CINXE.COM
Search results for: pipeline network
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pipeline network</title> <meta name="description" content="Search results for: pipeline network"> <meta name="keywords" content="pipeline network"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pipeline network" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pipeline network"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4982</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pipeline network</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4982</span> Increasing of Resiliency by Using Gas Storage in Iranian Gas Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Dourandish">Mohsen Dourandish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iran has a huge pipeline network in every state of country which is the longest and vastest pipeline network after Russia and USA (360,000 Km high pressure pipelines and 250,000 Km distribution networks). Furthermore in recent years National Iranian Gas Company is planning to develop natural gas network to cover all cities and villages above 20 families, in a way that 97 percent of Iran population will be gas consumer by 2020. In this condition, network resiliency will be the first priority of NIGC and due to that several planning for increasing resiliency of gas network is under construction. The most important strategy of NIGC is converting tree form pattern network to loop gas networks and developing underground gas storage near main gas consuming centers. In this regard NIGC is planning for construction of over 3500 km high-pressure pipeline and also 10 TCM gas storage capacities in UGSs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iranian%20gas%20network" title="Iranian gas network">Iranian gas network</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20shaving" title=" peak shaving"> peak shaving</a>, <a href="https://publications.waset.org/abstracts/search?q=resiliency" title=" resiliency"> resiliency</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20gas%20storage" title=" underground gas storage"> underground gas storage</a> </p> <a href="https://publications.waset.org/abstracts/46485/increasing-of-resiliency-by-using-gas-storage-in-iranian-gas-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4981</span> The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mabel%20Usunobun%20Olanipekun">Mabel Usunobun Olanipekun</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Ogbemudia%20Omoregbee"> Henry Ogbemudia Omoregbee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leakage%20detection" title="leakage detection">leakage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20signals" title=" acoustic signals"> acoustic signals</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline%20network" title=" pipeline network"> pipeline network</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks%20%28WSNs%29" title=" wireless sensor networks (WSNs)"> wireless sensor networks (WSNs)</a> </p> <a href="https://publications.waset.org/abstracts/172959/the-use-of-correlation-difference-for-the-prediction-of-leakage-in-pipeline-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4980</span> Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ejah%20Umraeni%20Salam">A. Ejah Umraeni Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tola"> M. Tola</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Selintung"> M. Selintung</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Maricar"> F. Maricar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20neural%20network" title="radial basis function neural network">radial basis function neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=leakage%20pipeline" title=" leakage pipeline"> leakage pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=EPANET" title=" EPANET"> EPANET</a>, <a href="https://publications.waset.org/abstracts/search?q=RMSE" title=" RMSE"> RMSE</a> </p> <a href="https://publications.waset.org/abstracts/7608/water-leakage-detection-system-of-pipe-line-using-radial-basis-function-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4979</span> 3-D Numerical Model for Wave-Induced Seabed Response around an Offshore Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuodong%20Liang">Zuodong Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Sheng%20Jeng"> Dong-Sheng Jeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seabed instability around an offshore pipeline is one of key factors that need to be considered in the design of offshore infrastructures. Unlike previous investigations, a three-dimensional numerical model for the wave-induced soil response around an offshore pipeline is proposed in this paper. The numerical model was first validated with 2-D experimental data available in the literature. Then, a parametric study will be carried out to examine the effects of wave, seabed characteristics and confirmation of pipeline. Numerical examples demonstrate significant influence of wave obliquity on the wave-induced pore pressures and the resultant seabed liquefaction around the pipeline, which cannot be observed in 2-D numerical simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pore%20pressure" title="pore pressure">pore pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20wave%20model" title=" 3D wave model"> 3D wave model</a>, <a href="https://publications.waset.org/abstracts/search?q=seabed%20liquefaction" title=" seabed liquefaction"> seabed liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a> </p> <a href="https://publications.waset.org/abstracts/76992/3-d-numerical-model-for-wave-induced-seabed-response-around-an-offshore-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4978</span> Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lizhi%20Ma">Lizhi Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Liu"> Dan Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipeline%20parallelism" title="pipeline parallelism">pipeline parallelism</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20cluster" title=" heterogeneous cluster"> heterogeneous cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20training" title=" model training"> model training</a>, <a href="https://publications.waset.org/abstracts/search?q=2-level%20stage%20partitioning" title=" 2-level stage partitioning"> 2-level stage partitioning</a> </p> <a href="https://publications.waset.org/abstracts/191050/efficient-dnn-training-on-heterogeneous-clusters-with-pipeline-parallelism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4977</span> Natural Gas Flow Optimization Using Pressure Profiling and Isolation Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Tahir%20Shah">Syed Tahir Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Fazal%20Muhammad"> Fazal Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Kashif%20Shah"> Syed Kashif Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Maleeha%20Gul"> Maleeha Gul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent days, natural gas has become a relatively clean and quality source of energy, which is recovered from deep wells by expensive drilling activities. The recovered substance is purified by processing in multiple stages to remove the unwanted/containments like dust, dirt, crude oil and other particles. Mostly, gas utilities are concerned with essential objectives of quantity/quality of natural gas delivery, financial outcome and safe natural gas volumetric inventory in the transmission gas pipeline. Gas quantity and quality are primarily related to standards / advanced metering procedures in processing units/transmission systems, and the financial outcome is defined by purchasing and selling gas also the operational cost of the transmission pipeline. SNGPL (Sui Northern Gas Pipelines Limited) Pakistan has a wide range of diameters of natural gas transmission pipelines network of over 9125 km. This research results in answer a few of the issues in accuracy/metering procedures via multiple advanced gadgets for gas flow attributes after being utilized in the transmission system and research. The effects of good pressure management in transmission gas pipeline network in contemplation to boost the gas volume deposited in the existing network and finally curbing gas losses UFG (Unaccounted for gas) for financial benefits. Furthermore, depending on the results and their observation, it is directed to enhance the maximum allowable working/operating pressure (MAOP) of the system to 1235 PSIG from the current round about 900 PSIG, such that the capacity of the network could be entirely utilized. In gross, the results depict that the current model is very efficient and provides excellent results in the minimum possible time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title="natural gas">natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline%20network" title=" pipeline network"> pipeline network</a>, <a href="https://publications.waset.org/abstracts/search?q=UFG" title=" UFG"> UFG</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20pack" title=" transmission pack"> transmission pack</a>, <a href="https://publications.waset.org/abstracts/search?q=AGA" title=" AGA"> AGA</a> </p> <a href="https://publications.waset.org/abstracts/172999/natural-gas-flow-optimization-using-pressure-profiling-and-isolation-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4976</span> Automated Computer-Vision Analysis Pipeline of Calcium Imaging Neuronal Network Activity Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Oluigbo">David Oluigbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Erik%20Hemberg"> Erik Hemberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathan%20Shwatal"> Nathan Shwatal</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenqi%20Ding"> Wenqi Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin%20Yuan"> Yin Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Susanna%20Mierau"> Susanna Mierau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Calcium imaging is an established technique in neuroscience research for detecting activity in neural networks. Bursts of action potentials in neurons lead to transient increases in intracellular calcium visualized with fluorescent indicators. Manual identification of cell bodies and their contours by experts typically takes 10-20 minutes per calcium imaging recording. Our aim, therefore, was to design an automated pipeline to facilitate and optimize calcium imaging data analysis. Our pipeline aims to accelerate cell body and contour identification and production of graphical representations reflecting changes in neuronal calcium-based fluorescence. Methods: We created a Python-based pipeline that uses OpenCV (a computer vision Python package) to accurately (1) detect neuron contours, (2) extract the mean fluorescence within the contour, and (3) identify transient changes in the fluorescence due to neuronal activity. The pipeline consisted of 3 Python scripts that could both be easily accessed through a Python Jupyter notebook. In total, we tested this pipeline on ten separate calcium imaging datasets from murine dissociate cortical cultures. We next compared our automated pipeline outputs with the outputs of manually labeled data for neuronal cell location and corresponding fluorescent times series generated by an expert neuroscientist. Results: Our results show that our automated pipeline efficiently pinpoints neuronal cell body location and neuronal contours and provides a graphical representation of neural network metrics accurately reflecting changes in neuronal calcium-based fluorescence. The pipeline detected the shape, area, and location of most neuronal cell body contours by using binary thresholding and grayscale image conversion to allow computer vision to better distinguish between cells and non-cells. Its results were also comparable to manually analyzed results but with significantly reduced result acquisition times of 2-5 minutes per recording versus 10-20 minutes per recording. Based on these findings, our next step is to precisely measure the specificity and sensitivity of the automated pipeline’s cell body and contour detection to extract more robust neural network metrics and dynamics. Conclusion: Our Python-based pipeline performed automated computer vision-based analysis of calcium image recordings from neuronal cell bodies in neuronal cell cultures. Our new goal is to improve cell body and contour detection to produce more robust, accurate neural network metrics and dynamic graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20imaging" title="calcium imaging">calcium imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20activity" title=" neural activity"> neural activity</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/161680/automated-computer-vision-analysis-pipeline-of-calcium-imaging-neuronal-network-activity-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4975</span> Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Ramezanpanah">Zahra Ramezanpanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Joachim%20Carvallo"> Joachim Carvallo</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurelien%20Rodriguez"> Aurelien Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temporal%20graph%20network" title="temporal graph network">temporal graph network</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title=" anomaly detection"> anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber%20security" title=" cyber security"> cyber security</a>, <a href="https://publications.waset.org/abstracts/search?q=IDS" title=" IDS"> IDS</a> </p> <a href="https://publications.waset.org/abstracts/150847/real-time-network-anomaly-detection-systems-based-on-machine-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4974</span> Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Bouledroua">Omar Bouledroua</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Zelmati"> Djamel Zelmati</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahreddine%20Hafsi"> Zahreddine Hafsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Milos%20B.%20Djukic"> Milos B. Djukic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20embrittlement" title="hydrogen embrittlement">hydrogen embrittlement</a>, <a href="https://publications.waset.org/abstracts/search?q=pipelines" title=" pipelines"> pipelines</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20flow" title=" transient flow"> transient flow</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20pressure" title=" cyclic pressure"> cyclic pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack%20growth" title=" fatigue crack growth"> fatigue crack growth</a> </p> <a href="https://publications.waset.org/abstracts/178022/exploring-hydrogen-embrittlement-and-fatigue-crack-growth-in-api-5l-x52-steel-pipeline-under-cyclic-internal-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4973</span> COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kenan%20Morani">Kenan Morani</a>, <a href="https://publications.waset.org/abstracts/search?q=Esra%20Kaya%20Ayana"> Esra Kaya Ayana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20extraction" title=" lung extraction"> lung extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20F1%20score" title=" macro F1 score"> macro F1 score</a>, <a href="https://publications.waset.org/abstracts/search?q=UNet%20segmentation" title=" UNet segmentation"> UNet segmentation</a> </p> <a href="https://publications.waset.org/abstracts/169737/covid-19-detection-from-computed-tomography-images-using-unet-segmentation-region-extraction-and-classification-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4972</span> Fault Detection of Pipeline in Water Distribution Network System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shin%20Je%20Lee">Shin Je Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Go%20Bong%20Choi"> Go Bong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Cheol%20Seo"> Jeong Cheol Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Min%20Lee"> Jong Min Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Gibaek%20Lee"> Gibaek Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title="fault detection">fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pipeline%20model" title=" water pipeline model"> water pipeline model</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20Fourier%20transform" title=" fast Fourier transform"> fast Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet%20transform" title=" discrete wavelet transform"> discrete wavelet transform</a> </p> <a href="https://publications.waset.org/abstracts/5007/fault-detection-of-pipeline-in-water-distribution-network-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4971</span> Behavioral Study Circumferential and Longitudinal Cracks in a Steel Pipeline X65 and Repair Patch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadok%20Aboubakr">Sadok Aboubakr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanical behavior of cracks from several manufacturing defect in an oil pipeline, is characterized by the fact that defects'm taking several forms: circumferential, longitudinal and inclined crack that evolve over time. Increased lifetime of the constructions and in particular cylindrical tubes under internal pressure requires knowledge improving these defects during loading. From this study we simulated various forms of cracking and also their pipeline repair patch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title="stress intensity factor">stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%27s%20modulus" title=" Young's modulus"> Young's modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%27s%20ratio" title=" Poisson's ratio"> Poisson's ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Shear%20modulus" title=" Shear modulus"> Shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=Longueur%20du%20pipeline" title=" Longueur du pipeline"> Longueur du pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20angle%20of%20crack" title=" the angle of crack"> the angle of crack</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20length" title=" crack length"> crack length</a> </p> <a href="https://publications.waset.org/abstracts/17734/behavioral-study-circumferential-and-longitudinal-cracks-in-a-steel-pipeline-x65-and-repair-patch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4970</span> The Scenario Analysis of Shale Gas Development in China by Applying Natural Gas Pipeline Optimization Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meng%20Xu">Meng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexis%20K.%20H.%20Lau"> Alexis K. H. Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Xu"> Ming Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bill%20Barron"> Bill Barron</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Shahraki"> Narges Shahraki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As an emerging unconventional energy, shale gas has been an economically viable step towards a cleaner energy future in U.S. China also has shale resources that are estimated to be potentially the largest in the world. In addition, China has enormous unmet for a clean alternative to substitute coal. Nonetheless, the geological complexity of China’s shale basins and issues of water scarcity potentially impose serious constraints on shale gas development in China. Further, even if China could replicate to a significant degree the U.S. shale gas boom, China faces the problem of transporting the gas efficiently overland with its limited pipeline network throughput capacity and coverage. The aim of this study is to identify the potential bottlenecks in China’s gas transmission network, as well as to examine the shale gas development affecting particular supply locations and demand centers. We examine this through application of three scenarios with projecting domestic shale gas supply by 2020: optimistic, medium and conservative shale gas supply, taking references from the International Energy Agency’s (IEA’s) projections and China’s shale gas development plans. Separately we project the gas demand at provincial level, since shale gas will have more significant impact regionally than nationally. To quantitatively assess each shale gas development scenario, we formulated a gas pipeline optimization model. We used ArcGIS to generate the connectivity parameters and pipeline segment length. Other parameters are collected from provincial “twelfth-five year” plans and “China Oil and Gas Pipeline Atlas”. The multi-objective optimization model uses GAMs and Matlab. It aims to minimize the demands that are unable to be met, while simultaneously seeking to minimize total gas supply and transmission costs. The results indicate that, even if the primary objective is to meet the projected gas demand rather than cost minimization, there’s a shortfall of 9% in meeting total demand under the medium scenario. Comparing the results between the optimistic and medium supply of shale gas scenarios, almost half of the shale gas produced in Sichuan province and Chongqing won’t be able to be transmitted out by pipeline. On the demand side, the Henan province and Shanghai gas demand gap could be filled as much as 82% and 39% respectively, with increased shale gas supply. To conclude, the pipeline network in China is currently not sufficient in meeting the projected natural gas demand in 2020 under medium and optimistic scenarios, indicating the need for substantial pipeline capacity expansion for some of the existing network, and the importance of constructing new pipelines from particular supply to demand sites. If the pipeline constraint is overcame, Beijing, Shanghai, Jiangsu and Henan’s gas demand gap could potentially be filled, and China could thereby reduce almost 25% its dependency on LNG imports under the optimistic scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title="energy policy">energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20systematic%20analysis" title=" energy systematic analysis"> energy systematic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario%20analysis" title=" scenario analysis"> scenario analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20gas%20in%20China" title=" shale gas in China "> shale gas in China </a> </p> <a href="https://publications.waset.org/abstracts/29832/the-scenario-analysis-of-shale-gas-development-in-china-by-applying-natural-gas-pipeline-optimization-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4969</span> DeClEx-Processing Pipeline for Tumor Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Shinde">Gaurav Shinde</a>, <a href="https://publications.waset.org/abstracts/search?q=Sai%20Charan%20Gongiguntla"> Sai Charan Gongiguntla</a>, <a href="https://publications.waset.org/abstracts/search?q=Prajwal%20Shirur"> Prajwal Shirur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hambaba"> Ahmed Hambaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline that ensures that data mirrors real-world settings by incorporating Gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification, and explainability in a single pipeline called DeClEx. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=explainability" title=" explainability"> explainability</a> </p> <a href="https://publications.waset.org/abstracts/186501/declex-processing-pipeline-for-tumor-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4968</span> Gas Transmission Pipeline Integrity Management System Through Corrosion Mitigation and Inspection Strategy: A Case Study of Natural Gas Transmission Pipeline from Wafa Field to Mellitah Gas Plant in Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20Sassi">Osama Sassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Manal%20Eltorki"> Manal Eltorki</a>, <a href="https://publications.waset.org/abstracts/search?q=Iftikhar%20Ahmad"> Iftikhar Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poor integrity is one of the major causes of leaks and accidents in gas transmission pipelines. To ensure safe operation, it is must to have efficient and effective pipeline integrity management (PIM) system. The corrosion management is one of the important aspects of successful pipeline integrity management program together design, material selection, operations, risk evaluation and communication aspects to maintain pipelines in a fit-for-service condition. The objective of a corrosion management plan is to design corrosion mitigation, monitoring, and inspection strategy, and for maintenance in a timely manner. This paper presents the experience of corrosion management of a gas transmission pipeline from Wafa field to Mellitah gas plant in Libya. The pipeline is 525.5 km long and having 32 inches diameter. It is a buried pipeline. External corrosion on pipeline is controlled with a combination of coatings and cathodic protection while internal corrosion is controlled with a combination of chemical inhibitors, periodic cleaning and process control. The monitoring and inspection techniques provide a way to measure the effectiveness of corrosion control systems and provide an early warning when changing conditions may be causing a corrosion problem. This paper describes corrosion management system used in Mellitah Oil & Gas BV for its gas transmission pipeline based on standard practices of corrosion mitigation and inspection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20mitigation%20on%20gas%20transmission%20pipelines" title="corrosion mitigation on gas transmission pipelines">corrosion mitigation on gas transmission pipelines</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline%20integrity%20management" title=" pipeline integrity management"> pipeline integrity management</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20management%20of%20gas%20pipelines" title=" corrosion management of gas pipelines"> corrosion management of gas pipelines</a>, <a href="https://publications.waset.org/abstracts/search?q=prevention%20and%20inspection%20of%20corrosion" title=" prevention and inspection of corrosion"> prevention and inspection of corrosion</a> </p> <a href="https://publications.waset.org/abstracts/178928/gas-transmission-pipeline-integrity-management-system-through-corrosion-mitigation-and-inspection-strategy-a-case-study-of-natural-gas-transmission-pipeline-from-wafa-field-to-mellitah-gas-plant-in-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4967</span> Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Gholami">H. Gholami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jalali%20Azizpour"> M. Jalali Azizpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20crack" title="stress corrosion crack">stress corrosion crack</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20assessment" title=" direct assessment"> direct assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=disbondment" title=" disbondment"> disbondment</a>, <a href="https://publications.waset.org/abstracts/search?q=transgranular%20SCC" title=" transgranular SCC"> transgranular SCC</a>, <a href="https://publications.waset.org/abstracts/search?q=compressor%20station" title=" compressor station"> compressor station</a> </p> <a href="https://publications.waset.org/abstracts/20469/stress-corrosion-crack-identification-with-direct-assessment-method-in-pipeline-downstream-from-a-compressor-station" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4966</span> The Advancement of Environmental Impact Assessment for 5th Transmission Natural Gas Pipeline Project in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Penrug%20Pengsombut">Penrug Pengsombut</a>, <a href="https://publications.waset.org/abstracts/search?q=Worawut%20Hamarn"> Worawut Hamarn</a>, <a href="https://publications.waset.org/abstracts/search?q=Teerawuth%20Suwannasri"> Teerawuth Suwannasri</a>, <a href="https://publications.waset.org/abstracts/search?q=Kittiphong%20Songrukkiat"> Kittiphong Songrukkiat</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanatip%20Ratanachoo"> Kanatip Ratanachoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PTT Public Company Limited or simply PTT has played an important role in strengthening national energy security of the Kingdom of Thailand by transporting natural gas to customers in power, industrial and commercial sectors since 1981. PTT has been constructing and operating natural gas pipeline system of over 4,500-km network length both onshore and offshore laid through different area classifications i.e., marine, forest, agriculture, rural, urban, and city areas. During project development phase, an Environmental Impact Assessment (EIA) is conducted and submitted to the Office of Natural Resources and Environmental Policy and Planning (ONEP) for approval before project construction commencement. Knowledge and experiences gained and revealed from EIA in the past projects definitely are developed to further advance EIA study process for newly 5th Transmission Natural Gas Pipeline Project (5TP) with approximately 415 kilometers length. The preferred pipeline route is selected and justified by SMARTi map, an advance digital one-map platform with consists of multiple layers geographic and environmental information. Sensitive area impact focus (SAIF) is a practicable impact assessment methodology which appropriate for a particular long distance infrastructure project such as 5TP. An environmental modeling simulation is adopted into SAIF methodology for impact quantified in all sensitive areas whereas other area along pipeline right-of-ways is typically assessed as an impact representative. Resulting time and cost deduction is beneficial to project for early start. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact%20assessment" title="environmental impact assessment">environmental impact assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=EIA" title=" EIA"> EIA</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20pipeline" title=" natural gas pipeline"> natural gas pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitive%20area%20impact%20focus" title=" sensitive area impact focus"> sensitive area impact focus</a>, <a href="https://publications.waset.org/abstracts/search?q=SAIF" title=" SAIF"> SAIF</a> </p> <a href="https://publications.waset.org/abstracts/77171/the-advancement-of-environmental-impact-assessment-for-5th-transmission-natural-gas-pipeline-project-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4965</span> Prison Pipeline or College Pathways: Transforming the Urban Classroom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcia%20J.%20Watson">Marcia J. Watson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The “school-to-prison pipeline” is a widely known phenomenon within education. Although data surrounding this epidemic is daunting, we coin the term “school-to-postsecondary pipeline” to explore proactive strategies that are currently working in K-12 education for African American students. The assumption that high school graduation, postsecondary matriculation, and social success are not the assumed norms for African American youth, positions the term “school-to-postsecondary pipeline” as the newly casted advocacy term for African American educational success. Using secondary data from the Children’s Defense Fund and the U.S. Department of Education’s Office of Civil Rights, we examine current conditions of educational accessibility and attainment for African American students, and provide effective strategies for classroom teachers, administrators, and parents to use for the immediate implementation in schools. These strategies include: (a) engaging instruction, (b) relevant curriculum, and (c) utilizing useful enrichment and community resources. By providing proactive steps towards the school-to-postsecondary pipeline, we hope to counter the docility of the school-to-prison pipeline as the assumed reality for African American youth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=college%20access" title="college access">college access</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title=" higher education"> higher education</a>, <a href="https://publications.waset.org/abstracts/search?q=school-to-prison%20pipeline" title=" school-to-prison pipeline"> school-to-prison pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20education%20reform" title=" urban education reform"> urban education reform</a> </p> <a href="https://publications.waset.org/abstracts/20516/prison-pipeline-or-college-pathways-transforming-the-urban-classroom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4964</span> A CFD Analysis of Flow through a High-Pressure Natural Gas Pipeline with an Undeformed and Deformed Orifice Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ki%C5%A1">R. Kiš</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Malcho"> M. Malcho</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Janovcov%C3%A1"> M. Janovcová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to present a numerical analysis of the natural gas which flows through a high-pressure pipeline and an orifice plate, through the use of CFD methods. The paper contains CFD calculations for the flow of natural gas in a pipe with different geometry used for the orifice plates. One of them has a standard geometry and a shape without any deformation and the other is deformed by the action of the pressure differential. It shows the behaviour of natural gas in a pipeline using the velocity profiles and pressure fields of the gas in both models with their differences. The entire research is based on the elimination of any inaccuracy which should appear in the flow of the natural gas measured in the high-pressure pipelines of the gas industry and which is currently not given in the relevant standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orifice%20plate" title="orifice plate">orifice plate</a>, <a href="https://publications.waset.org/abstracts/search?q=high-pressure%20pipeline" title=" high-pressure pipeline"> high-pressure pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title=" natural gas"> natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20analysis" title=" CFD analysis"> CFD analysis</a> </p> <a href="https://publications.waset.org/abstracts/6081/a-cfd-analysis-of-flow-through-a-high-pressure-natural-gas-pipeline-with-an-undeformed-and-deformed-orifice-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4963</span> Rheological and Computational Analysis of Crude Oil Transportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar">Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Kumar"> Satish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jashanpreet%20Singh"> Jashanpreet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surfactant" title="surfactant">surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=natural" title=" natural"> natural</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/57573/rheological-and-computational-analysis-of-crude-oil-transportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4962</span> Enhancing Rupture Pressure Prediction for Corroded Pipes Through Finite Element Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benkouiten%20Imene">Benkouiten Imene</a>, <a href="https://publications.waset.org/abstracts/search?q=Chabli%20Ouerdia"> Chabli Ouerdia</a>, <a href="https://publications.waset.org/abstracts/search?q=Boutoutaou%20Hamid"> Boutoutaou Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadri%20Nesrine"> Kadri Nesrine</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouledroua%20Omar"> Bouledroua Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algeria is actively enhancing gas productivity by augmenting the supply flow. However, this effort has led to increased internal pressure, posing a potential risk to the pipeline's integrity, particularly in the presence of corrosion defects. Sonatrach relies on a vast network of pipelines spanning 24,000 kilometers for the transportation of gas and oil. The aging of these pipelines raises the likelihood of corrosion both internally and externally, heightening the risk of ruptures. To address this issue, a comprehensive inspection is imperative, utilizing specialized scraping tools. These advanced tools furnish a detailed assessment of all pipeline defects. It is essential to recalculate the pressure parameters to safeguard the corroded pipeline's integrity while ensuring the continuity of production. In this context, Sonatrach employs symbolic pressure limit calculations, such as ASME B31G (2009) and the modified ASME B31G (2012). The aim of this study is to perform a comparative analysis of various limit pressure calculation methods documented in the literature, namely DNV RP F-101, SHELL, P-CORRC, NETTO, and CSA Z662. This comparative assessment will be based on a dataset comprising 329 burst tests published in the literature. Ultimately, we intend to introduce a novel approach grounded in the finite element method, employing ANSYS software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipeline%20burst%20pressure" title="pipeline burst pressure">pipeline burst pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=burst%20test" title=" burst test"> burst test</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20defect" title=" corrosion defect"> corrosion defect</a>, <a href="https://publications.waset.org/abstracts/search?q=corroded%20pipeline" title=" corroded pipeline"> corroded pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/179892/enhancing-rupture-pressure-prediction-for-corroded-pipes-through-finite-element-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4961</span> Chairussyuhur Arman, Totti Tjiptosumirat, Muhammad Gunawan, Mastur, Joko Priyono, Baiq Tri Ratna Erawati</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20M.%20Giannakou">Maria M. Giannakou</a>, <a href="https://publications.waset.org/abstracts/search?q=Athanasios%20K.%20Ziliaskopoulos"> Athanasios K. Ziliaskopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transmission pipelines carrying natural gas are often routed through populated cities, industrial and environmentally sensitive areas. While the need for these networks is unquestionable, there are serious concerns about the risk these lifeline networks pose to the people, to their habitat and to the critical infrastructures, especially in view of natural disasters such as earthquakes. This work presents an Integrated Pipeline Risk Management methodology (IPRM) for assessing the hazard associated with a natural gas pipeline failure due to natural or manmade disasters. IPRM aims to optimize the allocation of the available resources to countermeasures in order to minimize the impacts of pipeline failure to humans, the environment, the infrastructure and the economic activity. A proposed knapsack mathematical programming formulation is introduced that optimally selects the proper mitigation policies based on the estimated cost – benefit ratios. The proposed model is demonstrated with a small numerical example. The vulnerability analysis of these pipelines and the quantification of consequences from such failures can be useful for natural gas industries on deciding which mitigation measures to implement on the existing pipeline networks with the minimum cost in an acceptable level of hazard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20benefit%20analysis" title="cost benefit analysis">cost benefit analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=knapsack%20problem" title=" knapsack problem"> knapsack problem</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20distribution%20network" title=" natural gas distribution network"> natural gas distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20mitigation" title=" risk mitigation"> risk mitigation</a> </p> <a href="https://publications.waset.org/abstracts/37784/chairussyuhur-arman-totti-tjiptosumirat-muhammad-gunawan-mastur-joko-priyono-baiq-tri-ratna-erawati" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4960</span> Studying Roughness Effects on Flow Regimes in Offshore Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sadegh%20Narges">Mohammad Sadegh Narges</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Ghadampour"> Zahra Ghadampour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the specific condition, offshore pipelines are given careful consideration and care in both design and operation. Most of the offshore pipeline flows are multi-phase. Multi-phase flows construct different pattern or flow regimes (in simultaneous gas-liquid flow, flow regimes like slug flow, wave and …) under different circumstances. One of the influencing factors on the flow regime is the pipeline roughness value. So far, roughness value influences and the sensitivity of the present models to this parameter have not been taken into consideration. Therefore, roughness value influences on the flow regimes in offshore pipelines are discussed in this paper. Results showed that geometry, absolute pipeline roughness value (materials that the pipeline is made of) and flow phases prevailing the system are of the influential parameters on the flow regimes prevailing multi-phase pipelines in a way that a change in any of these parameters results in a change in flow regimes in all or part of the pipeline system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absolute%20roughness" title="absolute roughness">absolute roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20regime" title=" flow regime"> flow regime</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20flow" title=" multi-phase flow"> multi-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20pipelines" title=" offshore pipelines"> offshore pipelines</a> </p> <a href="https://publications.waset.org/abstracts/63642/studying-roughness-effects-on-flow-regimes-in-offshore-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4959</span> Algorithmic Fault Location in Complex Gas Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soban%20Najam">Soban Najam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Jahanzeb"> S. M. Jahanzeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Sohail"> Ahmed Sohail</a>, <a href="https://publications.waset.org/abstracts/search?q=Faraz%20Idris%20Khan"> Faraz Idris Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the recent increase in reliance on Gas as the primary source of energy across the world, there has been a lot of research conducted on gas distribution networks. As the complexity and size of these networks grow, so does the leakage of gas in the distribution network. One of the most crucial factors in the production and distribution of gas is UFG or Unaccounted for Gas. The presence of UFG signifies that there is a difference between the amount of gas distributed, and the amount of gas billed. Our approach is to use information that we acquire from several specified points in the network. This information will be used to calculate the loss occurring in the network using the developed algorithm. The Algorithm can also identify the leakages at any point of the pipeline so we can easily detect faults and rectify them within minimal time, minimal efforts and minimal resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FLA" title="FLA">FLA</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20location%20analysis" title=" fault location analysis"> fault location analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=GDN" title=" GDN"> GDN</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20distribution%20network" title=" gas distribution network"> gas distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system"> geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=NMS" title=" NMS"> NMS</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20Management%20system" title=" network Management system"> network Management system</a>, <a href="https://publications.waset.org/abstracts/search?q=OMS" title=" OMS"> OMS</a>, <a href="https://publications.waset.org/abstracts/search?q=outage%20management%20system" title=" outage management system"> outage management system</a>, <a href="https://publications.waset.org/abstracts/search?q=SSGC" title=" SSGC"> SSGC</a>, <a href="https://publications.waset.org/abstracts/search?q=Sui%20Southern%20gas%20company" title=" Sui Southern gas company"> Sui Southern gas company</a>, <a href="https://publications.waset.org/abstracts/search?q=UFG" title=" UFG"> UFG</a>, <a href="https://publications.waset.org/abstracts/search?q=unaccounted%20for%20gas" title=" unaccounted for gas"> unaccounted for gas</a> </p> <a href="https://publications.waset.org/abstracts/34657/algorithmic-fault-location-in-complex-gas-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">626</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4958</span> The Interaction of Adjacent Defects and the Effect on the Failure Pressure of the Corroded Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Wang">W. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhang"> Y. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Shuai"> J. Shuai</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Lv"> Z. Lv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction between defects has an essential influence on the bearing capacity of pipelines. This work developed the finite element model of pipelines containing adjacent defects, which includes longitudinally aligned, circumferentially aligned, and diagonally aligned defects. The relationships between spacing and geometries of defects and the failure pressure of pipelines, and the interaction between defects are investigated. The results show that the orientation of defects is an influential factor in the failure pressure of the pipeline. The influence of defect spacing on the failure pressure of the pipeline is non-linear, and the relationship presents different trends depending on the orientation of defects. The increase of defect geometry will weaken the failure pressure of the pipeline, and for the interaction between defects, the increase of defect depth will enhance it, and the increase of defect length will weaken it. According to the research on the interaction rule between defects with different orientations, the interacting coefficients under different orientations of defects are compared. It is determined that the diagonally aligned defects with the overlap of longitudinal projections are the most obvious arrangement of interaction between defects, and the limited distance of interaction between defects is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipeline" title="pipeline">pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=adjacent%20defects" title=" adjacent defects"> adjacent defects</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20between%20defects" title=" interaction between defects"> interaction between defects</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20pressure" title=" failure pressure"> failure pressure</a> </p> <a href="https://publications.waset.org/abstracts/155026/the-interaction-of-adjacent-defects-and-the-effect-on-the-failure-pressure-of-the-corroded-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4957</span> A Resilience Process Model of Natural Gas Pipeline Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaoming%20Yang">Zhaoming Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Xiang"> Qi Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20He"> Qian He</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Havbro%20Faber"> Michael Havbro Faber</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrico%20Zio"> Enrico Zio</a>, <a href="https://publications.waset.org/abstracts/search?q=Huai%20Su"> Huai Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinjun%20Zhang"> Jinjun Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resilience is one of the key factors for system safety assessment and optimization, and resilience studies of natural gas pipeline systems (NGPS), especially in terms of process descriptions, are still being explored. Based on the three main stages, which are function loss process, recovery process, and waiting process, the paper has built functions and models which are according to the practical characteristics of NGPS and mainly analyzes the characteristics of deterministic interruptions. The resilience of NGPS also considers the threshold of the system function or users' satisfaction. The outcomes, which quantify the resilience of NGPS in different evaluation views, can be combined with the max flow and shortest path methods, help with the optimization of extra gas supplies and gas routes as well as pipeline maintenance strategies, the quick analysis of disturbance effects and the improvement of NGPS resilience evaluation accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20pipeline%20system" title="natural gas pipeline system">natural gas pipeline system</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience" title=" resilience"> resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20modeling" title=" process modeling"> process modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic%20disturbance" title=" deterministic disturbance"> deterministic disturbance</a> </p> <a href="https://publications.waset.org/abstracts/162218/a-resilience-process-model-of-natural-gas-pipeline-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4956</span> Estimation of Elastic Modulus of Soil Surrounding Buried Pipeline Using Multi-Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Mog%20Choi">Won Mog Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Kyeong%20Hong"> Seong Kyeong Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Young%20Jeong"> Seok Young Jeong </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stress on the buried pipeline under pavement is significantly affected by vehicle loads and elastic modulus of the soil surrounding the pipeline. The correct elastic modulus of soil has to be applied to the finite element model to investigate the effect of the vehicle loads on the buried pipeline using finite element analysis. The purpose of this study is to establish the approach to calculating the correct elastic modulus of soil using the optimization process. The optimal elastic modulus of soil, which minimizes the difference between the strain measured from vehicle driving test at the velocity of 35km/h and the strain calculated from finite element analyses, was calculated through the optimization process using multi-response surface methodology. Three elastic moduli of soil (road layer, original soil, dense sand) surrounding the pipeline were defined as the variables for the optimization. Further analyses with the optimal elastic modulus at the velocities of 4.27km/h, 15.47km/h, 24.18km/h were performed and compared to the test results to verify the applicability of multi-response surface methodology. The results indicated that the strain of the buried pipeline was mostly affected by the elastic modulus of original soil, followed by the dense sand and the load layer, as well as the results of further analyses with optimal elastic modulus of soil show good agreement with the test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipeline" title="pipeline">pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus%20of%20soil" title=" elastic modulus of soil"> elastic modulus of soil</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/44795/estimation-of-elastic-modulus-of-soil-surrounding-buried-pipeline-using-multi-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4955</span> Third Super-Harmonic Resonance in Vortex-Induced Vibration of a Pipeline Close to the Seabed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiming%20Jin">Yiming Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Dong"> Ping Dong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The third super-harmonic resonance of a pipeline close to the seabed is investigated in this paper. To analyse the vortex-induced vibration (VIV) of the pipeline close to the seabed, the classic Van der Pol equation is extended with a nonlinear item. Then, on the base of the multi-scale method, the frequency-response curves of the pipeline with regard to the third super-harmonic resonance are studied with a series of parameters, such as the mass ratio, frequency, damp ratio and gap ratio. On the whole, the numerical results show that the characters of third super-harmonic resonance are quite from that of primary resonance, though with the same trend that the larger is the mass ratio, the smaller impact the gap ratio has on the frequency-response curves of the third super-harmonic resonance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20third%20super-harmonic%20resonance" title="the third super-harmonic resonance">the third super-harmonic resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=gap%20ratio" title=" gap ratio"> gap ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-induced%20vibration" title=" vortex-induced vibration"> vortex-induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-scale%20method" title=" multi-scale method"> multi-scale method</a> </p> <a href="https://publications.waset.org/abstracts/42056/third-super-harmonic-resonance-in-vortex-induced-vibration-of-a-pipeline-close-to-the-seabed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4954</span> Study of Electro Magnetic Acoustic Transducer to Detect Flaw in Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Lin%20Shen">Yu-Lin Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Kuen%20Chang"> Ming-Kuen Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electro Magnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMAT" title="EMAT">EMAT</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20defect" title=" artificial defect"> artificial defect</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20testing" title=" ultrasonic testing"> ultrasonic testing</a> </p> <a href="https://publications.waset.org/abstracts/23052/study-of-electro-magnetic-acoustic-transducer-to-detect-flaw-in-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4953</span> Second Sub-Harmonic Resonance in Vortex-Induced Vibrations of a Marine Pipeline Close to the Seabed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiming%20Jin">Yiming Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanhao%20Gao"> Yuanhao Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, using the method of multiple scales, the second sub-harmonic resonance in vortex-induced vibrations (VIV) of a marine pipeline close to the seabed is investigated based on a developed wake oscillator model. The amplitude-frequency equations are also derived. It is found that the oscillation will increase all the time when both discriminants of the amplitude-frequency equations are positive while the oscillation will decay when the discriminants are negative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vortex-induced%20vibrations" title="vortex-induced vibrations">vortex-induced vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20pipeline" title=" marine pipeline"> marine pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=seabed" title=" seabed"> seabed</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-harmonic%20resonance" title=" sub-harmonic resonance"> sub-harmonic resonance</a> </p> <a href="https://publications.waset.org/abstracts/50829/second-sub-harmonic-resonance-in-vortex-induced-vibrations-of-a-marine-pipeline-close-to-the-seabed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20network&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20network&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20network&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20network&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20network&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20network&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20network&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20network&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20network&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20network&page=166">166</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20network&page=167">167</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20network&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>