserse amateurwiskundige <a href="/wiki/Jean-Robert_Argand" title="Jean-Robert Argand">Jean-Robert Argand</a> en wordt wel als arganddiagram aangeduid. De eerste wiskundige, die een meetkundige voorstelling van de complexe getallen gaf, was trouwens <a href="/wiki/Caspar_Wessel" title="Caspar Wessel">Caspar Wessel</a> in 1797, maar zijn werk werd niet opgepakt door anderen, mede omdat hij in het <a href="/wiki/Deens" title="Deens">Deens</a> schreef. </p><p>Naast de overeenkomsten is een belangrijk verschil tussen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> dat de in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> gebruikte vermenigvuldiging van getallenparen in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> niet gedefinieerd is. </p><p>Met de eerst gegeven definitie zijn de reële getallen vanzelf een deelverzameling van de complexe. Het zijn de complexe getallen met imaginair deel 0. </p><p>Met de alternatieve definitie vormen de reële getallen formeel geen deelverzameling van de complexe, maar men kan ze ingebed denken door de reële getallen te identificeren als de complexe getallen van de vorm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb7e272c21fb886ae2ab806119c8cd35c2a52754" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.236ex; height:2.843ex;" alt="{\displaystyle (a,0)}"></span>. </p><p>De verzameling <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> van de complexe getallen, met de hierboven gedefinieerde optelling en vermenigvuldiging, is een <a href="/wiki/Lichaam_(Ned)_/_Veld_(Be)" title="Lichaam (Ned) / Veld (Be)">lichaam</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Voorbeelden">Voorbeelden</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=6" title="Bewerk dit kopje: Voorbeelden" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=6" title="De broncode bewerken van de sectie: Voorbeelden"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>De volgende uitdrukkingen stellen twee complexe getallen voor volgens de eerste definitie: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3+4i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>+</mo> <mn>4</mn> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3+4i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d31e12f69fdceedc9e7e77952a1d1eb1d938a2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.968ex; height:2.343ex;" alt="{\displaystyle 3+4i}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2-i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>−<!-- − --></mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2-i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb44d67c827c6a6c8a120304eba815d193ca3340" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.805ex; height:2.343ex;" alt="{\displaystyle 2-i}"></span>. We kunnen deze twee complexe getallen optellen: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (3+4i)+(2-i)=3+2+(4-1)i=5+3i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mn>4</mn> <mi>i</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>−<!-- − --></mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mn>4</mn> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>i</mi> <mo>=</mo> <mn>5</mn> <mo>+</mo> <mn>3</mn> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (3+4i)+(2-i)=3+2+(4-1)i=5+3i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1971d7ba7154d2293b1c5de00f3928b806412bdf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.18ex; height:2.843ex;" alt="{\displaystyle (3+4i)+(2-i)=3+2+(4-1)i=5+3i}"></span></dd></dl> <p>en ook met elkaar vermenigvuldigen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (3+4i)\cdot (2-i)=3\times 2-3\times i+8\times i-4i^{2}=6+5i-4(-1)=10+5i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mn>4</mn> <mi>i</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>−<!-- − --></mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> <mo>×<!-- × --></mo> <mn>2</mn> <mo>−<!-- − --></mo> <mn>3</mn> <mo>×<!-- × --></mo> <mi>i</mi> <mo>+</mo> <mn>8</mn> <mo>×<!-- × --></mo> <mi>i</mi> <mo>−<!-- − --></mo> <mn>4</mn> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>6</mn> <mo>+</mo> <mn>5</mn> <mi>i</mi> <mo>−<!-- − --></mo> <mn>4</mn> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>10</mn> <mo>+</mo> <mn>5</mn> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (3+4i)\cdot (2-i)=3\times 2-3\times i+8\times i-4i^{2}=6+5i-4(-1)=10+5i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d6a310546d16e0d42821ad1967347565d7c942a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:73.563ex; height:3.176ex;" alt="{\displaystyle (3+4i)\cdot (2-i)=3\times 2-3\times i+8\times i-4i^{2}=6+5i-4(-1)=10+5i}"></span>,</dd></dl> <p>waarbij we van de rekenregel gebruikgemaakt hebben om <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcbdba3a6ca89c9c3e3eeb0cc8a7c6e3f2a0d822" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.857ex; height:2.676ex;" alt="{\displaystyle i^{2}}"></span> te vervangen door −1. </p><p>De volgende uitdrukkingen stellen twee complexe getallen voor volgens de alternatieve definitie: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (3,4)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (3,4)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/614a18fefb63da6c4db5c4b1dad6ddd9fa63abfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.168ex; height:2.843ex;" alt="{\displaystyle (3,4)}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2,-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2,-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83bfbf011eb076603a28a53c37d9974d726d70a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.976ex; height:2.843ex;" alt="{\displaystyle (2,-1)}"></span>. We kunnen deze twee complexe getallen optellen: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (3,4)+(2,-1)=(3+2,4-1)=(5,3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>5</mn> <mo>,</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (3,4)+(2,-1)=(3+2,4-1)=(5,3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfc5b4a34a46b957d9a7b0525188b548635dec00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.524ex; height:2.843ex;" alt="{\displaystyle (3,4)+(2,-1)=(3+2,4-1)=(5,3)}"></span></dd></dl> <p>en ook met elkaar vermenigvuldigen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (3,4)\cdot (2,-1)=(3\times 2-4\times (-1),\ 3\times (-1)+4\times 2)=(10,5)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>×<!-- × --></mo> <mn>2</mn> <mo>−<!-- − --></mo> <mn>4</mn> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mtext> </mtext> <mn>3</mn> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>4</mn> <mo>×<!-- × --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>10</mn> <mo>,</mo> <mn>5</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (3,4)\cdot (2,-1)=(3\times 2-4\times (-1),\ 3\times (-1)+4\times 2)=(10,5)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5e1b254b70bafa3ffb8a8a951ce66b23aaffb28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:63.352ex; height:2.843ex;" alt="{\displaystyle (3,4)\cdot (2,-1)=(3\times 2-4\times (-1),\ 3\times (-1)+4\times 2)=(10,5)}"></span></dd></dl> <p>gebruikmakend van de rekenregels. </p> <div class="mw-heading mw-heading2"><h2 id="Notaties_voor_complexe_getallen">Notaties voor complexe getallen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=7" title="Bewerk dit kopje: Notaties voor complexe getallen" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=7" title="De broncode bewerken van de sectie: Notaties voor complexe getallen"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Door de definitie van complexe getallen als elementen van een twee-dimensionale ruimte zijn er een tweetal notaties voor complexe getallen die voor de hand liggen. Deze notaties worden beide gebruikt, vaak naast elkaar. </p> <div class="mw-heading mw-heading3"><h3 id="Cartesische_of_algebraïsche_notatie"><span id="Cartesische_of_algebra.C3.AFsche_notatie"></span>Cartesische of algebraïsche notatie</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=8" title="Bewerk dit kopje: Cartesische of algebraïsche notatie" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=8" title="De broncode bewerken van de sectie: Cartesische of algebraïsche notatie"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Een complex getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> kan geschreven worden als <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=(a,b)=a(1,0)+b(0,1)=a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=(a,b)=a(1,0)+b(0,1)=a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a761735f6c5fdd1f4ceab58603b10d8b078fad2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.728ex; height:2.843ex;" alt="{\displaystyle z=(a,b)=a(1,0)+b(0,1)=a+bi}"></span>. Dit komt overeen met het opvatten van een complex getal als een vector in de tweedimensionale ruimte: </p> <figure class="mw-default-size mw-halign-center" typeof="mw:File"><a href="/wiki/Bestand:Complex_getal_cartesisch2.png" class="mw-file-description" title="Een complex getal als vector in de ruimte"><img alt="Een complex getal als vector in de ruimte" src="//upload.wikimedia.org/wikipedia/commons/1/13/Complex_getal_cartesisch2.png" decoding="async" width="150" height="150" class="mw-file-element" data-file-width="150" data-file-height="150" /></a><figcaption>Een complex getal als vector in de ruimte</figcaption></figure> <p>Bij de verticale as worden echter meestal de zuiver imaginaire getallen zelf aangegeven, dus met de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>. </p><p>Dit heet cartesische notatie, naar de wiskundige en filosoof <a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">René Descartes</a>, die het <a href="/wiki/Cartesisch_co%C3%B6rdinatenstelsel" title="Cartesisch coördinatenstelsel">cartesisch coördinatenstelsel</a> introduceerde, waarbij een punt in een <a href="/wiki/Vlak_(meetkunde)" title="Vlak (meetkunde)">vlak</a> wordt voorgesteld door een getallenpaar. Daarin is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> het <a href="/wiki/Re%C3%ABel_deel" title="Reëel deel">reële deel</a> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> het <a href="/wiki/Imaginair_deel" title="Imaginair deel">imaginaire deel</a> van <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>, genoteerd als: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a={\mathfrak {Re}}(z)=\Re (z)={\text{Re}}(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">R</mi> <mi mathvariant="fraktur">e</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">ℜ<!-- ℜ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Re</mtext> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a={\mathfrak {Re}}(z)=\Re (z)={\text{Re}}(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70fb0d64aa6620086163088514aefc720ad156c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.742ex; height:2.843ex;" alt="{\displaystyle a={\mathfrak {Re}}(z)=\Re (z)={\text{Re}}(z)}"></span></dd></dl> <p>en </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b={\mathfrak {Im}}(z)=\Im (z)={\text{Im}}(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">I</mi> <mi mathvariant="fraktur">m</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">ℑ<!-- ℑ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Im</mtext> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b={\mathfrak {Im}}(z)=\Im (z)={\text{Im}}(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86fd6cefad41f05e66806296d452ad7baf01939f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.119ex; height:2.843ex;" alt="{\displaystyle b={\mathfrak {Im}}(z)=\Im (z)={\text{Im}}(z)}"></span></dd></dl> <p>In de <a href="/wiki/Elektrotechniek" title="Elektrotechniek">elektrotechniek</a> wordt meestal het symbool <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span> gebruikt voor de imaginaire basisvector, om verwarring met het symbool voor <a href="/wiki/Elektrische_stroom" title="Elektrische stroom">stroom</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> te vermijden. </p> <div class="mw-heading mw-heading3"><h3 id="Notatie_met_poolcoördinaten"><span id="Notatie_met_poolco.C3.B6rdinaten"></span>Notatie met poolcoördinaten</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=9" title="Bewerk dit kopje: Notatie met poolcoördinaten" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=9" title="De broncode bewerken van de sectie: Notatie met poolcoördinaten"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Omdat we de complexe getallen definiëren als elementen van een tweedimensionale ruimte, kunnen we een complex getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=(a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=(a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b244679a222179f2892475d0544be0b8064a0e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.257ex; height:2.843ex;" alt="{\displaystyle z=(a,b)}"></span> ook weergeven in <a href="/wiki/Poolco%C3%B6rdinaten" title="Poolcoördinaten">poolcoördinaten</a>, door de afstand <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> van <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> tot de oorsprong <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d630d3e781a53b0a3559ae7e5b45f9479a3141a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.168ex; height:2.843ex;" alt="{\displaystyle (0,0)}"></span> en de hoek <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> tussen de vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> en het positieve deel van de reële as. Poolcoördinaten kunnen met behulp van de <a href="/wiki/Grootte/hoeknotatie" title="Grootte/hoeknotatie">grootte/hoeknotatie</a> worden weergegeven als <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\angle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\angle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b14182a3706b19d7f7d8425ebf8a841358fb70b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.817ex; height:2.176ex;" alt="{\displaystyle r\angle \theta }"></span>. </p><p>De bovengenoemde afstand <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> wordt de voerstraal, modulus of <a href="/wiki/Absolute_waarde" title="Absolute waarde">absolute waarde</a> van het complexe getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> genoemd (zie ook onder) en de hoek <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> de poolhoek of het <a href="/wiki/Argument_(complex_getal)" title="Argument (complex getal)">argument</a> van <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>. </p><p>Tussen de polaire en cartesische notatie bestaat de betrekking: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi=r(\cos(\theta )+i\sin(\theta ))=r\,e^{i\theta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>r</mi> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>θ<!-- θ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi=r(\cos(\theta )+i\sin(\theta ))=r\,e^{i\theta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c918101b6ac9c6b3700e06e5e96c817e0dbbf669" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.811ex; height:3.176ex;" alt="{\displaystyle a+bi=r(\cos(\theta )+i\sin(\theta ))=r\,e^{i\theta }}"></span></dd></dl> <p>of specifieker: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=r\cos(\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>r</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=r\cos(\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9e1f3069a9b9366d47681658e927ba73db7c777" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.775ex; height:2.843ex;" alt="{\displaystyle a=r\cos(\theta )}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=r\sin(\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mi>r</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=r\sin(\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/287b69adec7d8f701d8b1d061447e3a8547035b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.287ex; height:2.843ex;" alt="{\displaystyle b=r\sin(\theta )}"></span></dd></dl> <p>In de andere richting, van cartesisch naar polair, geldt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r={\sqrt {a^{2}+b^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r={\sqrt {a^{2}+b^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c06427751d7f71ba70ddfae47fb47e6386324ae6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.647ex; height:3.509ex;" alt="{\displaystyle r={\sqrt {a^{2}+b^{2}}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta =\arctan \left({\frac {b}{a}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> <mo>=</mo> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta =\arctan \left({\frac {b}{a}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c148038e274492ee5aab2c570dd3edbbb56ce192" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.142ex; height:6.176ex;" alt="{\displaystyle \theta =\arctan \left({\frac {b}{a}}\right)}"></span></dd></dl> <p>Afhankelijk van het resultaat van <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> dient wel gecontroleerd te worden of het resultaat in het juiste kwadrant gelegen is. Om precies te zijn geldt voor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> het volgende: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta ={\begin{cases}\arctan({\frac {b}{a}})&{\mbox{als }}a>0\\\arctan({\frac {b}{a}})+\pi &{\mbox{als }}a<0{\mbox{ en }}b\geq 0\\\arctan({\frac {b}{a}})-\pi &{\mbox{als }}a<0{\mbox{ en }}b<0\\+{\frac {\pi }{2}}&{\mbox{als }}a=0{\mbox{ en }}b>0\\-{\frac {\pi }{2}}&{\mbox{als }}a=0{\mbox{ en }}b<0\\{\text{niet gedefinieerd}}&{\mbox{als }}a=0{\mbox{ en }}b=0\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>a</mi> </mfrac> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>als </mtext> </mstyle> </mrow> <mi>a</mi> <mo>></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>a</mi> </mfrac> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>π<!-- π --></mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>als </mtext> </mstyle> </mrow> <mi>a</mi> <mo><</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> en </mtext> </mstyle> </mrow> <mi>b</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>a</mi> </mfrac> </mrow> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>π<!-- π --></mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>als </mtext> </mstyle> </mrow> <mi>a</mi> <mo><</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> en </mtext> </mstyle> </mrow> <mi>b</mi> <mo><</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>als </mtext> </mstyle> </mrow> <mi>a</mi> <mo>=</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> en </mtext> </mstyle> </mrow> <mi>b</mi> <mo>></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>als </mtext> </mstyle> </mrow> <mi>a</mi> <mo>=</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> en </mtext> </mstyle> </mrow> <mi>b</mi> <mo><</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>niet gedefinieerd</mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>als </mtext> </mstyle> </mrow> <mi>a</mi> <mo>=</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> en </mtext> </mstyle> </mrow> <mi>b</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta ={\begin{cases}\arctan({\frac {b}{a}})&{\mbox{als }}a>0\\\arctan({\frac {b}{a}})+\pi &{\mbox{als }}a<0{\mbox{ en }}b\geq 0\\\arctan({\frac {b}{a}})-\pi &{\mbox{als }}a<0{\mbox{ en }}b<0\\+{\frac {\pi }{2}}&{\mbox{als }}a=0{\mbox{ en }}b>0\\-{\frac {\pi }{2}}&{\mbox{als }}a=0{\mbox{ en }}b<0\\{\text{niet gedefinieerd}}&{\mbox{als }}a=0{\mbox{ en }}b=0\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58377b6ac24913ed4d4f3ddce994acbe9fd683bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.095ex; margin-bottom: -0.243ex; width:43.414ex; height:19.843ex;" alt="{\displaystyle \theta ={\begin{cases}\arctan({\frac {b}{a}})&{\mbox{als }}a>0\\\arctan({\frac {b}{a}})+\pi &{\mbox{als }}a<0{\mbox{ en }}b\geq 0\\\arctan({\frac {b}{a}})-\pi &{\mbox{als }}a<0{\mbox{ en }}b<0\\+{\frac {\pi }{2}}&{\mbox{als }}a=0{\mbox{ en }}b>0\\-{\frac {\pi }{2}}&{\mbox{als }}a=0{\mbox{ en }}b<0\\{\text{niet gedefinieerd}}&{\mbox{als }}a=0{\mbox{ en }}b=0\end{cases}}}"></span></dd></dl> <table align="center"> <tbody><tr> <td align="center"><span typeof="mw:File"><a href="/wiki/Bestand:Complex_getal_poolco%C3%B6rdinaten.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Complex_getal_poolco%C3%B6rdinaten.png/250px-Complex_getal_poolco%C3%B6rdinaten.png" decoding="async" width="250" height="224" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Complex_getal_poolco%C3%B6rdinaten.png/375px-Complex_getal_poolco%C3%B6rdinaten.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Complex_getal_poolco%C3%B6rdinaten.png/500px-Complex_getal_poolco%C3%B6rdinaten.png 2x" data-file-width="621" data-file-height="556" /></a></span> <br /> <i>Verband tussen cartesische en poolcoördinaten ter voorstelling van een complex getal.</i> </td></tr></tbody></table> <p>Merk op dat argumenten die een veelvoud van 2π verschillen, hetzelfde complexe getal voorstellen. Argumenten van complexe getallen zijn dus niet eenduidig gedefinieerd, op een veelvoud van 2π na. Daarom wordt de hoofdwaarde de waarde van het argument genoemd, die tussen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2359073fe90a84a705e02f0c1e63b32df850a60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.14ex; height:2.176ex;" alt="{\displaystyle -\pi }"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span> ligt. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\pi <\arg(z)\leq \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>π<!-- π --></mi> <mo><</mo> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\pi <\arg(z)\leq \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/387ecfe26bfd30b14e0f47a6ff74ce9cc0714cc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.803ex; height:2.843ex;" alt="{\displaystyle -\pi <\arg(z)\leq \pi }"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Matrixvoorstelling">Matrixvoorstelling</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=10" title="Bewerk dit kopje: Matrixvoorstelling" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=10" title="De broncode bewerken van de sectie: Matrixvoorstelling"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Een andere manier om met de complexe getallen te rekenen is door middel van <a href="/wiki/Matrix_(wiskunde)" title="Matrix (wiskunde)">matrices</a>. Het complexe getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92f853c2c9235c06be640b91b7c75e2a907cbda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.87ex; height:2.343ex;" alt="{\displaystyle a+bi}"></span> wordt daarbij voorgesteld door de 2×2-matrix: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}a&-b\\b&a\\\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mi>a</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}a&-b\\b&a\\\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39ce5647103b7bb3e8b57553c61804a76eae5042" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:9.565ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}a&-b\\b&a\\\end{bmatrix}}}"></span></dd></dl> <p>Het getal 1 wordt dus voorgesteld door de <a href="/wiki/Eenheidsmatrix" title="Eenheidsmatrix">eenheidsmatrix</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1={\begin{bmatrix}1&0\\0&1\\\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1={\begin{bmatrix}1&0\\0&1\\\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b0b71b1a40e175d7f34fe5a71dc44eafe94f966" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:12.115ex; height:6.176ex;" alt="{\displaystyle 1={\begin{bmatrix}1&0\\0&1\\\end{bmatrix}}}"></span></dd></dl> <p>en de imaginaire eenheid <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> door: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i={\begin{bmatrix}0&-1\\1&0\\\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i={\begin{bmatrix}0&-1\\1&0\\\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a444411c88121ed18152c447a1d78c8605f6cab5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:13.563ex; height:6.176ex;" alt="{\displaystyle i={\begin{bmatrix}0&-1\\1&0\\\end{bmatrix}}}"></span></dd></dl> <p>De vermenigvuldiging is de matrixvermenigvuldiging. Inderdaad is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+bi)(c+di)={\begin{bmatrix}a&-b\\b&a\\\end{bmatrix}}{\begin{bmatrix}c&-d\\d&c\\\end{bmatrix}}={\begin{bmatrix}ac-bd&-ad-bc\\ad+bc&ac-bd\\\end{bmatrix}}=(ac-bd)+(ad+bc)i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mi>a</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>c</mi> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>d</mi> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> </mtd> <mtd> <mi>c</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>d</mi> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>a</mi> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>c</mi> </mtd> </mtr> <mtr> <mtd> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> </mtd> <mtd> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>d</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <mo stretchy="false">)</mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+bi)(c+di)={\begin{bmatrix}a&-b\\b&a\\\end{bmatrix}}{\begin{bmatrix}c&-d\\d&c\\\end{bmatrix}}={\begin{bmatrix}ac-bd&-ad-bc\\ad+bc&ac-bd\\\end{bmatrix}}=(ac-bd)+(ad+bc)i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af343d4dcaa997821aca7fd2ea77ec35d29af613" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:87.744ex; height:6.176ex;" alt="{\displaystyle (a+bi)(c+di)={\begin{bmatrix}a&-b\\b&a\\\end{bmatrix}}{\begin{bmatrix}c&-d\\d&c\\\end{bmatrix}}={\begin{bmatrix}ac-bd&-ad-bc\\ad+bc&ac-bd\\\end{bmatrix}}=(ac-bd)+(ad+bc)i}"></span></dd></dl> <p>De complex geconjugeerde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{*}=a-bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{*}=a-bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48703915fe4a46ef263a48b760bae7705fe7357d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.113ex; height:2.509ex;" alt="{\displaystyle z^{*}=a-bi}"></span> van <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef52538a0077e8dff45f937a232364d68ca6124" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.057ex; height:2.343ex;" alt="{\displaystyle z=a+bi}"></span> is in de matrixvoorstelling juist de getransponeerde. </p><p>In de matrixvoorstelling geldt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(z)=a^{2}+b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(z)=a^{2}+b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961386e28ce838dad352de6493636cf09e0bc9b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.402ex; height:3.176ex;" alt="{\displaystyle \det(z)=a^{2}+b^{2}}"></span>,</dd></dl> <p>zodat </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z|={\sqrt {\det(z)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z|={\sqrt {\det(z)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f388549dfdf6e1b8e05dbc7f21c322aee58c0f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.931ex; height:4.843ex;" alt="{\displaystyle |z|={\sqrt {\det(z)}}}"></span></dd></dl> <p>Vatten we de matrix op als <a href="/wiki/Lineaire_transformatie" title="Lineaire transformatie">lineaire transformatie</a> van het <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72eb345e496513fb8b2fa4aa8c4d89b855f9a01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.485ex; height:2.009ex;" alt="{\displaystyle xy}"></span>-vlak, dan stelt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> de afbeelding voor die het punt (1,0) afbeeldt op (0,1) en het punt (0,1) op (−1,0). Precies wat we verwachten bij vermenigvuldiging met <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>. </p><p>Deze manier van voorstellen is analoog aan de voorstelling van de <a href="/wiki/Quaternion" title="Quaternion">quaternionen</a> als 2×2-matrices van complexe getallen. </p> <div class="mw-heading mw-heading2"><h2 id="Gerelateerde_waarden">Gerelateerde waarden</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=11" title="Bewerk dit kopje: Gerelateerde waarden" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=11" title="De broncode bewerken van de sectie: Gerelateerde waarden"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Complex_geconjugeerde">Complex geconjugeerde</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=12" title="Bewerk dit kopje: Complex geconjugeerde" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=12" title="De broncode bewerken van de sectie: Complex geconjugeerde"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote" style="margin-bottom:0.5em; padding:0.5em 0 0.5em 1.6em; font-size:95%;" role="note"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/1rightarrow_blue.svg/15px-1rightarrow_blue.svg.png" decoding="async" width="15" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/1rightarrow_blue.svg/23px-1rightarrow_blue.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ee/1rightarrow_blue.svg/30px-1rightarrow_blue.svg.png 2x" data-file-width="480" data-file-height="480" /></span></span> <i>Zie <a href="/wiki/Complex_geconjugeerde" title="Complex geconjugeerde">Complex geconjugeerde</a> voor het hoofdartikel over dit onderwerp.</i></div> <p>De complex geconjugeerde of de complex toegevoegde van het complexe getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef52538a0077e8dff45f937a232364d68ca6124" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.057ex; height:2.343ex;" alt="{\displaystyle z=a+bi}"></span>, met <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> reëel, is gedefinieerd als: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {z}}=z^{*}=a-bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {z}}=z^{*}=a-bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4af9e3ba55a7ab17e463880b7319cbf025e30b90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:15.419ex; height:2.509ex;" alt="{\displaystyle {\overline {z}}=z^{*}=a-bi}"></span></dd></dl> <p>Uit de definitie volgt onmiddellijk dat </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\overline {z}}}=z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mover> <mi>z</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\overline {z}}}=z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62f2a1634d26629b6e6b484c13059cee1a36a0ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.509ex; height:3.176ex;" alt="{\displaystyle {\overline {\overline {z}}}=z}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Modulus">Modulus</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=13" title="Bewerk dit kopje: Modulus" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=13" title="De broncode bewerken van de sectie: Modulus"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>De modulus of <a href="/wiki/Absolute_waarde" title="Absolute waarde">absolute waarde</a> van een complex getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> wordt op dezelfde manier aangegeven als bij reële getallen, dus als <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28fd4d7dcabf618d707c21bd08306c7b3aa8b68e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.382ex; height:2.843ex;" alt="{\displaystyle |z|}"></span>, en komt overeen met de <a href="/wiki/Euclidische_norm" class="mw-redirect" title="Euclidische norm">euclidische norm</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span>. De berekening ervan gebeurt op de volgende manier: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z|={\sqrt {\mathrm {Re} (z)^{2}+\mathrm {Im} (z)^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z|={\sqrt {\mathrm {Re} (z)^{2}+\mathrm {Im} (z)^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0821b175d2fc001cf4478029214ca4e0137d6785" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:24.066ex; height:4.843ex;" alt="{\displaystyle |z|={\sqrt {\mathrm {Re} (z)^{2}+\mathrm {Im} (z)^{2}}}}"></span></dd></dl> <p>Anders geformuleerd: de modulus, of absolute waarde, van een complex getal is de lengte van z'n voerstraal. Voor het complexe getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef52538a0077e8dff45f937a232364d68ca6124" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.057ex; height:2.343ex;" alt="{\displaystyle z=a+bi}"></span>, is de absolute waarde dus: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z|={\sqrt {a^{2}+b^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z|={\sqrt {a^{2}+b^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe94d0c3b0c3704e8771d0932fff6f983ef0082b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.98ex; height:3.509ex;" alt="{\displaystyle |z|={\sqrt {a^{2}+b^{2}}}}"></span></dd></dl> <p>Uit de definitie van de complex geconjugeerde en de modulus volgt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z|^{2}=z{\overline {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z|^{2}=z{\overline {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/736faf1413ac4dc3336659143bbe5fd90be00149" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.83ex; height:3.343ex;" alt="{\displaystyle |z|^{2}=z{\overline {z}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Voorbeelden_2">Voorbeelden</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=14" title="Bewerk dit kopje: Voorbeelden" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=14" title="De broncode bewerken van de sectie: Voorbeelden"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a+bi|={\sqrt {a^{2}+b^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a+bi|={\sqrt {a^{2}+b^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e46c435bcff6086807236bdbfcc848da70068de8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.762ex; height:3.509ex;" alt="{\displaystyle |a+bi|={\sqrt {a^{2}+b^{2}}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |3-4i|={\sqrt {3^{2}+4^{2}}}=5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>3</mn> <mo>−<!-- − --></mo> <mn>4</mn> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>=</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |3-4i|={\sqrt {3^{2}+4^{2}}}=5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39830ea47e9e6142e41fafc61e0200a60c813b1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.218ex; height:3.509ex;" alt="{\displaystyle |3-4i|={\sqrt {3^{2}+4^{2}}}=5}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x+0i|={\sqrt {x^{2}+0^{2}}}=|x|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo>+</mo> <mn>0</mn> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x+0i|={\sqrt {x^{2}+0^{2}}}=|x|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae918aaf36bc9039b6f7febfda262bd114e29cd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.014ex; height:3.509ex;" alt="{\displaystyle |x+0i|={\sqrt {x^{2}+0^{2}}}=|x|}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Modulus_van_de_complex_geconjugeerde">Modulus van de complex geconjugeerde</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=15" title="Bewerk dit kopje: Modulus van de complex geconjugeerde" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=15" title="De broncode bewerken van de sectie: Modulus van de complex geconjugeerde"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Voor de complex geconjugeerde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {z}}=a-bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {z}}=a-bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf78dc11d41a3e9c8e9089d26a65a90f5babe9b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.176ex; height:2.509ex;" alt="{\displaystyle {\overline {z}}=a-bi}"></span> van <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef52538a0077e8dff45f937a232364d68ca6124" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.057ex; height:2.343ex;" alt="{\displaystyle z=a+bi}"></span>, geldt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |{\overline {z}}|=|a-bi|={\sqrt {a^{2}+b^{2}}}=|z|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |{\overline {z}}|=|a-bi|={\sqrt {a^{2}+b^{2}}}=|z|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b80d0d2f96d612da8a1b2c9b605bb8a8ba942a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.842ex; height:3.509ex;" alt="{\displaystyle |{\overline {z}}|=|a-bi|={\sqrt {a^{2}+b^{2}}}=|z|}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Ordening">Ordening</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=16" title="Bewerk dit kopje: Ordening" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=16" title="De broncode bewerken van de sectie: Ordening"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>De complexe getallen kunnen niet zoals de reële getallen worden vergeleken door aan te geven welk getal groter is dan het andere, die <a href="/wiki/Ordetheorie" title="Ordetheorie">ordening</a> is er niet. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi>c+di}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo>></mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi>c+di}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dddc5264bd09626706a4a5527d364e2b46a11b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.834ex; height:2.343ex;" alt="{\displaystyle a+bi>c+di}"></span> heeft dus geen betekenis. </p> <div class="mw-heading mw-heading2"><h2 id="Rekenen_met_complexe_getallen">Rekenen met complexe getallen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=17" title="Bewerk dit kopje: Rekenen met complexe getallen" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=17" title="De broncode bewerken van de sectie: Rekenen met complexe getallen"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Optellen_en_aftrekken">Optellen en aftrekken</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=18" title="Bewerk dit kopje: Optellen en aftrekken" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=18" title="De broncode bewerken van de sectie: Optellen en aftrekken"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Het optellen en aftrekken van complexe getallen gaat het makkelijkst in Cartesische vorm: het reële deel en het imaginaire deel worden apart opgeteld. Dit komt overeen met optelling van vectoren. </p><p>Twee complexe getallen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{1}=a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{1}=a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dffe9437a9315bef8e8662167a6e746583e41ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.104ex; height:2.509ex;" alt="{\displaystyle z_{1}=a+bi}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{2}=c+di}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{2}=c+di}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6c52d58c7e3c2979131a12e2b70b11347ab91f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.099ex; height:2.509ex;" alt="{\displaystyle z_{2}=c+di}"></span> worden als volgt opgeteld: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{1}+z_{2}=(a+bi)+(c+di)=(a+c)+(b+d)i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{1}+z_{2}=(a+bi)+(c+di)=(a+c)+(b+d)i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b29fbfcf76678d572a9ce2f8de8cb516bae3b024" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.895ex; height:2.843ex;" alt="{\displaystyle z_{1}+z_{2}=(a+bi)+(c+di)=(a+c)+(b+d)i}"></span></dd></dl> <p>oftewel </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Re} (z_{1}+z_{2})=\mathrm {Re} (z_{1})+\mathrm {Re} (z_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Re} (z_{1}+z_{2})=\mathrm {Re} (z_{1})+\mathrm {Re} (z_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c01e4a08f0ce71972d7ab86de1cccac0f321797" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.978ex; height:2.843ex;" alt="{\displaystyle \mathrm {Re} (z_{1}+z_{2})=\mathrm {Re} (z_{1})+\mathrm {Re} (z_{2})}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Im} (z_{1}+z_{2})=\mathrm {Im} (z_{1})+\mathrm {Im} (z_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Im} (z_{1}+z_{2})=\mathrm {Im} (z_{1})+\mathrm {Im} (z_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31085fc5b6ccc030ca338a2cee09323221a8d4be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.075ex; height:2.843ex;" alt="{\displaystyle \mathrm {Im} (z_{1}+z_{2})=\mathrm {Im} (z_{1})+\mathrm {Im} (z_{2})}"></span></dd></dl> <p>Bijvoorbeeld is de som van <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{1}=3+2i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{1}=3+2i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f61e51b145c6320cb73b7c145ca299887aad3428" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.202ex; height:2.509ex;" alt="{\displaystyle z_{1}=3+2i}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{2}=6+8i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>6</mn> <mo>+</mo> <mn>8</mn> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{2}=6+8i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37927a36f2f3146632741edfdc0e6c3f4ab230e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.202ex; height:2.509ex;" alt="{\displaystyle z_{2}=6+8i}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{1}+z_{2}=(3+2i)+(6+8i)=(3+6)+(2+8)i=9+10i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mi>i</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>6</mn> <mo>+</mo> <mn>8</mn> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mn>6</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>+</mo> <mn>8</mn> <mo stretchy="false">)</mo> <mi>i</mi> <mo>=</mo> <mn>9</mn> <mo>+</mo> <mn>10</mn> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{1}+z_{2}=(3+2i)+(6+8i)=(3+6)+(2+8)i=9+10i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90e50bc935e188bead7beea8e27d0549f70e0d6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:59.523ex; height:2.843ex;" alt="{\displaystyle z_{1}+z_{2}=(3+2i)+(6+8i)=(3+6)+(2+8)i=9+10i}"></span></dd></dl> <p>Uiteraard is aftrekken hetzelfde als het optellen van het <a href="/wiki/Tegengestelde_(wiskunde)" title="Tegengestelde (wiskunde)">tegengestelde</a>. </p><p>Merk ook op dat (het nemen van) de complex geconjugeerde distributief is over optellen: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {z_{1}+z_{2}}}={\overline {z_{1}}}+{\overline {z_{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {z_{1}+z_{2}}}={\overline {z_{1}}}+{\overline {z_{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fc98456ab06986923239947d8de18d56e79b3d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.666ex; height:3.009ex;" alt="{\displaystyle {\overline {z_{1}+z_{2}}}={\overline {z_{1}}}+{\overline {z_{2}}}}"></span></dd></dl> <p>want: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {(a+bi)+(c+di)}}={\overline {(a+c)+(b+d)i}}=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mi>i</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {(a+bi)+(c+di)}}={\overline {(a+c)+(b+d)i}}=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdca9eea38c85935b9ddac27a9013da284195b81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.369ex; height:3.676ex;" alt="{\displaystyle {\overline {(a+bi)+(c+di)}}={\overline {(a+c)+(b+d)i}}=}"></span> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =(a+c)-(b+d)i=(a-bi)+(c-di)={\overline {a+bi}}+{\overline {c+di}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mi>i</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =(a+c)-(b+d)i=(a-bi)+(c-di)={\overline {a+bi}}+{\overline {c+di}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc849bb047c9dc24029d208066b773c6d66086e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:59.043ex; height:3.509ex;" alt="{\displaystyle =(a+c)-(b+d)i=(a-bi)+(c-di)={\overline {a+bi}}+{\overline {c+di}}}"></span></dd></dl></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Vermenigvuldigen_en_delen">Vermenigvuldigen en delen</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=19" title="Bewerk dit kopje: Vermenigvuldigen en delen" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=19" title="De broncode bewerken van de sectie: Vermenigvuldigen en delen"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Vermenigvuldigen en delen van complexe getallen gaat het makkelijkst in polaire vorm. Hierbij worden de moduli met elkaar vermenigvuldigd en de argumenten bij elkaar opgeteld. Voor getallen in Cartesische vorm geldt voor het product: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+bi)(c+di)=ac+(ad+bc)i+bdi^{2}=ac-bd+(ad+bc)i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>c</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <mo stretchy="false">)</mo> <mi>i</mi> <mo>+</mo> <mi>b</mi> <mi>d</mi> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>d</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <mo stretchy="false">)</mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+bi)(c+di)=ac+(ad+bc)i+bdi^{2}=ac-bd+(ad+bc)i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26955396b16f2df9dacbff375e5e4900c3e55629" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:63.474ex; height:3.176ex;" alt="{\displaystyle (a+bi)(c+di)=ac+(ad+bc)i+bdi^{2}=ac-bd+(ad+bc)i}"></span></dd></dl> <p>oftewel </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Re} (z_{1}z_{2})=\mathrm {Re} (z_{1})\mathrm {Re} (z_{2})-\mathrm {Im} (z_{1})\mathrm {Im} (z_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Re} (z_{1}z_{2})=\mathrm {Re} (z_{1})\mathrm {Re} (z_{2})-\mathrm {Im} (z_{1})\mathrm {Im} (z_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a20745459fadf02334392962030699ee6ddecd99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.578ex; height:2.843ex;" alt="{\displaystyle \mathrm {Re} (z_{1}z_{2})=\mathrm {Re} (z_{1})\mathrm {Re} (z_{2})-\mathrm {Im} (z_{1})\mathrm {Im} (z_{2})}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Im} (z_{1}z_{2})=\mathrm {Re} (z_{1})\mathrm {Im} (z_{2})+\mathrm {Im} (z_{1})\mathrm {Re} (z_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Im} (z_{1}z_{2})=\mathrm {Re} (z_{1})\mathrm {Im} (z_{2})+\mathrm {Im} (z_{1})\mathrm {Re} (z_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0e0e598c6679cc1755c43f73529ffdbbfaf0ae6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.61ex; height:2.843ex;" alt="{\displaystyle \mathrm {Im} (z_{1}z_{2})=\mathrm {Re} (z_{1})\mathrm {Im} (z_{2})+\mathrm {Im} (z_{1})\mathrm {Re} (z_{2})}"></span></dd></dl> <p>Dit is feitelijk hetzelfde als het vermenigvuldigen bij de reële getallen, met inachtneming van de definitie <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88e98a401d352e5037d5043028e2d7f449e83fa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.926ex; height:2.843ex;" alt="{\displaystyle i^{2}=-1}"></span>. </p><p>Verder geldt voor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef52538a0077e8dff45f937a232364d68ca6124" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.057ex; height:2.343ex;" alt="{\displaystyle z=a+bi}"></span> met <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\rm {arg}}(z)=\alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">g</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\rm {arg}}(z)=\alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76d0037229073e214bb4f419da563ed56edefa8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.72ex; height:2.843ex;" alt="{\displaystyle {\rm {arg}}(z)=\alpha }"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w=c+di}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>=</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w=c+di}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af34dcf8f54e7235919f656300f9bde11e96a873" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.628ex; height:2.343ex;" alt="{\displaystyle w=c+di}"></span> met <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\rm {arg}}(w)=\beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">g</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>β<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\rm {arg}}(w)=\beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7412a9d969ced9aaa091d375298d2797751c25a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.14ex; height:2.843ex;" alt="{\displaystyle {\rm {arg}}(w)=\beta }"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |zw|={\sqrt {(ac-bd)^{2}+(ad+cb)^{2}}}={\sqrt {a^{2}c^{2}-2abcd+b^{2}d^{2}+a^{2}d^{2}+2abcd+c^{2}b^{2}}}=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>d</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>c</mi> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |zw|={\sqrt {(ac-bd)^{2}+(ad+cb)^{2}}}={\sqrt {a^{2}c^{2}-2abcd+b^{2}d^{2}+a^{2}d^{2}+2abcd+c^{2}b^{2}}}=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29978967ea86093092fea7803b21ce98191e41d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:83.258ex; height:4.843ex;" alt="{\displaystyle |zw|={\sqrt {(ac-bd)^{2}+(ad+cb)^{2}}}={\sqrt {a^{2}c^{2}-2abcd+b^{2}d^{2}+a^{2}d^{2}+2abcd+c^{2}b^{2}}}=}"></span> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\sqrt {a^{2}(c^{2}+d^{2})+b^{2}(c^{2}+d^{2})}}={\sqrt {a^{2}+b^{2}}}{\sqrt {c^{2}+d^{2}}}=|z||w|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\sqrt {a^{2}(c^{2}+d^{2})+b^{2}(c^{2}+d^{2})}}={\sqrt {a^{2}+b^{2}}}{\sqrt {c^{2}+d^{2}}}=|z||w|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b13272cc7a3056a91df522e19584d8b1f8c68e79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:60.454ex; height:4.843ex;" alt="{\displaystyle ={\sqrt {a^{2}(c^{2}+d^{2})+b^{2}(c^{2}+d^{2})}}={\sqrt {a^{2}+b^{2}}}{\sqrt {c^{2}+d^{2}}}=|z||w|}"></span></dd></dl></dd></dl> <p>en </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle zw=|z|(\cos(\alpha )+i\sin(\alpha ))\cdot |w|(\cos(\beta )+i\sin(\beta ))=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mi>w</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle zw=|z|(\cos(\alpha )+i\sin(\alpha ))\cdot |w|(\cos(\beta )+i\sin(\beta ))=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f46b6ee4ba4f18c4ae2e86365a1629a570ddba1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.811ex; height:2.843ex;" alt="{\displaystyle zw=|z|(\cos(\alpha )+i\sin(\alpha ))\cdot |w|(\cos(\beta )+i\sin(\beta ))=}"></span></dd></dl> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =|z||w|\left(\underbrace {(\cos(\alpha )\cos(\beta )-\sin(\alpha )\sin(\beta ))} +i\underbrace {(\cos(\alpha )\sin(\beta )+\sin(\alpha )\cos(\beta ))} \right)=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =|z||w|\left(\underbrace {(\cos(\alpha )\cos(\beta )-\sin(\alpha )\sin(\beta ))} +i\underbrace {(\cos(\alpha )\sin(\beta )+\sin(\alpha )\cos(\beta ))} \right)=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5e9efe9a62840e05c29e1cd742a576af243a8d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:77.907ex; height:6.176ex;" alt="{\displaystyle =|z||w|\left(\underbrace {(\cos(\alpha )\cos(\beta )-\sin(\alpha )\sin(\beta ))} +i\underbrace {(\cos(\alpha )\sin(\beta )+\sin(\alpha )\cos(\beta ))} \right)=}"></span></dd></dl></dd></dl> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =|z||w|(\cos(\alpha +\beta )+i\sin(\alpha +\beta ))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>+</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>+</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =|z||w|(\cos(\alpha +\beta )+i\sin(\alpha +\beta ))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c477ebe105474d8ffe03cdfb529b4d19ade3e20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.538ex; height:2.843ex;" alt="{\displaystyle =|z||w|(\cos(\alpha +\beta )+i\sin(\alpha +\beta ))}"></span>,</dd></dl></dd></dl> <p>dus </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \arg(zw)=\arg(z)+\arg(w)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mi>w</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \arg(zw)=\arg(z)+\arg(w)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bb68ba19814e65f326c194b5965ca4343382511" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.581ex; height:2.843ex;" alt="{\displaystyle \arg(zw)=\arg(z)+\arg(w)}"></span></dd></dl> <p>Bij het vermenigvuldigen van twee complexe getallen worden de moduli met elkaar vermenigvuldigd en de argumenten bij elkaar opgeteld. </p><p>In het bijzonder volgt dat vermenigvuldiging met <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> hetzelfde is als draaiing over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi /2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi /2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b44e3d874a0b229fded7ffce67a0677dd5b8b67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.657ex; height:2.843ex;" alt="{\displaystyle \pi /2}"></span> radialen, dus een toename van het argument met <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi /2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi /2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b44e3d874a0b229fded7ffce67a0677dd5b8b67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.657ex; height:2.843ex;" alt="{\displaystyle \pi /2}"></span>. Daaruit blijkt weer overeenstemming met de definitie: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88e98a401d352e5037d5043028e2d7f449e83fa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.926ex; height:2.843ex;" alt="{\displaystyle i^{2}=-1}"></span>. </p><p>Merk op dat het nemen van het complex geconjugeerde distributief is ten opzichte van het vermenigvuldigen: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {z_{1}z_{2}}}={\overline {z_{1}}}\ {\overline {z_{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {z_{1}z_{2}}}={\overline {z_{1}}}\ {\overline {z_{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11ae6117f9e677b834517688c0467742da83d6d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.566ex; height:2.676ex;" alt="{\displaystyle {\overline {z_{1}z_{2}}}={\overline {z_{1}}}\ {\overline {z_{2}}}}"></span></dd></dl> <p>omdat: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {(a+bi)(c+di)}}={\overline {(ac-bd)+(ad+bc)i}}=(ac-bd)-(ad+bc)i=(a-bi)(c-di)=({\overline {a+bi}})\ ({\overline {c+di}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <mo stretchy="false">)</mo> <mi>i</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <mo stretchy="false">)</mo> <mi>i</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> <mtext> </mtext> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {(a+bi)(c+di)}}={\overline {(ac-bd)+(ad+bc)i}}=(ac-bd)-(ad+bc)i=(a-bi)(c-di)=({\overline {a+bi}})\ ({\overline {c+di}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22da1f42d1c300317622d7ee3cc0fbe9897a0da9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:103.182ex; height:3.676ex;" alt="{\displaystyle {\overline {(a+bi)(c+di)}}={\overline {(ac-bd)+(ad+bc)i}}=(ac-bd)-(ad+bc)i=(a-bi)(c-di)=({\overline {a+bi}})\ ({\overline {c+di}})}"></span></dd></dl> <p>Merk verder op dat het bovenstaande gegeneraliseerd kan worden: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z_{1}z_{2}\cdots z_{n}|=|z_{1}||z_{2}|\cdots |z_{n}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>⋯<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z_{1}z_{2}\cdots z_{n}|=|z_{1}||z_{2}|\cdots |z_{n}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d51527e21d2a62e36f434081ae11b2fa49a7b2b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.409ex; height:2.843ex;" alt="{\displaystyle |z_{1}z_{2}\cdots z_{n}|=|z_{1}||z_{2}|\cdots |z_{n}|}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \arg(z_{1}z_{2}\cdots z_{n})=\arg(z_{1})+\arg(z_{2})+\ldots +\arg(z_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mo>…<!-- … --></mo> <mo>+</mo> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \arg(z_{1}z_{2}\cdots z_{n})=\arg(z_{1})+\arg(z_{2})+\ldots +\arg(z_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67793fef3756250c68039d1ff4d5c669c70d1fbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.165ex; height:2.843ex;" alt="{\displaystyle \arg(z_{1}z_{2}\cdots z_{n})=\arg(z_{1})+\arg(z_{2})+\ldots +\arg(z_{n})}"></span></li></ul> <p>In het bijzonder: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z^{n}|=|z|^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z^{n}|=|z|^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f788604b1fdd59ab09488478e54a91692a7dc24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.301ex; height:3.009ex;" alt="{\displaystyle |z^{n}|=|z|^{n}}"></span> voor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f631abf6775cd6861c55305e8e0f6845df6daf11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.913ex; height:2.176ex;" alt="{\displaystyle n\in \mathbb {R} }"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \arg(z^{n})=n\arg(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \arg(z^{n})=n\arg(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abb8e473a4ccfc35bb0fbd671874d2e84e6817e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.369ex; height:2.843ex;" alt="{\displaystyle \arg(z^{n})=n\arg(z)}"></span> voor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f631abf6775cd6861c55305e8e0f6845df6daf11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.913ex; height:2.176ex;" alt="{\displaystyle n\in \mathbb {R} }"></span></li></ul> <p>Voor machtsverheffen met <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132124fcb93d1ffac6d8b46f8448bf1962d2bf41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.913ex; height:2.176ex;" alt="{\displaystyle n\in \mathbb {C} }"></span> moet eerst wat meer gereedschap ontwikkeld worden. </p><p>Voor het quotiënt geldt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {a+bi}{c+di}}={\frac {a+bi}{c+di}}\ {\frac {\overline {c+di}}{\overline {c+di}}}={\frac {a+bi}{c+di}}\ {\frac {c-di}{c-di}}={\frac {ac+bd+(bc-ad)i}{c^{2}+d^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mrow> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mrow> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> </mrow> </mfrac> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mover> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> <mover> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mrow> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> </mrow> </mfrac> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mi>i</mi> </mrow> <mrow> <mi>c</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mi>i</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>c</mi> <mo>+</mo> <mi>b</mi> <mi>d</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mi>c</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mi>i</mi> </mrow> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {a+bi}{c+di}}={\frac {a+bi}{c+di}}\ {\frac {\overline {c+di}}{\overline {c+di}}}={\frac {a+bi}{c+di}}\ {\frac {c-di}{c-di}}={\frac {ac+bd+(bc-ad)i}{c^{2}+d^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdd055c17ca9a42bc5238af9064f49cc506ec4e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:64.963ex; height:7.009ex;" alt="{\displaystyle {\frac {a+bi}{c+di}}={\frac {a+bi}{c+di}}\ {\frac {\overline {c+di}}{\overline {c+di}}}={\frac {a+bi}{c+di}}\ {\frac {c-di}{c-di}}={\frac {ac+bd+(bc-ad)i}{c^{2}+d^{2}}}}"></span></dd></dl> <p>Daarbij is gebruikgemaakt van de definitie <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88e98a401d352e5037d5043028e2d7f449e83fa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.926ex; height:2.843ex;" alt="{\displaystyle i^{2}=-1}"></span>. </p><p>De verzameling <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> vormt met de hierboven beschreven optelling en vermenigvuldiging een <a href="/wiki/Lichaam_(Ned)_/_Veld_(Be)" title="Lichaam (Ned) / Veld (Be)">lichaam (in België: veld)</a>. De eerder geciteerde hoofdstelling van de algebra betekent dat <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> een <a href="/wiki/Gesloten_(algebra)" title="Gesloten (algebra)">gesloten</a> lichaam is. </p> <div class="mw-heading mw-heading3"><h3 id="Logaritme_en_e-macht">Logaritme en e-macht</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=20" title="Bewerk dit kopje: Logaritme en e-macht" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=20" title="De broncode bewerken van de sectie: Logaritme en e-macht"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>De <a href="/wiki/Exponenti%C3%ABle_functie" title="Exponentiële functie">e-macht</a> is een bekende standaardfunctie, die uitgebreid kan worden naar de complexe getallen. Voor een complex getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=x+yi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=x+yi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/639f77c05613faa61f43ee28a4d5ca7c35fffa38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.315ex; height:2.509ex;" alt="{\displaystyle z=x+yi}"></span> is de e-macht van <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> gedefinieerd als </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{z}=e^{x+yi}=e^{x}(\cos(y)+i\sin(y))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mi>i</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{z}=e^{x+yi}=e^{x}(\cos(y)+i\sin(y))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7973469d2ce36141cf3b96084f0a473e201b93e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.193ex; height:3.176ex;" alt="{\displaystyle e^{z}=e^{x+yi}=e^{x}(\cos(y)+i\sin(y))}"></span></dd></dl> <p>Uit deze definitie volgt onmiddellijk </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |e^{z}|=e^{\mathrm {Re} (z)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |e^{z}|=e^{\mathrm {Re} (z)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f2b09fb41dbb5384c8e5c103774c44a07ffa47b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.781ex; height:3.343ex;" alt="{\displaystyle |e^{z}|=e^{\mathrm {Re} (z)}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \arg(e^{z})=\mathrm {Im} (z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \arg(e^{z})=\mathrm {Im} (z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4fa482ebb8233bee14c783a39b742d58644ca33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.902ex; height:2.843ex;" alt="{\displaystyle \arg(e^{z})=\mathrm {Im} (z)}"></span></li></ul> <p>Merk op dat de complexe e-macht zo gedefinieerd is dat deze voor reële waarden van <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> (dat wil zeggen met een imaginair deel 0) overeenkomt met de definitie van de e-macht voor reële getallen. </p><p>Door deze definitie behoudt de complexe e-macht een groot aantal "bekende" eigenschappen. Bijvoorbeeld: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |e^{z_{1}}||e^{z_{2}}|=e^{\mathrm {Re} (z_{1})}e^{\mathrm {Re} (z_{2})}=e^{\mathrm {Re} (z_{1})+\mathrm {Re} (z_{2})}=e^{\mathrm {Re} (z_{1}+z_{2})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |e^{z_{1}}||e^{z_{2}}|=e^{\mathrm {Re} (z_{1})}e^{\mathrm {Re} (z_{2})}=e^{\mathrm {Re} (z_{1})+\mathrm {Re} (z_{2})}=e^{\mathrm {Re} (z_{1}+z_{2})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff530e4ad6b2801e5560bad9731f5f88f73e14e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.198ex; height:3.343ex;" alt="{\displaystyle |e^{z_{1}}||e^{z_{2}}|=e^{\mathrm {Re} (z_{1})}e^{\mathrm {Re} (z_{2})}=e^{\mathrm {Re} (z_{1})+\mathrm {Re} (z_{2})}=e^{\mathrm {Re} (z_{1}+z_{2})}}"></span></li></ul> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \arg(e^{z_{1}})+\arg(e^{z_{2}})=\mathrm {Im} (z_{1})+\mathrm {Im} (z_{2})=\mathrm {Im} (z_{1}+z_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \arg(e^{z_{1}})+\arg(e^{z_{2}})=\mathrm {Im} (z_{1})+\mathrm {Im} (z_{2})=\mathrm {Im} (z_{1}+z_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fc158132cbd1b4419be16b977614b5d176ca090" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:52.929ex; height:2.843ex;" alt="{\displaystyle \arg(e^{z_{1}})+\arg(e^{z_{2}})=\mathrm {Im} (z_{1})+\mathrm {Im} (z_{2})=\mathrm {Im} (z_{1}+z_{2})}"></span></li></ul> <p>Oftewel </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{z_{1}}e^{z_{2}}=e^{z_{1}+z_{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{z_{1}}e^{z_{2}}=e^{z_{1}+z_{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40ae0bddc372df7e0e2eaa6ff034fd4396e560cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.709ex; height:2.509ex;" alt="{\displaystyle e^{z_{1}}e^{z_{2}}=e^{z_{1}+z_{2}}}"></span></dd></dl> <p>Verder volgt uit deze definitie, dat voor alle reële <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{ix}=\cos(x)+i\sin(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{ix}=\cos(x)+i\sin(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb80f22d3c03ef5c1738897144c1b7a70a79163" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.196ex; height:3.176ex;" alt="{\displaystyle e^{ix}=\cos(x)+i\sin(x)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |e^{ix}|=e^{0}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>x</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |e^{ix}|=e^{0}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e933127c4a94c2a058857ff4f5bfeae765949f3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.614ex; height:3.176ex;" alt="{\displaystyle |e^{ix}|=e^{0}=1}"></span></li></ul> <p>en dat </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{2\pi i}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{2\pi i}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6da4586a614d29da6632bc76b2b4417996d62e88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.908ex; height:2.676ex;" alt="{\displaystyle e^{2\pi i}=1}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{\pi i}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>π<!-- π --></mi> <mi>i</mi> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{\pi i}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba13b3cc2282d1776137bb8873a8a1413e9f3d28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.894ex; height:2.843ex;" alt="{\displaystyle e^{\pi i}=-1}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{{\frac {\pi }{2}}i}=i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mi>i</mi> </mrow> </msup> <mo>=</mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{{\frac {\pi }{2}}i}=i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1cbb5d92973d7ee0e118ace5d86a76853ab4371" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.385ex; height:3.176ex;" alt="{\displaystyle e^{{\frac {\pi }{2}}i}=i}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4772def31b56e642df3e4d1160cadff3d80ba45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.085ex; height:2.343ex;" alt="{\displaystyle e^{z}}"></span> periodiek is met periode <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f5715af49984c5b33961d55f532d14497b0cbae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.297ex; height:2.176ex;" alt="{\displaystyle 2\pi i}"></span> (dus bij constante <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Re} (z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Re} (z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a15375ae37e2b460e62f903dd02f6754bbdc084b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.64ex; height:2.843ex;" alt="{\displaystyle \mathrm {Re} (z)}"></span> en variërende <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Im} (z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Im} (z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/338d592f5bf75d0ddbb17b3baa0e41b153e3bdcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.673ex; height:2.843ex;" alt="{\displaystyle \mathrm {Im} (z)}"></span>)</li></ul> <p>Uit de eerste van de vijf bovenstaande eigenschappen, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |e^{z}|=e^{\mathrm {Re} (z)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |e^{z}|=e^{\mathrm {Re} (z)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f2b09fb41dbb5384c8e5c103774c44a07ffa47b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.781ex; height:3.343ex;" alt="{\displaystyle |e^{z}|=e^{\mathrm {Re} (z)}}"></span>, en de polaire notatie volgt nog dat elk complex getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span> voorgesteld kan worden als: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w=|w|e^{i\arg(w)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w=|w|e^{i\arg(w)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5aa0e502f1ad483f7e9db22f15a583d66a686f2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.735ex; height:3.343ex;" alt="{\displaystyle w=|w|e^{i\arg(w)}}"></span></dd></dl> <p>Met deze vaststelling in de hand, kan ook de natuurlijke logaritme van complexe getallen gedefinieerd worden. Een eigenschap van de natuurlijke logaritme is namelijk dat </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(ab)=\ln(a)+\ln(b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(ab)=\ln(a)+\ln(b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11ab15c1181f83919280e3687afa911216d7e350" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.64ex; height:2.843ex;" alt="{\displaystyle \ln(ab)=\ln(a)+\ln(b)}"></span></dd></dl> <p>Voor een complex getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b8b7eb2d2a30057811a7835502717d3d6ece962" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.349ex; height:2.676ex;" alt="{\displaystyle z\neq 0}"></span> definieert men op basis van het bovenstaande </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(z)=\ln(|z|e^{i\arg(z)})=\ln(|z|)+i\arg(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(z)=\ln(|z|e^{i\arg(z)})=\ln(|z|)+i\arg(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e200ac488cf418112e8ce449522ff51a2a4bf451" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.066ex; height:3.343ex;" alt="{\displaystyle \ln(z)=\ln(|z|e^{i\arg(z)})=\ln(|z|)+i\arg(z)}"></span>,</dd></dl> <p>met voor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(|z|)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(|z|)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1af6dff0078c193d56233ac5ae8ea3ddcf14b91f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.13ex; height:2.843ex;" alt="{\displaystyle \ln(|z|)}"></span> de "normale" definitie van de natuurlijke logaritme voor reële getallen. Aangezien de logaritme zo slechts bepaald is op veelvouden van <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> na, is de afspraak voor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\rm {arg}}(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">g</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\rm {arg}}(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4248ed93d603f3958fee63db889119e1f3b42b0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.134ex; height:2.843ex;" alt="{\displaystyle {\rm {arg}}(z)}"></span> altijd de hoofdwaarde te nemen. Daarmee geldt dus dat <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\pi <{\mathfrak {Im}}(\ln(z))\leq \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>π<!-- π --></mi> <mo><</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">I</mi> <mi mathvariant="fraktur">m</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\pi <{\mathfrak {Im}}(\ln(z))\leq \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9c17b488cda72732eebb31a4c230d64dda82915" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.386ex; height:2.843ex;" alt="{\displaystyle -\pi <{\mathfrak {Im}}(\ln(z))\leq \pi }"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Machtsverheffen">Machtsverheffen</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=21" title="Bewerk dit kopje: Machtsverheffen" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=21" title="De broncode bewerken van de sectie: Machtsverheffen"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Met de definitie van de e-macht en de logaritme kan ook machtsverheffen voor complexe getallen gedefinieerd worden. En wel is voor de complexe getallen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b8b7eb2d2a30057811a7835502717d3d6ece962" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.349ex; height:2.676ex;" alt="{\displaystyle z\neq 0}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{w}=e^{w\ln(z)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{w}=e^{w\ln(z)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/845e35179c48a7ac19e615f1b3842b5a59218ab6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.897ex; height:2.843ex;" alt="{\displaystyle z^{w}=e^{w\ln(z)}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Sinus_en_cosinus">Sinus en cosinus</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=22" title="Bewerk dit kopje: Sinus en cosinus" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=22" title="De broncode bewerken van de sectie: Sinus en cosinus"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Met de formule van Euler kan een verband gelegd worden tussen de complexe e-macht en de <a href="/wiki/Sinus_en_cosinus" title="Sinus en cosinus">sinus en cosinus</a>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{iz}=\cos(z)+i\sin(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>z</mi> </mrow> </msup> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{iz}=\cos(z)+i\sin(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d0a9f2aa569758a050224b511dd02c196876d2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.543ex; height:3.176ex;" alt="{\displaystyle e^{iz}=\cos(z)+i\sin(z)}"></span></dd></dl> <p>en voor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c4571a4a3ceb7e7e55712372835ebe65d20f3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.896ex; height:2.176ex;" alt="{\displaystyle -z}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-iz}=\cos(-z)+i\sin(-z)=\cos(z)-i\sin(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>z</mi> </mrow> </msup> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-iz}=\cos(-z)+i\sin(-z)=\cos(z)-i\sin(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2080402f19c8e69bf0898bf9d3013a9f885d7a69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.327ex; height:3.176ex;" alt="{\displaystyle e^{-iz}=\cos(-z)+i\sin(-z)=\cos(z)-i\sin(z)}"></span></dd></dl> <p>Zodat uit de som en het verschil van beide relaties volgt dat: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos(z)={\frac {e^{iz}+e^{-iz}}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>z</mi> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>z</mi> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos(z)={\frac {e^{iz}+e^{-iz}}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59363a83e344e3e22293d969fd7d8e8abe4fcbbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.367ex; height:5.676ex;" alt="{\displaystyle \cos(z)={\frac {e^{iz}+e^{-iz}}{2}}}"></span></dd></dl> <p>en </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(z)={\frac {e^{iz}-e^{-iz}}{2i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>z</mi> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>z</mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(z)={\frac {e^{iz}-e^{-iz}}{2i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9657455a3761eb46ef04aad42b79c3a92ba17ed4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.112ex; height:5.676ex;" alt="{\displaystyle \sin(z)={\frac {e^{iz}-e^{-iz}}{2i}}}"></span></dd></dl> <p>Deze twee resultaten hebben drie voordelen: </p> <ul><li>door de afleiding zoals hierboven zijn ze zeker intern consistent met de overige rekenregels voor complexe getallen</li> <li>deze formules voor de sinus en cosinus komen overeen met de definities voor reëelwaardige argumenten</li> <li>door deze identiteiten blijven bewijsbaar de bekende rekenregels voor sinus en cosinus overeind</li></ul> <p>Merk op dat, overeenkomstig het geval is voor de reële functies, de complexe sinus en cosinus periodieke functies zijn met periode <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Stelling_van_De_Moivre">Stelling van De Moivre</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=23" title="Bewerk dit kopje: Stelling van De Moivre" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=23" title="De broncode bewerken van de sectie: Stelling van De Moivre"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote" style="margin-bottom:0.5em; padding:0.5em 0 0.5em 1.6em; font-size:95%;" role="note"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/1rightarrow_blue.svg/15px-1rightarrow_blue.svg.png" decoding="async" width="15" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/1rightarrow_blue.svg/23px-1rightarrow_blue.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ee/1rightarrow_blue.svg/30px-1rightarrow_blue.svg.png 2x" data-file-width="480" data-file-height="480" /></span></span> <i>Zie <a href="/wiki/Stelling_van_De_Moivre" title="Stelling van De Moivre">Stelling van De Moivre</a> voor het hoofdartikel over dit onderwerp.</i></div> <p>De eerder uitgewerkte omschrijvingen van goniometrische formules naar e-machten wordt vaak gebruikt om goniometrische functies te reduceren tot meer overzichtelijke polynomen op basis van e-machten en vandaar mogelijk weer tot makkelijkere, goniometrische uitspraken. </p><p>Een bekend voorbeeld hiervan is een zeer bekende stelling uit de goniometrie, de <a href="/wiki/Stelling_van_De_Moivre" title="Stelling van De Moivre">stelling van De Moivre</a>. Gegeven het voorgaande is deze stelling overigens triviaal. Volgens deze stelling is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\cos(x)+i\sin(x))^{n}=\cos(nx)+i\sin(nx)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\cos(x)+i\sin(x))^{n}=\cos(nx)+i\sin(nx)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04ffc38d4977ce109ec3ef3a41d7439e4078bb64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.465ex; height:2.843ex;" alt="{\displaystyle (\cos(x)+i\sin(x))^{n}=\cos(nx)+i\sin(nx)}"></span></dd></dl> <dl><dt>Bewijs</dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\cos(x)+i\sin(x))^{n}=(e^{ix})^{n}=e^{inx}=\cos(nx)+i\sin(nx)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>x</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>n</mi> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\cos(x)+i\sin(x))^{n}=(e^{ix})^{n}=e^{inx}=\cos(nx)+i\sin(nx)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/513fd09348ef64d9c8acfc470bbbb23a47ecdd25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:57.323ex; height:3.176ex;" alt="{\displaystyle (\cos(x)+i\sin(x))^{n}=(e^{ix})^{n}=e^{inx}=\cos(nx)+i\sin(nx)}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Sinus_hyperbolicus_en_cosinus_hyperbolicus">Sinus hyperbolicus en cosinus hyperbolicus</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=24" title="Bewerk dit kopje: Sinus hyperbolicus en cosinus hyperbolicus" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=24" title="De broncode bewerken van de sectie: Sinus hyperbolicus en cosinus hyperbolicus"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Met de complexe e-macht kunnen de definities van de <a href="/wiki/Hyperbolische_functie" title="Hyperbolische functie">sinus hyperbolicus</a> en de <a href="/wiki/Hyperbolische_functie" title="Hyperbolische functie">cosinus hyperbolicus</a> uitgebreid worden naar complexe getallen. Voor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\in \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\in \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/169fae60c23a2027ece2aa7fd4b5047492887e91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.607ex; height:2.176ex;" alt="{\displaystyle z\in \mathbb {C} }"></span> geldt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cosh(z)={\frac {e^{z}+e^{-z}}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cosh</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>z</mi> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cosh(z)={\frac {e^{z}+e^{-z}}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a5d3f52964ef8fe0e944c979dc7339e5fd1208f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.525ex; height:5.509ex;" alt="{\displaystyle \cosh(z)={\frac {e^{z}+e^{-z}}{2}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sinh(z)={\frac {e^{z}-e^{-z}}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sinh</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>z</mi> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sinh(z)={\frac {e^{z}-e^{-z}}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/455ea4dd24079133cc4d9ccace517808aab3c704" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.269ex; height:5.509ex;" alt="{\displaystyle \sinh(z)={\frac {e^{z}-e^{-z}}{2}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Complexe_wortelfuncties">Complexe wortelfuncties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=25" title="Bewerk dit kopje: Complexe wortelfuncties" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=25" title="De broncode bewerken van de sectie: Complexe wortelfuncties"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Eerder is vastgesteld dat voor complexe getallen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span> geldt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |zw|=|z||w|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |zw|=|z||w|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5df220deb42cd816f43478c2c5a17f7ceecb6650" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.484ex; height:2.843ex;" alt="{\displaystyle |zw|=|z||w|}"></span></dd></dl> <p>en </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \arg(zw)=\arg(z)+\arg(w)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mi>w</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \arg(zw)=\arg(z)+\arg(w)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bb68ba19814e65f326c194b5965ca4343382511" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.581ex; height:2.843ex;" alt="{\displaystyle \arg(zw)=\arg(z)+\arg(w)}"></span></dd></dl> <p>Hieruit kan meteen afgeleiden worden wat de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-de-machtswortels van een complex getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> zijn. Per definitie zijn dit alle oplossingen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span> van de vergelijking <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w^{n}=z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w^{n}=z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48b3a551fb5dc94867df37d28d2fddb77b177514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.069ex; height:2.343ex;" alt="{\displaystyle w^{n}=z}"></span>. </p><p>Het complexe getal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span> dat het meest voor de hand ligt, is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span> waarvoor geldt dat </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |w|={\sqrt[{n}]{|z|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |w|={\sqrt[{n}]{|z|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f443b78fc34f16cb0302705d330d0508e2653b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.762ex; height:4.843ex;" alt="{\displaystyle |w|={\sqrt[{n}]{|z|}}}"></span></dd></dl> <p>en </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \arg(w)={\begin{matrix}{\frac {1}{n}}\end{matrix}}\arg(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \arg(w)={\begin{matrix}{\frac {1}{n}}\end{matrix}}\arg(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a0f8db41d002d89b9da4a0087fe3705b0fe86a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.894ex; margin-bottom: -0.277ex; width:18.903ex; height:3.509ex;" alt="{\displaystyle \arg(w)={\begin{matrix}{\frac {1}{n}}\end{matrix}}\arg(z)}"></span></dd></dl> <p>De periodiciteit van de goniometrie leert dat daarnaast ook die complexe getallen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span> een oplossing zijn waarvoor geldt dat: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \arg(w)={\begin{matrix}{\frac {1}{n}}\end{matrix}}(\arg(z)+k2\pi ),\ k\in \{1,\ldots ,n-1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo stretchy="false">(</mo> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>k</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> <mo>,</mo> <mtext> </mtext> <mi>k</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \arg(w)={\begin{matrix}{\frac {1}{n}}\end{matrix}}(\arg(z)+k2\pi ),\ k\in \{1,\ldots ,n-1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d6b1e3a27872b9c8a67f5a49a7666b1b0d3b465" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.894ex; margin-bottom: -0.277ex; width:46.601ex; height:3.509ex;" alt="{\displaystyle \arg(w)={\begin{matrix}{\frac {1}{n}}\end{matrix}}(\arg(z)+k2\pi ),\ k\in \{1,\ldots ,n-1\}}"></span></dd></dl> <p>Dus: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \arg(w)={\begin{matrix}{\frac {1}{n}}\end{matrix}}\arg(z)+2\pi {\begin{matrix}{\frac {k}{n}}\end{matrix}},\ k\in \{1,\ldots ,n-1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>n</mi> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>,</mo> <mtext> </mtext> <mi>k</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \arg(w)={\begin{matrix}{\frac {1}{n}}\end{matrix}}\arg(z)+2\pi {\begin{matrix}{\frac {k}{n}}\end{matrix}},\ k\in \{1,\ldots ,n-1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61de14116f41404fad381b0560880ae8d3d5f108" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.926ex; margin-bottom: -0.245ex; width:46.542ex; height:3.509ex;" alt="{\displaystyle \arg(w)={\begin{matrix}{\frac {1}{n}}\end{matrix}}\arg(z)+2\pi {\begin{matrix}{\frac {k}{n}}\end{matrix}},\ k\in \{1,\ldots ,n-1\}}"></span></dd></dl> <p>De <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-de-machtswortels van een complex getal zijn in het complexe vlak dus precies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> punten, regelmatig verdeeld over een cirkel om de oorsprong, met straal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{|z|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{|z|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03899aeed60a1a9474e6de67d4119e890384ff9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:4.706ex; height:4.843ex;" alt="{\displaystyle {\sqrt[{n}]{|z|}}}"></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Voorbeeld">Voorbeeld</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=26" title="Bewerk dit kopje: Voorbeeld" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=26" title="De broncode bewerken van de sectie: Voorbeeld"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In het reële domein is de derdemachtswortel uit −1 gelijk aan −1. Maar met bovenstaande rekenregel vinden we dat ook <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{2}}i{\sqrt {3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{2}}i{\sqrt {3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94a3c3bd9c1e2c812feaac2acc7d041c5c85cded" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.057ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{2}}i{\sqrt {3}}}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}-{\tfrac {1}{2}}i{\sqrt {3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}-{\tfrac {1}{2}}i{\sqrt {3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fd84525e1d9c2c2b30a62dd321276be103f951d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.057ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}-{\tfrac {1}{2}}i{\sqrt {3}}}"></span> derdemachtswortels van −1 zijn. </p><p>En inderdaad is behalve: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1)^{3}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1)^{3}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ad25c1c5499dec9e42f92873e57f18e3cbe43f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.903ex; height:3.176ex;" alt="{\displaystyle (-1)^{3}=-1}"></span>,</dd></dl> <p>ook </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\tfrac {1}{2}}+{\tfrac {1}{2}}i{\sqrt {3}}\right)^{3}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\tfrac {1}{2}}+{\tfrac {1}{2}}i{\sqrt {3}}\right)^{3}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f16b280cfa3c41968173a496d17400e2183cbca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:19.311ex; height:4.009ex;" alt="{\displaystyle \left({\tfrac {1}{2}}+{\tfrac {1}{2}}i{\sqrt {3}}\right)^{3}=-1}"></span></dd></dl> <p>en </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\tfrac {1}{2}}-{\tfrac {1}{2}}i{\sqrt {3}}\right)^{3}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\tfrac {1}{2}}-{\tfrac {1}{2}}i{\sqrt {3}}\right)^{3}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c145df95c22ba7dc1a7ff23d03c562502478015" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:19.311ex; height:4.009ex;" alt="{\displaystyle \left({\tfrac {1}{2}}-{\tfrac {1}{2}}i{\sqrt {3}}\right)^{3}=-1}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Hoofdwaarde">Hoofdwaarde</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=27" title="Bewerk dit kopje: Hoofdwaarde" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=27" title="De broncode bewerken van de sectie: Hoofdwaarde"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Zoekt men een unieke oplossing voor de wortelfunctie, dan kan men die waarde kiezen die gebaseerd is op de hoofdwaarde van <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\rm {arg}}(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">g</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\rm {arg}}(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4248ed93d603f3958fee63db889119e1f3b42b0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.134ex; height:2.843ex;" alt="{\displaystyle {\rm {arg}}(z)}"></span> en daar weer de hoofdwaarde van nemen. In het bijzonder heeft dan de 'unieke' wortel uit −1 de waarde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>. </p><p>Merk op dat de bekende rekenregels niet gelden voor complexe wortels. Zo geldt <i>niet</i> algemeen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {ab}}={\sqrt {a}}{\sqrt {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>a</mi> <mi>b</mi> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>a</mi> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>b</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {ab}}={\sqrt {a}}{\sqrt {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53bccbce334453216714bd4862cff5a43baf399d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.361ex; height:3.343ex;" alt="{\displaystyle {\sqrt {ab}}={\sqrt {a}}{\sqrt {b}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Eenheidswortels">Eenheidswortels</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=28" title="Bewerk dit kopje: Eenheidswortels" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=28" title="De broncode bewerken van de sectie: Eenheidswortels"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hatnote" style="margin-bottom:0.5em; padding:0.5em 0 0.5em 1.6em; font-size:95%;" role="note"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/1rightarrow_blue.svg/15px-1rightarrow_blue.svg.png" decoding="async" width="15" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/1rightarrow_blue.svg/23px-1rightarrow_blue.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ee/1rightarrow_blue.svg/30px-1rightarrow_blue.svg.png 2x" data-file-width="480" data-file-height="480" /></span></span> <i>Zie <a href="/wiki/Eenheidswortel" title="Eenheidswortel">Eenheidswortel</a> voor het hoofdartikel over dit onderwerp.</i></div> <p>Een speciale rol is weggelegd voor de zogenaamde <i>eenheidswortels</i>. Dat zijn de oplossingen van de vergelijking </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{n}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{n}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34fb31edf665701c275c44a5be8b82a95509888d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.57ex; height:2.343ex;" alt="{\displaystyle z^{n}=1}"></span>,</dd></dl> <p>waarin <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> een natuurlijk getal is. De oplossingen zijn de punten op de <a href="/wiki/Eenheidscirkel" title="Eenheidscirkel">eenheidscirkel</a> (cirkel met straal 1 om de oorsprong) die in polaire notatie gegeven worden door: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{k}=e^{2\pi ik/n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{k}=e^{2\pi ik/n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/084ec9e12551a47bda684109aa10a74cc5462f8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.58ex; height:3.176ex;" alt="{\displaystyle z_{k}=e^{2\pi ik/n}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Toepassingen">Toepassingen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=29" title="Bewerk dit kopje: Toepassingen" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=29" title="De broncode bewerken van de sectie: Toepassingen"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Trillings-_en_golfverschijnselen">Trillings- en golfverschijnselen</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=30" title="Bewerk dit kopje: Trillings- en golfverschijnselen" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=30" title="De broncode bewerken van de sectie: Trillings- en golfverschijnselen"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Bovengenoemde eigenschappen en functies van complexe getallen zijn bijzonder nuttig voor het bestuderen van alle <a href="/wiki/Periode_(wiskunde)" title="Periode (wiskunde)">periodieke</a> verschijnselen, waaronder golfverschijnselen. In plaats van apart met zowel amplitude als fase te moeten rekenen, kan volstaan worden met één complex getal en de bijbehorende rekentechnieken. Een eenvoudig voorbeeld kan dit aannemelijk maken: </p><p>Stel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2434c9d80c34c95e25cc81ba6700f756a29dac5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.821ex; height:2.843ex;" alt="{\displaystyle I(t)}"></span> beschrijft een wisselstroom met <a href="/wiki/Hoeksnelheid" title="Hoeksnelheid">hoekfrequentie</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> en <a href="/wiki/Amplitude" title="Amplitude">amplitude</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/893d08e90ea73781dc133414d661529d0651ca80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.077ex; height:2.509ex;" alt="{\displaystyle I_{0}}"></span>. Dit kan worden geschreven als </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(t)=I_{0}\cdot \cos(\omega t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(t)=I_{0}\cdot \cos(\omega t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70bcd1d212bb35e8f9fdf55983aa2a6e99309dc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.881ex; height:2.843ex;" alt="{\displaystyle I(t)=I_{0}\cdot \cos(\omega t)}"></span></dd></dl> <p>Deze cosinus is een oplossing van een <a href="/wiki/Differentiaalvergelijking#Lineaire_differentiaalvergelijking" title="Differentiaalvergelijking">lineaire differentiaalvergelijking</a> van de tweede orde met constante coëfficiënten. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(t)=I_{0}\cdot \sin(\omega t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(t)=I_{0}\cdot \sin(\omega t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/734eecbf0fd877eb1e2fc8644fde4d71318d1857" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.626ex; height:2.843ex;" alt="{\displaystyle I(t)=I_{0}\cdot \sin(\omega t)}"></span></dd></dl> <p>is ook een oplossing van diezelfde differentiaalvergelijking. </p><p>Sinus en cosinus zijn de twee onafhankelijke oplossingen van die differentiaalvergelijking, hetgeen wil zeggen dat de een niet als een veelvoud van de ander is te schrijven. Volgens de theorie van de differentaalvergelijkingen is ook een lineaire combinatie </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(t)=A\cdot \cos(\omega t)+iB\cdot \sin(\omega t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>A</mi> <mo>⋅<!-- ⋅ --></mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>B</mi> <mo>⋅<!-- ⋅ --></mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(t)=A\cdot \cos(\omega t)+iB\cdot \sin(\omega t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8f8c63b09b13528e6bcdd9293a6e66e66773b32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.583ex; height:2.843ex;" alt="{\displaystyle I(t)=A\cdot \cos(\omega t)+iB\cdot \sin(\omega t)}"></span></dd></dl> <p>een oplossing, waarbij <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> reële constanten zijn. In feite is dit een toepassing van het <a href="/wiki/Superpositie_(natuurkunde)" title="Superpositie (natuurkunde)">superpositieprincipe</a>. Dit kan weer herschreven worden als </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I(t)=I_{0}\cdot e^{i\omega t+\phi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>ω<!-- ω --></mi> <mi>t</mi> <mo>+</mo> <mi>ϕ<!-- ϕ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I(t)=I_{0}\cdot e^{i\omega t+\phi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c93d853e8eab4bad23e823271c9ef9a954524e69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.433ex; height:3.176ex;" alt="{\displaystyle I(t)=I_{0}\cdot e^{i\omega t+\phi }}"></span>, waarbij <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{0}={\sqrt {A^{2}+B^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{0}={\sqrt {A^{2}+B^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26d6048841eba8e997d2c352b0e3fe092778ff10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.956ex; height:3.509ex;" alt="{\displaystyle I_{0}={\sqrt {A^{2}+B^{2}}}}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi =\arctan 2(B,A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo>=</mo> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>B</mi> <mo>,</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi =\arctan 2(B,A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e5f5e33da0b8bf05c2b9c0229b906649fed85ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.85ex; height:2.843ex;" alt="{\displaystyle \phi =\arctan 2(B,A)}"></span> (zie <a href="/wiki/Arctan2" class="mw-redirect" title="Arctan2">arctan2</a>).</dd></dl> <p>In plaats van <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> zijn nu de amplitude <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/893d08e90ea73781dc133414d661529d0651ca80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.077ex; height:2.509ex;" alt="{\displaystyle I_{0}}"></span> en faseverschuiving <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> de integratieconstanten waarmee de DV aan de randvoorwaarden kan voldoen. Door uitbreiding van <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc386d951e8ffae76357542f14e160621e6668b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.849ex; height:2.509ex;" alt="{\displaystyle I_{t}}"></span> met een imaginair deel is een complexe exponentiële functie <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{0}\cdot e^{i\omega t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>ω<!-- ω --></mi> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{0}\cdot e^{i\omega t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ad34ed689c3196656c46a25bc15568cf21e533f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.256ex; height:3.009ex;" alt="{\displaystyle I_{0}\cdot e^{i\omega t}}"></span> ontstaan, die de prettige eigenschap heeft dat de afgeleide ervan verkregen wordt door vermenigvuldiging met <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\omega t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi>ω<!-- ω --></mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\omega t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb8bf5a2aa05e4400cc58e6ac3654c57defdda01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.088ex; height:2.176ex;" alt="{\displaystyle i\omega t}"></span> en de integraal door deling door <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\omega t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi>ω<!-- ω --></mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\omega t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb8bf5a2aa05e4400cc58e6ac3654c57defdda01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.088ex; height:2.176ex;" alt="{\displaystyle i\omega t}"></span>. De relevante fysische grootheid is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Re (I_{t})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">ℜ<!-- ℜ --></mi> <mo stretchy="false">(</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Re (I_{t})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72aeeb99731cf8dc33f17e47e2fb9d1466e14e16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.583ex; height:2.843ex;" alt="{\displaystyle \Re (I_{t})}"></span>. </p><p>Hierdoor worden lineaire differentiaalvergelijkingen vereenvoudigd tot algebraïsche uitdrukkingen. Complexe getallen worden ook bij andere soorten <a href="/wiki/Differentiaalvergelijking" title="Differentiaalvergelijking">differentiaalvergelijkingen</a> gebruikt. </p> <div class="mw-heading mw-heading3"><h3 id="Elektrotechniek_en_elektronica">Elektrotechniek en elektronica</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=31" title="Bewerk dit kopje: Elektrotechniek en elektronica" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=31" title="De broncode bewerken van de sectie: Elektrotechniek en elektronica"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Wisselstroom" title="Wisselstroom">Wisselstroom</a> is een periodiek verschijnsel, zodat complexe getallen ook hier het rekenwerk sterk vereenvoudigen, zie ook <a href="/wiki/Complexe_wisselstroomrekening" title="Complexe wisselstroomrekening">complexe wisselstroomrekening</a>. Toepassingen liggen bijvoorbeeld in de <a href="/wiki/Signaalanalyse" title="Signaalanalyse">signaalanalyse</a>, <a href="/wiki/Meet-_en_regeltechniek" title="Meet- en regeltechniek">meet- en regeltechniek</a>, analoge en <a href="/wiki/Digitaal" title="Digitaal">digitale</a> geluids- en beeldbewerking, <a href="/wiki/Telecommunicatie" title="Telecommunicatie">telecommunicatie</a>, enzovoort. De <a href="/wiki/Faseverschuiving" title="Faseverschuiving">faseverschuiving</a>, in elektrotechnische spreektaal vaak wat slordig cosinus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> genoemd, valt met deze complexe rekenwijze eenvoudig te berekenen. Het begrip <a href="/wiki/Impedantie" title="Impedantie">impedantie</a> kan als complexe grootheid worden beschreven, als <a href="/wiki/Impedantie#De_complexe_impedantie" title="Impedantie">complexe impedantie</a>, waardoor de <a href="/wiki/Wet_van_Ohm" title="Wet van Ohm">wet van Ohm</a> anders kan worden geschreven: </p> <dl><dd>complexe spanning = complexe impedantie × complexe stroom.</dd></dl> <p>Hierbij wordt de modulus van de impedantie vermenigvuldigd met de amplitude <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/893d08e90ea73781dc133414d661529d0651ca80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.077ex; height:2.509ex;" alt="{\displaystyle I_{0}}"></span> van de stroom en het argument van de impedantie opgeteld bij de fase <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> van de stroom. </p><p><a href="/wiki/Fourieranalyse" title="Fourieranalyse">Fourieranalyse</a> wordt veelvuldig gebruikt voor de analyse van tijdafhankelijke signalen, in het bijzonder voor stationaire periodieke signalen. Voor in- en uitschakelverschijnselen, die niet zuiver periodiek zijn, is de <a href="/wiki/Laplacetransformatie" title="Laplacetransformatie">laplacetransformatie</a>, een uitbreiding van de fouriertransformatie, onontbeerlijk. Zowel de fourieranalyse als de laplacetransformatie maken deel uit van de <a href="/wiki/Functietheorie" title="Functietheorie">functietheorie</a>, voor quasi-stationaire signalen, zoals golfpakketten, zijn er analytische signaalfuncties. </p><p>Opmerking: In de elektrotechniek en elektronica wordt de imaginaire eenheid <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span> genoemd, om verwarring met de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> voor de <a href="/wiki/Elektrische_stroom" title="Elektrische stroom">stroomsterkte</a> te voorkomen. </p> <div class="mw-heading mw-heading3"><h3 id="Natuurkunde">Natuurkunde</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=32" title="Bewerk dit kopje: Natuurkunde" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=32" title="De broncode bewerken van de sectie: Natuurkunde"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Complexe getallen en de bijbehorende complexefunctietheorie worden in de <a href="/wiki/Natuurkunde" title="Natuurkunde">natuurkunde</a> vooral gebruikt om <a href="/wiki/Trilling" title="Trilling">trillingen</a> en <a href="/wiki/Golf_(natuurkunde)" title="Golf (natuurkunde)">golven</a> te beschrijven, zoals in de <a href="/wiki/Akoestiek" title="Akoestiek">akoestiek</a>, de <a href="/wiki/Wetten_van_Maxwell" title="Wetten van Maxwell">wetten van Maxwell</a>, de <a href="/wiki/Fysische_optica" title="Fysische optica">fysische optica</a>, de fourieranalyse kan in twee dimensies ook op afbeeldingen en buigingspatronen worden toegepast, evenals in de <a href="/wiki/Kwantummechanica" title="Kwantummechanica">kwantummechanica</a>, waarin golffuncties waarschijnlijkheidsverdelingen beschrijven. </p> <div class="mw-heading mw-heading3"><h3 id="Relativiteit">Relativiteit</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=33" title="Bewerk dit kopje: Relativiteit" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=33" title="De broncode bewerken van de sectie: Relativiteit"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Een aantal formules voor de <a href="/wiki/Ruimtetijd" title="Ruimtetijd">ruimtetijd</a> worden in de <a href="/wiki/Speciale_relativiteitstheorie" title="Speciale relativiteitstheorie">speciale</a> en de <a href="/wiki/Algemene_relativiteitstheorie" title="Algemene relativiteitstheorie">algemene relativiteitstheorie</a> eenvoudiger als men de tijdsvariabele imaginair weergeeft. Dit is niet langer standaard in klassieke relativiteit, maar wordt wel gebruikt in de <a href="/wiki/Kwantumveldentheorie" title="Kwantumveldentheorie">kwantumveldentheorie</a>. Complexe getallen zijn essentieel voor <a href="/wiki/Spinor" title="Spinor">spinors</a>, die een algemene vorm van de <a href="/wiki/Tensoren_in_de_algemene_relativiteitstheorie" title="Tensoren in de algemene relativiteitstheorie">tensoren</a> zijn die in de relativiteitstheorie worden gebruikt. </p> <div class="mw-heading mw-heading3"><h3 id="Meetkunde">Meetkunde</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=34" title="Bewerk dit kopje: Meetkunde" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=34" title="De broncode bewerken van de sectie: Meetkunde"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Fractals">Fractals</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=35" title="Bewerk dit kopje: Fractals" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=35" title="De broncode bewerken van de sectie: Fractals"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Bepaalde <a href="/wiki/Fractal" title="Fractal">fractals</a> worden in het <a href="/wiki/Complexe_vlak" title="Complexe vlak">complexe vlak</a> weergegeven, bijvoorbeeld de <a href="/wiki/Mandelbrotverzameling" title="Mandelbrotverzameling">Mandelbrotverzameling</a> en de <a href="/wiki/Juliaverzameling" title="Juliaverzameling">Juliaverzameling</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Driehoeken">Driehoeken</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=36" title="Bewerk dit kopje: Driehoeken" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=36" title="De broncode bewerken van de sectie: Driehoeken"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Elke driehoek heeft een unieke <a href="/wiki/Steiners_ingeschreven_ellips" title="Steiners ingeschreven ellips">Steiners ingeschreven ellips</a>, een <a href="/wiki/Ellips_(wiskunde)" title="Ellips (wiskunde)">ellips</a> binnen de driehoek, die raakt aan het midden van de drie zijden van de driehoek. De <a href="/wiki/Brandpunt_(meetkunde)" title="Brandpunt (meetkunde)">brandpunten</a> van driehoekige Steiners ingeschreven ellips kan als volgt worden gevonden, volgens de <a href="/wiki/Stelling_van_Marden" title="Stelling van Marden">stelling van Marden</a>:<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Noteer de hoekpunten van de driehoeken in het complexe vlak als, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=x_{A}+y_{A}i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=x_{A}+y_{A}i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52558a1c7536584e773121ca088ded1fc56932a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.37ex; height:2.509ex;" alt="{\displaystyle a=x_{A}+y_{A}i}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=x_{B}+y_{B}i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=x_{B}+y_{B}i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/129cb79d830ede07bfe10e969b135523874449ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.167ex; height:2.509ex;" alt="{\displaystyle b=x_{B}+y_{B}i}"></span> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=x_{C}+y_{C}i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=x_{C}+y_{C}i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5590c16ddff19a16ab779b8ef9ad81e02bf2b52c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.18ex; height:2.509ex;" alt="{\displaystyle c=x_{C}+y_{C}i}"></span>. Schrijf de <a href="/wiki/Derdegraadsvergelijking" title="Derdegraadsvergelijking">derdegraadsvergelijking</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x-a)(x-b)(x-c)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x-a)(x-b)(x-c)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1856f8d9b149522168258a0bde389d0a53e9c6b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.433ex; height:2.843ex;" alt="{\displaystyle (x-a)(x-b)(x-c)=0}"></span>, neem daar de afgeleide van en stel deze kwadratische afgeleide gelijk aan nul. De oplossingen van deze vergelijking zijn volgend de stelling van Marden complexe getallen, die de locaties van de twee brandpunten van de Steiners ingeschreven ellips weergeven. </p> <div class="mw-heading mw-heading2"><h2 id="Externe_links">Externe links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Complex_getal&veaction=edit&section=37" title="Bewerk dit kopje: Externe links" class="mw-editsection-visualeditor"><span>bewerken</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Complex_getal&action=edit&section=37" title="De broncode bewerken van de sectie: Externe links"><span>brontekst bewerken</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><style data-mw-deduplicate="TemplateStyles:r67679320">.mw-parser-output .taalaanduiding{font-family:sans-serif;font-size:85%;cursor:help;color:var(--color-subtle,#555)}.mw-parser-output .taalaanduiding span{border-bottom:1px dotted var(--color-subtle,#555)}</style><span class="taalaanduiding" title="Taal: Engels">(<span>en</span>) </span> <a href="/wiki/MathWorld" title="MathWorld">MathWorld</a>. <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/topics/ComplexNumbers.html">Complex Numbers</a>. overzicht van begrippen</li></ul> <div class="toccolours appendix" role="presentation" style="font-size:90%; margin:1em 0 -0.5em; clear:both;"> <div><span style="font-weight:bold">Bronnen, noten en/of referenties</span></div> <div class="reflist" style="list-style-type: decimal;"><div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r67679320"><span class="taalaanduiding" title="Taal: Engels">(<span>en</span>) </span> <a href="/wiki/Mathematical_Association_of_America" title="Mathematical Association of America">MAA</a>. <a rel="nofollow" class="external text" href="https://www.maa.org/programs/maa-awards/writing-awards/an-elementary-proof-of-mardens-theorem">An Elementary Proof of Marden's Theorem</a>, 2 september 2009. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230323202147/https://www.maa.org/programs/maa-awards/writing-awards/an-elementary-proof-of-mardens-theorem">Gearchiveerd</a> op 23 maart 2023.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r67679320"><span class="taalaanduiding" title="Taal: Engels">(<span>en</span>) </span> MAA. <a rel="nofollow" class="external text" href="https://www.maa.org/press/periodicals/loci/joma/the-most-marvelous-theorem-in-mathematics">The Most Marvelous Theorem in Mathematics</a>, maart 2008. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230419101128/https://www.maa.org/press/periodicals/loci/joma/the-most-marvelous-theorem-in-mathematics">Gearchiveerd</a> op 19 april 2023.</span> </li> </ol></div></div> </div> <style data-mw-deduplicate="TemplateStyles:r67837862">.mw-parser-output .navigatie{position:relative;clear:both;overflow:auto;margin:1em auto -0.5em;padding:2px;background-color:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);text-align:center;font-size:87%}.mw-parser-output .navigatie-bewerken{margin-left:0.5em}.mw-parser-output .navigatie-bewerken .mw-ui-icon::before{background-size:0.9em}.mw-parser-output .navigatie-afb-links,.mw-parser-output .navigatie-afb-rechts{position:absolute}.mw-parser-output .navigatie-afb-rechts{right:2px}.mw-parser-output .navigatie-afb-groot{float:right;padding-left:0.5em}.mw-parser-output .navigatie-titel{background-color:#ddeef8;padding:2px 5.5em;font-weight:bold}.mw-parser-output .navigatie-inhoud{padding:0.5em}.mw-parser-output .navigatie-inhoud p:first-child{margin:0}.mw-parser-output .navigatie div[style*="background-color"],.mw-parser-output .navigatie div[style*="background"]{color:inherit}@media screen{html.skin-theme-clientpref-night .mw-parser-output .navigatie-titel{background-color:var(--background-color-interactive,#eaecf0)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navigatie-titel{background-color:var(--background-color-interactive,#eaecf0)!important}}</style> <div class="navigatie" role="navigation" aria-labelledby="Bijzondere_getallen"> <div class="navigatie-afb-links noviewer"><div class="navigatie-bewerken show-autoconfirmed nomobile"><span class="nowrap skin-invert-image"><span typeof="mw:File"><a href="/wiki/Sjabloon:Navigatie_bijzondere_getallen" title="Sjabloon:Navigatie bijzondere getallen"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c4/OOjs_UI_icon_article-ltr.svg/16px-OOjs_UI_icon_article-ltr.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c4/OOjs_UI_icon_article-ltr.svg/24px-OOjs_UI_icon_article-ltr.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c4/OOjs_UI_icon_article-ltr.svg/32px-OOjs_UI_icon_article-ltr.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> · <span class="ui-state-disabled" typeof="mw:File"><span title="Overleg sjabloon (de pagina bestaat niet)"><img alt="Overleg sjabloon (de pagina bestaat niet)" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/OOjs_UI_icon_speechBubbles-ltr.svg/16px-OOjs_UI_icon_speechBubbles-ltr.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/OOjs_UI_icon_speechBubbles-ltr.svg/24px-OOjs_UI_icon_speechBubbles-ltr.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/40/OOjs_UI_icon_speechBubbles-ltr.svg/32px-OOjs_UI_icon_speechBubbles-ltr.svg.png 2x" data-file-width="20" data-file-height="20" /></span></span> · <span typeof="mw:File"><a href="//nl.wikipedia.org/w/index.php?title=Sjabloon:Navigatie_bijzondere_getallen&action=edit" title="Sjabloon bewerken"><img alt="Sjabloon bewerken" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr.svg/16px-OOjs_UI_icon_edit-ltr.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr.svg/24px-OOjs_UI_icon_edit-ltr.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr.svg/32px-OOjs_UI_icon_edit-ltr.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></span></div></div> <div id="Bijzondere_getallen" class="navigatie-titel">Bijzondere getallen</div> <div class="navigatie-inhoud"> <style data-mw-deduplicate="TemplateStyles:r67785531">.mw-parser-output .navigatie-tabel{margin:0 auto 0 auto;text-align:left}.mw-parser-output .navigatie-tabel .links{text-align:right}.mw-parser-output .navigatie-tabel .rechts{padding-left:0.5em}@media screen and (max-width:640px){.mw-parser-output .navigatie-tabel tr{display:grid;grid-template-columns:1fr;width:100%;margin-bottom:0.5em}.mw-parser-output .navigatie-tabel tr:last-of-type{margin-bottom:0}.mw-parser-output .navigatie-tabel .links{text-align:unset}.mw-parser-output .navigatie-tabel .rechts{padding:unset}}</style><table class="navigatie-tabel vatop" cellpadding="0" cellspacing="0" style=""><tbody><tr><td class="links" style=""><span class="nowrap"><b><a href="/wiki/Wiskundige_constante" title="Wiskundige constante">Wiskundige constanten</a>:</b></span></td><td class="rechts"><a href="/wiki/E_(wiskunde)" title="E (wiskunde)">e</a> · <a href="/wiki/Constante_van_Euler-Mascheroni" title="Constante van Euler-Mascheroni">constante van Euler-Mascheroni</a> · <a href="/wiki/Constante_van_Gelfond" title="Constante van Gelfond">constante van Gelfond</a> · <a href="/wiki/Gulden_snede" title="Gulden snede">gulden getal</a> · <a href="/wiki/6174_(getal)" title="6174 (getal)">constante van Kaprekar</a> · <a href="/wiki/Getal_van_Graham" title="Getal van Graham">getal van Graham</a> · <a href="/wiki/Getal_van_Skewes" title="Getal van Skewes">getal van Skewes</a> · <a href="/wiki/Pi_(wiskunde)" title="Pi (wiskunde)">pi</a></td></tr><tr><td class="links"><b><a href="/wiki/Verzameling_(wiskunde)" title="Verzameling (wiskunde)">Verzamelingen</a>:</b></td><td class="rechts"><a href="/wiki/Algebra%C3%AFsch_getal" title="Algebraïsch getal">algebraïsch getal</a> · <a href="/wiki/Bevriende_getallen" title="Bevriende getallen">bevriende getallen</a> · <a href="/wiki/Bijna_perfect_getal" title="Bijna perfect getal">bijna perfect getal</a> · <a class="mw-selflink selflink">complex getal</a> · <a href="/wiki/Evenwichtig_priemgetal" title="Evenwichtig priemgetal">evenwichtig priemgetal</a> · <a href="/wiki/Fermatgetal" title="Fermatgetal">fermatgetal</a> · <a href="/wiki/Gebrekkig_getal" title="Gebrekkig getal">gebrekkig getal</a> · <a href="/wiki/Geheel_getal" title="Geheel getal">geheel getal</a> · <a href="/wiki/Kaprekargetal" title="Kaprekargetal">kaprekargetal</a> · <a href="/wiki/Mersennepriemgetal" title="Mersennepriemgetal">mersennepriemgetal</a> · <a href="/wiki/Natuurlijk_getal" title="Natuurlijk getal">natuurlijk getal</a> · <a href="/wiki/Overvloedig_getal" title="Overvloedig getal">overvloedig getal</a> · <a href="/wiki/Palindroomgetal" title="Palindroomgetal">palindroomgetal</a> · <a href="/wiki/Palindroompriemgetal" title="Palindroompriemgetal">palindroompriemgetal</a> · <a href="/wiki/Perfect_getal" title="Perfect getal">perfect getal</a> · <a href="/wiki/Plastisch_getal" title="Plastisch getal">plastisch getal</a> · <a href="/wiki/Praktisch_getal" title="Praktisch getal">praktisch getal</a> · <a href="/wiki/Priemgetal" title="Priemgetal">priemgetal</a> · <a href="/wiki/Priemtweeling" title="Priemtweeling">priemtweeling</a> · <a href="/wiki/Rationaal_getal" title="Rationaal getal">rationaal getal</a> · <a href="/wiki/Re%C3%ABel_getal" title="Reëel getal">reëel getal</a> · <a href="/wiki/Rekenkundig_getal" title="Rekenkundig getal">rekenkundig getal</a> · <a href="/wiki/Samengesteld_getal" title="Samengesteld getal">samengesteld getal</a> · <a href="/wiki/Semiperfect_getal" title="Semiperfect getal">semiperfect getal</a> · <a href="/wiki/Sphenisch_getal" title="Sphenisch getal">sphenisch getal</a> · <a href="/wiki/Vreemd_getal" title="Vreemd getal">vreemd getal</a></td></tr></tbody></table> </div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐68db4b6789‐fq69m Cached time: 20241126060144 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.294 seconds Real time usage: 0.464 seconds Preprocessor visited node count: 2468/1000000 Post‐expand include size: 13564/2097152 bytes Template argument size: 4557/2097152 bytes Highest expansion depth: 10/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 15162/5000000 bytes Lua time usage: 0.002/10.000 seconds Lua memory usage: 586337/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 83.063 1 -total 35.48% 29.468 1 Sjabloon:Navigatie_bijzondere_getallen 32.06% 26.630 1 Sjabloon:Navigatie 21.97% 18.249 1 Sjabloon:Appendix 19.31% 16.037 1 Sjabloon:References 14.84% 12.325 1 Sjabloon:Navigatie/Tabel 11.82% 9.819 3 Sjabloon:En 10.14% 8.422 1 Sjabloon:Zijbalk_getalverzamelingen 7.37% 6.123 2 Sjabloon:Taalaanduiding 6.63% 5.506 1 Sjabloon:Zijbalk_generiek --> <!-- Saved in parser cache with key nlwiki:pcache:7653:|#|:idhash:canonical and timestamp 20241126060144 and revision id 67818937. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Overgenomen van "<a dir="ltr" href="https://nl.wikipedia.org/w/index.php?title=Complex_getal&oldid=67818937">https://nl.wikipedia.org/w/index.php?title=Complex_getal&oldid=67818937</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Categorie:Alles" title="Categorie:Alles">Categorieën</a>: <ul><li><a href="/wiki/Categorie:Complex_getal" title="Categorie:Complex getal">Complex getal</a></li><li><a href="/wiki/Categorie:Complexe_analyse" title="Categorie:Complexe analyse">Complexe analyse</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Deze pagina is voor het laatst bewerkt op 14 jul 2024 om 12:53.</li> <li id="footer-info-copyright">De tekst is beschikbaar onder de licentie <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.nl">Creative Commons Naamsvermelding/Gelijk delen</a>, er kunnen aanvullende voorwaarden van toepassing zijn. Zie de <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/nl">gebruiksvoorwaarden</a> voor meer informatie.<br /> Wikipedia® is een geregistreerd handelsmerk van de <a rel="nofollow" class="external text" href="https://www.wikimediafoundation.org">Wikimedia Foundation, Inc.</a>, een organisatie zonder winstoogmerk.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacybeleid</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia">Over Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Algemeen_voorbehoud">Disclaimers</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Gedragscode</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Ontwikkelaars</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/nl.wikipedia.org">Statistieken</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookieverklaring</a></li> <li id="footer-places-mobileview"><a href="//nl.m.wikipedia.org/w/index.php?title=Complex_getal&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobiele weergave</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6b8d669998-znm9s","wgBackendResponseTime":189,"wgPageParseReport":{"limitreport":{"cputime":"0.294","walltime":"0.464","ppvisitednodes":{"value":2468,"limit":1000000},"postexpandincludesize":{"value":13564,"limit":2097152},"templateargumentsize":{"value":4557,"limit":2097152},"expansiondepth":{"value":10,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":15162,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 83.063 1 -total"," 35.48% 29.468 1 Sjabloon:Navigatie_bijzondere_getallen"," 32.06% 26.630 1 Sjabloon:Navigatie"," 21.97% 18.249 1 Sjabloon:Appendix"," 19.31% 16.037 1 Sjabloon:References"," 14.84% 12.325 1 Sjabloon:Navigatie/Tabel"," 11.82% 9.819 3 Sjabloon:En"," 10.14% 8.422 1 Sjabloon:Zijbalk_getalverzamelingen"," 7.37% 6.123 2 Sjabloon:Taalaanduiding"," 6.63% 5.506 1 Sjabloon:Zijbalk_generiek"]},"scribunto":{"limitreport-timeusage":{"value":"0.002","limit":"10.000"},"limitreport-memusage":{"value":586337,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-68db4b6789-fq69m","timestamp":"20241126060144","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Complex getal","url":"https:\/\/nl.wikipedia.org\/wiki\/Complex_getal","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11567","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11567","author":{"@type":"Organization","name":"Bijdragers aan Wikimedia-projecten"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-01-23T16:12:40Z","dateModified":"2024-07-14T11:53:05Z"}</script> </body> </html>