CINXE.COM

Search results for: supersonic stage

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: supersonic stage</title> <meta name="description" content="Search results for: supersonic stage"> <meta name="keywords" content="supersonic stage"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="supersonic stage" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="supersonic stage"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3476</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: supersonic stage</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3476</span> Aerodynamic Designing of Supersonic Centrifugal Compressor Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Galerkin">Y. Galerkin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rekstin"> A. Rekstin</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Soldatova"> K. Soldatova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Universal modeling method well proven for industrial compressors was applied for design of the high flow rate supersonic stage. Results were checked by ANSYS CFX and NUMECA Fine Turbo calculations. The impeller appeared to be very effective at transonic flow velocities. Stator elements efficiency is acceptable at design Mach numbers too. Their loss coefficient versus inlet flow angle performances correlates well with Universal modeling prediction. The impeller demonstrated ability of satisfactory operation at design flow rate. Supersonic flow behavior in the impeller inducer at the shroud blade to blade surface 桅des deserves additional study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20compressor%20stage" title="centrifugal compressor stage">centrifugal compressor stage</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20impeller" title=" supersonic impeller"> supersonic impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20flow%20angle" title=" inlet flow angle"> inlet flow angle</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20coefficient" title=" loss coefficient"> loss coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20channel" title=" return channel"> return channel</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20wave" title=" shock wave"> shock wave</a>, <a href="https://publications.waset.org/abstracts/search?q=vane%20diffuser" title=" vane diffuser"> vane diffuser</a> </p> <a href="https://publications.waset.org/abstracts/18034/aerodynamic-designing-of-supersonic-centrifugal-compressor-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3475</span> Calculation Analysis of an Axial Compressor Supersonic Stage Impeller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Galerkin">Y. Galerkin</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Popova"> E. Popova</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Soldatova"> K. Soldatova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an evident trend to elevate pressure ratio of a single stage of a turbo compressors - axial compressors in particular. Whilst there was an opinion recently that a pressure ratio 1,9 was a reasonable limit, later appeared information on successful modeling tested of stages with pressure ratio up to 2,8. The Authors recon that lack of information on high pressure stages makes actual a study of rational choice of design parameters before high supersonic flow problems solving. The computer program of an engineering type was developed. Below is presented a sample of its application to study possible parameters of the impeller of the stage with pressure ratio 蟺*=3,0. Influence of two main design parameters on expected efficiency, periphery blade speed and flow structure is demonstrated. The results had lead to choose a variant for further analysis and improvement by CFD methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20stage" title="supersonic stage">supersonic stage</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20rate%20coefficient" title=" flow rate coefficient"> flow rate coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20coefficient" title=" work coefficient"> work coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20coefficient" title=" loss coefficient"> loss coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20shock" title=" oblique shock"> oblique shock</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20shock" title=" direct shock"> direct shock</a> </p> <a href="https://publications.waset.org/abstracts/18039/calculation-analysis-of-an-axial-compressor-supersonic-stage-impeller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3474</span> An Accurate Prediction of Surface Temperature History in a Supersonic Flight </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Tahsini">A. M. Tahsini</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Hosseini"> S. A. Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux. The one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20heating" title="aerodynamic heating">aerodynamic heating</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flight" title=" supersonic flight"> supersonic flight</a>, <a href="https://publications.waset.org/abstracts/search?q=launch%20vehicle" title=" launch vehicle"> launch vehicle</a> </p> <a href="https://publications.waset.org/abstracts/1462/an-accurate-prediction-of-surface-temperature-history-in-a-supersonic-flight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3473</span> Calculation of the Supersonic Air Intake with the Optimization of the Shock Wave System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Vinogradova">Elena Vinogradova</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksei%20Pleshakov"> Aleksei Pleshakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksei%20Yakovlev"> Aleksei Yakovlev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the flight of a supersonic aircraft under various conditions (altitude, Mach, etc.), it becomes necessary to coordinate the operating modes of the air intake and engine. On the supersonic aircraft, it鈥檚 been done by changing various control factors (the angle of rotation of the wedge panels and etc.). This paper investigates the possibility of using modern optimization methods to determine the optimal position of the supersonic air intake wedge panels in order to maximize the total pressure recovery coefficient. Modern software allows us to conduct auto-optimization, which determines the optimal position of the control elements of the investigated product to achieve its maximum efficiency. In this work, the flow in the supersonic aircraft inlet has investigated and optimized the operation of the flaps of the supersonic inlet in an aircraft in a 2-D setting. This work has done using ANSYS CFX software. The supersonic aircraft inlet is a flat adjustable external compression inlet. The braking surface is made in the form of a three-stage wedge. The IOSO NM software package was chosen for optimization. Change in the position of the panels of the input device is carried out by changing the angle between the first and second steps of the three-stage wedge. The position of the rest of the panels is changed automatically. Within the framework of the presented work, the position of the moving air intake panel was optimized under fixed flight conditions of the aircraft under a certain engine operating mode. As a result of the numerical modeling, the distribution of total pressure losses was obtained for various cases of the engine operation, depending on the incoming flow velocity and the flight altitude of the aircraft. The results make it possible to obtain the maximum total pressure recovery coefficient under given conditions. Also, the initial geometry was set with a certain angle between the first and second wedge panels. Having performed all the calculations, as well as the subsequent optimization of the aircraft input device, it can be concluded that the initial angle was set sufficiently close to the optimal angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20angle" title="optimal angle">optimal angle</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20air%20intake" title=" supersonic air intake"> supersonic air intake</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20pressure%20recovery%20coefficient" title=" total pressure recovery coefficient"> total pressure recovery coefficient</a> </p> <a href="https://publications.waset.org/abstracts/135524/calculation-of-the-supersonic-air-intake-with-the-optimization-of-the-shock-wave-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3472</span> Numerical Investigation of a Supersonic Ejector for Refrigeration System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Megdouli">Karima Megdouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Bourhan%20Taschtouch"> Bourhan Taschtouch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersonic ejectors have many applications in refrigeration systems. And improving ejector performance is the key to improve the efficiency of these systems. One of the main advantages of the ejector is its geometric simplicity and the absence of moving parts. This paper presents a theoretical model for evaluating the performance of a new supersonic ejector configuration for refrigeration system applications. The relationship between the flow field and the key parameters of the new configuration has been illustrated by analyzing the Mach number and flow velocity contours. The method of characteristics (MOC) is used to design the supersonic nozzle of the ejector. The results obtained are compared with those obtained by CFD. The ejector is optimized by minimizing exergy destruction due to irreversibility and shock waves. The optimization converges to an efficient optimum solution, ensuring improved and stable performance over the whole considered range of uncertain operating conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20ejector" title="supersonic ejector">supersonic ejector</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20model" title=" theoretical model"> theoretical model</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/168655/numerical-investigation-of-a-supersonic-ejector-for-refrigeration-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3471</span> A Model of Condensation and Solidification of Metallurgical Vapor in a Supersonic Nozzle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thien%20X.%20Dinh">Thien X. Dinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Witt"> Peter Witt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A one-dimensional model for the simulation of condensation and solidification of a metallurgical vapor in the mixture of gas during supersonic expansion is presented. In the model, condensation is based on critical nucleation and drop-growth theory. When the temperature falls below the supercooling point, all the formed liquid droplets in the condensation phase are assumed to solidify at an infinite rate. The model was verified with a Computational Fluid Dynamics simulation of magnesium vapor condensation and solidification. The obtained results are in reasonable agreement with CFD data. Therefore, the model is a promising, efficient tool for use in the design process for supersonic nozzles applied in mineral processes since it is faster than the CFD counterpart by an order of magnitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation" title="condensation">condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20flow" title=" metallurgical flow"> metallurgical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20expansion" title=" supersonic expansion"> supersonic expansion</a> </p> <a href="https://publications.waset.org/abstracts/175697/a-model-of-condensation-and-solidification-of-metallurgical-vapor-in-a-supersonic-nozzle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3470</span> Interaction between Unsteady Supersonic Jet and Vortex Rings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazumasa%20Kitazono">Kazumasa Kitazono</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Fukuoka"> Hiroshi Fukuoka</a>, <a href="https://publications.waset.org/abstracts/search?q=Nao%20Kuniyoshi"> Nao Kuniyoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minoru%20Yaga"> Minoru Yaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Eri%20Ueno"> Eri Ueno</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoaki%20Fukuda"> Naoaki Fukuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshio%20Takiya"> Toshio Takiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier&ndash;Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=shock-wave" title=" shock-wave"> shock-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20jet" title=" unsteady jet"> unsteady jet</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20ring" title=" vortex ring"> vortex ring</a> </p> <a href="https://publications.waset.org/abstracts/50911/interaction-between-unsteady-supersonic-jet-and-vortex-rings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3469</span> Resolution and Experimental Validation of the Asymptotic Model of a Viscous Laminar Supersonic Flow around a Thin Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eddegdag%20Nasser">Eddegdag Nasser</a>, <a href="https://publications.waset.org/abstracts/search?q=Naamane%20Azzeddine"> Naamane Azzeddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Radouani%20Mohammed"> Radouani Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ensam%20Meknes"> Ensam Meknes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we are interested in the asymptotic modeling of the two-dimensional stationary supersonic flow of a viscous compressible fluid around wing airfoil. The aim of this article is to solve the partial differential equations of the flow far from the leading edge and near the wall using the triple-deck technique is what brought again in precision according to the principle of least degeneration. In order to validate our theoretical model, these obtained results will be compared with the experimental results. The comparison of the results of our model with experimentation has shown that they are quantitatively acceptable compared to the obtained experimental results. The experimental study was conducted using the AF300 supersonic wind tunnel and a NACA Reduced airfoil model with two pressure Taps on extrados. In this experiment, we have considered the incident upstream supersonic Mach number over a dissymmetric NACA airfoil wing. The validation and the accuracy of the results support our model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic" title="supersonic">supersonic</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous" title=" viscous"> viscous</a>, <a href="https://publications.waset.org/abstracts/search?q=triple%20deck%20technique" title=" triple deck technique"> triple deck technique</a>, <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20methods" title=" asymptotic methods"> asymptotic methods</a>, <a href="https://publications.waset.org/abstracts/search?q=AF300%20supersonic%20wind%20tunnel" title=" AF300 supersonic wind tunnel"> AF300 supersonic wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20airfoil%20model" title=" reduced airfoil model"> reduced airfoil model</a> </p> <a href="https://publications.waset.org/abstracts/141179/resolution-and-experimental-validation-of-the-asymptotic-model-of-a-viscous-laminar-supersonic-flow-around-a-thin-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3468</span> Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Naamane">A. Naamane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hasnaoui"> M. Hasnaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1&deg; and 11&deg;) support the validation of our model with accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20modelling" title="asymptotic modelling">asymptotic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=dihedral%20airfoil" title=" dihedral airfoil"> dihedral airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flow" title=" supersonic flow"> supersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20wind%20tunnel" title=" supersonic wind tunnel"> supersonic wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/104317/supersonic-flow-around-a-dihedral-airfoil-modeling-and-experimentation-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3467</span> Experimental Study on Dehumidification Performance of Supersonic Nozzle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esam%20Jassim">Esam Jassim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersonic nozzles are commonly used to purify natural gas in gas processing technology. As an innovated technology, it is employed to overcome the deficit of the traditional method, related to gas dynamics, thermodynamics and fluid dynamics theory. An indoor test rig is built to study the dehumidification process of moisture fluid. Humid air was chosen for the study. The working fluid was circulating in an open loop, which had provision for filtering, metering, and humidifying. A stainless steel supersonic separator is constructed together with the C-D nozzle system. The result shows that dehumidification enhances as NPR increases. This is due to the high intensity in the turbulence caused by the shock formation in the divergent section. Such disturbance strengthens the centrifugal force, pushing more particles toward the near-wall region. In return return, the pressure recovery factor, defined as the ratio of the outlet static pressure of the fluid to its inlet value, decreases with NPR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20nozzle" title="supersonic nozzle">supersonic nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=dehumidification" title=" dehumidification"> dehumidification</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20separation" title=" particle separation"> particle separation</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20geometry" title=" nozzle geometry"> nozzle geometry</a> </p> <a href="https://publications.waset.org/abstracts/64186/experimental-study-on-dehumidification-performance-of-supersonic-nozzle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3466</span> Analysis of Simple Mechanisms to Continuously Vary Mach Number in a Supersonic Wind Tunnel Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Kishore">Prateek Kishore</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Muruganandam"> T. M. Muruganandam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersonic wind tunnel nozzles are generally capable of producing a constant Mach number flow in the test section of the wind tunnel. As a result, most of the supersonic vehicles are widely designed using steady state flow characteristics which may have errors while facing unsteady situations. This study aims to explore the possibility of varying the Mach number of the flow during wind tunnel operation. The nozzle walls are restricted to be inflexible for cooling near the throat due to high stagnation temperature requirement of the flow to simulate the conditions as experienced by the vehicle. Two simple independent mechanisms, rotation and translation of nozzle walls have been analyzed and the nozzle ranges have been optimized to vary the Mach number from Mach 2 to Mach 5 using minimum number of nozzles in the wind tunnel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=method%20of%20characteristics" title="method of characteristics">method of characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20wind%20tunnel" title=" supersonic wind tunnel"> supersonic wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20mach%20number" title=" variable mach number"> variable mach number</a> </p> <a href="https://publications.waset.org/abstracts/66454/analysis-of-simple-mechanisms-to-continuously-vary-mach-number-in-a-supersonic-wind-tunnel-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3465</span> Effect of Gaseous Imperfections on the Supersonic Flow Parameters for Air in Nozzles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merouane%20Salhi">Merouane Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Zebbiche"> Toufik Zebbiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas doesn鈥檛 remain perfect. Its state equation change and it becomes for a real gas. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermodynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot鈥檚 state equation accounts for the molecular size and intermolecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flow" title="supersonic flow">supersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20gas%20model" title=" real gas model"> real gas model</a>, <a href="https://publications.waset.org/abstracts/search?q=Berthelot%E2%80%99s%20state%20equation" title=" Berthelot鈥檚 state equation"> Berthelot鈥檚 state equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Simpson%E2%80%99s%20method" title=" Simpson鈥檚 method"> Simpson鈥檚 method</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation%20function" title=" condensation function"> condensation function</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20pressure" title=" stagnation pressure"> stagnation pressure</a> </p> <a href="https://publications.waset.org/abstracts/19069/effect-of-gaseous-imperfections-on-the-supersonic-flow-parameters-for-air-in-nozzles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3464</span> Thermal and Caloric Imperfections Effect on the Supersonic Flow Parameters with Application for Air in Nozzles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merouane%20Salhi">Merouane Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Zebbiche"> Toufik Zebbiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Abada"> Omar Abada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas does not remain perfect. Its state equation change and it becomes a real gas. In this case, the effects of molecular size and inter molecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermo dynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot鈥檚 state equation accounts for molecular size and inter molecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flow" title="supersonic flow">supersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20gas%20model" title=" real gas model"> real gas model</a>, <a href="https://publications.waset.org/abstracts/search?q=Berthelot%E2%80%99s%20state%20equation" title=" Berthelot鈥檚 state equation"> Berthelot鈥檚 state equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Simpson%E2%80%99s%20method" title=" Simpson鈥檚 method"> Simpson鈥檚 method</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation%20function" title=" condensation function"> condensation function</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20pressure" title=" stagnation pressure"> stagnation pressure</a> </p> <a href="https://publications.waset.org/abstracts/18030/thermal-and-caloric-imperfections-effect-on-the-supersonic-flow-parameters-with-application-for-air-in-nozzles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3463</span> Flow Field Analysis of Different Intake Bump (Compression Surface) Configurations on a Supersonic Aircraft </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mudassir%20Ghafoor">Mudassir Ghafoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Irsalan%20Arif"> Irsalan Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuaib%20Salamat"> Shuaib Salamat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents modeling and analysis of different intake bump (compression surface) configurations and comparison with an existing supersonic aircraft having bump intake configuration. Many successful aircraft models have shown that Diverter less Supersonic Inlet (DSI) as compared to conventional intake can reduce weight, complexity and also maintenance cost. The research is divided into two parts. In the first part, four different intake bumps are modeled for comparative analysis keeping in view the consistency of outer perimeter dimensions of fighter aircraft and various characteristics such as flow behavior, boundary layer diversion and pressure recovery are analyzed. In the second part, modeled bumps are integrated with intake duct for performance analysis and comparison with existing supersonic aircraft data is carried out. The bumps are named as uniform large (Config 1), uniform small (Config 2), uniform sharp (Config 3), non-uniform (Config 4) based on their geometric features. Analysis is carried out at different Mach Numbers to analyze flow behavior in subsonic and supersonic regime. Flow behavior, boundary layer diversion and Pressure recovery are examined for each bump characteristics, and comparative study is carried out. The analysis reveals that at subsonic speed, Config 1 and Config 2 give similar pressure recoveries as diverterless supersonic intake, but difference in pressure recoveries becomes significant at supersonic speed. It was concluded from research that Config 1 gives better results as compared to Config 3. Also, higher amplitude (Config 1) is preferred over lower (Config 2 and 4). It was observed that maximum height of bump is preferred to be placed near cowl lip of intake duct. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bump%20intake" title="bump intake">bump intake</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=diverter-less%20supersonic%20inlet" title=" diverter-less supersonic inlet"> diverter-less supersonic inlet</a> </p> <a href="https://publications.waset.org/abstracts/62246/flow-field-analysis-of-different-intake-bump-compression-surface-configurations-on-a-supersonic-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3462</span> Nitrogen Effects on Ignition Delay Time in Supersonic Premixed and Diffusion Flames </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Tahsini">A. M. Tahsini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational study of two dimensional supersonic reacting hydrogen-air flows is performed to investigate the nitrogen effects on ignition delay time for premixed and diffusion flames. Chemical reaction is treated using detail kinetics and the advection upstream splitting method is used to calculate the numerical inviscid fluxes. The results show that only in the stoichiometric condition for both premixed and diffusion flames, there is monotone dependency of the ignition delay time to the nitrogen addition. In other situations, the optimal condition from ignition viewpoint should be found using numerical investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20flame" title="diffusion flame">diffusion flame</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition%20delay%20time" title=" ignition delay time"> ignition delay time</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20layer" title=" mixing layer"> mixing layer</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=premixed%20flame" title=" premixed flame"> premixed flame</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flow" title=" supersonic flow"> supersonic flow</a> </p> <a href="https://publications.waset.org/abstracts/1461/nitrogen-effects-on-ignition-delay-time-in-supersonic-premixed-and-diffusion-flames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3461</span> Optical Flow Technique for Supersonic Jet Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haoxiang%20Desmond%20Lim">Haoxiang Desmond Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Wu"> Jie Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tze%20How%20Daniel%20New"> Tze How Daniel New</a>, <a href="https://publications.waset.org/abstracts/search?q=Shengxian%20Shi"> Shengxian Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper outlines the development of a novel experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 8.2 bar and exit velocity of Mach 1.5. High-speed single-frame or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Details of the methodology employed and challenges faced will be further elaborated in the final conference paper should the abstract be accepted. Despite these challenges however, this novel supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schlieren" title="Schlieren">Schlieren</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20flow" title=" optical flow"> optical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20jets" title=" supersonic jets"> supersonic jets</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20shear%20layer" title=" shock shear layer"> shock shear layer</a> </p> <a href="https://publications.waset.org/abstracts/42220/optical-flow-technique-for-supersonic-jet-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3460</span> Improvement Performances of the Supersonic Nozzles at High Temperature Type Minimum Length Nozzle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Hamaidia">W. Hamaidia</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Zebbiche"> T. Zebbiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design of axisymmetric supersonic nozzles, in order to accelerate a supersonic flow to the desired Mach number and that having a small weight, in the same time gives a high thrust. The concerned nozzle gives a parallel and uniform flow at the exit section. The nozzle is divided into subsonic and supersonic regions. The supersonic portion is independent to the upstream conditions of the sonic line. The subsonic portion is used to give a sonic flow at the throat. In this case, nozzle gives a uniform and parallel flow at the exit section. It鈥檚 named by minimum length Nozzle. The study is done at high temperature, lower than the dissociation threshold of the molecules, in order to improve the aerodynamic performances. Our aim consists of improving the performances both by the increase of exit Mach number and the thrust coefficient and by reduction of the nozzle's mass. The variation of the specific heats with the temperature is considered. The design is made by the Method of Characteristics. The finite differences method with predictor-corrector algorithm is used to make the numerical resolution of the obtained nonlinear algebraic equations. The application is for air. All the obtained results depend on three parameters which are exit Mach number, the stagnation temperature, the chosen mesh in characteristics. A numerical simulation of nozzle through Computational Fluid Dynamics-FASTRAN was done to determine and to confirm the necessary design parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flux%20supersonic%20flow" title="flux supersonic flow">flux supersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=axisymmetric%20minimum%20length%20nozzle" title=" axisymmetric minimum length nozzle"> axisymmetric minimum length nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20characteristics" title=" method of characteristics"> method of characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=calorically%20imperfect%20gas" title=" calorically imperfect gas"> calorically imperfect gas</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=trust%20coefficient" title=" trust coefficient"> trust coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20of%20the%20nozzle" title=" mass of the nozzle"> mass of the nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20heat%20at%20constant%20pressure" title=" specific heat at constant pressure"> specific heat at constant pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=air" title=" air"> air</a>, <a href="https://publications.waset.org/abstracts/search?q=error" title=" error"> error</a> </p> <a href="https://publications.waset.org/abstracts/97205/improvement-performances-of-the-supersonic-nozzles-at-high-temperature-type-minimum-length-nozzle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3459</span> Supersonic Combustion (Scramjet) Containing Flame-Holder with Slot Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anupriya">Anupriya</a>, <a href="https://publications.waset.org/abstracts/search?q=Bikramjit%20Sinfh"> Bikramjit Sinfh</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhay%20Shyam"> Radhay Shyam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve mixing phenomena and combustion processes in supersonic flow, the current work has concentrated on identifying the ideal cavity parameters using CFD ANSYS Fluent. Offset ratios (OR) and aft ramp angles () have been manipulated in simulations of several models, but the length-to-depth ratio has remained the same. The length-to-depth ratio of all cavity flows is less than 10, making them all open. Hydrogen fuel was injected into a supersonic air flow with a Mach number of 3.75 using a chamber with a 1 mm diameter and a transverse slot nozzle. The free stream had conditions of a pressure of 1.2 MPa, a temperature of 299K, and a Reynolds number of 2.07x107. This method has the ability to retain a flame since the cavity facilitates rapid mixing of fuel and oxidizer and decreases total pressure losses. The impact of the cavity on combustion efficiency and total pressure loss is discussed, and the results are compared to those of a model without a cavity. Both the mixing qualities and the combustion processes were enhanced in the model with the cavity. The overall pressure loss as well as the effectiveness of the combustion process both increase with the increase in the ramp angle to the rear. When OR is increased, however, resistance to the supersonic flow field is reduced, which has a detrimental effect on both parameters. For a given ramp height, larger pressure losses were observed at steeper ramp angles due to increased eddy-viscous turbulent flow and increased wall drag. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=total%20pressure%20loss" title="total pressure loss">total pressure loss</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20holder" title=" flame holder"> flame holder</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20combustion" title=" supersonic combustion"> supersonic combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20efficiency" title=" combustion efficiency"> combustion efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity" title=" cavity"> cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a> </p> <a href="https://publications.waset.org/abstracts/154492/supersonic-combustion-scramjet-containing-flame-holder-with-slot-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3458</span> Experimental Analysis of Supersonic Combustion Induced by Shock Wave at the Combustion Chamber of the 14-X Scramjet Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ronaldo%20de%20Lima%20Cardoso">Ronaldo de Lima Cardoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiago%20V.%20C.%20Marcos"> Thiago V. C. Marcos</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20J.%20da%20Costa"> Felipe J. da Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20C.%20da%20Oliveira"> Antonio C. da Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20G.%20P.%20Toro"> Paulo G. P. Toro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 14-X is a strategic project of the Brazil Air Force Command to develop a technological demonstrator of a hypersonic air-breathing propulsion system based on supersonic combustion programmed to flight in the Earth's atmosphere at 30 km of altitude and Mach number 10. The 14-X is under development at the Laboratory of Aerothermodynamics and Hypersonic Prof. Henry T. Nagamatsu of the Institute of Advanced Studies. The program began in 2007 and was planned to have three stages: development of the wave rider configuration, development of the scramjet configuration and finally the ground tests in the hypersonic shock tunnel T3. The install configuration of the model based in the scramjet of the 14-X in the test section of the hypersonic shock tunnel was made to proportionate and test the flight conditions in the inlet of the combustion chamber. Experimental studies with hypersonic shock tunnel require special techniques to data acquisition. To measure the pressure along the experimental model geometry tested we used 30 pressure transducers model 122A22 of PCB庐. The piezoeletronic crystals of a piezoelectric transducer pressure when to suffer pressure variation produces electric current (PCB庐 PIEZOTRONIC, 2016). The reading of the signal of the pressure transducers was made by oscilloscope. After the studies had begun we observed that the pressure inside in the combustion chamber was lower than expected. One solution to improve the pressure inside the combustion chamber was install an obstacle to providing high temperature and pressure. To confirm if the combustion occurs was selected the spectroscopy emission technique. The region analyzed for the spectroscopy emission system is the edge of the obstacle installed inside the combustion chamber. The emission spectroscopy technique was used to observe the emission of the OH*, confirming or not the combustion of the mixture between atmospheric air in supersonic speed and the hydrogen fuel inside of the combustion chamber of the model. This paper shows the results of experimental studies of the supersonic combustion induced by shock wave performed at the Hypersonic Shock Tunnel T3 using the scramjet 14-X model. Also, this paper provides important data about the combustion studies using the model based on the engine of 14-X (second stage of the 14-X Program). Informing the possibility of necessaries corrections to be made in the next stages of the program or in other models to experimental study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=14-X" title="14-X">14-X</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20study" title=" experimental study"> experimental study</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20tests" title=" ground tests"> ground tests</a>, <a href="https://publications.waset.org/abstracts/search?q=scramjet" title=" scramjet"> scramjet</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20combustion" title=" supersonic combustion"> supersonic combustion</a> </p> <a href="https://publications.waset.org/abstracts/59567/experimental-analysis-of-supersonic-combustion-induced-by-shock-wave-at-the-combustion-chamber-of-the-14-x-scramjet-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3457</span> 3D Numerical Studies on Jets Acoustic Characteristics of Chevron Nozzles for Aerospace Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Kanmaniraja">R. Kanmaniraja</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Freshipali"> R. Freshipali</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Abdullah"> J. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Niranjan"> K. Niranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Balasubramani"> K. Balasubramani</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present environmental issues have made aircraft jet noise reduction a crucial problem in aero-acoustics research. Acoustic studies reveal that addition of chevrons to the nozzle reduces the sound pressure level reasonably with acceptable reduction in performance. In this paper comprehensive numerical studies on acoustic characteristics of different types of chevron nozzles have been carried out with non-reacting flows for the shape optimization of chevrons in supersonic nozzles for aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, k-蔚 turbulence model. In this paper chevron with sharp edge, flat edge, round edge and U-type edge are selected for the jet acoustic characterization of supersonic nozzles. We observed that compared to the base model a case with round-shaped chevron nozzle could reduce 4.13% acoustic level with 0.6% thrust loss. We concluded that the prudent selection of the chevron shape will enable an appreciable reduction of the aircraft jet noise without compromising its overall performance. It is evident from the present numerical simulations that k-蔚 model can predict reasonably well the acoustic level of chevron supersonic nozzles for its shape optimization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20nozzle" title="supersonic nozzle">supersonic nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=Chevron" title=" Chevron"> Chevron</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20level" title=" acoustic level"> acoustic level</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20optimization%20of%20Chevron%20nozzles" title=" shape optimization of Chevron nozzles"> shape optimization of Chevron nozzles</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20noise%20suppression" title=" jet noise suppression"> jet noise suppression</a> </p> <a href="https://publications.waset.org/abstracts/15252/3d-numerical-studies-on-jets-acoustic-characteristics-of-chevron-nozzles-for-aerospace-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3456</span> Shock Formation for Double Ramp Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Wajid%20Ali">Abdul Wajid Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersonic flight promises speed, but the design of the air inlet faces an obstacle: shock waves. They prevent air flow in the mixed compression ports, which reduces engine performance. Our research investigates this using supersonic wind tunnels and schlieren imaging to reveal the complex dance between shock waves and airflow. The findings show clear patterns of shock wave formation influenced by internal/external pressure surfaces. We looked at the boundary layer, the slow-moving air near the inlet walls, and its interaction with shock waves. In addition, the study emphasizes the dependence of the shock wave behaviour on the Mach number, which highlights the need for adaptive models. This knowledge is key to optimizing the combined compression inputs, paving the way for more powerful and efficient supersonic vehicles. Future engineers can use this knowledge to improve existing designs and explore innovative configurations for next-generation ultrasonic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oblique%20shock%20formation" title="oblique shock formation">oblique shock formation</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20interaction" title=" boundary layer interaction"> boundary layer interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=schlieren%20images" title=" schlieren images"> schlieren images</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20wedge%20surface" title=" double wedge surface"> double wedge surface</a> </p> <a href="https://publications.waset.org/abstracts/184376/shock-formation-for-double-ramp-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3455</span> Preliminary Design of an Aerodynamic Protection for the Scramjet Engine Inlet of the Brazilian Technological Demonstrator Scramjet 14-X S</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gustavo%20J.%20Costa">Gustavo J. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20J.%20Costa"> Felipe J. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20L.%20%20Coelho"> Bruno L. Coelho</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronaldo%20L.%20Cardoso"> Ronaldo L. Cardoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20O.%20Santos"> Rafael O. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Israel%20S.%20R%C3%AAgo"> Israel S. R锚go</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20A.%20S.%20Minucci"> Marco A. S. Minucci</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20C.%20%20Oliveira"> Antonio C. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20G.%20P.%20Toro"> Paulo G. P. Toro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Prof. Henry T. Nagamatsu Aerothermodynamics and Hipersonics Laboratory, of the Institute for Advanced Studies (IEAv) conducts research and development (R&D) of the Technological Demonstrator scramjet 14-X S, aiming atmospheric flight at 30 km altitude with the speed correspondent to Mach number 7, using scramjet technology providing hypersonic propulsion system based on supersonic combustion. Hypersonic aerospace vehicles with air-breathing supersonic propulsion system face extremal environments for super/hypersonic flights in terms of thermal and aerodynamic loads. Thus, it is necessary to use aerodynamic protection at the scramjet engine inlet to face the thermal and aerodynamic loads without compromising the efficiency of scramjet engine, taking into account: i) inlet design (boundary layer, oblique shockwave and reflected oblique shockwave); ii) wall temperature of the cowl and of the compression ramp; iii) supersonic flow into the combustion chamber. The aerodynamic protection of the scramjet engine inlet will act to prevent the engine unstart and match the predictions made by theoretical-analytical, numerical analysis and experimental research, during the atmospheric flight of the Technological Demonstrator scramjet 14-X S. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=14-X" title="14-X">14-X</a>, <a href="https://publications.waset.org/abstracts/search?q=hypersonic" title=" hypersonic"> hypersonic</a>, <a href="https://publications.waset.org/abstracts/search?q=scramjet" title=" scramjet"> scramjet</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20combustion" title=" supersonic combustion"> supersonic combustion</a> </p> <a href="https://publications.waset.org/abstracts/59517/preliminary-design-of-an-aerodynamic-protection-for-the-scramjet-engine-inlet-of-the-brazilian-technological-demonstrator-scramjet-14-x-s" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3454</span> Nonlinear Modelling and Analysis of Piezoelectric Smart Thin-Walled Structures in Supersonic Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shu-Yang%20Zhang">Shu-Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang"> Shun-Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhan-Xi%20Wang"> Zhan-Xi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xian-Sheng%20Qin"> Xian-Sheng Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin-walled structures are used more and more widely in modern aircrafts and some other structures in aerospace field nowadays. Accompanied by the wider applications, the vibration of the structures has been a bigger problem. Because of the direct and converse piezoelectric effect, piezoelectric materials combined to host thin-walled structures, named as piezoelectric smart structures, can be an effective way to suppress the vibration. So, an accurate model for piezoelectric thin-walled structures in air flow is necessary and important. In our recent work, an electromechanical coupling nonlinear aerodynamic finite element model of piezoelectric smart thin-walled structures is built based on the Reissner-Mindlin plate theory and first-order piston theory for aerodynamic pressure of supersonic flow. Von K谩rm谩n type nonlinearity is considered in the present model. Finally, the model is validated by experimental and numerical results from the literature, which can describe the vibration of the structures in supersonic flow precisely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures" title="piezoelectric smart structures">piezoelectric smart structures</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title=" aerodynamic"> aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20nonlinearity" title=" geometric nonlinearity"> geometric nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/72915/nonlinear-modelling-and-analysis-of-piezoelectric-smart-thin-walled-structures-in-supersonic-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3453</span> Aerodynamic Design of Axisymmetric Supersonic Nozzle Used by an Optimization Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mojtahedpoor">Mohammad Mojtahedpoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, it has been studied the method of optimal design of the supersonic nozzle. It could make viscous axisymmetric nozzles that the quality of their outlet flow is quite desired. In this method, it is optimized the divergent nozzle, at first. The initial divergent nozzle contour is designed through the method of characteristics and adding a suitable boundary layer to the inviscid contour. After that, it is made a proper grid and then simulated flow by the numerical solution and AUSM+ method by using the operation boundary condition. At the end, solution outputs are investigated and optimized. The numerical method has been validated with experimental results. Also, in order to evaluate the effectiveness of the present method, the nozzles compared with the previous studies. The comparisons show that the nozzles obtained through this method are sufficiently better in some conditions, such as the flow uniformity, size of the boundary layer, and obtained an axial length of the nozzle. Designing the convergent nozzle part affects by flow uniformity through changing its axial length and input diameter. The results show that increasing the length of the convergent part improves the output flow uniformity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nozzle" title="nozzle">nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic" title=" supersonic"> supersonic</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20method" title=" characteristic method"> characteristic method</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/143078/aerodynamic-design-of-axisymmetric-supersonic-nozzle-used-by-an-optimization-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3452</span> Numerical Simulation of Supersonic Gas Jet Flows and Acoustics Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Zhang">Lei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-jun%20Ruan"> Wen-jun Ruan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Wang"> Hao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng-Xin%20Wang"> Peng-Xin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The source of the jet noise is generated by rocket exhaust plume during rocket engine testing. A domain decomposition approach is applied to the jet noise prediction in this paper. The aerodynamic noise coupling is based on the splitting into acoustic sources generation and sound propagation in separate physical domains. Large Eddy Simulation (LES) is used to simulate the supersonic jet flow. Based on the simulation results of the flow-fields, the jet noise distribution of the sound pressure level is obtained by applying the Ffowcs Williams-Hawkings (FW-H) acoustics equation and Fourier transform. The calculation results show that the complex structures of expansion waves, compression waves and the turbulent boundary layer could occur due to the strong interaction between the gas jet and the ambient air. In addition, the jet core region, the shock cell and the sound pressure level of the gas jet increase with the nozzle size increasing. Importantly, the numerical simulation results of the far-field sound are in good agreement with the experimental measurements in directivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20gas%20jet" title="supersonic gas jet">supersonic gas jet</a>, <a href="https://publications.waset.org/abstracts/search?q=Large%20Eddy%20Simulation%28LES%29" title=" Large Eddy Simulation(LES)"> Large Eddy Simulation(LES)</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20noise" title=" acoustic noise"> acoustic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=Ffowcs%20Williams-Hawkings%28FW-H%29%20equations" title=" Ffowcs Williams-Hawkings(FW-H) equations"> Ffowcs Williams-Hawkings(FW-H) equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20size" title=" nozzle size"> nozzle size</a> </p> <a href="https://publications.waset.org/abstracts/44797/numerical-simulation-of-supersonic-gas-jet-flows-and-acoustics-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3451</span> Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guohua%20Tu">Guohua Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Fu"> Zhi Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiwei%20Hu"> Zhiwei Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20D%20Sandham"> Neil D Sandham</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianqiang%20Chen"> Jianqiang Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20instability" title="boundary layer instability">boundary layer instability</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20transition" title=" boundary layer transition"> boundary layer transition</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flows" title=" supersonic flows"> supersonic flows</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title=" flow control"> flow control</a> </p> <a href="https://publications.waset.org/abstracts/61412/triggering-supersonic-boundary-layer-instability-by-small-scale-vortex-shedding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3450</span> An Acoustical Diagnosis of a Shaft-Wood Phyto-Pathogenic Damage of Sequoiadendron giganteum (Lindl.) Buccholz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuri%20V.%20Plugatar">Yuri V. Plugatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20P.%20Koba"> Vladimir P. Koba</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20V.%20Papelbu"> Vladimir V. Papelbu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20N.%20Gerasimchuk"> Vladimir N. Gerasimchuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatjana%20M.%20Sakhno"> Tatjana M. Sakhno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a supersonic shaft鈥搘ood tomography, the evaluation of a shaft-wood phyto-pathogenic damage level of Sequoiadendron giganteum (Lindl.) Buccholz was prosecuted. The digital bivariate reflections of the shaft tissue damage were obtained, the characteristics of comparative parameters of the wood-decay degree were given. The investigation results allowed to show up the role of some edaphic factors in their affection on a vital condition and the level of destructive processes while shaft tissue damaging of S.giganteum. It was pinned up that soil consolidation, and hydro-morphication equally make for a phyto-pathogenic damage of plants. While soil consolidation negative acting the shaft-wood damage is located in an underneath of a shaft. In the conditions of an enlarged hydro-morphication a tissue degradation runs less intensively, the destructive processes more active spread in a vertical section of a shaft. The use of a supersonic tomography method gives wide possibilities to diagnose a shaft-wood phyto-pathogenic damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sequoiadendron%20giganteum%20%28Lindl.%29%20Buccholz" title="Sequoiadendron giganteum (Lindl.) Buccholz">Sequoiadendron giganteum (Lindl.) Buccholz</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20tomography" title=" supersonic tomography"> supersonic tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=phyto-pathogenic%20damage" title=" phyto-pathogenic damage"> phyto-pathogenic damage</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20vital%20condition" title=" a vital condition"> a vital condition</a> </p> <a href="https://publications.waset.org/abstracts/78879/an-acoustical-diagnosis-of-a-shaft-wood-phyto-pathogenic-damage-of-sequoiadendron-giganteum-lindl-buccholz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3449</span> Analysis of Structure-Flow Interaction for Water Brake Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murat%20Avci">Murat Avci</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Kosar"> Fatih Kosar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Yilmaz"> Ismail Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, structure-flow interaction for water brake mechanism is studied with Abaqus CEL approach. The water brake mechanism is used for dynamic systems such as sled system on rail. For the achievement of these system tests, structure-flow interaction should be investigated in detail. This study is about a sled test of an aircraft subsystem which rises to supersonic speeds thanks to rocket engines. To decrease or to stop the thrusting rocket sleds, water brake mechanisms are used. Water brake mechanism provides the deceleration of the structures that have supersonic speeds. Therefore, structure-flow interaction may cause damage to the water brake mechanism. To verify all design revisions with system tests are so costly so that some decisions are taken in accordance with numerical methods. In this study, structure-flow interaction that belongs to water brake mechanism is solved with Abaqus CEL approach. Fluid and deformation on the structure behaviors are modeled at the same time thanks to CEL approach. Provided analysis results are corrected with the dynamic tests. Deformation zones seen in numerical analysis are also observed in dynamic tests. Finally, Johnson-Cook material model parameters used for this analysis are proven, and it is understood that these parameters can be used for dynamic analysis like water brake mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket" title=" rocket"> rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-flow" title=" structure-flow"> structure-flow</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic" title=" supersonic"> supersonic</a> </p> <a href="https://publications.waset.org/abstracts/104502/analysis-of-structure-flow-interaction-for-water-brake-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3448</span> Study of Unsteady Behaviour of Dynamic Shock Systems in Supersonic Engine Intakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddharth%20Ahuja">Siddharth Ahuja</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Muruganandam"> T. M. Muruganandam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An analytical investigation is performed to study the unsteady response of a one-dimensional, non-linear dynamic shock system to external downstream pressure perturbations in a supersonic flow in a varying area duct. For a given pressure ratio across a wind tunnel, the normal shock&#39;s location can be computed as per one-dimensional steady gas dynamics. Similarly, for some other pressure ratio, the location of the normal shock will change accordingly, again computed using one-dimensional gas dynamics. This investigation focuses on the small-time interval between the first steady shock location and the new steady shock location (corresponding to different pressure ratios). In essence, this study aims to shed light on the motion of the shock from one steady location to another steady location. Further, this study aims to create the foundation of the Unsteady Gas Dynamics field enabling further insight in future research work. According to the new pressure ratio, a pressure pulse, generated at the exit of the tunnel which travels and perturbs the shock from its original position, setting it into motion. During such activity, other numerous physical phenomena also happen at the same time. However, three broad phenomena have been focused on, in this study - Traversal of a Wave, Fluid Element Interactions and Wave Interactions. The above mentioned three phenomena create, alter and kill numerous waves for different conditions. The waves which are created by the above-mentioned phenomena eventually interact with the shock and set it into motion. Numerous such interactions with the shock will slowly make it settle into its final position owing to the new pressure ratio across the duct, as estimated by one-dimensional gas dynamics. This analysis will be extremely helpful in the prediction of inlet &#39;unstart&#39; of the flow in a supersonic engine intake and its prominence with the incoming flow Mach number, incoming flow pressure and the external perturbation pressure is also studied to help design more efficient supersonic intakes for engines like ramjets and scramjets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20investigation" title="analytical investigation">analytical investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20and%20expansion%20waves" title=" compression and expansion waves"> compression and expansion waves</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20element%20interactions" title=" fluid element interactions"> fluid element interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20trajectory" title=" shock trajectory"> shock trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flow" title=" supersonic flow"> supersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20gas%20dynamics" title=" unsteady gas dynamics"> unsteady gas dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=varying%20area%20duct" title=" varying area duct"> varying area duct</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20interactions" title=" wave interactions"> wave interactions</a> </p> <a href="https://publications.waset.org/abstracts/66446/study-of-unsteady-behaviour-of-dynamic-shock-systems-in-supersonic-engine-intakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3447</span> Numerical Studies on Thrust Vectoring Using Shock-Induced Self Impinging Secondary Jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Vignesh">S. Vignesh</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Vishnu"> N. Vishnu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vigneshwaran"> S. Vigneshwaran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vishnu%20Anand"> M. Vishnu Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Kumar%20Babu"> Dinesh Kumar Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the primary flow velocity and the self impinging secondary jet flow mixing is important from both the fundamental research and the application point of view. Real industrial configurations are more complex than simple shear layers present in idealized numerical thrust-vectoring models due to the presence of combustion, swirl and confinement. Predicting the flow features of self impinging secondary jets in a supersonic primary flow is complex owing to the fact that there are a large number of parameters involved. Earlier studies have been highlighted several key features of self impinging jets, but an extensive characterization in terms of jet interaction between supersonic flow and self impinging secondary sonic jets is still an active research topic. In this paper numerical studies have been carried out using a validated two-dimensional k-omega standard turbulence model for the design optimization of a thrust vector control system using shock induced self impinging secondary flow sonic jets using non-reacting flows. Efforts have been taken for examining the flow features of TVC system with various secondary jets at different divergent locations and jet impinging angles with the same inlet jet pressure and mass flow ratio. The results from the parametric studies reveal that in addition to the primary to the secondary mass flow ratio the characteristics of the self impinging secondary jets having bearing on an efficient thrust vectoring. We concluded that the self impinging secondary jet nozzles are better than single jet nozzle with the same secondary mass flow rate owing to the fact fixing of the self impinging secondary jet nozzles with proper jet angle could facilitate better thrust vectoring for any supersonic aerospace vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluidic%20thrust%20vectoring" title="fluidic thrust vectoring">fluidic thrust vectoring</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20steering" title=" rocket steering"> rocket steering</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20to%20sonic%20jet%20interaction" title=" supersonic to sonic jet interaction"> supersonic to sonic jet interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=TVC%20in%20aerospace%20vehicles" title=" TVC in aerospace vehicles"> TVC in aerospace vehicles</a> </p> <a href="https://publications.waset.org/abstracts/33244/numerical-studies-on-thrust-vectoring-using-shock-induced-self-impinging-secondary-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">589</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20stage&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20stage&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20stage&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20stage&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20stage&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20stage&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20stage&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20stage&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20stage&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20stage&amp;page=115">115</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20stage&amp;page=116">116</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20stage&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10