CINXE.COM

nonabelian Hodge theory in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> nonabelian Hodge theory in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> nonabelian Hodge theory </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/250/#Item_7" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="cohomology">Cohomology</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cocycle">cocycle</a>, <a class="existingWikiWord" href="/nlab/show/coboundary">coboundary</a>, <a class="existingWikiWord" href="/nlab/show/coefficient">coefficient</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homology">homology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/chain">chain</a>, <a class="existingWikiWord" href="/nlab/show/cycle">cycle</a>, <a class="existingWikiWord" href="/nlab/show/boundary">boundary</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/characteristic+class">characteristic class</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+characteristic+class">universal characteristic class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/secondary+characteristic+class">secondary characteristic class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+characteristic+class">differential characteristic class</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+sequence">fiber sequence</a>/<a class="existingWikiWord" href="/nlab/show/long+exact+sequence+in+cohomology">long exact sequence in cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+%E2%88%9E-bundle">fiber ∞-bundle</a>, <a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a>, <a class="existingWikiWord" href="/nlab/show/associated+%E2%88%9E-bundle">associated ∞-bundle</a>,</p> <p><a class="existingWikiWord" href="/nlab/show/twisted+%E2%88%9E-bundle">twisted ∞-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+extension">∞-group extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/obstruction">obstruction</a></p> </li> </ul> <h3 id="special_and_general_types">Special and general types</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cochain+cohomology">cochain cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ordinary+cohomology">ordinary cohomology</a>, <a class="existingWikiWord" href="/nlab/show/singular+cohomology">singular cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+cohomology">group cohomology</a>, <a class="existingWikiWord" href="/nlab/show/nonabelian+group+cohomology">nonabelian group cohomology</a>, <a class="existingWikiWord" href="/nlab/show/Lie+group+cohomology">Lie group cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Galois+cohomology">Galois cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/groupoid+cohomology">groupoid cohomology</a>, <a class="existingWikiWord" href="/nlab/show/nonabelian+groupoid+cohomology">nonabelian groupoid cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+%28Eilenberg-Steenrod%29+cohomology">generalized (Eilenberg-Steenrod) cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cobordism+cohomology+theory">cobordism cohomology theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/integral+cohomology">integral cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K-theory">K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/elliptic+cohomology">elliptic cohomology</a>, <a class="existingWikiWord" href="/nlab/show/tmf">tmf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/taf">taf</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/de+Rham+cohomology">de Rham cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Dolbeault+cohomology">Dolbeault cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/etale+cohomology">etale cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/group+of+units">group of units</a>, <a class="existingWikiWord" href="/nlab/show/Picard+group">Picard group</a>, <a class="existingWikiWord" href="/nlab/show/Brauer+group">Brauer group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/crystalline+cohomology">crystalline cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/syntomic+cohomology">syntomic cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/motivic+cohomology">motivic cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+of+operads">cohomology of operads</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hochschild+cohomology">Hochschild cohomology</a>, <a class="existingWikiWord" href="/nlab/show/cyclic+cohomology">cyclic cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/string+topology">string topology</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nonabelian+cohomology">nonabelian cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+principal+%E2%88%9E-bundle">universal principal ∞-bundle</a>, <a class="existingWikiWord" href="/nlab/show/groupal+model+for+universal+principal+%E2%88%9E-bundles">groupal model for universal principal ∞-bundles</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+bundle">principal bundle</a>, <a class="existingWikiWord" href="/nlab/show/Atiyah+Lie+groupoid">Atiyah Lie groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+2-bundle">principal 2-bundle</a>/<a class="existingWikiWord" href="/nlab/show/gerbe">gerbe</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+constant+%E2%88%9E-stack">covering ∞-bundle</a>/<a class="existingWikiWord" href="/nlab/show/local+system">local system</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-vector+bundle">(∞,1)-vector bundle</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-vector+bundle">(∞,n)-vector bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+anomaly">quantum anomaly</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/orientation">orientation</a>, <a class="existingWikiWord" href="/nlab/show/Spin+structure">Spin structure</a>, <a class="existingWikiWord" href="/nlab/show/Spin%5Ec+structure">Spin^c structure</a>, <a class="existingWikiWord" href="/nlab/show/String+structure">String structure</a>, <a class="existingWikiWord" href="/nlab/show/Fivebrane+structure">Fivebrane structure</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+with+constant+coefficients">cohomology with constant coefficients</a> / <a class="existingWikiWord" href="/nlab/show/cohomology+with+a+local+system+of+coefficients">with a local system of coefficients</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+algebra+cohomology">∞-Lie algebra cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Lie+algebra+cohomology">Lie algebra cohomology</a>, <a class="existingWikiWord" href="/nlab/show/nonabelian+Lie+algebra+cohomology">nonabelian Lie algebra cohomology</a>, <a class="existingWikiWord" href="/nlab/show/Lie+algebra+extensions">Lie algebra extensions</a>, <a class="existingWikiWord" href="/nlab/show/Gelfand-Fuks+cohomology">Gelfand-Fuks cohomology</a>,</li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gerstenhaber-Schack+cohomology">bialgebra cohomology</a></p> </li> </ul> <h3 id="special_notions">Special notions</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%3Fech+cohomology">?ech cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hypercohomology">hypercohomology</a></p> </li> </ul> <h3 id="variants">Variants</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+cohomology">equivariant cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+homotopy+theory">equivariant homotopy theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bredon+cohomology">Bredon cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+cohomology">twisted cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+bundle">twisted bundle</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/twisted+K-theory">twisted K-theory</a>, <a class="existingWikiWord" href="/nlab/show/twisted+spin+structure">twisted spin structure</a>, <a class="existingWikiWord" href="/nlab/show/twisted+spin%5Ec+structure">twisted spin^c structure</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+differential+c-structures">twisted differential c-structures</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/twisted+differential+string+structure">twisted differential string structure</a>, <a class="existingWikiWord" href="/nlab/show/twisted+differential+fivebrane+structure">twisted differential fivebrane structure</a></li> </ul> </li> </ul> </li> <li> <p>differential cohomology</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cohomology">differential generalized (Eilenberg-Steenrod) cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cobordism+cohomology">differential cobordism cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+K-theory">differential K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+elliptic+cohomology">differential elliptic cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/schreiber/show/differential+cohomology+in+a+cohesive+topos">differential cohomology in a cohesive topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory">Chern-Weil theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Chern-Weil+theory">∞-Chern-Weil theory</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relative+cohomology">relative cohomology</a></p> </li> </ul> <h3 id="extra_structure">Extra structure</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+structure">Hodge structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orientation">orientation</a>, <a class="existingWikiWord" href="/nlab/show/orientation+in+generalized+cohomology">in generalized cohomology</a></p> </li> </ul> <h3 id="operations">Operations</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+operations">cohomology operations</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cup+product">cup product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connecting+homomorphism">connecting homomorphism</a>, <a class="existingWikiWord" href="/nlab/show/Bockstein+homomorphism">Bockstein homomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+integration">fiber integration</a>, <a class="existingWikiWord" href="/nlab/show/transgression">transgression</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+localization">cohomology localization</a></p> </li> </ul> <h3 id="theorems">Theorems</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+coefficient+theorem">universal coefficient theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K%C3%BCnneth+theorem">Künneth theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/de+Rham+theorem">de Rham theorem</a>, <a class="existingWikiWord" href="/nlab/show/Poincare+lemma">Poincare lemma</a>, <a class="existingWikiWord" href="/nlab/show/Stokes+theorem">Stokes theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+theory">Hodge theory</a>, <a class="existingWikiWord" href="/nlab/show/Hodge+theorem">Hodge theorem</a></p> <p><a class="existingWikiWord" href="/nlab/show/nonabelian+Hodge+theory">nonabelian Hodge theory</a>, <a class="existingWikiWord" href="/nlab/show/noncommutative+Hodge+theory">noncommutative Hodge theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brown+representability+theorem">Brown representability theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">hypercovering theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Eckmann-Hilton+duality">Eckmann-Hilton-Fuks duality</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/cohomology+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <blockquote> <p><strong>under construction</strong></p> </blockquote> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#nonabelian_hodge_theorems'>Nonabelian Hodge theorems</a></li> <ul> <li><a href='#nonabelian_harmonic_sections'>Nonabelian harmonic sections</a></li> <li><a href='#LocalSystemsAndHiggsBundles'>Kähler case: Equivalence between Local systems and Higgs bundles</a></li> <ul> <li><a href='#relation_to_the_abelian_hodge_theorem'>Relation to the abelian Hodge theorem</a></li> <li><a href='#statement'>Statement</a></li> <li><a href='#generalizations_to_twisted_bundles'>Generalizations to twisted bundles</a></li> </ul> </ul> <li><a href='#relation_to_geometric_langlands'>Relation to geometric Langlands</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>Nonabelian Hodge theory generalizes aspects of <a class="existingWikiWord" href="/nlab/show/Hodge+theory">Hodge theory</a> from abelian cohomology (<a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a>) to <a class="existingWikiWord" href="/nlab/show/nonabelian+cohomology">nonabelian cohomology</a>.</p> <h2 id="nonabelian_hodge_theorems">Nonabelian Hodge theorems</h2> <h3 id="nonabelian_harmonic_sections">Nonabelian harmonic sections</h3> <p>Notice or recall (for instance from <a class="existingWikiWord" href="/nlab/show/generalized+universal+bundle">generalized universal bundle</a> and <a class="existingWikiWord" href="/nlab/show/action+groupoid">action groupoid</a>) the following equivalent description of <a class="existingWikiWord" href="/nlab/show/section">section</a>s of <a class="existingWikiWord" href="/nlab/show/associated+bundle">associated bundle</a>s:</p> <p>for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/group">group</a> with <a class="existingWikiWord" href="/nlab/show/action">action</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ρ</mi></mrow><annotation encoding="application/x-tex">\rho</annotation></semantics></math> on an object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> witnessed by the <a class="existingWikiWord" href="/nlab/show/action+groupoid">action groupoid</a> sequence</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>V</mi><mo>→</mo><mi>V</mi><mo stretchy="false">/</mo><mo stretchy="false">/</mo><mi>G</mi><mo>→</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding="application/x-tex"> V \to V//G \to \mathbf{B}G </annotation></semantics></math></div> <p>the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ρ</mi></mrow><annotation encoding="application/x-tex">\rho</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/associated+bundle">associated bundle</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">E \to X</annotation></semantics></math> to a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/principal+bundle">principal bundle</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">P \to X</annotation></semantics></math> classified by an <a class="existingWikiWord" href="/nlab/show/anafunctor">anafunctor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mover><mo>←</mo><mo>≃</mo></mover><mi>Y</mi><mo>→</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding="application/x-tex">X \stackrel{\simeq}{\leftarrow} Y \to \mathbf{B}G</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>E</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>V</mi><mo stretchy="false">/</mo><mo stretchy="false">/</mo><mi>G</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>Y</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ E &amp;\to&amp; V//G \\ \downarrow &amp;&amp; \downarrow \\ Y &amp;\to&amp; \mathbf{B}G } \,. </annotation></semantics></math></div> <p>Since this is a <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a> diagram by definition, a glance at a pasting diagram of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>E</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>V</mi><mo stretchy="false">/</mo><mo stretchy="false">/</mo><mi>G</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>↗</mo></mtd> <mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>Y</mi></mtd> <mtd><mover><mo>→</mo><mo>=</mo></mover></mtd> <mtd><mi>Y</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ &amp;&amp; E &amp;\to&amp; V//G \\ &amp; \nearrow &amp; \downarrow &amp;&amp; \downarrow \\ Y &amp;\stackrel{=}{\to}&amp; Y &amp;\to&amp; \mathbf{B}G } </annotation></semantics></math></div> <p>shows that <a class="existingWikiWord" href="/nlab/show/section">section</a>s</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>E</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><msup><mrow></mrow> <mi>σ</mi></msup><mo>↗</mo></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>Y</mi></mtd> <mtd><mover><mo>→</mo><mo>=</mo></mover></mtd> <mtd><mi>Y</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ &amp;&amp; E \\ &amp; {}^{\sigma}\nearrow &amp; \downarrow \\ Y &amp;\stackrel{=}{\to}&amp; Y } </annotation></semantics></math></div> <p>are in bijection with maps <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi><mo>→</mo><mi>V</mi><mo stretchy="false">/</mo><mo stretchy="false">/</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">Y \to V//G</annotation></semantics></math> that make</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>Y</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>V</mi><mo stretchy="false">/</mo><mo stretchy="false">/</mo><mi>G</mi></mtd></mtr> <mtr><mtd><msup><mo stretchy="false">↓</mo> <mo>=</mo></msup></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>Y</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ Y &amp;\to&amp; V//G \\ \downarrow^= &amp;&amp; \downarrow \\ Y &amp;\to&amp; \mathbf{B}G } </annotation></semantics></math></div> <p>commute.</p> <p>In the special case that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is a connected <a class="existingWikiWord" href="/nlab/show/manifold">manifold</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> a discrete group we can without restriction take <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi><mo>=</mo><mover><mi>X</mi><mo stretchy="false">^</mo></mover><mo stretchy="false">/</mo><mo stretchy="false">/</mo><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Y = \hat X//\pi_1(X)</annotation></semantics></math> be the <a class="existingWikiWord" href="/nlab/show/action+groupoid">action groupoid</a> of the <a class="existingWikiWord" href="/nlab/show/universal+cover">universal cover</a> by the <a class="existingWikiWord" href="/nlab/show/fundamental+group">homotopy group</a>, so that the classifying map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi><mo>→</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding="application/x-tex">Y \to \mathbf{B}G</annotation></semantics></math> is the same as a <a class="existingWikiWord" href="/nlab/show/group">group</a> homomorphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>ρ</mi><mo>:</mo><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><mi>G</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \rho : \pi_1(X) \to G \,. </annotation></semantics></math></div> <p>In that case the above says that a section of the associated bundle is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ρ</mi></mrow><annotation encoding="application/x-tex">\rho</annotation></semantics></math>-equivariant map</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi><mo>:</mo><mover><mi>X</mi><mo stretchy="false">^</mo></mover><mo>→</mo><mi>V</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \phi : \hat X \to V \,. </annotation></semantics></math></div> <p>This is the way these sections are formulated usually in the literature. The above description has the advantage that it works more generally in <a class="existingWikiWord" href="/nlab/show/nonabelian+cohomology">nonabelian cohomology</a> for <a class="existingWikiWord" href="/nlab/show/principal+bundle">principal bundle</a>s generalized to <a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a>s.</p> <p>Next consider furthermore the special case that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding="application/x-tex">V = G/K</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/coset">coset</a> <a class="existingWikiWord" href="/nlab/show/homogeneous+space">homogeneous space</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> quotiented by a subgroup <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math>. Then if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a> or <a class="existingWikiWord" href="/nlab/show/algebraic+group">algebraic group</a> consider moreover a choice of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-invariant metric on the quotient <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding="application/x-tex">G/K</annotation></semantics></math>. Also consider a <a class="existingWikiWord" href="/nlab/show/Riemannian+manifold">Riemannian manifold</a> structure on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p> <p>Then</p> <div class="num_defin"> <h6 id="definition">Definition</h6> <p>The <strong>energy</strong> of a <a class="existingWikiWord" href="/nlab/show/section">section</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>σ</mi></mrow><annotation encoding="application/x-tex">\sigma</annotation></semantics></math> of an associated <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding="application/x-tex">G/K</annotation></semantics></math>-bundle as above is the real number</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>E</mi><mo stretchy="false">(</mo><mi>ϕ</mi><mo stretchy="false">)</mo><mo>:</mo><mo>=</mo><msub><mo>∫</mo> <mi>X</mi></msub><mo stretchy="false">|</mo><mi>d</mi><mi>ϕ</mi><msup><mo stretchy="false">|</mo> <mn>2</mn></msup><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> E(\phi) := \int_X |d \phi|^2 \,. </annotation></semantics></math></div></div> <p>Here</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math> is the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ρ</mi></mrow><annotation encoding="application/x-tex">\rho</annotation></semantics></math>-equivariant map describing the section as above,</p> </li> <li> <p>the <a class="existingWikiWord" href="/nlab/show/norm">norm</a> is taken with respect to the chocen invariant <a class="existingWikiWord" href="/nlab/show/metric">metric</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding="application/x-tex">G/K</annotation></semantics></math></p> </li> <li> <p>and the <a class="existingWikiWord" href="/nlab/show/integral">integral</a> is taken with respect to the <a class="existingWikiWord" href="/nlab/show/Riemannian+metric">Riemannian metric</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p> </li> </ul> <div class="num_defn"> <h6 id="definition_2">Definition</h6> <p>Such a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math> is called <strong>harmonic</strong> if it is a <a class="existingWikiWord" href="/nlab/show/critical+point">critical point</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">E(-)</annotation></semantics></math>.</p> </div> <div class="num_theorem"> <h6 id="theorem">Theorem</h6> <p><strong>(Corlette, generalizing Eells-Sampson)</strong></p> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ρ</mi><mo>:</mo><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">\rho : \pi_1(X) \to G</annotation></semantics></math> is a representation with</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/reductive+group">reductive</a> <a class="existingWikiWord" href="/nlab/show/algebraic+group">algebraic group</a></p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/maximal+compact+subgroup">maximal compact subgroup</a></p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ρ</mi><mo stretchy="false">(</mo><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\rho(\pi_1(X))</annotation></semantics></math> is</p> <ul> <li> <p>Zariski-dense in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math></p> </li> <li> <p>or its Zariski-closure is itself reductive</p> </li> </ul> </li> </ul> <p>then there exists a <em>harmonic</em> section <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math> in the above sense.</p> </div> <p>This is due to (<a href="#Corlette88">Corlett 88</a>). A version of the proof is reproduced in <a href="#Simpson96">Simpson 96, p. 8</a></p> <h3 id="LocalSystemsAndHiggsBundles">Kähler case: Equivalence between Local systems and Higgs bundles</h3> <p>The <em>nonabelian Hodge theorem</em> due to (<a href="#Simpson92">Simpson 92</a>) establishes, for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/compact+topological+space">compact</a> <a class="existingWikiWord" href="/nlab/show/K%C3%A4hler+manifold">Kähler manifold</a>, an <a class="existingWikiWord" href="/nlab/show/equivalence">equivalence</a> between (irreducible) <a class="existingWikiWord" href="/nlab/show/flat+vector+bundles">flat vector bundles</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> and (stable) <a class="existingWikiWord" href="/nlab/show/Higgs+bundles">Higgs bundles</a> with vanishing <a class="existingWikiWord" href="/nlab/show/first+Chern+class">first Chern class</a>.</p> <h4 id="relation_to_the_abelian_hodge_theorem">Relation to the abelian Hodge theorem</h4> <p>The sense in which the nonabelian Hodge theorem of (<a href="#Simpson92">Simpson 92</a>) generalizes the abelian <a class="existingWikiWord" href="/nlab/show/Hodge+theorem">Hodge theorem</a> is the following (<a href="#Simpson92">Simpson 92, Introduction</a>).</p> <p>The abelian <a class="existingWikiWord" href="/nlab/show/cohomology+group">cohomology group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>ℂ</mi> <mi>disc</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">H^1(X,\mathbb{C}_{disc})</annotation></semantics></math> classifies <a class="existingWikiWord" href="/nlab/show/flat+vector+bundle">flat</a> <a class="existingWikiWord" href="/nlab/show/complex+line+bundles">complex line bundles</a> whose underlying <a class="existingWikiWord" href="/nlab/show/line+bundle">line bundle</a> is trivial, hence closed <a class="existingWikiWord" href="/nlab/show/differential+1-forms">differential 1-forms</a> modulo 0-forms. The abelian <a class="existingWikiWord" href="/nlab/show/Hodge+theorem">Hodge theorem</a> gives for this hence the decomposition</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>ℂ</mi> <mi>disc</mi></msub><mo stretchy="false">)</mo><mo>≃</mo><msup><mi>H</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>𝒪</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo>⊕</mo><msup><mi>H</mi> <mn>0</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msubsup><mi>Ω</mi> <mi>X</mi> <mn>1</mn></msubsup><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> H^1(X,\mathbb{C}_{disc}) \simeq H^1(X, \mathcal{O}_X) \oplus H^0(X, \Omega^1_X) \,. </annotation></semantics></math></div> <p>It is this kind of relation which is generalized by the nonabelian Hodge theorem. Here one starts instead with the <a class="existingWikiWord" href="/nlab/show/nonabelian+cohomology">nonabelian cohomology</a> set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>GL</mi> <mi>n</mi></msub><mo stretchy="false">(</mo><mi>ℂ</mi><msub><mo stretchy="false">)</mo> <mi>disc</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">H^1(X, GL_n(\mathbb{C})_{disc})</annotation></semantics></math> which classifies <a class="existingWikiWord" href="/nlab/show/flat+vector+bundle">flat</a> <a class="existingWikiWord" href="/nlab/show/rank">rank</a>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/vector+bundles">vector bundles</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">n \in \mathbb{N}</annotation></semantics></math>. The equivalence to <a class="existingWikiWord" href="/nlab/show/Higgs+bundles">Higgs bundles</a> gives now a decomposition of these structures into a <a class="existingWikiWord" href="/nlab/show/holomorphic+vector+bundle">holomorphic vector bundle</a> classified by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>GL</mi> <mi>n</mi></msub><mo stretchy="false">(</mo><msub><mi>𝒪</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">H^1(X, GL_n(\mathcal{O}_X))</annotation></semantics></math> and a differential 1-form with values in endomorphisms of that, subject to some conditions.</p> <h4 id="statement">Statement</h4> <p>A quick review of the theorem in (<a href="#Simpson92">Simpson 92</a>) is for instance in (<a href="#Raboso15">Raboso 15, section 1.2</a>). An elegant abstract reformulation in terms of <a class="existingWikiWord" href="/nlab/show/differential+cohesion">differential cohesion</a>/<a class="existingWikiWord" href="/nlab/show/D-geometry">D-geometry</a>, following (<a href="#Simpson96">Simpson 96</a>) is in (<a href="#Raboso15">Raboso 15, section 3.3</a>):</p> <p>Analogous to how the <a class="existingWikiWord" href="/nlab/show/de+Rham+stack">de Rham stack</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>∫</mo> <mi>inf</mi></msub><mi>X</mi><mo>=</mo><msub><mi>X</mi> <mi>dR</mi></msub></mrow><annotation encoding="application/x-tex">\int_{inf} X = X_{dR}</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is the (<a class="existingWikiWord" href="/nlab/show/homotopy+quotient">homotopy</a>) <a class="existingWikiWord" href="/nlab/show/quotient">quotient</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> by the first order <a class="existingWikiWord" href="/nlab/show/infinitesimal+neighbourhood">infinitesimal neighbourhood</a> of the <a class="existingWikiWord" href="/nlab/show/diagonal">diagonal</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>×</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">X \times X</annotation></semantics></math>, so there is a space (<a class="existingWikiWord" href="/nlab/show/stack">stack</a>) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>Dol</mi></msub></mrow><annotation encoding="application/x-tex">X_{Dol}</annotation></semantics></math> which is the formal completion of the 0-section of the <a class="existingWikiWord" href="/nlab/show/tangent+bundle">tangent bundle</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> (<a href="#Simpson96">Simpson 96</a>).</p> <p>Now a <a class="existingWikiWord" href="/nlab/show/flat+vector+bundle">flat vector bundle</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is essentially just a <a class="existingWikiWord" href="/nlab/show/vector+bundle">vector bundle</a> on the <a class="existingWikiWord" href="/nlab/show/de+Rham+stack">de Rham stack</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>dR</mi></msub></mrow><annotation encoding="application/x-tex">X_{dR}</annotation></semantics></math>, and a <a class="existingWikiWord" href="/nlab/show/Higgs+bundle">Higgs bundle</a> is essentially just a <a class="existingWikiWord" href="/nlab/show/vector+bundle">vector bundle</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>Dol</mi></msub></mrow><annotation encoding="application/x-tex">X_{Dol}</annotation></semantics></math>. Therefore in this language the nonabelian Hodge theorem reads (for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> a linear <a class="existingWikiWord" href="/nlab/show/algebraic+group">algebraic group</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℂ</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math>)</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>H</mi></mstyle><mo stretchy="false">(</mo><msub><mi>X</mi> <mi>dR</mi></msub><mo>,</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi><mo stretchy="false">)</mo><mo>≃</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle><mo stretchy="false">(</mo><msub><mi>X</mi> <mi>Dol</mi></msub><mo>,</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi><msup><mo stretchy="false">)</mo> <mrow><mi>ss</mi><mo>,</mo><mn>0</mn></mrow></msup><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \mathbf{H}(X_{dR}, \mathbf{B}G) \simeq \mathbf{H}(X_{Dol}, \mathbf{B}G)^{ss,0} \,, </annotation></semantics></math></div> <p>where the superscript on the right denotes restriction to semistable Higgs bundles with vanishing <a class="existingWikiWord" href="/nlab/show/first+Chern+class">first Chern class</a> (see <a href="#Raboso15">Raboso 15, Theorem 3.3</a>).</p> <h4 id="generalizations_to_twisted_bundles">Generalizations to twisted bundles</h4> <p>A generalization of the nonabelian Hodge theorem of (<a href="#Simpson92">Simpson 92</a>) to <a class="existingWikiWord" href="/nlab/show/twisted+bundles">twisted bundles</a> in discussed in (<a href="#Raboso15">Raboso 15</a>).</p> <h2 id="relation_to_geometric_langlands">Relation to geometric Langlands</h2> <p>Nonabelian Hodge theory is closely related to the <a class="existingWikiWord" href="/nlab/show/geometric+Langlands+correspondence">geometric Langlands correspondence</a>.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+structure">Hodge structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/noncommutative+Hodge+theory">noncommutative Hodge theory</a></p> </li> </ul> <h2 id="references">References</h2> <ul> <li>wikipedia <a href="https://en.wikipedia.org/wiki/Nonabelian_Hodge_correspondence">nonabelian Hodge correspondence</a></li> </ul> <p>Lecture notes on nonabelian Hodge theory include:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Ron+Donagi">Ron Donagi</a>, <a class="existingWikiWord" href="/nlab/show/Tony+Pantev">Tony Pantev</a>, <em>Lectures on the geometric Langlands</em></p> <p>conjecture and non-abelian Hodge theory_, 2009 (<a href="http://www.icmat.es/seminarios/langlands/school/handouts/pantev.pdf">pdf</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Alberto+Garc%C3%ADa+Raboso">Alberto García Raboso</a>, <a class="existingWikiWord" href="/nlab/show/Steven+Rayan">Steven Rayan</a>, <em>Introduction to Nonabelian Hodge Theory: flat connections, Higgs bundles, and complex variations of Hodge structure</em>, Fields Inst. Monogr. 34 (2015), 131–171 (<a href="https://arxiv.org/abs/1406.1693">arXiv</a>) (<a href="http://link.springer.com/chapter/10.1007/978-1-4939-2830-9_5">Springer</a>)</p> </li> </ul> <p>Corlette’s nonabelian Hodge theorem can be found in:</p> <ul> <li id="Corlette88">K. Corlette, <em>Flat <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-bundles with canonical metric</em>, J. Diff Geometry 28 (1988)</li> </ul> <p>Works by <a class="existingWikiWord" href="/nlab/show/Carlos+Simpson">Carlos Simpson</a> on nonabelian Hodge theory include:</p> <ul> <li id="Simpson92"> <p><a class="existingWikiWord" href="/nlab/show/Carlos+Simpson">Carlos Simpson</a>, <em>Higgs bundles and local systems</em>, Inst. Hautes Etudes Sci. Publ. Math. (1992), no. 75, 5{95. MR 1179076 (94d:32027) (<a href="http://www.numdam.org/item?id=PMIHES_1992__75__5_0">numdam</a>)</p> </li> <li id="Simpson96"> <p><a class="existingWikiWord" href="/nlab/show/Carlos+Simpson">Carlos Simpson</a>, <em>The Hodge filtration on nonabelian cohomology</em>, Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 217{281. MR</p> <p>1492538 (99g:14028) (<a href="http://arxiv.org/abs/alg-geom/9604005">arXiv:9604005</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Carlos+Simpson">Carlos Simpson</a>, <em>Secondary Kodaira-Spencer classes and nonabelian Dolbeault cohomology</em> (<a href="http://arxiv.org/abs/alg-geom/9712020">arXiv:9712020</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Carlos+Simpson">Carlos Simpson</a>, <em>Algebraic aspects of higher nonabelian Hodge theory</em> (<a href="http://arxiv.org/abs/math/9902067">arXiv:9902067</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Carlos+Simpson">Carlos Simpson</a>, <a class="existingWikiWord" href="/nlab/show/Tony+Pantev">Tony Pantev</a>, <a class="existingWikiWord" href="/nlab/show/Ludmil+Katzarkov">Ludmil Katzarkov</a>, <em>Nonabelian mixed Hodge structures</em> (<a href="http://arxiv.org/abs/math/0006213">arXiv</a>)</p> </li> </ul> <p>The nonabelian Hodge theorem of (<a href="#Simpson92">Simpson 92</a>) is generalized to <a class="existingWikiWord" href="/nlab/show/twisted+bundles">twisted bundles</a> in:</p> <ul> <li id="Raboso15"><a class="existingWikiWord" href="/nlab/show/Alberto+Garc%C3%ADa+Raboso">Alberto García Raboso</a>, <em>A twisted nonabelian Hodge correspondence</em>, PhD thesis 2014 (<a href="http://arxiv.org/abs/1501.05872">arXiv:1501.05872</a>, <a href="http://www.math.toronto.edu/agraboso/files/TwistedNAHT_Talk_Handout.pdf">pdf slides</a>)</li> </ul> <p>Gothen’s paper starts with a survey on nonabelian Hodge correspondence,</p> <ul> <li> <p>Peter B. Gothen, <em>Higgs bundles and the real symplectic group</em>, <a href="https://arxiv.org/abs/1102.4175">arXiv:1102.4175</a></p> </li> <li> <p>C. C. Liu, S. Rayan, Y. Tanaka, <em>The Kapustin–Witten equations and nonabelian Hodge theory</em> Eur. J. Math. <strong>8</strong> (Suppl 1) 23–41 (2022) <a href="https://doi.org/10.1007/s40879-022-00538-4">doi</a></p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on October 1, 2023 at 12:46:32. See the <a href="/nlab/history/nonabelian+Hodge+theory" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/nonabelian+Hodge+theory" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/250/#Item_7">Discuss</a><span class="backintime"><a href="/nlab/revision/nonabelian+Hodge+theory/13" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/nonabelian+Hodge+theory" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/nonabelian+Hodge+theory" accesskey="S" class="navlink" id="history" rel="nofollow">History (13 revisions)</a> <a href="/nlab/show/nonabelian+Hodge+theory/cite" style="color: black">Cite</a> <a href="/nlab/print/nonabelian+Hodge+theory" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/nonabelian+Hodge+theory" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10