CINXE.COM
Carl Friedrich Gauss - Wikipedija, prosta enciklopedija
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="sl" dir="ltr"> <head> <meta charset="UTF-8"> <title>Carl Friedrich Gauss - Wikipedija, prosta enciklopedija</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )slwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy full","wgMonthNames":["","januar","februar","marec","april","maj","junij","julij","avgust","september","oktober","november","december"],"wgRequestId":"3f3cabcd-c20b-4618-bde6-46abf744faa8","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Carl_Friedrich_Gauss","wgTitle":"Carl Friedrich Gauss","wgCurRevisionId":6109974,"wgRevisionId":6109974,"wgArticleId":194,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Brez lokalne slike, slika je v Wikipodatkih","Članki z viri iz Wikipodatkov","Članki, ki vsebujejo nemško besedilo","Wikipedijini članki z identifikatorji ISNI","Wikipedijini članki z identifikatorji VIAF","Wikipedijini članki z identifikatorji CONOR.SI","Wikipedijini članki z identifikatorji CONOR.SR","Wikipedijini članki z identifikatorji BIBSYS","Wikipedijini članki z identifikatorji BNC","Wikipedijini članki z identifikatorji BNE", "Wikipedijini članki z identifikatorji BNF","Wikipedijini članki z identifikatorji CANTICN","Wikipedijini članki z identifikatorji GND","Wikipedijini članki z identifikatorji ICCU","Wikipedijini članki z identifikatorji J9U","Wikipedijini članki z identifikatorji LCCN","Wikipedijini članki z identifikatorji LNB","Wikipedijini članki z identifikatorji NDL","Wikipedijini članki z identifikatorji NKC","Wikipedijini članki z identifikatorji NLA","Wikipedijini članki z identifikatorji NLG","Wikipedijini članki z identifikatorji NLK","Wikipedijini članki z identifikatorji NSK","Wikipedijini članki z identifikatorji NTA","Wikipedijini članki z identifikatorji PLWABN","Wikipedijini članki z identifikatorji SELIBR","Wikipedijini članki z identifikatorji VcBA","Wikipedijini članki z identifikatorji RKDartists","Wikipedijini članki z identifikatorji DTBIO","Wikipedijini članki z identifikatorji CINII","Wikipedijini članki z identifikatorji MATHSN", "Wikipedijini članki z identifikatorji MGP","Wikipedijini članki z identifikatorji Scopus","Wikipedijini članki z identifikatorji ZBMATH","Wikipedijini članki z identifikatorji FAST","Wikipedijini članki z identifikatorji RERO","Wikipedijini članki z identifikatorji SUDOC","Wikipedijini članki z identifikatorji Trove","Wikipedijini članki z identifikatorji WorldCat-VIAF","36 elementov normativne kontrole","Wikipedijini članki z identifikatorji - večkratni","Rojeni leta 1777","Umrli leta 1855","Nemški astronomi","Nemški fiziki","Nemški geodeti","Nemški matematiki","Čudežni otroci","Diplomiranci Univerze v Göttingenu","Nemški univerzitetni učitelji","Predavatelji na Univerzi v Göttingenu","Nemški akademiki","Nosilci Pour le Mérite (civilni razred)","Člani Kraljeve švedske akademije znanosti","Člani Madžarske akademije znanosti","Prejemniki Lalandove nagrade","Prejemniki Copleyjeve medalje","Ljudje, po katerih so poimenovali krater na Luni","Carl Friedrich Gauss" ],"wgPageViewLanguage":"sl","wgPageContentLanguage":"sl","wgPageContentModel":"wikitext","wgRelevantPageName":"Carl_Friedrich_Gauss","wgRelevantArticleId":194,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"sl","pageLanguageDir":"ltr","pageVariantFallbacks":"sl"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q6722","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness", "fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP", "ext.centralNotice.startUp","ext.gadget.CommonsDirekt","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=sl&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=sl&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=sl&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/9/9b/Carl_Friedrich_Gauss.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1544"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Carl_Friedrich_Gauss.jpg/800px-Carl_Friedrich_Gauss.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1029"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Carl_Friedrich_Gauss.jpg/640px-Carl_Friedrich_Gauss.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="824"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Carl Friedrich Gauss - Wikipedija, prosta enciklopedija"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//sl.m.wikipedia.org/wiki/Carl_Friedrich_Gauss"> <link rel="alternate" type="application/x-wiki" title="Uredi" href="/w/index.php?title=Carl_Friedrich_Gauss&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedija (sl)"> <link rel="EditURI" type="application/rsd+xml" href="//sl.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://sl.wikipedia.org/wiki/Carl_Friedrich_Gauss"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.sl"> <link rel="alternate" type="application/atom+xml" title="Atom-vir strani »Wikipedija«" href="/w/index.php?title=Posebno:ZadnjeSpremembe&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Carl_Friedrich_Gauss rootpage-Carl_Friedrich_Gauss skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Pojdi na vsebino</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Projekt"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Glavni meni" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Glavni meni</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Glavni meni</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">prestavi v stransko letvico</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">skrij</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigacija </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Glavna_stran" title="Obiščite glavno stran [z]" accesskey="z"><span>Glavna stran</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Pomo%C4%8D:Uvod"><span>Naučite se urejati</span></a></li><li id="n-Izbrani-članki" class="mw-list-item"><a href="/wiki/Wikipedija:Izbrani_%C4%8Dlanki"><span>Izbrani članki</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Posebno:Naklju%C4%8Dno" title="Naložite naključno stran [x]" accesskey="x"><span>Naključna stran</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Posebno:ZadnjeSpremembe" title="Seznam zadnjih sprememb Wikipedije [r]" accesskey="r"><span>Zadnje spremembe</span></a></li> </ul> </div> </div> <div id="p-obcestvo" class="vector-menu mw-portlet mw-portlet-obcestvo" > <div class="vector-menu-heading"> Skupnost </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Pomo%C4%8D:Vsebina" title="Kraj, kjer lahko prejmete pomoč"><span>Pomoč</span></a></li><li id="n-Pod-lipo" class="mw-list-item"><a href="/wiki/Wikipedija:Pod_lipo"><span>Pod lipo</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedija:Portal_skupnosti" title="O projektu, kaj lahko storite, kje lahko kaj najdete"><span>Portal skupnosti</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedija:Stik_z_nami"><span>Stik z nami</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Glavna_stran" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedija" src="/static/images/mobile/copyright/wikipedia-wordmark-sl.svg" style="width: 7.4375em; height: 1.375em;"> <img class="mw-logo-tagline" alt="prosta enciklopedija" src="/static/images/mobile/copyright/wikipedia-tagline-sl.svg" width="118" height="13" style="width: 7.375em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Posebno:Iskanje" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Preiščite viki [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Iskanje</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Iskanje v Wikipediji" aria-label="Iskanje v Wikipediji" autocapitalize="sentences" title="Preiščite viki [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Posebno:Iskanje"> </div> <button class="cdx-button cdx-search-input__end-button">Išči</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Osebna orodja"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Videz"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Videz" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Videz</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_sl.wikipedia.org&uselang=sl" class=""><span>Denarni prispevki</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Posebno:Registracija&returnto=Carl+Friedrich+Gauss" title="Predlagamo vam, da si ustvarite račun in se prijavite, vendar to ni obvezno." class=""><span>Ustvari račun</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Posebno:Prijava&returnto=Carl+Friedrich+Gauss" title="Prijava je zaželena, vendar ni obvezna [o]" accesskey="o" class=""><span>Prijava</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Več možnosti" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Osebna orodja" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Osebna orodja</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Uporabniški meni" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_sl.wikipedia.org&uselang=sl"><span>Denarni prispevki</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Posebno:Registracija&returnto=Carl+Friedrich+Gauss" title="Predlagamo vam, da si ustvarite račun in se prijavite, vendar to ni obvezno."><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Ustvari račun</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Posebno:Prijava&returnto=Carl+Friedrich+Gauss" title="Prijava je zaželena, vendar ni obvezna [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Prijava</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Strani za neprijavljene urejevalce <a href="/wiki/Pomo%C4%8D:Uvod" aria-label="Več o urejanju"><span>več o tem</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Posebno:MojiPrispevki" title="Seznam urejanj s tega IP-naslova [y]" accesskey="y"><span>Prispevki</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Posebno:MojPogovor" title="Pogovor o urejanjih s tega IP-naslova [n]" accesskey="n"><span>Pogovorna stran</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Projekt"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Vsebina" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Vsebina</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">prestavi v stransko letvico</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">skrij</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Uvod</div> </a> </li> <li id="toc-Življenje_in_delo" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Življenje_in_delo"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Življenje in delo</span> </div> </a> <button aria-controls="toc-Življenje_in_delo-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Vklopi podrazdelek Življenje in delo</span> </button> <ul id="toc-Življenje_in_delo-sublist" class="vector-toc-list"> <li id="toc-Mladost" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mladost"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Mladost</span> </div> </a> <ul id="toc-Mladost-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Študij" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Študij"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Študij</span> </div> </a> <ul id="toc-Študij-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Raziskovanje_v_matematiki" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Raziskovanje_v_matematiki"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Raziskovanje v matematiki</span> </div> </a> <ul id="toc-Raziskovanje_v_matematiki-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Raziskovanje_v_fiziki" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Raziskovanje_v_fiziki"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Raziskovanje v fiziki</span> </div> </a> <ul id="toc-Raziskovanje_v_fiziki-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Priznanja" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Priznanja"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Priznanja</span> </div> </a> <button aria-controls="toc-Priznanja-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Vklopi podrazdelek Priznanja</span> </button> <ul id="toc-Priznanja-sublist" class="vector-toc-list"> <li id="toc-Nagrade" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nagrade"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Nagrade</span> </div> </a> <ul id="toc-Nagrade-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poimenovanja" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Poimenovanja"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Poimenovanja</span> </div> </a> <ul id="toc-Poimenovanja-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Glej_tudi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Glej_tudi"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Glej tudi</span> </div> </a> <ul id="toc-Glej_tudi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sklici" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sklici"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Sklici</span> </div> </a> <ul id="toc-Sklici-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Zunanje_povezave" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Zunanje_povezave"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Zunanje povezave</span> </div> </a> <ul id="toc-Zunanje_povezave-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Vsebina" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Vklopi kazalo vsebine" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Vklopi kazalo vsebine</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Carl Friedrich Gauss</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="P9jdi na članek v drugem jeziku. Na voljo v 154 jezikih." > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-154" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">154 jezikov</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – afrikanščina" lang="af" hreflang="af" data-title="Carl Friedrich Gauss" data-language-autonym="Afrikaans" data-language-local-name="afrikanščina" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F" title="Carl Friedrich Gauß – nemščina (Švica)" lang="gsw" hreflang="gsw" data-title="Carl Friedrich Gauß" data-language-autonym="Alemannisch" data-language-local-name="nemščina (Švica)" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8C%8B%E1%8B%8D%E1%88%B5" title="ጋውስ – amharščina" lang="am" hreflang="am" data-title="ጋውስ" data-language-autonym="አማርኛ" data-language-local-name="amharščina" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – aragonščina" lang="an" hreflang="an" data-title="Carl Friedrich Gauss" data-language-autonym="Aragonés" data-language-local-name="aragonščina" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%83%D8%A7%D8%B1%D9%84_%D9%81%D8%B1%D9%8A%D8%AF%D8%B1%D9%8A%D8%B4_%D8%BA%D8%A7%D9%88%D8%B3" title="كارل فريدريش غاوس – arabščina" lang="ar" hreflang="ar" data-title="كارل فريدريش غاوس" data-language-autonym="العربية" data-language-local-name="arabščina" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D8%AC%D8%A7%D9%88%D8%B3" title="جاوس – Egyptian Arabic" lang="arz" hreflang="arz" data-title="جاوس" data-language-autonym="مصرى" data-language-local-name="Egyptian Arabic" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%95%E0%A6%BE%E0%A7%B0%E0%A7%8D%E0%A6%B2_%E0%A6%AB%E0%A7%8D%E0%A7%B0%E0%A6%BF%E0%A6%A1%E0%A7%B0%E0%A6%BF%E0%A6%96_%E0%A6%97%E0%A6%BE%E0%A6%89%E0%A6%9B" title="কাৰ্ল ফ্ৰিডৰিখ গাউছ – asamščina" lang="as" hreflang="as" data-title="কাৰ্ল ফ্ৰিডৰিখ গাউছ" data-language-autonym="অসমীয়া" data-language-local-name="asamščina" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – asturijščina" lang="ast" hreflang="ast" data-title="Carl Friedrich Gauss" data-language-autonym="Asturianu" data-language-local-name="asturijščina" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Karl_Fridrix_Qauss" title="Karl Fridrix Qauss – azerbajdžanščina" lang="az" hreflang="az" data-title="Karl Fridrix Qauss" data-language-autonym="Azərbaycanca" data-language-local-name="azerbajdžanščina" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%DB%8C%D9%88%D9%87%D8%A7%D9%86_%D9%81%D8%B1%D8%AF%D8%B1%DB%8C%DA%A9_%D9%82%D8%A7%D9%88%D8%B3" title="یوهان فردریک قاوس – South Azerbaijani" lang="azb" hreflang="azb" data-title="یوهان فردریک قاوس" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D0%B8%D0%B4%D1%80%D0%B8%D1%85_%D0%93%D0%B0%D1%83%D1%81%D1%81" title="Карл Фридрих Гаусс – baškirščina" lang="ba" hreflang="ba" data-title="Карл Фридрих Гаусс" data-language-autonym="Башҡортса" data-language-local-name="baškirščina" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Karls_Fr%C4%ABdr%C4%97ks_Gausos" title="Karls Frīdrėks Gausos – Samogitian" lang="sgs" hreflang="sgs" data-title="Karls Frīdrėks Gausos" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – Central Bikol" lang="bcl" hreflang="bcl" data-title="Carl Friedrich Gauss" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D1%8B%D0%B4%D1%80%D1%8B%D1%85_%D0%93%D0%B0%D1%83%D1%81" title="Карл Фрыдрых Гаус – beloruščina" lang="be" hreflang="be" data-title="Карл Фрыдрых Гаус" data-language-autonym="Беларуская" data-language-local-name="beloruščina" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D1%8B%D0%B4%D1%80%D1%8B%D1%85_%D0%93%D0%B0%D1%9E%D1%81" title="Карл Фрыдрых Гаўс – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Карл Фрыдрых Гаўс" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D0%B8%D0%B4%D1%80%D0%B8%D1%85_%D0%93%D0%B0%D1%83%D1%81" title="Карл Фридрих Гаус – bolgarščina" lang="bg" hreflang="bg" data-title="Карл Фридрих Гаус" data-language-autonym="Български" data-language-local-name="bolgarščina" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%95%E0%A4%BE%E0%A4%B0%E0%A5%8D%E0%A4%B2_%E0%A4%AB%E0%A5%8D%E0%A4%B0%E0%A5%87%E0%A4%A1%E0%A4%B0%E0%A4%BF%E0%A4%95_%E0%A4%97%E0%A5%89%E0%A4%B8" title="कार्ल फ्रेडरिक गॉस – Bhojpuri" lang="bh" hreflang="bh" data-title="कार्ल फ्रेडरिक गॉस" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bi mw-list-item"><a href="https://bi.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – bislamščina" lang="bi" hreflang="bi" data-title="Carl Friedrich Gauss" data-language-autonym="Bislama" data-language-local-name="bislamščina" class="interlanguage-link-target"><span>Bislama</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%95%E0%A6%BE%E0%A6%B0%E0%A7%8D%E0%A6%B2_%E0%A6%AB%E0%A7%8D%E0%A6%B0%E0%A6%BF%E0%A6%A1%E2%80%8C%E0%A6%B0%E0%A6%BF%E0%A6%B6_%E0%A6%97%E0%A6%BE%E0%A6%89%E0%A6%B8" title="কার্ল ফ্রিডরিশ গাউস – bengalščina" lang="bn" hreflang="bn" data-title="কার্ল ফ্রিডরিশ গাউস" data-language-autonym="বাংলা" data-language-local-name="bengalščina" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – bretonščina" lang="br" hreflang="br" data-title="Carl Friedrich Gauss" data-language-autonym="Brezhoneg" data-language-local-name="bretonščina" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F" title="Carl Friedrich Gauß – bosanščina" lang="bs" hreflang="bs" data-title="Carl Friedrich Gauß" data-language-autonym="Bosanski" data-language-local-name="bosanščina" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-btm mw-list-item"><a href="https://btm.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – Batak Mandailing" lang="btm" hreflang="btm" data-title="Carl Friedrich Gauss" data-language-autonym="Batak Mandailing" data-language-local-name="Batak Mandailing" class="interlanguage-link-target"><span>Batak Mandailing</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F" title="Carl Friedrich Gauß – katalonščina" lang="ca" hreflang="ca" data-title="Carl Friedrich Gauß" data-language-autonym="Català" data-language-local-name="katalonščina" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ce mw-list-item"><a href="https://ce.wikipedia.org/wiki/%D0%93%D0%B0%D1%83%D1%81%D1%81,_%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D0%B8%D0%B4%D1%80%D0%B8%D1%85" title="Гаусс, Карл Фридрих – čečenščina" lang="ce" hreflang="ce" data-title="Гаусс, Карл Фридрих" data-language-autonym="Нохчийн" data-language-local-name="čečenščina" class="interlanguage-link-target"><span>Нохчийн</span></a></li><li class="interlanguage-link interwiki-ceb mw-list-item"><a href="https://ceb.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – sebuanščina" lang="ceb" hreflang="ceb" data-title="Carl Friedrich Gauss" data-language-autonym="Cebuano" data-language-local-name="sebuanščina" class="interlanguage-link-target"><span>Cebuano</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%A9%D8%A7%D8%B1%DA%B5_%D9%81%D8%B1%DB%8C%D8%AF%D8%B1%DB%8C%D8%B4_%DA%AF%D8%A7%D9%88%D8%B3" title="کارڵ فریدریش گاوس – osrednja kurdščina" lang="ckb" hreflang="ckb" data-title="کارڵ فریدریش گاوس" data-language-autonym="کوردی" data-language-local-name="osrednja kurdščina" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – češčina" lang="cs" hreflang="cs" data-title="Carl Friedrich Gauss" data-language-autonym="Čeština" data-language-local-name="češčina" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%93%D0%B0%D1%83%D1%81%D1%81,_%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D0%B8%D0%B4%D1%80%D0%B8%D1%85" title="Гаусс, Карл Фридрих – čuvaščina" lang="cv" hreflang="cv" data-title="Гаусс, Карл Фридрих" data-language-autonym="Чӑвашла" data-language-local-name="čuvaščina" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – valižanščina" lang="cy" hreflang="cy" data-title="Carl Friedrich Gauss" data-language-autonym="Cymraeg" data-language-local-name="valižanščina" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – danščina" lang="da" hreflang="da" data-title="Carl Friedrich Gauss" data-language-autonym="Dansk" data-language-local-name="danščina" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de badge-Q17437798 badge-goodarticle mw-list-item" title="dober članek"><a href="https://de.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F" title="Carl Friedrich Gauß – nemščina" lang="de" hreflang="de" data-title="Carl Friedrich Gauß" data-language-autonym="Deutsch" data-language-local-name="nemščina" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – Zazaki" lang="diq" hreflang="diq" data-title="Carl Friedrich Gauss" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-dv mw-list-item"><a href="https://dv.wikipedia.org/wiki/%DE%86%DE%A7%DE%8D%DE%B0_%DE%8A%DE%B0%DE%83%DE%A9%DE%8B%DE%B0%DE%83%DE%A9%DE%9D%DE%B0_%DE%8E%DE%A6%DE%87%DE%AA%DE%90%DE%B0" title="ކާލް ފްރީދްރީޝް ގައުސް – diveščina" lang="dv" hreflang="dv" data-title="ކާލް ފްރީދްރީޝް ގައުސް" data-language-autonym="ދިވެހިބަސް" data-language-local-name="diveščina" class="interlanguage-link-target"><span>ދިވެހިބަސް</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9A%CE%B1%CF%81%CE%BB_%CE%A6%CF%81%CE%AF%CE%BD%CF%84%CF%81%CE%B9%CF%87_%CE%93%CE%BA%CE%AC%CE%BF%CF%85%CF%82" title="Καρλ Φρίντριχ Γκάους – grščina" lang="el" hreflang="el" data-title="Καρλ Φρίντριχ Γκάους" data-language-autonym="Ελληνικά" data-language-local-name="grščina" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en badge-Q17437798 badge-goodarticle mw-list-item" title="dober članek"><a href="https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – angleščina" lang="en" hreflang="en" data-title="Carl Friedrich Gauss" data-language-autonym="English" data-language-local-name="angleščina" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – esperanto" lang="eo" hreflang="eo" data-title="Carl Friedrich Gauss" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – španščina" lang="es" hreflang="es" data-title="Carl Friedrich Gauss" data-language-autonym="Español" data-language-local-name="španščina" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – estonščina" lang="et" hreflang="et" data-title="Carl Friedrich Gauss" data-language-autonym="Eesti" data-language-local-name="estonščina" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – baskovščina" lang="eu" hreflang="eu" data-title="Carl Friedrich Gauss" data-language-autonym="Euskara" data-language-local-name="baskovščina" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-ext mw-list-item"><a href="https://ext.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – Extremaduran" lang="ext" hreflang="ext" data-title="Carl Friedrich Gauss" data-language-autonym="Estremeñu" data-language-local-name="Extremaduran" class="interlanguage-link-target"><span>Estremeñu</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%DA%A9%D8%A7%D8%B1%D9%84_%D9%81%D8%B1%DB%8C%D8%AF%D8%B1%DB%8C%D8%B4_%DA%AF%D8%A7%D9%88%D8%B3" title="کارل فریدریش گاوس – perzijščina" lang="fa" hreflang="fa" data-title="کارل فریدریش گاوس" data-language-autonym="فارسی" data-language-local-name="perzijščina" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-ff mw-list-item"><a href="https://ff.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – fulščina" lang="ff" hreflang="ff" data-title="Carl Friedrich Gauss" data-language-autonym="Fulfulde" data-language-local-name="fulščina" class="interlanguage-link-target"><span>Fulfulde</span></a></li><li class="interlanguage-link interwiki-fi badge-Q17437798 badge-goodarticle mw-list-item" title="dober članek"><a href="https://fi.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – finščina" lang="fi" hreflang="fi" data-title="Carl Friedrich Gauss" data-language-autonym="Suomi" data-language-local-name="finščina" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Gaussi_Carl_Friedrich" title="Gaussi Carl Friedrich – Võro" lang="vro" hreflang="vro" data-title="Gaussi Carl Friedrich" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – ferščina" lang="fo" hreflang="fo" data-title="Carl Friedrich Gauss" data-language-autonym="Føroyskt" data-language-local-name="ferščina" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – francoščina" lang="fr" hreflang="fr" data-title="Carl Friedrich Gauss" data-language-autonym="Français" data-language-local-name="francoščina" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F" title="Carl Friedrich Gauß – severna frizijščina" lang="frr" hreflang="frr" data-title="Carl Friedrich Gauß" data-language-autonym="Nordfriisk" data-language-local-name="severna frizijščina" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-fy mw-list-item"><a href="https://fy.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – zahodna frizijščina" lang="fy" hreflang="fy" data-title="Carl Friedrich Gauss" data-language-autonym="Frysk" data-language-local-name="zahodna frizijščina" class="interlanguage-link-target"><span>Frysk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – irščina" lang="ga" hreflang="ga" data-title="Carl Friedrich Gauss" data-language-autonym="Gaeilge" data-language-local-name="irščina" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E9%AB%98%E6%96%AF" title="高斯 – Gan" lang="gan" hreflang="gan" data-title="高斯" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Carl Friedrich Gauss" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – galicijščina" lang="gl" hreflang="gl" data-title="Carl Friedrich Gauss" data-language-autonym="Galego" data-language-local-name="galicijščina" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gn mw-list-item"><a href="https://gn.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – gvaranijščina" lang="gn" hreflang="gn" data-title="Carl Friedrich Gauss" data-language-autonym="Avañe'ẽ" data-language-local-name="gvaranijščina" class="interlanguage-link-target"><span>Avañe'ẽ</span></a></li><li class="interlanguage-link interwiki-ha mw-list-item"><a href="https://ha.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – havščina" lang="ha" hreflang="ha" data-title="Carl Friedrich Gauss" data-language-autonym="Hausa" data-language-local-name="havščina" class="interlanguage-link-target"><span>Hausa</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A7%D7%A8%D7%9C_%D7%A4%D7%A8%D7%99%D7%93%D7%A8%D7%99%D7%9A_%D7%92%D7%90%D7%95%D7%A1" title="קרל פרידריך גאוס – hebrejščina" lang="he" hreflang="he" data-title="קרל פרידריך גאוס" data-language-autonym="עברית" data-language-local-name="hebrejščina" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%95%E0%A4%BE%E0%A4%B0%E0%A5%8D%E0%A4%B2_%E0%A4%AB%E0%A5%8D%E0%A4%B0%E0%A5%87%E0%A4%A1%E0%A4%B0%E0%A4%BF%E0%A4%95_%E0%A4%97%E0%A4%BE%E0%A4%89%E0%A4%B8" title="कार्ल फ्रेडरिक गाउस – hindijščina" lang="hi" hreflang="hi" data-title="कार्ल फ्रेडरिक गाउस" data-language-autonym="हिन्दी" data-language-local-name="hindijščina" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – Fiji Hindi" lang="hif" hreflang="hif" data-title="Carl Friedrich Gauss" data-language-autonym="Fiji Hindi" data-language-local-name="Fiji Hindi" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – hrvaščina" lang="hr" hreflang="hr" data-title="Carl Friedrich Gauss" data-language-autonym="Hrvatski" data-language-local-name="hrvaščina" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – haitijska kreolščina" lang="ht" hreflang="ht" data-title="Carl Friedrich Gauss" data-language-autonym="Kreyòl ayisyen" data-language-local-name="haitijska kreolščina" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-hu badge-Q17437796 badge-featuredarticle mw-list-item" title="izbrani članek"><a href="https://hu.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – madžarščina" lang="hu" hreflang="hu" data-title="Carl Friedrich Gauss" data-language-autonym="Magyar" data-language-local-name="madžarščina" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BF%D5%A1%D5%BC%D5%AC_%D4%B3%D5%A1%D5%B8%D6%82%D5%BD" title="Կառլ Գաուս – armenščina" lang="hy" hreflang="hy" data-title="Կառլ Գաուս" data-language-autonym="Հայերեն" data-language-local-name="armenščina" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – interlingva" lang="ia" hreflang="ia" data-title="Carl Friedrich Gauss" data-language-autonym="Interlingua" data-language-local-name="interlingva" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – indonezijščina" lang="id" hreflang="id" data-title="Carl Friedrich Gauss" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonezijščina" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ilo mw-list-item"><a href="https://ilo.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – ilokanščina" lang="ilo" hreflang="ilo" data-title="Carl Friedrich Gauss" data-language-autonym="Ilokano" data-language-local-name="ilokanščina" class="interlanguage-link-target"><span>Ilokano</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – ido" lang="io" hreflang="io" data-title="Carl Friedrich Gauss" data-language-autonym="Ido" data-language-local-name="ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – islandščina" lang="is" hreflang="is" data-title="Carl Friedrich Gauss" data-language-autonym="Íslenska" data-language-local-name="islandščina" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – italijanščina" lang="it" hreflang="it" data-title="Carl Friedrich Gauss" data-language-autonym="Italiano" data-language-local-name="italijanščina" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%AB%E3%83%BC%E3%83%AB%E3%83%BB%E3%83%95%E3%83%AA%E3%83%BC%E3%83%89%E3%83%AA%E3%83%92%E3%83%BB%E3%82%AC%E3%82%A6%E3%82%B9" title="カール・フリードリヒ・ガウス – japonščina" lang="ja" hreflang="ja" data-title="カール・フリードリヒ・ガウス" data-language-autonym="日本語" data-language-local-name="japonščina" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Carl Friedrich Gauss" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-jbo mw-list-item"><a href="https://jbo.wikipedia.org/wiki/karl.fridrix.gaus" title="karl.fridrix.gaus – lojban" lang="jbo" hreflang="jbo" data-title="karl.fridrix.gaus" data-language-autonym="La .lojban." data-language-local-name="lojban" class="interlanguage-link-target"><span>La .lojban.</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – javanščina" lang="jv" hreflang="jv" data-title="Carl Friedrich Gauss" data-language-autonym="Jawa" data-language-local-name="javanščina" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-ka badge-Q17437796 badge-featuredarticle mw-list-item" title="izbrani članek"><a href="https://ka.wikipedia.org/wiki/%E1%83%99%E1%83%90%E1%83%A0%E1%83%9A_%E1%83%A4%E1%83%A0%E1%83%98%E1%83%93%E1%83%A0%E1%83%98%E1%83%AE_%E1%83%92%E1%83%90%E1%83%A3%E1%83%A1%E1%83%98" title="კარლ ფრიდრიხ გაუსი – gruzijščina" lang="ka" hreflang="ka" data-title="კარლ ფრიდრიხ გაუსი" data-language-autonym="ქართული" data-language-local-name="gruzijščina" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kaa mw-list-item"><a href="https://kaa.wikipedia.org/wiki/Karl_Fridrix_Gauss" title="Karl Fridrix Gauss – karakalpaščina" lang="kaa" hreflang="kaa" data-title="Karl Fridrix Gauss" data-language-autonym="Qaraqalpaqsha" data-language-local-name="karakalpaščina" class="interlanguage-link-target"><span>Qaraqalpaqsha</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – kabilščina" lang="kab" hreflang="kab" data-title="Carl Friedrich Gauss" data-language-autonym="Taqbaylit" data-language-local-name="kabilščina" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-kbp mw-list-item"><a href="https://kbp.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – Kabiye" lang="kbp" hreflang="kbp" data-title="Carl Friedrich Gauss" data-language-autonym="Kabɩyɛ" data-language-local-name="Kabiye" class="interlanguage-link-target"><span>Kabɩyɛ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D0%B8%D0%B4%D1%80%D0%B8%D1%85_%D0%93%D0%B0%D1%83%D1%81%D1%81" title="Карл Фридрих Гаусс – kazaščina" lang="kk" hreflang="kk" data-title="Карл Фридрих Гаусс" data-language-autonym="Қазақша" data-language-local-name="kazaščina" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%9C%E0%B3%8A%E0%B2%B9%E0%B2%BE%E0%B2%A8%E0%B3%8D_%E0%B2%95%E0%B2%BE%E0%B2%B0%E0%B3%8D%E0%B2%B2%E0%B3%8D_%E0%B2%AB%E0%B3%8D%E0%B2%B0%E0%B3%86%E0%B2%A1%E0%B3%8D%E0%B2%B0%E0%B2%BF%E0%B2%9A%E0%B3%8D_%E0%B2%97%E0%B2%BE%E0%B2%B8%E0%B3%8D" title="ಜೊಹಾನ್ ಕಾರ್ಲ್ ಫ್ರೆಡ್ರಿಚ್ ಗಾಸ್ – kanareščina" lang="kn" hreflang="kn" data-title="ಜೊಹಾನ್ ಕಾರ್ಲ್ ಫ್ರೆಡ್ರಿಚ್ ಗಾಸ್" data-language-autonym="ಕನ್ನಡ" data-language-local-name="kanareščina" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%B9%B4%EB%A5%BC_%ED%94%84%EB%A6%AC%EB%93%9C%EB%A6%AC%ED%9E%88_%EA%B0%80%EC%9A%B0%EC%8A%A4" title="카를 프리드리히 가우스 – korejščina" lang="ko" hreflang="ko" data-title="카를 프리드리히 가우스" data-language-autonym="한국어" data-language-local-name="korejščina" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-kw mw-list-item"><a href="https://kw.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – kornijščina" lang="kw" hreflang="kw" data-title="Carl Friedrich Gauss" data-language-autonym="Kernowek" data-language-local-name="kornijščina" class="interlanguage-link-target"><span>Kernowek</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D0%B8%D0%B4%D1%80%D0%B8%D1%85_%D0%93%D0%B0%D1%83%D1%81%D1%81" title="Карл Фридрих Гаусс – kirgiščina" lang="ky" hreflang="ky" data-title="Карл Фридрих Гаусс" data-language-autonym="Кыргызча" data-language-local-name="kirgiščina" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Carolus_Fridericus_Gauss" title="Carolus Fridericus Gauss – latinščina" lang="la" hreflang="la" data-title="Carolus Fridericus Gauss" data-language-autonym="Latina" data-language-local-name="latinščina" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F" title="Carl Friedrich Gauß – luksemburščina" lang="lb" hreflang="lb" data-title="Carl Friedrich Gauß" data-language-autonym="Lëtzebuergesch" data-language-local-name="luksemburščina" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – Lingua Franca Nova" lang="lfn" hreflang="lfn" data-title="Carl Friedrich Gauss" data-language-autonym="Lingua Franca Nova" data-language-local-name="Lingua Franca Nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-lij mw-list-item"><a href="https://lij.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – Ligurian" lang="lij" hreflang="lij" data-title="Carl Friedrich Gauss" data-language-autonym="Ligure" data-language-local-name="Ligurian" class="interlanguage-link-target"><span>Ligure</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – Lombard" lang="lmo" hreflang="lmo" data-title="Carl Friedrich Gauss" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – litovščina" lang="lt" hreflang="lt" data-title="Carl Friedrich Gauss" data-language-autonym="Lietuvių" data-language-local-name="litovščina" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/K%C4%81rlis_Fr%C4%ABdrihs_Gauss" title="Kārlis Frīdrihs Gauss – latvijščina" lang="lv" hreflang="lv" data-title="Kārlis Frīdrihs Gauss" data-language-autonym="Latviešu" data-language-local-name="latvijščina" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – malgaščina" lang="mg" hreflang="mg" data-title="Carl Friedrich Gauss" data-language-autonym="Malagasy" data-language-local-name="malgaščina" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D0%B8%D0%B4%D1%80%D0%B8%D1%85_%D0%93%D0%B0%D1%83%D1%81" title="Карл Фридрих Гаус – makedonščina" lang="mk" hreflang="mk" data-title="Карл Фридрих Гаус" data-language-autonym="Македонски" data-language-local-name="makedonščina" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%95%E0%B4%BE%E0%B5%BE_%E0%B4%AB%E0%B5%8D%E0%B4%B0%E0%B5%86%E0%B4%A1%E0%B4%B1%E0%B4%BF%E0%B4%95%E0%B5%8D_%E0%B4%97%E0%B5%8B%E0%B4%B8%E0%B5%8D%E0%B4%B8%E0%B5%8D" title="കാൾ ഫ്രെഡറിക് ഗോസ്സ് – malajalamščina" lang="ml" hreflang="ml" data-title="കാൾ ഫ്രെഡറിക് ഗോസ്സ്" data-language-autonym="മലയാളം" data-language-local-name="malajalamščina" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D0%B8%D0%B4%D1%80%D0%B8%D1%85_%D0%93%D0%B0%D1%83%D1%81%D1%81" title="Карл Фридрих Гаусс – mongolščina" lang="mn" hreflang="mn" data-title="Карл Фридрих Гаусс" data-language-autonym="Монгол" data-language-local-name="mongolščina" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%95%E0%A4%BE%E0%A4%B0%E0%A5%8D%E0%A4%B2_%E0%A4%AB%E0%A5%8D%E0%A4%B0%E0%A5%80%E0%A4%A6%E0%A4%B0%E0%A4%BF%E0%A4%B6_%E0%A4%97%E0%A4%BE%E0%A4%89%E0%A4%B8" title="कार्ल फ्रीदरिश गाउस – maratščina" lang="mr" hreflang="mr" data-title="कार्ल फ्रीदरिश गाउस" data-language-autonym="मराठी" data-language-local-name="maratščina" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – malajščina" lang="ms" hreflang="ms" data-title="Carl Friedrich Gauss" data-language-autonym="Bahasa Melayu" data-language-local-name="malajščina" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – malteščina" lang="mt" hreflang="mt" data-title="Carl Friedrich Gauss" data-language-autonym="Malti" data-language-local-name="malteščina" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-mwl mw-list-item"><a href="https://mwl.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – mirandeščina" lang="mwl" hreflang="mwl" data-title="Carl Friedrich Gauss" data-language-autonym="Mirandés" data-language-local-name="mirandeščina" class="interlanguage-link-target"><span>Mirandés</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%80%E1%80%AC%E1%80%B8%E1%80%9C%E1%80%BA_%E1%80%96%E1%80%9B%E1%80%AE%E1%80%B8%E1%80%92%E1%80%9B%E1%80%85%E1%80%BA_%E1%80%82%E1%80%B1%E1%80%AB%E1%80%80%E1%80%BA" title="ကားလ် ဖရီးဒရစ် ဂေါက် – burmanščina" lang="my" hreflang="my" data-title="ကားလ် ဖရီးဒရစ် ဂေါက်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="burmanščina" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-mzn mw-list-item"><a href="https://mzn.wikipedia.org/wiki/%DA%A9%D8%A7%D8%B1%D9%84_%D9%81%D8%B1%DB%8C%D8%AF%D8%B1%DB%8C%D8%B4_%DA%AF%D8%A7%D9%88%D8%B3" title="کارل فریدریش گاوس – mazanderanščina" lang="mzn" hreflang="mzn" data-title="کارل فریدریش گاوس" data-language-autonym="مازِرونی" data-language-local-name="mazanderanščina" class="interlanguage-link-target"><span>مازِرونی</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F" title="Carl Friedrich Gauß – nizka nemščina" lang="nds" hreflang="nds" data-title="Carl Friedrich Gauß" data-language-autonym="Plattdüütsch" data-language-local-name="nizka nemščina" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-new mw-list-item"><a href="https://new.wikipedia.org/wiki/%E0%A4%95%E0%A4%BE%E0%A4%B0%E0%A5%8D%E0%A4%B2_%E0%A4%AB%E0%A5%8D%E0%A4%B0%E0%A4%BE%E0%A4%87%E0%A4%A1%E0%A4%B0%E0%A4%BF%E0%A4%9A_%E0%A4%97%E0%A4%B8" title="कार्ल फ्राइडरिच गस – nevarščina" lang="new" hreflang="new" data-title="कार्ल फ्राइडरिच गस" data-language-autonym="नेपाल भाषा" data-language-local-name="nevarščina" class="interlanguage-link-target"><span>नेपाल भाषा</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – nizozemščina" lang="nl" hreflang="nl" data-title="Carl Friedrich Gauss" data-language-autonym="Nederlands" data-language-local-name="nizozemščina" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – novonorveščina" lang="nn" hreflang="nn" data-title="Carl Friedrich Gauss" data-language-autonym="Norsk nynorsk" data-language-local-name="novonorveščina" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – knjižna norveščina" lang="nb" hreflang="nb" data-title="Carl Friedrich Gauss" data-language-autonym="Norsk bokmål" data-language-local-name="knjižna norveščina" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – okcitanščina" lang="oc" hreflang="oc" data-title="Carl Friedrich Gauss" data-language-autonym="Occitan" data-language-local-name="okcitanščina" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-olo mw-list-item"><a href="https://olo.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – Livvi-Karelian" lang="olo" hreflang="olo" data-title="Carl Friedrich Gauss" data-language-autonym="Livvinkarjala" data-language-local-name="Livvi-Karelian" class="interlanguage-link-target"><span>Livvinkarjala</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Kaarli_Firidiriish_Gaawus" title="Kaarli Firidiriish Gaawus – oromo" lang="om" hreflang="om" data-title="Kaarli Firidiriish Gaawus" data-language-autonym="Oromoo" data-language-local-name="oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%95%E0%A8%BE%E0%A8%B0%E0%A8%B2_%E0%A8%AB%E0%A8%BC%E0%A8%B0%E0%A9%80%E0%A8%A1%E0%A8%B0%E0%A8%BF%E0%A8%B8%E0%A8%BC_%E0%A8%97%E0%A9%8C%E0%A8%B8" title="ਕਾਰਲ ਫ਼ਰੀਡਰਿਸ਼ ਗੌਸ – pandžabščina" lang="pa" hreflang="pa" data-title="ਕਾਰਲ ਫ਼ਰੀਡਰਿਸ਼ ਗੌਸ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="pandžabščina" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – poljščina" lang="pl" hreflang="pl" data-title="Carl Friedrich Gauss" data-language-autonym="Polski" data-language-local-name="poljščina" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – Piedmontese" lang="pms" hreflang="pms" data-title="Carl Friedrich Gauss" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%DA%A9%D8%A7%D8%B1%D9%84_%D9%81%D8%B1%DB%8C%DA%88%D8%B1%DA%A9_%DA%AF%D8%A7%D8%A4%D8%B3" title="کارل فریڈرک گاؤس – Western Punjabi" lang="pnb" hreflang="pnb" data-title="کارل فریڈرک گاؤس" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%DA%A9%D8%A7%D8%B1%D9%84_%D9%81%D8%B1%DB%8C%D8%AF%D8%B1%DB%8C%D8%B4_%DA%AB%D8%A7%D9%88%D8%B3" title="کارل فریدریش ګاوس – paštunščina" lang="ps" hreflang="ps" data-title="کارل فریدریش ګاوس" data-language-autonym="پښتو" data-language-local-name="paštunščina" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – portugalščina" lang="pt" hreflang="pt" data-title="Carl Friedrich Gauss" data-language-autonym="Português" data-language-local-name="portugalščina" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – kečuanščina" lang="qu" hreflang="qu" data-title="Carl Friedrich Gauss" data-language-autonym="Runa Simi" data-language-local-name="kečuanščina" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – romunščina" lang="ro" hreflang="ro" data-title="Carl Friedrich Gauss" data-language-autonym="Română" data-language-local-name="romunščina" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%93%D0%B0%D1%83%D1%81%D1%81,_%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D0%B8%D0%B4%D1%80%D0%B8%D1%85" title="Гаусс, Карл Фридрих – ruščina" lang="ru" hreflang="ru" data-title="Гаусс, Карл Фридрих" data-language-autonym="Русский" data-language-local-name="ruščina" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-rue mw-list-item"><a href="https://rue.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D1%96%D0%B4%D1%80%D1%96%D1%85_%D2%90%D0%B0%D1%83%D1%81" title="Карл Фрідріх Ґаус – Rusyn" lang="rue" hreflang="rue" data-title="Карл Фрідріх Ґаус" data-language-autonym="Русиньскый" data-language-local-name="Rusyn" class="interlanguage-link-target"><span>Русиньскый</span></a></li><li class="interlanguage-link interwiki-sa mw-list-item"><a href="https://sa.wikipedia.org/wiki/%E0%A4%95%E0%A4%BE%E0%A4%B0%E0%A5%8D%E0%A4%B2_%E0%A4%AB%E0%A5%8D%E0%A4%B0%E0%A4%BE%E0%A4%87%E0%A4%A1%E0%A4%B0%E0%A4%BF%E0%A4%95_%E0%A4%97%E0%A4%BE%E0%A4%B8" title="कार्ल फ्राइडरिक गास – sanskrt" lang="sa" hreflang="sa" data-title="कार्ल फ्राइडरिक गास" data-language-autonym="संस्कृतम्" data-language-local-name="sanskrt" class="interlanguage-link-target"><span>संस्कृतम्</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – sicilijanščina" lang="scn" hreflang="scn" data-title="Carl Friedrich Gauss" data-language-autonym="Sicilianu" data-language-local-name="sicilijanščina" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – škotščina" lang="sco" hreflang="sco" data-title="Carl Friedrich Gauss" data-language-autonym="Scots" data-language-local-name="škotščina" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – srbohrvaščina" lang="sh" hreflang="sh" data-title="Carl Friedrich Gauss" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="srbohrvaščina" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-shi mw-list-item"><a href="https://shi.wikipedia.org/wiki/Ka%E1%B9%9Bl_Fridiritc_Guss" title="Kaṛl Fridiritc Guss – tahelitska berberščina" lang="shi" hreflang="shi" data-title="Kaṛl Fridiritc Guss" data-language-autonym="Taclḥit" data-language-local-name="tahelitska berberščina" class="interlanguage-link-target"><span>Taclḥit</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%9A%E0%B7%8F%E0%B6%BD%E0%B7%8A_%E0%B7%86%E0%B7%8A%E2%80%8D%E0%B6%BB%E0%B7%99%E0%B6%A9%E0%B7%8A%E0%B6%BB%E0%B7%92%E0%B6%9A%E0%B7%8A_%E0%B6%9C%E0%B7%80%E0%B7%94%E0%B7%83%E0%B7%8A" title="කාල් ෆ්රෙඩ්රික් ගවුස් – sinhalščina" lang="si" hreflang="si" data-title="කාල් ෆ්රෙඩ්රික් ගවුස්" data-language-autonym="සිංහල" data-language-local-name="sinhalščina" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – Simple English" lang="en-simple" hreflang="en-simple" data-title="Carl Friedrich Gauss" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F" title="Carl Friedrich Gauß – slovaščina" lang="sk" hreflang="sk" data-title="Carl Friedrich Gauß" data-language-autonym="Slovenčina" data-language-local-name="slovaščina" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – albanščina" lang="sq" hreflang="sq" data-title="Carl Friedrich Gauss" data-language-autonym="Shqip" data-language-local-name="albanščina" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D0%B8%D0%B4%D1%80%D0%B8%D1%85_%D0%93%D0%B0%D1%83%D1%81" title="Карл Фридрих Гаус – srbščina" lang="sr" hreflang="sr" data-title="Карл Фридрих Гаус" data-language-autonym="Српски / srpski" data-language-local-name="srbščina" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – sundanščina" lang="su" hreflang="su" data-title="Carl Friedrich Gauss" data-language-autonym="Sunda" data-language-local-name="sundanščina" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – švedščina" lang="sv" hreflang="sv" data-title="Carl Friedrich Gauss" data-language-autonym="Svenska" data-language-local-name="švedščina" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – svahili" lang="sw" hreflang="sw" data-title="Carl Friedrich Gauss" data-language-autonym="Kiswahili" data-language-local-name="svahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%95%E0%AE%BE%E0%AE%B0%E0%AF%8D%E0%AE%B2%E0%AF%8D_%E0%AE%AA%E0%AE%BF%E0%AE%B0%E0%AF%80%E0%AE%9F%E0%AE%BF%E0%AE%B0%E0%AE%BF%E0%AE%95%E0%AF%8D_%E0%AE%95%E0%AE%BE%E0%AE%B8%E0%AF%8D" title="கார்ல் பிரீடிரிக் காஸ் – tamilščina" lang="ta" hreflang="ta" data-title="கார்ல் பிரீடிரிக் காஸ்" data-language-autonym="தமிழ்" data-language-local-name="tamilščina" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%95%E0%B0%BE%E0%B0%B0%E0%B1%8D%E0%B0%B2%E0%B1%8D_%E0%B0%AB%E0%B1%8D%E0%B0%B0%E0%B1%86%E0%B0%A1%E0%B1%86%E0%B0%B0%E0%B0%BF%E0%B0%95%E0%B1%8D_%E0%B0%97%E0%B0%BE%E0%B0%B8%E0%B1%8D" title="కార్ల్ ఫ్రెడెరిక్ గాస్ – telugijščina" lang="te" hreflang="te" data-title="కార్ల్ ఫ్రెడెరిక్ గాస్" data-language-autonym="తెలుగు" data-language-local-name="telugijščina" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D0%B8%D0%B4%D1%80%D0%B8%D1%85_%D0%93%D0%B0%D1%83%D1%81%D1%81" title="Карл Фридрих Гаусс – tadžiščina" lang="tg" hreflang="tg" data-title="Карл Фридрих Гаусс" data-language-autonym="Тоҷикӣ" data-language-local-name="tadžiščina" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%84%E0%B8%B2%E0%B8%A3%E0%B9%8C%E0%B8%A5_%E0%B8%9F%E0%B8%A3%E0%B8%B5%E0%B8%94%E0%B8%A3%E0%B8%B4%E0%B8%8A_%E0%B9%80%E0%B8%81%E0%B8%B2%E0%B8%AA%E0%B9%8C" title="คาร์ล ฟรีดริช เกาส์ – tajščina" lang="th" hreflang="th" data-title="คาร์ล ฟรีดริช เกาส์" data-language-autonym="ไทย" data-language-local-name="tajščina" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tk mw-list-item"><a href="https://tk.wikipedia.org/wiki/Karl_Fredrih_Gauss" title="Karl Fredrih Gauss – turkmenščina" lang="tk" hreflang="tk" data-title="Karl Fredrih Gauss" data-language-autonym="Türkmençe" data-language-local-name="turkmenščina" class="interlanguage-link-target"><span>Türkmençe</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – tagalogščina" lang="tl" hreflang="tl" data-title="Carl Friedrich Gauss" data-language-autonym="Tagalog" data-language-local-name="tagalogščina" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – turščina" lang="tr" hreflang="tr" data-title="Carl Friedrich Gauss" data-language-autonym="Türkçe" data-language-local-name="turščina" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/Karl_Fridrix_Gauss" title="Karl Fridrix Gauss – tatarščina" lang="tt" hreflang="tt" data-title="Karl Fridrix Gauss" data-language-autonym="Татарча / tatarça" data-language-local-name="tatarščina" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-tum mw-list-item"><a href="https://tum.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – tumbukščina" lang="tum" hreflang="tum" data-title="Carl Friedrich Gauss" data-language-autonym="ChiTumbuka" data-language-local-name="tumbukščina" class="interlanguage-link-target"><span>ChiTumbuka</span></a></li><li class="interlanguage-link interwiki-ug mw-list-item"><a href="https://ug.wikipedia.org/wiki/%DA%AF%D8%A7%D8%A6%DB%87%D8%B3" title="گائۇس – ujgurščina" lang="ug" hreflang="ug" data-title="گائۇس" data-language-autonym="ئۇيغۇرچە / Uyghurche" data-language-local-name="ujgurščina" class="interlanguage-link-target"><span>ئۇيغۇرچە / Uyghurche</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D1%96%D0%B4%D1%80%D1%96%D1%85_%D0%93%D0%B0%D1%83%D1%81%D1%81" title="Карл Фрідріх Гаусс – ukrajinščina" lang="uk" hreflang="uk" data-title="Карл Фрідріх Гаусс" data-language-autonym="Українська" data-language-local-name="ukrajinščina" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%DA%A9%D8%A7%D8%B1%D9%84_%D9%81%D8%B1%DB%8C%DA%88%D8%B1%DA%A9_%DA%AF%D8%A7%D8%A4%D8%B3" title="کارل فریڈرک گاؤس – urdujščina" lang="ur" hreflang="ur" data-title="کارل فریڈرک گاؤس" data-language-autonym="اردو" data-language-local-name="urdujščina" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Karl_Fridrix_Gauss" title="Karl Fridrix Gauss – uzbeščina" lang="uz" hreflang="uz" data-title="Karl Fridrix Gauss" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="uzbeščina" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Gauss_Karl_Fridrih" title="Gauss Karl Fridrih – Veps" lang="vep" hreflang="vep" data-title="Gauss Karl Fridrih" data-language-autonym="Vepsän kel’" data-language-local-name="Veps" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F" title="Carl Friedrich Gauß – vietnamščina" lang="vi" hreflang="vi" data-title="Carl Friedrich Gauß" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamščina" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-vo mw-list-item"><a href="https://vo.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – volapik" lang="vo" hreflang="vo" data-title="Carl Friedrich Gauss" data-language-autonym="Volapük" data-language-local-name="volapik" class="interlanguage-link-target"><span>Volapük</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – varajščina" lang="war" hreflang="war" data-title="Carl Friedrich Gauss" data-language-autonym="Winaray" data-language-local-name="varajščina" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%8D%A1%E5%B0%94%C2%B7%E5%BC%97%E9%87%8C%E5%BE%B7%E9%87%8C%E5%B8%8C%C2%B7%E9%AB%98%E6%96%AF" title="卡尔·弗里德里希·高斯 – wu-kitajščina" lang="wuu" hreflang="wuu" data-title="卡尔·弗里德里希·高斯" data-language-autonym="吴语" data-language-local-name="wu-kitajščina" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xal mw-list-item"><a href="https://xal.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%BB_%D0%A4%D1%80%D0%B8%D0%B4%D1%80%D0%B8%D1%85_%D0%93%D0%B0%D1%83%D1%81%D1%81" title="Карл Фридрих Гаусс – kalmiščina" lang="xal" hreflang="xal" data-title="Карл Фридрих Гаусс" data-language-autonym="Хальмг" data-language-local-name="kalmiščina" class="interlanguage-link-target"><span>Хальмг</span></a></li><li class="interlanguage-link interwiki-xmf mw-list-item"><a href="https://xmf.wikipedia.org/wiki/%E1%83%99%E1%83%90%E1%83%A0%E1%83%9A_%E1%83%A4%E1%83%A0%E1%83%98%E1%83%93%E1%83%A0%E1%83%98%E1%83%AE_%E1%83%92%E1%83%90%E1%83%A3%E1%83%A1%E1%83%98" title="კარლ ფრიდრიხ გაუსი – Mingrelian" lang="xmf" hreflang="xmf" data-title="კარლ ფრიდრიხ გაუსი" data-language-autonym="მარგალური" data-language-local-name="Mingrelian" class="interlanguage-link-target"><span>მარგალური</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A7%D7%90%D7%A8%D7%9C_%D7%A4%D7%A8%D7%99%D7%93%D7%A8%D7%99%D7%9A_%D7%92%D7%90%D7%95%D7%A1" title="קארל פרידריך גאוס – jidiš" lang="yi" hreflang="yi" data-title="קארל פרידריך גאוס" data-language-autonym="ייִדיש" data-language-local-name="jidiš" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-yo badge-Q17437798 badge-goodarticle mw-list-item" title="dober članek"><a href="https://yo.wikipedia.org/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss – jorubščina" lang="yo" hreflang="yo" data-title="Carl Friedrich Gauss" data-language-autonym="Yorùbá" data-language-local-name="jorubščina" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%8D%A1%E7%88%BE%C2%B7%E5%BC%97%E9%87%8C%E5%BE%B7%E9%87%8C%E5%B8%8C%C2%B7%E9%AB%98%E6%96%AF" title="卡爾·弗里德里希·高斯 – kitajščina" lang="zh" hreflang="zh" data-title="卡爾·弗里德里希·高斯" data-language-autonym="中文" data-language-local-name="kitajščina" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E9%AB%98%E6%96%AF" title="高斯 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="高斯" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F" title="Carl Friedrich Gauß – min nan kitajščina" lang="nan" hreflang="nan" data-title="Carl Friedrich Gauß" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="min nan kitajščina" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%8D%A1%E7%88%BE%C2%B7%E5%BC%97%E9%87%8C%E5%BE%B7%E9%87%8C%E5%B8%8C%C2%B7%E9%AB%98%E6%96%AF" title="卡爾·弗里德里希·高斯 – kantonščina" lang="yue" hreflang="yue" data-title="卡爾·弗里德里希·高斯" data-language-autonym="粵語" data-language-local-name="kantonščina" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q6722#sitelinks-wikipedia" title="Uredi medjezikovne povezave" class="wbc-editpage">Uredi povezave</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Imenski prostori"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Carl_Friedrich_Gauss" title="Ogled vsebinske strani [c]" accesskey="c"><span>Stran</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Pogovor:Carl_Friedrich_Gauss" rel="discussion" title="Pogovor o vsebinski strani [t]" accesskey="t"><span>Pogovor</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Spremeni različico jezika" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">slovenščina</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Pogledi"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Carl_Friedrich_Gauss"><span>Preberi</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Carl_Friedrich_Gauss&veaction=edit" title="Uredite to stran [v]" accesskey="v"><span>Uredi stran</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=edit" title="Uredi izvorno kodo te strani [e]" accesskey="e"><span>Uredi kodo</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=history" title="Prejšnje redakcije te strani [h]" accesskey="h"><span>Zgodovina</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Orodja strani"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Orodja" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Orodja</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Orodja</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">prestavi v stransko letvico</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">skrij</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Več možnosti" > <div class="vector-menu-heading"> Dejanja </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Carl_Friedrich_Gauss"><span>Preberi</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Carl_Friedrich_Gauss&veaction=edit" title="Uredite to stran [v]" accesskey="v"><span>Uredi stran</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=edit" title="Uredi izvorno kodo te strani [e]" accesskey="e"><span>Uredi kodo</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=history"><span>Zgodovina</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Splošno </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Posebno:KajSePovezujeSem/Carl_Friedrich_Gauss" title="Seznam vseh strani, ki se povezujejo sem [j]" accesskey="j"><span>Kaj se povezuje sem</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Posebno:RecentChangesLinked/Carl_Friedrich_Gauss" rel="nofollow" title="Zadnje spremembe na straneh, s katerimi se povezuje ta stran [k]" accesskey="k"><span>Povezane spremembe</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Posebno:PosebneStrani" title="Seznam vseh posebnih strani [q]" accesskey="q"><span>Posebne strani</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Carl_Friedrich_Gauss&oldid=6109974" title="Trajna povezava na to redakcijo strani"><span>Trajna povezava</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=info" title="Več informacij o tej strani"><span>Podatki o strani</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Posebno:Navedi&page=Carl_Friedrich_Gauss&id=6109974&wpFormIdentifier=titleform" title="Informacije o tem, kako navajati to stran"><span>Navedba članka</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Posebno:UrlShortener&url=https%3A%2F%2Fsl.wikipedia.org%2Fwiki%2FCarl_Friedrich_Gauss"><span>Pridobi skrajšani URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Posebno:QrCode&url=https%3A%2F%2Fsl.wikipedia.org%2Fwiki%2FCarl_Friedrich_Gauss"><span>Prenesi kodo QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Tiskanje/izvoz </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Posebno:Book&bookcmd=book_creator&referer=Carl+Friedrich+Gauss"><span>Ustvari e-knjigo</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Posebno:DownloadAsPdf&page=Carl_Friedrich_Gauss&action=show-download-screen"><span>Prenesi kot PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Carl_Friedrich_Gauss&printable=yes" title="Različica te strani za tisk [p]" accesskey="p"><span>Različica za tisk</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> V drugih projektih </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Johann_Carl_Friedrich_Gau%C3%9F" hreflang="en"><span>Wikimedijina zbirka</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://sl.wikiquote.org/wiki/Carl_Friedrich_Gauss" hreflang="sl"><span>Wikinavedek</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q6722" title="Povezava na ustrezni predmet v podatkovni shrambi [g]" accesskey="g"><span>Predmet v Wikipodatkih</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Orodja strani"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Videz"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Videz</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">prestavi v stransko letvico</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">skrij</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Iz Wikipedije, proste enciklopedije</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="sl" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r5913888">.mw-parser-output .infobox{border:1px solid #a2a9b1;border-spacing:3px;background-color:#f8f9fa;color:black;margin:0.5em 0 0.5em 1em;padding:0.2em;float:right;clear:right;font-size:88%;line-height:1.5em;width:22em}.mw-parser-output .infobox-header,.mw-parser-output .infobox-label,.mw-parser-output .infobox-above,.mw-parser-output .infobox-full-data,.mw-parser-output .infobox-data,.mw-parser-output .infobox-below,.mw-parser-output .infobox-subheader,.mw-parser-output .infobox-image,.mw-parser-output .infobox-navbar,.mw-parser-output .infobox th,.mw-parser-output .infobox td{vertical-align:top}.mw-parser-output .infobox-label,.mw-parser-output .infobox-data,.mw-parser-output .infobox th,.mw-parser-output .infobox td{text-align:left}.mw-parser-output .infobox .infobox-header,.mw-parser-output .infobox .infobox-subheader,.mw-parser-output .infobox .infobox-image,.mw-parser-output .infobox .infobox-full-data,.mw-parser-output .infobox .infobox-below{text-align:center}.mw-parser-output .infobox .infobox-above,.mw-parser-output .infobox .infobox-title,.mw-parser-output .infobox caption{font-size:125%;font-weight:bold;text-align:center}.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}body.skin-minerva .mw-parser-output .infobox-header,body.skin-minerva .mw-parser-output .infobox-subheader,body.skin-minerva .mw-parser-output .infobox-above,body.skin-minerva .mw-parser-output .infobox-title,body.skin-minerva .mw-parser-output .infobox-image,body.skin-minerva .mw-parser-output .infobox-full-data,body.skin-minerva .mw-parser-output .infobox-below{text-align:center}</style><table class="infobox vcard"><tbody><tr><th colspan="2" class="infobox-above fn" style="background:transparent;text-align:center;">Carl Friedrich Gauss</th></tr><tr><td colspan="2" class="infobox-image"><span class="wikidata-claim" data-wikidata-property-id="P18" data-wikidata-claim-id="q6722$8EF7214D-E55B-4824-9278-3324D38087D1"><span class="wikidata-snak wikidata-main-snak"><span typeof="mw:File"><a href="/wiki/Slika:Carl_Friedrich_Gauss.jpg" class="mw-file-description" title="Portret"><img alt="Portret" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Carl_Friedrich_Gauss.jpg/220px-Carl_Friedrich_Gauss.jpg" decoding="async" width="220" height="283" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Carl_Friedrich_Gauss.jpg/330px-Carl_Friedrich_Gauss.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Carl_Friedrich_Gauss.jpg/440px-Carl_Friedrich_Gauss.jpg 2x" data-file-width="917" data-file-height="1180" /></a></span></span></span><div class="infobox-caption">Carl Friedrich Gauss</div></td></tr><tr><th scope="row" class="infobox-label" style="background:transparent; padding-top:0.225em;line-height:1.1em; padding-right:0.5em;">Rojstvo</th><td class="infobox-data" style="vertical-align:middle;line-height:1.3em;"><span class="wikidata-claim" data-wikidata-property-id="P1477" data-wikidata-claim-id="Q6722$665a8f22-4a1b-ed89-790b-a615ef1777ac"><span class="wikidata-snak wikidata-main-snak"><span class="lang" lang="de">Johann Carl Friedrich Gauß</span></span></span><br /><span class="wikidata-claim" data-wikidata-property-id="P569" data-wikidata-claim-id="q6722$26AD4DF1-40A9-42A6-BCA2-5DA21FC741EE"><span class="wikidata-snak wikidata-main-snak"><span style="white-space:nowrap;"><a href="/wiki/30._april" title="30. april">30. april</a> <a href="/wiki/1777" title="1777">1777</a></span><span style="display:none">(<span class="bday">{{padleft:1777|4|0}}-{{padleft:4|2|0}}-{{padleft:30|2|0}}</span>)</span></span><sup id="cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q36524_citetype_Q17152639_citetype_Q1172284&quot;_data-entity-id=&quot;Q36578&quot;&gt;[http://d-nb.info/gnd/104234644/_Record_#104234644]_//_Gemeinsame_Normdatei&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_2012—2016.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q27302]][[d:Track:Q36578]]&lt;/div&gt;_1-0" class="reference"><a href="#cite_note-&lt;span_class=&quot;wikidata_cite_citetype_Q36524_citetype_Q17152639_citetype_Q1172284&quot;_data-entity-id=&quot;Q36578&quot;&gt;[http://d-nb.info/gnd/104234644/_Record_#104234644]_//_Gemeinsame_Normdatei&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_2012—2016.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q27302]][[d:Track:Q36578]]&lt;/div&gt;-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q36524_citetype_Q7094076_citetype_Q27031827_citetype_Q595971&quot;_data-entity-id=&quot;Q19938912&quot;&gt;[http://data.bnf.fr/ark:/12148/cb11904373v_data.bnf.fr]:_platforma_za_odprte_podatke&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_2011.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q193563]][[d:Track:Q19938912]]&lt;/div&gt;_2-0" class="reference"><a href="#cite_note-&lt;span_class=&quot;wikidata_cite_citetype_Q36524_citetype_Q7094076_citetype_Q27031827_citetype_Q595971&quot;_data-entity-id=&quot;Q19938912&quot;&gt;[http://data.bnf.fr/ark:/12148/cb11904373v_data.bnf.fr]:_platforma_za_odprte_podatke&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_2011.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q193563]][[d:Track:Q19938912]]&lt;/div&gt;-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup><a href="https://www.wikidata.org/wiki/Q6722#P569" class="extiw" title="d:Q6722">[…]</a></sup></span><br /><span class="wikidata-claim" data-wikidata-property-id="P19" data-wikidata-claim-id="q6722$0372CF0B-C673-4BB1-936E-BE1C66CADAD0"><span class="wikidata-snak wikidata-main-snak"><a href="/wiki/Braunschweig" title="Braunschweig">Braunschweig</a></span>, <span class="wikidata-snak" data-wikidata-hash="70182e860dc3b7c540066001e6f392ff716f9450"><span class="iw" data-title="Kneževina Braunschweig - Wolfenbüttel"><a href="/w/index.php?title=Kne%C5%BEevina_Braunschweig_-_Wolfenb%C3%BCttel&action=edit&redlink=1" class="new" title="Kneževina Braunschweig - Wolfenbüttel (stran ne obstaja)">Kneževina Braunschweig - Wolfenbüttel</a><sup class="noprint"><a href="https://www.wikidata.org/wiki/Q830084" class="extiw" title="d:Q830084"><span style="font-style:normal; font-weight:normal;" title="Članek «Kneževina Braunschweig - Wolfenbüttel» v Wikipodatkih">[d]</span></a></sup></span></span>, <span class="wikidata-snak" data-wikidata-hash="1a3215f93c2ae7d06f17c76aa960547bbd849ffb"><a href="/wiki/Sveto_rimsko_cesarstvo" title="Sveto rimsko cesarstvo">Sveto rimsko cesarstvo</a></span><sup id="cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q3331189&quot;_data-entity-id=&quot;Q17378135&quot;&gt;Гаусс_Карл_Фридрих_//_[[:ru:Большая_советская_энциклопедия_(третье_издание)|Большая_советская_энциклопедия]]:_[в_30_т.]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_3-е_изд._—_&lt;span_title=&quot;Moskva&quot;_style=&quot;border-bottom:_1px_dotted;_cursor:_help;_white-space:_nowrap&quot;&gt;Moskva&lt;/span&gt;:_[[:ru:Большая_российская_энциклопедия_(издательство)|Советская_энциклопедия]],_1971._—_Т.&amp;nbsp;6_:_Газлифт_—_Гоголево._—_С.&amp;nbsp;144-145.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q5061737]][[d:Track:Q17378135]]&lt;/div&gt;_4-0" class="reference"><a href="#cite_note-&lt;span_class=&quot;wikidata_cite_citetype_Q3331189&quot;_data-entity-id=&quot;Q17378135&quot;&gt;Гаусс_Карл_Фридрих_//_[[:ru:Большая_советская_энциклопедия_(третье_издание)|Большая_советская_энциклопедия]]:_[в_30_т.]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_3-е_изд._—_&lt;span_title=&quot;Moskva&quot;_style=&quot;border-bottom:_1px_dotted;_cursor:_help;_white-space:_nowrap&quot;&gt;Moskva&lt;/span&gt;:_[[:ru:Большая_российская_энциклопедия_(издательство)|Советская_энциклопедия]],_1971._—_Т.&amp;nbsp;6_:_Газлифт_—_Гоголево._—_С.&amp;nbsp;144-145.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q5061737]][[d:Track:Q17378135]]&lt;/div&gt;-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q47461344_citetype_Q1787111&quot;_data-entity-id=&quot;Q590208&quot;&gt;[[:de:s:Allgemeine_Deutsche_Biographie|Allgemeine_Deutsche_Biographie]]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_[[:Leipzig|L]]:_[[:de:Duncker_&amp;_Humblot|Duncker_&amp;_Humblot]],_1875.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q316626]][[d:Track:Q2818964]][[d:Track:Q2079]][[d:Track:Q590208]]&lt;/div&gt;_3-1" class="reference"><a href="#cite_note-&lt;span_class=&quot;wikidata_cite_citetype_Q47461344_citetype_Q1787111&quot;_data-entity-id=&quot;Q590208&quot;&gt;[[:de:s:Allgemeine_Deutsche_Biographie|Allgemeine_Deutsche_Biographie]]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_[[:Leipzig|L]]:_[[:de:Duncker_&amp;_Humblot|Duncker_&amp;_Humblot]],_1875.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q316626]][[d:Track:Q2818964]][[d:Track:Q2079]][[d:Track:Q590208]]&lt;/div&gt;-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q35127&quot;_data-entity-id=&quot;Q107212659&quot;&gt;www.accademiadellescienze.it&lt;span_class=&quot;wef_low_priority_links&quot;&gt;&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q107212659]]&lt;/div&gt;_5-0" class="reference"><a href="#cite_note-&lt;span_class=&quot;wikidata_cite_citetype_Q35127&quot;_data-entity-id=&quot;Q107212659&quot;&gt;www.accademiadellescienze.it&lt;span_class=&quot;wef_low_priority_links&quot;&gt;&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q107212659]]&lt;/div&gt;-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></span></td></tr><tr><th scope="row" class="infobox-label" style="background:transparent; padding-top:0.225em;line-height:1.1em; padding-right:0.5em;">Smrt</th><td class="infobox-data" style="vertical-align:middle;line-height:1.3em;"><span class="wikidata-claim" data-wikidata-property-id="P570" data-wikidata-claim-id="q6722$595055D1-12A7-4226-A332-4E826539ADC6"><span class="wikidata-snak wikidata-main-snak"><span style="white-space:nowrap;"><a href="/wiki/23._februar" title="23. februar">23. februar</a> <a href="/wiki/1855" title="1855">1855</a></span><span style="display:none">(<span class="dday">{{padleft:1855|4|0}}-{{padleft:2|2|0}}-{{padleft:23|2|0}}</span>)</span></span><sup id="cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q36524_citetype_Q17152639_citetype_Q1172284&quot;_data-entity-id=&quot;Q36578&quot;&gt;[http://d-nb.info/gnd/104234644/_Record_#104234644]_//_Gemeinsame_Normdatei&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_2012—2016.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q27302]][[d:Track:Q36578]]&lt;/div&gt;_1-1" class="reference"><a href="#cite_note-&lt;span_class=&quot;wikidata_cite_citetype_Q36524_citetype_Q17152639_citetype_Q1172284&quot;_data-entity-id=&quot;Q36578&quot;&gt;[http://d-nb.info/gnd/104234644/_Record_#104234644]_//_Gemeinsame_Normdatei&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_2012—2016.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q27302]][[d:Track:Q36578]]&lt;/div&gt;-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q36524_citetype_Q7094076_citetype_Q27031827_citetype_Q595971&quot;_data-entity-id=&quot;Q19938912&quot;&gt;[http://data.bnf.fr/ark:/12148/cb11904373v_data.bnf.fr]:_platforma_za_odprte_podatke&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_2011.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q193563]][[d:Track:Q19938912]]&lt;/div&gt;_2-1" class="reference"><a href="#cite_note-&lt;span_class=&quot;wikidata_cite_citetype_Q36524_citetype_Q7094076_citetype_Q27031827_citetype_Q595971&quot;_data-entity-id=&quot;Q19938912&quot;&gt;[http://data.bnf.fr/ark:/12148/cb11904373v_data.bnf.fr]:_platforma_za_odprte_podatke&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_2011.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q193563]][[d:Track:Q19938912]]&lt;/div&gt;-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup><a href="https://www.wikidata.org/wiki/Q6722#P570" class="extiw" title="d:Q6722">[…]</a></sup> <span style="white-space:nowrap;">(77 let)</span></span><br /><span class="wikidata-claim" data-wikidata-property-id="P20" data-wikidata-claim-id="q6722$D92A9C14-14E3-4319-8A3E-577E8F0FB6FB"><span class="wikidata-snak wikidata-main-snak"><a href="/wiki/G%C3%B6ttingen" title="Göttingen">Göttingen</a></span>, <span class="wikidata-snak" data-wikidata-hash="99fe20c31e877b007a75c6f5d875c0c537dabefa"><span class="iw" data-title="Hanoversko"><a href="/w/index.php?title=Hanoversko&action=edit&redlink=1" class="new" title="Hanoversko (stran ne obstaja)">Hanoversko</a><sup class="noprint"><a href="https://www.wikidata.org/wiki/Q164079" class="extiw" title="d:Q164079"><span style="font-style:normal; font-weight:normal;" title="Članek «Hanoversko» v Wikipodatkih">[d]</span></a></sup></span></span>, <span class="wikidata-snak" data-wikidata-hash="ea2069d23bdd5d223661cda42cd51ac3ca40478f"><a href="/wiki/Nem%C5%A1ka_zveza" title="Nemška zveza">Nemška zveza</a></span><sup id="cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q3331189&quot;_data-entity-id=&quot;Q17378135&quot;&gt;Гаусс_Карл_Фридрих_//_[[:ru:Большая_советская_энциклопедия_(третье_издание)|Большая_советская_энциклопедия]]:_[в_30_т.]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_3-е_изд._—_&lt;span_title=&quot;Moskva&quot;_style=&quot;border-bottom:_1px_dotted;_cursor:_help;_white-space:_nowrap&quot;&gt;Moskva&lt;/span&gt;:_[[:ru:Большая_российская_энциклопедия_(издательство)|Советская_энциклопедия]],_1971._—_Т.&amp;nbsp;6_:_Газлифт_—_Гоголево._—_С.&amp;nbsp;144-145.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q5061737]][[d:Track:Q17378135]]&lt;/div&gt;_4-1" class="reference"><a href="#cite_note-&lt;span_class=&quot;wikidata_cite_citetype_Q3331189&quot;_data-entity-id=&quot;Q17378135&quot;&gt;Гаусс_Карл_Фридрих_//_[[:ru:Большая_советская_энциклопедия_(третье_издание)|Большая_советская_энциклопедия]]:_[в_30_т.]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_3-е_изд._—_&lt;span_title=&quot;Moskva&quot;_style=&quot;border-bottom:_1px_dotted;_cursor:_help;_white-space:_nowrap&quot;&gt;Moskva&lt;/span&gt;:_[[:ru:Большая_российская_энциклопедия_(издательство)|Советская_энциклопедия]],_1971._—_Т.&amp;nbsp;6_:_Газлифт_—_Гоголево._—_С.&amp;nbsp;144-145.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q5061737]][[d:Track:Q17378135]]&lt;/div&gt;-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q47461344_citetype_Q1787111&quot;_data-entity-id=&quot;Q590208&quot;&gt;[[:de:s:Allgemeine_Deutsche_Biographie|Allgemeine_Deutsche_Biographie]]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_[[:Leipzig|L]]:_[[:de:Duncker_&amp;_Humblot|Duncker_&amp;_Humblot]],_1875.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q316626]][[d:Track:Q2818964]][[d:Track:Q2079]][[d:Track:Q590208]]&lt;/div&gt;_3-3" class="reference"><a href="#cite_note-&lt;span_class=&quot;wikidata_cite_citetype_Q47461344_citetype_Q1787111&quot;_data-entity-id=&quot;Q590208&quot;&gt;[[:de:s:Allgemeine_Deutsche_Biographie|Allgemeine_Deutsche_Biographie]]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_[[:Leipzig|L]]:_[[:de:Duncker_&amp;_Humblot|Duncker_&amp;_Humblot]],_1875.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q316626]][[d:Track:Q2818964]][[d:Track:Q2079]][[d:Track:Q590208]]&lt;/div&gt;-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup><a href="https://www.wikidata.org/wiki/Q6722#P20" class="extiw" title="d:Q6722">[…]</a></sup></span></td></tr><tr><th scope="row" class="infobox-label" style="background:transparent; padding-top:0.225em;line-height:1.1em; padding-right:0.5em;">Bivališče</th><td class="infobox-data" style="vertical-align:middle;line-height:1.3em;">Nemčija</td></tr><tr><th scope="row" class="infobox-label" style="background:transparent; padding-top:0.225em;line-height:1.1em; padding-right:0.5em;">Narodnost</th><td class="infobox-data" style="vertical-align:middle;line-height:1.3em;"><span class="flagicon"><span class="mw-image-border" typeof="mw:File"><a href="/wiki/Nem%C4%8Dija" title="Nemčija"><img alt="Nemčija" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Flag_of_Germany.svg/23px-Flag_of_Germany.svg.png" decoding="async" width="23" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Flag_of_Germany.svg/35px-Flag_of_Germany.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Flag_of_Germany.svg/46px-Flag_of_Germany.svg.png 2x" data-file-width="1000" data-file-height="600" /></a></span></span> <a href="/wiki/Nemci" title="Nemci">nemška</a></td></tr><tr><th scope="row" class="infobox-label" style="background:transparent; padding-top:0.225em;line-height:1.1em; padding-right:0.5em;">Področja</th><td class="infobox-data category" style="vertical-align:middle;line-height:1.3em;"><a href="/wiki/Matematika" title="Matematika">matematika</a>, <a href="/wiki/Fizika" title="Fizika">fizika</a>, <a href="/wiki/Astronomija" title="Astronomija">astronomija</a>, <a href="/wiki/Geodezija" title="Geodezija">geodezija</a></td></tr><tr><th scope="row" class="infobox-label" style="background:transparent; padding-top:0.225em;line-height:1.1em; padding-right:0.5em;">Ustanove</th><td class="infobox-data" style="vertical-align:middle;line-height:1.3em;"><a href="/wiki/Univerza_v_G%C3%B6ttingenu" title="Univerza v Göttingenu">Univerza v Göttingenu</a></td></tr><tr><th scope="row" class="infobox-label" style="background:transparent; padding-top:0.225em;line-height:1.1em; padding-right:0.5em;"><span class="nowrap"><a href="/wiki/Alma_mater" title="Alma mater">Alma mater</a></span></th><td class="infobox-data" style="vertical-align:middle;line-height:1.3em;"><a href="/w/index.php?title=Univerza_v_Helmstedtu&action=edit&redlink=1" class="new" title="Univerza v Helmstedtu (stran ne obstaja)">Univerza v Helmstedtu</a></td></tr><tr><th scope="row" class="infobox-label" style="background:transparent; padding-top:0.225em;line-height:1.1em; padding-right:0.5em;">Mentor doktorske<br />disertacije</th><td class="infobox-data" style="vertical-align:middle;line-height:1.3em;"><a href="/w/index.php?title=Johann_Friedrich_Pfaff&action=edit&redlink=1" class="new" title="Johann Friedrich Pfaff (stran ne obstaja)">Johann Friedrich Pfaff</a></td></tr><tr><th scope="row" class="infobox-label" style="background:transparent; padding-top:0.225em;line-height:1.1em; padding-right:0.5em;">Drugi študijski mentorji</th><td class="infobox-data" style="vertical-align:middle;line-height:1.3em;"><a href="/w/index.php?title=Johann_Christian_Martin_Bartels&action=edit&redlink=1" class="new" title="Johann Christian Martin Bartels (stran ne obstaja)">Johann Christian Martin Bartels</a></td></tr><tr><th scope="row" class="infobox-label" style="background:transparent; padding-top:0.225em;line-height:1.1em; padding-right:0.5em;">Doktorski študenti</th><td class="infobox-data" style="vertical-align:middle;line-height:1.3em;"><a href="/w/index.php?title=Christoph_Gudermann&action=edit&redlink=1" class="new" title="Christoph Gudermann (stran ne obstaja)">Christoph Gudermann</a> <br /> <a href="/w/index.php?title=Christian_Ludwig_Gerling&action=edit&redlink=1" class="new" title="Christian Ludwig Gerling (stran ne obstaja)">Christian Ludwig Gerling</a> <br /> <a href="/wiki/Julius_Wilhelm_Richard_Dedekind" title="Julius Wilhelm Richard Dedekind">Julius Wilhelm Richard Dedekind</a> <br /> <a href="/w/index.php?title=Johann_Benedict_Listing&action=edit&redlink=1" class="new" title="Johann Benedict Listing (stran ne obstaja)">Johann Benedict Listing</a> <br /> <a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a> <br /> <a href="/wiki/Christian_Heinrich_Friedrich_Peters" title="Christian Heinrich Friedrich Peters">Christian Heinrich Friedrich Peters</a> <br /> <a href="/w/index.php?title=Moritz_Benedikt_Cantor&action=edit&redlink=1" class="new" title="Moritz Benedikt Cantor (stran ne obstaja)">Moritz Benedikt Cantor</a></td></tr><tr><th scope="row" class="infobox-label" style="background:transparent; padding-top:0.225em;line-height:1.1em; padding-right:0.5em;">Drugi znani študenti</th><td class="infobox-data" style="vertical-align:middle;line-height:1.3em;"><a href="/wiki/Johann_Franz_Encke" title="Johann Franz Encke">Johann Franz Encke</a> <br /> <a href="/wiki/Peter_Gustav_Lejeune_Dirichlet" class="mw-redirect" title="Peter Gustav Lejeune Dirichlet">Peter Gustav Lejeune Dirichlet</a> <br /> <a href="/w/index.php?title=Ferdinand_Gotthold_Max_Eisenstein&action=edit&redlink=1" class="new" title="Ferdinand Gotthold Max Eisenstein (stran ne obstaja)">Ferdinand Gotthold Max Eisenstein</a> <br /> <a href="/w/index.php?title=Carl_Wolfgang_Benjamin_Goldschmidt&action=edit&redlink=1" class="new" title="Carl Wolfgang Benjamin Goldschmidt (stran ne obstaja)">Carl Wolfgang Benjamin Goldschmidt</a> <br /> <a href="/w/index.php?title=Ernst_Eduard_Kummer&action=edit&redlink=1" class="new" title="Ernst Eduard Kummer (stran ne obstaja)">Ernst Eduard Kummer</a> <br /> <a href="/wiki/August_Ferdinand_M%C3%B6bius" title="August Ferdinand Möbius">August Ferdinand Möbius</a> <br /> <a href="/w/index.php?title=L._C._Schn%C3%BCrlein&action=edit&redlink=1" class="new" title="L. C. Schnürlein (stran ne obstaja)">L. C. Schnürlein</a> <br /> <a href="/w/index.php?title=Julius_Weisbach&action=edit&redlink=1" class="new" title="Julius Weisbach (stran ne obstaja)">Julius Weisbach</a></td></tr><tr><th scope="row" class="infobox-label" style="background:transparent; padding-top:0.225em;line-height:1.1em; padding-right:0.5em;">Poznan po</th><td class="infobox-data" style="vertical-align:middle;line-height:1.3em;"><a href="/wiki/Gaussova_gravitacijska_konstanta" title="Gaussova gravitacijska konstanta">Gaussova gravitacijska konstanta</a> <br /> <a href="/wiki/Gaussov_sistem_enot" title="Gaussov sistem enot">Gaussov sistem enot</a> <br /> raziskave elektromegnetizma <br /> <a href="/wiki/Gaussova_ukrivljenost" title="Gaussova ukrivljenost">Gaussova ukrivljenost</a> ploskve <br /> <a href="/wiki/Gaussova_eliminacijska_metoda" title="Gaussova eliminacijska metoda">Gaussova eliminacijska metoda</a></td></tr><tr><th scope="row" class="infobox-label" style="background:transparent; padding-top:0.225em;line-height:1.1em; padding-right:0.5em;">Pomembne nagrade</th><td class="infobox-data" style="vertical-align:middle;line-height:1.3em;"><a href="/w/index.php?title=Lalandova_nagrada&action=edit&redlink=1" class="new" title="Lalandova nagrada (stran ne obstaja)">Lalandova nagrada</a> <span style="font-size:85%;">(1810)</span> <br /> <a href="/wiki/Copleyeva_medalja" class="mw-redirect" title="Copleyeva medalja">Copleyeva medalja</a> <span style="font-size:85%;">(1838)</span></td></tr><tr><th scope="row" class="infobox-label" style="background:transparent; padding-top:0.225em;line-height:1.1em; padding-right:0.5em;">Podpis</th><td class="infobox-data" style="vertical-align:middle;line-height:1.3em;"><span class="wikidata-claim" data-wikidata-property-id="P109" data-wikidata-claim-id="q6722$BCCC5B90-51A1-41A8-800E-648111252D6D"><span class="wikidata-snak wikidata-main-snak"><span typeof="mw:File"><a href="/wiki/Slika:Carl_Friedrich_Gau%C3%9F_signature.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Carl_Friedrich_Gau%C3%9F_signature.svg/150px-Carl_Friedrich_Gau%C3%9F_signature.svg.png" decoding="async" width="150" height="134" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Carl_Friedrich_Gau%C3%9F_signature.svg/225px-Carl_Friedrich_Gau%C3%9F_signature.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Carl_Friedrich_Gau%C3%9F_signature.svg/300px-Carl_Friedrich_Gau%C3%9F_signature.svg.png 2x" data-file-width="847" data-file-height="756" /></a></span></span></span></td></tr></tbody></table> <p><b>Johann Carl Friedrich Gauss</b> (<a href="/wiki/Nem%C5%A1%C4%8Dina" title="Nemščina">nemško</a> <i lang="de">Gauß</i>), <a href="/wiki/Nemci" title="Nemci">nemški</a> <a href="/wiki/Matematik" class="mw-redirect" title="Matematik">matematik</a>, <a href="/wiki/Astronom" title="Astronom">astronom</a>, <a href="/wiki/Fizik" title="Fizik">fizik</a> in <a href="/wiki/Geodet" class="mw-redirect" title="Geodet">geodet</a>, * <a href="/wiki/30._april" title="30. april">30. april</a> <a href="/wiki/1777" title="1777">1777</a>, <a href="/wiki/Braunschweig" title="Braunschweig">Braunschweig</a>, <a href="/wiki/Nem%C4%8Dija" title="Nemčija">Nemčija</a>, † <a href="/wiki/23._februar" title="23. februar">23. februar</a> <a href="/wiki/1855" title="1855">1855</a>, <a href="/wiki/G%C3%B6ttingen" title="Göttingen">Göttingen</a>, Nemčija. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Življenje_in_delo"><span id=".C5.BDivljenje_in_delo"></span>Življenje in delo</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Carl_Friedrich_Gauss&veaction=edit&section=1" title="Uredi razdelek: Življenje in delo" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=edit&section=1" title="Urejanje izvorne kode razdelka: Življenje in delo"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Mladost">Mladost</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Carl_Friedrich_Gauss&veaction=edit&section=2" title="Uredi razdelek: Mladost" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=edit&section=2" title="Urejanje izvorne kode razdelka: Mladost"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Gaussova <a href="/wiki/Dru%C5%BEina" title="Družina">družina</a> je bila <a href="/wiki/Rev%C5%A1%C4%8Dina" title="Revščina">revna</a>. Starša nista imela nobene izobrazbe. Bil je edini otrok <a href="/wiki/Vrtnar" class="mw-redirect" title="Vrtnar">vrtnarja</a>, <a href="/w/index.php?title=Zidarstvo&action=edit&redlink=1" class="new" title="Zidarstvo (stran ne obstaja)">zidarskega</a> <a href="/w/index.php?title=Mojster&action=edit&redlink=1" class="new" title="Mojster (stran ne obstaja)">mojstra</a> in dninarja. Oče je pozneje vodil <a href="/w/index.php?title=Ra%C4%8Dunovodstvo&action=edit&redlink=1" class="new" title="Računovodstvo (stran ne obstaja)">računovodstvo</a> nekemu trgovcu. Mati je bila iz <a href="/wiki/Kamnose%C5%A1tvo" title="Kamnoseštvo">kamnoseške</a> družine in je pred poroko služila kot dekla. </p><p>Že kot otrok je veljal za matematično čudo. Imel je izreden spomin in sposobnost za računanje na pamet. Ljudje s temi sposobnostmi so velikokrat umsko zgolj povprečni, toda Gauss je bil nedvomno <a href="/wiki/Genij" title="Genij">genij</a>. Kot <a href="/wiki/%C4%8Cude%C5%BEni_otrok" title="Čudežni otrok">čudežni otrok</a> je že trileten popravljal očetove seštevke računov za razdelitev plač in je vse življenje držal v glavi na kupe raznih številskih podatkov. Nekateri ga prištevajo med tri največje matematike vseh časov; druga dva naj bi bila <a href="/wiki/Arhimed" title="Arhimed">Arhimed</a> in <a href="/wiki/Isaac_Newton" title="Isaac Newton">Newton</a>. Sodobniki so ga imenovali »prvak matematikov« (<i>princeps mathematicorum</i>). </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Slika:Braunschweig_Brunswick_Geburtshaus_CF_Gauss_(1914).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Braunschweig_Brunswick_Geburtshaus_CF_Gauss_%281914%29.jpg/200px-Braunschweig_Brunswick_Geburtshaus_CF_Gauss_%281914%29.jpg" decoding="async" width="200" height="301" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Braunschweig_Brunswick_Geburtshaus_CF_Gauss_%281914%29.jpg/300px-Braunschweig_Brunswick_Geburtshaus_CF_Gauss_%281914%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/36/Braunschweig_Brunswick_Geburtshaus_CF_Gauss_%281914%29.jpg/400px-Braunschweig_Brunswick_Geburtshaus_CF_Gauss_%281914%29.jpg 2x" data-file-width="500" data-file-height="753" /></a><figcaption>Gaussova rojstna hiša na Wilhelmstrasse 30, v celoti porušena med <a href="/wiki/Druga_svetovna_vojna" title="Druga svetovna vojna">2. svetovno vojno</a> </figcaption></figure> <p>Imel je srečo, da je nanj postal pozoren učitelj v šoli in zanj celo preskrbel posebno računico, ker je običajno snov Gauss takoj obvladal. Njegova nadarjenost ni bila skrita in deželni knez, braunšvinški vojvoda Ferdinand, mu je omogočil šolanje. To za čas prosvetljenega absolutizma ni bilo tako nenavadno. Zanimivo pa je, da je Gauss dobival iz tega vira podporo vse do svojega 30. leta, in to tudi v časih, ko je bila deželna blagajna skoraj prazna. </p><p>Znana zgodba pravi, da je v <a href="/wiki/Osnovna_%C5%A1ola" title="Osnovna šola">osnovni šoli</a> njegov učitelj <a href="/w/index.php?title=J.G._B%C3%BCttner&action=edit&redlink=1" class="new" title="J.G. Büttner (stran ne obstaja)">Büttner</a> hotel zamotiti učence in jim dal nalogo naj seštejejo <a href="/wiki/Celo_%C5%A1tevilo" title="Celo število">cela števila</a> od 1 do 100. Mladi Gauss je prišel do rešitve v trenutku v začudenje učitelju in njegovemu pomočniku <a href="/w/index.php?title=Johann_Christian_Martin_Bartels&action=edit&redlink=1" class="new" title="Johann Christian Martin Bartels (stran ne obstaja)">Bartelsu</a>. Gauss je uvidel, da so vsote paroma členov z nasprotnega konca <a href="/wiki/Zaporedje" title="Zaporedje">zaporedja</a> enake vmesnim vsotam: 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101, kar da končno vsoto 50 · 101 = 5050. J. Rotman v svoji knjigi <i>A first course in Abstract Algebra</i> navaja, da tej zgodbi ne verjame. Vsoto prvih sto <a href="/wiki/Naravno_%C5%A1tevilo" title="Naravno število">naravnih števil</a> je poznal že <a href="/wiki/Ibn_al-Haitam" class="mw-redirect" title="Ibn al-Haitam">al-Haitam</a>. </p><p>Leta 1792 je kot 15-leten zapisal: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\;{\hbox{pod}}\;\;\xi \,(=\infty ){\frac {\xi }{{\hbox{l}}\,\xi }}\!\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>pod</mtext> </mstyle> </mrow> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>ξ<!-- ξ --></mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mo>=</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ξ<!-- ξ --></mi> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>l</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> <mi>ξ<!-- ξ --></mi> </mrow> </mfrac> </mrow> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\;{\hbox{pod}}\;\;\xi \,(=\infty ){\frac {\xi }{{\hbox{l}}\,\xi }}\!\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e76fb032ed044f5bfcf70b4df3f4313c7e68aa95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-left: -0.089ex; width:18.492ex; height:5.843ex;" alt="{\displaystyle p\;{\hbox{pod}}\;\;\xi \,(=\infty ){\frac {\xi }{{\hbox{l}}\,\xi }}\!\,.}"></span></dd></dl> <p>Če »<a href="/wiki/Pra%C5%A1tevilo" title="Praštevilo"><i>p</i></a> pod ξ« nadomestimo z enakovredno vrednostjo π (ξ), znak lξ z ln ξ in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (=\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>=</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (=\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c269d51779c44979d9622b789ec12c06f26c4b2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.586ex; height:2.843ex;" alt="{\displaystyle (=\infty )}"></span> z besedilom <i> za velike</i> ξ, dobimo njegovo mladostno oceno za aritmetično funkcijo π (ξ), <a href="/wiki/%C5%A0tevilo_pra%C5%A1tevil" title="Število praštevil">število praštevil</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi (\xi )\cong {\frac {\xi }{\ln \xi }}\quad {\hbox{za velike}}\;\;\xi \!\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>≅<!-- ≅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ξ<!-- ξ --></mi> <mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi>ξ<!-- ξ --></mi> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>za velike</mtext> </mstyle> </mrow> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>ξ<!-- ξ --></mi> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi (\xi )\cong {\frac {\xi }{\ln \xi }}\quad {\hbox{za velike}}\;\;\xi \!\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/631053436a9dc869c466729c3e9d43c590c922c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.341ex; height:5.843ex;" alt="{\displaystyle \pi (\xi )\cong {\frac {\xi }{\ln \xi }}\quad {\hbox{za velike}}\;\;\xi \!\,,}"></span></dd></dl> <p>z deljenjem s ξ pa obliko <a href="/wiki/Pra%C5%A1tevilski_izrek" title="Praštevilski izrek">praštevilskega izreka</a>. Očitno je mladi Gauss že razumel to lastnost praštevil, zakaj pa je ni razvil, najverjetneje ne bomo nikoli izvedeli. Pozneje je domneval, da velja: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi (\xi )\cong \int _{2}^{\xi }{\frac {\mathrm {d} t}{\log t}}\!\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>≅<!-- ≅ --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ξ<!-- ξ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> <mrow> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>t</mi> </mrow> </mfrac> </mrow> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi (\xi )\cong \int _{2}^{\xi }{\frac {\mathrm {d} t}{\log t}}\!\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba51edea80e8f6174e890b8f47e3ad3b1a7c4698" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:16.763ex; height:6.343ex;" alt="{\displaystyle \pi (\xi )\cong \int _{2}^{\xi }{\frac {\mathrm {d} t}{\log t}}\!\,.}"></span></dd></dl> <p>Te ocene so pozneje dali tudi <a href="/wiki/Pafnuti_Lvovi%C4%8D_%C4%8Cebi%C5%A1ov" title="Pafnuti Lvovič Čebišov">Čebišov</a> in drugi. </p> <div class="mw-heading mw-heading3"><h3 id="Študij"><span id=".C5.A0tudij"></span>Študij</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Carl_Friedrich_Gauss&veaction=edit&section=3" title="Uredi razdelek: Študij" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=edit&section=3" title="Urejanje izvorne kode razdelka: Študij"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Po končanem kolegiju na Karolinški višji šoli je Gauss 18-leten odšel na univerzo v bližnji Göttingen. V treh letih njegovega šolanja na tej šoli so profesorji morali priznati, da jih je pustil v znanju daleč zadaj. Nekaj časa je nihal med študijem matematike in filologije, saj je bil zelo nadarjen tudi za jezike. V tem času je očitno začel z intenzivnim matematičnim raziskovanjem in kmalu prišel do zelo globokih rezultatov. Leta 1795 je neodvisno od <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Eulerja</a> odkril <a href="/w/index.php?title=Kvadratni_recipro%C4%8Dnostni_zakon&action=edit&redlink=1" class="new" title="Kvadratni recipročnostni zakon (stran ne obstaja)">kvadratni recipročnostni zakon</a> v teoriji števil: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}\;{\hbox{mod}}\;p=q\!\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>mod</mtext> </mstyle> </mrow> <mspace width="thickmathspace" /> <mi>p</mi> <mo>=</mo> <mi>q</mi> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}\;{\hbox{mod}}\;p=q\!\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01a79cc14366355dbfcdf3c42ed4ec721f90e7b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.049ex; height:3.009ex;" alt="{\displaystyle x^{2}\;{\hbox{mod}}\;p=q\!\,.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Raziskovanje_v_matematiki">Raziskovanje v matematiki</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Carl_Friedrich_Gauss&veaction=edit&section=4" title="Uredi razdelek: Raziskovanje v matematiki" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=edit&section=4" title="Urejanje izvorne kode razdelka: Raziskovanje v matematiki"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Slika:Disqvisitiones-800.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Disqvisitiones-800.jpg/200px-Disqvisitiones-800.jpg" decoding="async" width="200" height="335" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Disqvisitiones-800.jpg/300px-Disqvisitiones-800.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Disqvisitiones-800.jpg/400px-Disqvisitiones-800.jpg 2x" data-file-width="478" data-file-height="800" /></a><figcaption>Naslovnica prve izdaje Gaussovega dela <i><a href="/w/index.php?title=Disquisitiones_arithmeticae&action=edit&redlink=1" class="new" title="Disquisitiones arithmeticae (stran ne obstaja)">Disquisitiones arithmeticae</a></i> iz leta 1801</figcaption></figure> <p>Po več letih študija v Göttingenu se je leta 1798 vrnil v rodni Braunschweig. Po želji svojega pokrovitelja je poslal <a href="/w/index.php?title=Univerza_v_Helmstadtu&action=edit&redlink=1" class="new" title="Univerza v Helmstadtu (stran ne obstaja)">Univerzi v Helmstadtu</a> disertacijo in v odsotnosti dobil <a href="/wiki/Doktorat" title="Doktorat">doktorski</a> naslov. V disertaciji je podal dokaz osnovnega izreka algebre, ki pravi, da ima vsak nekonstanten <a href="/wiki/Polinom" title="Polinom">polinom</a> s kompleksnimi <a href="/wiki/Koeficient" title="Koeficient">koeficienti</a> vsaj eno kompleksno <a href="/wiki/Ni%C4%8Dla_funkcije" title="Ničla funkcije">ničlo</a>. Pozneje je izdelal še več dokazov tega izreka. Korenine samega izreka segajo do Alberta Girarda, založnika <a href="/wiki/Simon_Stevin" title="Simon Stevin">Stevinovih</a> del <i>Invention nouvelle en algebre</i> iz leta 1626, leta 1746 pa ga je <a href="/wiki/Jean_le_Rond_d%27Alembert" title="Jean le Rond d'Alembert">d'Alembert</a> skušal dokazati. Gaussu je bil ta izrek všeč in je pozneje podal še dva dokaza, a leta 1846 se je vrnil na svoj prvi dokaz. Pri tretjem dokazu leta 1816 je uporabil kompleksne <a href="/wiki/Integral" title="Integral">integrale</a>. Iz njega je razvidno, kako zgodaj je Gauss obvladal teorijo <a href="/wiki/Kompleksno_%C5%A1tevilo" title="Kompleksno število">kompleksnih števil</a>. </p><p>V Braunschweigu se je poročil in dobil hčerko in sina. Pisati je začel svojo prvo knjigo, <i><a href="/w/index.php?title=Disquisitiones_arithmeticae&action=edit&redlink=1" class="new" title="Disquisitiones arithmeticae (stran ne obstaja)">Disquisitiones arithmeticae</a></i>, svoj <a href="/w/index.php?title=Magnum_opus&action=edit&redlink=1" class="new" title="Magnum opus (stran ne obstaja)">magnum opus</a>, in jo dokončal leta 1798, vendar je izšla leta 1801. Pisana je bila v latinščini in jo še danes ponatiskujejo. Vsebovala je izredno pomembne rezultate iz <a href="/wiki/Teorija_%C5%A1tevil" title="Teorija števil">teorije števil</a> in <a href="/wiki/Algebra" title="Algebra">algebre</a>. V <i>Disquisitiones arithmeticae</i> je Gauss zbral vsa mojstrska dela svojih predhodnikov iz teorije števil in ga tako obogatil, da imajo nekateri izdajo te knjige za začetek sodobne teorije števil. <a href="/wiki/Gaussovo_pra%C5%A1tevilo" title="Gaussovo praštevilo">Gaussova praštevila</a> so števila oblike <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8e2d6ae605ac99baf648b70d204a3c9803a4d9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.384ex; height:2.509ex;" alt="{\displaystyle 2^{n}+1}"></span> pri celem <i>n</i>. Osrednje mesto v knjigi zavzema teorija kvadratnih kongruenc, form in ostankov, višek pa doseže z zakonom o kvadratnih ostankih, to je z izrekom, imenovanim <i>theorema aureum</i>, ki ga je Gauss prvi v celoti dokazal. Gaussa je ta izrek prav tako navdušil kot osnovni izrek algebre in je pozneje objavil še pet dokazov, enega pa so našli med njegovimi papirji po smrti. </p><p>Knjiga obsega tudi Gaussova proučevanja krožne delitve ali z drugimi besedami proučevanja <a href="/wiki/Korenjenje" title="Korenjenje">korenov</a> <a href="/wiki/Ena%C4%8Dba" title="Enačba">enačbe</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{n}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{n}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8741a3eae6f729b4f1c4273a74c135d23987d5fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.809ex; height:2.343ex;" alt="{\displaystyle x^{n}=1}"></span>. Tako je leta 1796 prišel do znamenitega izreka, ki trdi, da se dajo stranice pravilnega <a href="/wiki/Mnogokotnik" title="Mnogokotnik">mnogokotnika</a> s 17 <a href="/wiki/Stranica" title="Stranica">stranicami</a> konstruirati samo s <a href="/wiki/%C5%A0estilo" title="Šestilo">šestilom</a> in <a href="/wiki/Ravnilo" title="Ravnilo">ravnilom</a>, kar je presenetljiva razširitev grškega tipa geometrije. Do tedaj so mislili, da pravilnih mnogokotnikov z <i>n</i> = 7, 9, 11, 13, 19, 21 in večkratnikov tako ni mogoče narisati, niso pa znali tega dokazati. Gauss je tako odkril, da se dajo z ravnilom in šestilom narisati samo vsi tisti mnogokotniki s številom stranic <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8242689a132230c6c847ae901f6f32dba8181ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.744ex; height:2.676ex;" alt="{\displaystyle n=2^{k}}"></span> ali pa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2^{k}F_{1}F_{2}...F_{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>.</mo> <mo>.</mo> <mo>.</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2^{k}F_{1}F_{2}...F_{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c2016a17fa9276330503d5f5c689477eee7d8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.412ex; height:3.009ex;" alt="{\displaystyle n=2^{k}F_{1}F_{2}...F_{r}}"></span>, kjer so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{r}=2^{2^{r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{r}=2^{2^{r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/765bb3ab7e378479258be9cb9d926694dcd6a3d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.55ex; height:3.009ex;" alt="{\displaystyle F_{r}=2^{2^{r}}}"></span> med sabo različna <a href="/wiki/Fermatovo_pra%C5%A1tevilo" title="Fermatovo praštevilo">Fermatova praštevila</a>. Še ne 19-leten je tako našel rešitev znanega problema iz elementarne geometrije. Objavil ga je v 7., zadnjem delu svoje knjige. Prvih vseh nekaj pravilnih mnogokotnikov po Gaussu podaja razpredelnica: </p> <table class="wikitable"> <tbody><tr> <th><i>n</i></th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>8</th> <th>10</th> <th>12</th> <th>15</th> <th>16</th> <th>17</th> <th>20</th> <th>24</th> <th>30</th> <th>32</th> <th>34</th> <th>40</th> <th>48</th> <th>51</th> <th>60 </th></tr> <tr> <td>  </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{0}F_{0}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{0}F_{0}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e95dfb0d3699ca44bd245f8145dd5bcd1faf78b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.766ex; height:3.009ex;" alt="{\displaystyle 2^{0}F_{0}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{2}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{2}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bc93589eac683bc2f1b21e07594f5a47c2af544" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.217ex; height:2.676ex;" alt="{\displaystyle 2^{2}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{0}F_{1}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{0}F_{1}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89d01283e557eee2770af4dccaa543611196f99d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.766ex; height:3.009ex;" alt="{\displaystyle 2^{0}F_{1}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{1}F_{0}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{1}F_{0}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/695cb8aafccb2c314080195f3b32ac0324b11bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.766ex; height:3.009ex;" alt="{\displaystyle 2^{1}F_{0}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{3}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{3}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d17362135e2057f9965e8026c30f4b5d0c48efd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.217ex; height:2.676ex;" alt="{\displaystyle 2^{3}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{1}F_{1}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{1}F_{1}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebaec3a425edecab8273ca2946ec50ad3e5a9b82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.766ex; height:3.009ex;" alt="{\displaystyle 2^{1}F_{1}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{2}F_{0}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{2}F_{0}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c28f2939601a72f1fc8eef54971a0aac5f7f380" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.766ex; height:3.009ex;" alt="{\displaystyle 2^{2}F_{0}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{0}F_{0}F_{1}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{0}F_{0}F_{1}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ae367fc45554188e2e4f6d29ed4483e1869fbc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.314ex; height:3.009ex;" alt="{\displaystyle 2^{0}F_{0}F_{1}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{4}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{4}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a0c4cfdcf53e0916e00f063f21c4b3d3274f5cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.217ex; height:2.676ex;" alt="{\displaystyle 2^{4}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{0}F_{2}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{0}F_{2}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33404e4161aafcf07366b80a6938dd39c6220e96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.766ex; height:3.009ex;" alt="{\displaystyle 2^{0}F_{2}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{2}F_{1}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{2}F_{1}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81a4b08b2ead57baede863ffe074c0e546880f8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.766ex; height:3.009ex;" alt="{\displaystyle 2^{2}F_{1}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{3}F_{0}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{3}F_{0}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4415c1f3248b16d5e3c112249b47a240c0f8d347" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.766ex; height:3.009ex;" alt="{\displaystyle 2^{3}F_{0}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{1}F_{0}F_{1}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{1}F_{0}F_{1}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d467578e2693f5f43226566eee3f68b5c32fbf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.314ex; height:3.009ex;" alt="{\displaystyle 2^{1}F_{0}F_{1}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{5}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{5}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f2dddc37cbdf3e02a3fa01679ba8722ddcabf8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.217ex; height:2.676ex;" alt="{\displaystyle 2^{5}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{1}F_{2}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{1}F_{2}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfe3e3e0a8d0dc9b3c426318b742c12c64b2a2de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.766ex; height:3.009ex;" alt="{\displaystyle 2^{1}F_{2}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{3}F_{1}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{3}F_{1}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e1cb20a554db3610151281629bae48921ec6374" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.766ex; height:3.009ex;" alt="{\displaystyle 2^{3}F_{1}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{4}F_{0}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{4}F_{0}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85d8cd6885ea8d966f99b2a675533cbde483844d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.766ex; height:3.009ex;" alt="{\displaystyle 2^{4}F_{0}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{0}F_{0}F_{2}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{0}F_{0}F_{2}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1163d152afc75161dafae3f25c824f2ac00a76e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.314ex; height:3.009ex;" alt="{\displaystyle 2^{0}F_{0}F_{2}\!\,}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{2}F_{0}F_{1}\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{2}F_{0}F_{1}\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/652cbf545aef9d4690a78909a6bdc652c4867311" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.314ex; height:3.009ex;" alt="{\displaystyle 2^{2}F_{0}F_{1}\!\,}"></span> </td></tr></tbody></table> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Slika:Heptadecagon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/da/Heptadecagon.svg/200px-Heptadecagon.svg.png" decoding="async" width="200" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/da/Heptadecagon.svg/300px-Heptadecagon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/da/Heptadecagon.svg/400px-Heptadecagon.svg.png 2x" data-file-width="744" data-file-height="744" /></a><figcaption>Pravilni <a href="/wiki/Sedemnajstkotnik" title="Sedemnajstkotnik">sedemnajstkotnik</a> </figcaption></figure> <p>Obdobje med 1798 in 1807 je bilo, kot je razvidno iz njegovih pisem prijateljem, med najplodnejšimi in najsrečnejšimi v njegovem življenju. Že zelo mlad je užival mednarodno slavo. Dobil je vabilo, naj pride na dobro plačano mesto v <a href="/wiki/Rusija" title="Rusija">Rusijo</a>, ki je takrat velikopotezno najemala tuje strokovnjake. Vendar se je leta 1807, 30-leten raje odločil za mesto predstojnika astronomskega <a href="/wiki/Observatorij" title="Observatorij">observatorija</a> in profesorja na <a href="/wiki/Univerza_v_G%C3%B6ttingenu" title="Univerza v Göttingenu">Univerzi v Göttingenu</a>. </p><p>Pri vsem uspehu je imel tudi svoj delež <a href="/wiki/Nesre%C4%8Da" title="Nesreča">nesreče</a>. Kmalu po prihodu v Göttingen mu je po tretjem <a href="/wiki/Porod" title="Porod">porodu</a> umrla <a href="/wiki/%C5%BDena" title="Žena">žena</a>. Znova se je oženil in v drugem zakonu imel štiri otroke. V osebnem življenju pa še vedno ni imel sreče. Obe ženi sta mu umrli še mladi, od njegovih šestih otrok ga je preživel samo eden. </p><p>Precej časa je posvetil <a href="/wiki/Astronomija" title="Astronomija">astronomiji</a>. Že v mladosti pri 24. letih je leta 1801 postal slaven po določitvi tira <a href="/wiki/Asteroid" title="Asteroid">asteroida</a> <a href="/wiki/Ceres" class="mw-redirect" title="Ceres">Ceresa</a>. Po njegovi metodi so lahko določili krivuljo gibanja iz treh bližnjih leg na tedaj pravkar odkritem asteroidu Ceres. Ta dobra metoda je tako omogočila, da ga je v naslednjem položaju 1. januarja 1801 v ozvezdju Bika in leta 1802 G. Piazzi v <a href="/wiki/Palermo" title="Palermo">Palermu</a> spet zasledil, saj ga je lahko opazoval le kratek čas, ko se je spet dovolj oddaljil od Sonca. Gauss je ta problem v celoti rešil. Pri tem je uporabil nekatere računske postopke, ki so bili prezahtevni za večino tedanjih astronomov. Dobil je enačbo osme stopnje. Ko so leta 1802 odkrili drugi asteroid, <a href="/wiki/2_Palas" title="2 Palas">Palas</a>, se je Gauss začel zanimati za sekularne motnje <a href="/wiki/Planet" title="Planet">planetov</a>. Leta 1809 je v delu <i>Theoria motus corporum coelestium</i> objavil svojo klasično metodo za izračun gibanja planetov. Iz tega področja je objavil še leta 1813 članek o privlačnosti splošnih <a href="/wiki/Elipsoid" title="Elipsoid">elipsoidov</a>, leta 1814 delo o mehanski kvadraturi in leta 1818 študijo o sekularnih motnjah. Iz tega časa je tudi njegov članek o <a href="/wiki/Hipergeometri%C4%8Dna_vrsta" class="mw-redirect" title="Hipergeometrična vrsta">hipergeometričnih vrstah</a> iz leta 1812, ki je omogočil proučevanje mnogih funkcij z enega samega stališča. To je bilo prvo sistematično proučevanje <a href="/wiki/Konvergenca" class="mw-redirect mw-disambig" title="Konvergenca">konvergence</a> vrst. <a href="/wiki/Hipergeometri%C4%8Dna_funkcija" title="Hipergeometrična funkcija">Hipergeometrične funkcije</a> so delne rešitve <a href="/wiki/Linearna_funkcija" title="Linearna funkcija">linearne</a> <a href="/w/index.php?title=Navadna_diferencialna_ena%C4%8Dba&action=edit&redlink=1" class="new" title="Navadna diferencialna enačba (stran ne obstaja)">navadne</a> <a href="/wiki/Diferencialna_ena%C4%8Dba" title="Diferencialna enačba">diferencialne enačbe</a> 2. reda, <a href="/wiki/Hipergeometri%C4%8Dna_diferencialna_ena%C4%8Dba" class="mw-redirect" title="Hipergeometrična diferencialna enačba">hipergeometrične enačbe</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(1-x){\frac {\mathrm {d} ^{2}y}{\mathrm {d} x^{2}}}+(\gamma -(\alpha +\beta +1)x){\frac {\mathrm {d} y}{\mathrm {d} x}}-\alpha \beta y=0\!\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>y</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>+</mo> <mi>β<!-- β --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mi>α<!-- α --></mi> <mi>β<!-- β --></mi> <mi>y</mi> <mo>=</mo> <mn>0</mn> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(1-x){\frac {\mathrm {d} ^{2}y}{\mathrm {d} x^{2}}}+(\gamma -(\alpha +\beta +1)x){\frac {\mathrm {d} y}{\mathrm {d} x}}-\alpha \beta y=0\!\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c2639cd9c1e0616115a7b83b98cdc90d8b8d153" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:49.72ex; height:6.176ex;" alt="{\displaystyle x(1-x){\frac {\mathrm {d} ^{2}y}{\mathrm {d} x^{2}}}+(\gamma -(\alpha +\beta +1)x){\frac {\mathrm {d} y}{\mathrm {d} x}}-\alpha \beta y=0\!\,,}"></span></dd></dl> <p>če je γ od nič različen in ni celo negativno število. Enačba vsebuje večje število posebnih primerov. Na primer, za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =n+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>=</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =n+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6c9543272880db774b2c5129bc66f29c9b2ff7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.984ex; height:2.343ex;" alt="{\displaystyle \alpha =n+1}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =-n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta =-n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdc871f006078a609bdbb84ae936346118f34834" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.633ex; height:2.509ex;" alt="{\displaystyle \beta =-n}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5682ebb86d6f024a15f4a2c1c7cb08412720bcaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.523ex; height:2.676ex;" alt="{\displaystyle \gamma =1}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=(1-z)/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=(1-z)/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e392eb63576ba1a9bb5d363fdcb824cf92bb12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.653ex; height:2.843ex;" alt="{\displaystyle x=(1-z)/2}"></span>, da enačba Legendreovo enačbo 1. reda: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1-x^{2}){\frac {\mathrm {d} ^{2}y}{\mathrm {d} x^{2}}}-2x{\frac {\mathrm {d} y}{\mathrm {d} x}}+n(n+1)y=0\!\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>y</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>2</mn> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>y</mi> <mo>=</mo> <mn>0</mn> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1-x^{2}){\frac {\mathrm {d} ^{2}y}{\mathrm {d} x^{2}}}-2x{\frac {\mathrm {d} y}{\mathrm {d} x}}+n(n+1)y=0\!\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30b51da7d1bcf00b4740aca18d7934f7a147b17a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:39.005ex; height:6.176ex;" alt="{\displaystyle (1-x^{2}){\frac {\mathrm {d} ^{2}y}{\mathrm {d} x^{2}}}-2x{\frac {\mathrm {d} y}{\mathrm {d} x}}+n(n+1)y=0\!\,.}"></span></dd></dl> <p>Hipergeometrične funkcije so definirane s hipergeometričnimi vrstami, ki so: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;_{0}F_{1}(\alpha ,x)=\sum _{i=0}^{\infty }{\frac {x^{i}}{(\alpha )_{i}i!}}\!\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>i</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;_{0}F_{1}(\alpha ,x)=\sum _{i=0}^{\infty }{\frac {x^{i}}{(\alpha )_{i}i!}}\!\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eba295c69b8ec2f68d77869aaa4f1d6642ac9845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.778ex; height:6.843ex;" alt="{\displaystyle \;_{0}F_{1}(\alpha ,x)=\sum _{i=0}^{\infty }{\frac {x^{i}}{(\alpha )_{i}i!}}\!\,,}"></span></dd></dl> <p>zapisane s <a href="/wiki/Pochhammerjev_simbol" title="Pochhammerjev simbol">Pochhammerjevimi simboli</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\alpha )_{n}={\frac {\Gamma (\alpha +n)}{\Gamma (\alpha )}}\!\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\alpha )_{n}={\frac {\Gamma (\alpha +n)}{\Gamma (\alpha )}}\!\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d86acd45f54f19e473bca3f90cfa05f5dc15f3c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.082ex; height:6.509ex;" alt="{\displaystyle (\alpha )_{n}={\frac {\Gamma (\alpha +n)}{\Gamma (\alpha )}}\!\,,}"></span></dd></dl> <p>Kummerjeva konfluentna hipergeometrična funkcija: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;_{1}F_{1}(\alpha ,\beta ,x)=\sum _{i=0}^{\infty }{\frac {(\alpha )_{i}x^{i}}{(\beta )_{i}i!}}\;,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>,</mo> <mi>β<!-- β --></mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>i</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;_{1}F_{1}(\alpha ,\beta ,x)=\sum _{i=0}^{\infty }{\frac {(\alpha )_{i}x^{i}}{(\beta )_{i}i!}}\;,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff4d50a89a54f34261875326eb74be7b1bba205a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.469ex; height:7.009ex;" alt="{\displaystyle \;_{1}F_{1}(\alpha ,\beta ,x)=\sum _{i=0}^{\infty }{\frac {(\alpha )_{i}x^{i}}{(\beta )_{i}i!}}\;,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;_{2}F_{1}(\alpha ,\beta ,\gamma ,x)=\sum _{i=0}^{\infty }{\frac {(\alpha )_{i}(\beta )_{i}x^{i}}{(\gamma )_{i}i!}}\;{\hbox{ali}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>,</mo> <mi>β<!-- β --></mi> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>i</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>ali</mtext> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;_{2}F_{1}(\alpha ,\beta ,\gamma ,x)=\sum _{i=0}^{\infty }{\frac {(\alpha )_{i}(\beta )_{i}x^{i}}{(\gamma )_{i}i!}}\;{\hbox{ali}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc5331b30b4fb46ccc5427b896f9919d2d2931dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:35.516ex; height:7.009ex;" alt="{\displaystyle \;_{2}F_{1}(\alpha ,\beta ,\gamma ,x)=\sum _{i=0}^{\infty }{\frac {(\alpha )_{i}(\beta )_{i}x^{i}}{(\gamma )_{i}i!}}\;{\hbox{ali}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;_{2}F_{1}(\alpha ,\beta ,\gamma ,x)=a_{o}\left(1+{\frac {\alpha \beta }{1!\,\gamma }}x+{\frac {\alpha (\alpha +1)\beta (\beta +1)}{2!\,\gamma (\gamma +1)}}x^{2}+{\frac {\alpha (\alpha +1)(\alpha +2)\beta (\beta +1)(\beta +2)}{3!\,\gamma (\gamma +1)(\gamma +2)}}x^{3}+\cdots \right)\!\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>,</mo> <mi>β<!-- β --></mi> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>α<!-- α --></mi> <mi>β<!-- β --></mi> </mrow> <mrow> <mn>1</mn> <mo>!</mo> <mspace width="thinmathspace" /> <mi>γ<!-- γ --></mi> </mrow> </mfrac> </mrow> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>β<!-- β --></mi> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mo>!</mo> <mspace width="thinmathspace" /> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mi>β<!-- β --></mi> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>3</mn> <mo>!</mo> <mspace width="thinmathspace" /> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mrow> <mo>)</mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;_{2}F_{1}(\alpha ,\beta ,\gamma ,x)=a_{o}\left(1+{\frac {\alpha \beta }{1!\,\gamma }}x+{\frac {\alpha (\alpha +1)\beta (\beta +1)}{2!\,\gamma (\gamma +1)}}x^{2}+{\frac {\alpha (\alpha +1)(\alpha +2)\beta (\beta +1)(\beta +2)}{3!\,\gamma (\gamma +1)(\gamma +2)}}x^{3}+\cdots \right)\!\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37482cef8e11ea55face9b716c5baa690bc5e45d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:101.054ex; height:6.509ex;" alt="{\displaystyle \;_{2}F_{1}(\alpha ,\beta ,\gamma ,x)=a_{o}\left(1+{\frac {\alpha \beta }{1!\,\gamma }}x+{\frac {\alpha (\alpha +1)\beta (\beta +1)}{2!\,\gamma (\gamma +1)}}x^{2}+{\frac {\alpha (\alpha +1)(\alpha +2)\beta (\beta +1)(\beta +2)}{3!\,\gamma (\gamma +1)(\gamma +2)}}x^{3}+\cdots \right)\!\,.}"></span></dd></dl> <p>Vrsta <a href="/w/index.php?title=Absolutna_konvergenca&action=edit&redlink=1" class="new" title="Absolutna konvergenca (stran ne obstaja)">konvergira absolutno</a> za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|x\|<1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo><</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|x\|<1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d40c9f7503a2a64b863145627e80dda2098916ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.916ex; height:2.843ex;" alt="{\displaystyle \|x\|<1}"></span>. Konvergenca za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee42176e76ae6b56d68c42ced807e08b962a2b54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=1}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fefa55268918f98da2e0dcc19ea86d78f84ac56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.399ex; height:2.343ex;" alt="{\displaystyle x=-1}"></span> je odvisna od števila <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta =\gamma -\alpha -\beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mo>−<!-- − --></mo> <mi>α<!-- α --></mi> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta =\gamma -\alpha -\beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5a8d6eba965e9d51f2ba844f09531d7ca9f7b11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.91ex; height:2.843ex;" alt="{\displaystyle \delta =\gamma -\alpha -\beta }"></span>. V prvem primeru za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee42176e76ae6b56d68c42ced807e08b962a2b54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=1}"></span> vrsta absolutno konvergira, če je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta >0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta >0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/595d5cea06fdcaf2642caf549eda2cfc537958a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.343ex;" alt="{\displaystyle \delta >0}"></span>, in <a href="/wiki/Divergenca" title="Divergenca">divergira</a>, če je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \leq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo>≤<!-- ≤ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \leq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfa4729f6ab864968db19a46e5bcc9b45650d5bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.31ex; height:2.509ex;" alt="{\displaystyle \delta \leq 0}"></span>. Pri <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fefa55268918f98da2e0dcc19ea86d78f84ac56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.399ex; height:2.343ex;" alt="{\displaystyle x=-1}"></span> vrsta absolutno konvergira, če je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta >0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta >0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/595d5cea06fdcaf2642caf549eda2cfc537958a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.343ex;" alt="{\displaystyle \delta >0}"></span>, pogojno divergira, če je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1<\delta \leq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mn>1</mn> <mo><</mo> <mi>δ<!-- δ --></mi> <mo>≤<!-- ≤ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1<\delta \leq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58334080787063a830f8a6c84427e1ea7cffae09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.379ex; height:2.509ex;" alt="{\displaystyle -1<\delta \leq 0}"></span>, in nazadnje divergira, če je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \leq -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo>≤<!-- ≤ --></mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \leq -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a5e198400ec6165661d3ae96650ace9277c6f43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.118ex; height:2.509ex;" alt="{\displaystyle \delta \leq -1}"></span>. Če je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2-\gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>−<!-- − --></mo> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2-\gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60b4fa9be4ad142e3f52c8d0cc3d929c49b64c66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.265ex; height:2.676ex;" alt="{\displaystyle 2-\gamma }"></span> različen od nič in od celega negativnega števila, je delna rešitev hipergeometrične enačbe: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y={x^{1-y}}_{2}F_{1}(\alpha +1-\gamma ,\beta +1-\gamma ,2-\gamma ,x)\!\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>y</mi> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>+</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>γ<!-- γ --></mi> <mo>,</mo> <mi>β<!-- β --></mi> <mo>+</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>γ<!-- γ --></mi> <mo>,</mo> <mn>2</mn> <mo>−<!-- − --></mo> <mi>γ<!-- γ --></mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y={x^{1-y}}_{2}F_{1}(\alpha +1-\gamma ,\beta +1-\gamma ,2-\gamma ,x)\!\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bc72a0df1c8a7812c453fae76e114b4a731c97e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.52ex; height:3.176ex;" alt="{\displaystyle y={x^{1-y}}_{2}F_{1}(\alpha +1-\gamma ,\beta +1-\gamma ,2-\gamma ,x)\!\,.}"></span></dd></dl> <p>Če dobro izberemo <i>a</i>, <i>b</i> in <i>g</i>, hipergeometrična vrsta postane kakšna znana <a href="/wiki/Elementarna_funkcija" title="Elementarna funkcija">elementarna funkcija</a>, na primer: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}_{2}F_{1}(1,\beta ,\beta ,x)={}_{2}F_{1}(\alpha ,1,\alpha ,x)={\frac {1}{1-x}}\!\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mi>β<!-- β --></mi> <mo>,</mo> <mi>β<!-- β --></mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mi>α<!-- α --></mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}_{2}F_{1}(1,\beta ,\beta ,x)={}_{2}F_{1}(\alpha ,1,\alpha ,x)={\frac {1}{1-x}}\!\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b754d47cc16cfcbd10149d9b2f4d1386f55e3bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:40.664ex; height:5.343ex;" alt="{\displaystyle {}_{2}F_{1}(1,\beta ,\beta ,x)={}_{2}F_{1}(\alpha ,1,\alpha ,x)={\frac {1}{1-x}}\!\,,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}_{2}F_{1}(n,\beta ,\beta ,-x)=\left(1+x\right)^{n}\!\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>β<!-- β --></mi> <mo>,</mo> <mi>β<!-- β --></mi> <mo>,</mo> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}_{2}F_{1}(n,\beta ,\beta ,-x)=\left(1+x\right)^{n}\!\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/317cfec07b1a71a5876a35200c00e8813124fda9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.816ex; height:3.009ex;" alt="{\displaystyle {}_{2}F_{1}(n,\beta ,\beta ,-x)=\left(1+x\right)^{n}\!\,,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}_{2}F_{1}(1,1,2,-x)={\frac {\ln {(1+x)}}{x}}\!\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> <mi>x</mi> </mfrac> </mrow> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}_{2}F_{1}(1,1,2,-x)={\frac {\ln {(1+x)}}{x}}\!\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d327813cc5ee2a5954beb2190cf313f98fc18a43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:29.189ex; height:5.676ex;" alt="{\displaystyle {}_{2}F_{1}(1,1,2,-x)={\frac {\ln {(1+x)}}{x}}\!\,,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}_{2}F_{1}\left({\frac {1}{2}},{\frac {1}{2}},{\frac {3}{2}},x\right)={\frac {\arcsin x}{x}}\!\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>arcsin</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mrow> <mi>x</mi> </mfrac> </mrow> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}_{2}F_{1}\left({\frac {1}{2}},{\frac {1}{2}},{\frac {3}{2}},x\right)={\frac {\arcsin x}{x}}\!\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f81537d9200b6bc72fa16b469d4949190790927f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.099ex; height:6.176ex;" alt="{\displaystyle {}_{2}F_{1}\left({\frac {1}{2}},{\frac {1}{2}},{\frac {3}{2}},x\right)={\frac {\arcsin x}{x}}\!\,.}"></span></dd></dl> <p>Poseben primer je tudi <a href="/w/index.php?title=Konfluentna_hipergeometri%C4%8Dna_funkcija&action=edit&redlink=1" class="new" title="Konfluentna hipergeometrična funkcija (stran ne obstaja)">konfluentna hipergeometrična funkcija</a>, določena z integralom: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U(\alpha ,\beta ,x)\equiv {}_{1}F_{1}(\alpha ,\beta ,x)={\frac {1}{\Gamma (\alpha )}}\int _{0}^{\infty }e^{-xt}t^{\alpha -1}\left(1+t\right)^{\beta -\alpha -1}\mathrm {d} t\!\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>,</mo> <mi>β<!-- β --></mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≡<!-- ≡ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo>,</mo> <mi>β<!-- β --></mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>x</mi> <mi>t</mi> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>β<!-- β --></mi> <mo>−<!-- − --></mo> <mi>α<!-- α --></mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U(\alpha ,\beta ,x)\equiv {}_{1}F_{1}(\alpha ,\beta ,x)={\frac {1}{\Gamma (\alpha )}}\int _{0}^{\infty }e^{-xt}t^{\alpha -1}\left(1+t\right)^{\beta -\alpha -1}\mathrm {d} t\!\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0689f8fa0b2971e5f94d3c2631c84d01caa87673" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:61.723ex; height:6.176ex;" alt="{\displaystyle U(\alpha ,\beta ,x)\equiv {}_{1}F_{1}(\alpha ,\beta ,x)={\frac {1}{\Gamma (\alpha )}}\int _{0}^{\infty }e^{-xt}t^{\alpha -1}\left(1+t\right)^{\beta -\alpha -1}\mathrm {d} t\!\,.}"></span></dd></dl> <p>Po letu 1820 se je začel dejavno zanimati za <a href="/wiki/Geodezija" title="Geodezija">geodezijo</a>. Več poletij zapovrstjo je preživel ob geodetskem merjenju dela severne Nemčije. Praktična uporaba trigonometrije, <a href="/wiki/Triangulacija" title="Triangulacija">triangulacija</a> je zahtevala pokritje celotnega območja z mrežo trikotnikov, tako da so bila oglišča vsakega od teh trikotnikov medsebojno vidna. Neposredno je bilo treba izmeriti le stranico enega od trikotnikov, nato pa meriti kote danih trikotnikov in računati. Pri tem je Gauss med drugim leta 1821, 1823 odkril tudi <a href="/wiki/Metoda_najmanj%C5%A1ih_kvadratov" class="mw-redirect" title="Metoda najmanjših kvadratov">metodo najmanjših kvadratov</a>, s katero izenačujemo podatke, ki smo jih nabrali z opazovanjem. Metoda pri ponovljenih merjenjih omogoča kar najbolj zmanjšati vpliv slučajnih napak. Bil je eden od odkriteljev in utemeljiteljev te metode, ki je v zvezi z verjetnostnim računom. Metodo najmanjših kvadratov sta proučevala že <a href="/wiki/Adrien-Marie_Legendre" title="Adrien-Marie Legendre">Legendre</a> leta 1806 in <a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Laplace</a>. Znana je <a href="/w/index.php?title=Gaussova_normalna_krivulja&action=edit&redlink=1" class="new" title="Gaussova normalna krivulja (stran ne obstaja)">Gaussova normalna krivulja</a> ali krivulja normalnega zakona porazdelitve napak, ki podaja <a href="/wiki/Gostota_verjetnosti" title="Gostota verjetnosti">gostoto verjetnosti</a> pri <a href="/wiki/Normalna_porazdelitev" title="Normalna porazdelitev">normalni porazdelitvi</a> verjetnosti: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=\varphi (x)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {x^{2}}{2\sigma ^{2}}}}\!\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=\varphi (x)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {x^{2}}{2\sigma ^{2}}}}\!\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/224bb744810a922a083581cfdd919802d7dbf288" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:24.917ex; height:7.009ex;" alt="{\displaystyle y=\varphi (x)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {x^{2}}{2\sigma ^{2}}}}\!\,.}"></span></dd></dl> <p>Gaussova porazdelitev verjetnosti ali normalna porazdelitev verjetnosti pri kateri je gostota verjetnosti zvezne slučajne spremenljivke <i>x</i> podana s funkcijo gostote: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {(x-a)^{2}}{2\sigma ^{2}}}}\!\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {(x-a)^{2}}{2\sigma ^{2}}}}\!\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e549260c0917107d96465bd04b3e656174d36b0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:22.536ex; height:7.176ex;" alt="{\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {(x-a)^{2}}{2\sigma ^{2}}}}\!\,.}"></span></dd></dl> <p>kjer je <i>a</i> <a href="/w/index.php?title=Matemati%C4%8Dno_upanje&action=edit&redlink=1" class="new" title="Matematično upanje (stran ne obstaja)">matematično upanje</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>σ<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> <a href="/wiki/Standardna_deviacija" class="mw-redirect" title="Standardna deviacija">standardna deviacija</a> slučajne spremenljivke. Gaussov integral napak: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (x)={\frac {1}{\sigma {\sqrt {2\pi }}}}\int _{-\infty }^{x}e^{-{\frac {t^{2}}{2\sigma ^{2}}}}\mathrm {d} t\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (x)={\frac {1}{\sigma {\sqrt {2\pi }}}}\int _{-\infty }^{x}e^{-{\frac {t^{2}}{2\sigma ^{2}}}}\mathrm {d} t\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c582abbfcf38fbfcfde4003e65f166839ca2c330" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:27.369ex; height:7.009ex;" alt="{\displaystyle \varphi (x)={\frac {1}{\sigma {\sqrt {2\pi }}}}\int _{-\infty }^{x}e^{-{\frac {t^{2}}{2\sigma ^{2}}}}\mathrm {d} t\!\,}"></span></dd></dl> <p>je porazdelitvena funkcija pri normalni porazdelitvi napak. Gaussov verjetnostni integral pa je funkcija določena kot: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (x)={\frac {2}{\sqrt {2\pi }}}\int _{0}^{x}e^{-{\frac {t^{2}}{2}}}\mathrm {d} t\!\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> </msqrt> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (x)={\frac {2}{\sqrt {2\pi }}}\int _{0}^{x}e^{-{\frac {t^{2}}{2}}}\mathrm {d} t\!\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc538bb7db3fe200f4498f19a94e9ec96b2c304" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:25.085ex; height:6.509ex;" alt="{\displaystyle \Phi (x)={\frac {2}{\sqrt {2\pi }}}\int _{0}^{x}e^{-{\frac {t^{2}}{2}}}\mathrm {d} t\!\,,}"></span></dd></dl> <p>ki ga včasih pišemo tudi kot: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {erf} x={\frac {2}{\sqrt {\pi }}}\int _{0}^{x}e^{-t^{2}}\mathrm {d} t=\Phi (x{\sqrt {2}})\!\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>erf</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msqrt> <mi>π<!-- π --></mi> </msqrt> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> <mo>=</mo> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {erf} x={\frac {2}{\sqrt {\pi }}}\int _{0}^{x}e^{-t^{2}}\mathrm {d} t=\Phi (x{\sqrt {2}})\!\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb8b552e1b5371658bfc52a79393b7e623817411" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:33.798ex; height:6.343ex;" alt="{\displaystyle \operatorname {erf} x={\frac {2}{\sqrt {\pi }}}\int _{0}^{x}e^{-t^{2}}\mathrm {d} t=\Phi (x{\sqrt {2}})\!\,.}"></span></dd></dl> <p>Posplošen Gaussov verjetnostni integral je integral oblike: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }{\frac {\mathrm {d} x}{e^{x^{2}}}}={\sqrt {\pi }}\!\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>π<!-- π --></mi> </msqrt> </mrow> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }{\frac {\mathrm {d} x}{e^{x^{2}}}}={\sqrt {\pi }}\!\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ab8c85fd7456e0066b0c172177b0ad5df87d19c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.77ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }{\frac {\mathrm {d} x}{e^{x^{2}}}}={\sqrt {\pi }}\!\,.}"></span></dd></dl> <p>Gauss je sploh rad računal. Ob tem je nastal marsikateri teoretični rezultat. Mnogo je pripomogel k <a href="/w/index.php?title=Teorija_analiti%C4%8Dnih_funkcij&action=edit&redlink=1" class="new" title="Teorija analitičnih funkcij (stran ne obstaja)">teoriji analitičnih funkcij</a> in <a href="/w/index.php?title=Diferencialna_geometrija&action=edit&redlink=1" class="new" title="Diferencialna geometrija (stran ne obstaja)">diferencialni geometriji</a>, kakor tudi na vseh področjih uporabnih matematičnih disciplin, zlasti v teoretični in praktični geodeziji, s tem, da je meril dolžino poldnevniškega loka med <a href="/wiki/Altona,_Hamburg" title="Altona, Hamburg">Altono</a> in Göttingenom ter odkril <a href="/w/index.php?title=Heliotrop&action=edit&redlink=1" class="new" title="Heliotrop (stran ne obstaja)">heliotrop</a> (napravo, ki močno oddaljene predmete s pomočjo odbite Sončeve svetlobe napravi vidne). Geodetska merjenja so zahtevala mnogo več časa, kot so predvidevali. Pokrajina je bila marsikje ravna, nenaseljena (brez zvonikov, stolpov in podobnih daleč vidnih točk) in porasla z gozdom. Prijatelji so ga svarili, da izgublja preveč dragoceni čas, ki bi ga lahko porabil za teoretično delo. Vendar je ob delu na terenu tudi razmišljal. Svoje teoretične in praktične prispevke h geodeziji je strnil v dve knjižici, ki sta imeli izreden vpliv na razvoj te vede. Obenem je na podlagi te izkušnje leta 1827 nastalo pomembno delo o ploskvah (o ukrivljenosti, o razdalji na ploskvi) <i>Disquisitiones generales circa superficies curvas</i>, pristop, ki je popolnoma različen od <a href="/wiki/Gaspard_Monge" title="Gaspard Monge">Mongeovega</a>. Tu so spet praktična razmišljanja, to pot s področja višje geodezije, tesno povezana s prefinjeno teoretično analizo. V tem delu se pojavi notranja geometrija ploskev, pri kateri je ločni element <i>ds</i> krivulje na ploskvi izražen s kvadratno <a href="/w/index.php?title=Diferencialna_forma&action=edit&redlink=1" class="new" title="Diferencialna forma (stran ne obstaja)">diferencialno formo</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} s^{2}=E\,\mathrm {d} u^{2}+2F\,\mathrm {d} u\,\mathrm {d} v+G\,\mathrm {d} v^{2}\!\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>E</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>F</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>u</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>v</mi> <mo>+</mo> <mi>G</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} s^{2}=E\,\mathrm {d} u^{2}+2F\,\mathrm {d} u\,\mathrm {d} v+G\,\mathrm {d} v^{2}\!\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/855f7e2e9fd1c3214c2836a56dff41141a07247a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:33.11ex; height:3.009ex;" alt="{\displaystyle \mathrm {d} s^{2}=E\,\mathrm {d} u^{2}+2F\,\mathrm {d} u\,\mathrm {d} v+G\,\mathrm {d} v^{2}\!\,,}"></span></dd></dl> <p>kjer sta <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fb50d8f3862d242d8851a2931b2a924dee6fb06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.622ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} u}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6c4081d342e25c7d393c46a7ce4fa8502288d40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.42ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} v}"></span> <a href="/w/index.php?title=Diferencial&action=edit&redlink=1" class="new" title="Diferencial (stran ne obstaja)">diferenciala</a> <a href="/w/index.php?title=Krivo%C4%8Drtne_koordinate&action=edit&redlink=1" class="new" title="Krivočrtne koordinate (stran ne obstaja)">krivočrtnih koordninat</a>, koeficienti <i>E</i>, <i>F</i> in <i>G</i> pa: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\left({\frac {\partial x}{\partial u}}\right)^{2}+\left({\frac {\partial y}{\partial u}}\right)^{2}+\left({\frac {\partial z}{\partial u}}\right)^{2}\!\,,\;\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\left({\frac {\partial x}{\partial u}}\right)^{2}+\left({\frac {\partial y}{\partial u}}\right)^{2}+\left({\frac {\partial z}{\partial u}}\right)^{2}\!\,,\;\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23bb847844f7ae0859a749f721e164dc607b9fc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:36.37ex; height:6.509ex;" alt="{\displaystyle E=\left({\frac {\partial x}{\partial u}}\right)^{2}+\left({\frac {\partial y}{\partial u}}\right)^{2}+\left({\frac {\partial z}{\partial u}}\right)^{2}\!\,,\;\;}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F={\frac {\partial x}{\partial u}}{\frac {\partial x}{\partial v}}+{\frac {\partial y}{\partial u}}{\frac {\partial y}{\partial v}}+{\frac {\partial z}{\partial u}}{\frac {\partial z}{\partial v}}\!\,,\;\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F={\frac {\partial x}{\partial u}}{\frac {\partial x}{\partial v}}+{\frac {\partial y}{\partial u}}{\frac {\partial y}{\partial v}}+{\frac {\partial z}{\partial u}}{\frac {\partial z}{\partial v}}\!\,,\;\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f182d18b9d5f11d5a4c126aef15c368fb9a3a900" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:32.984ex; height:5.676ex;" alt="{\displaystyle F={\frac {\partial x}{\partial u}}{\frac {\partial x}{\partial v}}+{\frac {\partial y}{\partial u}}{\frac {\partial y}{\partial v}}+{\frac {\partial z}{\partial u}}{\frac {\partial z}{\partial v}}\!\,,\;\;}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=\left({\frac {\partial x}{\partial v}}\right)^{2}+\left({\frac {\partial y}{\partial v}}\right)^{2}+\left({\frac {\partial z}{\partial v}}\right)^{2}\!\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=\left({\frac {\partial x}{\partial v}}\right)^{2}+\left({\frac {\partial y}{\partial v}}\right)^{2}+\left({\frac {\partial z}{\partial v}}\right)^{2}\!\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cddb9d970db574c54c7875cf80b24e2b6fd17105" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:34.754ex; height:6.509ex;" alt="{\displaystyle G=\left({\frac {\partial x}{\partial v}}\right)^{2}+\left({\frac {\partial y}{\partial v}}\right)^{2}+\left({\frac {\partial z}{\partial v}}\right)^{2}\!\,.}"></span></dd></dl> <p>Višek je dosegel v izreku, imenovanem <i><a href="/w/index.php?title=Izrek_egregium&action=edit&redlink=1" class="new" title="Izrek egregium (stran ne obstaja)">theorema egregium</a></i>, ki trdi, da je celotna ukrivljenost ploskve odvisna samo od koeficientov <i>E</i>, <i>F</i>, in <i>G</i> in njihovih odvodov in je zato invarianta pri upogibanju. <a href="/wiki/Gaussova_ukrivljenost" title="Gaussova ukrivljenost">Gaussova ukrivljenost</a> ploskve je: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\frac {1}{R_{1}R_{2}}}\!\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\frac {1}{R_{1}R_{2}}}\!\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd623f77d6e299f7f03d9b3bf60c5beb79c41a3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:12.284ex; height:5.509ex;" alt="{\displaystyle K={\frac {1}{R_{1}R_{2}}}\!\,,}"></span></dd></dl> <p>kjer sta <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1d63c96f59d98589d923c4f0b04222feaa7283e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.818ex; height:2.509ex;" alt="{\displaystyle R_{1}}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f571121c264178676d1df8ab899f238a39bc2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.818ex; height:2.509ex;" alt="{\displaystyle R_{2}}"></span> glavna krivinska polmera krivulje na ploskvi in ju dobimo kot korena <a href="/wiki/Kvadratna_ena%C4%8Dba" title="Kvadratna enačba">kvadratne enačbe</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (DD''-D'^{2})R^{2}-(ED''-2FD'+GD)R+(EG-F^{2})=0\!\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>D</mi> <msup> <mi>D</mi> <mo>″</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>D</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>E</mi> <msup> <mi>D</mi> <mo>″</mo> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <mi>F</mi> <msup> <mi>D</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>G</mi> <mi>D</mi> <mo stretchy="false">)</mo> <mi>R</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>E</mi> <mi>G</mi> <mo>−<!-- − --></mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (DD''-D'^{2})R^{2}-(ED''-2FD'+GD)R+(EG-F^{2})=0\!\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4926cb4bf6fa38b0c8a56bff9bec9beb81f28651" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:60.949ex; height:3.176ex;" alt="{\displaystyle (DD''-D'^{2})R^{2}-(ED''-2FD'+GD)R+(EG-F^{2})=0\!\,,}"></span></dd></dl> <p>kjer so <i>D</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c3bf8caca74bc346fa19acded4fc1a79e3ec114" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.609ex; height:2.509ex;" alt="{\displaystyle D'}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D''}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mo>″</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D''}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca03d7dd8b52ab6ba8043b5339f43a0662d4af05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.061ex; height:2.509ex;" alt="{\displaystyle D''}"></span> koeficienti druge kvadratne forme ploskve, določeni z: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D={\frac {d}{\sqrt {EG-F^{2}}}}\;,D'={\frac {d'}{\sqrt {EG-F^{2}}}}\!\,,D''={\frac {d''}{\sqrt {EG-F^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <msqrt> <mi>E</mi> <mi>G</mi> <mo>−<!-- − --></mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mspace width="thickmathspace" /> <mo>,</mo> <msup> <mi>D</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mo>′</mo> </msup> <msqrt> <mi>E</mi> <mi>G</mi> <mo>−<!-- − --></mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>,</mo> <msup> <mi>D</mi> <mo>″</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mo>″</mo> </msup> <msqrt> <mi>E</mi> <mi>G</mi> <mo>−<!-- − --></mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D={\frac {d}{\sqrt {EG-F^{2}}}}\;,D'={\frac {d'}{\sqrt {EG-F^{2}}}}\!\,,D''={\frac {d''}{\sqrt {EG-F^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e83243712397b8a74ec367a202fffaf71193dc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:57.018ex; height:6.843ex;" alt="{\displaystyle D={\frac {d}{\sqrt {EG-F^{2}}}}\;,D'={\frac {d'}{\sqrt {EG-F^{2}}}}\!\,,D''={\frac {d''}{\sqrt {EG-F^{2}}}}}"></span></dd></dl> <p>in <i>d</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f310a68106a9e308bdaf887ff8f7171c4cb9d96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.903ex; height:2.509ex;" alt="{\displaystyle d'}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d''}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mo>″</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d''}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15e8c7dcc9a43913fde2c78b41e78e91897fc0af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.355ex; height:2.509ex;" alt="{\displaystyle d''}"></span> pa z: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d={\begin{bmatrix}{\frac {\partial ^{2}x}{\partial u^{2}}}&{\frac {\partial ^{2}y}{\partial u^{2}}}&{\frac {\partial ^{2}z}{\partial u^{2}}}\\{\frac {\partial x}{\partial u}}&{\frac {\partial y}{\partial u}}&{\frac {\partial z}{\partial u}}\\{\frac {\partial x}{\partial v}}&{\frac {\partial y}{\partial v}}&{\frac {\partial z}{\partial v}}\end{bmatrix}}\;,\;\;d'={\begin{bmatrix}{\frac {\partial ^{2}x}{\partial u\partial v}}&{\frac {\partial ^{2}y}{\partial u\partial v}}&{\frac {\partial ^{2}z}{\partial u\partial v}}\\{\frac {\partial x}{\partial u}}&{\frac {\partial y}{\partial u}}&{\frac {\partial z}{\partial u}}\\{\frac {\partial x}{\partial v}}&{\frac {\partial y}{\partial v}}&{\frac {\partial z}{\partial v}}\end{bmatrix}}\;,\;\;d''={\begin{bmatrix}{\frac {\partial ^{2}x}{\partial v^{2}}}&{\frac {\partial ^{2}y}{\partial v^{2}}}&{\frac {\partial ^{2}z}{\partial v^{2}}}\\{\frac {\partial x}{\partial u}}&{\frac {\partial y}{\partial u}}&{\frac {\partial z}{\partial u}}\\{\frac {\partial x}{\partial v}}&{\frac {\partial y}{\partial v}}&{\frac {\partial z}{\partial v}}\end{bmatrix}}\;.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>z</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mspace width="thickmathspace" /> <mo>,</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <msup> <mi>d</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>z</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mspace width="thickmathspace" /> <mo>,</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <msup> <mi>d</mi> <mo>″</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>z</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mspace width="thickmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d={\begin{bmatrix}{\frac {\partial ^{2}x}{\partial u^{2}}}&{\frac {\partial ^{2}y}{\partial u^{2}}}&{\frac {\partial ^{2}z}{\partial u^{2}}}\\{\frac {\partial x}{\partial u}}&{\frac {\partial y}{\partial u}}&{\frac {\partial z}{\partial u}}\\{\frac {\partial x}{\partial v}}&{\frac {\partial y}{\partial v}}&{\frac {\partial z}{\partial v}}\end{bmatrix}}\;,\;\;d'={\begin{bmatrix}{\frac {\partial ^{2}x}{\partial u\partial v}}&{\frac {\partial ^{2}y}{\partial u\partial v}}&{\frac {\partial ^{2}z}{\partial u\partial v}}\\{\frac {\partial x}{\partial u}}&{\frac {\partial y}{\partial u}}&{\frac {\partial z}{\partial u}}\\{\frac {\partial x}{\partial v}}&{\frac {\partial y}{\partial v}}&{\frac {\partial z}{\partial v}}\end{bmatrix}}\;,\;\;d''={\begin{bmatrix}{\frac {\partial ^{2}x}{\partial v^{2}}}&{\frac {\partial ^{2}y}{\partial v^{2}}}&{\frac {\partial ^{2}z}{\partial v^{2}}}\\{\frac {\partial x}{\partial u}}&{\frac {\partial y}{\partial u}}&{\frac {\partial z}{\partial u}}\\{\frac {\partial x}{\partial v}}&{\frac {\partial y}{\partial v}}&{\frac {\partial z}{\partial v}}\end{bmatrix}}\;.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66366ef9d12ebc7609d8fc526fdb1bbdf962b395" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.077ex; margin-bottom: -0.261ex; width:81.832ex; height:13.843ex;" alt="{\displaystyle d={\begin{bmatrix}{\frac {\partial ^{2}x}{\partial u^{2}}}&{\frac {\partial ^{2}y}{\partial u^{2}}}&{\frac {\partial ^{2}z}{\partial u^{2}}}\\{\frac {\partial x}{\partial u}}&{\frac {\partial y}{\partial u}}&{\frac {\partial z}{\partial u}}\\{\frac {\partial x}{\partial v}}&{\frac {\partial y}{\partial v}}&{\frac {\partial z}{\partial v}}\end{bmatrix}}\;,\;\;d'={\begin{bmatrix}{\frac {\partial ^{2}x}{\partial u\partial v}}&{\frac {\partial ^{2}y}{\partial u\partial v}}&{\frac {\partial ^{2}z}{\partial u\partial v}}\\{\frac {\partial x}{\partial u}}&{\frac {\partial y}{\partial u}}&{\frac {\partial z}{\partial u}}\\{\frac {\partial x}{\partial v}}&{\frac {\partial y}{\partial v}}&{\frac {\partial z}{\partial v}}\end{bmatrix}}\;,\;\;d''={\begin{bmatrix}{\frac {\partial ^{2}x}{\partial v^{2}}}&{\frac {\partial ^{2}y}{\partial v^{2}}}&{\frac {\partial ^{2}z}{\partial v^{2}}}\\{\frac {\partial x}{\partial u}}&{\frac {\partial y}{\partial u}}&{\frac {\partial z}{\partial u}}\\{\frac {\partial x}{\partial v}}&{\frac {\partial y}{\partial v}}&{\frac {\partial z}{\partial v}}\end{bmatrix}}\;.}"></span></dd></dl> <p>Toda celo v tem času, ko je Gauss vso svojo dejavnost osredotočil na probleme iz geodezije, ni zanemaril svoje prve ljubezni, »kraljice matematike«, kajti v letih 1825 in 1831 je izšlo njegovo delo o <a href="/w/index.php?title=Bikvadratni_ostanek&action=edit&redlink=1" class="new" title="Bikvadratni ostanek (stran ne obstaja)">bikvadratnih ostankih</a>. To je bilo nadaljevanje njegove teorije o <a href="/w/index.php?title=Kvadratni_ostanek&action=edit&redlink=1" class="new" title="Kvadratni ostanek (stran ne obstaja)">kvadratnih ostankih</a> iz njegovega dela <i>Disquisitiones arithmeticae</i>, toda nadaljevanje z novo metodo, s teorijo <a href="/wiki/Kompleksno_%C5%A1tevilo" title="Kompleksno število">kompleksnih števil</a>. V razpravi iz 1831 ni podal samo <a href="/wiki/Algebra" title="Algebra">algebre</a>, ampak tudi <a href="/wiki/Aritmetika" title="Aritmetika">aritmetiko</a> kompleksnih števil. Pojavila se je nova teorija praštevil, pri kateri je 3 še vedno praštevilo, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5=(1+2i)(1-2i)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mi>i</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mn>2</mn> <mi>i</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5=(1+2i)(1-2i)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/351817fcb2bf39ef4b14e9076ebb3242a3b9377c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.815ex; height:2.843ex;" alt="{\displaystyle 5=(1+2i)(1-2i)}"></span> pa nič več. Nova teorija kompleksnih števil je razjasnila več nejasnosti v aritmetiki, tako da je <a href="/w/index.php?title=Kvadratni_recipro%C4%8Dnostni_zakon&action=edit&redlink=1" class="new" title="Kvadratni recipročnostni zakon (stran ne obstaja)">kvadratni recipročnostni zakon</a> postal preprostejši kot pri realnih številih. V tem članku je Gauss za vedno odstranil misterij, ki je obdajal kompleksna števila, tako da jih je ponazoril s točkami v ravnini. Imel je zamisli o <a href="/wiki/Kvaternion" title="Kvaternion">kvaternionih</a>, ki jih je kasneje razvil <a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">Hamilton</a>. </p><p>V numeričnem računanju je znana njegova <a href="/wiki/Gaussova_eliminacijska_metoda" title="Gaussova eliminacijska metoda">Gaussova eliminacijska metoda</a>. To je metoda za reševanje <i>n</i> <a href="/wiki/Linearna_ena%C4%8Dba" title="Linearna enačba">linearnih enačb</a> z <i>n</i> neznankami. Pri tej metodi prevedemo z eliminacijo ene neznanke <a href="/w/index.php?title=Sistem_ena%C4%8Db&action=edit&redlink=1" class="new" title="Sistem enačb (stran ne obstaja)">sistem enačb</a> v nov sistem <i>n</i>-1 enačb z <i>n</i>-1 neznanko. S postopno uporabo te metode dobimo na koncu eno linearno enačbo z eno neznanko, ki jo rešimo neposredno. Jasno je, da dobimo po tej metodi rešitev samo pri pogoju, da ta obstaja. Gauss je razvil nov postopek za izračun decimalk <a href="/wiki/Pi" title="Pi">Ludolfovega števila π</a>, po katerem so risali mreže kvadratov s stranicami dolžine 1 in na njih od nekega središča v oglišču enega kvadrata kroge z različno dolgimi polmeri. Pri tem so šteli kvadrate, ki so vsaj z enim ogliščem padli v načrtane kroge. Pri tem je opazil da z naraščanjem polmera krogov razmerje površine teh vseh kvadratov v notranjosti krogov in kvadratom polmerov krogov teži k vrednosti π. Kot rezultat tega postopka izhaja razpredelnica: </p> <table class="wikitable"> <tbody><tr> <th><i>n</i></th> <th><i>P</i></th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(r)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>r</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(r)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/337afe0d1a4b7113b1a51a1d25040de832809aa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.658ex; height:3.176ex;" alt="{\displaystyle P(r)^{2}}"></span> </th></tr> <tr> <td>10</td> <td>317</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3,17}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>,</mo> <mn>17</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3,17}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d9fc1923eb9631eb647bcfe5cfb9f55340fbbfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.521ex; height:2.509ex;" alt="{\displaystyle 3,17}"></span> </td></tr> <tr> <td>20</td> <td>1257</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3,1425}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>,</mo> <mn>1425</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3,1425}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48065b15813a77983e34e0f5794a8b2c1b4457bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.846ex; height:2.509ex;" alt="{\displaystyle 3,1425}"></span> </td></tr> <tr> <td>30</td> <td>2821</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3,1344}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>,</mo> <mn>1344</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3,1344}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/769a5ee6ae0279b2689d0216f96a230a47fc34a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.846ex; height:2.509ex;" alt="{\displaystyle 3,1344}"></span> </td></tr> <tr> <td>100</td> <td>31417</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3,1417}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>,</mo> <mn>1417</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3,1417}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62fb9fc55d0e03f6d6a92dd3be15b9c479ed0a67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.846ex; height:2.509ex;" alt="{\displaystyle 3,1417}"></span> </td></tr> <tr> <td>200</td> <td>1256290</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3,140725}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>,</mo> <mn>140725</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3,140725}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc2ce130e9c4380b7fa2cc2eb0954f474663264" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.171ex; height:2.509ex;" alt="{\displaystyle 3,140725}"></span> </td></tr> <tr> <td>300</td> <td>2826963</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3,14107}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>,</mo> <mn>14107</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3,14107}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e17742a6ebc97221ef369f768e5b15d1f4b372dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.009ex; height:2.509ex;" alt="{\displaystyle 3,14107}"></span> </td></tr></tbody></table> <p>kjer je <i>P</i>(<i>r</i>) površina kvadratov v danem <a href="/wiki/Krog" title="Krog">krogu</a> z enim ogliščem in <i>r</i> polmer kroga. V limiti, ko <i>r</i> pobegne čez vse meje, vrednost <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(r)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>r</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(r)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/337afe0d1a4b7113b1a51a1d25040de832809aa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.658ex; height:3.176ex;" alt="{\displaystyle P(r)^{2}}"></span> teži k π. S to metodo so se ognili Arhimedovi mnogokotniški metodi, konvergence pa s tem niso pospešili. Leta 1844 je <a href="/w/index.php?title=Zacharias_Dase&action=edit&redlink=1" class="new" title="Zacharias Dase (stran ne obstaja)">Dase</a> dosegel 200 pravilnih decimalk π-ja in izboljšal <a href="/wiki/Jurij_Vega" title="Jurij Vega">Vegov</a> rekord pod Gaussovim nadzorstvom z enačbo: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi =4\left(\operatorname {arctg} {\frac {1}{2}}+\operatorname {arctg} {\frac {1}{5}}+\operatorname {arctg} {\frac {1}{8}}\right)\!\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mo>=</mo> <mn>4</mn> <mrow> <mo>(</mo> <mrow> <mi>arctg</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>arctg</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mrow> <mo>+</mo> <mi>arctg</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>8</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi =4\left(\operatorname {arctg} {\frac {1}{2}}+\operatorname {arctg} {\frac {1}{5}}+\operatorname {arctg} {\frac {1}{8}}\right)\!\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c6338f5163e13ccbd25e2734a769235e270c6b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:38.794ex; height:6.176ex;" alt="{\displaystyle \pi =4\left(\operatorname {arctg} {\frac {1}{2}}+\operatorname {arctg} {\frac {1}{5}}+\operatorname {arctg} {\frac {1}{8}}\right)\!\,.}"></span></dd></dl> <p>Znan je <a href="/wiki/Izrek_Gaussa_in_Ostrogradskega" title="Izrek Gaussa in Ostrogradskega">izrek Gaussa in Ostrogradskega</a> (izrek o divergenci), s katerim prevedemo <a href="/w/index.php?title=Trojni_integral&action=edit&redlink=1" class="new" title="Trojni integral (stran ne obstaja)">trojni integral</a> v <a href="/w/index.php?title=Zaklopni_ploskovni_integral&action=edit&redlink=1" class="new" title="Zaklopni ploskovni integral (stran ne obstaja)">zaklopni ploskovni integral</a> in obratno: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \!\!\int \!\!\int _{V}\left({\frac {\partial P}{\partial x}}+{\frac {\partial Q}{\partial y}}+{\frac {\partial R}{\partial z}}\right)\mathrm {d} V=\int \!\!\int _{S}P\,\mathrm {d} y\,\mathrm {d} z+Q\,\mathrm {d} y\,\mathrm {d} x+R\,\mathrm {d} x\,\mathrm {d} y\!\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>∫<!-- ∫ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>P</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>Q</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>R</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>V</mi> <mo>=</mo> <mo>∫<!-- ∫ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>P</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> <mo>+</mo> <mi>Q</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo>+</mo> <mi>R</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \!\!\int \!\!\int _{V}\left({\frac {\partial P}{\partial x}}+{\frac {\partial Q}{\partial y}}+{\frac {\partial R}{\partial z}}\right)\mathrm {d} V=\int \!\!\int _{S}P\,\mathrm {d} y\,\mathrm {d} z+Q\,\mathrm {d} y\,\mathrm {d} x+R\,\mathrm {d} x\,\mathrm {d} y\!\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae06f6efa4c97f26bb1bbfe1d921acb62d1de4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:68.012ex; height:6.176ex;" alt="{\displaystyle \int \!\!\int \!\!\int _{V}\left({\frac {\partial P}{\partial x}}+{\frac {\partial Q}{\partial y}}+{\frac {\partial R}{\partial z}}\right)\mathrm {d} V=\int \!\!\int _{S}P\,\mathrm {d} y\,\mathrm {d} z+Q\,\mathrm {d} y\,\mathrm {d} x+R\,\mathrm {d} x\,\mathrm {d} y\!\,,}"></span></dd></dl> <p>če je <i>S</i> sklenjena usmerjena ploskev (pozitivna stran je zunanja), ki omejuje prostornino <i>V</i>, in <i>P</i>, <i>Q</i>, <i>R</i> funkcije treh spremenljivk, podane na enostavnem sovisnem območju, ki vključuje to ploskev. V vektorski analizi se izrek glasi: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint _{\Sigma }\mathbf {V} \mathrm {d} \mathbf {S} =\int _{V}\nabla \cdot \mathbf {V} \mathrm {d} v\!\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Σ<!-- Σ --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>v</mi> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint _{\Sigma }\mathbf {V} \mathrm {d} \mathbf {S} =\int _{V}\nabla \cdot \mathbf {V} \mathrm {d} v\!\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f4ef86ca9cc48c879baec57009220ffd330eae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.224ex; height:5.676ex;" alt="{\displaystyle \oint _{\Sigma }\mathbf {V} \mathrm {d} \mathbf {S} =\int _{V}\nabla \cdot \mathbf {V} \mathrm {d} v\!\,}"></span></dd></dl> <p>ali: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint \!\!\oint _{\partial \Sigma }\mathbf {V} \mathrm {d} \mathbf {S} =\int \!\!\int \!\!\int _{\Sigma }\nabla \times \mathbf {V} \mathrm {d} v\!\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∮<!-- ∮ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi mathvariant="normal">Σ<!-- Σ --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <mo>∫<!-- ∫ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>∫<!-- ∫ --></mo> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Σ<!-- Σ --></mi> </mrow> </msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>v</mi> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint \!\!\oint _{\partial \Sigma }\mathbf {V} \mathrm {d} \mathbf {S} =\int \!\!\int \!\!\int _{\Sigma }\nabla \times \mathbf {V} \mathrm {d} v\!\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe15b3ea06b335ac4d6cd064d3a731849ad20a65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:30.307ex; height:5.676ex;" alt="{\displaystyle \oint \!\!\oint _{\partial \Sigma }\mathbf {V} \mathrm {d} \mathbf {S} =\int \!\!\int \!\!\int _{\Sigma }\nabla \times \mathbf {V} \mathrm {d} v\!\,.}"></span></dd></dl> <p>Gauss nikakor ni bil prepričan, da je <a href="/wiki/Evklidska_geometrija" title="Evklidska geometrija">evklidska geometrija</a> zmeraj in povsod edino primerna za opisovanje okolja, v katerem živimo. Po njegovem bi bilo to treba šele preveriti. Je eden od utemeljiteljev <a href="/wiki/Neevklidska_geometrija" title="Neevklidska geometrija">neevklidske geometrije</a> hkrati z <a href="/wiki/J%C3%A1nos_Bolyai" title="János Bolyai">Bolyaijem</a> in <a href="/wiki/Nikolaj_Ivanovi%C4%8D_Loba%C4%8Devski" title="Nikolaj Ivanovič Lobačevski">Lobačevskim</a>. Ker Gauss svojih odkritij na tem področju ni objavil, je prišlo do nekaterih neprijetnih zapletov v zvezi s prvenstvom. Vendar pa je pripomogel k priznanju dela Lobačevskega. </p><p>Do konca svojega življenja je ostal v Göttingenu. Predaval, po lastnih izjavah, ni posebno rad. To v času, ko je bil za mnoge študij precej neresna zadeva, niti ni bilo čudno. Kot pravijo, je postal proti koncu življenja skoraj nedostopna veličina, morda tudi iz zagrenjenosti zaradi nesreč in nesporazumov v družini. Zanimivo je, da se je kasneje izkazalo, da je očitno odkril in uporabljal nekatere zelo važne izreke iz kompleksne analize, pa tega ni nikoli objavil. Morda zato, ker je zmeraj poskušal svoje rezultate dati v javnost v dokončni, povsem zlikani obliki, pa ni imel časa za to. </p> <div class="mw-heading mw-heading3"><h3 id="Raziskovanje_v_fiziki">Raziskovanje v fiziki</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Carl_Friedrich_Gauss&veaction=edit&section=5" title="Uredi razdelek: Raziskovanje v fiziki" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=edit&section=5" title="Urejanje izvorne kode razdelka: Raziskovanje v fiziki"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Izkazal se je tudi v <a href="/wiki/Fizika" title="Fizika">fiziki</a> in <a href="/wiki/Matemati%C4%8Dna_fizika" title="Matematična fizika">matematični fiziki</a>, zlasti v <a href="/wiki/Elektromagnetizem" class="mw-redirect" title="Elektromagnetizem">elektromagnetizmu</a> z odkritjem <a href="/w/index.php?title=Magnetometer&action=edit&redlink=1" class="new" title="Magnetometer (stran ne obstaja)">magnetometra</a> in električnega <a href="/wiki/Telegraf" title="Telegraf">telegrafa</a> 1833 do 1834, ko ga je začela privlačevati fizika. V tem času je opravil veliko eksperimentalnega dela s področja zemeljskega magnetizma. Sodeloval je pri prvem širšem prikazu <a href="/w/index.php?title=Zemeljsko_magnetno_polje&action=edit&redlink=1" class="new" title="Zemeljsko magnetno polje (stran ne obstaja)">zemeljskega magnetnega polja</a>. Toda čas je našel tudi za izredno pomemben teoretičen dosežek, za teorijo <a href="/wiki/Sila" title="Sila">sil</a>, ki so obratno sorazmerne s kvadratom razdalje (<i>Allgemeine Lehrätze</i>, 1839, 1840). To je bil začetek potencialne teorije kot posebne veje matematike (<a href="/wiki/George_Green" title="George Green">Greenova</a> razprava iz leta 1828 je bila v tem času praktično neznana). V tem delu je Gauss podal tudi strogi dokaz za mase s spremenljivo gostoto, ki vodi od <a href="/w/index.php?title=Laplaceova_ena%C4%8Dba&action=edit&redlink=1" class="new" title="Laplaceova enačba (stran ne obstaja)">Laplaceove enačbe</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla ^{2}\phi =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>ϕ<!-- ϕ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla ^{2}\phi =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/046b1f213d422442e4710eb5d4927f67d58953e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.636ex; height:3.009ex;" alt="{\displaystyle \nabla ^{2}\phi =0}"></span> do <a href="/wiki/Poissonova_ena%C4%8Dba" title="Poissonova enačba">Poissonove enačbe</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla ^{2}\phi =-4\pi \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>ϕ<!-- ϕ --></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mn>4</mn> <mi>π<!-- π --></mi> <mi>ρ<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla ^{2}\phi =-4\pi \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99a2a78246e34558ebbb042138fecc8c78a5db67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.979ex; height:3.176ex;" alt="{\displaystyle \nabla ^{2}\phi =-4\pi \rho }"></span>. Iz tega so sledila določena minimalna načela o prostorskih integralih, med katerimi prepoznamo <a href="/w/index.php?title=Dirichletovo_na%C4%8Delo&action=edit&redlink=1" class="new" title="Dirichletovo načelo (stran ne obstaja)">Dirichletovo načelo</a>. Za Gaussa je bil obstoj minimuma očiten. O tem so pozneje mnogo razpravljali, končno pa je to vprašanje rešil <a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a>. </p><p><a href="/wiki/Gaussova_gravitacijska_konstanta" title="Gaussova gravitacijska konstanta">Gaussova gravitacijska konstanta</a> <i>k</i> je številčna vrednost <a href="/wiki/Gravitacijska_konstanta" title="Gravitacijska konstanta">gravitacijske konstante</a> <i>κ</i> v <a href="/wiki/Oson%C4%8Dje" title="Osončje">Osončju</a>. </p><p>V fiziki je znan tudi njegov <a href="/wiki/Gaussov_sistem_enot" title="Gaussov sistem enot">Gaussov merski sestav</a>. To je sestav enot, ki temelji na osnovnih enotah za <a href="/wiki/Dol%C5%BEina" title="Dolžina">dolžino</a>, <a href="/wiki/Masa" title="Masa">maso</a> in <a href="/wiki/%C4%8Cas" title="Čas">čas</a>: centimeter, gram, <a href="/wiki/Sekunda" title="Sekunda">sekunda</a> (<a href="/wiki/CGS_sistem_enot" class="mw-redirect" title="CGS sistem enot">sistem cgs</a>). </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Slika:Braunschweig_Brunswick_Gauss-Denkmal_komplett_(2006).JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Braunschweig_Brunswick_Gauss-Denkmal_komplett_%282006%29.JPG/200px-Braunschweig_Brunswick_Gauss-Denkmal_komplett_%282006%29.JPG" decoding="async" width="200" height="177" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Braunschweig_Brunswick_Gauss-Denkmal_komplett_%282006%29.JPG/300px-Braunschweig_Brunswick_Gauss-Denkmal_komplett_%282006%29.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Braunschweig_Brunswick_Gauss-Denkmal_komplett_%282006%29.JPG/400px-Braunschweig_Brunswick_Gauss-Denkmal_komplett_%282006%29.JPG 2x" data-file-width="1280" data-file-height="1131" /></a><figcaption>Spomenik Gaussu v <a href="/wiki/Braunschweig" title="Braunschweig">Braunschweigu</a> </figcaption></figure> <p>Vse življenje so ga spremljale osebne nesreče in čeprav je bil bogat je umrl zagrenjen. Vsekakor pa bi težko našli človeka, ki bi bolj kot Gauss zaslužil vzdevek velikan <a href="/wiki/Znanost" title="Znanost">znanosti</a>. Delal je vse do svoje smrti. V poznejših letih se je vse več in več ukvarjal z <a href="/wiki/Uporabna_matematika" title="Uporabna matematika">uporabno matematiko</a>. Toda njegove publikacije ne dajo prave slike o vsej njegovi veličini. Iz njegovih <a href="/wiki/Dnevnik_(knji%C5%BEevnost)" title="Dnevnik (književnost)">dnevnikov</a> in nekaterih <a href="/w/index.php?title=Pismo&action=edit&redlink=1" class="new" title="Pismo (stran ne obstaja)">pisem</a> vidimo, da je nekatere najgloblje misli zadržal zase. Zdaj vemo, da je Gauss že leta 1800 odkril <a href="/w/index.php?title=Elipti%C4%8Dne_funkcije&action=edit&redlink=1" class="new" title="Eliptične funkcije (stran ne obstaja)">eliptične funkcije</a> in okoli leta 1816 obvladal <a href="/wiki/Neevklidska_geometrija" title="Neevklidska geometrija">neevklidsko geometrijo</a>. O teh predmetih ni nikoli ničesar objavil, samo v nekaterih pismih prijateljem je izrazil svoje kritično stališče do poskusov, da bi dokazali <a href="/wiki/Evklidov_5._postulat" class="mw-redirect" title="Evklidov 5. postulat">Evklidov 5. postulat</a> (<a href="/wiki/Aksiom_o_vzporednici" title="Aksiom o vzporednici">aksiom o vzporednici</a>). Kaže, da Gauss ni hotel javno razpravljati o spornih vprašanjih. V pismih je pisal o <a href="/wiki/Osa" class="mw-redirect" title="Osa">osah</a>, ki bi mu tedaj letele okoli ušes, in o »vpitju Beočanov«, ki bi se slišalo, če bi razkril svoje skrivnosti. </p><p>Sam Gauss je dvomil o veljavnosti sprejete <a href="/wiki/Immanuel_Kant" title="Immanuel Kant">Kantove</a> doktrine, po kateri je naša predstava o prostoru a priori evklidska. Zanj je bila realna geometrija prostora fizikalno dejstvo, ki ga je treba odkriti s poskusi. Na univerzi ga je za štiri leta do 1859 nasledil njegov učenec <a href="/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet" title="Johann Peter Gustav Lejeune Dirichlet">Dirichlet</a>. </p><p>Gauss je pokopan na pokopališču Albanifriedhof. Od leta 1989 do konca 2001 je bil njegov portret in njegova krivulja normalne porazdelitve prikazan na bankovcu za 10 <a href="/w/index.php?title=Nem%C5%A1ka_marka&action=edit&redlink=1" class="new" title="Nemška marka (stran ne obstaja)">nemških mark</a>. </p><p>G. Waldo Dunnington je bil dolgoletni Gaussov študent. O njem je napisal mnogo člankov in <a href="/wiki/%C5%BDivljenjepis" class="mw-redirect" title="Življenjepis">življenjepis</a> <i>Carl Friedrich Gauss: Velikan znanosti</i> (<i>Carl Frederick Gauss: Titan of Science</i>). </p> <div class="mw-heading mw-heading2"><h2 id="Priznanja">Priznanja</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Carl_Friedrich_Gauss&veaction=edit&section=6" title="Uredi razdelek: Priznanja" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=edit&section=6" title="Urejanje izvorne kode razdelka: Priznanja"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Nagrade">Nagrade</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Carl_Friedrich_Gauss&veaction=edit&section=7" title="Uredi razdelek: Nagrade" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=edit&section=7" title="Urejanje izvorne kode razdelka: Nagrade"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Francoska_akademija_znanosti" title="Francoska akademija znanosti">Francoska akademija znanosti</a> mu je leta 1910 podelila <a href="/w/index.php?title=Lalandova_nagrada&action=edit&redlink=1" class="new" title="Lalandova nagrada (stran ne obstaja)">Lalandovo nagrado</a> za njegove dosežke na področju astronomije. </p><p>Leta 1838 je za svoje <a href="/wiki/Znanost" title="Znanost">znanstvene</a> dosežke prejel <a href="/wiki/Copleyjeva_medalja" title="Copleyjeva medalja">Copleyjevo medaljo</a> <a href="/wiki/Kraljeva_dru%C5%BEba" title="Kraljeva družba">Kraljeve družbe</a> iz <a href="/wiki/London" title="London">Londona</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Poimenovanja">Poimenovanja</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Carl_Friedrich_Gauss&veaction=edit&section=8" title="Uredi razdelek: Poimenovanja" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=edit&section=8" title="Urejanje izvorne kode razdelka: Poimenovanja"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Gavs" title="Gavs">Gauss</a> (gavs) so njemu na čast poimenovali <a href="/wiki/Merska_enota" title="Merska enota">enoto</a> za <a href="/wiki/Gostota_magnetnega_polja" title="Gostota magnetnega polja">gostoto magnetnega polja</a> v absolutnem elektromagnetnem sestavu. </p><p>Po njem se imenujejo: </p> <ul><li><a href="/wiki/Udarni_krater" title="Udarni krater">udarni</a> <a href="/wiki/Lunini_kraterji" title="Lunini kraterji">krater</a> <a href="/w/index.php?title=Gauss_(krater)&action=edit&redlink=1" class="new" title="Gauss (krater) (stran ne obstaja)">Gauss</a> na <a href="/wiki/Luna" title="Luna">Luni</a></li> <li><a href="/wiki/Asteroid" title="Asteroid">asteroid</a> <a href="/w/index.php?title=1001_Gaussia&action=edit&redlink=1" class="new" title="1001 Gaussia (stran ne obstaja)">1001 Gaussia</a></li> <li>raziskovalni ladji <i><a href="/w/index.php?title=Gaus_(ladji)&action=edit&redlink=1" class="new" title="Gaus (ladji) (stran ne obstaja)">Gauss</a></i> <ul><li>iz leta 1909 za raziskovanje <a href="/wiki/Antarktika" title="Antarktika">antarktičnih</a> področij v <a href="/w/index.php?title=Gaussova_odprava&action=edit&redlink=1" class="new" title="Gaussova odprava (stran ne obstaja)">Gaussovi odpravi</a></li> <li>iz leta 1980 nemškega <a href="/w/index.php?title=Zvezni_urad_za_pomorstvo_in_hidrografijo&action=edit&redlink=1" class="new" title="Zvezni urad za pomorstvo in hidrografijo (stran ne obstaja)">Zveznega urada za pomorstvo in hidrografijo</a> (BSH) iz Hamburga</li></ul></li></ul> <div class="mw-heading mw-heading2"><h2 id="Glej_tudi">Glej tudi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Carl_Friedrich_Gauss&veaction=edit&section=9" title="Uredi razdelek: Glej tudi" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=edit&section=9" title="Urejanje izvorne kode razdelka: Glej tudi"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/w/index.php?title=Gauss-Kuzminova_porazdelitev&action=edit&redlink=1" class="new" title="Gauss-Kuzminova porazdelitev (stran ne obstaja)">Gauss-Kuzminova porazdelitev</a></li> <li><a href="/wiki/Gaussov_gravitacijski_zakon" title="Gaussov gravitacijski zakon">Gaussov gravitacijski zakon</a></li> <li><a href="/wiki/Gaussov_problem_o_krogu" title="Gaussov problem o krogu">Gaussov problem o krogu</a></li> <li><a href="/wiki/Gaussov_oklepaj" class="mw-redirect" title="Gaussov oklepaj">Gaussov oklepaj</a></li> <li><a href="/wiki/Gaussov_snop" title="Gaussov snop">Gaussov snop</a></li> <li><a href="/wiki/Gaussova_konstanta" title="Gaussova konstanta">Gaussova konstanta</a></li> <li><a href="/w/index.php?title=Gaussova_ploskev&action=edit&redlink=1" class="new" title="Gaussova ploskev (stran ne obstaja)">Gaussova ploskev</a></li> <li><a href="/wiki/Gaussovo_leto" title="Gaussovo leto">Gaussovo leto</a></li> <li><a href="/w/index.php?title=Gaussovski_jarek&action=edit&redlink=1" class="new" title="Gaussovski jarek (stran ne obstaja)">gaussovski jarek</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Sklici">Sklici</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Carl_Friedrich_Gauss&veaction=edit&section=10" title="Uredi razdelek: Sklici" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=edit&section=10" title="Urejanje izvorne kode razdelka: Sklici"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist columns references-column-width" style="column-width: 25em; list-style-type: decimal;"> <ol class="references"> <li id="cite_note-&lt;span_class=&quot;wikidata_cite_citetype_Q36524_citetype_Q17152639_citetype_Q1172284&quot;_data-entity-id=&quot;Q36578&quot;&gt;[http://d-nb.info/gnd/104234644/_Record_#104234644]_//_Gemeinsame_Normdatei&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_2012—2016.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q27302]][[d:Track:Q36578]]&lt;/div&gt;-1"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q36524_citetype_Q17152639_citetype_Q1172284&quot;_data-entity-id=&quot;Q36578&quot;&gt;[http://d-nb.info/gnd/104234644/_Record_#104234644]_//_Gemeinsame_Normdatei&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_2012—2016.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q27302]][[d:Track:Q36578]]&lt;/div&gt;_1-0">1,0</a></sup> <sup><a href="#cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q36524_citetype_Q17152639_citetype_Q1172284&quot;_data-entity-id=&quot;Q36578&quot;&gt;[http://d-nb.info/gnd/104234644/_Record_#104234644]_//_Gemeinsame_Normdatei&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_2012—2016.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q27302]][[d:Track:Q36578]]&lt;/div&gt;_1-1">1,1</a></sup></span> <span class="reference-text"><span class="wikidata_cite citetype_Q36524 citetype_Q17152639 citetype_Q1172284" data-entity-id="Q36578"><a rel="nofollow" class="external text" href="http://d-nb.info/gnd/104234644/">Record #104234644</a> // Gemeinsame Normdatei<span class="wef_low_priority_links"> — 2012—2016.</span></span><div style="display:none"><a href="https://www.wikidata.org/wiki/Track:Q27302" class="extiw" title="d:Track:Q27302">d:Track:Q27302</a><a href="https://www.wikidata.org/wiki/Track:Q36578" class="extiw" title="d:Track:Q36578">d:Track:Q36578</a></div></span> </li> <li id="cite_note-&lt;span_class=&quot;wikidata_cite_citetype_Q36524_citetype_Q7094076_citetype_Q27031827_citetype_Q595971&quot;_data-entity-id=&quot;Q19938912&quot;&gt;[http://data.bnf.fr/ark:/12148/cb11904373v_data.bnf.fr]:_platforma_za_odprte_podatke&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_2011.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q193563]][[d:Track:Q19938912]]&lt;/div&gt;-2"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q36524_citetype_Q7094076_citetype_Q27031827_citetype_Q595971&quot;_data-entity-id=&quot;Q19938912&quot;&gt;[http://data.bnf.fr/ark:/12148/cb11904373v_data.bnf.fr]:_platforma_za_odprte_podatke&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_2011.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q193563]][[d:Track:Q19938912]]&lt;/div&gt;_2-0">2,0</a></sup> <sup><a href="#cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q36524_citetype_Q7094076_citetype_Q27031827_citetype_Q595971&quot;_data-entity-id=&quot;Q19938912&quot;&gt;[http://data.bnf.fr/ark:/12148/cb11904373v_data.bnf.fr]:_platforma_za_odprte_podatke&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_2011.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q193563]][[d:Track:Q19938912]]&lt;/div&gt;_2-1">2,1</a></sup></span> <span class="reference-text"><span class="wikidata_cite citetype_Q36524 citetype_Q7094076 citetype_Q27031827 citetype_Q595971" data-entity-id="Q19938912"><a rel="nofollow" class="external text" href="http://data.bnf.fr/ark:/12148/cb11904373v">data.bnf.fr</a>: platforma za odprte podatke<span class="wef_low_priority_links"> — 2011.</span></span><div style="display:none"><a href="https://www.wikidata.org/wiki/Track:Q193563" class="extiw" title="d:Track:Q193563">d:Track:Q193563</a><a href="https://www.wikidata.org/wiki/Track:Q19938912" class="extiw" title="d:Track:Q19938912">d:Track:Q19938912</a></div></span> </li> <li id="cite_note-&lt;span_class=&quot;wikidata_cite_citetype_Q47461344_citetype_Q1787111&quot;_data-entity-id=&quot;Q590208&quot;&gt;[[:de:s:Allgemeine_Deutsche_Biographie|Allgemeine_Deutsche_Biographie]]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_[[:Leipzig|L]]:_[[:de:Duncker_&amp;_Humblot|Duncker_&amp;_Humblot]],_1875.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q316626]][[d:Track:Q2818964]][[d:Track:Q2079]][[d:Track:Q590208]]&lt;/div&gt;-3"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q47461344_citetype_Q1787111&quot;_data-entity-id=&quot;Q590208&quot;&gt;[[:de:s:Allgemeine_Deutsche_Biographie|Allgemeine_Deutsche_Biographie]]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_[[:Leipzig|L]]:_[[:de:Duncker_&amp;_Humblot|Duncker_&amp;_Humblot]],_1875.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q316626]][[d:Track:Q2818964]][[d:Track:Q2079]][[d:Track:Q590208]]&lt;/div&gt;_3-0">3,0</a></sup> <sup><a href="#cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q47461344_citetype_Q1787111&quot;_data-entity-id=&quot;Q590208&quot;&gt;[[:de:s:Allgemeine_Deutsche_Biographie|Allgemeine_Deutsche_Biographie]]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_[[:Leipzig|L]]:_[[:de:Duncker_&amp;_Humblot|Duncker_&amp;_Humblot]],_1875.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q316626]][[d:Track:Q2818964]][[d:Track:Q2079]][[d:Track:Q590208]]&lt;/div&gt;_3-1">3,1</a></sup> <sup><a href="#cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q47461344_citetype_Q1787111&quot;_data-entity-id=&quot;Q590208&quot;&gt;[[:de:s:Allgemeine_Deutsche_Biographie|Allgemeine_Deutsche_Biographie]]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_[[:Leipzig|L]]:_[[:de:Duncker_&amp;_Humblot|Duncker_&amp;_Humblot]],_1875.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q316626]][[d:Track:Q2818964]][[d:Track:Q2079]][[d:Track:Q590208]]&lt;/div&gt;_3-2">3,2</a></sup> <sup><a href="#cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q47461344_citetype_Q1787111&quot;_data-entity-id=&quot;Q590208&quot;&gt;[[:de:s:Allgemeine_Deutsche_Biographie|Allgemeine_Deutsche_Biographie]]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_[[:Leipzig|L]]:_[[:de:Duncker_&amp;_Humblot|Duncker_&amp;_Humblot]],_1875.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q316626]][[d:Track:Q2818964]][[d:Track:Q2079]][[d:Track:Q590208]]&lt;/div&gt;_3-3">3,3</a></sup></span> <span class="reference-text"><span class="wikidata_cite citetype_Q47461344 citetype_Q1787111" data-entity-id="Q590208"><a href="https://de.wikipedia.org/wiki/s:Allgemeine_Deutsche_Biographie" class="extiw" title="de:s:Allgemeine Deutsche Biographie">Allgemeine Deutsche Biographie</a><span class="wef_low_priority_links"> — <a href="/wiki/Leipzig" title="Leipzig">L</a>: <a href="https://de.wikipedia.org/wiki/Duncker_%26_Humblot" class="extiw" title="de:Duncker & Humblot">Duncker & Humblot</a>, 1875.</span></span><div style="display:none"><a href="https://www.wikidata.org/wiki/Track:Q316626" class="extiw" title="d:Track:Q316626">d:Track:Q316626</a><a href="https://www.wikidata.org/wiki/Track:Q2818964" class="extiw" title="d:Track:Q2818964">d:Track:Q2818964</a><a href="https://www.wikidata.org/wiki/Track:Q2079" class="extiw" title="d:Track:Q2079">d:Track:Q2079</a><a href="https://www.wikidata.org/wiki/Track:Q590208" class="extiw" title="d:Track:Q590208">d:Track:Q590208</a></div></span> </li> <li id="cite_note-&lt;span_class=&quot;wikidata_cite_citetype_Q3331189&quot;_data-entity-id=&quot;Q17378135&quot;&gt;Гаусс_Карл_Фридрих_//_[[:ru:Большая_советская_энциклопедия_(третье_издание)|Большая_советская_энциклопедия]]:_[в_30_т.]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_3-е_изд._—_&lt;span_title=&quot;Moskva&quot;_style=&quot;border-bottom:_1px_dotted;_cursor:_help;_white-space:_nowrap&quot;&gt;Moskva&lt;/span&gt;:_[[:ru:Большая_российская_энциклопедия_(издательство)|Советская_энциклопедия]],_1971._—_Т.&amp;nbsp;6_:_Газлифт_—_Гоголево._—_С.&amp;nbsp;144-145.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q5061737]][[d:Track:Q17378135]]&lt;/div&gt;-4"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q3331189&quot;_data-entity-id=&quot;Q17378135&quot;&gt;Гаусс_Карл_Фридрих_//_[[:ru:Большая_советская_энциклопедия_(третье_издание)|Большая_советская_энциклопедия]]:_[в_30_т.]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_3-е_изд._—_&lt;span_title=&quot;Moskva&quot;_style=&quot;border-bottom:_1px_dotted;_cursor:_help;_white-space:_nowrap&quot;&gt;Moskva&lt;/span&gt;:_[[:ru:Большая_российская_энциклопедия_(издательство)|Советская_энциклопедия]],_1971._—_Т.&amp;nbsp;6_:_Газлифт_—_Гоголево._—_С.&amp;nbsp;144-145.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q5061737]][[d:Track:Q17378135]]&lt;/div&gt;_4-0">4,0</a></sup> <sup><a href="#cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q3331189&quot;_data-entity-id=&quot;Q17378135&quot;&gt;Гаусс_Карл_Фридрих_//_[[:ru:Большая_советская_энциклопедия_(третье_издание)|Большая_советская_энциклопедия]]:_[в_30_т.]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;_—_3-е_изд._—_&lt;span_title=&quot;Moskva&quot;_style=&quot;border-bottom:_1px_dotted;_cursor:_help;_white-space:_nowrap&quot;&gt;Moskva&lt;/span&gt;:_[[:ru:Большая_российская_энциклопедия_(издательство)|Советская_энциклопедия]],_1971._—_Т.&amp;nbsp;6_:_Газлифт_—_Гоголево._—_С.&amp;nbsp;144-145.&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q5061737]][[d:Track:Q17378135]]&lt;/div&gt;_4-1">4,1</a></sup></span> <span class="reference-text"><span class="wikidata_cite citetype_Q3331189" data-entity-id="Q17378135">Гаусс Карл Фридрих // <a href="https://ru.wikipedia.org/wiki/%D0%91%D0%BE%D0%BB%D1%8C%D1%88%D0%B0%D1%8F_%D1%81%D0%BE%D0%B2%D0%B5%D1%82%D1%81%D0%BA%D0%B0%D1%8F_%D1%8D%D0%BD%D1%86%D0%B8%D0%BA%D0%BB%D0%BE%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F_(%D1%82%D1%80%D0%B5%D1%82%D1%8C%D0%B5_%D0%B8%D0%B7%D0%B4%D0%B0%D0%BD%D0%B8%D0%B5)" class="extiw" title="ru:Большая советская энциклопедия (третье издание)">Большая советская энциклопедия</a>: [в 30 т.]<span class="wef_low_priority_links"> — 3-е изд. — <span title="Moskva" style="border-bottom: 1px dotted; cursor: help; white-space: nowrap">Moskva</span>: <a href="https://ru.wikipedia.org/wiki/%D0%91%D0%BE%D0%BB%D1%8C%D1%88%D0%B0%D1%8F_%D1%80%D0%BE%D1%81%D1%81%D0%B8%D0%B9%D1%81%D0%BA%D0%B0%D1%8F_%D1%8D%D0%BD%D1%86%D0%B8%D0%BA%D0%BB%D0%BE%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F_(%D0%B8%D0%B7%D0%B4%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%BE)" class="extiw" title="ru:Большая российская энциклопедия (издательство)">Советская энциклопедия</a>, 1971. — Т. 6 : Газлифт — Гоголево. — С. 144-145.</span></span><div style="display:none"><a href="https://www.wikidata.org/wiki/Track:Q5061737" class="extiw" title="d:Track:Q5061737">d:Track:Q5061737</a><a href="https://www.wikidata.org/wiki/Track:Q17378135" class="extiw" title="d:Track:Q17378135">d:Track:Q17378135</a></div></span> </li> <li id="cite_note-&lt;span_class=&quot;wikidata_cite_citetype_Q35127&quot;_data-entity-id=&quot;Q107212659&quot;&gt;www.accademiadellescienze.it&lt;span_class=&quot;wef_low_priority_links&quot;&gt;&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q107212659]]&lt;/div&gt;-5"><span class="mw-cite-backlink"><a href="#cite_ref-&lt;span_class=&quot;wikidata_cite_citetype_Q35127&quot;_data-entity-id=&quot;Q107212659&quot;&gt;www.accademiadellescienze.it&lt;span_class=&quot;wef_low_priority_links&quot;&gt;&lt;/span&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;[[d:Track:Q107212659]]&lt;/div&gt;_5-0">↑</a></span> <span class="reference-text"><span class="wikidata_cite citetype_Q35127" data-entity-id="Q107212659">www.accademiadellescienze.it<span class="wef_low_priority_links"></span></span><div style="display:none"><a href="https://www.wikidata.org/wiki/Track:Q107212659" class="extiw" title="d:Track:Q107212659">d:Track:Q107212659</a></div></span> </li> <li id="cite_note-[http://www.tandfonline.com/doi/full/10.1080/00207160.2012.689826_http://www.tandfonline.com/doi/full/10.1080/00207160.2012.689826]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;&lt;/div&gt;-6"><span class="mw-cite-backlink"><a href="#cite_ref-[http://www.tandfonline.com/doi/full/10.1080/00207160.2012.689826_http://www.tandfonline.com/doi/full/10.1080/00207160.2012.689826]&lt;span_class=&quot;wef_low_priority_links&quot;&gt;&lt;/span&gt;&lt;div_style=&quot;display:none&quot;&gt;&lt;/div&gt;_6-0">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.tandfonline.com/doi/full/10.1080/00207160.2012.689826">http://www.tandfonline.com/doi/full/10.1080/00207160.2012.689826</a><span class="wef_low_priority_links"></span><div style="display:none"></div></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Zunanje_povezave">Zunanje povezave</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Carl_Friedrich_Gauss&veaction=edit&section=11" title="Uredi razdelek: Zunanje povezave" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Carl_Friedrich_Gauss&action=edit&section=11" title="Urejanje izvorne kode razdelka: Zunanje povezave"><span>uredi kodo</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r5916282">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box metadata side-box-right plainlinks"><style data-mw-deduplicate="TemplateStyles:r5911185">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedijina zbirka ponuja več predstavnostnega gradiva o temi: <i><b><a href="https://commons.wikimedia.org/wiki/Johann_Carl_Friedrich_Gau%C3%9F" class="extiw" title="commons:Johann Carl Friedrich Gauß">Carl Friedrich Gauss</a></b></i></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5916282"><div class="side-box metadata side-box-right plainlinks"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911185"> <div class="side-box-flex"> <div class="side-box-image"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/38px-Wikisource-logo.svg.png" decoding="async" width="38" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/57px-Wikisource-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/76px-Wikisource-logo.svg.png 2x" data-file-width="410" data-file-height="430" /></span></span></div> <div class="side-box-text plainlist"><a href="/wiki/Wikivir" title="Wikivir">Wikivir</a> vsebuje izvorna besedila avtorja: <i><b><a href="https://en.wikisource.org/wiki/sl:Carl_Friedrich_Gauss" class="extiw" title="wikisource:sl:Carl Friedrich Gauss">Carl Friedrich Gauss</a></b></i></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5916282"><div class="side-box metadata side-box-right plainlinks"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5911185"> <div class="side-box-flex"> <div class="side-box-image"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/25/Wikiquote-logo-sl.svg/34px-Wikiquote-logo-sl.svg.png" decoding="async" width="34" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/25/Wikiquote-logo-sl.svg/51px-Wikiquote-logo-sl.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/25/Wikiquote-logo-sl.svg/67px-Wikiquote-logo-sl.svg.png 2x" data-file-width="135" data-file-height="160" /></span></span></div> <div class="side-box-text plainlist"><a href="/wiki/Wikinavedek" title="Wikinavedek">Wikinavedek</a> vsebuje navedke o temi: <i><b><a href="https://sl.wikiquote.org/wiki/Special:Search/Carl_Friedrich_Gauss" class="extiw" title="q:Special:Search/Carl Friedrich Gauss">Carl Friedrich Gauss</a></b></i></div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Gauss.html">Stran o Carlu Friedrichu Gaussu Univerze svetega Andreja</a> <span class="languageicon">(angleško)</span></li> <li><a rel="nofollow" class="external text" href="http://www.genealogy.ams.org/id.php?id=18231">Carl Friedrich Gauss</a> na <a href="/wiki/Projekt_Matemati%C4%8Dna_genealogija" class="mw-redirect" title="Projekt Matematična genealogija">Projektu Matematična genealogija</a> <span class="languageicon">(angleško)</span></li> <li><a rel="nofollow" class="external text" href="https://planetmath.org/gausscarlfriedrich">Carl Friedrich Gauss</a> na <a href="/wiki/PlanetMath" title="PlanetMath">PlanetMath</a> <span class="languageicon">(angleško)</span></li> <li><a rel="nofollow" class="external text" href="http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN235957348">Izbrana dela</a> <span class="languageicon">(latinsko)</span> <span class="languageicon">(nemško)</span></li> <li><a rel="nofollow" class="external text" href="http://www.gausschildren.org">Gauss and his children</a> <span class="languageicon">(angleško)</span></li> <li><a rel="nofollow" class="external text" href="http://www.corrosion-doctors.org/Biographies/GaussBio.htm">Gaussov življenjepis</a> <span class="languageicon">(angleško)</span></li> <li><a rel="nofollow" class="external text" href="http://fermatslasttheorem.blogspot.com/2005/06/carl-friedrich-gauss.html">Carl Friedrich Gauss</a> – Življenjepis na blogu Fermatovega velikega izreka <span class="languageicon">(angleško)</span></li> <li><a rel="nofollow" class="external text" href="http://www.idsia.ch/~juergen/gauss.html">Gauss: mathematician of the millennium</a>, by <a href="/w/index.php?title=J%C3%BCrgen_Schmidhuber&action=edit&redlink=1" class="new" title="Jürgen Schmidhuber (stran ne obstaja)">Jürgen Schmidhuber</a> <span class="languageicon">(angleško)</span></li> <li><a rel="nofollow" class="external text" href="http://books.google.com/books?id=yh0PAAAAIAAJ">Angleški prevod Waltershausenovega življenjepisa, 1862</a> <span class="languageicon">(angleško)</span></li> <li><a rel="nofollow" class="external text" href="http://www.gauss.info">Gauss</a> splošna spletna stran o Gaussu <span class="languageicon">(angleško)</span></li> <li><a rel="nofollow" class="external text" href="http://adsabs.harvard.edu//full/seri/MNRAS/0016//0000080.000.html">MNRAS <b>16</b> (1856) 80</a> Osmrtnica <span class="languageicon">(angleško)</span></li> <li><a rel="nofollow" class="external text" href="http://www-personal.umich.edu/~jbourj/money1.htm">Carl Friedrich Gauss na bankovcu za 10 nemških mark</a> <span class="languageicon">(angleško)</span></li> <li><a rel="nofollow" class="external text" href="https://www.bbc.co.uk/programmes/b00ss0lf">"Carl Friedrich Gauss"</a> v seriji <i>A Brief History of Mathematics</i> na BBC 4 <span class="languageicon">(angleško)</span></li></ul> <p><br clear="all" /> </p> <div role="navigation" class="navbox" aria-labelledby="Prejemniki_Copleyjeve_medalje" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><style data-mw-deduplicate="TemplateStyles:r5911192">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-prikaži"><a href="/wiki/Predloga:Copleyjeva_medalja" title="Predloga:Copleyjeva medalja"><abbr title="Prikaži to predlogo" style=";;background:none transparent;color:inherit;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none;">p</abbr></a></li><li class="nv-pogovor"><a href="/wiki/Pogovor_o_predlogi:Copleyjeva_medalja" title="Pogovor o predlogi:Copleyjeva medalja"><abbr title="Pogovor o tej predlogi" style=";;background:none transparent;color:inherit;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none;">p</abbr></a></li><li class="nv-uredi"><a class="external text" href="https://sl.wikipedia.org/w/index.php?title=Predloga:Copleyjeva_medalja&action=edit"><abbr title="Uredi to predlogo" style=";;background:none transparent;color:inherit;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none;">u</abbr></a></li></ul></div><div id="Prejemniki_Copleyjeve_medalje" style="font-size:114%;margin:0 4em">Prejemniki <a href="/wiki/Copleyjeva_medalja" title="Copleyjeva medalja">Copleyjeve medalje</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">1731–1750</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span style="font-size:85%;">1731:</span> <a href="/wiki/Stephen_Gray_(znanstvenik)" title="Stephen Gray (znanstvenik)">Gray</a></li> <li><span style="font-size:85%;">1732:</span> <a href="/wiki/Stephen_Gray_(znanstvenik)" title="Stephen Gray (znanstvenik)">Gray</a></li> <li><span style="font-size:85%;">1734:</span> <a href="/wiki/John_Theophilus_Desaguliers" title="John Theophilus Desaguliers">Desaguliers</a></li> <li><span style="font-size:85%;">1736:</span> <a href="/wiki/John_Theophilus_Desaguliers" title="John Theophilus Desaguliers">Desaguliers</a></li> <li><span style="font-size:85%;">1737:</span> <a href="/wiki/John_Belchier" title="John Belchier">Belchier</a></li> <li><span style="font-size:85%;">1738:</span> <a href="/wiki/James_Valoue" title="James Valoue">Valoue</a></li> <li><span style="font-size:85%;">1739:</span> <a href="/wiki/Stephen_Hales" title="Stephen Hales">Hales</a></li> <li><span style="font-size:85%;">1740:</span> <a href="/wiki/Alexander_Stuart_(znanstvenik)" title="Alexander Stuart (znanstvenik)">Stuart</a></li> <li><span style="font-size:85%;">1741:</span> <a href="/wiki/John_Theophilus_Desaguliers" title="John Theophilus Desaguliers">Desaguliers</a></li> <li><span style="font-size:85%;">1742:</span> <a href="/wiki/Christopher_Middleton_(navigator)" title="Christopher Middleton (navigator)">Middleton</a></li> <li><span style="font-size:85%;">1743:</span> <a href="/wiki/Abraham_Trembley" title="Abraham Trembley">Trembley</a></li> <li><span style="font-size:85%;">1744:</span> <a href="/wiki/Henry_Baker_(prirodoslovec)" title="Henry Baker (prirodoslovec)">Baker</a></li> <li><span style="font-size:85%;">1745:</span> <a href="/wiki/William_Watson_(znanstvenik)" title="William Watson (znanstvenik)">W. Watson</a></li> <li><span style="font-size:85%;">1746:</span> <a href="/wiki/Benjamin_Robins" title="Benjamin Robins">Robins</a></li> <li><span style="font-size:85%;">1747:</span> <a href="/wiki/Gowin_Knight" title="Gowin Knight">Knight</a></li> <li><span style="font-size:85%;">1748:</span> <a href="/wiki/James_Bradley" title="James Bradley">Bradley</a></li> <li><span style="font-size:85%;">1749:</span> <a href="/wiki/John_Harrison" title="John Harrison">Harrison</a></li> <li><span style="font-size:85%;">1750:</span> <a href="/wiki/George_Edwards" title="George Edwards">Edwards</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">1751–1800</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span style="font-size:85%;">1751:</span> <a href="/wiki/John_Canton" title="John Canton">Canton</a></li> <li><span style="font-size:85%;">1752:</span> <a href="/wiki/John_Pringle" title="John Pringle">Pringle</a></li> <li><span style="font-size:85%;">1753:</span> <a href="/wiki/Benjamin_Franklin" title="Benjamin Franklin">Franklin</a></li> <li><span style="font-size:85%;">1754:</span> <a href="/wiki/William_Lewis_(znanstvenik)" title="William Lewis (znanstvenik)">Lewis</a></li> <li><span style="font-size:85%;">1755:</span> <a href="/wiki/John_Huxham" title="John Huxham">Huxham</a></li> <li><span style="font-size:85%;">1757:</span> <a href="/wiki/Charles_Cavendish_(politik)" title="Charles Cavendish (politik)">C. Cavendish</a></li> <li><span style="font-size:85%;">1758:</span> <a href="/wiki/John_Dollond" title="John Dollond">Dollond</a></li> <li><span style="font-size:85%;">1759:</span> <a href="/wiki/John_Smeaton" title="John Smeaton">Smeaton</a></li> <li><span style="font-size:85%;">1760:</span> <a href="/wiki/Benjamin_Wilson_(slikar)" title="Benjamin Wilson (slikar)">B. Wilson</a></li> <li><span style="font-size:85%;">1764:</span> <a href="/wiki/John_Canton" title="John Canton">Canton</a></li> <li><span style="font-size:85%;">1766:</span> <a href="/wiki/William_Brownrigg" title="William Brownrigg">Brownrigg</a>  /  <a href="/wiki/Henry_Cavendish" title="Henry Cavendish">H. Cavendish</a>  /  <a href="/wiki/Edward_Hussey_Delaval" title="Edward Hussey Delaval">Delaval</a></li> <li><span style="font-size:85%;">1767:</span> <a href="/wiki/John_Ellis_(prirodoslovec)" title="John Ellis (prirodoslovec)">Ellis</a></li> <li><span style="font-size:85%;">1768:</span> <a href="/wiki/Peter_Woulfe" title="Peter Woulfe">Woulfe</a></li> <li><span style="font-size:85%;">1769:</span> <a href="/wiki/William_Hewson_(kirurg)" title="William Hewson (kirurg)">Hewson</a></li> <li><span style="font-size:85%;">1770:</span> <a href="/wiki/William_Hamilton_(diplomat)" title="William Hamilton (diplomat)">Hamilton</a></li> <li><span style="font-size:85%;">1771:</span> <a href="/wiki/Matthew_Raper" title="Matthew Raper">Raper</a></li> <li><span style="font-size:85%;">1772:</span> <a href="/wiki/Joseph_Priestley" title="Joseph Priestley">Priestley</a></li> <li><span style="font-size:85%;">1773:</span> <a href="/wiki/John_Walsh_(znanstvenik)" title="John Walsh (znanstvenik)">Walsh</a></li> <li><span style="font-size:85%;">1775:</span> <a href="/wiki/Nevil_Maskelyne" title="Nevil Maskelyne">Maskelyne</a></li> <li><span style="font-size:85%;">1776:</span> <a href="/wiki/James_Cook" title="James Cook">Cook</a></li> <li><span style="font-size:85%;">1777:</span> <a href="/wiki/John_Mudge" title="John Mudge">Mudge</a></li> <li><span style="font-size:85%;">1778:</span> <a href="/wiki/Charles_Hutton" title="Charles Hutton">Hutton</a></li> <li><span style="font-size:85%;">1780:</span> <a href="/wiki/Samuel_Vince" title="Samuel Vince">Vince</a></li> <li><span style="font-size:85%;">1781:</span> <a href="/wiki/William_Herschel" title="William Herschel">W. Herschel</a></li> <li><span style="font-size:85%;">1782:</span> <a href="/wiki/Richard_Kirwan" title="Richard Kirwan">Kirwan</a></li> <li><span style="font-size:85%;">1783:</span> <a href="/wiki/John_Goodricke" title="John Goodricke">Goodricke</a>  /  <a href="/wiki/Thomas_Hutchins_(prirodoslovec)" title="Thomas Hutchins (prirodoslovec)">Hutchins</a></li> <li><span style="font-size:85%;">1784:</span> <a href="/wiki/Edward_Waring" title="Edward Waring">Waring</a></li> <li><span style="font-size:85%;">1785:</span> <a href="/wiki/William_Roy" title="William Roy">Roy</a></li> <li><span style="font-size:85%;">1787:</span> <a href="/wiki/John_Hunter_(kirurg)" title="John Hunter (kirurg)">Hunter</a></li> <li><span style="font-size:85%;">1788:</span> <a href="/wiki/Charles_Brian_Blagden" title="Charles Brian Blagden">Blagden</a></li> <li><span style="font-size:85%;">1789:</span> <a href="/wiki/William_Morgan_(aktuar)" title="William Morgan (aktuar)">Morgan</a></li> <li><span style="font-size:85%;">1791:</span> <a href="/wiki/Jean-Andr%C3%A9_Deluc" title="Jean-André Deluc">Deluc</a>  /  <a href="/wiki/James_Rennell" title="James Rennell">Rennell</a></li> <li><span style="font-size:85%;">1792:</span> <a href="/wiki/Benjamin_Thompson" title="Benjamin Thompson">Thompson</a></li> <li><span style="font-size:85%;">1794:</span> <a href="/wiki/Alessandro_Volta" title="Alessandro Volta">Volta</a></li> <li><span style="font-size:85%;">1795:</span> <a href="/wiki/Jesse_Ramsden" title="Jesse Ramsden">Ramsden</a></li> <li><span style="font-size:85%;">1796:</span> <a href="/wiki/George_Atwood" title="George Atwood">Atwood</a></li> <li><span style="font-size:85%;">1798:</span> <a href="/wiki/Charles_Hatchett" title="Charles Hatchett">Hatchett</a>  /  <a href="/wiki/George_Shuckburgh-Evelyn" title="George Shuckburgh-Evelyn">Shuckburgh-Evelyn</a></li> <li><span style="font-size:85%;">1799:</span> <a href="/wiki/John_Hellins" title="John Hellins">Hellins</a></li> <li><span style="font-size:85%;">1800:</span> <a href="/wiki/Edward_Charles_Howard" title="Edward Charles Howard">Howard</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">1801–1850</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span style="font-size:85%;">1801:</span> <a href="/wiki/Astley_Cooper" title="Astley Cooper">Cooper</a></li> <li><span style="font-size:85%;">1802:</span> <a href="/wiki/William_Hyde_Wollaston" title="William Hyde Wollaston">Wollaston</a></li> <li><span style="font-size:85%;">1803:</span> <a href="/wiki/Richard_Chenevix_(kemik)" title="Richard Chenevix (kemik)">Chenevix</a></li> <li><span style="font-size:85%;">1804:</span> <a href="/wiki/Smithson_Tennant" title="Smithson Tennant">Tennant</a></li> <li><span style="font-size:85%;">1805:</span> <a href="/wiki/Humphry_Davy" title="Humphry Davy">Davy</a></li> <li><span style="font-size:85%;">1806:</span> <a href="/wiki/Thomas_Andrew_Knight" title="Thomas Andrew Knight">Knight</a></li> <li><span style="font-size:85%;">1807:</span> <a href="/wiki/Everard_Home" title="Everard Home">Home</a></li> <li><span style="font-size:85%;">1808:</span> <a href="/wiki/William_Henry_(kemik)" title="William Henry (kemik)">Henry</a></li> <li><span style="font-size:85%;">1809:</span> <a href="/wiki/Edward_Troughton" title="Edward Troughton">Troughton</a></li> <li><span style="font-size:85%;">1811:</span> <a href="/wiki/Benjamin_Collins_Brodie" title="Benjamin Collins Brodie">Brodie</a></li> <li><span style="font-size:85%;">1813:</span> <a href="/wiki/William_Thomas_Brande" title="William Thomas Brande">Brande</a></li> <li><span style="font-size:85%;">1814:</span> <a href="/wiki/James_Ivory_(matematik)" title="James Ivory (matematik)">Ivory</a></li> <li><span style="font-size:85%;">1815:</span> <a href="/wiki/David_Brewster" title="David Brewster">Brewster</a></li> <li><span style="font-size:85%;">1817:</span> <a href="/wiki/Henry_Kater" title="Henry Kater">Kater</a></li> <li><span style="font-size:85%;">1818:</span> <a href="/wiki/Robert_Seppings" title="Robert Seppings">Seppings</a></li> <li><span style="font-size:85%;">1820:</span> <a href="/wiki/Hans_Christian_%C3%98rsted" title="Hans Christian Ørsted">Ørsted</a></li> <li><span style="font-size:85%;">1821:</span> <a href="/wiki/Edward_Sabine" title="Edward Sabine">Sabine</a>  /  <a href="/wiki/John_Frederick_William_Herschel" title="John Frederick William Herschel">J. F. W. Herschel</a></li> <li><span style="font-size:85%;">1822:</span> <a href="/wiki/William_Buckland" title="William Buckland">Buckland</a></li> <li><span style="font-size:85%;">1823:</span> <a href="/wiki/John_Pond" title="John Pond">Pond</a></li> <li><span style="font-size:85%;">1824:</span> <a href="/wiki/John_Mortimer_Brinkley" title="John Mortimer Brinkley">Brinkley</a></li> <li><span style="font-size:85%;">1825:</span> <a href="/wiki/Fran%C3%A7ois_Jean_Dominique_Arago" title="François Jean Dominique Arago">Arago</a>  /  <a href="/wiki/Peter_Barlow_(matematik)" title="Peter Barlow (matematik)">Barlow</a></li> <li><span style="font-size:85%;">1826:</span> <a href="/wiki/James_South" title="James South">South</a></li> <li><span style="font-size:85%;">1827:</span> <a href="/wiki/William_Prout" title="William Prout">Prout</a>  /  <a href="/wiki/Henry_Foster_(znanstvenik)" title="Henry Foster (znanstvenik)">Foster</a></li> <li><span style="font-size:85%;">1831:</span> <a href="/wiki/George_Biddell_Airy" title="George Biddell Airy">Airy</a></li> <li><span style="font-size:85%;">1832:</span> <a href="/wiki/Michael_Faraday" title="Michael Faraday">Faraday</a>  /  <a href="/wiki/Sim%C3%A9on-Denis_Poisson" title="Siméon-Denis Poisson">Poisson</a></li> <li><span style="font-size:85%;">1834:</span> <a href="/wiki/Giovanni_Antonio_Amedeo_Plana" title="Giovanni Antonio Amedeo Plana">Plana</a></li> <li><span style="font-size:85%;">1835:</span> <a href="/wiki/William_Snow_Harris" title="William Snow Harris">Harris</a></li> <li><span style="font-size:85%;">1836:</span> <a href="/wiki/J%C3%B6ns_Jacob_Berzelius" title="Jöns Jacob Berzelius">Berzelius</a>  /  <a href="/wiki/Francis_Kiernan" title="Francis Kiernan">Kiernan</a></li> <li><span style="font-size:85%;">1837:</span> <a href="/wiki/Antoine_C%C3%A9sar_Becquerel" title="Antoine César Becquerel">Becquerel</a>  /  <a href="/wiki/John_Frederic_Daniell" title="John Frederic Daniell">Daniell</a></li> <li><span style="font-size:85%;">1838:</span> <a class="mw-selflink selflink">Gauss</a>  /  <a href="/wiki/Michael_Faraday" title="Michael Faraday">Faraday</a></li> <li><span style="font-size:85%;">1839:</span> <a href="/wiki/Robert_Brown" title="Robert Brown">R. Brown</a></li> <li><span style="font-size:85%;">1840:</span> <a href="/wiki/Justus_von_Liebig" title="Justus von Liebig">von Liebig</a>  /  <a href="/wiki/Jacques_Charles_Fran%C3%A7ois_Sturm" title="Jacques Charles François Sturm">Sturm</a></li> <li><span style="font-size:85%;">1841:</span> <a href="/wiki/Georg_Simon_Ohm" title="Georg Simon Ohm">Ohm</a></li> <li><span style="font-size:85%;">1842:</span> <a href="/wiki/James_MacCullagh" title="James MacCullagh">MacCullagh</a></li> <li><span style="font-size:85%;">1843:</span> <a href="/wiki/Jean-Baptiste_Dumas" title="Jean-Baptiste Dumas">Dumas</a></li> <li><span style="font-size:85%;">1844:</span> <a href="/wiki/Carlo_Matteucci" title="Carlo Matteucci">Matteucci</a></li> <li><span style="font-size:85%;">1845:</span> <a href="/wiki/Theodor_Schwann" title="Theodor Schwann">Schwann</a></li> <li><span style="font-size:85%;">1846:</span> <a href="/wiki/Urbain-Jean_Joseph_Le_Verrier" title="Urbain-Jean Joseph Le Verrier">Le Verrier</a></li> <li><span style="font-size:85%;">1847:</span> <a href="/wiki/John_Frederick_William_Herschel" title="John Frederick William Herschel">J. F. W. Herschel</a></li> <li><span style="font-size:85%;">1848:</span> <a href="/wiki/John_Couch_Adams" title="John Couch Adams">Adams</a></li> <li><span style="font-size:85%;">1849:</span> <a href="/wiki/Roderick_Murchison" title="Roderick Murchison">Murchison</a></li> <li><span style="font-size:85%;">1850:</span> <a href="/wiki/Peter_Andreas_Hansen" title="Peter Andreas Hansen">Hansen</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">1851–1900</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span style="font-size:85%;">1851:</span> <a href="/wiki/Richard_Owen" title="Richard Owen">Owen</a></li> <li><span style="font-size:85%;">1852:</span> <a href="/wiki/Alexander_von_Humboldt" title="Alexander von Humboldt">von Humboldt</a></li> <li><span style="font-size:85%;">1853:</span> <a href="/wiki/Heinrich_Wilhelm_Dove" title="Heinrich Wilhelm Dove">Dove</a></li> <li><span style="font-size:85%;">1854:</span> <a href="/wiki/Johannes_Peter_M%C3%BCller" title="Johannes Peter Müller">Müller</a></li> <li><span style="font-size:85%;">1855:</span> <a href="/wiki/Jean_Bernard_L%C3%A9on_Foucault" title="Jean Bernard Léon Foucault">Foucault</a></li> <li><span style="font-size:85%;">1856:</span> <a href="/wiki/Henri_Milne-Edwards" title="Henri Milne-Edwards">Milne-Edwards</a></li> <li><span style="font-size:85%;">1857:</span> <a href="/wiki/Michel-Eug%C3%A8ne_Chevreul" title="Michel-Eugène Chevreul">Chevreul</a></li> <li><span style="font-size:85%;">1858:</span> <a href="/wiki/Charles_Lyell" title="Charles Lyell">Lyell</a></li> <li><span style="font-size:85%;">1859:</span> <a href="/wiki/Wilhelm_Eduard_Weber" title="Wilhelm Eduard Weber">Weber</a></li> <li><span style="font-size:85%;">1860:</span> <a href="/wiki/Robert_Wilhelm_Bunsen" title="Robert Wilhelm Bunsen">Bunsen</a></li> <li><span style="font-size:85%;">1861:</span> <a href="/wiki/Jean_Louis_Rodolphe_Agassiz" title="Jean Louis Rodolphe Agassiz">Agassiz</a></li> <li><span style="font-size:85%;">1862:</span> <a href="/wiki/Thomas_Graham_(kemik)" title="Thomas Graham (kemik)">Graham</a></li> <li><span style="font-size:85%;">1863:</span> <a href="/wiki/Adam_Sedgwick" title="Adam Sedgwick">Sedgwick</a></li> <li><span style="font-size:85%;">1864:</span> <a href="/wiki/Charles_Darwin" title="Charles Darwin">C. Darwin</a></li> <li><span style="font-size:85%;">1865:</span> <a href="/wiki/Michel_Chasles" title="Michel Chasles">Chasles</a></li> <li><span style="font-size:85%;">1866:</span> <a href="/wiki/Julius_Pl%C3%BCcker" title="Julius Plücker">Plücker</a></li> <li><span style="font-size:85%;">1867:</span> <a href="/wiki/Karl_Ernst_von_Baer" title="Karl Ernst von Baer">von Baer</a></li> <li><span style="font-size:85%;">1868:</span> <a href="/wiki/Charles_Wheatstone" title="Charles Wheatstone">Wheatstone</a></li> <li><span style="font-size:85%;">1869:</span> <a href="/wiki/Henri_Victor_Regnault" title="Henri Victor Regnault">Regnault</a></li> <li><span style="font-size:85%;">1870:</span> <a href="/wiki/James_Prescott_Joule" title="James Prescott Joule">Joule</a></li> <li><span style="font-size:85%;">1871:</span> <a href="/wiki/Julius_Robert_von_Mayer" title="Julius Robert von Mayer">von Mayer</a></li> <li><span style="font-size:85%;">1872:</span> <a href="/wiki/Friedrich_W%C3%B6hler" title="Friedrich Wöhler">Wöhler</a></li> <li><span style="font-size:85%;">1873:</span> <a href="/wiki/Hermann_Ludwig_Ferdinand_von_Helmholtz" title="Hermann Ludwig Ferdinand von Helmholtz">von Helmholtz</a></li> <li><span style="font-size:85%;">1874:</span> <a href="/wiki/Louis_Pasteur" title="Louis Pasteur">Pasteur</a></li> <li><span style="font-size:85%;">1875:</span> <a href="/wiki/August_Wilhelm_von_Hofmann" title="August Wilhelm von Hofmann">von Hofmann</a></li> <li><span style="font-size:85%;">1876:</span> <a href="/wiki/Claude_Bernard" title="Claude Bernard">Bernard</a></li> <li><span style="font-size:85%;">1877:</span> <a href="/wiki/James_Dwight_Dana" title="James Dwight Dana">Dana</a></li> <li><span style="font-size:85%;">1878:</span> <a href="/wiki/Jean-Baptiste_Boussingault" title="Jean-Baptiste Boussingault">Boussingault</a></li> <li><span style="font-size:85%;">1879:</span> <a href="/wiki/Rudolf_Julius_Emmanuel_Clausius" title="Rudolf Julius Emmanuel Clausius">Clausius</a></li> <li><span style="font-size:85%;">1880:</span> <a href="/wiki/James_Joseph_Sylvester" title="James Joseph Sylvester">Sylvester</a></li> <li><span style="font-size:85%;">1881:</span> <a href="/wiki/Charles_Adolphe_Wurtz" title="Charles Adolphe Wurtz">Wurtz</a></li> <li><span style="font-size:85%;">1882:</span> <a href="/wiki/Arthur_Cayley" title="Arthur Cayley">Cayley</a></li> <li><span style="font-size:85%;">1883:</span> <a href="/wiki/William_Thomson" title="William Thomson">Kelvin</a></li> <li><span style="font-size:85%;">1884:</span> <a href="/wiki/Carl_Friedrich_Wilhelm_Ludwig" title="Carl Friedrich Wilhelm Ludwig">Ludwig</a></li> <li><span style="font-size:85%;">1885:</span> <a href="/wiki/Friedrich_August_Kekul%C3%A9" title="Friedrich August Kekulé">Kekulé</a></li> <li><span style="font-size:85%;">1886:</span> <a href="/wiki/Franz_Ernst_Neumann" title="Franz Ernst Neumann">Neumann</a></li> <li><span style="font-size:85%;">1887:</span> <a href="/wiki/Joseph_Dalton_Hooker" title="Joseph Dalton Hooker">Hooker</a></li> <li><span style="font-size:85%;">1888:</span> <a href="/wiki/Thomas_Henry_Huxley" title="Thomas Henry Huxley">T. H. Huxley</a></li> <li><span style="font-size:85%;">1889:</span> <a href="/wiki/George_Salmon" title="George Salmon">Salmon</a></li> <li><span style="font-size:85%;">1890:</span> <a href="/wiki/Simon_Newcomb" title="Simon Newcomb">Newcomb</a></li> <li><span style="font-size:85%;">1891:</span> <a href="/wiki/Stanislao_Cannizzaro" title="Stanislao Cannizzaro">Cannizzaro</a></li> <li><span style="font-size:85%;">1892:</span> <a href="/wiki/Rudolf_Virchow" title="Rudolf Virchow">Virchow</a></li> <li><span style="font-size:85%;">1893:</span> <a href="/wiki/George_Gabriel_Stokes" title="George Gabriel Stokes">Stokes</a></li> <li><span style="font-size:85%;">1894:</span> <a href="/wiki/Edward_Frankland" title="Edward Frankland">Frankland</a></li> <li><span style="font-size:85%;">1895:</span> <a href="/wiki/Karl_Weierstrass" title="Karl Weierstrass">Weierstrass</a></li> <li><span style="font-size:85%;">1896:</span> <a href="/wiki/Karl_Gegenbaur" title="Karl Gegenbaur">Gegenbaur</a></li> <li><span style="font-size:85%;">1897:</span> <a href="/wiki/Albert_von_K%C3%B6lliker" title="Albert von Kölliker">von Kölliker</a></li> <li><span style="font-size:85%;">1898:</span> <a href="/wiki/William_Huggins" title="William Huggins">Huggins</a></li> <li><span style="font-size:85%;">1899:</span> <a href="/wiki/John_William_Strutt_Rayleigh" title="John William Strutt Rayleigh">Rayleigh</a></li> <li><span style="font-size:85%;">1900:</span> <a href="/wiki/Marcellin_Berthelot" title="Marcellin Berthelot">Berthelot</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">1901–1950</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span style="font-size:85%;">1901:</span> <a href="/wiki/Josiah_Willard_Gibbs" title="Josiah Willard Gibbs">Gibbs</a></li> <li><span style="font-size:85%;">1902:</span> <a href="/wiki/Joseph_Lister" title="Joseph Lister">Lister</a></li> <li><span style="font-size:85%;">1903:</span> <a href="/wiki/Eduard_Suess" title="Eduard Suess">Suess</a></li> <li><span style="font-size:85%;">1904:</span> <a href="/wiki/William_Crookes" title="William Crookes">Crookes</a></li> <li><span style="font-size:85%;">1905:</span> <a href="/wiki/Dimitrij_Ivanovi%C4%8D_Mendelejev" title="Dimitrij Ivanovič Mendelejev">Mendelejev</a></li> <li><span style="font-size:85%;">1906:</span> <a href="/wiki/Ilja_Ilji%C4%8D_Me%C4%8Dnikov" title="Ilja Iljič Mečnikov">Mečnikov</a></li> <li><span style="font-size:85%;">1907:</span> <a href="/wiki/Albert_Abraham_Michelson" title="Albert Abraham Michelson">Michelson</a></li> <li><span style="font-size:85%;">1908:</span> <a href="/wiki/Alfred_Russel_Wallace" title="Alfred Russel Wallace">Wallace</a></li> <li><span style="font-size:85%;">1909:</span> <a href="/wiki/George_William_Hill" title="George William Hill">G. W. Hill</a></li> <li><span style="font-size:85%;">1910:</span> <a href="/wiki/Francis_Galton" title="Francis Galton">Galton</a></li> <li><span style="font-size:85%;">1911:</span> <a href="/wiki/George_Howard_Darwin" title="George Howard Darwin">G. H. Darwin</a></li> <li><span style="font-size:85%;">1912:</span> <a href="/wiki/Felix_Christian_Klein" title="Felix Christian Klein">Klein</a></li> <li><span style="font-size:85%;">1913:</span> <a href="/w/index.php?title=Ray_Lankester&action=edit&redlink=1" class="new" title="Ray Lankester (stran ne obstaja)">Lankester</a></li> <li><span style="font-size:85%;">1914:</span> <a href="/wiki/Joseph_John_Thomson" title="Joseph John Thomson">Thomson</a></li> <li><span style="font-size:85%;">1915:</span> <a href="/wiki/Ivan_Petrovi%C4%8D_Pavlov" title="Ivan Petrovič Pavlov">Pavlov</a></li> <li><span style="font-size:85%;">1916:</span> <a href="/wiki/James_Dewar" title="James Dewar">Dewar</a></li> <li><span style="font-size:85%;">1917:</span> <a href="/wiki/Pierre_Paul_%C3%89mile_Roux" title="Pierre Paul Émile Roux">Roux</a></li> <li><span style="font-size:85%;">1918:</span> <a href="/wiki/Hendrik_Antoon_Lorentz" title="Hendrik Antoon Lorentz">Lorentz</a></li> <li><span style="font-size:85%;">1919:</span> <a href="/wiki/William_Maddock_Bayliss" title="William Maddock Bayliss">Bayliss</a></li> <li><span style="font-size:85%;">1920:</span> <a href="/w/index.php?title=Horace_Tabberer_Brown&action=edit&redlink=1" class="new" title="Horace Tabberer Brown (stran ne obstaja)">H. T. Brown</a></li> <li><span style="font-size:85%;">1921:</span> <a href="/w/index.php?title=Joseph_Larmor&action=edit&redlink=1" class="new" title="Joseph Larmor (stran ne obstaja)">Larmor</a></li> <li><span style="font-size:85%;">1922:</span> <a href="/wiki/Ernest_Rutherford" title="Ernest Rutherford">Rutherford</a></li> <li><span style="font-size:85%;">1923:</span> <a href="/w/index.php?title=Horace_Lamb&action=edit&redlink=1" class="new" title="Horace Lamb (stran ne obstaja)">Lamb</a></li> <li><span style="font-size:85%;">1924:</span> <a href="/wiki/Edward_Albert_Sharpey-Schafer" title="Edward Albert Sharpey-Schafer">Sharpey-Schafer</a></li> <li><span style="font-size:85%;">1925:</span> <a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein</a></li> <li><span style="font-size:85%;">1926:</span> <a href="/wiki/Frederick_Gowland_Hopkins" title="Frederick Gowland Hopkins">Hopkins</a></li> <li><span style="font-size:85%;">1927:</span> <a href="/wiki/Charles_Scott_Sherrington" title="Charles Scott Sherrington">Sherrington</a></li> <li><span style="font-size:85%;">1928:</span> <a href="/wiki/Charles_Algernon_Parsons" title="Charles Algernon Parsons">Parsons</a></li> <li><span style="font-size:85%;">1929:</span> <a href="/wiki/Max_Planck" title="Max Planck">Planck</a></li> <li><span style="font-size:85%;">1930:</span> <a href="/wiki/William_Henry_Bragg" title="William Henry Bragg">W. H. Bragg</a></li> <li><span style="font-size:85%;">1931:</span> <a href="/wiki/Arthur_Schuster" title="Arthur Schuster">Schuster</a></li> <li><span style="font-size:85%;">1932:</span> <a href="/wiki/George_Ellery_Hale" title="George Ellery Hale">Hale</a></li> <li><span style="font-size:85%;">1933:</span> <a href="/wiki/Theobald_Smith" title="Theobald Smith">T. Smith</a></li> <li><span style="font-size:85%;">1934:</span> <a href="/wiki/John_Scott_Haldane" title="John Scott Haldane">Haldane</a></li> <li><span style="font-size:85%;">1935:</span> <a href="/wiki/Charles_Thomson_Rees_Wilson" title="Charles Thomson Rees Wilson">C. T. R. Wilson</a></li> <li><span style="font-size:85%;">1936:</span> <a href="/wiki/Arthur_Evans" title="Arthur Evans">A. Evans</a></li> <li><span style="font-size:85%;">1937:</span> <a href="/wiki/Henry_Hallett_Dale" title="Henry Hallett Dale">Dale</a></li> <li><span style="font-size:85%;">1938:</span> <a href="/wiki/Niels_Henrik_David_Bohr" title="Niels Henrik David Bohr">Bohr</a></li> <li><span style="font-size:85%;">1939:</span> <a href="/wiki/Thomas_Hunt_Morgan" title="Thomas Hunt Morgan">Morgan</a></li> <li><span style="font-size:85%;">1940:</span> <a href="/wiki/Paul_Langevin" title="Paul Langevin">Langevin</a></li> <li><span style="font-size:85%;">1941:</span> <a href="/wiki/Thomas_Lewis_(kardiolog)" title="Thomas Lewis (kardiolog)">Lewis</a></li> <li><span style="font-size:85%;">1942:</span> <a href="/wiki/Robert_Robinson_(kemik)" title="Robert Robinson (kemik)">Robinson</a></li> <li><span style="font-size:85%;">1943:</span> <a href="/wiki/Joseph_Barcroft" title="Joseph Barcroft">Barcroft</a></li> <li><span style="font-size:85%;">1944:</span> <a href="/wiki/Geoffrey_Ingram_Taylor" title="Geoffrey Ingram Taylor">Taylor</a></li> <li><span style="font-size:85%;">1945:</span> <a href="/w/index.php?title=Oswald_Theodore_Avery&action=edit&redlink=1" class="new" title="Oswald Theodore Avery (stran ne obstaja)">Avery</a></li> <li><span style="font-size:85%;">1946:</span> <a href="/wiki/Edgar_Douglas_Adrian" title="Edgar Douglas Adrian">Adrian</a></li> <li><span style="font-size:85%;">1947:</span> <a href="/wiki/Godfrey_Harold_Hardy" title="Godfrey Harold Hardy">Hardy</a></li> <li><span style="font-size:85%;">1948:</span> <a href="/wiki/Archibald_Vivian_Hill" title="Archibald Vivian Hill">A. V. Hill</a></li> <li><span style="font-size:85%;">1949:</span> <a href="/wiki/George_Charles_de_Hevesy" title="George Charles de Hevesy">de Hevesy</a></li> <li><span style="font-size:85%;">1950:</span> <a href="/wiki/James_Chadwick" title="James Chadwick">Chadwick</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">1951–2000</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span style="font-size:85%;">1951:</span> <a href="/wiki/David_Keilin" title="David Keilin">Keilin</a></li> <li><span style="font-size:85%;">1952:</span> <a href="/wiki/Paul_Adrien_Maurice_Dirac" title="Paul Adrien Maurice Dirac">Dirac</a></li> <li><span style="font-size:85%;">1953:</span> <a href="/wiki/Albert_Kluyver" title="Albert Kluyver">Kluyver</a></li> <li><span style="font-size:85%;">1954:</span> <a href="/wiki/Edmund_Taylor_Whittaker" title="Edmund Taylor Whittaker">Whittaker</a></li> <li><span style="font-size:85%;">1955:</span> <a href="/wiki/Ronald_Aylmer_Fisher" title="Ronald Aylmer Fisher">Fisher</a></li> <li><span style="font-size:85%;">1956:</span> <a href="/wiki/Patrick_Maynard_Stuart_Blackett" title="Patrick Maynard Stuart Blackett">Blackett</a></li> <li><span style="font-size:85%;">1957:</span> <a href="/wiki/Howard_Walter_Florey" title="Howard Walter Florey">Florey</a></li> <li><span style="font-size:85%;">1958:</span> <a href="/wiki/John_Edensor_Littlewood" title="John Edensor Littlewood">Littlewood</a></li> <li><span style="font-size:85%;">1959:</span> <a href="/wiki/Frank_Macfarlane_Burnet" title="Frank Macfarlane Burnet">Burnet</a></li> <li><span style="font-size:85%;">1960:</span> <a href="/wiki/Harold_Jeffreys" title="Harold Jeffreys">H. Jeffreys</a></li> <li><span style="font-size:85%;">1961:</span> <a href="/wiki/Hans_Adolf_Krebs" title="Hans Adolf Krebs">Krebs</a></li> <li><span style="font-size:85%;">1962:</span> <a href="/wiki/Cyril_Norman_Hinshelwood" title="Cyril Norman Hinshelwood">Hinshelwood</a></li> <li><span style="font-size:85%;">1963:</span> <a href="/w/index.php?title=Paul_Fildes&action=edit&redlink=1" class="new" title="Paul Fildes (stran ne obstaja)">Fildes</a></li> <li><span style="font-size:85%;">1964:</span> <a href="/wiki/Sydney_Chapman_(matematik)" title="Sydney Chapman (matematik)">Chapman</a></li> <li><span style="font-size:85%;">1965:</span> <a href="/wiki/Alan_Lloyd_Hodgkin" title="Alan Lloyd Hodgkin">Hodgkin</a></li> <li><span style="font-size:85%;">1966:</span> <a href="/wiki/William_Lawrence_Bragg" title="William Lawrence Bragg">W. L. Bragg</a></li> <li><span style="font-size:85%;">1967:</span> <a href="/wiki/Bernard_Katz" title="Bernard Katz">Katz</a></li> <li><span style="font-size:85%;">1968:</span> <a href="/wiki/Tadeus_Reichstein" title="Tadeus Reichstein">Reichstein</a></li> <li><span style="font-size:85%;">1969:</span> <a href="/wiki/Peter_Brian_Medawar" title="Peter Brian Medawar">Medawar</a></li> <li><span style="font-size:85%;">1970:</span> <a href="/wiki/Alexander_Robertus_Todd" title="Alexander Robertus Todd">Todd</a></li> <li><span style="font-size:85%;">1971:</span> <a href="/wiki/Norman_Pirie" class="mw-redirect" title="Norman Pirie">Pirie</a></li> <li><span style="font-size:85%;">1972:</span> <a href="/wiki/Nevill_Francis_Mott" title="Nevill Francis Mott">Mott</a></li> <li><span style="font-size:85%;">1973:</span> <a href="/wiki/Andrew_Huxley" title="Andrew Huxley">A. Huxley</a></li> <li><span style="font-size:85%;">1974:</span> <a href="/wiki/William_Vallance_Douglas_Hodge" title="William Vallance Douglas Hodge">Hodge</a></li> <li><span style="font-size:85%;">1975:</span> <a href="/wiki/Francis_Crick" title="Francis Crick">Crick</a></li> <li><span style="font-size:85%;">1976:</span> <a href="/wiki/Dorothy_Crowfoot_Hodgkin" title="Dorothy Crowfoot Hodgkin">Crowfoot Hodgkin</a></li> <li><span style="font-size:85%;">1977:</span> <a href="/wiki/Frederick_Sanger" title="Frederick Sanger">Sanger</a></li> <li><span style="font-size:85%;">1978:</span> <a href="/wiki/Robert_Burns_Woodward" title="Robert Burns Woodward">Woodward</a></li> <li><span style="font-size:85%;">1979:</span> <a href="/wiki/Max_Ferdinand_Perutz" title="Max Ferdinand Perutz">Perutz</a></li> <li><span style="font-size:85%;">1980:</span> <a href="/wiki/Derek_Harold_Richard_Barton" title="Derek Harold Richard Barton">Barton</a></li> <li><span style="font-size:85%;">1981:</span> <a href="/wiki/Peter_Dennis_Mitchell" title="Peter Dennis Mitchell">Mitchell</a></li> <li><span style="font-size:85%;">1982:</span> <a href="/wiki/John_Cornforth" title="John Cornforth">Cornforth</a></li> <li><span style="font-size:85%;">1983:</span> <a href="/wiki/Rodney_Porter" title="Rodney Porter">R. Porter</a></li> <li><span style="font-size:85%;">1984:</span> <a href="/wiki/Subrahmanyan_Chandrasekhar" title="Subrahmanyan Chandrasekhar">Chandrasekhar</a></li> <li><span style="font-size:85%;">1985:</span> <a href="/wiki/Aaron_Klug" title="Aaron Klug">Klug</a></li> <li><span style="font-size:85%;">1986:</span> <a href="/wiki/Rudolf_Ernst_Peierls" title="Rudolf Ernst Peierls">Peierls</a></li> <li><span style="font-size:85%;">1987:</span> <a href="/wiki/Robin_Hill_(biokemik)" title="Robin Hill (biokemik)">R. Hill</a></li> <li><span style="font-size:85%;">1988:</span> <a href="/wiki/Michael_Francis_Atiyah" title="Michael Francis Atiyah">Atiyah</a></li> <li><span style="font-size:85%;">1989:</span> <a href="/wiki/C%C3%A9sar_Milstein" title="César Milstein">Milstein</a></li> <li><span style="font-size:85%;">1990:</span> <a href="/wiki/Abdus_Salam" title="Abdus Salam">Salam</a></li> <li><span style="font-size:85%;">1991:</span> <a href="/wiki/Sydney_Brenner" title="Sydney Brenner">Brenner</a></li> <li><span style="font-size:85%;">1992:</span> <a href="/wiki/George_Porter" title="George Porter">G. Porter</a></li> <li><span style="font-size:85%;">1993:</span> <a href="/wiki/James_Dewey_Watson" title="James Dewey Watson">J. D. Watson</a></li> <li><span style="font-size:85%;">1994:</span> <a href="/wiki/Charles_Frank" class="mw-redirect" title="Charles Frank">Frank</a></li> <li><span style="font-size:85%;">1995:</span> <a href="/wiki/Frank_Fenner" title="Frank Fenner">Fenner</a></li> <li><span style="font-size:85%;">1996:</span> <a href="/wiki/Alan_Cottrell" title="Alan Cottrell">Cottrell</a></li> <li><span style="font-size:85%;">1997:</span> <a href="/w/index.php?title=Hugh_Esmor_Huxley&action=edit&redlink=1" class="new" title="Hugh Esmor Huxley (stran ne obstaja)">H. E. Huxley</a></li> <li><span style="font-size:85%;">1998:</span> <a href="/wiki/Michael_James_Lighthill" title="Michael James Lighthill">Lighthill</a></li> <li><span style="font-size:85%;">1999:</span> <a href="/wiki/John_Maynard_Smith" title="John Maynard Smith">J. M. Smith</a></li> <li><span style="font-size:85%;">2000:</span> <a href="/wiki/Alan_Rushton_Battersby" title="Alan Rushton Battersby">Battersby</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">2001–2021</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span style="font-size:85%;">2001:</span> <a href="/wiki/Jacques_Miller" title="Jacques Miller">Miller</a></li> <li><span style="font-size:85%;">2002:</span> <a href="/wiki/John_Anthony_Pople" title="John Anthony Pople">Pople</a></li> <li><span style="font-size:85%;">2003:</span> <a href="/wiki/John_Bertrand_Gurdon" title="John Bertrand Gurdon">Gurdon</a></li> <li><span style="font-size:85%;">2004:</span> <a href="/wiki/Harold_Walter_Kroto" title="Harold Walter Kroto">Kroto</a></li> <li><span style="font-size:85%;">2005:</span> <a href="/wiki/Paul_Nurse" title="Paul Nurse">Nurse</a></li> <li><span style="font-size:85%;">2006:</span> <a href="/wiki/Stephen_Hawking" title="Stephen Hawking">Hawking</a></li> <li><span style="font-size:85%;">2007:</span> <a href="/w/index.php?title=Robert_McCredie_May&action=edit&redlink=1" class="new" title="Robert McCredie May (stran ne obstaja)">May</a></li> <li><span style="font-size:85%;">2008:</span> <a href="/wiki/Roger_Penrose" title="Roger Penrose">Penrose</a></li> <li><span style="font-size:85%;">2009:</span> <a href="/w/index.php?title=Martin_Evans&action=edit&redlink=1" class="new" title="Martin Evans (stran ne obstaja)">M. Evans</a></li> <li><span style="font-size:85%;">2010:</span> <a href="/wiki/David_Cox" class="mw-redirect" title="David Cox">Cox</a></li> <li><span style="font-size:85%;">2011:</span> <a href="/wiki/Dan_Peter_McKenzie" title="Dan Peter McKenzie">McKenzie</a>  /  <a href="/wiki/Tomas_Lindahl" title="Tomas Lindahl">Lindahl</a></li> <li><span style="font-size:85%;">2012:</span> <a href="/w/index.php?title=John_Ernest_Walker&action=edit&redlink=1" class="new" title="John Ernest Walker (stran ne obstaja)">Walker</a></li> <li><span style="font-size:85%;">2013:</span> <a href="/w/index.php?title=Andre_Geim&action=edit&redlink=1" class="new" title="Andre Geim (stran ne obstaja)">Geim</a></li> <li><span style="font-size:85%;">2014:</span> <a href="/w/index.php?title=Alec_Jeffreys&action=edit&redlink=1" class="new" title="Alec Jeffreys (stran ne obstaja)">A. Jeffreys</a></li> <li><span style="font-size:85%;">2015:</span> <a href="/wiki/Peter_Ware_Higgs" title="Peter Ware Higgs">Higgs</a></li> <li><span style="font-size:85%;">2016:</span> <a href="/w/index.php?title=Richard_Henderson&action=edit&redlink=1" class="new" title="Richard Henderson (stran ne obstaja)">Henderson</a></li> <li><span style="font-size:85%;">2017:</span> <a href="/wiki/Andrew_John_Wiles" title="Andrew John Wiles">Wiles</a></li> <li><span style="font-size:85%;">2018:</span> <a href="/w/index.php?title=Jeffrey_Ivan_Gordon&action=edit&redlink=1" class="new" title="Jeffrey Ivan Gordon (stran ne obstaja)">Gordon</a></li> <li><span style="font-size:85%;">2019:</span> <a href="/w/index.php?title=John_Bannister_Goodenough&action=edit&redlink=1" class="new" title="John Bannister Goodenough (stran ne obstaja)">Goodenough</a></li> <li><span style="font-size:85%;">2020:</span> <a href="/w/index.php?title=Alan_Fersht&action=edit&redlink=1" class="new" title="Alan Fersht (stran ne obstaja)">Fersht</a></li> <li><span style="font-size:85%;">2021:</span> <a href="/w/index.php?title=Jocelyn_Bell_Burnell&action=edit&redlink=1" class="new" title="Jocelyn Bell Burnell (stran ne obstaja)">Bell Burnell</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/Kraljeva_dru%C5%BEba" title="Kraljeva družba">Kraljeva družba</a></li> <li><a href="/w/index.php?title=Godfrey_Copley&action=edit&redlink=1" class="new" title="Godfrey Copley (stran ne obstaja)">Godfrey Copley</a></li></ul> </div></td></tr></tbody></table></div> <style data-mw-deduplicate="TemplateStyles:r5914392">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:solid #aaa 1px;padding:0.1em;background:#f9f9f9}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/28px-Crab_Nebula.jpg" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/42px-Crab_Nebula.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/56px-Crab_Nebula.jpg 2x" data-file-width="3864" data-file-height="3864" /></span></span></span><span class="portalbox-link"><a href="/wiki/Portal:Astronomija" title="Portal:Astronomija">Portal Astronomija </a></span></li></ul> <div role="navigation" class="navbox" aria-labelledby="Normativna_kontrola_frameless&#124;text-top&#124;10px&#124;alt=Uredite_to_na_Wikipodatkih&#124;link=https&#58;//www.wikidata.org/wiki/Q6722#identifiers&#124;class=noprint&#124;Uredite_to_na_Wikipodatkih" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Normativna_kontrola_frameless&#124;text-top&#124;10px&#124;alt=Uredite_to_na_Wikipodatkih&#124;link=https&#58;//www.wikidata.org/wiki/Q6722#identifiers&#124;class=noprint&#124;Uredite_to_na_Wikipodatkih" style="font-size:114%;margin:0 4em"><a href="/wiki/Wikipedija:Normativna_kontrola" title="Wikipedija:Normativna kontrola">Normativna kontrola</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q6722#identifiers" title="Uredite to na Wikipodatkih"><img alt="Uredite to na Wikipodatkih" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Splošno</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/ISNI_(identifikator)" class="mw-redirect" title="ISNI (identifikator)">ISNI</a> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://isni.org/isni/0000000121257962">1</a></span></li></ul></li> <li><a href="/wiki/VIAF_(identifikator)" class="mw-redirect" title="VIAF (identifikator)">VIAF</a> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://viaf.org/viaf/29534259">1</a></span></li></ul></li> <li><a href="/wiki/CONOR_(identifikator)" class="mw-redirect" title="CONOR (identifikator)">CONOR (Slovenija)</a> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://plus.cobiss.net/cobiss/si/sl/conor/6690403">1</a></span></li></ul></li> <li><a href="/wiki/CONOR_(identifikator)" class="mw-redirect" title="CONOR (identifikator)">CONOR (Srbija)</a> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://plus.cobiss.net/cobiss/sr/sr/conor/51255817">1</a></span></li></ul></li> <li><span class="nowrap"><a rel="nofollow" class="external text" href="https://www.worldcat.org/identities/containsVIAFID/29534259">WorldCat (via VIAF)</a></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Narodne knjižnice</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://authority.bibsys.no/authority/rest/authorities/html/90061367">Norveška</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://www.bncatalogo.cl/F?func=direct&local_base=red10&doc_number=000135943">Čile</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&authority_id=XX1059229">Španija</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11904373v">Francija</a> <a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11904373v">(data)</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://cantic.bnc.cat/registre/981058512858106706">Katalonija</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/104234644">Nemčija</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://opac.sbn.it/nome/UFIV034086">Italija</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://uli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007261530005171">Izrael</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/names/n79038533">ZDA</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://kopkatalogs.lv/F?func=direct&local_base=lnc10&doc_number=000096135&P_CON_LNG=ENG">Latvija</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00440637">Japonska</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=jn19990002581&CON_LNG=ENG">Češka republika</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://nla.gov.au/anbd.aut-an36346691">Avstralija</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://data.nlg.gr/resource/authority/record139208">Grčija</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://librarian.nl.go.kr/LI/contents/L20101000000.do?id=KAC201618172">Koreja</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://katalog.nsk.hr/F/?func=direct&doc_number=000286491&local_base=nsk10">Hrvaška</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://data.bibliotheken.nl/id/thes/p070492824">Nizozemska</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://mak.bn.org.pl/cgi-bin/KHW/makwww.exe?BM=1&NU=1&IM=4&WI=9810543110005606">Poljska</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://libris.kb.se/auth/188030">Švedska</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://opac.vatlib.it/auth/detail/495_6527">Vatikan</a></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Inštituti za umetnostno raziskovanje</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://rkd.nl/en/explore/artists/437356">RKD Artists (Nizozemska)</a></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Biografski slovarji</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.deutsche-biographie.de/pnd104234644.html?language=en">Nemčija</a></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Znanstvene podatkovne baze</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://ci.nii.ac.jp/author/DA00502483?l=en">CiNii (Japonska)</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet/MRAuthorID/71920">MathSciNet</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://www.mathgenealogy.org/id.php?id=18231">Mathematics Genealogy Project</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://www.scopus.com/authid/detail.uri?authorId=56945560400">Scopus author</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://zbmath.org/authors/?q=ai:gauss.carl-friedrich">zbMATH</a></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Drugo</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/33472/">Faceted Application of Subject Terminology</a></span></li> <li><a href="/wiki/RERO_(identifikator)" class="mw-redirect" title="RERO (identifikator)">RERO (Švica)</a> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://data.rero.ch/02-A003283464">1</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://data.rero.ch/02-A010087377">2</a></span></li></ul></li> <li><a href="/wiki/SUDOC_(identifikator)" class="mw-redirect" title="SUDOC (identifikator)">SUDOC (Francija)</a> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.idref.fr/027475115">1</a></span></li></ul></li> <li><a href="/wiki/Trove_(identifikator)" class="mw-redirect" title="Trove (identifikator)">Trove (Avstralija)</a> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://trove.nla.gov.au/people/1249373">1</a></span></li></ul></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐75f486866c‐xl8kp Cached time: 20241203092638 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 1.138 seconds Real time usage: 1.543 seconds Preprocessor visited node count: 5105/1000000 Post‐expand include size: 155039/2097152 bytes Template argument size: 14769/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 51/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 36835/5000000 bytes Lua time usage: 0.697/10.000 seconds Lua memory usage: 25116589/52428800 bytes Number of Wikibase entities loaded: 12/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1141.398 1 -total 51.80% 591.275 1 Predloga:Infopolje_Znanstvenik 51.44% 587.090 1 Predloga:Infopolje 35.57% 405.939 3 Predloga:Br_separated_entries 21.83% 249.222 1 Predloga:Jezik-de 17.46% 199.312 1 Predloga:Wikidata/p569 7.62% 86.998 1 Predloga:Normativna_kontrola 7.40% 84.501 1 Predloga:Wikidata/p19 7.24% 82.602 1 Predloga:Wikidata/p18 7.08% 80.756 1 Predloga:Copleyjeva_medalja --> <!-- Saved in parser cache with key slwiki:pcache:194:|#|:idhash:canonical and timestamp 20241203092638 and revision id 6109974. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Pridobljeno iz »<a dir="ltr" href="https://sl.wikipedia.org/w/index.php?title=Carl_Friedrich_Gauss&oldid=6109974">https://sl.wikipedia.org/w/index.php?title=Carl_Friedrich_Gauss&oldid=6109974</a>«</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Posebno:Kategorije" title="Posebno:Kategorije">Kategorije</a>: <ul><li><a href="/wiki/Kategorija:Rojeni_leta_1777" title="Kategorija:Rojeni leta 1777">Rojeni leta 1777</a></li><li><a href="/wiki/Kategorija:Umrli_leta_1855" title="Kategorija:Umrli leta 1855">Umrli leta 1855</a></li><li><a href="/wiki/Kategorija:Nem%C5%A1ki_astronomi" title="Kategorija:Nemški astronomi">Nemški astronomi</a></li><li><a href="/wiki/Kategorija:Nem%C5%A1ki_fiziki" title="Kategorija:Nemški fiziki">Nemški fiziki</a></li><li><a href="/wiki/Kategorija:Nem%C5%A1ki_geodeti" title="Kategorija:Nemški geodeti">Nemški geodeti</a></li><li><a href="/wiki/Kategorija:Nem%C5%A1ki_matematiki" title="Kategorija:Nemški matematiki">Nemški matematiki</a></li><li><a href="/wiki/Kategorija:%C4%8Cude%C5%BEni_otroci" title="Kategorija:Čudežni otroci">Čudežni otroci</a></li><li><a href="/wiki/Kategorija:Diplomiranci_Univerze_v_G%C3%B6ttingenu" title="Kategorija:Diplomiranci Univerze v Göttingenu">Diplomiranci Univerze v Göttingenu</a></li><li><a href="/wiki/Kategorija:Nem%C5%A1ki_univerzitetni_u%C4%8Ditelji" title="Kategorija:Nemški univerzitetni učitelji">Nemški univerzitetni učitelji</a></li><li><a href="/wiki/Kategorija:Predavatelji_na_Univerzi_v_G%C3%B6ttingenu" title="Kategorija:Predavatelji na Univerzi v Göttingenu">Predavatelji na Univerzi v Göttingenu</a></li><li><a href="/wiki/Kategorija:Nem%C5%A1ki_akademiki" title="Kategorija:Nemški akademiki">Nemški akademiki</a></li><li><a href="/wiki/Kategorija:Nosilci_Pour_le_M%C3%A9rite_(civilni_razred)" title="Kategorija:Nosilci Pour le Mérite (civilni razred)">Nosilci Pour le Mérite (civilni razred)</a></li><li><a href="/wiki/Kategorija:%C4%8Clani_Kraljeve_%C5%A1vedske_akademije_znanosti" title="Kategorija:Člani Kraljeve švedske akademije znanosti">Člani Kraljeve švedske akademije znanosti</a></li><li><a href="/wiki/Kategorija:%C4%8Clani_Mad%C5%BEarske_akademije_znanosti" title="Kategorija:Člani Madžarske akademije znanosti">Člani Madžarske akademije znanosti</a></li><li><a href="/w/index.php?title=Kategorija:Prejemniki_Lalandove_nagrade&action=edit&redlink=1" class="new" title="Kategorija:Prejemniki Lalandove nagrade (stran ne obstaja)">Prejemniki Lalandove nagrade</a></li><li><a href="/wiki/Kategorija:Prejemniki_Copleyjeve_medalje" title="Kategorija:Prejemniki Copleyjeve medalje">Prejemniki Copleyjeve medalje</a></li><li><a href="/wiki/Kategorija:Ljudje,_po_katerih_so_poimenovali_krater_na_Luni" title="Kategorija:Ljudje, po katerih so poimenovali krater na Luni">Ljudje, po katerih so poimenovali krater na Luni</a></li><li><a href="/wiki/Kategorija:Carl_Friedrich_Gauss" title="Kategorija:Carl Friedrich Gauss">Carl Friedrich Gauss</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Skrite kategorije: <ul><li><a href="/wiki/Kategorija:Brez_lokalne_slike,_slika_je_v_Wikipodatkih" title="Kategorija:Brez lokalne slike, slika je v Wikipodatkih">Brez lokalne slike, slika je v Wikipodatkih</a></li><li><a href="/wiki/Kategorija:%C4%8Clanki_z_viri_iz_Wikipodatkov" title="Kategorija:Članki z viri iz Wikipodatkov">Članki z viri iz Wikipodatkov</a></li><li><a href="/wiki/Kategorija:%C4%8Clanki,_ki_vsebujejo_nem%C5%A1ko_besedilo" title="Kategorija:Članki, ki vsebujejo nemško besedilo">Članki, ki vsebujejo nemško besedilo</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_ISNI" title="Kategorija:Wikipedijini članki z identifikatorji ISNI">Wikipedijini članki z identifikatorji ISNI</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_VIAF" title="Kategorija:Wikipedijini članki z identifikatorji VIAF">Wikipedijini članki z identifikatorji VIAF</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_CONOR.SI" title="Kategorija:Wikipedijini članki z identifikatorji CONOR.SI">Wikipedijini članki z identifikatorji CONOR.SI</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_CONOR.SR" title="Kategorija:Wikipedijini članki z identifikatorji CONOR.SR">Wikipedijini članki z identifikatorji CONOR.SR</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_BIBSYS" title="Kategorija:Wikipedijini članki z identifikatorji BIBSYS">Wikipedijini članki z identifikatorji BIBSYS</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_BNC" title="Kategorija:Wikipedijini članki z identifikatorji BNC">Wikipedijini članki z identifikatorji BNC</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_BNE" title="Kategorija:Wikipedijini članki z identifikatorji BNE">Wikipedijini članki z identifikatorji BNE</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_BNF" title="Kategorija:Wikipedijini članki z identifikatorji BNF">Wikipedijini članki z identifikatorji BNF</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_CANTICN" title="Kategorija:Wikipedijini članki z identifikatorji CANTICN">Wikipedijini članki z identifikatorji CANTICN</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_GND" title="Kategorija:Wikipedijini članki z identifikatorji GND">Wikipedijini članki z identifikatorji GND</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_ICCU" title="Kategorija:Wikipedijini članki z identifikatorji ICCU">Wikipedijini članki z identifikatorji ICCU</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_J9U" title="Kategorija:Wikipedijini članki z identifikatorji J9U">Wikipedijini članki z identifikatorji J9U</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_LCCN" title="Kategorija:Wikipedijini članki z identifikatorji LCCN">Wikipedijini članki z identifikatorji LCCN</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_LNB" title="Kategorija:Wikipedijini članki z identifikatorji LNB">Wikipedijini članki z identifikatorji LNB</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_NDL" title="Kategorija:Wikipedijini članki z identifikatorji NDL">Wikipedijini članki z identifikatorji NDL</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_NKC" title="Kategorija:Wikipedijini članki z identifikatorji NKC">Wikipedijini članki z identifikatorji NKC</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_NLA" title="Kategorija:Wikipedijini članki z identifikatorji NLA">Wikipedijini članki z identifikatorji NLA</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_NLG" title="Kategorija:Wikipedijini članki z identifikatorji NLG">Wikipedijini članki z identifikatorji NLG</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_NLK" title="Kategorija:Wikipedijini članki z identifikatorji NLK">Wikipedijini članki z identifikatorji NLK</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_NSK" title="Kategorija:Wikipedijini članki z identifikatorji NSK">Wikipedijini članki z identifikatorji NSK</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_NTA" title="Kategorija:Wikipedijini članki z identifikatorji NTA">Wikipedijini članki z identifikatorji NTA</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_PLWABN" title="Kategorija:Wikipedijini članki z identifikatorji PLWABN">Wikipedijini članki z identifikatorji PLWABN</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_SELIBR" title="Kategorija:Wikipedijini članki z identifikatorji SELIBR">Wikipedijini članki z identifikatorji SELIBR</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_VcBA" title="Kategorija:Wikipedijini članki z identifikatorji VcBA">Wikipedijini članki z identifikatorji VcBA</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_RKDartists" title="Kategorija:Wikipedijini članki z identifikatorji RKDartists">Wikipedijini članki z identifikatorji RKDartists</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_DTBIO" title="Kategorija:Wikipedijini članki z identifikatorji DTBIO">Wikipedijini članki z identifikatorji DTBIO</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_CINII" title="Kategorija:Wikipedijini članki z identifikatorji CINII">Wikipedijini članki z identifikatorji CINII</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_MATHSN" title="Kategorija:Wikipedijini članki z identifikatorji MATHSN">Wikipedijini članki z identifikatorji MATHSN</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_MGP" title="Kategorija:Wikipedijini članki z identifikatorji MGP">Wikipedijini članki z identifikatorji MGP</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_Scopus" title="Kategorija:Wikipedijini članki z identifikatorji Scopus">Wikipedijini članki z identifikatorji Scopus</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_ZBMATH" title="Kategorija:Wikipedijini članki z identifikatorji ZBMATH">Wikipedijini članki z identifikatorji ZBMATH</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_FAST" title="Kategorija:Wikipedijini članki z identifikatorji FAST">Wikipedijini članki z identifikatorji FAST</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_RERO" title="Kategorija:Wikipedijini članki z identifikatorji RERO">Wikipedijini članki z identifikatorji RERO</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_SUDOC" title="Kategorija:Wikipedijini članki z identifikatorji SUDOC">Wikipedijini članki z identifikatorji SUDOC</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_Trove" title="Kategorija:Wikipedijini članki z identifikatorji Trove">Wikipedijini članki z identifikatorji Trove</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_WorldCat-VIAF" title="Kategorija:Wikipedijini članki z identifikatorji WorldCat-VIAF">Wikipedijini članki z identifikatorji WorldCat-VIAF</a></li><li><a href="/wiki/Kategorija:36_elementov_normativne_kontrole" title="Kategorija:36 elementov normativne kontrole">36 elementov normativne kontrole</a></li><li><a href="/wiki/Kategorija:Wikipedijini_%C4%8Dlanki_z_identifikatorji_-_ve%C4%8Dkratni" title="Kategorija:Wikipedijini članki z identifikatorji - večkratni">Wikipedijini članki z identifikatorji - večkratni</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Čas zadnje spremembe strani: 09:38, 19. oktober 2023.</li> <li id="footer-info-copyright">Besedilo se sme prosto uporabljati v skladu z dovoljenjem <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/">Creative Commons Priznanje avtorstva-Deljenje pod enakimi pogoji 4.0</a>; uveljavljajo se lahko dodatni pogoji. Za podrobnosti glej <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Pogoje uporabe</a>.<br /> Wikipedia® je tržna znamka neprofitne organizacije <a rel="nofollow" class="external text" href="https://wikimediafoundation.org">Wikimedia Foundation Inc.</a></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Pravilnik o zasebnosti</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedija:O_Wikipediji">O Wikipediji</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedija:Splo%C5%A1na_zavrnitev_odgovornosti">Zavrnitve odgovornosti</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Kodeks ravnanja</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Razvijalci</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/sl.wikipedia.org">Statistika</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">O piškotkih</a></li> <li id="footer-places-mobileview"><a href="//sl.m.wikipedia.org/w/index.php?title=Carl_Friedrich_Gauss&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobilni prikaz</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6dfcdd5ff5-sx9gq","wgBackendResponseTime":214,"wgPageParseReport":{"limitreport":{"cputime":"1.138","walltime":"1.543","ppvisitednodes":{"value":5105,"limit":1000000},"postexpandincludesize":{"value":155039,"limit":2097152},"templateargumentsize":{"value":14769,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":51,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":36835,"limit":5000000},"entityaccesscount":{"value":12,"limit":400},"timingprofile":["100.00% 1141.398 1 -total"," 51.80% 591.275 1 Predloga:Infopolje_Znanstvenik"," 51.44% 587.090 1 Predloga:Infopolje"," 35.57% 405.939 3 Predloga:Br_separated_entries"," 21.83% 249.222 1 Predloga:Jezik-de"," 17.46% 199.312 1 Predloga:Wikidata/p569"," 7.62% 86.998 1 Predloga:Normativna_kontrola"," 7.40% 84.501 1 Predloga:Wikidata/p19"," 7.24% 82.602 1 Predloga:Wikidata/p18"," 7.08% 80.756 1 Predloga:Copleyjeva_medalja"]},"scribunto":{"limitreport-timeusage":{"value":"0.697","limit":"10.000"},"limitreport-memusage":{"value":25116589,"limit":52428800},"limitreport-logs":"Entity Q27302 is not a person\nEntity Q193563 is not a person\nEntity Q2818964 is not a person\nGot title of Q2079 from short name claim: «L»\nNaslov pridobljen Q316626 iz oznake: «Duncker \u0026 Humblot»\nEntity Q2818964 is not a person\nGot title of Q2079 from short name claim: «L»\nNaslov pridobljen Q316626 iz oznake: «Duncker \u0026 Humblot»\nEntity Q27302 is not a person\nEntity Q193563 is not a person\nEntity Q2818964 is not a person\nGot title of Q2079 from short name claim: «L»\nNaslov pridobljen Q316626 iz oznake: «Duncker \u0026 Humblot»\nEntity Q2818964 is not a person\nGot title of Q2079 from short name claim: «L»\nNaslov pridobljen Q316626 iz oznake: «Duncker \u0026 Humblot»\n"},"cachereport":{"origin":"mw-api-int.codfw.main-75f486866c-xl8kp","timestamp":"20241203092638","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Carl Friedrich Gauss","url":"https:\/\/sl.wikipedia.org\/wiki\/Carl_Friedrich_Gauss","sameAs":"http:\/\/www.wikidata.org\/entity\/Q6722","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q6722","author":{"@type":"Organization","name":"Sodelavci projektov Wikimedie"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-07-16T00:32:22Z","dateModified":"2023-10-19T08:38:47Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/9\/9b\/Carl_Friedrich_Gauss.jpg","headline":"nem\u0161ki matematik, statistik, astronom, geodet in fizik (1777\u20131855)"}</script> </body> </html>