CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;18 of 18 results for author: <span class="mathjax">Tribastone, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Tribastone%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tribastone, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tribastone%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tribastone, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14242">arXiv:2411.14242</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14242">pdf</a>, <a href="https://arxiv.org/format/2411.14242">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Approximate Constrained Lumping of Chemical Reaction Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Leguizamon-Robayo%2C+A">Alexander Leguizamon-Robayo</a>, <a href="/search/cs?searchtype=author&amp;query=Jim%C3%A9nez-Pastor%2C+A">Antonio Jim茅nez-Pastor</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Micro Tribastone</a>, <a href="/search/cs?searchtype=author&amp;query=Tschaikowski%2C+M">Max Tschaikowski</a>, <a href="/search/cs?searchtype=author&amp;query=Vandin%2C+A">Andrea Vandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14242v1-abstract-short" style="display: inline;"> Gaining insights from realistic dynamical models of biochemical systems can be challenging given their large number of state variables. Model reduction techniques can mitigate this by decreasing complexity by mapping the model onto a lower-dimensional state space. Exact constrained lumping identifies reductions as linear combinations of the original state variables in systems of nonlinear ordinary&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14242v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14242v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14242v1-abstract-full" style="display: none;"> Gaining insights from realistic dynamical models of biochemical systems can be challenging given their large number of state variables. Model reduction techniques can mitigate this by decreasing complexity by mapping the model onto a lower-dimensional state space. Exact constrained lumping identifies reductions as linear combinations of the original state variables in systems of nonlinear ordinary differential equations, preserving specific user-defined output variables without error. However, exact reductions can be too stringent in practice, as model parameters are often uncertain or imprecise -- a particularly relevant problem for biochemical systems. We propose approximate constrained lumping. It allows for a relaxation of exactness within a given tolerance parameter $\varepsilon$, while still working in polynomial time. We prove that the accuracy, i.e., the difference between the output variables in the original and reduced model, is in the order of $\varepsilon$. Furthermore, we provide a heuristic algorithm to find the smallest $\varepsilon$ for a given maximum allowable size of the lumped system. Our method is applied to several models from the literature, resulting in coarser aggregations than exact lumping while still capturing the dynamics of the original system accurately. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14242v1-abstract-full').style.display = 'none'; document.getElementById('2411.14242v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10160">arXiv:2409.10160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10160">pdf</a>, <a href="https://arxiv.org/format/2409.10160">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Efficient Network Embedding by Approximate Equitable Partitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Squillace%2C+G">Giuseppe Squillace</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a>, <a href="/search/cs?searchtype=author&amp;query=Tschaikowski%2C+M">Max Tschaikowski</a>, <a href="/search/cs?searchtype=author&amp;query=Vandin%2C+A">Andrea Vandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10160v1-abstract-short" style="display: inline;"> Structural network embedding is a crucial step in enabling effective downstream tasks for complex systems that aims to project a network into a lower-dimensional space while preserving similarities among nodes. We introduce a simple and efficient embedding technique based on approximate variants of equitable partitions. The approximation consists in introducing a user-tunable tolerance parameter r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10160v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10160v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10160v1-abstract-full" style="display: none;"> Structural network embedding is a crucial step in enabling effective downstream tasks for complex systems that aims to project a network into a lower-dimensional space while preserving similarities among nodes. We introduce a simple and efficient embedding technique based on approximate variants of equitable partitions. The approximation consists in introducing a user-tunable tolerance parameter relaxing the otherwise strict condition for exact equitable partitions that can be hardly found in real-world networks. We exploit a relationship between equitable partitions and equivalence relations for Markov chains and ordinary differential equations to develop a partition refinement algorithm for computing an approximate equitable partition in polynomial time. We compare our method against state-of-the-art embedding techniques on benchmark networks. We report comparable -- when not superior -- performance for visualization, classification, and regression tasks at a cost between one and three orders of magnitude smaller using a prototype implementation, enabling the embedding of large-scale networks which could not be efficiently handled by most of the competing techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10160v1-abstract-full').style.display = 'none'; document.getElementById('2409.10160v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at ICDM 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08235">arXiv:2311.08235</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08235">pdf</a>, <a href="https://arxiv.org/format/2311.08235">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Programming Languages">cs.PL</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3632905">10.1145/3632905 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Randone%2C+F">Francesca Randone</a>, <a href="/search/cs?searchtype=author&amp;query=Bortolussi%2C+L">Luca Bortolussi</a>, <a href="/search/cs?searchtype=author&amp;query=Incerto%2C+E">Emilio Incerto</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08235v1-abstract-short" style="display: inline;"> Computing the posterior distribution of a probabilistic program is a hard task for which no one-fit-for-all solution exists. We propose Gaussian Semantics, which approximates the exact probabilistic semantics of a bounded program by means of Gaussian mixtures. It is parametrized by a map that associates each program location with the moment order to be matched in the approximation. We provide two&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08235v1-abstract-full').style.display = 'inline'; document.getElementById('2311.08235v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08235v1-abstract-full" style="display: none;"> Computing the posterior distribution of a probabilistic program is a hard task for which no one-fit-for-all solution exists. We propose Gaussian Semantics, which approximates the exact probabilistic semantics of a bounded program by means of Gaussian mixtures. It is parametrized by a map that associates each program location with the moment order to be matched in the approximation. We provide two main contributions. The first is a universal approximation theorem stating that, under mild conditions, Gaussian Semantics can approximate the exact semantics arbitrarily closely. The second is an approximation that matches up to second-order moments analytically in face of the generally difficult problem of matching moments of Gaussian mixtures with arbitrary moment order. We test our second-order Gaussian approximation (SOGA) on a number of case studies from the literature. We show that it can provide accurate estimates in models not supported by other approximation methods or when exact symbolic techniques fail because of complex expressions or non-simplified integrals. On two notable classes of problems, namely collaborative filtering and programs involving mixtures of continuous and discrete distributions, we show that SOGA significantly outperforms alternative techniques in terms of accuracy and computational time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08235v1-abstract-full').style.display = 'none'; document.getElementById('2311.08235v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.09510">arXiv:2308.09510</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.09510">pdf</a>, <a href="https://arxiv.org/ps/2308.09510">ps</a>, <a href="https://arxiv.org/format/2308.09510">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Forward and Backward Constrained Bisimulations for Quantum Circuits using Decision Diagrams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Burgholzer%2C+L">Lukas Burgholzer</a>, <a href="/search/cs?searchtype=author&amp;query=Jim%C3%A9nez-Pastor%2C+A">Antonio Jim茅nez-Pastor</a>, <a href="/search/cs?searchtype=author&amp;query=Larsen%2C+K+G">Kim G. Larsen</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a>, <a href="/search/cs?searchtype=author&amp;query=Tschaikowski%2C+M">Max Tschaikowski</a>, <a href="/search/cs?searchtype=author&amp;query=Wille%2C+R">Robert Wille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.09510v6-abstract-short" style="display: inline;"> Efficient methods for the simulation of quantum circuits on classic computers are crucial for their analysis due to the exponential growth of the problem size with the number of qubits. Here we study lumping methods based on bisimulation, an established class of techniques that has been proven successful for (classic) stochastic and deterministic systems such as Markov chains and ordinary differen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09510v6-abstract-full').style.display = 'inline'; document.getElementById('2308.09510v6-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.09510v6-abstract-full" style="display: none;"> Efficient methods for the simulation of quantum circuits on classic computers are crucial for their analysis due to the exponential growth of the problem size with the number of qubits. Here we study lumping methods based on bisimulation, an established class of techniques that has been proven successful for (classic) stochastic and deterministic systems such as Markov chains and ordinary differential equations. Forward constrained bisimulation yields a lower-dimensional model which exactly preserves quantum measurements projected on a linear subspace of interest. Backward constrained bisimulation gives a reduction that is valid on a subspace containing the circuit input, from which the circuit result can be fully recovered. We provide an algorithm to compute the constraint bisimulations yielding coarsest reductions in both cases, using a duality result relating the two notions. As applications, we provide theoretical bounds on the size of the reduced state space for well-known quantum algorithms for search, optimization, and factorization. Using a prototype implementation, we report significant reductions on a set of benchmarks. In particular, we show that constrained bisimulation can boost decision-diagram-based quantum circuit simulation by several orders of magnitude, allowing thus for substantial synergy effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09510v6-abstract-full').style.display = 'none'; document.getElementById('2308.09510v6-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 1 algorithm, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.15169">arXiv:2206.15169</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.15169">pdf</a>, <a href="https://arxiv.org/format/2206.15169">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Logic in Computer Science">cs.LO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Minimization of Dynamical Systems over Monoids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Argyris%2C+G">Georgios Argyris</a>, <a href="/search/cs?searchtype=author&amp;query=Lafuente%2C+A+L">Alberto Lluch Lafuente</a>, <a href="/search/cs?searchtype=author&amp;query=Robayo%2C+A+L">Alexander Leguizamon Robayo</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a>, <a href="/search/cs?searchtype=author&amp;query=Tschaikowski%2C+M">Max Tschaikowski</a>, <a href="/search/cs?searchtype=author&amp;query=Vandin%2C+A">Andrea Vandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.15169v3-abstract-short" style="display: inline;"> Quantitative notions of bisimulation are well-known tools for the minimization of dynamical models such as Markov chains and ordinary differential equations (ODEs). In \emph{forward bisimulations}, each state in the quotient model represents an equivalence class and the dynamical evolution gives the overall sum of its members in the original model. Here we introduce generalized forward bisimulatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15169v3-abstract-full').style.display = 'inline'; document.getElementById('2206.15169v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.15169v3-abstract-full" style="display: none;"> Quantitative notions of bisimulation are well-known tools for the minimization of dynamical models such as Markov chains and ordinary differential equations (ODEs). In \emph{forward bisimulations}, each state in the quotient model represents an equivalence class and the dynamical evolution gives the overall sum of its members in the original model. Here we introduce generalized forward bisimulation (GFB) for dynamical systems over commutative monoids and develop a partition refinement algorithm to compute the coarsest one. When the monoid is $(\mathbb{R}, +)$, we recover probabilistic bisimulation for Markov chains and more recent forward bisimulations for nonlinear ODEs. Using $(\mathbb{R}, \cdot)$ we get nonlinear reductions for discrete-time dynamical systems and ODEs where each variable in the quotient model represents the product of original variables in the equivalence class. When the domain is a finite set such as the Booleans $\mathbb{B}$, we can apply GFB to Boolean networks (BN), a widely used dynamical model in computational biology. Using a prototype implementation of our minimization algorithm for GFB, we find disjunction- and conjunction-preserving reductions on 60 BN from two well-known repositories, and demonstrate the obtained analysis speed-ups. We also provide the biological interpretation of the reduction obtained for two selected BN, and we show how GFB enables the analysis of a large one that could not be analyzed otherwise. Using a randomized version of our algorithm we find product-preserving (therefore non-linear) reductions on 21 dynamical weighted networks from the literature that could not be handled by the exact algorithm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15169v3-abstract-full').style.display = 'none'; document.getElementById('2206.15169v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at Thirty-Eighth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.15476">arXiv:2106.15476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.15476">pdf</a>, <a href="https://arxiv.org/format/2106.15476">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> </div> </div> <p class="title is-5 mathjax"> Reducing Boolean Networks with Backward Boolean Equivalence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Argyris%2C+G">Georgios Argyris</a>, <a href="/search/cs?searchtype=author&amp;query=Lafuente%2C+A+L">Alberto Lluch Lafuente</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a>, <a href="/search/cs?searchtype=author&amp;query=Tschaikowski%2C+M">Max Tschaikowski</a>, <a href="/search/cs?searchtype=author&amp;query=Vandin%2C+A">Andrea Vandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.15476v2-abstract-short" style="display: inline;"> Boolean Networks (BNs) are established models to qualitatively describe biological systems. The analysis of BNs might be infeasible for medium to large BNs due to the state-space explosion problem. We propose a novel reduction technique called \emph{Backward Boolean Equivalence} (BBE), which preserves some properties of interest of BNs. In particular, reduced BNs provide a compact representation b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15476v2-abstract-full').style.display = 'inline'; document.getElementById('2106.15476v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.15476v2-abstract-full" style="display: none;"> Boolean Networks (BNs) are established models to qualitatively describe biological systems. The analysis of BNs might be infeasible for medium to large BNs due to the state-space explosion problem. We propose a novel reduction technique called \emph{Backward Boolean Equivalence} (BBE), which preserves some properties of interest of BNs. In particular, reduced BNs provide a compact representation by grouping variables that, if initialized equally, are always updated equally. The resulting reduced state space is a subset of the original one, restricted to identical initialization of grouped variables. The corresponding trajectories of the original BN can be exactly restored. We show the effectiveness of BBE by performing a large-scale validation on the whole GINsim BN repository. In selected cases, we show how our method enables analyses that would be otherwise intractable. Our method complements, and can be combined with, other reduction methods found in the literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15476v2-abstract-full').style.display = 'none'; document.getElementById('2106.15476v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.13160">arXiv:2104.13160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.13160">pdf</a>, <a href="https://arxiv.org/format/2104.13160">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Logic in Computer Science">cs.LO</span> </div> </div> <p class="title is-5 mathjax"> Efficient Local Computation of Differential Bisimulations via Coupling and Up-to Methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bacci%2C+G">Giorgio Bacci</a>, <a href="/search/cs?searchtype=author&amp;query=Bacci%2C+G">Giovanni Bacci</a>, <a href="/search/cs?searchtype=author&amp;query=Larsen%2C+K+G">Kim G. Larsen</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a>, <a href="/search/cs?searchtype=author&amp;query=Tschaikowski%2C+M">Max Tschaikowski</a>, <a href="/search/cs?searchtype=author&amp;query=Vandin%2C+A">Andrea Vandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.13160v1-abstract-short" style="display: inline;"> We introduce polynomial couplings, a generalization of probabilistic couplings, to develop an algorithm for the computation of equivalence relations which can be interpreted as a lifting of probabilistic bisimulation to polynomial differential equations, a ubiquitous model of dynamical systems across science and engineering. The algorithm enjoys polynomial time complexity and complements classical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13160v1-abstract-full').style.display = 'inline'; document.getElementById('2104.13160v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.13160v1-abstract-full" style="display: none;"> We introduce polynomial couplings, a generalization of probabilistic couplings, to develop an algorithm for the computation of equivalence relations which can be interpreted as a lifting of probabilistic bisimulation to polynomial differential equations, a ubiquitous model of dynamical systems across science and engineering. The algorithm enjoys polynomial time complexity and complements classical partition-refinement approaches because: (a) it implements a local exploration of the system, possibly yielding equivalences that do not necessarily involve the inspection of the whole system of differential equations; (b) it can be enhanced by up-to techniques; and (c) it allows the specification of pairs which ought not to be included in the output. Using a prototype, these advantages are demonstrated on case studies from systems biology for applications to model reduction and comparison. Notably, we report four orders of magnitude smaller runtimes than partition-refinement approaches when disproving equivalences between Markov chains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13160v1-abstract-full').style.display = 'none'; document.getElementById('2104.13160v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.03342">arXiv:2101.03342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.03342">pdf</a>, <a href="https://arxiv.org/format/2101.03342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> </div> </div> <p class="title is-5 mathjax"> Exact maximal reduction of stochastic reaction networks by species lumping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Cardelli%2C+L">Luca Cardelli</a>, <a href="/search/cs?searchtype=author&amp;query=Perez-Verona%2C+I+C">Isabel Cristina Perez-Verona</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a>, <a href="/search/cs?searchtype=author&amp;query=Tschaikowski%2C+M">Max Tschaikowski</a>, <a href="/search/cs?searchtype=author&amp;query=Vandin%2C+A">Andrea Vandin</a>, <a href="/search/cs?searchtype=author&amp;query=Waizmann%2C+T">Tabea Waizmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.03342v1-abstract-short" style="display: inline;"> Motivation: Stochastic reaction networks are a widespread model to describe biological systems where the presence of noise is relevant, such as in cell regulatory processes. Unfortu-nately, in all but simplest models the resulting discrete state-space representation hinders analytical tractability and makes numerical simulations expensive. Reduction methods can lower complexity by computing model&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03342v1-abstract-full').style.display = 'inline'; document.getElementById('2101.03342v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.03342v1-abstract-full" style="display: none;"> Motivation: Stochastic reaction networks are a widespread model to describe biological systems where the presence of noise is relevant, such as in cell regulatory processes. Unfortu-nately, in all but simplest models the resulting discrete state-space representation hinders analytical tractability and makes numerical simulations expensive. Reduction methods can lower complexity by computing model projections that preserve dynamics of interest to the user. Results: We present an exact lumping method for stochastic reaction networks with mass-action kinetics. It hinges on an equivalence relation between the species, resulting in a reduced network where the dynamics of each macro-species is stochastically equivalent to the sum of the original species in each equivalence class, for any choice of the initial state of the system. Furthermore, by an appropriate encoding of kinetic parameters as additional species, the method can establish equivalences that do not depend on specific values of the parameters. The method is supported by an efficient algorithm to compute the largest species equivalence, thus the maximal lumping. The effectiveness and scalability of our lumping technique, as well as the physical interpretability of resulting reductions, is demonstrated in several models of signaling pathways and epidemic processes on complex networks. Availability: The algorithms for species equivalence have been implemented in the software tool ERODE, freely available for download from https://www.erode.eu. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03342v1-abstract-full').style.display = 'none'; document.getElementById('2101.03342v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.06987">arXiv:2006.06987</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.06987">pdf</a>, <a href="https://arxiv.org/format/2006.06987">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rspa.2020.0964">10.1098/rspa.2020.0964 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved estimations of stochastic chemical kinetics by finite state expansion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Waizmann%2C+T">Tabea Waizmann</a>, <a href="/search/cs?searchtype=author&amp;query=Bortolussi%2C+L">Luca Bortolussi</a>, <a href="/search/cs?searchtype=author&amp;query=Vandin%2C+A">Andrea Vandin</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.06987v3-abstract-short" style="display: inline;"> Stochastic reaction networks are a fundamental model to describe interactions between species where random fluctuations are relevant. The master equation provides the evolution of the probability distribution across the discrete state space consisting of vectors of population counts for each species. However, since its exact solution is often elusive, several analytical approximations have been pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06987v3-abstract-full').style.display = 'inline'; document.getElementById('2006.06987v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.06987v3-abstract-full" style="display: none;"> Stochastic reaction networks are a fundamental model to describe interactions between species where random fluctuations are relevant. The master equation provides the evolution of the probability distribution across the discrete state space consisting of vectors of population counts for each species. However, since its exact solution is often elusive, several analytical approximations have been proposed. The deterministic rate equation (DRE) gives a macroscopic approximation as a compact system of differential equations that estimate the average populations for each species, but it may be inaccurate in the case of nonlinear interaction dynamics. Here we propose finite state expansion (FSE), an analytical method mediating between the microscopic and the macroscopic interpretations of a stochastic reaction network by coupling the master equation dynamics of a chosen subset of the discrete state space with the mean population dynamics of the DRE. An algorithm translates a network into an expanded one where each discrete state is represented as a further distinct species. This translation exactly preserves the stochastic dynamics, but the DRE of the expanded network can be interpreted as a correction to the original one. The effectiveness of FSE is demonstrated in models that challenge state-of-the-art techniques due to intrinsic noise, multi-scale populations, and multi-stability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06987v3-abstract-full').style.display = 'none'; document.getElementById('2006.06987v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.11961">arXiv:2004.11961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.11961">pdf</a>, <a href="https://arxiv.org/format/2004.11961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Symbolic Computation">cs.SC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> CLUE: Exact maximal reduction of kinetic models by constrained lumping of differential equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ovchinnikov%2C+A">Alexey Ovchinnikov</a>, <a href="/search/cs?searchtype=author&amp;query=Verona%2C+I+C+P">Isabel Cristina P茅rez Verona</a>, <a href="/search/cs?searchtype=author&amp;query=Pogudin%2C+G">Gleb Pogudin</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.11961v2-abstract-short" style="display: inline;"> Motivation: Detailed mechanistic models of biological processes can pose significant challenges for analysis and parameter estimations due to the large number of equations used to track the dynamics of all distinct configurations in which each involved biochemical species can be found. Model reduction can help tame such complexity by providing a lower-dimensional model in which each macro-variable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11961v2-abstract-full').style.display = 'inline'; document.getElementById('2004.11961v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.11961v2-abstract-full" style="display: none;"> Motivation: Detailed mechanistic models of biological processes can pose significant challenges for analysis and parameter estimations due to the large number of equations used to track the dynamics of all distinct configurations in which each involved biochemical species can be found. Model reduction can help tame such complexity by providing a lower-dimensional model in which each macro-variable can be directly related to the original variables. Results: We present CLUE, an algorithm for exact model reduction of systems of polynomial differential equations by constrained linear lumping. It computes the smallest dimensional reduction as a linear mapping of the state space such that the reduced model preserves the dynamics of user-specified linear combinations of the original variables. Even though CLUE works with nonlinear differential equations, it is based on linear algebra tools, which makes it applicable to high-dimensional models. Using case studies from the literature, we show how CLUE can substantially lower model dimensionality and help extract biologically intelligible insights from the reduction. Availability: An implementation of the algorithm and relevant resources to replicate the experiments herein reported are freely available for download at https://github.com/pogudingleb/CLUE. Supplementary information: enclosed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11961v2-abstract-full').style.display = 'none'; document.getElementById('2004.11961v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.10788">arXiv:2002.10788</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.10788">pdf</a>, <a href="https://arxiv.org/format/2002.10788">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3358960.3379134">10.1145/3358960.3379134 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Learning Queuing Networks by Recurrent Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Garbi%2C+G">Giulio Garbi</a>, <a href="/search/cs?searchtype=author&amp;query=Incerto%2C+E">Emilio Incerto</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.10788v1-abstract-short" style="display: inline;"> It is well known that building analytical performance models in practice is difficult because it requires a considerable degree of proficiency in the underlying mathematics. In this paper, we propose a machine-learning approach to derive performance models from data. We focus on queuing networks, and crucially exploit a deterministic approximation of their average dynamics in terms of a compact sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10788v1-abstract-full').style.display = 'inline'; document.getElementById('2002.10788v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.10788v1-abstract-full" style="display: none;"> It is well known that building analytical performance models in practice is difficult because it requires a considerable degree of proficiency in the underlying mathematics. In this paper, we propose a machine-learning approach to derive performance models from data. We focus on queuing networks, and crucially exploit a deterministic approximation of their average dynamics in terms of a compact system of ordinary differential equations. We encode these equations into a recurrent neural network whose weights can be directly related to model parameters. This allows for an interpretable structure of the neural network, which can be trained from system measurements to yield a white-box parameterized model that can be used for prediction purposes such as what-if analyses and capacity planning. Using synthetic models as well as a real case study of a load-balancing system, we show the effectiveness of our technique in yielding models with high predictive power. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10788v1-abstract-full').style.display = 'none'; document.getElementById('2002.10788v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.6; I.6; C.4; D.2.0; D.2.11 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.02132">arXiv:1707.02132</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.02132">pdf</a>, <a href="https://arxiv.org/format/1707.02132">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Logic in Computer Science">cs.LO</span> </div> </div> <p class="title is-5 mathjax"> Syntactic Markovian Bisimulation for Chemical Reaction Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Cardelli%2C+L">Luca Cardelli</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a>, <a href="/search/cs?searchtype=author&amp;query=Tschaikowski%2C+M">Max Tschaikowski</a>, <a href="/search/cs?searchtype=author&amp;query=Vandin%2C+A">Andrea Vandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.02132v1-abstract-short" style="display: inline;"> In chemical reaction networks (CRNs) with stochastic semantics based on continuous-time Markov chains (CTMCs), the typically large populations of species cause combinatorially large state spaces. This makes the analysis very difficult in practice and represents the major bottleneck for the applicability of minimization techniques based, for instance, on lumpability. In this paper we present syntac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02132v1-abstract-full').style.display = 'inline'; document.getElementById('1707.02132v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.02132v1-abstract-full" style="display: none;"> In chemical reaction networks (CRNs) with stochastic semantics based on continuous-time Markov chains (CTMCs), the typically large populations of species cause combinatorially large state spaces. This makes the analysis very difficult in practice and represents the major bottleneck for the applicability of minimization techniques based, for instance, on lumpability. In this paper we present syntactic Markovian bisimulation (SMB), a notion of bisimulation developed in the Larsen-Skou style of probabilistic bisimulation, defined over the structure of a CRN rather than over its underlying CTMC. SMB identifies a lumpable partition of the CTMC state space a priori, in the sense that it is an equivalence relation over species implying that two CTMC states are lumpable when they are invariant with respect to the total population of species within the same equivalence class. We develop an efficient partition-refinement algorithm which computes the largest SMB of a CRN in polynomial time in the number of species and reactions. We also provide an algorithm for obtaining a quotient network from an SMB that induces the lumped CTMC directly, thus avoiding the generation of the state space of the original CRN altogether. In practice, we show that SMB allows significant reductions in a number of models from the literature. Finally, we study SMB with respect to the deterministic semantics of CRNs based on ordinary differential equations (ODEs), where each equation gives the time-course evolution of the concentration of a species. SMB implies forward CRN bisimulation, a recently developed behavioral notion of equivalence for the ODE semantics, in an analogous sense: it yields a smaller ODE system that keeps track of the sums of the solutions for equivalent species. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02132v1-abstract-full').style.display = 'none'; document.getElementById('1707.02132v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Extended version (with proofs), of the corresponding paper published at KimFest 2017 (http://kimfest.cs.aau.dk/)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.07696">arXiv:1610.07696</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Programming Languages">cs.PL</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.4204/EPTCS.227">10.4204/EPTCS.227 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proceedings 14th International Workshop Quantitative Aspects of Programming Languages and Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a>, <a href="/search/cs?searchtype=author&amp;query=Wiklicky%2C+H">Herbert Wiklicky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.07696v1-abstract-short" style="display: inline;"> This volume contains the post-proceedings of the 14th International Workshop on Quantitative Aspects of Programming Languages and Systems (QAPL), held as a satellite workshop of ETAPS 2016 in Eindhoven, The Netherlands, on 2-3 April 2016. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.07696v1-abstract-full" style="display: none;"> This volume contains the post-proceedings of the 14th International Workshop on Quantitative Aspects of Programming Languages and Systems (QAPL), held as a satellite workshop of ETAPS 2016 in Eindhoven, The Netherlands, on 2-3 April 2016. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.07696v1-abstract-full').style.display = 'none'; document.getElementById('1610.07696v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPTCS 227, 2016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.02966">arXiv:1607.02966</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.02966">pdf</a>, <a href="https://arxiv.org/format/1607.02966">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Logic in Computer Science">cs.LO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.4204/EPTCS.217.8">10.4204/EPTCS.217.8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Challenges in Quantitative Abstractions for Collective Adaptive Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.02966v1-abstract-short" style="display: inline;"> Like with most large-scale systems, the evaluation of quantitative properties of collective adaptive systems is an important issue that crosscuts all its development stages, from design (in the case of engineered systems) to runtime monitoring and control. Unfortunately it is a difficult problem to tackle in general, due to the typically high computational cost involved in the analysis. This calls&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02966v1-abstract-full').style.display = 'inline'; document.getElementById('1607.02966v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.02966v1-abstract-full" style="display: none;"> Like with most large-scale systems, the evaluation of quantitative properties of collective adaptive systems is an important issue that crosscuts all its development stages, from design (in the case of engineered systems) to runtime monitoring and control. Unfortunately it is a difficult problem to tackle in general, due to the typically high computational cost involved in the analysis. This calls for the development of appropriate quantitative abstraction techniques that preserve most of the system&#39;s dynamical behaviour using a more compact representation. This paper focuses on models based on ordinary differential equations and reviews recent results where abstraction is achieved by aggregation of variables, reflecting on the shortcomings in the state of the art and setting out challenges for future research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02966v1-abstract-full').style.display = 'none'; document.getElementById('1607.02966v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In Proceedings FORECAST 2016, arXiv:1607.02001</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.1.1 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPTCS 217, 2016, pp. 62-68 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.08169">arXiv:1509.08169</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Logic in Computer Science">cs.LO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Programming Languages">cs.PL</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.4204/EPTCS.194">10.4204/EPTCS.194 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proceedings Thirteenth Workshop on Quantitative Aspects of Programming Languages and Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bertrand%2C+N">Nathalie Bertrand</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.08169v1-abstract-short" style="display: inline;"> This volume contains the proceedings of the Thirteenth Workshop on Quantitative Aspects of Programming Languages and Systems (QAPL 2015), held in London, UK, on 11 and 12 April, 2015. QAPL 2015 was a satellite event of the European Joint Conferences on Theory and Practice of Software (ETAPS) focussing on quantitative aspects of computation. The Program Committee of QAPL 2015 selected 8 regular pap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.08169v1-abstract-full').style.display = 'inline'; document.getElementById('1509.08169v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.08169v1-abstract-full" style="display: none;"> This volume contains the proceedings of the Thirteenth Workshop on Quantitative Aspects of Programming Languages and Systems (QAPL 2015), held in London, UK, on 11 and 12 April, 2015. QAPL 2015 was a satellite event of the European Joint Conferences on Theory and Practice of Software (ETAPS) focussing on quantitative aspects of computation. The Program Committee of QAPL 2015 selected 8 regular papers and 2 presentation-only papers. The workshop programme included two QAPL keynote presentations by Catuscia Palamidessi (Inria/LIX, France) on &#34;Quantitative Aspects of Privacy and Information Flow,&#34; and Holger Hermanns (Saarland University, Germany) on &#34;Optimal Continuous Time Markov Decisions.&#34; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.08169v1-abstract-full').style.display = 'none'; document.getElementById('1509.08169v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPTCS 194, 2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.00163">arXiv:1507.00163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.00163">pdf</a>, <a href="https://arxiv.org/format/1507.00163">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Logic in Computer Science">cs.LO</span> </div> </div> <p class="title is-5 mathjax"> Forward and Backward Bisimulations for Chemical Reaction Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Cardelli%2C+L">Luca Cardelli</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a>, <a href="/search/cs?searchtype=author&amp;query=Tschaikowski%2C+M">Max Tschaikowski</a>, <a href="/search/cs?searchtype=author&amp;query=Vandin%2C+A">Andrea Vandin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.00163v5-abstract-short" style="display: inline;"> We present two quantitative behavioral equivalences over species of a chemical reaction network (CRN) with semantics based on ordinary differential equations. Forward CRN bisimulation identifies a partition where each equivalence class represents the exact sum of the concentrations of the species belonging to that class. Backward CRN bisimulation relates species that have the identical solutions a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.00163v5-abstract-full').style.display = 'inline'; document.getElementById('1507.00163v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.00163v5-abstract-full" style="display: none;"> We present two quantitative behavioral equivalences over species of a chemical reaction network (CRN) with semantics based on ordinary differential equations. Forward CRN bisimulation identifies a partition where each equivalence class represents the exact sum of the concentrations of the species belonging to that class. Backward CRN bisimulation relates species that have the identical solutions at all time points when starting from the same initial conditions. Both notions can be checked using only CRN syntactical information, i.e., by inspection of the set of reactions. We provide a unified algorithm that computes the coarsest refinement up to our bisimulations in polynomial time. Further, we give algorithms to compute quotient CRNs induced by a bisimulation. As an application, we find significant reductions in a number of models of biological processes from the literature. In two cases we allow the analysis of benchmark models which would be otherwise intractable due to their memory requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.00163v5-abstract-full').style.display = 'none'; document.getElementById('1507.00163v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Extended version of the CONCUR 2015 paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.2067">arXiv:1406.2067</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.2067">pdf</a>, <a href="https://arxiv.org/format/1406.2067">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.4204/EPTCS.154.3">10.4204/EPTCS.154.3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extended Differential Aggregations in Process Algebra for Performance and Biology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tschaikowski%2C+M">Max Tschaikowski</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.2067v1-abstract-short" style="display: inline;"> We study aggregations for ordinary differential equations induced by fluid semantics for Markovian process algebra which can capture the dynamics of performance models and chemical reaction networks. Whilst previous work has required perfect symmetry for exact aggregation, we present approximate fluid lumpability, which makes nearby processes perfectly symmetric after a perturbation of their param&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.2067v1-abstract-full').style.display = 'inline'; document.getElementById('1406.2067v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.2067v1-abstract-full" style="display: none;"> We study aggregations for ordinary differential equations induced by fluid semantics for Markovian process algebra which can capture the dynamics of performance models and chemical reaction networks. Whilst previous work has required perfect symmetry for exact aggregation, we present approximate fluid lumpability, which makes nearby processes perfectly symmetric after a perturbation of their parameters. We prove that small perturbations yield nearby differential trajectories. Numerically, we show that many heterogeneous processes can be aggregated with negligible errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.2067v1-abstract-full').style.display = 'none'; document.getElementById('1406.2067v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In Proceedings QAPL 2014, arXiv:1406.1567</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPTCS 154, 2014, pp. 34-47 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.4566">arXiv:1307.4566</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.4566">pdf</a>, <a href="https://arxiv.org/format/1307.4566">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> </div> <p class="title is-5 mathjax"> Spatial Fluid Limits for Stochastic Mobile Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tschaikowski%2C+M">Max Tschaikowski</a>, <a href="/search/cs?searchtype=author&amp;query=Tribastone%2C+M">Mirco Tribastone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.4566v2-abstract-short" style="display: inline;"> We consider Markov models of large-scale networks where nodes are characterized by their local behavior and by a mobility model over a two-dimensional lattice. By assuming random walk, we prove convergence to a system of partial differential equations (PDEs) whose size depends neither on the lattice size nor on the population of nodes. This provides a macroscopic view of the model which approximat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.4566v2-abstract-full').style.display = 'inline'; document.getElementById('1307.4566v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.4566v2-abstract-full" style="display: none;"> We consider Markov models of large-scale networks where nodes are characterized by their local behavior and by a mobility model over a two-dimensional lattice. By assuming random walk, we prove convergence to a system of partial differential equations (PDEs) whose size depends neither on the lattice size nor on the population of nodes. This provides a macroscopic view of the model which approximates discrete stochastic movements with continuous deterministic diffusions. We illustrate the practical applicability of this result by modeling a network of mobile nodes with on/off behavior performing file transfers with connectivity to 802.11 access points. By means of an empirical validation against discrete-event simulation we show high quality of the PDE approximation even for low populations and coarse lattices. In addition, we confirm the computational advantage in using the PDE limit over a traditional ordinary differential equation limit where the lattice is modeled discretely, yielding speed-ups of up to two orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.4566v2-abstract-full').style.display = 'none'; document.getElementById('1307.4566v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68M20 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10