CINXE.COM

quotient space in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> quotient space in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> quotient space </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/2514/#Item_2" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Quotient spaces</title></head> <body> <blockquote> <p>This entry is about the concept in topology. For <em><a class="existingWikiWord" href="/nlab/show/quotient+vector+spaces">quotient vector spaces</a></em> in linear algebras see there.</p> </blockquote> <hr /> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="topology">Topology</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/topology">topology</a></strong> (<a class="existingWikiWord" href="/nlab/show/point-set+topology">point-set topology</a>, <a class="existingWikiWord" href="/nlab/show/point-free+topology">point-free topology</a>)</p> <p>see also <em><a class="existingWikiWord" href="/nlab/show/differential+topology">differential topology</a></em>, <em><a class="existingWikiWord" href="/nlab/show/algebraic+topology">algebraic topology</a></em>, <em><a class="existingWikiWord" href="/nlab/show/functional+analysis">functional analysis</a></em> and <em><a class="existingWikiWord" href="/nlab/show/topological+homotopy+theory">topological</a> <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a></em></p> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Topology">Introduction</a></p> <p><strong>Basic concepts</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/open+subset">open subset</a>, <a class="existingWikiWord" href="/nlab/show/closed+subset">closed subset</a>, <a class="existingWikiWord" href="/nlab/show/neighbourhood">neighbourhood</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>, <a class="existingWikiWord" href="/nlab/show/locale">locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/base+for+the+topology">base for the topology</a>, <a class="existingWikiWord" href="/nlab/show/neighbourhood+base">neighbourhood base</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/finer+topology">finer/coarser topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+closure">closure</a>, <a class="existingWikiWord" href="/nlab/show/topological+interior">interior</a>, <a class="existingWikiWord" href="/nlab/show/topological+boundary">boundary</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/separation+axiom">separation</a>, <a class="existingWikiWord" href="/nlab/show/sober+topological+space">sobriety</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/continuous+function">continuous function</a>, <a class="existingWikiWord" href="/nlab/show/homeomorphism">homeomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/uniformly+continuous+function">uniformly continuous function</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+embedding">embedding</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/open+map">open map</a>, <a class="existingWikiWord" href="/nlab/show/closed+map">closed map</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequence">sequence</a>, <a class="existingWikiWord" href="/nlab/show/net">net</a>, <a class="existingWikiWord" href="/nlab/show/sub-net">sub-net</a>, <a class="existingWikiWord" href="/nlab/show/filter">filter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/convergence">convergence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a><a class="existingWikiWord" href="/nlab/show/Top">Top</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/convenient+category+of+topological+spaces">convenient category of topological spaces</a></li> </ul> </li> </ul> <p><strong><a href="Top#UniversalConstructions">Universal constructions</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/initial+topology">initial topology</a>, <a class="existingWikiWord" href="/nlab/show/final+topology">final topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/subspace">subspace</a>, <a class="existingWikiWord" href="/nlab/show/quotient+space">quotient space</a>,</p> </li> <li> <p>fiber space, <a class="existingWikiWord" href="/nlab/show/space+attachment">space attachment</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/product+space">product space</a>, <a class="existingWikiWord" href="/nlab/show/disjoint+union+space">disjoint union space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cylinder">mapping cylinder</a>, <a class="existingWikiWord" href="/nlab/show/mapping+cocylinder">mapping cocylinder</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cone">mapping cone</a>, <a class="existingWikiWord" href="/nlab/show/mapping+cocone">mapping cocone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+telescope">mapping telescope</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/colimits+of+normal+spaces">colimits of normal spaces</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/stuff%2C+structure%2C+property">Extra stuff, structure, properties</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/nice+topological+space">nice topological space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/metric+space">metric space</a>, <a class="existingWikiWord" href="/nlab/show/metric+topology">metric topology</a>, <a class="existingWikiWord" href="/nlab/show/metrisable+space">metrisable space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kolmogorov+space">Kolmogorov space</a>, <a class="existingWikiWord" href="/nlab/show/Hausdorff+space">Hausdorff space</a>, <a class="existingWikiWord" href="/nlab/show/regular+space">regular space</a>, <a class="existingWikiWord" href="/nlab/show/normal+space">normal space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sober+space">sober space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+space">compact space</a>, <a class="existingWikiWord" href="/nlab/show/proper+map">proper map</a></p> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+topological+space">sequentially compact</a>, <a class="existingWikiWord" href="/nlab/show/countably+compact+topological+space">countably compact</a>, <a class="existingWikiWord" href="/nlab/show/locally+compact+topological+space">locally compact</a>, <a class="existingWikiWord" href="/nlab/show/sigma-compact+topological+space">sigma-compact</a>, <a class="existingWikiWord" href="/nlab/show/paracompact+space">paracompact</a>, <a class="existingWikiWord" href="/nlab/show/countably+paracompact+topological+space">countably paracompact</a>, <a class="existingWikiWord" href="/nlab/show/strongly+compact+topological+space">strongly compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compactly+generated+space">compactly generated space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/second-countable+space">second-countable space</a>, <a class="existingWikiWord" href="/nlab/show/first-countable+space">first-countable space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/contractible+space">contractible space</a>, <a class="existingWikiWord" href="/nlab/show/locally+contractible+space">locally contractible space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connected+space">connected space</a>, <a class="existingWikiWord" href="/nlab/show/locally+connected+space">locally connected space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/simply-connected+space">simply-connected space</a>, <a class="existingWikiWord" href="/nlab/show/locally+simply-connected+space">locally simply-connected space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cell+complex">cell complex</a>, <a class="existingWikiWord" href="/nlab/show/CW-complex">CW-complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pointed+topological+space">pointed space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+vector+space">topological vector space</a>, <a class="existingWikiWord" href="/nlab/show/Banach+space">Banach space</a>, <a class="existingWikiWord" href="/nlab/show/Hilbert+space">Hilbert space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+vector+bundle">topological vector bundle</a>, <a class="existingWikiWord" href="/nlab/show/topological+K-theory">topological K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+manifold">topological manifold</a></p> </li> </ul> <p><strong>Examples</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/empty+space">empty space</a>, <a class="existingWikiWord" href="/nlab/show/point+space">point space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/discrete+space">discrete space</a>, <a class="existingWikiWord" href="/nlab/show/codiscrete+space">codiscrete space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Sierpinski+space">Sierpinski space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/order+topology">order topology</a>, <a class="existingWikiWord" href="/nlab/show/specialization+topology">specialization topology</a>, <a class="existingWikiWord" href="/nlab/show/Scott+topology">Scott topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Euclidean+space">Euclidean space</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/real+line">real line</a>, <a class="existingWikiWord" href="/nlab/show/plane">plane</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cylinder">cylinder</a>, <a class="existingWikiWord" href="/nlab/show/cone">cone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sphere">sphere</a>, <a class="existingWikiWord" href="/nlab/show/ball">ball</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle">circle</a>, <a class="existingWikiWord" href="/nlab/show/torus">torus</a>, <a class="existingWikiWord" href="/nlab/show/annulus">annulus</a>, <a class="existingWikiWord" href="/nlab/show/Moebius+strip">Moebius strip</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/polytope">polytope</a>, <a class="existingWikiWord" href="/nlab/show/polyhedron">polyhedron</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/projective+space">projective space</a> (<a class="existingWikiWord" href="/nlab/show/real+projective+space">real</a>, <a class="existingWikiWord" href="/nlab/show/complex+projective+space">complex</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classifying+space">classifying space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/configuration+space+%28mathematics%29">configuration space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/path">path</a>, <a class="existingWikiWord" href="/nlab/show/loop">loop</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+spaces">mapping spaces</a>: <a class="existingWikiWord" href="/nlab/show/compact-open+topology">compact-open topology</a>, <a class="existingWikiWord" href="/nlab/show/topology+of+uniform+convergence">topology of uniform convergence</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/loop+space">loop space</a>, <a class="existingWikiWord" href="/nlab/show/path+space">path space</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Zariski+topology">Zariski topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cantor+space">Cantor space</a>, <a class="existingWikiWord" href="/nlab/show/Mandelbrot+space">Mandelbrot space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Peano+curve">Peano curve</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/line+with+two+origins">line with two origins</a>, <a class="existingWikiWord" href="/nlab/show/long+line">long line</a>, <a class="existingWikiWord" href="/nlab/show/Sorgenfrey+line">Sorgenfrey line</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K-topology">K-topology</a>, <a class="existingWikiWord" href="/nlab/show/Dowker+space">Dowker space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Warsaw+circle">Warsaw circle</a>, <a class="existingWikiWord" href="/nlab/show/Hawaiian+earring+space">Hawaiian earring space</a></p> </li> </ul> <p><strong>Basic statements</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hausdorff+spaces+are+sober">Hausdorff spaces are sober</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/schemes+are+sober">schemes are sober</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/continuous+images+of+compact+spaces+are+compact">continuous images of compact spaces are compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+subspaces+of+compact+Hausdorff+spaces+are+equivalently+compact+subspaces">closed subspaces of compact Hausdorff spaces are equivalently compact subspaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/open+subspaces+of+compact+Hausdorff+spaces+are+locally+compact">open subspaces of compact Hausdorff spaces are locally compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quotient+projections+out+of+compact+Hausdorff+spaces+are+closed+precisely+if+the+codomain+is+Hausdorff">quotient projections out of compact Hausdorff spaces are closed precisely if the codomain is Hausdorff</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+spaces+equivalently+have+converging+subnet+of+every+net">compact spaces equivalently have converging subnet of every net</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lebesgue+number+lemma">Lebesgue number lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+metric+spaces+are+equivalently+compact+metric+spaces">sequentially compact metric spaces are equivalently compact metric spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+spaces+equivalently+have+converging+subnet+of+every+net">compact spaces equivalently have converging subnet of every net</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+metric+spaces+are+totally+bounded">sequentially compact metric spaces are totally bounded</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/continuous+metric+space+valued+function+on+compact+metric+space+is+uniformly+continuous">continuous metric space valued function on compact metric space is uniformly continuous</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/paracompact+Hausdorff+spaces+are+normal">paracompact Hausdorff spaces are normal</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/paracompact+Hausdorff+spaces+equivalently+admit+subordinate+partitions+of+unity">paracompact Hausdorff spaces equivalently admit subordinate partitions of unity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+injections+are+embeddings">closed injections are embeddings</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proper+maps+to+locally+compact+spaces+are+closed">proper maps to locally compact spaces are closed</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/injective+proper+maps+to+locally+compact+spaces+are+equivalently+the+closed+embeddings">injective proper maps to locally compact spaces are equivalently the closed embeddings</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+compact+and+sigma-compact+spaces+are+paracompact">locally compact and sigma-compact spaces are paracompact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+compact+and+second-countable+spaces+are+sigma-compact">locally compact and second-countable spaces are sigma-compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/second-countable+regular+spaces+are+paracompact">second-countable regular spaces are paracompact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/CW-complexes+are+paracompact+Hausdorff+spaces">CW-complexes are paracompact Hausdorff spaces</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Urysohn%27s+lemma">Urysohn's lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tietze+extension+theorem">Tietze extension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tychonoff+theorem">Tychonoff theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tube+lemma">tube lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Michael%27s+theorem">Michael's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brouwer%27s+fixed+point+theorem">Brouwer's fixed point theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+invariance+of+dimension">topological invariance of dimension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Jordan+curve+theorem">Jordan curve theorem</a></p> </li> </ul> <p><strong>Analysis Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Heine-Borel+theorem">Heine-Borel theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/intermediate+value+theorem">intermediate value theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/extreme+value+theorem">extreme value theorem</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/topological+homotopy+theory">topological homotopy theory</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/left+homotopy">left homotopy</a>, <a class="existingWikiWord" href="/nlab/show/right+homotopy">right homotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+equivalence">homotopy equivalence</a>, <a class="existingWikiWord" href="/nlab/show/deformation+retract">deformation retract</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+group">fundamental group</a>, <a class="existingWikiWord" href="/nlab/show/covering+space">covering space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+theorem+of+covering+spaces">fundamental theorem of covering spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weak+homotopy+equivalence">weak homotopy equivalence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitehead%27s+theorem">Whitehead's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freudenthal+suspension+theorem">Freudenthal suspension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nerve+theorem">nerve theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+extension+property">homotopy extension property</a>, <a class="existingWikiWord" href="/nlab/show/Hurewicz+cofibration">Hurewicz cofibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+cofiber+sequence">cofiber sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Str%C3%B8m+model+category">Strøm model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classical+model+structure+on+topological+spaces">classical model structure on topological spaces</a></p> </li> </ul> </div></div> <h4 id="geometry">Geometry</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/higher+geometry">higher geometry</a></strong> / <strong><a class="existingWikiWord" href="/nlab/show/derived+geometry">derived geometry</a></strong></p> <p><strong>Ingredients</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+topos+theory">higher topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></p> </li> </ul> <p><strong>Concepts</strong></p> <ul> <li> <p><strong>geometric <a class="existingWikiWord" href="/nlab/show/big+and+little+toposes">little</a> <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a>es</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/structured+%28%E2%88%9E%2C1%29-topos">structured (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometry+%28for+structured+%28%E2%88%9E%2C1%29-toposes%29">geometry (for structured (∞,1)-toposes)</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+scheme">generalized scheme</a></p> </li> </ul> </li> <li> <p><strong>geometric <a class="existingWikiWord" href="/nlab/show/big+and+little+toposes">big</a> <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a>es</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cohesive+%28%E2%88%9E%2C1%29-topos">cohesive (∞,1)-topos</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/function+algebras+on+%E2%88%9E-stacks">function algebras on ∞-stacks</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/geometric+%E2%88%9E-stacks">geometric ∞-stacks</a></li> </ul> </li> </ul> <p><strong>Constructions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/loop+space+object">loop space object</a>, <a class="existingWikiWord" href="/nlab/show/free+loop+space+object">free loop space object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+in+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a> / <a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+of+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">of a locally ∞-connected (∞,1)-topos</a></p> </li> </ul> <p><strong>Examples</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+algebraic+geometry">derived algebraic geometry</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%C3%A9tale+%28%E2%88%9E%2C1%29-site">étale (∞,1)-site</a>, <a class="existingWikiWord" href="/nlab/show/Hochschild+cohomology">Hochschild cohomology</a> of <a class="existingWikiWord" href="/nlab/show/dg-algebra">dg-algebra</a>s</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dg-geometry">dg-geometry</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/dg-scheme">dg-scheme</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/schematic+homotopy+type">schematic homotopy type</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+noncommutative+geometry">derived noncommutative geometry</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/noncommutative+geometry">noncommutative geometry</a></li> </ul> </li> <li> <p>derived smooth geometry</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+geometry">differential geometry</a>, <a class="existingWikiWord" href="/nlab/show/differential+topology">differential topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+smooth+manifold">derived smooth manifold</a>, <a class="existingWikiWord" href="/nlab/show/dg-manifold">dg-manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-groupoid">smooth ∞-groupoid</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+algebroid">∞-Lie algebroid</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+symplectic+geometry">higher symplectic geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+Klein+geometry">higher Klein geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+Cartan+geometry">higher Cartan geometry</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hochschild+cohomology">Jones' theorem</a>, <a class="existingWikiWord" href="/nlab/show/Hochschild+cohomology">Deligne-Kontsevich conjecture</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality+for+geometric+stacks">Tannaka duality for geometric stacks</a></p> </li> </ul> </div></div> </div> </div> <h1 id="quotient_spaces">Quotient spaces</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definitions'>Definitions</a></li> <ul> <li><a href='#in_'>In <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Top</mi></mrow><annotation encoding="application/x-tex">Top</annotation></semantics></math></a></li> <li><a href='#in__2'>In <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Loc</mi></mrow><annotation encoding="application/x-tex">Loc</annotation></semantics></math></a></li> </ul> <li><a href='#examples'>Examples</a></li> <li><a href='#properties'>Properties</a></li> <li><a href='#related_concepts'>Related concepts</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>A <em>quotient space</em> is a <a class="existingWikiWord" href="/nlab/show/quotient+object">quotient object</a> in some <a class="existingWikiWord" href="/nlab/show/category">category</a> of <a class="existingWikiWord" href="/nlab/show/spaces">spaces</a>, such as <a class="existingWikiWord" href="/nlab/show/Top">Top</a> (of <a class="existingWikiWord" href="/nlab/show/topological+spaces">topological spaces</a>), or <a class="existingWikiWord" href="/nlab/show/Loc">Loc</a> (of <a class="existingWikiWord" href="/nlab/show/locales">locales</a>), etc.</p> <p>Often the construction is used for the quotient <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">/</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">X/A</annotation></semantics></math> by a subspace <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>⊂</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">A \subset X</annotation></semantics></math> (example <a class="maruku-ref" href="#QuotientBySubspace"></a> below).</p> <p>Beware that <a class="existingWikiWord" href="/nlab/show/quotient+objects">quotient objects</a> in the <a class="existingWikiWord" href="/nlab/show/category">category</a> <a class="existingWikiWord" href="/nlab/show/Vect">Vect</a> of <a class="existingWikiWord" href="/nlab/show/vector+spaces">vector spaces</a> also traditionally called ‘quotient space’, but they are really just a special case of <a class="existingWikiWord" href="/nlab/show/quotient+modules">quotient modules</a>, very different from the other kinds of quotient space. However in <em><a class="existingWikiWord" href="/nlab/show/topological+vector+spaces">topological vector spaces</a></em> both concepts come together.</p> <h2 id="definitions">Definitions</h2> <h3 id="in_">In <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Top</mi></mrow><annotation encoding="application/x-tex">Top</annotation></semantics></math></h3> <div class="num_defn" id="QuotientTopologicalSpace"> <h6 id="definition">Definition</h6> <p><strong>(quotient topological space)</strong></p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>τ</mi> <mi>X</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(X,\tau_X)</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a> and let</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>R</mi> <mo>∼</mo></msub><mo>⊂</mo><mi>X</mi><mo>×</mo><mi>X</mi></mrow><annotation encoding="application/x-tex"> R_\sim \subset X \times X </annotation></semantics></math></div> <p>be an <a class="existingWikiWord" href="/nlab/show/equivalence+relation">equivalence relation</a> on its underlying set. Then the <em>quotient topological space</em> has</p> <ul> <li>as underlying set the <a class="existingWikiWord" href="/nlab/show/quotient+set">quotient set</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">/</mo><mo>∼</mo></mrow><annotation encoding="application/x-tex">X/\sim</annotation></semantics></math>, hence the set of <a class="existingWikiWord" href="/nlab/show/equivalence+classes">equivalence classes</a>,</li> </ul> <p>and</p> <ul> <li> <p>a subset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi><mo>⊂</mo><mi>X</mi><mo stretchy="false">/</mo><mo>∼</mo></mrow><annotation encoding="application/x-tex">O \subset X/\sim</annotation></semantics></math> is declared to be an <a class="existingWikiWord" href="/nlab/show/open+subset">open subset</a> precisely if its <a class="existingWikiWord" href="/nlab/show/preimage">preimage</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>π</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>O</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi^{-1}(O)</annotation></semantics></math> under the canonical <a class="existingWikiWord" href="/nlab/show/projection+map">projection map</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>π</mi><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mi>X</mi><mo>→</mo><mi>X</mi><mo stretchy="false">/</mo><mo>∼</mo></mrow><annotation encoding="application/x-tex"> \pi \;\colon\; X \to X/\sim </annotation></semantics></math></div> <p>is open in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p> </li> </ul> <p>To see that this indeed does define a topology on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">/</mo><mo>∼</mo></mrow><annotation encoding="application/x-tex">X/\sim</annotation></semantics></math> it is sufficient to observe that taking pre-images commutes with taking unions and with taking intersections.</p> <p>Often one considers this with input datum not the equivalence relation, but any <a class="existingWikiWord" href="/nlab/show/surjection">surjection</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>π</mi><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mi>X</mi><mo>⟶</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex"> \pi \;\colon\; X \longrightarrow Y </annotation></semantics></math></div> <p>of sets. Of course this identifies <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi><mo>=</mo><mi>X</mi><mo stretchy="false">/</mo><mo>∼</mo></mrow><annotation encoding="application/x-tex">Y = X/\sim</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>∼</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>⇔</mo><mo stretchy="false">(</mo><mi>π</mi><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>π</mi><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x_1 \sim x_2) \Leftrightarrow (\pi(x_1) = \pi(x_2)) </annotation></semantics></math>. Hence the <em>quotient topology</em> on the codomain set of a function out of any topological space has as open subsets those whose pre-images are open.</p> <p>Equivalently this is the <em><a class="existingWikiWord" href="/nlab/show/final+topology">final topology</a></em> or <em><a class="existingWikiWord" href="/nlab/show/strong+topology">strong topology</a></em> induced on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math> by the function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">X \to Y</annotation></semantics></math>, see at <em><a href="Top#UniversalConstructions">Top – Universal constructions</a></em>.</p> </div> <p>For this construction the function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">X \to Y</annotation></semantics></math> need not even be surjective, and we could generalize to a <a class="existingWikiWord" href="/nlab/show/sink">sink</a> instead of a single map; in such a case one generally says <em><a class="existingWikiWord" href="/nlab/show/final+topology">final topology</a></em> or <em><a class="existingWikiWord" href="/nlab/show/strong+topology">strong topology</a></em>. See also at <em><a class="existingWikiWord" href="/nlab/show/topological+concrete+category">topological concrete category</a></em>.</p> <h3 id="in__2">In <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Loc</mi></mrow><annotation encoding="application/x-tex">Loc</annotation></semantics></math></h3> <p>A quotient space in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Loc</mi></mrow><annotation encoding="application/x-tex">Loc</annotation></semantics></math> is given by a <a class="existingWikiWord" href="/nlab/show/regular+subobject">regular subobject</a> in <a class="existingWikiWord" href="/nlab/show/Frm">Frm</a>.</p> <p>(More details needed.)</p> <h2 id="examples">Examples</h2> <div class="num_example" id="CircleAsQuotientOfClosedIntervalIdentifyingEndpoints"> <h6 id="example">Example</h6> <p>The <a class="existingWikiWord" href="/nlab/show/trigonometric+function">trigonometric function</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>cos</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>,</mo><mi>sin</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo stretchy="false">]</mo><mo>⟶</mo><msup><mi>S</mi> <mn>1</mn></msup><mo>⊂</mo><msup><mi>ℝ</mi> <mn>2</mn></msup></mrow><annotation encoding="application/x-tex"> (cos(-),sin(-)) \;\colon\; [0,2\pi] \longrightarrow S^1 \subset \mathbb{R}^2 </annotation></semantics></math></div> <p>from the <a class="existingWikiWord" href="/nlab/show/closed+interval">closed interval</a> with its <a class="existingWikiWord" href="/nlab/show/Euclidean+space">Euclidean</a> <a class="existingWikiWord" href="/nlab/show/metric+topology">metric topology</a> to the unit <a class="existingWikiWord" href="/nlab/show/circle">circle</a> equipped with the <a class="existingWikiWord" href="/nlab/show/subspace+topology">subspace topology</a> of the <a class="existingWikiWord" href="/nlab/show/Euclidean+space">Euclidean</a> <a class="existingWikiWord" href="/nlab/show/plane">plane</a></p> <p>descends to a <a class="existingWikiWord" href="/nlab/show/homeomorphism">homeomorphism</a> on the quotient space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo stretchy="false">]</mo><mo stretchy="false">/</mo><mo stretchy="false">(</mo><mn>0</mn><mo>∼</mo><mn>2</mn><mi>π</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">[0,2 \pi]/(0 \sim 2 \pi)</annotation></semantics></math> by the equivalence relation which identifies the two endpoints of the open interval.</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo stretchy="false">]</mo></mtd> <mtd><mover><mo>⟶</mo><mrow><mo stretchy="false">(</mo><mi>cos</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>,</mo><mi>sin</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><msup><mi>S</mi> <mn>1</mn></msup></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><msub><mo>↗</mo> <mpadded width="0"><mo>≃</mo></mpadded></msub></mtd></mtr> <mtr><mtd><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo stretchy="false">]</mo><mo stretchy="false">/</mo><mo>≃</mo></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ [0,2\pi] &amp;\overset{(cos(-),sin(-))}{\longrightarrow}&amp; S^1 \\ \downarrow &amp; \nearrow_{\mathrlap{\simeq}} \\ [0,2\pi]/\simeq } \,. </annotation></semantics></math></div></div> <div class="proof"> <h6 id="proof">Proof</h6> <p>By the <a class="existingWikiWord" href="/nlab/show/universal+property">universal property</a> of the quotient it follows that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo stretchy="false">]</mo><mo stretchy="false">/</mo><mo stretchy="false">(</mo><mn>0</mn><mo>∼</mo><mn>2</mn><mi>π</mi><mo stretchy="false">)</mo><mo>→</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding="application/x-tex">[0,2\pi]/(0 \sim 2\pi) \to S^1</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/continuous+function">continuous function</a>. Moreover, it is a <a class="existingWikiWord" href="/nlab/show/bijection">bijection</a> on the underlying sets by the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><mi>π</mi></mrow><annotation encoding="application/x-tex">2\pi</annotation></semantics></math>-periodicity of sine and coside. Hence it is sufficient to see that it is an <a class="existingWikiWord" href="/nlab/show/open+map">open map</a> (by <a href="homeomorphism#HomeoContinuousOpenBijection">this prop.</a>).</p> <p>Since the open subsets of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[0,2\pi]</annotation></semantics></math> are unions of</p> <ol> <li> <p>the <a class="existingWikiWord" href="/nlab/show/open+intervals">open intervals</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a,b)</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>&lt;</mo><mi>a</mi><mo>&lt;</mo><mi>b</mi><mo>&lt;</mo><mn>2</mn><mi>π</mi></mrow><annotation encoding="application/x-tex">0 \lt a \lt b \lt 2\pi</annotation></semantics></math>,</p> </li> <li> <p>the <a class="existingWikiWord" href="/nlab/show/half-open+intervals">half-open intervals</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">[0,b)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mn>2</mn><mi>π</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">(a,2\pi]</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>&lt;</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>&lt;</mo><mn>2</mn><mi>π</mi></mrow><annotation encoding="application/x-tex">0 \lt a,b \lt 2\pi</annotation></semantics></math></p> </li> </ol> <p>and since the projection map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>π</mi><mo lspace="verythinmathspace">:</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo stretchy="false">]</mo><mo>→</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo stretchy="false">]</mo><mo stretchy="false">/</mo><mo stretchy="false">(</mo><mn>0</mn><mo>∼</mo><mn>2</mn><mi>π</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi \colon [0,2\pi] \to [0,2\pi]/(0 \sim 2\pi)</annotation></semantics></math> is injective on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(0, 2\pi)</annotation></semantics></math>, the open subsets of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>π</mi><mo stretchy="false">]</mo><mo stretchy="false">/</mo><mo stretchy="false">(</mo><mn>0</mn><mo>∼</mo><mn>2</mn><mi>π</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">[0,2\pi]/(0 \sim 2\pi)</annotation></semantics></math> are unions of</p> <ol> <li> <p>the <a class="existingWikiWord" href="/nlab/show/open+intervals">open intervals</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a,b)</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>&lt;</mo><mi>a</mi><mo>&lt;</mo><mi>b</mi><mo>&lt;</mo><mn>2</mn><mi>π</mi></mrow><annotation encoding="application/x-tex">0 \lt a \lt b \lt 2\pi</annotation></semantics></math>,</p> </li> <li> <p>the glued <a class="existingWikiWord" href="/nlab/show/half-open+intervals">half-open intervals</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mn>2</mn><mi>π</mi><mo stretchy="false">]</mo><mo stretchy="false">/</mo><mo stretchy="false">(</mo><mn>0</mn><mo>∼</mo><mn>2</mn><mi>π</mi><mo stretchy="false">)</mo><mo>∪</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mo stretchy="false">(</mo><mn>0</mn><mo>∼</mo><mn>2</mn><mi>π</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(b,2\pi]/(0\sim 2\pi) \cup [0,a)/(0 \sim 2\pi)</annotation></semantics></math> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>&lt;</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>&lt;</mo><mn>2</mn><mi>π</mi></mrow><annotation encoding="application/x-tex">0 \lt a,b \lt 2\pi</annotation></semantics></math>.</p> </li> </ol> <p>By the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><mi>π</mi></mrow><annotation encoding="application/x-tex">2\pi</annotation></semantics></math>-periodicity of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>cos</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>,</mo><mi>sin</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(cos(-),sin(-))</annotation></semantics></math>, the image of the latter under <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>cos</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>,</mo><mi>sin</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(cos(-),sin(-))</annotation></semantics></math> is the same as the image of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mn>2</mn><mi>π</mi><mo>+</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(b, 2\pi + a)</annotation></semantics></math>. Since the function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>cos</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>,</mo><mi>sin</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo lspace="verythinmathspace">:</mo><mi>ℝ</mi><mo>→</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding="application/x-tex">(cos(-),sin(-)) \colon \mathbb{R} \to S^1</annotation></semantics></math> is clearly an open map, it follows that the images of these open subsets in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding="application/x-tex">S^1</annotation></semantics></math> are open.</p> </div> <div class="num_example" id="QuotientBySubspace"> <h6 id="example_2">Example</h6> <p><strong>(quotient by a subspace)</strong></p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>⊂</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">A \subset X</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/inhabited+set">non-empty</a> <a class="existingWikiWord" href="/nlab/show/subset">subset</a>. Consider the <a class="existingWikiWord" href="/nlab/show/equivalence+relation">equivalence relation</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> which identifies all points in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> with each other. The resulting quotient space (def. <a class="maruku-ref" href="#QuotientTopologicalSpace"></a>) is often simply denoted <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">/</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">X/A</annotation></semantics></math>.</p> <p>Notice that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">/</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">X/A</annotation></semantics></math> is canonically a <a class="existingWikiWord" href="/nlab/show/pointed+topological+space">pointed topological space</a>, with base point the <a class="existingWikiWord" href="/nlab/show/equivalence+class">equivalence class</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo stretchy="false">/</mo><mi>A</mi><mo>⊂</mo><mi>X</mi><mo stretchy="false">/</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">A/A \subset X/A</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>.</p> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>=</mo><mi>∅</mi></mrow><annotation encoding="application/x-tex">A = \emptyset</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/empty+space">empty space</a>, then one defines</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">/</mo><mi>∅</mi><mo>≔</mo><msub><mi>X</mi> <mo>+</mo></msub><mo>≔</mo><mi>X</mi><mo>⊔</mo><mo>*</mo></mrow><annotation encoding="application/x-tex"> X/\emptyset \coloneqq X_+ \coloneqq X \sqcup \ast </annotation></semantics></math></div> <p>to be the <a class="existingWikiWord" href="/nlab/show/disjoint+union+space">disjoint union space</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> with the <a class="existingWikiWord" href="/nlab/show/point+space">point space</a>. This is no longer a quotient space, but both constructions are unified by the <em><a class="existingWikiWord" href="/nlab/show/pushout">pushout</a></em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi><mo lspace="verythinmathspace">:</mo><mi>A</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">i \colon A \to X</annotation></semantics></math> along the map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>→</mo><mo>*</mo></mrow><annotation encoding="application/x-tex">A \to \ast</annotation></semantics></math>, equivalently the <a class="existingWikiWord" href="/nlab/show/cokernel">cokernel</a> of the inclusion:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>A</mi></mtd> <mtd><mover><mo>↪</mo><mi>i</mi></mover></mtd> <mtd><mi>X</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><mo stretchy="false">(</mo><mi>po</mi><mo stretchy="false">)</mo></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mo>*</mo></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi>X</mi><mo stretchy="false">/</mo><mi>A</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ A &amp;\overset{i}{\hookrightarrow}&amp; X \\ \downarrow &amp;(po)&amp; \downarrow \\ \ast &amp;\longrightarrow&amp; X/A } \,. </annotation></semantics></math></div> <p>This kind of quotient space plays a central role in the discussion of <a class="existingWikiWord" href="/nlab/show/long+exact+sequences+in+cohomology">long exact sequences in cohomology</a>, see at <em><a class="existingWikiWord" href="/nlab/show/generalized+%28Eilenberg-Steenrod%29+cohomology">generalized (Eilenberg-Steenrod) cohomology</a></em>.</p> </div> <div class="num_example" id="QuotientOfRealNumbersByTranslationByRationalNumbers"> <h6 id="example_3">Example</h6> <p>Consider the <a class="existingWikiWord" href="/nlab/show/real+numbers">real numbers</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math> equipped with their <a class="existingWikiWord" href="/nlab/show/Euclidean+space">Euclidean</a> <a class="existingWikiWord" href="/nlab/show/metric+topology">metric topology</a>. Consider on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/equivalence+relation">equivalence relation</a> which identifies all real numbers that differ by a <a class="existingWikiWord" href="/nlab/show/rational+number">rational number</a>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><msub><mo>∼</mo> <mi>ℚ</mi></msub><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>⇔</mo><mrow><mo>(</mo><msub><mi>x</mi> <mn>2</mn></msub><mo>−</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>∈</mo><mi>ℚ</mi><mo>⊂</mo><mi>ℚ</mi><mo>)</mo></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> (x_1 \sim_{\mathbb{Q}} x_2) \Leftrightarrow \left( x_2 - x_1 \in \mathbb{Q} \subset \mathbb{Q} \right) \,. </annotation></semantics></math></div> <p>Then the quotient space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℝ</mi><mo stretchy="false">/</mo><msub><mo>∼</mo> <mi>ℚ</mi></msub></mrow><annotation encoding="application/x-tex">\mathbb{R}/\sim_{\mathbb{Q}}</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/codiscrete+topological+space">codiscrete topological space</a>.</p> </div> <div class="proof"> <h6 id="proof_2">Proof</h6> <p>We need to check that the only open subsets of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">/</mo><msub><mo>∼</mo> <mi>ℚ</mi></msub></mrow><annotation encoding="application/x-tex">X/\sim_{\mathbb{Q}}</annotation></semantics></math> are the empty set and the entire set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo stretchy="false">/</mo><msub><mo>∼</mo> <mi>ℚ</mi></msub></mrow><annotation encoding="application/x-tex">X/\sim_{\mathbb{Q}}</annotation></semantics></math>.</p> <p>So let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>⊂</mo><mi>ℝ</mi><mo stretchy="false">/</mo><mo>∼</mo></mrow><annotation encoding="application/x-tex">U \subset \mathbb{R}/\sim</annotation></semantics></math> be a non-empty subset.</p> <p>Write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>π</mi><mo lspace="verythinmathspace">:</mo><mi>ℝ</mi><mo>→</mo><mi>ℝ</mi><mo stretchy="false">/</mo><msub><mo>∼</mo> <mi>ℚ</mi></msub></mrow><annotation encoding="application/x-tex">\pi \colon \mathbb{R} \to \mathbb{R}/\sim_{\mathbb{Q}}</annotation></semantics></math> for the quotient projection. By definition <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math> is open precisely if its pre-image <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>π</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">)</mo><mo>⊂</mo><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">\pi^{-1}(U) \subset \mathbb{R}</annotation></semantics></math> is open. By the Euclidean topology, this is the case precissely if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>π</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi^{-1}(U)</annotation></semantics></math> is a union of <a class="existingWikiWord" href="/nlab/show/open+intervals">open intervals</a>. Since by assumption <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>π</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi^{-1}(U)</annotation></semantics></math> is non-empty, it contains at least one open interval <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>⊂</mo><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">(a,b) \subset \mathbb{R}</annotation></semantics></math>, with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>&lt;</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a \lt b</annotation></semantics></math>. By the density of the rational numbers, there exists a rational number <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi><mo>∈</mo><mi>ℚ</mi><mo>⊂</mo><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">q \in \mathbb{Q} \subset \mathbb{R}</annotation></semantics></math> with</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mi>b</mi><mo>−</mo><mi>a</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> 0 \lt q \lt b - a \,. </annotation></semantics></math></div> <p>By definition of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>∼</mo> <mi>ℚ</mi></msub></mrow><annotation encoding="application/x-tex">\sim_{\mathbb{Q}}</annotation></semantics></math> we have for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℤ</mi></mrow><annotation encoding="application/x-tex">n \in \mathbb{Z}</annotation></semantics></math> that all elements in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>n</mi><mi>q</mi><mo>,</mo><mi>b</mi><mo>+</mo><mi>n</mi><mi>q</mi><mo stretchy="false">)</mo><mo>⊂</mo><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">(a + n q, b + n q) \subset \mathbb{R}</annotation></semantics></math> are <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>∼</mo> <mi>ℚ</mi></msub></mrow><annotation encoding="application/x-tex">\sim_{\mathbb{Q}}</annotation></semantics></math>-equivalent to elements in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a,b)</annotation></semantics></math>, hence that also <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>q</mi><mo>,</mo><mi>b</mi><mo>+</mo><mi>q</mi><mo stretchy="false">)</mo><mo>⊂</mo><msup><mi>π</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a+q,b+q) \subset \pi^{-1}(U)</annotation></semantics></math>. But the union of these open intervals is all of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><munder><mo>∪</mo><mrow><mi>n</mi><mo>∈</mo><mi>ℤ</mi></mrow></munder><mo stretchy="false">(</mo><mi>q</mi><mo>+</mo><mi>n</mi><mi>q</mi><mo>,</mo><mi>b</mi><mo>+</mo><mi>n</mi><mi>q</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mi>ℝ</mi></mrow><annotation encoding="application/x-tex"> \underset{n \in \mathbb{Z}}{\cup} (q + n q, b + n q) \;=\; \mathbb{R} </annotation></semantics></math></div> <p>and so <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>π</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">)</mo><mo>=</mo><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">\pi^{-1}(U) = \mathbb{R}</annotation></semantics></math>.</p> </div> <h2 id="properties">Properties</h2> <ol> <li> <p>Recall that a map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi><mo lspace="verythinmathspace">:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">q \colon X \to Y</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/open+map">open</a> if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">q(U)</annotation></semantics></math> is open in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math> whenever <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math> is open in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>. It is not the case that a quotient map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi><mo lspace="verythinmathspace">:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">q \colon X \to Y</annotation></semantics></math> is necessarily open. Indeed, the identification map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi><mo lspace="verythinmathspace">:</mo><mi>I</mi><mo>⊔</mo><mo stretchy="false">{</mo><mo>*</mo><mo stretchy="false">}</mo><mo>→</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding="application/x-tex">q \colon I \sqcup \{\ast\} \to S^1</annotation></semantics></math>, where the endpoints of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> are identified with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>*</mo></mrow><annotation encoding="application/x-tex">\ast</annotation></semantics></math>, takes the open point <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>*</mo></mrow><annotation encoding="application/x-tex">\ast</annotation></semantics></math> of the domain to a non-open point in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding="application/x-tex">S^1</annotation></semantics></math>.</p> </li> <li> <p>Nor is it the case that a quotient map is necessarily a closed map; the classic example is the projection map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mn>1</mn></msub><mo lspace="verythinmathspace">:</mo><msup><mi>ℝ</mi> <mn>2</mn></msup><mo>→</mo><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">\pi_1 \colon \mathbb{R}^2 \to \mathbb{R}</annotation></semantics></math>, which projects the closed locus <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mi>y</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">x y = 1</annotation></semantics></math> onto a non-closed subset of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math>. (This is a quotient map, by the next remark.)</p> </li> <li> <p>It is easy to prove that a continuous open surjection <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo lspace="verythinmathspace">:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">p \colon X \to Y</annotation></semantics></math> is a quotient map. For instance, projection maps <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>π</mi><mo lspace="verythinmathspace">:</mo><mi>X</mi><mo>×</mo><mi>Y</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">\pi \colon X \times Y \to Y</annotation></semantics></math> are quotient maps, provided that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is inhabited. Likewise, a continuous closed surjection <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">p: X \to Y</annotation></semantics></math> is a quotient map: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>p</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p^{-1}(U)</annotation></semantics></math> is open <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⇒</mo></mrow><annotation encoding="application/x-tex">\Rightarrow</annotation></semantics></math> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>p</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mo>¬</mo><mi>U</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p^{-1}(\neg U)</annotation></semantics></math> is closed <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⇒</mo></mrow><annotation encoding="application/x-tex">\Rightarrow</annotation></semantics></math> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><msup><mi>p</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mo>¬</mo><mi>U</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mo>¬</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">p(p^{-1}(\neg U)) = \neg U</annotation></semantics></math> is closed <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⇒</mo></mrow><annotation encoding="application/x-tex">\Rightarrow</annotation></semantics></math> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math> is open. For example, a continuous surjection from a compact space to a Hausdorff space is a quotient map.</p> </li> </ol> <div class="num_prop" id="DetectViaSaturatedSubsetsContinuousQuotientMap"> <h6 id="proposition">Proposition</h6> <p>A <a class="existingWikiWord" href="/nlab/show/continuous+function">continuous function</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>f</mi><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>τ</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>⟶</mo><mo stretchy="false">(</mo><mi>Y</mi><mo>,</mo><msub><mi>τ</mi> <mi>Y</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> f \;\colon\; (X, \tau_X) \longrightarrow (Y,\tau_Y) </annotation></semantics></math></div> <p>whose underlying function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><mi>X</mi><mo>⟶</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">f \colon X \longrightarrow Y</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/surjective+function">surjective</a> exhibits <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>τ</mi> <mi>Y</mi></msub></mrow><annotation encoding="application/x-tex">\tau_Y</annotation></semantics></math> as the corresponding <a class="existingWikiWord" href="/nlab/show/quotient+topological+space">quotient topology</a> precisely if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> sends open and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/saturated+subsets">saturated subsets</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> to open subsets of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math>. By <a href="saturated+subset#ComplementOfSaturatedSubsetIsSaturated">this lemma</a> this is the case precisely if it sends closed and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math>-saturated subsets to closed subsets.</p> </div> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><span class="newWikiWord">Sullivan model of finite G-quotient<a href="/nlab/new/Sullivan+model+of+finite+G-quotient">?</a></span></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/image">image</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/subspace">subspace</a>, <a class="existingWikiWord" href="/nlab/show/subframe">subframe</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quotient">quotient</a>, <a class="existingWikiWord" href="/nlab/show/quotient+stack">quotient stack</a>, <a class="existingWikiWord" href="/nlab/show/quotient+type">quotient type</a></p> </li> </ul> <div> <p><strong>examples of <a href="Top#UniversalConstructions">universal constructions of topological spaces</a>:</strong></p> <table><thead><tr><th><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_1"><semantics><mrow><mphantom><mi>AAAA</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{AAAA}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/limits">limits</a></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_2"><semantics><mrow><mphantom><mi>AAAA</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{AAAA}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/colimits">colimits</a></th></tr></thead><tbody><tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_3"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/point+space">point space</a><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_4"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_5"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/empty+space">empty space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_6"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_7"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/product+topological+space">product topological space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_8"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_9"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/disjoint+union+topological+space">disjoint union topological space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_10"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_11"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/topological+subspace">topological subspace</a> <math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_12"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_13"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/quotient+topological+space">quotient topological space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_14"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_15"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> fiber space <math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_16"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_17"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/space+attachment">space attachment</a> <math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_18"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_19"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/mapping+cocylinder">mapping cocylinder</a>, <a class="existingWikiWord" href="/nlab/show/mapping+cocone">mapping cocone</a> <math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_20"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_21"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/mapping+cylinder">mapping cylinder</a>, <a class="existingWikiWord" href="/nlab/show/mapping+cone">mapping cone</a>, <a class="existingWikiWord" href="/nlab/show/mapping+telescope">mapping telescope</a> <math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_22"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_23"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/cell+complex">cell complex</a>, <a class="existingWikiWord" href="/nlab/show/CW-complex">CW-complex</a> <math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_7ec4608812513a5e534c550385bc5d1ae5fa5eaf_24"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></td></tr> </tbody></table> </div></body></html> </div> <div class="revisedby"> <p> Last revised on October 17, 2019 at 08:38:59. See the <a href="/nlab/history/quotient+space" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/quotient+space" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/2514/#Item_2">Discuss</a><span class="backintime"><a href="/nlab/revision/quotient+space/20" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/quotient+space" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/quotient+space" accesskey="S" class="navlink" id="history" rel="nofollow">History (20 revisions)</a> <a href="/nlab/show/quotient+space/cite" style="color: black">Cite</a> <a href="/nlab/print/quotient+space" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/quotient+space" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10