CINXE.COM

Stochastic process - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Stochastic process - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"326312bd-529e-421a-818a-19eee4ede00d","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Stochastic_process","wgTitle":"Stochastic process","wgCurRevisionId":1257085679,"wgRevisionId":1257085679,"wgArticleId":47895,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1: long volume value","Articles with short description","Short description is different from Wikidata","Wikipedia spam cleanup from July 2018","Wikipedia further reading cleanup","Commons category link is on Wikidata","Stochastic processes","Stochastic models","Statistical data types"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Stochastic_process","wgRelevantArticleId":47895,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":200000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q176737","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics": true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/1200px-Standard_deviation_diagram_micro.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/800px-Standard_deviation_diagram_micro.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="400"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/640px-Standard_deviation_diagram_micro.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="320"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Stochastic process - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Stochastic_process"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Stochastic_process&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Stochastic_process"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Stochastic_process rootpage-Stochastic_process skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Stochastic+process" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Stochastic+process" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Stochastic+process" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Stochastic+process" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Introduction" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Introduction"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Introduction</span> </div> </a> <button aria-controls="toc-Introduction-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Introduction subsection</span> </button> <ul id="toc-Introduction-sublist" class="vector-toc-list"> <li id="toc-Classifications" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Classifications"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Classifications</span> </div> </a> <ul id="toc-Classifications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Etymology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Etymology"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Etymology</span> </div> </a> <ul id="toc-Etymology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Terminology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Terminology"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Terminology</span> </div> </a> <ul id="toc-Terminology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Notation</span> </div> </a> <ul id="toc-Notation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Bernoulli_process" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bernoulli_process"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Bernoulli process</span> </div> </a> <ul id="toc-Bernoulli_process-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Random_walk" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Random_walk"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Random walk</span> </div> </a> <ul id="toc-Random_walk-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Wiener_process" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Wiener_process"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Wiener process</span> </div> </a> <ul id="toc-Wiener_process-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poisson_process" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Poisson_process"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Poisson process</span> </div> </a> <ul id="toc-Poisson_process-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Definitions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Definitions</span> </div> </a> <button aria-controls="toc-Definitions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definitions subsection</span> </button> <ul id="toc-Definitions-sublist" class="vector-toc-list"> <li id="toc-Stochastic_process" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stochastic_process"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Stochastic process</span> </div> </a> <ul id="toc-Stochastic_process-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Index_set" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Index_set"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Index set</span> </div> </a> <ul id="toc-Index_set-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-State_space" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#State_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>State space</span> </div> </a> <ul id="toc-State_space-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sample_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sample_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Sample function</span> </div> </a> <ul id="toc-Sample_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Increment" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Increment"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Increment</span> </div> </a> <ul id="toc-Increment-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_definitions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Further_definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Further definitions</span> </div> </a> <ul id="toc-Further_definitions-sublist" class="vector-toc-list"> <li id="toc-Law" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Law"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.1</span> <span>Law</span> </div> </a> <ul id="toc-Law-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Finite-dimensional_probability_distributions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Finite-dimensional_probability_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.2</span> <span>Finite-dimensional probability distributions</span> </div> </a> <ul id="toc-Finite-dimensional_probability_distributions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Stationarity" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Stationarity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.3</span> <span>Stationarity</span> </div> </a> <ul id="toc-Stationarity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Filtration" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Filtration"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.4</span> <span>Filtration</span> </div> </a> <ul id="toc-Filtration-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Modification" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Modification"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.5</span> <span>Modification</span> </div> </a> <ul id="toc-Modification-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Indistinguishable" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Indistinguishable"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.6</span> <span>Indistinguishable</span> </div> </a> <ul id="toc-Indistinguishable-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Separability" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Separability"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.7</span> <span>Separability</span> </div> </a> <ul id="toc-Separability-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Independence" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Independence"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.8</span> <span>Independence</span> </div> </a> <ul id="toc-Independence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Uncorrelatedness" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Uncorrelatedness"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.9</span> <span>Uncorrelatedness</span> </div> </a> <ul id="toc-Uncorrelatedness-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Independence_implies_uncorrelatedness" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Independence_implies_uncorrelatedness"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.10</span> <span>Independence implies uncorrelatedness</span> </div> </a> <ul id="toc-Independence_implies_uncorrelatedness-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Orthogonality" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Orthogonality"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.11</span> <span>Orthogonality</span> </div> </a> <ul id="toc-Orthogonality-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Skorokhod_space" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Skorokhod_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.12</span> <span>Skorokhod space</span> </div> </a> <ul id="toc-Skorokhod_space-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Regularity" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Regularity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6.13</span> <span>Regularity</span> </div> </a> <ul id="toc-Regularity-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Further_examples" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Further examples</span> </div> </a> <button aria-controls="toc-Further_examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Further examples subsection</span> </button> <ul id="toc-Further_examples-sublist" class="vector-toc-list"> <li id="toc-Markov_processes_and_chains" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Markov_processes_and_chains"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Markov processes and chains</span> </div> </a> <ul id="toc-Markov_processes_and_chains-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Martingale" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Martingale"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Martingale</span> </div> </a> <ul id="toc-Martingale-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lévy_process" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lévy_process"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Lévy process</span> </div> </a> <ul id="toc-Lévy_process-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Random_field" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Random_field"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Random field</span> </div> </a> <ul id="toc-Random_field-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Point_process" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Point_process"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Point process</span> </div> </a> <ul id="toc-Point_process-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-Early_probability_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Early_probability_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Early probability theory</span> </div> </a> <ul id="toc-Early_probability_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Statistical_mechanics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Statistical_mechanics"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Statistical mechanics</span> </div> </a> <ul id="toc-Statistical_mechanics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Measure_theory_and_probability_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Measure_theory_and_probability_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Measure theory and probability theory</span> </div> </a> <ul id="toc-Measure_theory_and_probability_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Birth_of_modern_probability_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Birth_of_modern_probability_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Birth of modern probability theory</span> </div> </a> <ul id="toc-Birth_of_modern_probability_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Stochastic_processes_after_World_War_II" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stochastic_processes_after_World_War_II"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Stochastic processes after World War II</span> </div> </a> <ul id="toc-Stochastic_processes_after_World_War_II-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Discoveries_of_specific_stochastic_processes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Discoveries_of_specific_stochastic_processes"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>Discoveries of specific stochastic processes</span> </div> </a> <ul id="toc-Discoveries_of_specific_stochastic_processes-sublist" class="vector-toc-list"> <li id="toc-Bernoulli_process_2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Bernoulli_process_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6.1</span> <span>Bernoulli process</span> </div> </a> <ul id="toc-Bernoulli_process_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Random_walks" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Random_walks"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6.2</span> <span>Random walks</span> </div> </a> <ul id="toc-Random_walks-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Wiener_process_2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Wiener_process_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6.3</span> <span>Wiener process</span> </div> </a> <ul id="toc-Wiener_process_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poisson_process_2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Poisson_process_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6.4</span> <span>Poisson process</span> </div> </a> <ul id="toc-Poisson_process_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Markov_processes" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Markov_processes"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6.5</span> <span>Markov processes</span> </div> </a> <ul id="toc-Markov_processes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lévy_processes" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Lévy_processes"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6.6</span> <span>Lévy processes</span> </div> </a> <ul id="toc-Lévy_processes-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Mathematical_construction" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Mathematical_construction"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Mathematical construction</span> </div> </a> <button aria-controls="toc-Mathematical_construction-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Mathematical construction subsection</span> </button> <ul id="toc-Mathematical_construction-sublist" class="vector-toc-list"> <li id="toc-Construction_issues" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Construction_issues"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Construction issues</span> </div> </a> <ul id="toc-Construction_issues-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Resolving_construction_issues" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Resolving_construction_issues"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Resolving construction issues</span> </div> </a> <ul id="toc-Resolving_construction_issues-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Application" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Application"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Application</span> </div> </a> <button aria-controls="toc-Application-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Application subsection</span> </button> <ul id="toc-Application-sublist" class="vector-toc-list"> <li id="toc-Applications_in_Finance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Applications_in_Finance"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Applications in Finance</span> </div> </a> <ul id="toc-Applications_in_Finance-sublist" class="vector-toc-list"> <li id="toc-Black-Scholes_Model" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Black-Scholes_Model"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1.1</span> <span>Black-Scholes Model</span> </div> </a> <ul id="toc-Black-Scholes_Model-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Stochastic_Volatility_Models" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Stochastic_Volatility_Models"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1.2</span> <span>Stochastic Volatility Models</span> </div> </a> <ul id="toc-Stochastic_Volatility_Models-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications_in_Biology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Applications_in_Biology"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Applications in Biology</span> </div> </a> <ul id="toc-Applications_in_Biology-sublist" class="vector-toc-list"> <li id="toc-Population_Dynamics" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Population_Dynamics"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2.1</span> <span>Population Dynamics</span> </div> </a> <ul id="toc-Population_Dynamics-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Further reading</span> </div> </a> <button aria-controls="toc-Further_reading-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Further reading subsection</span> </button> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> <li id="toc-Articles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Articles"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.1</span> <span>Articles</span> </div> </a> <ul id="toc-Articles-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Books" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Books"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.2</span> <span>Books</span> </div> </a> <ul id="toc-Books-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Stochastic process</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 46 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-46" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">46 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Stogastiese_proses" title="Stogastiese proses – Afrikaans" lang="af" hreflang="af" data-title="Stogastiese proses" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D9%85%D9%84%D9%8A%D8%A9_%D8%AA%D8%B5%D8%A7%D8%AF%D9%81%D9%8A%D8%A9" title="عملية تصادفية – Arabic" lang="ar" hreflang="ar" data-title="عملية تصادفية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Procesu_estoc%C3%A1sticu" title="Procesu estocásticu – Asturian" lang="ast" hreflang="ast" data-title="Procesu estocásticu" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%A6%E0%A7%88%E0%A6%AC_%E0%A6%AA%E0%A7%8D%E0%A6%B0%E0%A6%95%E0%A7%8D%E0%A6%B0%E0%A6%BF%E0%A6%AF%E0%A6%BC%E0%A6%BE" title="দৈব প্রক্রিয়া – Bangla" lang="bn" hreflang="bn" data-title="দৈব প্রক্রিয়া" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A1%D1%82%D0%BE%D1%85%D0%B0%D1%81%D1%82%D0%B8%D1%87%D0%B5%D0%BD_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81" title="Стохастичен процес – Bulgarian" lang="bg" hreflang="bg" data-title="Стохастичен процес" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Proc%C3%A9s_estoc%C3%A0stic" title="Procés estocàstic – Catalan" lang="ca" hreflang="ca" data-title="Procés estocàstic" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/N%C3%A1hodn%C3%BD_proces" title="Náhodný proces – Czech" lang="cs" hreflang="cs" data-title="Náhodný proces" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Stochastischer_Prozess" title="Stochastischer Prozess – German" lang="de" hreflang="de" data-title="Stochastischer Prozess" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Juhuslik_protsess" title="Juhuslik protsess – Estonian" lang="et" hreflang="et" data-title="Juhuslik protsess" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Proceso_estoc%C3%A1stico" title="Proceso estocástico – Spanish" lang="es" hreflang="es" data-title="Proceso estocástico" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Stokastiko" title="Stokastiko – Esperanto" lang="eo" hreflang="eo" data-title="Stokastiko" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Prozesu_estokastiko" title="Prozesu estokastiko – Basque" lang="eu" hreflang="eu" data-title="Prozesu estokastiko" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%B1%D8%A7%DB%8C%D9%86%D8%AF_%D8%AA%D8%B5%D8%A7%D8%AF%D9%81%DB%8C" title="فرایند تصادفی – Persian" lang="fa" hreflang="fa" data-title="فرایند تصادفی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Processus_stochastique" title="Processus stochastique – French" lang="fr" hreflang="fr" data-title="Processus stochastique" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Pr%C3%B3iseas_stocastach" title="Próiseas stocastach – Irish" lang="ga" hreflang="ga" data-title="Próiseas stocastach" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Proceso_estoc%C3%A1stico" title="Proceso estocástico – Galician" lang="gl" hreflang="gl" data-title="Proceso estocástico" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%99%95%EB%A5%A0_%EA%B3%BC%EC%A0%95" title="확률 과정 – Korean" lang="ko" hreflang="ko" data-title="확률 과정" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8A%D5%A1%D5%BF%D5%A1%D5%B0%D5%A1%D5%AF%D5%A1%D5%B6_%D5%BA%D6%80%D5%B8%D6%81%D5%A5%D5%BD" title="Պատահական պրոցես – Armenian" lang="hy" hreflang="hy" data-title="Պատահական պրոցես" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%B8%E0%A4%AE%E0%A5%8D%E0%A4%AD%E0%A4%BE%E0%A4%B5%E0%A5%8D%E2%80%8D%E0%A4%AF_%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%95%E0%A5%8D%E0%A4%B0%E0%A4%AE" title="प्रसम्भाव्‍य प्रक्रम – Hindi" lang="hi" hreflang="hi" data-title="प्रसम्भाव्‍य प्रक्रम" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Proses_stokastik" title="Proses stokastik – Indonesian" lang="id" hreflang="id" data-title="Proses stokastik" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Processo_stocastico" title="Processo stocastico – Italian" lang="it" hreflang="it" data-title="Processo stocastico" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%AA%D7%94%D7%9C%D7%99%D7%9A_%D7%A1%D7%98%D7%95%D7%9B%D7%A1%D7%98%D7%99" title="תהליך סטוכסטי – Hebrew" lang="he" hreflang="he" data-title="תהליך סטוכסטי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9A%D0%B5%D0%B7%D0%B4%D0%B5%D0%B9%D1%81%D0%BE%D2%9B_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81" title="Кездейсоқ процесс – Kazakh" lang="kk" hreflang="kk" data-title="Кездейсоқ процесс" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Sztochasztikus_folyamat" title="Sztochasztikus folyamat – Hungarian" lang="hu" hreflang="hu" data-title="Sztochasztikus folyamat" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%95%E0%B5%8D%E0%B4%B0%E0%B4%AE%E0%B4%AE%E0%B4%BF%E0%B4%B2%E0%B5%8D%E0%B4%B2%E0%B4%BE%E0%B4%AA%E0%B5%8D%E0%B4%B0%E0%B4%95%E0%B5%8D%E0%B4%B0%E0%B4%BF%E0%B4%AF" title="ക്രമമില്ലാപ്രക്രിയ – Malayalam" lang="ml" hreflang="ml" data-title="ക്രമമില്ലാപ്രക്രിയ" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Proses_stokastik" title="Proses stokastik – Malay" lang="ms" hreflang="ms" data-title="Proses stokastik" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Stochastisch_proces" title="Stochastisch proces – Dutch" lang="nl" hreflang="nl" data-title="Stochastisch proces" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E9%81%8E%E7%A8%8B" title="確率過程 – Japanese" lang="ja" hreflang="ja" data-title="確率過程" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Stokastisk_prosess" title="Stokastisk prosess – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Stokastisk prosess" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Proces_stochastyczny" title="Proces stochastyczny – Polish" lang="pl" hreflang="pl" data-title="Proces stochastyczny" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Processo_estoc%C3%A1stico" title="Processo estocástico – Portuguese" lang="pt" hreflang="pt" data-title="Processo estocástico" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Proces_stohastic" title="Proces stohastic – Romanian" lang="ro" hreflang="ro" data-title="Proces stohastic" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D1%8B%D0%B9_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81" title="Случайный процесс – Russian" lang="ru" hreflang="ru" data-title="Случайный процесс" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Proceset_stokastike" title="Proceset stokastike – Albanian" lang="sq" hreflang="sq" data-title="Proceset stokastike" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Stochastic_process" title="Stochastic process – Simple English" lang="en-simple" hreflang="en-simple" data-title="Stochastic process" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Stochastick%C3%BD_proces" title="Stochastický proces – Slovak" lang="sk" hreflang="sk" data-title="Stochastický proces" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Stohasti%C4%8Dki_proces" title="Stohastički proces – Serbian" lang="sr" hreflang="sr" data-title="Stohastički proces" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Pros%C3%A9s_stokastik" title="Prosés stokastik – Sundanese" lang="su" hreflang="su" data-title="Prosés stokastik" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Stokastinen_prosessi" title="Stokastinen prosessi – Finnish" lang="fi" hreflang="fi" data-title="Stokastinen prosessi" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Stokastisk_process" title="Stokastisk process – Swedish" lang="sv" hreflang="sv" data-title="Stokastisk process" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%A3%E0%B8%B0%E0%B8%9A%E0%B8%A7%E0%B8%99%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%80%E0%B8%9F%E0%B9%89%E0%B8%99%E0%B8%AA%E0%B8%B8%E0%B9%88%E0%B8%A1" title="กระบวนการเฟ้นสุ่ม – Thai" lang="th" hreflang="th" data-title="กระบวนการเฟ้นสุ่ม" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Stokastik_s%C3%BCre%C3%A7" title="Stokastik süreç – Turkish" lang="tr" hreflang="tr" data-title="Stokastik süreç" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%92%D0%B8%D0%BF%D0%B0%D0%B4%D0%BA%D0%BE%D0%B2%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81" title="Випадковий процес – Ukrainian" lang="uk" hreflang="uk" data-title="Випадковий процес" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Qu%C3%A1_tr%C3%ACnh_ng%E1%BA%ABu_nhi%C3%AAn" title="Quá trình ngẫu nhiên – Vietnamese" lang="vi" hreflang="vi" data-title="Quá trình ngẫu nhiên" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%9A%A8%E6%A9%9F%E9%81%8E%E7%A8%8B" title="隨機過程 – Cantonese" lang="yue" hreflang="yue" data-title="隨機過程" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%9A%8F%E6%9C%BA%E8%BF%87%E7%A8%8B" title="随机过程 – Chinese" lang="zh" hreflang="zh" data-title="随机过程" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q176737#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Stochastic_process" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Stochastic_process" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Stochastic_process"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Stochastic_process&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Stochastic_process&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Stochastic_process"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Stochastic_process&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Stochastic_process&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Stochastic_process" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Stochastic_process" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Stochastic_process&amp;oldid=1257085679" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Stochastic_process&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Stochastic_process&amp;id=1257085679&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStochastic_process"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStochastic_process"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Stochastic_process&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Stochastic_process&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Stochastic_processes" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q176737" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Collection of random variables</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar nomobile nowraplinks hlist"><tbody><tr><td class="sidebar-pretitle">Part of a series on <a href="/wiki/Statistics" title="Statistics">statistics</a></td></tr><tr><th class="sidebar-title-with-pretitle"><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></th></tr><tr><td class="sidebar-image"><span typeof="mw:File"><a href="/wiki/File:Standard_deviation_diagram_micro.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/250px-Standard_deviation_diagram_micro.svg.png" decoding="async" width="250" height="125" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/375px-Standard_deviation_diagram_micro.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/500px-Standard_deviation_diagram_micro.svg.png 2x" data-file-width="400" data-file-height="200" /></a></span></td></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Probability" title="Probability">Probability</a> <ul><li><a href="/wiki/Probability_axioms" title="Probability axioms">Axioms</a></li></ul></li> <li><a href="/wiki/Determinism" title="Determinism">Determinism</a> <ul><li><a href="/wiki/Deterministic_system" title="Deterministic system">System</a></li></ul></li> <li><a href="/wiki/Indeterminism" title="Indeterminism">Indeterminism</a></li> <li><a href="/wiki/Randomness" title="Randomness">Randomness</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Probability_space" title="Probability space">Probability space</a></li> <li><a href="/wiki/Sample_space" title="Sample space">Sample space</a></li> <li><a href="/wiki/Event_(probability_theory)" title="Event (probability theory)">Event</a> <ul><li><a href="/wiki/Collectively_exhaustive_events" title="Collectively exhaustive events">Collectively exhaustive events</a></li> <li><a href="/wiki/Elementary_event" title="Elementary event">Elementary event</a></li> <li><a href="/wiki/Mutual_exclusivity" title="Mutual exclusivity">Mutual exclusivity</a></li> <li><a href="/wiki/Outcome_(probability)" title="Outcome (probability)">Outcome</a></li> <li><a href="/wiki/Singleton_(mathematics)" title="Singleton (mathematics)">Singleton</a></li></ul></li> <li><a href="/wiki/Experiment_(probability_theory)" title="Experiment (probability theory)">Experiment</a> <ul><li><a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli trial</a></li></ul></li> <li><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distribution</a> <ul><li><a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a></li> <li><a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial distribution</a></li> <li><a href="/wiki/Exponential_distribution" title="Exponential distribution">Exponential distribution</a></li> <li><a href="/wiki/Normal_distribution" title="Normal distribution">Normal distribution</a></li> <li><a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto distribution</a></li> <li><a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson distribution</a></li></ul></li> <li><a href="/wiki/Probability_measure" title="Probability measure">Probability measure</a></li> <li><a href="/wiki/Random_variable" title="Random variable">Random variable</a> <ul><li><a href="/wiki/Bernoulli_process" title="Bernoulli process">Bernoulli process</a></li> <li><a href="/wiki/Continuous_or_discrete_variable" title="Continuous or discrete variable">Continuous or discrete</a></li> <li><a href="/wiki/Expected_value" title="Expected value">Expected value</a></li> <li><a href="/wiki/Variance" title="Variance">Variance</a></li> <li><a href="/wiki/Markov_chain" title="Markov chain">Markov chain</a></li> <li><a href="/wiki/Realization_(probability)" title="Realization (probability)">Observed value</a></li> <li><a href="/wiki/Random_walk" title="Random walk">Random walk</a></li> <li><a class="mw-selflink selflink">Stochastic process</a></li></ul></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Complementary_event" title="Complementary event">Complementary event</a></li> <li><a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">Joint probability</a></li> <li><a href="/wiki/Marginal_distribution" title="Marginal distribution">Marginal probability</a></li> <li><a href="/wiki/Conditional_probability" title="Conditional probability">Conditional probability</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">Independence</a></li> <li><a href="/wiki/Conditional_independence" title="Conditional independence">Conditional independence</a></li> <li><a href="/wiki/Law_of_total_probability" title="Law of total probability">Law of total probability</a></li> <li><a href="/wiki/Law_of_large_numbers" title="Law of large numbers">Law of large numbers</a></li> <li><a href="/wiki/Bayes%27_theorem" title="Bayes&#39; theorem">Bayes' theorem</a></li> <li><a href="/wiki/Boole%27s_inequality" title="Boole&#39;s inequality">Boole's inequality</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a></li> <li><a href="/wiki/Tree_diagram_(probability_theory)" title="Tree diagram (probability theory)">Tree diagram</a></li></ul></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Probability_fundamentals" title="Template:Probability fundamentals"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Probability_fundamentals" title="Template talk:Probability fundamentals"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Probability_fundamentals" title="Special:EditPage/Template:Probability fundamentals"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:BMonSphere.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/BMonSphere.jpg/220px-BMonSphere.jpg" decoding="async" width="220" height="215" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/BMonSphere.jpg/330px-BMonSphere.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/4/4e/BMonSphere.jpg 2x" data-file-width="365" data-file-height="356" /></a><figcaption>A computer-simulated realization of a <a href="/wiki/Wiener_process" title="Wiener process">Wiener</a> or <a href="/wiki/Brownian_motion" title="Brownian motion">Brownian motion</a> process on the surface of a sphere. The Wiener process is widely considered the most studied and central stochastic process in probability theory.<sup id="cite_ref-doob1953stochasticP46to47_1-0" class="reference"><a href="#cite_note-doob1953stochasticP46to47-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-RogersWilliams2000page1_2-0" class="reference"><a href="#cite_note-RogersWilliams2000page1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Steele2012page29_3-0" class="reference"><a href="#cite_note-Steele2012page29-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> and related fields, a <b>stochastic</b> (<span class="rt-commentedText nowrap"><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="&#39;s&#39; in &#39;sigh&#39;">s</span><span title="&#39;t&#39; in &#39;tie&#39;">t</span><span title="/ə/: &#39;a&#39; in &#39;about&#39;">ə</span><span title="/ˈ/: primary stress follows">ˈ</span><span title="&#39;k&#39; in &#39;kind&#39;">k</span><span title="/æ/: &#39;a&#39; in &#39;bad&#39;">æ</span><span title="&#39;s&#39; in &#39;sigh&#39;">s</span><span title="&#39;t&#39; in &#39;tie&#39;">t</span><span title="/ɪ/: &#39;i&#39; in &#39;kit&#39;">ɪ</span><span title="&#39;k&#39; in &#39;kind&#39;">k</span></span>/</a></span></span>) or <b>random process</b> is a <a href="/wiki/Mathematical_object" title="Mathematical object">mathematical object</a> usually defined as a <a href="/wiki/Indexed_family" title="Indexed family">family</a> of <a href="/wiki/Random_variable" title="Random variable">random variables</a> in a <a href="/wiki/Probability_space" title="Probability space">probability space</a>, where the <a href="/wiki/Index_set" title="Index set">index</a> of the family often has the interpretation of <a href="/wiki/Time" title="Time">time</a>. <a href="/wiki/Stochastic" title="Stochastic">Stochastic</a> processes are widely used as <a href="/wiki/Mathematical_model" title="Mathematical model">mathematical models</a> of systems and phenomena that appear to vary in a random manner. Examples include the growth of a <a href="/wiki/Bacteria" title="Bacteria">bacterial</a> population, an <a href="/wiki/Electrical_current" class="mw-redirect" title="Electrical current">electrical current</a> fluctuating due to <a href="/wiki/Thermal_noise" class="mw-redirect" title="Thermal noise">thermal noise</a>, or the movement of a <a href="/wiki/Gas" title="Gas">gas</a> <a href="/wiki/Molecule" title="Molecule">molecule</a>.<sup id="cite_ref-doob1953stochasticP46to47_1-1" class="reference"><a href="#cite_note-doob1953stochasticP46to47-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Parzen1999_4-0" class="reference"><a href="#cite_note-Parzen1999-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GikhmanSkorokhod1969page1_5-0" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> Stochastic processes have applications in many disciplines such as <a href="/wiki/Biology" title="Biology">biology</a>,<sup id="cite_ref-Bressloff2014_6-0" class="reference"><a href="#cite_note-Bressloff2014-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Chemistry" title="Chemistry">chemistry</a>,<sup id="cite_ref-Kampen2011_7-0" class="reference"><a href="#cite_note-Kampen2011-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Ecology" title="Ecology">ecology</a>,<sup id="cite_ref-LandeEngen2003_8-0" class="reference"><a href="#cite_note-LandeEngen2003-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Neuroscience" title="Neuroscience">neuroscience</a>,<sup id="cite_ref-LaingLord2010_9-0" class="reference"><a href="#cite_note-LaingLord2010-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Physics" title="Physics">physics</a>,<sup id="cite_ref-PaulBaschnagel2013_10-0" class="reference"><a href="#cite_note-PaulBaschnagel2013-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Image_processing" class="mw-redirect" title="Image processing">image processing</a>, <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a>,<sup id="cite_ref-Dougherty1999_11-0" class="reference"><a href="#cite_note-Dougherty1999-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Stochastic_control" title="Stochastic control">control theory</a>,<sup id="cite_ref-Bertsekas1996_12-0" class="reference"><a href="#cite_note-Bertsekas1996-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Information_theory" title="Information theory">information theory</a>,<sup id="cite_ref-CoverThomas2012page71_13-0" class="reference"><a href="#cite_note-CoverThomas2012page71-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Computer_science" title="Computer science">computer science</a>,<sup id="cite_ref-Baron2015_14-0" class="reference"><a href="#cite_note-Baron2015-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Telecommunications" title="Telecommunications">telecommunications</a>.<sup id="cite_ref-BaccelliBlaszczyszyn2009_15-0" class="reference"><a href="#cite_note-BaccelliBlaszczyszyn2009-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> Furthermore, seemingly random changes in <a href="/wiki/Financial_market" title="Financial market">financial markets</a> have motivated the extensive use of stochastic processes in <a href="/wiki/Finance" title="Finance">finance</a>.<sup id="cite_ref-Steele2001_16-0" class="reference"><a href="#cite_note-Steele2001-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-MusielaRutkowski2006_17-0" class="reference"><a href="#cite_note-MusielaRutkowski2006-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Shreve2004_18-0" class="reference"><a href="#cite_note-Shreve2004-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p><p>Applications and the study of phenomena have in turn inspired the proposal of new stochastic processes. Examples of such stochastic processes include the <a href="/wiki/Wiener_process" title="Wiener process">Wiener process</a> or Brownian motion process,<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> used by <a href="/wiki/Louis_Bachelier" title="Louis Bachelier">Louis Bachelier</a> to study price changes on the <a href="/wiki/Paris_Bourse" class="mw-redirect" title="Paris Bourse">Paris Bourse</a>,<sup id="cite_ref-JarrowProtter2004_22-0" class="reference"><a href="#cite_note-JarrowProtter2004-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> and the <a href="/wiki/Poisson_process" class="mw-redirect" title="Poisson process">Poisson process</a>, used by <a href="/wiki/A._K._Erlang" class="mw-redirect" title="A. K. Erlang">A. K. Erlang</a> to study the number of phone calls occurring in a certain period of time.<sup id="cite_ref-Stirzaker2000_23-0" class="reference"><a href="#cite_note-Stirzaker2000-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> These two stochastic processes are considered the most important and central in the theory of stochastic processes,<sup id="cite_ref-doob1953stochasticP46to47_1-2" class="reference"><a href="#cite_note-doob1953stochasticP46to47-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Parzen1999_4-1" class="reference"><a href="#cite_note-Parzen1999-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> and were invented repeatedly and independently, both before and after Bachelier and Erlang, in different settings and countries.<sup id="cite_ref-JarrowProtter2004_22-1" class="reference"><a href="#cite_note-JarrowProtter2004-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GuttorpThorarinsdottir2012_25-0" class="reference"><a href="#cite_note-GuttorpThorarinsdottir2012-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p><p>The term <b>random function</b> is also used to refer to a stochastic or random process,<sup id="cite_ref-GusakKukush2010page21_26-0" class="reference"><a href="#cite_note-GusakKukush2010page21-26"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Skorokhod2005page42_27-0" class="reference"><a href="#cite_note-Skorokhod2005page42-27"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> because a stochastic process can also be interpreted as a random element in a <a href="/wiki/Function_space" title="Function space">function space</a>.<sup id="cite_ref-Kallenberg2002page24_28-0" class="reference"><a href="#cite_note-Kallenberg2002page24-28"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Lamperti1977page1_29-0" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> The terms <i>stochastic process</i> and <i>random process</i> are used interchangeably, often with no specific <a href="/wiki/Mathematical_space" class="mw-redirect" title="Mathematical space">mathematical space</a> for the set that indexes the random variables.<sup id="cite_ref-Kallenberg2002page24_28-1" class="reference"><a href="#cite_note-Kallenberg2002page24-28"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ChaumontYor2012_30-0" class="reference"><a href="#cite_note-ChaumontYor2012-30"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> But often these two terms are used when the random variables are indexed by the <a href="/wiki/Integers" class="mw-redirect" title="Integers">integers</a> or an <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">interval</a> of the <a href="/wiki/Real_line" class="mw-redirect" title="Real line">real line</a>.<sup id="cite_ref-GikhmanSkorokhod1969page1_5-1" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ChaumontYor2012_30-1" class="reference"><a href="#cite_note-ChaumontYor2012-30"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> If the random variables are indexed by the <a href="/wiki/Cartesian_plane" class="mw-redirect" title="Cartesian plane">Cartesian plane</a> or some higher-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>, then the collection of random variables is usually called a <a href="/wiki/Random_field" title="Random field">random field</a> instead.<sup id="cite_ref-GikhmanSkorokhod1969page1_5-2" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AdlerTaylor2009page7_31-0" class="reference"><a href="#cite_note-AdlerTaylor2009page7-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> The values of a stochastic process are not always numbers and can be vectors or other mathematical objects.<sup id="cite_ref-GikhmanSkorokhod1969page1_5-3" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Lamperti1977page1_29-1" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p><p>Based on their mathematical properties, stochastic processes can be grouped into various categories, which include <a href="/wiki/Random_walk" title="Random walk">random walks</a>,<sup id="cite_ref-LawlerLimic2010_32-0" class="reference"><a href="#cite_note-LawlerLimic2010-32"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Martingale_(probability_theory)" title="Martingale (probability theory)">martingales</a>,<sup id="cite_ref-Williams1991_33-0" class="reference"><a href="#cite_note-Williams1991-33"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Markov_process" class="mw-redirect" title="Markov process">Markov processes</a>,<sup id="cite_ref-RogersWilliams2000_34-0" class="reference"><a href="#cite_note-RogersWilliams2000-34"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/L%C3%A9vy_process" title="Lévy process">Lévy processes</a>,<sup id="cite_ref-ApplebaumBook2004_35-0" class="reference"><a href="#cite_note-ApplebaumBook2004-35"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Gaussian_process" title="Gaussian process">Gaussian processes</a>,<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> random fields,<sup id="cite_ref-Adler2010_37-0" class="reference"><a href="#cite_note-Adler2010-37"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Renewal_process" class="mw-redirect" title="Renewal process">renewal processes</a>, and <a href="/wiki/Branching_process" title="Branching process">branching processes</a>.<sup id="cite_ref-KarlinTaylor2012_38-0" class="reference"><a href="#cite_note-KarlinTaylor2012-38"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> The study of stochastic processes uses mathematical knowledge and techniques from <a href="/wiki/Probability" title="Probability">probability</a>, <a href="/wiki/Calculus" title="Calculus">calculus</a>, <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>, <a href="/wiki/Set_theory" title="Set theory">set theory</a>, and <a href="/wiki/Topology" title="Topology">topology</a><sup id="cite_ref-Hajek2015_39-0" class="reference"><a href="#cite_note-Hajek2015-39"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-LatoucheRamaswami1999_40-0" class="reference"><a href="#cite_note-LatoucheRamaswami1999-40"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-DaleyVere-Jones2007_41-0" class="reference"><a href="#cite_note-DaleyVere-Jones2007-41"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> as well as branches of <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a> such as <a href="/wiki/Real_analysis" title="Real analysis">real analysis</a>, <a href="/wiki/Measure_theory" class="mw-redirect" title="Measure theory">measure theory</a>, <a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a>, and <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a>.<sup id="cite_ref-Billingsley2008_42-0" class="reference"><a href="#cite_note-Billingsley2008-42"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Brémaud2014_43-0" class="reference"><a href="#cite_note-Brémaud2014-43"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bobrowski2005_44-0" class="reference"><a href="#cite_note-Bobrowski2005-44"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> The theory of stochastic processes is considered to be an important contribution to mathematics<sup id="cite_ref-Applebaum2004_45-0" class="reference"><a href="#cite_note-Applebaum2004-45"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> and it continues to be an active topic of research for both theoretical reasons and applications.<sup id="cite_ref-BlathImkeller2011_46-0" class="reference"><a href="#cite_note-BlathImkeller2011-46"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Talagrand2014_47-0" class="reference"><a href="#cite_note-Talagrand2014-47"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bressloff2014VII_48-0" class="reference"><a href="#cite_note-Bressloff2014VII-48"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Introduction">Introduction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=1" title="Edit section: Introduction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A stochastic or random process can be defined as a collection of random variables that is indexed by some mathematical set, meaning that each random variable of the stochastic process is uniquely associated with an element in the set.<sup id="cite_ref-Parzen1999_4-2" class="reference"><a href="#cite_note-Parzen1999-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GikhmanSkorokhod1969page1_5-4" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> The set used to index the random variables is called the <a href="/wiki/Index_set" title="Index set">index set</a>. Historically, the index set was some <a href="/wiki/Subset" title="Subset">subset</a> of the <a href="/wiki/Real_line" class="mw-redirect" title="Real line">real line</a>, such as the <a href="/wiki/Natural_numbers" class="mw-redirect" title="Natural numbers">natural numbers</a>, giving the index set the interpretation of time.<sup id="cite_ref-doob1953stochasticP46to47_1-3" class="reference"><a href="#cite_note-doob1953stochasticP46to47-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Each random variable in the collection takes values from the same <a href="/wiki/Mathematical_space" class="mw-redirect" title="Mathematical space">mathematical space</a> known as the <b>state space</b>. This state space can be, for example, the integers, the real line or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean space.<sup id="cite_ref-doob1953stochasticP46to47_1-4" class="reference"><a href="#cite_note-doob1953stochasticP46to47-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GikhmanSkorokhod1969page1_5-5" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> An <b>increment</b> is the amount that a stochastic process changes between two index values, often interpreted as two points in time.<sup id="cite_ref-KarlinTaylor2012page27_49-0" class="reference"><a href="#cite_note-KarlinTaylor2012page27-49"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Applebaum2004page1337_50-0" class="reference"><a href="#cite_note-Applebaum2004page1337-50"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> A stochastic process can have many <a href="/wiki/Outcome_(probability)" title="Outcome (probability)">outcomes</a>, due to its randomness, and a single outcome of a stochastic process is called, among other names, a <b>sample function</b> or <b>realization</b>.<sup id="cite_ref-Lamperti1977page1_29-2" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-RogersWilliams2000page121b_51-0" class="reference"><a href="#cite_note-RogersWilliams2000page121b-51"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Wiener_process_3d.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Wiener_process_3d.png/220px-Wiener_process_3d.png" decoding="async" width="220" height="215" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Wiener_process_3d.png/330px-Wiener_process_3d.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Wiener_process_3d.png/440px-Wiener_process_3d.png 2x" data-file-width="904" data-file-height="883" /></a><figcaption>A single computer-simulated <b>sample function</b> or <b>realization</b>, among other terms, of a three-dimensional Wiener or Brownian motion process for time 0 ≤ t ≤ 2. The index set of this stochastic process is the non-negative numbers, while its state space is three-dimensional Euclidean space.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Classifications">Classifications</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=2" title="Edit section: Classifications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A stochastic process can be classified in different ways, for example, by its state space, its index set, or the dependence among the random variables. One common way of classification is by the <a href="/wiki/Cardinality" title="Cardinality">cardinality</a> of the index set and the state space.<sup id="cite_ref-Florescu2014page294_52-0" class="reference"><a href="#cite_note-Florescu2014page294-52"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KarlinTaylor2012page26_53-0" class="reference"><a href="#cite_note-KarlinTaylor2012page26-53"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> </p><p>When interpreted as time, if the index set of a stochastic process has a finite or countable number of elements, such as a finite set of numbers, the set of integers, or the natural numbers, then the stochastic process is said to be in <b><a href="/wiki/Discrete_time" class="mw-redirect" title="Discrete time">discrete time</a></b>.<sup id="cite_ref-Billingsley2008page482_55-0" class="reference"><a href="#cite_note-Billingsley2008page482-55"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Borovkov2013page527_56-0" class="reference"><a href="#cite_note-Borovkov2013page527-56"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> If the index set is some interval of the real line, then time is said to be <b><a href="/wiki/Continuous_time" class="mw-redirect" title="Continuous time">continuous</a></b>. The two types of stochastic processes are respectively referred to as <b>discrete-time</b> and <b><a href="/wiki/Continuous-time_stochastic_process" title="Continuous-time stochastic process">continuous-time stochastic processes</a></b>.<sup id="cite_ref-KarlinTaylor2012page27_49-1" class="reference"><a href="#cite_note-KarlinTaylor2012page27-49"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Brémaud2014page120_57-0" class="reference"><a href="#cite_note-Brémaud2014page120-57"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Rosenthal2006page177_58-0" class="reference"><a href="#cite_note-Rosenthal2006page177-58"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> Discrete-time stochastic processes are considered easier to study because continuous-time processes require more advanced mathematical techniques and knowledge, particularly due to the index set being uncountable.<sup id="cite_ref-KloedenPlaten2013page63_59-0" class="reference"><a href="#cite_note-KloedenPlaten2013page63-59"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Khoshnevisan2006page153_60-0" class="reference"><a href="#cite_note-Khoshnevisan2006page153-60"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> If the index set is the integers, or some subset of them, then the stochastic process can also be called a <b>random sequence</b>.<sup id="cite_ref-Borovkov2013page527_56-1" class="reference"><a href="#cite_note-Borovkov2013page527-56"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> </p><p>If the state space is the integers or natural numbers, then the stochastic process is called a <b>discrete</b> or <b>integer-valued stochastic process</b>. If the state space is the real line, then the stochastic process is referred to as a <b>real-valued stochastic process</b> or a <b>process with continuous state space</b>. If the state space is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean space, then the stochastic process is called a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-<b>dimensional vector process</b> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-<b>vector process</b>.<sup id="cite_ref-Florescu2014page294_52-1" class="reference"><a href="#cite_note-Florescu2014page294-52"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KarlinTaylor2012page26_53-1" class="reference"><a href="#cite_note-KarlinTaylor2012page26-53"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Etymology">Etymology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=3" title="Edit section: Etymology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The word <i>stochastic</i> in <a href="/wiki/English_language" title="English language">English</a> was originally used as an adjective with the definition "pertaining to conjecturing", and stemming from a <a href="/wiki/Greek_language" title="Greek language">Greek</a> word meaning "to aim at a mark, guess", and the <a href="/wiki/Oxford_English_Dictionary" title="Oxford English Dictionary">Oxford English Dictionary</a> gives the year 1662 as its earliest occurrence.<sup id="cite_ref-OxfordStochastic_61-0" class="reference"><a href="#cite_note-OxfordStochastic-61"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> In his work on probability <i>Ars Conjectandi</i>, originally published in Latin in 1713, <a href="/wiki/Jakob_Bernoulli" class="mw-redirect" title="Jakob Bernoulli">Jakob Bernoulli</a> used the phrase "Ars Conjectandi sive Stochastice", which has been translated to "the art of conjecturing or stochastics".<sup id="cite_ref-Sheĭnin2006page5_62-0" class="reference"><a href="#cite_note-Sheĭnin2006page5-62"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> This phrase was used, with reference to Bernoulli, by <a href="/wiki/Ladislaus_Bortkiewicz" title="Ladislaus Bortkiewicz">Ladislaus Bortkiewicz</a><sup id="cite_ref-SheyninStrecker2011page136_63-0" class="reference"><a href="#cite_note-SheyninStrecker2011page136-63"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> who in 1917 wrote in German the word <i>stochastik</i> with a sense meaning random. The term <i>stochastic process</i> first appeared in English in a 1934 paper by <a href="/wiki/Joseph_Doob" class="mw-redirect" title="Joseph Doob">Joseph Doob</a>.<sup id="cite_ref-OxfordStochastic_61-1" class="reference"><a href="#cite_note-OxfordStochastic-61"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> For the term and a specific mathematical definition, Doob cited another 1934 paper, where the term <i>stochastischer Prozeß</i> was used in German by <a href="/wiki/Aleksandr_Khinchin" title="Aleksandr Khinchin">Aleksandr Khinchin</a>,<sup id="cite_ref-Doob1934_64-0" class="reference"><a href="#cite_note-Doob1934-64"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Khintchine1934_65-0" class="reference"><a href="#cite_note-Khintchine1934-65"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> though the German term had been used earlier, for example, by Andrei Kolmogorov in 1931.<sup id="cite_ref-Kolmogoroff1931page1_66-0" class="reference"><a href="#cite_note-Kolmogoroff1931page1-66"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> </p><p>According to the Oxford English Dictionary, early occurrences of the word <i>random</i> in English with its current meaning, which relates to chance or luck, date back to the 16th century, while earlier recorded usages started in the 14th century as a noun meaning "impetuosity, great speed, force, or violence (in riding, running, striking, etc.)". The word itself comes from a Middle French word meaning "speed, haste", and it is probably derived from a French verb meaning "to run" or "to gallop". The first written appearance of the term <i>random process</i> pre-dates <i>stochastic process</i>, which the Oxford English Dictionary also gives as a synonym, and was used in an article by <a href="/wiki/Francis_Edgeworth" class="mw-redirect" title="Francis Edgeworth">Francis Edgeworth</a> published in 1888.<sup id="cite_ref-OxfordRandom_67-0" class="reference"><a href="#cite_note-OxfordRandom-67"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Terminology">Terminology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=4" title="Edit section: Terminology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The definition of a stochastic process varies,<sup id="cite_ref-FristedtGray2013page580_68-0" class="reference"><a href="#cite_note-FristedtGray2013page580-68"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> but a stochastic process is traditionally defined as a collection of random variables indexed by some set.<sup id="cite_ref-RogersWilliams2000page121_69-0" class="reference"><a href="#cite_note-RogersWilliams2000page121-69"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Asmussen2003page408_70-0" class="reference"><a href="#cite_note-Asmussen2003page408-70"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> The terms <i>random process</i> and <i>stochastic process</i> are considered synonyms and are used interchangeably, without the index set being precisely specified.<sup id="cite_ref-Kallenberg2002page24_28-2" class="reference"><a href="#cite_note-Kallenberg2002page24-28"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ChaumontYor2012_30-2" class="reference"><a href="#cite_note-ChaumontYor2012-30"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AdlerTaylor2009page7_31-1" class="reference"><a href="#cite_note-AdlerTaylor2009page7-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Stirzaker2005page45_71-0" class="reference"><a href="#cite_note-Stirzaker2005page45-71"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Rosenblatt1962page91_72-0" class="reference"><a href="#cite_note-Rosenblatt1962page91-72"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Gubner2006page383_73-0" class="reference"><a href="#cite_note-Gubner2006page383-73"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> Both "collection",<sup id="cite_ref-Lamperti1977page1_29-3" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Stirzaker2005page45_71-1" class="reference"><a href="#cite_note-Stirzaker2005page45-71"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> or "family" are used<sup id="cite_ref-Parzen1999_4-3" class="reference"><a href="#cite_note-Parzen1999-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Ito2006page13_74-0" class="reference"><a href="#cite_note-Ito2006page13-74"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> while instead of "index set", sometimes the terms "parameter set"<sup id="cite_ref-Lamperti1977page1_29-4" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> or "parameter space"<sup id="cite_ref-AdlerTaylor2009page7_31-2" class="reference"><a href="#cite_note-AdlerTaylor2009page7-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> are used. </p><p>The term <i>random function</i> is also used to refer to a stochastic or random process,<sup id="cite_ref-GikhmanSkorokhod1969page1_5-6" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Loeve1978_75-0" class="reference"><a href="#cite_note-Loeve1978-75"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Brémaud2014page133_76-0" class="reference"><a href="#cite_note-Brémaud2014page133-76"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> though sometimes it is only used when the stochastic process takes real values.<sup id="cite_ref-Lamperti1977page1_29-5" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Ito2006page13_74-1" class="reference"><a href="#cite_note-Ito2006page13-74"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> This term is also used when the index sets are mathematical spaces other than the real line,<sup id="cite_ref-GikhmanSkorokhod1969page1_5-7" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GusakKukush2010page1_77-0" class="reference"><a href="#cite_note-GusakKukush2010page1-77"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> while the terms <i>stochastic process</i> and <i>random process</i> are usually used when the index set is interpreted as time,<sup id="cite_ref-GikhmanSkorokhod1969page1_5-8" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GusakKukush2010page1_77-1" class="reference"><a href="#cite_note-GusakKukush2010page1-77"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bass2011page1_78-0" class="reference"><a href="#cite_note-Bass2011page1-78"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> and other terms are used such as <i>random field</i> when the index set is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> or a <a href="/wiki/Manifold" title="Manifold">manifold</a>.<sup id="cite_ref-GikhmanSkorokhod1969page1_5-9" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Lamperti1977page1_29-6" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AdlerTaylor2009page7_31-3" class="reference"><a href="#cite_note-AdlerTaylor2009page7-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Notation">Notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=5" title="Edit section: Notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A stochastic process can be denoted, among other ways, by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{X(t)\}_{t\in T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msub> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{X(t)\}_{t\in T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d15bf3d3e7f4ec8cf9df7761e60f7cc5f103fb8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.033ex; height:2.843ex;" alt="{\displaystyle \{X(t)\}_{t\in T}}"></span>,<sup id="cite_ref-Brémaud2014page120_57-1" class="reference"><a href="#cite_note-Brémaud2014page120-57"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{X_{t}\}_{t\in T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msub> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{X_{t}\}_{t\in T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18d29bc7ff1908644cc092f09185407eb6391d86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.154ex; height:2.843ex;" alt="{\displaystyle \{X_{t}\}_{t\in T}}"></span>,<sup id="cite_ref-Asmussen2003page408_70-1" class="reference"><a href="#cite_note-Asmussen2003page408-70"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{X_{t}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{X_{t}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1aa498a302423f64556e0783cd198ee7def541bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.075ex; height:2.843ex;" alt="{\displaystyle \{X_{t}\}}"></span><sup id="cite_ref-Lamperti1977page3_79-0" class="reference"><a href="#cite_note-Lamperti1977page3-79"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{X(t)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{X(t)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d83c817aa0d6995481747222c20ae8dceb374929" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.954ex; height:2.843ex;" alt="{\displaystyle \{X(t)\}}"></span> or simply as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>. Some authors mistakenly write <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfeb6663c0a903f587cd6d776c387370fc5c4ab7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.629ex; height:2.843ex;" alt="{\displaystyle X(t)}"></span> even though it is an <a href="/wiki/Abuse_of_notation#Function_notation" title="Abuse of notation">abuse of function notation</a>.<sup id="cite_ref-Klebaner2005page55_80-0" class="reference"><a href="#cite_note-Klebaner2005page55-80"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfeb6663c0a903f587cd6d776c387370fc5c4ab7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.629ex; height:2.843ex;" alt="{\displaystyle X(t)}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82120d04dfb3cbadc4912951dd12b5568c9cd8f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.75ex; height:2.509ex;" alt="{\displaystyle X_{t}}"></span> are used to refer to the random variable with the index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>, and not the entire stochastic process.<sup id="cite_ref-Lamperti1977page3_79-1" class="reference"><a href="#cite_note-Lamperti1977page3-79"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> If the index set is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=[0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=[0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2d5792c68149c5c2f3e434e8c119a702ced9846" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.806ex; height:2.843ex;" alt="{\displaystyle T=[0,\infty )}"></span>, then one can write, for example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X_{t},t\geq 0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> <mi>t</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X_{t},t\geq 0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a71cad170c67eba2ce9d1b02bd336353941a3f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.694ex; height:2.843ex;" alt="{\displaystyle (X_{t},t\geq 0)}"></span> to denote the stochastic process.<sup id="cite_ref-ChaumontYor2012_30-3" class="reference"><a href="#cite_note-ChaumontYor2012-30"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=6" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Bernoulli_process">Bernoulli process</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=7" title="Edit section: Bernoulli process"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Bernoulli_process" title="Bernoulli process">Bernoulli process</a></div> <p>One of the simplest stochastic processes is the <a href="/wiki/Bernoulli_process" title="Bernoulli process">Bernoulli process</a>,<sup id="cite_ref-Florescu2014page293_81-0" class="reference"><a href="#cite_note-Florescu2014page293-81"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> which is a sequence of <a href="/wiki/Independent_and_identically_distributed" class="mw-redirect" title="Independent and identically distributed">independent and identically distributed</a> (iid) random variables, where each random variable takes either the value one or zero, say one with probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> and zero with probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9633a8692121eedfa99cace406205e5d1511ef8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.172ex; height:2.509ex;" alt="{\displaystyle 1-p}"></span>. This process can be linked to an idealisation of repeatedly flipping a coin, where the probability of obtaining a head is taken to be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> and its value is one, while the value of a tail is zero.<sup id="cite_ref-Florescu2014page301_82-0" class="reference"><a href="#cite_note-Florescu2014page301-82"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> In other words, a Bernoulli process is a sequence of iid Bernoulli random variables,<sup id="cite_ref-BertsekasTsitsiklis2002page273_83-0" class="reference"><a href="#cite_note-BertsekasTsitsiklis2002page273-83"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> where each idealised coin flip is an example of a <a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli trial</a>.<sup id="cite_ref-Ibe2013page11_84-0" class="reference"><a href="#cite_note-Ibe2013page11-84"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Random_walk">Random walk</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=8" title="Edit section: Random walk"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Random_walk" title="Random walk">Random walk</a></div> <p><a href="/wiki/Random_walks" class="mw-redirect" title="Random walks">Random walks</a> are stochastic processes that are usually defined as sums of <a href="/wiki/Iid" class="mw-redirect" title="Iid">iid</a> random variables or random vectors in Euclidean space, so they are processes that change in discrete time.<sup id="cite_ref-Klenke2013page347_85-0" class="reference"><a href="#cite_note-Klenke2013page347-85"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-LawlerLimic2010page1_86-0" class="reference"><a href="#cite_note-LawlerLimic2010page1-86"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Kallenberg2002page136_87-0" class="reference"><a href="#cite_note-Kallenberg2002page136-87"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Florescu2014page383_88-0" class="reference"><a href="#cite_note-Florescu2014page383-88"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Durrett2010page277_89-0" class="reference"><a href="#cite_note-Durrett2010page277-89"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> But some also use the term to refer to processes that change in continuous time,<sup id="cite_ref-Weiss2006page1_90-0" class="reference"><a href="#cite_note-Weiss2006page1-90"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> particularly the Wiener process used in financial models, which has led to some confusion, resulting in its criticism.<sup id="cite_ref-Spanos1999page454_91-0" class="reference"><a href="#cite_note-Spanos1999page454-91"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> There are various other types of random walks, defined so their state spaces can be other mathematical objects, such as lattices and groups, and in general they are highly studied and have many applications in different disciplines.<sup id="cite_ref-Weiss2006page1_90-1" class="reference"><a href="#cite_note-Weiss2006page1-90"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Klebaner2005page81_92-0" class="reference"><a href="#cite_note-Klebaner2005page81-92"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> </p><p>A classic example of a random walk is known as the <i>simple random walk</i>, which is a stochastic process in discrete time with the integers as the state space, and is based on a Bernoulli process, where each Bernoulli variable takes either the value positive one or negative one. In other words, the simple random walk takes place on the integers, and its value increases by one with probability, say, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>, or decreases by one with probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9633a8692121eedfa99cace406205e5d1511ef8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.172ex; height:2.509ex;" alt="{\displaystyle 1-p}"></span>, so the index set of this random walk is the natural numbers, while its state space is the integers. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=0.5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>0.5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=0.5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78145978df11bf657030540a5136bda6646bd3ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.329ex; height:2.509ex;" alt="{\displaystyle p=0.5}"></span>, this random walk is called a symmetric random walk.<sup id="cite_ref-Gut2012page88_93-0" class="reference"><a href="#cite_note-Gut2012page88-93"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GrimmettStirzaker2001page71_94-0" class="reference"><a href="#cite_note-GrimmettStirzaker2001page71-94"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Wiener_process">Wiener process</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=9" title="Edit section: Wiener process"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Wiener_process" title="Wiener process">Wiener process</a></div> <p>The Wiener process is a stochastic process with <a href="/wiki/Stationary_increments" title="Stationary increments">stationary</a> and <a href="/wiki/Independent_increments" title="Independent increments">independent increments</a> that are <a href="/wiki/Normally_distributed" class="mw-redirect" title="Normally distributed">normally distributed</a> based on the size of the increments.<sup id="cite_ref-RogersWilliams2000page1_2-1" class="reference"><a href="#cite_note-RogersWilliams2000page1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Klebaner2005page56_95-0" class="reference"><a href="#cite_note-Klebaner2005page56-95"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> The Wiener process is named after <a href="/wiki/Norbert_Wiener" title="Norbert Wiener">Norbert Wiener</a>, who proved its mathematical existence, but the process is also called the Brownian motion process or just Brownian motion due to its historical connection as a model for <a href="/wiki/Brownian_movement" class="mw-redirect" title="Brownian movement">Brownian movement</a> in liquids.<sup id="cite_ref-Brush1968page1_96-0" class="reference"><a href="#cite_note-Brush1968page1-96"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Applebaum2004page1338_97-0" class="reference"><a href="#cite_note-Applebaum2004page1338-97"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GikhmanSkorokhod1969page21_98-0" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page21-98"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:DriftedWienerProcess1D.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/DriftedWienerProcess1D.svg/220px-DriftedWienerProcess1D.svg.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/DriftedWienerProcess1D.svg/330px-DriftedWienerProcess1D.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3f/DriftedWienerProcess1D.svg/440px-DriftedWienerProcess1D.svg.png 2x" data-file-width="720" data-file-height="540" /></a><figcaption>Realizations of Wiener processes (or Brownian motion processes) with drift (<style data-mw-deduplicate="TemplateStyles:r1239334494">@media screen{html.skin-theme-clientpref-night .mw-parser-output div:not(.notheme)>.tmp-color,html.skin-theme-clientpref-night .mw-parser-output p>.tmp-color,html.skin-theme-clientpref-night .mw-parser-output table:not(.notheme) .tmp-color{color:inherit!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output div:not(.notheme)>.tmp-color,html.skin-theme-clientpref-os .mw-parser-output p>.tmp-color,html.skin-theme-clientpref-os .mw-parser-output table:not(.notheme) .tmp-color{color:inherit!important}}</style><span class="tmp-color" style="color:blue">blue</span>) and without drift (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239334494"><span class="tmp-color" style="color:red">red</span>)</figcaption></figure> <p>Playing a central role in the theory of probability, the Wiener process is often considered the most important and studied stochastic process, with connections to other stochastic processes.<sup id="cite_ref-doob1953stochasticP46to47_1-5" class="reference"><a href="#cite_note-doob1953stochasticP46to47-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-RogersWilliams2000page1_2-2" class="reference"><a href="#cite_note-RogersWilliams2000page1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Steele2012page29_3-1" class="reference"><a href="#cite_note-Steele2012page29-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Florescu2014page471_99-0" class="reference"><a href="#cite_note-Florescu2014page471-99"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KarlinTaylor2012page21_100-0" class="reference"><a href="#cite_note-KarlinTaylor2012page21-100"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KaratzasShreve2014pageVIII_101-0" class="reference"><a href="#cite_note-KaratzasShreve2014pageVIII-101"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-RevuzYor2013pageIX_102-0" class="reference"><a href="#cite_note-RevuzYor2013pageIX-102"><span class="cite-bracket">&#91;</span>101<span class="cite-bracket">&#93;</span></a></sup> Its index set and state space are the non-negative numbers and real numbers, respectively, so it has both continuous index set and states space.<sup id="cite_ref-Rosenthal2006page186_103-0" class="reference"><a href="#cite_note-Rosenthal2006page186-103"><span class="cite-bracket">&#91;</span>102<span class="cite-bracket">&#93;</span></a></sup> But the process can be defined more generally so its state space can be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean space.<sup id="cite_ref-Klebaner2005page81_92-1" class="reference"><a href="#cite_note-Klebaner2005page81-92"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KarlinTaylor2012page21_100-1" class="reference"><a href="#cite_note-KarlinTaylor2012page21-100"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> If the <a href="/wiki/Mean" title="Mean">mean</a> of any increment is zero, then the resulting Wiener or Brownian motion process is said to have zero drift. If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span>, which is a real number, then the resulting stochastic process is said to have drift <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span>.<sup id="cite_ref-Steele2012page118_105-0" class="reference"><a href="#cite_note-Steele2012page118-105"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-MörtersPeres2010page1_106-0" class="reference"><a href="#cite_note-MörtersPeres2010page1-106"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KaratzasShreve2014page78_107-0" class="reference"><a href="#cite_note-KaratzasShreve2014page78-107"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Almost_surely" title="Almost surely">Almost surely</a>, a sample path of a Wiener process is continuous everywhere but <a href="/wiki/Nowhere_differentiable_function" class="mw-redirect" title="Nowhere differentiable function">nowhere differentiable</a>. It can be considered as a continuous version of the simple random walk.<sup id="cite_ref-Applebaum2004page1337_50-1" class="reference"><a href="#cite_note-Applebaum2004page1337-50"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-MörtersPeres2010page1_106-1" class="reference"><a href="#cite_note-MörtersPeres2010page1-106"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup> The process arises as the mathematical limit of other stochastic processes such as certain random walks rescaled,<sup id="cite_ref-KaratzasShreve2014page61_108-0" class="reference"><a href="#cite_note-KaratzasShreve2014page61-108"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Shreve2004page93_109-0" class="reference"><a href="#cite_note-Shreve2004page93-109"><span class="cite-bracket">&#91;</span>108<span class="cite-bracket">&#93;</span></a></sup> which is the subject of <a href="/wiki/Donsker%27s_theorem" title="Donsker&#39;s theorem">Donsker's theorem</a> or invariance principle, also known as the functional central limit theorem.<sup id="cite_ref-Kallenberg2002page225and260_110-0" class="reference"><a href="#cite_note-Kallenberg2002page225and260-110"><span class="cite-bracket">&#91;</span>109<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KaratzasShreve2014page70_111-0" class="reference"><a href="#cite_note-KaratzasShreve2014page70-111"><span class="cite-bracket">&#91;</span>110<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-MörtersPeres2010page131_112-0" class="reference"><a href="#cite_note-MörtersPeres2010page131-112"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup> </p><p>The Wiener process is a member of some important families of stochastic processes, including Markov processes, Lévy processes and Gaussian processes.<sup id="cite_ref-RogersWilliams2000page1_2-3" class="reference"><a href="#cite_note-RogersWilliams2000page1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Applebaum2004page1337_50-2" class="reference"><a href="#cite_note-Applebaum2004page1337-50"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> The process also has many applications and is the main stochastic process used in stochastic calculus.<sup id="cite_ref-Klebaner2005_113-0" class="reference"><a href="#cite_note-Klebaner2005-113"><span class="cite-bracket">&#91;</span>112<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KaratzasShreve2014page_114-0" class="reference"><a href="#cite_note-KaratzasShreve2014page-114"><span class="cite-bracket">&#91;</span>113<span class="cite-bracket">&#93;</span></a></sup> It plays a central role in quantitative finance,<sup id="cite_ref-Applebaum2004page1341_115-0" class="reference"><a href="#cite_note-Applebaum2004page1341-115"><span class="cite-bracket">&#91;</span>114<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KarlinTaylor2012page340_116-0" class="reference"><a href="#cite_note-KarlinTaylor2012page340-116"><span class="cite-bracket">&#91;</span>115<span class="cite-bracket">&#93;</span></a></sup> where it is used, for example, in the Black–Scholes–Merton model.<sup id="cite_ref-Klebaner2005page124_117-0" class="reference"><a href="#cite_note-Klebaner2005page124-117"><span class="cite-bracket">&#91;</span>116<span class="cite-bracket">&#93;</span></a></sup> The process is also used in different fields, including the majority of natural sciences as well as some branches of social sciences, as a mathematical model for various random phenomena.<sup id="cite_ref-Steele2012page29_3-2" class="reference"><a href="#cite_note-Steele2012page29-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KaratzasShreve2014page47_118-0" class="reference"><a href="#cite_note-KaratzasShreve2014page47-118"><span class="cite-bracket">&#91;</span>117<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Wiersema2008page2_119-0" class="reference"><a href="#cite_note-Wiersema2008page2-119"><span class="cite-bracket">&#91;</span>118<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Poisson_process">Poisson process</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=10" title="Edit section: Poisson process"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Poisson_process" class="mw-redirect" title="Poisson process">Poisson process</a></div> <p>The Poisson process is a stochastic process that has different forms and definitions.<sup id="cite_ref-Tijms2003page1_120-0" class="reference"><a href="#cite_note-Tijms2003page1-120"><span class="cite-bracket">&#91;</span>119<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-DaleyVere-Jones2006chap2_121-0" class="reference"><a href="#cite_note-DaleyVere-Jones2006chap2-121"><span class="cite-bracket">&#91;</span>120<span class="cite-bracket">&#93;</span></a></sup> It can be defined as a counting process, which is a stochastic process that represents the random number of points or events up to some time. The number of points of the process that are located in the interval from zero to some given time is a Poisson random variable that depends on that time and some parameter. This process has the natural numbers as its state space and the non-negative numbers as its index set. This process is also called the Poisson counting process, since it can be interpreted as an example of a counting process.<sup id="cite_ref-Tijms2003page1_120-1" class="reference"><a href="#cite_note-Tijms2003page1-120"><span class="cite-bracket">&#91;</span>119<span class="cite-bracket">&#93;</span></a></sup> </p><p>If a Poisson process is defined with a single positive constant, then the process is called a homogeneous Poisson process.<sup id="cite_ref-Tijms2003page1_120-2" class="reference"><a href="#cite_note-Tijms2003page1-120"><span class="cite-bracket">&#91;</span>119<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-PinskyKarlin2011_122-0" class="reference"><a href="#cite_note-PinskyKarlin2011-122"><span class="cite-bracket">&#91;</span>121<span class="cite-bracket">&#93;</span></a></sup> The homogeneous Poisson process is a member of important classes of stochastic processes such as Markov processes and Lévy processes.<sup id="cite_ref-Applebaum2004page1337_50-3" class="reference"><a href="#cite_note-Applebaum2004page1337-50"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p><p>The homogeneous Poisson process can be defined and generalized in different ways. It can be defined such that its index set is the real line, and this stochastic process is also called the stationary Poisson process.<sup id="cite_ref-Kingman1992page38_123-0" class="reference"><a href="#cite_note-Kingman1992page38-123"><span class="cite-bracket">&#91;</span>122<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-DaleyVere-Jones2006page19_124-0" class="reference"><a href="#cite_note-DaleyVere-Jones2006page19-124"><span class="cite-bracket">&#91;</span>123<span class="cite-bracket">&#93;</span></a></sup> If the parameter constant of the Poisson process is replaced with some non-negative integrable function of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>, the resulting process is called an inhomogeneous or nonhomogeneous Poisson process, where the average density of points of the process is no longer constant.<sup id="cite_ref-Kingman1992page22_125-0" class="reference"><a href="#cite_note-Kingman1992page22-125"><span class="cite-bracket">&#91;</span>124<span class="cite-bracket">&#93;</span></a></sup> Serving as a fundamental process in queueing theory, the Poisson process is an important process for mathematical models, where it finds applications for models of events randomly occurring in certain time windows.<sup id="cite_ref-KarlinTaylor2012page118_126-0" class="reference"><a href="#cite_note-KarlinTaylor2012page118-126"><span class="cite-bracket">&#91;</span>125<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Kleinrock1976page61_127-0" class="reference"><a href="#cite_note-Kleinrock1976page61-127"><span class="cite-bracket">&#91;</span>126<span class="cite-bracket">&#93;</span></a></sup> </p><p>Defined on the real line, the Poisson process can be interpreted as a stochastic process,<sup id="cite_ref-Applebaum2004page1337_50-4" class="reference"><a href="#cite_note-Applebaum2004page1337-50"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Rosenblatt1962page94_128-0" class="reference"><a href="#cite_note-Rosenblatt1962page94-128"><span class="cite-bracket">&#91;</span>127<span class="cite-bracket">&#93;</span></a></sup> among other random objects.<sup id="cite_ref-Haenggi2013page10and18_129-0" class="reference"><a href="#cite_note-Haenggi2013page10and18-129"><span class="cite-bracket">&#91;</span>128<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ChiuStoyan2013page41and108_130-0" class="reference"><a href="#cite_note-ChiuStoyan2013page41and108-130"><span class="cite-bracket">&#91;</span>129<span class="cite-bracket">&#93;</span></a></sup> But then it can be defined on the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean space or other mathematical spaces,<sup id="cite_ref-Kingman1992page11_131-0" class="reference"><a href="#cite_note-Kingman1992page11-131"><span class="cite-bracket">&#91;</span>130<span class="cite-bracket">&#93;</span></a></sup> where it is often interpreted as a random set or a random counting measure, instead of a stochastic process.<sup id="cite_ref-Haenggi2013page10and18_129-1" class="reference"><a href="#cite_note-Haenggi2013page10and18-129"><span class="cite-bracket">&#91;</span>128<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ChiuStoyan2013page41and108_130-1" class="reference"><a href="#cite_note-ChiuStoyan2013page41and108-130"><span class="cite-bracket">&#91;</span>129<span class="cite-bracket">&#93;</span></a></sup> In this setting, the Poisson process, also called the Poisson point process, is one of the most important objects in probability theory, both for applications and theoretical reasons.<sup id="cite_ref-Stirzaker2000_23-1" class="reference"><a href="#cite_note-Stirzaker2000-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Streit2010page1_132-0" class="reference"><a href="#cite_note-Streit2010page1-132"><span class="cite-bracket">&#91;</span>131<span class="cite-bracket">&#93;</span></a></sup> But it has been remarked that the Poisson process does not receive as much attention as it should, partly due to it often being considered just on the real line, and not on other mathematical spaces.<sup id="cite_ref-Streit2010page1_132-1" class="reference"><a href="#cite_note-Streit2010page1-132"><span class="cite-bracket">&#91;</span>131<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Kingman1992pagev_133-0" class="reference"><a href="#cite_note-Kingman1992pagev-133"><span class="cite-bracket">&#91;</span>132<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Definitions">Definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=11" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Stochastic_process">Stochastic process</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=12" title="Edit section: Stochastic process"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A stochastic process is defined as a collection of random variables defined on a common <a href="/wiki/Probability_space" title="Probability space">probability space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,{\mathcal {F}},P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,{\mathcal {F}},P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d77104a5c3c49cc0634dcf6908db7ad45f738d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.227ex; height:2.843ex;" alt="{\displaystyle (\Omega ,{\mathcal {F}},P)}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> is a <a href="/wiki/Sample_space" title="Sample space">sample space</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span> is a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>-<a href="/wiki/Sigma-algebra" class="mw-redirect" title="Sigma-algebra">algebra</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> is a <a href="/wiki/Probability_measure" title="Probability measure">probability measure</a>; and the random variables, indexed by some set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>, all take values in the same mathematical space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>, which must be <a href="/wiki/Measurable" class="mw-redirect" title="Measurable">measurable</a> with respect to some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>-algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span>.<sup id="cite_ref-Lamperti1977page1_29-7" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p><p>In other words, for a given probability space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,{\mathcal {F}},P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,{\mathcal {F}},P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d77104a5c3c49cc0634dcf6908db7ad45f738d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.227ex; height:2.843ex;" alt="{\displaystyle (\Omega ,{\mathcal {F}},P)}"></span> and a measurable space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (S,\Sigma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (S,\Sigma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a345c3f30d6b3ee975e3afb6fa610cd3f67494e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.021ex; height:2.843ex;" alt="{\displaystyle (S,\Sigma )}"></span>, a stochastic process is a collection of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>-valued random variables, which can be written as:<sup id="cite_ref-Florescu2014page293_81-1" class="reference"><a href="#cite_note-Florescu2014page293-81"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{X(t):t\in T\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{X(t):t\in T\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c0cc3a859a9ffecd77f44b5540c43d6ecbe5666" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.854ex; height:2.843ex;" alt="{\displaystyle \{X(t):t\in T\}.}"></span></div> <p>Historically, in many problems from the natural sciences a point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4fe93f70df3818ecca67c2ca44f087483951856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.317ex; height:2.176ex;" alt="{\displaystyle t\in T}"></span> had the meaning of time, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfeb6663c0a903f587cd6d776c387370fc5c4ab7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.629ex; height:2.843ex;" alt="{\displaystyle X(t)}"></span> is a random variable representing a value observed at time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>.<sup id="cite_ref-Borovkov2013page528_134-0" class="reference"><a href="#cite_note-Borovkov2013page528-134"><span class="cite-bracket">&#91;</span>133<span class="cite-bracket">&#93;</span></a></sup> A stochastic process can also be written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{X(t,\omega ):t\in T\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{X(t,\omega ):t\in T\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12d3ce53efaf0eaf3a7e67d5d5e679c6da520db9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.687ex; height:2.843ex;" alt="{\displaystyle \{X(t,\omega ):t\in T\}}"></span> to reflect that it is actually a function of two variables, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4fe93f70df3818ecca67c2ca44f087483951856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.317ex; height:2.176ex;" alt="{\displaystyle t\in T}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \in \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \in \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e23a8931e1b954519d9fb9ba2e7f02eaa11ac91a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.965ex; height:2.176ex;" alt="{\displaystyle \omega \in \Omega }"></span>.<sup id="cite_ref-Lamperti1977page1_29-8" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-LindgrenRootzen2013page11_135-0" class="reference"><a href="#cite_note-LindgrenRootzen2013page11-135"><span class="cite-bracket">&#91;</span>134<span class="cite-bracket">&#93;</span></a></sup> </p><p>There are other ways to consider a stochastic process, with the above definition being considered the traditional one.<sup id="cite_ref-RogersWilliams2000page121_69-1" class="reference"><a href="#cite_note-RogersWilliams2000page121-69"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Asmussen2003page408_70-2" class="reference"><a href="#cite_note-Asmussen2003page408-70"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> For example, a stochastic process can be interpreted or defined as a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c96ff2287e146f1ccab6ae915d9bba2643f7fb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.911ex; height:2.676ex;" alt="{\displaystyle S^{T}}"></span>-valued random variable, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c96ff2287e146f1ccab6ae915d9bba2643f7fb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.911ex; height:2.676ex;" alt="{\displaystyle S^{T}}"></span> is the space of all the possible <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a> from the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> into the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>.<sup id="cite_ref-Kallenberg2002page24_28-3" class="reference"><a href="#cite_note-Kallenberg2002page24-28"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-RogersWilliams2000page121_69-2" class="reference"><a href="#cite_note-RogersWilliams2000page121-69"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> However this alternative definition as a "function-valued random variable" in general requires additional regularity assumptions to be well-defined.<sup id="cite_ref-aumann_136-0" class="reference"><a href="#cite_note-aumann-136"><span class="cite-bracket">&#91;</span>135<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Index_set">Index set</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=13" title="Edit section: Index set"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is called the <b>index set</b><sup id="cite_ref-Parzen1999_4-4" class="reference"><a href="#cite_note-Parzen1999-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Florescu2014page294_52-2" class="reference"><a href="#cite_note-Florescu2014page294-52"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> or <b>parameter set</b><sup id="cite_ref-Lamperti1977page1_29-9" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Skorokhod2005page93_137-0" class="reference"><a href="#cite_note-Skorokhod2005page93-137"><span class="cite-bracket">&#91;</span>136<span class="cite-bracket">&#93;</span></a></sup> of the stochastic process. Often this set is some subset of the <a href="/wiki/Real_line" class="mw-redirect" title="Real line">real line</a>, such as the <a href="/wiki/Natural_numbers" class="mw-redirect" title="Natural numbers">natural numbers</a> or an interval, giving the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> the interpretation of time.<sup id="cite_ref-doob1953stochasticP46to47_1-6" class="reference"><a href="#cite_note-doob1953stochasticP46to47-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> In addition to these sets, the index set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> can be another set with a <a href="/wiki/Total_order" title="Total order">total order</a> or a more general set,<sup id="cite_ref-doob1953stochasticP46to47_1-7" class="reference"><a href="#cite_note-doob1953stochasticP46to47-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Billingsley2008page482_55-1" class="reference"><a href="#cite_note-Billingsley2008page482-55"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> such as the Cartesian plane <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean space, where an element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4fe93f70df3818ecca67c2ca44f087483951856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.317ex; height:2.176ex;" alt="{\displaystyle t\in T}"></span> can represent a point in space.<sup id="cite_ref-KarlinTaylor2012page27_49-2" class="reference"><a href="#cite_note-KarlinTaylor2012page27-49"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-138" class="reference"><a href="#cite_note-138"><span class="cite-bracket">&#91;</span>137<span class="cite-bracket">&#93;</span></a></sup> That said, many results and theorems are only possible for stochastic processes with a totally ordered index set.<sup id="cite_ref-Skorokhod2005page104_139-0" class="reference"><a href="#cite_note-Skorokhod2005page104-139"><span class="cite-bracket">&#91;</span>138<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="State_space">State space</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=14" title="Edit section: State space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Mathematical_space" class="mw-redirect" title="Mathematical space">mathematical space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> of a stochastic process is called its <i>state space</i>. This mathematical space can be defined using <a href="/wiki/Integer" title="Integer">integers</a>, <a href="/wiki/Real_line" class="mw-redirect" title="Real line">real lines</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean spaces</a>, complex planes, or more abstract mathematical spaces. The state space is defined using elements that reflect the different values that the stochastic process can take.<sup id="cite_ref-doob1953stochasticP46to47_1-8" class="reference"><a href="#cite_note-doob1953stochasticP46to47-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GikhmanSkorokhod1969page1_5-10" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Lamperti1977page1_29-10" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Florescu2014page294_52-3" class="reference"><a href="#cite_note-Florescu2014page294-52"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Brémaud2014page120_57-2" class="reference"><a href="#cite_note-Brémaud2014page120-57"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Sample_function">Sample function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=15" title="Edit section: Sample function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <b>sample function</b> is a single <a href="/wiki/Outcome_(probability)" title="Outcome (probability)">outcome</a> of a stochastic process, so it is formed by taking a single possible value of each random variable of the stochastic process.<sup id="cite_ref-Lamperti1977page1_29-11" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Florescu2014page296_140-0" class="reference"><a href="#cite_note-Florescu2014page296-140"><span class="cite-bracket">&#91;</span>139<span class="cite-bracket">&#93;</span></a></sup> More precisely, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{X(t,\omega ):t\in T\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{X(t,\omega ):t\in T\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12d3ce53efaf0eaf3a7e67d5d5e679c6da520db9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.687ex; height:2.843ex;" alt="{\displaystyle \{X(t,\omega ):t\in T\}}"></span> is a stochastic process, then for any point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \in \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \in \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e23a8931e1b954519d9fb9ba2e7f02eaa11ac91a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.965ex; height:2.176ex;" alt="{\displaystyle \omega \in \Omega }"></span>, the <a href="/wiki/Map_(mathematics)" title="Map (mathematics)">mapping</a> </p> <div class="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(\cdot ,\omega ):T\rightarrow S,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>,</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi>T</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(\cdot ,\omega ):T\rightarrow S,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2718b5d432f366d7699c877cc704a50c3ee1db63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.249ex; height:2.843ex;" alt="{\displaystyle X(\cdot ,\omega ):T\rightarrow S,}"></span></div> <p>is called a sample function, a <b>realization</b>, or, particularly when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is interpreted as time, a <b>sample path</b> of the stochastic process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{X(t,\omega ):t\in T\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{X(t,\omega ):t\in T\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12d3ce53efaf0eaf3a7e67d5d5e679c6da520db9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.687ex; height:2.843ex;" alt="{\displaystyle \{X(t,\omega ):t\in T\}}"></span>.<sup id="cite_ref-RogersWilliams2000page121b_51-1" class="reference"><a href="#cite_note-RogersWilliams2000page121b-51"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> This means that for a fixed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \in \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \in \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e23a8931e1b954519d9fb9ba2e7f02eaa11ac91a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.965ex; height:2.176ex;" alt="{\displaystyle \omega \in \Omega }"></span>, there exists a sample function that maps the index set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> to the state space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>.<sup id="cite_ref-Lamperti1977page1_29-12" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> Other names for a sample function of a stochastic process include <b>trajectory</b>, <b>path function</b><sup id="cite_ref-Billingsley2008page493_141-0" class="reference"><a href="#cite_note-Billingsley2008page493-141"><span class="cite-bracket">&#91;</span>140<span class="cite-bracket">&#93;</span></a></sup> or <b>path</b>.<sup id="cite_ref-Øksendal2003page10_142-0" class="reference"><a href="#cite_note-Øksendal2003page10-142"><span class="cite-bracket">&#91;</span>141<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Increment">Increment</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=16" title="Edit section: Increment"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An <b>increment</b> of a stochastic process is the difference between two random variables of the same stochastic process. For a stochastic process with an index set that can be interpreted as time, an increment is how much the stochastic process changes over a certain time period. For example, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{X(t):t\in T\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{X(t):t\in T\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7217d98e276b7c261071ee4e862c8630ea616ecd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.208ex; height:2.843ex;" alt="{\displaystyle \{X(t):t\in T\}}"></span> is a stochastic process with state space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> and index set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=[0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=[0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2d5792c68149c5c2f3e434e8c119a702ced9846" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.806ex; height:2.843ex;" alt="{\displaystyle T=[0,\infty )}"></span>, then for any two non-negative numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{1}\in [0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{1}\in [0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06494357e499250219583fb45ba3459986d12806" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.806ex; height:2.843ex;" alt="{\displaystyle t_{1}\in [0,\infty )}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{2}\in [0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{2}\in [0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e8503b7393f08fb2d5f14fc1d022d918a1b8c7d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.806ex; height:2.843ex;" alt="{\displaystyle t_{2}\in [0,\infty )}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{1}\leq t_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{1}\leq t_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b64ae8eb3430c6f0d75d0d8f09c1e0ed8af4cb92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.886ex; height:2.343ex;" alt="{\displaystyle t_{1}\leq t_{2}}"></span>, the difference <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{t_{2}}-X_{t_{1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{t_{2}}-X_{t_{1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c007b9a100a5666b613bcb15f4f70d52e44b2a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.004ex; height:2.843ex;" alt="{\displaystyle X_{t_{2}}-X_{t_{1}}}"></span> is a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>-valued random variable known as an increment.<sup id="cite_ref-KarlinTaylor2012page27_49-3" class="reference"><a href="#cite_note-KarlinTaylor2012page27-49"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Applebaum2004page1337_50-5" class="reference"><a href="#cite_note-Applebaum2004page1337-50"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> When interested in the increments, often the state space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is the real line or the natural numbers, but it can be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean space or more abstract spaces such as <a href="/wiki/Banach_space" title="Banach space">Banach spaces</a>.<sup id="cite_ref-Applebaum2004page1337_50-6" class="reference"><a href="#cite_note-Applebaum2004page1337-50"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Further_definitions">Further definitions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=17" title="Edit section: Further definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Law">Law</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=18" title="Edit section: Law"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For a stochastic process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\colon \Omega \rightarrow S^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x003A;<!-- : --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\colon \Omega \rightarrow S^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/087447398e813d81b4e4612fd7623390578a108b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.217ex; height:2.676ex;" alt="{\displaystyle X\colon \Omega \rightarrow S^{T}}"></span> defined on the probability space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,{\mathcal {F}},P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,{\mathcal {F}},P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d77104a5c3c49cc0634dcf6908db7ad45f738d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.227ex; height:2.843ex;" alt="{\displaystyle (\Omega ,{\mathcal {F}},P)}"></span>, the <b>law</b> of stochastic process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is defined as the <a href="/wiki/Pushforward_measure" title="Pushforward measure">image measure</a>: </p> <div class="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu =P\circ X^{-1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mi>P</mi> <mo>&#x2218;<!-- ∘ --></mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu =P\circ X^{-1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aaa4c4dfdcc71e386d78cddc468cb979189bf3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.417ex; height:3.176ex;" alt="{\displaystyle \mu =P\circ X^{-1},}"></span></div> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> is a probability measure, the symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \circ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2218;<!-- ∘ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \circ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99add39d2b681e2de7ff62422c32704a05c7ec31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.125ex; margin-bottom: -0.297ex; width:1.162ex; height:1.509ex;" alt="{\displaystyle \circ }"></span> denotes function composition and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71f75a18781a402f9fb09972f99e092bf21aa877" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.33ex; height:2.676ex;" alt="{\displaystyle X^{-1}}"></span> is the pre-image of the measurable function or, equivalently, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c96ff2287e146f1ccab6ae915d9bba2643f7fb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.911ex; height:2.676ex;" alt="{\displaystyle S^{T}}"></span>-valued random variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c96ff2287e146f1ccab6ae915d9bba2643f7fb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.911ex; height:2.676ex;" alt="{\displaystyle S^{T}}"></span> is the space of all the possible <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>-valued functions of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4fe93f70df3818ecca67c2ca44f087483951856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.317ex; height:2.176ex;" alt="{\displaystyle t\in T}"></span>, so the law of a stochastic process is a probability measure.<sup id="cite_ref-Kallenberg2002page24_28-4" class="reference"><a href="#cite_note-Kallenberg2002page24-28"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-RogersWilliams2000page121_69-3" class="reference"><a href="#cite_note-RogersWilliams2000page121-69"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FrizVictoir2010page571_143-0" class="reference"><a href="#cite_note-FrizVictoir2010page571-143"><span class="cite-bracket">&#91;</span>142<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Resnick2013page40_144-0" class="reference"><a href="#cite_note-Resnick2013page40-144"><span class="cite-bracket">&#91;</span>143<span class="cite-bracket">&#93;</span></a></sup> </p><p>For a measurable subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c96ff2287e146f1ccab6ae915d9bba2643f7fb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.911ex; height:2.676ex;" alt="{\displaystyle S^{T}}"></span>, the pre-image of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> gives </p> <div class="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{-1}(B)=\{\omega \in \Omega :X(\omega )\in B\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{-1}(B)=\{\omega \in \Omega :X(\omega )\in B\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/613f6fbcab13d949e540fa194fa227ebb90a856c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.715ex; height:3.176ex;" alt="{\displaystyle X^{-1}(B)=\{\omega \in \Omega :X(\omega )\in B\},}"></span></div> <p>so the law of a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> can be written as:<sup id="cite_ref-Lamperti1977page1_29-13" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu (B)=P(\{\omega \in \Omega :X(\omega )\in B\}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu (B)=P(\{\omega \in \Omega :X(\omega )\in B\}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/221e1244c4a1dd6eb832db40c4d7fae1fb4a4b2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.341ex; height:2.843ex;" alt="{\displaystyle \mu (B)=P(\{\omega \in \Omega :X(\omega )\in B\}).}"></span></div> <p>The law of a stochastic process or a random variable is also called the <b>probability law</b>, <b>probability distribution</b>, or the <b>distribution</b>.<sup id="cite_ref-Borovkov2013page528_134-1" class="reference"><a href="#cite_note-Borovkov2013page528-134"><span class="cite-bracket">&#91;</span>133<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FrizVictoir2010page571_143-1" class="reference"><a href="#cite_note-FrizVictoir2010page571-143"><span class="cite-bracket">&#91;</span>142<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Whitt2006page23_145-0" class="reference"><a href="#cite_note-Whitt2006page23-145"><span class="cite-bracket">&#91;</span>144<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ApplebaumBook2004page4_146-0" class="reference"><a href="#cite_note-ApplebaumBook2004page4-146"><span class="cite-bracket">&#91;</span>145<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-RevuzYor2013page10_147-0" class="reference"><a href="#cite_note-RevuzYor2013page10-147"><span class="cite-bracket">&#91;</span>146<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Finite-dimensional_probability_distributions">Finite-dimensional probability distributions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=19" title="Edit section: Finite-dimensional probability distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Finite-dimensional_distribution" title="Finite-dimensional distribution">Finite-dimensional distribution</a></div> <p>For a stochastic process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> with law <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span>, its <b>finite-dimensional distribution</b> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{1},\dots ,t_{n}\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{1},\dots ,t_{n}\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a87f94ed161df0e7f64afdb1e06872490967bd9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.607ex; height:2.509ex;" alt="{\displaystyle t_{1},\dots ,t_{n}\in T}"></span> is defined as: </p> <div class="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{t_{1},\dots ,t_{n}}=P\circ (X({t_{1}}),\dots ,X({t_{n}}))^{-1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mi>P</mi> <mo>&#x2218;<!-- ∘ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{t_{1},\dots ,t_{n}}=P\circ (X({t_{1}}),\dots ,X({t_{n}}))^{-1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5824dfc4529fdcf79a0a20fe0828638fb7090cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:35.994ex; height:3.343ex;" alt="{\displaystyle \mu _{t_{1},\dots ,t_{n}}=P\circ (X({t_{1}}),\dots ,X({t_{n}}))^{-1},}"></span></div> <p>This measure <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{t_{1},..,t_{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{t_{1},..,t_{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/524b5229b797357e587ae012be097d9cbbb703a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.447ex; height:2.343ex;" alt="{\displaystyle \mu _{t_{1},..,t_{n}}}"></span> is the joint distribution of the random vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X({t_{1}}),\dots ,X({t_{n}}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X({t_{1}}),\dots ,X({t_{n}}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4abce4e2541966d9c824830c5246cf00e2e5dd0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.518ex; height:2.843ex;" alt="{\displaystyle (X({t_{1}}),\dots ,X({t_{n}}))}"></span>; it can be viewed as a "projection" of the law <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> onto a finite subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>.<sup id="cite_ref-Kallenberg2002page24_28-5" class="reference"><a href="#cite_note-Kallenberg2002page24-28"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-RogersWilliams2000page123_148-0" class="reference"><a href="#cite_note-RogersWilliams2000page123-148"><span class="cite-bracket">&#91;</span>147<span class="cite-bracket">&#93;</span></a></sup> </p><p>For any measurable subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-fold <a href="/wiki/Cartesian_power" class="mw-redirect" title="Cartesian power">Cartesian power</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{n}=S\times \dots \times S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>S</mi> <mo>&#x00D7;<!-- × --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x00D7;<!-- × --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{n}=S\times \dots \times S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9743c7006613bd800da45a69ce249c6a40c57ff1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.241ex; height:2.343ex;" alt="{\displaystyle S^{n}=S\times \dots \times S}"></span>, the finite-dimensional distributions of a stochastic process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> can be written as:<sup id="cite_ref-Lamperti1977page1_29-14" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{t_{1},\dots ,t_{n}}(C)=P{\Big (}{\big \{}\omega \in \Omega :{\big (}X_{t_{1}}(\omega ),\dots ,X_{t_{n}}(\omega ){\big )}\in C{\big \}}{\Big )}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">{</mo> </mrow> </mrow> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">}</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{t_{1},\dots ,t_{n}}(C)=P{\Big (}{\big \{}\omega \in \Omega :{\big (}X_{t_{1}}(\omega ),\dots ,X_{t_{n}}(\omega ){\big )}\in C{\big \}}{\Big )}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d4be29f417d006975f5be6824c2feb6e3a3e344" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:55.634ex; height:4.843ex;" alt="{\displaystyle \mu _{t_{1},\dots ,t_{n}}(C)=P{\Big (}{\big \{}\omega \in \Omega :{\big (}X_{t_{1}}(\omega ),\dots ,X_{t_{n}}(\omega ){\big )}\in C{\big \}}{\Big )}.}"></span></div> <p>The finite-dimensional distributions of a stochastic process satisfy two mathematical conditions known as consistency conditions.<sup id="cite_ref-Rosenthal2006page177_58-1" class="reference"><a href="#cite_note-Rosenthal2006page177-58"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Stationarity">Stationarity</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=20" title="Edit section: Stationarity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Stationary_process" title="Stationary process">Stationary process</a></div> <p><b>Stationarity</b> is a mathematical property that a stochastic process has when all the random variables of that stochastic process are identically distributed. In other words, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a stationary stochastic process, then for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4fe93f70df3818ecca67c2ca44f087483951856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.317ex; height:2.176ex;" alt="{\displaystyle t\in T}"></span> the random variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82120d04dfb3cbadc4912951dd12b5568c9cd8f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.75ex; height:2.509ex;" alt="{\displaystyle X_{t}}"></span> has the same distribution, which means that for any set of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> index set values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{1},\dots ,t_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{1},\dots ,t_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34a1feec735ff72e72b1b6e15b45a3cef67cade3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.13ex; height:2.343ex;" alt="{\displaystyle t_{1},\dots ,t_{n}}"></span>, the corresponding <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> random variables </p> <div class="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{t_{1}},\dots X_{t_{n}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{t_{1}},\dots X_{t_{n}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf1fc37d32d5937697f3f2239df61ad039fbc3e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.088ex; height:2.843ex;" alt="{\displaystyle X_{t_{1}},\dots X_{t_{n}},}"></span></div> <p>all have the same <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a>. The index set of a stationary stochastic process is usually interpreted as time, so it can be the integers or the real line.<sup id="cite_ref-Lamperti1977page6_149-0" class="reference"><a href="#cite_note-Lamperti1977page6-149"><span class="cite-bracket">&#91;</span>148<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GikhmanSkorokhod1969page4_150-0" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page4-150"><span class="cite-bracket">&#91;</span>149<span class="cite-bracket">&#93;</span></a></sup> But the concept of stationarity also exists for point processes and random fields, where the index set is not interpreted as time.<sup id="cite_ref-Lamperti1977page6_149-1" class="reference"><a href="#cite_note-Lamperti1977page6-149"><span class="cite-bracket">&#91;</span>148<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Adler2010page14_151-0" class="reference"><a href="#cite_note-Adler2010page14-151"><span class="cite-bracket">&#91;</span>150<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ChiuStoyan2013page112_152-0" class="reference"><a href="#cite_note-ChiuStoyan2013page112-152"><span class="cite-bracket">&#91;</span>151<span class="cite-bracket">&#93;</span></a></sup> </p><p>When the index set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> can be interpreted as time, a stochastic process is said to be stationary if its finite-dimensional distributions are invariant under translations of time. This type of stochastic process can be used to describe a physical system that is in steady state, but still experiences random fluctuations.<sup id="cite_ref-Lamperti1977page6_149-2" class="reference"><a href="#cite_note-Lamperti1977page6-149"><span class="cite-bracket">&#91;</span>148<span class="cite-bracket">&#93;</span></a></sup> The intuition behind stationarity is that as time passes the distribution of the stationary stochastic process remains the same.<sup id="cite_ref-Doob1990page94_153-0" class="reference"><a href="#cite_note-Doob1990page94-153"><span class="cite-bracket">&#91;</span>152<span class="cite-bracket">&#93;</span></a></sup> A sequence of random variables forms a stationary stochastic process only if the random variables are identically distributed.<sup id="cite_ref-Lamperti1977page6_149-3" class="reference"><a href="#cite_note-Lamperti1977page6-149"><span class="cite-bracket">&#91;</span>148<span class="cite-bracket">&#93;</span></a></sup> </p><p>A stochastic process with the above definition of stationarity is sometimes said to be strictly stationary, but there are other forms of stationarity. One example is when a discrete-time or continuous-time stochastic process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is said to be stationary in the wide sense, then the process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> has a finite second moment for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4fe93f70df3818ecca67c2ca44f087483951856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.317ex; height:2.176ex;" alt="{\displaystyle t\in T}"></span> and the covariance of the two random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82120d04dfb3cbadc4912951dd12b5568c9cd8f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.75ex; height:2.509ex;" alt="{\displaystyle X_{t}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{t+h}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>+</mo> <mi>h</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{t+h}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd42440349572614fdd9732f222a5967966b488e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.976ex; height:2.509ex;" alt="{\displaystyle X_{t+h}}"></span> depends only on the number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4fe93f70df3818ecca67c2ca44f087483951856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.317ex; height:2.176ex;" alt="{\displaystyle t\in T}"></span>.<sup id="cite_ref-Doob1990page94_153-1" class="reference"><a href="#cite_note-Doob1990page94-153"><span class="cite-bracket">&#91;</span>152<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Florescu2014page298_154-0" class="reference"><a href="#cite_note-Florescu2014page298-154"><span class="cite-bracket">&#91;</span>153<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Aleksandr_Khinchin" title="Aleksandr Khinchin">Khinchin</a> introduced the related concept of <b>stationarity in the wide sense</b>, which has other names including <b>covariance stationarity</b> or <b>stationarity in the broad sense</b>.<sup id="cite_ref-Florescu2014page298_154-1" class="reference"><a href="#cite_note-Florescu2014page298-154"><span class="cite-bracket">&#91;</span>153<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GikhmanSkorokhod1969page8_155-0" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page8-155"><span class="cite-bracket">&#91;</span>154<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Filtration">Filtration</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=21" title="Edit section: Filtration"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Filtration_(probability_theory)" title="Filtration (probability theory)">filtration</a> is an increasing sequence of sigma-algebras defined in relation to some probability space and an index set that has some <a href="/wiki/Total_order" title="Total order">total order</a> relation, such as in the case of the index set being some subset of the real numbers. More formally, if a stochastic process has an index set with a total order, then a filtration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{{\mathcal {F}}_{t}\}_{t\in T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msub> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{{\mathcal {F}}_{t}\}_{t\in T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/502d06196a101b3d5fc05c9d6af22e88e8138a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.901ex; height:2.843ex;" alt="{\displaystyle \{{\mathcal {F}}_{t}\}_{t\in T}}"></span>, on a probability space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,{\mathcal {F}},P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,{\mathcal {F}},P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d77104a5c3c49cc0634dcf6908db7ad45f738d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.227ex; height:2.843ex;" alt="{\displaystyle (\Omega ,{\mathcal {F}},P)}"></span> is a family of sigma-algebras such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}_{s}\subseteq {\mathcal {F}}_{t}\subseteq {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>&#x2286;<!-- ⊆ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2286;<!-- ⊆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}_{s}\subseteq {\mathcal {F}}_{t}\subseteq {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0db36797ea37ac95fa216064ec73cf20727fbfca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.295ex; height:2.509ex;" alt="{\displaystyle {\mathcal {F}}_{s}\subseteq {\mathcal {F}}_{t}\subseteq {\mathcal {F}}}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\leq t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\leq t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c12f663b9eb8759c0da898cc542d7cb3bcf5e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.029ex; height:2.176ex;" alt="{\displaystyle s\leq t}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t,s\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>,</mo> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t,s\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0955558a4194833987ad85e254a6466f3a67a0c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.441ex; height:2.509ex;" alt="{\displaystyle t,s\in T}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leq }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2264;<!-- ≤ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leq }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/440568a09c3bfdf0e1278bfa79eb137c04e94035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \leq }"></span> denotes the total order of the index set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>.<sup id="cite_ref-Florescu2014page294_52-4" class="reference"><a href="#cite_note-Florescu2014page294-52"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> With the concept of a filtration, it is possible to study the amount of information contained in a stochastic process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82120d04dfb3cbadc4912951dd12b5568c9cd8f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.75ex; height:2.509ex;" alt="{\displaystyle X_{t}}"></span> at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4fe93f70df3818ecca67c2ca44f087483951856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.317ex; height:2.176ex;" alt="{\displaystyle t\in T}"></span>, which can be interpreted as time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>.<sup id="cite_ref-Florescu2014page294_52-5" class="reference"><a href="#cite_note-Florescu2014page294-52"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Williams1991page93_156-0" class="reference"><a href="#cite_note-Williams1991page93-156"><span class="cite-bracket">&#91;</span>155<span class="cite-bracket">&#93;</span></a></sup> The intuition behind a filtration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba5209aeab53016ae720999b2a50e7f0bc27cb33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.497ex; height:2.509ex;" alt="{\displaystyle {\mathcal {F}}_{t}}"></span> is that as time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> passes, more and more information on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82120d04dfb3cbadc4912951dd12b5568c9cd8f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.75ex; height:2.509ex;" alt="{\displaystyle X_{t}}"></span> is known or available, which is captured in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba5209aeab53016ae720999b2a50e7f0bc27cb33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.497ex; height:2.509ex;" alt="{\displaystyle {\mathcal {F}}_{t}}"></span>, resulting in finer and finer partitions of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>.<sup id="cite_ref-Klebaner2005page22_157-0" class="reference"><a href="#cite_note-Klebaner2005page22-157"><span class="cite-bracket">&#91;</span>156<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-MörtersPeres2010page37_158-0" class="reference"><a href="#cite_note-MörtersPeres2010page37-158"><span class="cite-bracket">&#91;</span>157<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Modification">Modification</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=22" title="Edit section: Modification"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <b>modification</b> of a stochastic process is another stochastic process, which is closely related to the original stochastic process. More precisely, a stochastic process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> that has the same index set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>, state space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>, and probability space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,{\cal {F}},P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,{\cal {F}},P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52145a67f2c90f7a3b14c5bb603cd6d74ea247c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.227ex; height:2.843ex;" alt="{\displaystyle (\Omega ,{\cal {F}},P)}"></span> as another stochastic process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> is said to be a modification of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> if for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4fe93f70df3818ecca67c2ca44f087483951856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.317ex; height:2.176ex;" alt="{\displaystyle t\in T}"></span> the following </p> <div class="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X_{t}=Y_{t})=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X_{t}=Y_{t})=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/597b85d90932a65773d5521ed76f017c4dcf8b2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.488ex; height:2.843ex;" alt="{\displaystyle P(X_{t}=Y_{t})=1,}"></span></div> <p>holds. Two stochastic processes that are modifications of each other have the same finite-dimensional law<sup id="cite_ref-RogersWilliams2000page130_159-0" class="reference"><a href="#cite_note-RogersWilliams2000page130-159"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> and they are said to be <b>stochastically equivalent</b> or <b>equivalent</b>.<sup id="cite_ref-Borovkov2013page530_160-0" class="reference"><a href="#cite_note-Borovkov2013page530-160"><span class="cite-bracket">&#91;</span>159<span class="cite-bracket">&#93;</span></a></sup> </p><p>Instead of modification, the term <b>version</b> is also used,<sup id="cite_ref-Adler2010page14_151-1" class="reference"><a href="#cite_note-Adler2010page14-151"><span class="cite-bracket">&#91;</span>150<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Klebaner2005page48_161-0" class="reference"><a href="#cite_note-Klebaner2005page48-161"><span class="cite-bracket">&#91;</span>160<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Øksendal2003page14_162-0" class="reference"><a href="#cite_note-Øksendal2003page14-162"><span class="cite-bracket">&#91;</span>161<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Florescu2014page472_163-0" class="reference"><a href="#cite_note-Florescu2014page472-163"><span class="cite-bracket">&#91;</span>162<span class="cite-bracket">&#93;</span></a></sup> however some authors use the term version when two stochastic processes have the same finite-dimensional distributions, but they may be defined on different probability spaces, so two processes that are modifications of each other, are also versions of each other, in the latter sense, but not the converse.<sup id="cite_ref-RevuzYor2013page18_164-0" class="reference"><a href="#cite_note-RevuzYor2013page18-164"><span class="cite-bracket">&#91;</span>163<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FrizVictoir2010page571_143-2" class="reference"><a href="#cite_note-FrizVictoir2010page571-143"><span class="cite-bracket">&#91;</span>142<span class="cite-bracket">&#93;</span></a></sup> </p><p>If a continuous-time real-valued stochastic process meets certain moment conditions on its increments, then the <a href="/wiki/Kolmogorov_continuity_theorem" title="Kolmogorov continuity theorem">Kolmogorov continuity theorem</a> says that there exists a modification of this process that has continuous sample paths with probability one, so the stochastic process has a continuous modification or version.<sup id="cite_ref-Øksendal2003page14_162-1" class="reference"><a href="#cite_note-Øksendal2003page14-162"><span class="cite-bracket">&#91;</span>161<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Florescu2014page472_163-1" class="reference"><a href="#cite_note-Florescu2014page472-163"><span class="cite-bracket">&#91;</span>162<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ApplebaumBook2004page20_165-0" class="reference"><a href="#cite_note-ApplebaumBook2004page20-165"><span class="cite-bracket">&#91;</span>164<span class="cite-bracket">&#93;</span></a></sup> The theorem can also be generalized to random fields so the index set is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean space<sup id="cite_ref-Kunita1997page31_166-0" class="reference"><a href="#cite_note-Kunita1997page31-166"><span class="cite-bracket">&#91;</span>165<span class="cite-bracket">&#93;</span></a></sup> as well as to stochastic processes with <a href="/wiki/Metric_spaces" class="mw-redirect" title="Metric spaces">metric spaces</a> as their state spaces.<sup id="cite_ref-Kallenberg2002page_167-0" class="reference"><a href="#cite_note-Kallenberg2002page-167"><span class="cite-bracket">&#91;</span>166<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Indistinguishable">Indistinguishable</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=23" title="Edit section: Indistinguishable"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Two stochastic processes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> defined on the same probability space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,{\mathcal {F}},P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,{\mathcal {F}},P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d77104a5c3c49cc0634dcf6908db7ad45f738d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.227ex; height:2.843ex;" alt="{\displaystyle (\Omega ,{\mathcal {F}},P)}"></span> with the same index set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> and set space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> are said be <b>indistinguishable</b> if the following </p> <div class="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X_{t}=Y_{t}{\text{ for all }}t\in T)=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X_{t}=Y_{t}{\text{ for all }}t\in T)=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2c12532d934c0e9f7ccc82f1a290edb209d447c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.788ex; height:2.843ex;" alt="{\displaystyle P(X_{t}=Y_{t}{\text{ for all }}t\in T)=1,}"></span></div> <p>holds.<sup id="cite_ref-FrizVictoir2010page571_143-3" class="reference"><a href="#cite_note-FrizVictoir2010page571-143"><span class="cite-bracket">&#91;</span>142<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-RogersWilliams2000page130_159-1" class="reference"><a href="#cite_note-RogersWilliams2000page130-159"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> If two <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> are modifications of each other and are <a href="/wiki/Almost_surely_continuous" class="mw-redirect" title="Almost surely continuous">almost surely continuous</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> are indistinguishable.<sup id="cite_ref-JeanblancYor2009page11_168-0" class="reference"><a href="#cite_note-JeanblancYor2009page11-168"><span class="cite-bracket">&#91;</span>167<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Separability">Separability</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=24" title="Edit section: Separability"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b>Separability</b> is a property of a stochastic process based on its index set in relation to the probability measure. The property is assumed so that functionals of stochastic processes or random fields with uncountable index sets can form random variables. For a stochastic process to be separable, in addition to other conditions, its index set must be a <a href="/wiki/Separable_space" title="Separable space">separable space</a>,<sup id="cite_ref-169" class="reference"><a href="#cite_note-169"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> which means that the index set has a dense countable subset.<sup id="cite_ref-Adler2010page14_151-2" class="reference"><a href="#cite_note-Adler2010page14-151"><span class="cite-bracket">&#91;</span>150<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Ito2006page32_170-0" class="reference"><a href="#cite_note-Ito2006page32-170"><span class="cite-bracket">&#91;</span>168<span class="cite-bracket">&#93;</span></a></sup> </p><p>More precisely, a real-valued continuous-time stochastic process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> with a probability space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,{\cal {F}},P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,{\cal {F}},P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52145a67f2c90f7a3b14c5bb603cd6d74ea247c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.227ex; height:2.843ex;" alt="{\displaystyle (\Omega ,{\cal {F}},P)}"></span> is separable if its index set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> has a dense countable subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\subset T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>&#x2282;<!-- ⊂ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\subset T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef3968c1e805d40ed499802acacfacca97dfabd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.517ex; height:2.176ex;" alt="{\displaystyle U\subset T}"></span> and there is a set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega _{0}\subset \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2282;<!-- ⊂ --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega _{0}\subset \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96f01a9a38d481400f585fffc08f8d6601f2ac59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.509ex; height:2.509ex;" alt="{\displaystyle \Omega _{0}\subset \Omega }"></span> of probability zero, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(\Omega _{0})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(\Omega _{0})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a246b15f0656ed2fed4fc327a3502046f6b4be0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.548ex; height:2.843ex;" alt="{\displaystyle P(\Omega _{0})=0}"></span>, such that for every open set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\subset T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>&#x2282;<!-- ⊂ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\subset T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd19cc42d8c42e2e557137014251083ba689b456" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.561ex; height:2.176ex;" alt="{\displaystyle G\subset T}"></span> and every closed set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\subset \textstyle R=(-\infty ,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>&#x2282;<!-- ⊂ --></mo> <mstyle displaystyle="false" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\subset \textstyle R=(-\infty ,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4db918c3b861f8d7be9610d9d6423486888f3195" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.001ex; height:2.843ex;" alt="{\displaystyle F\subset \textstyle R=(-\infty ,\infty )}"></span>, the two events <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{X_{t}\in F{\text{ for all }}t\in G\cap U\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>U</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{X_{t}\in F{\text{ for all }}t\in G\cap U\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5b9705ad73bded760311dc87bbbe97dbcd49e70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.513ex; height:2.843ex;" alt="{\displaystyle \{X_{t}\in F{\text{ for all }}t\in G\cap U\}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{X_{t}\in F{\text{ for all }}t\in G\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{X_{t}\in F{\text{ for all }}t\in G\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc08b8b4b583ef98a4ad09f2f1291c85722ddf02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.148ex; height:2.843ex;" alt="{\displaystyle \{X_{t}\in F{\text{ for all }}t\in G\}}"></span> differ from each other at most on a subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d09f58739bf722ad06801001704ea92360f2b96c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.732ex; height:2.509ex;" alt="{\displaystyle \Omega _{0}}"></span>.<sup id="cite_ref-GikhmanSkorokhod1969page150_171-0" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page150-171"><span class="cite-bracket">&#91;</span>169<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Todorovic2012page19_172-0" class="reference"><a href="#cite_note-Todorovic2012page19-172"><span class="cite-bracket">&#91;</span>170<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Molchanov2005page340_173-0" class="reference"><a href="#cite_note-Molchanov2005page340-173"><span class="cite-bracket">&#91;</span>171<span class="cite-bracket">&#93;</span></a></sup> The definition of separability<sup id="cite_ref-176" class="reference"><a href="#cite_note-176"><span class="cite-bracket">&#91;</span>c<span class="cite-bracket">&#93;</span></a></sup> can also be stated for other index sets and state spaces,<sup id="cite_ref-GusakKukush2010page22_177-0" class="reference"><a href="#cite_note-GusakKukush2010page22-177"><span class="cite-bracket">&#91;</span>174<span class="cite-bracket">&#93;</span></a></sup> such as in the case of random fields, where the index set as well as the state space can be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean space.<sup id="cite_ref-AdlerTaylor2009page7_31-4" class="reference"><a href="#cite_note-AdlerTaylor2009page7-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Adler2010page14_151-3" class="reference"><a href="#cite_note-Adler2010page14-151"><span class="cite-bracket">&#91;</span>150<span class="cite-bracket">&#93;</span></a></sup> </p><p>The concept of separability of a stochastic process was introduced by <a href="/wiki/Joseph_Doob" class="mw-redirect" title="Joseph Doob">Joseph Doob</a>,.<sup id="cite_ref-Ito2006page32_170-1" class="reference"><a href="#cite_note-Ito2006page32-170"><span class="cite-bracket">&#91;</span>168<span class="cite-bracket">&#93;</span></a></sup> The underlying idea of separability is to make a countable set of points of the index set determine the properties of the stochastic process.<sup id="cite_ref-Billingsley2008page526_174-1" class="reference"><a href="#cite_note-Billingsley2008page526-174"><span class="cite-bracket">&#91;</span>172<span class="cite-bracket">&#93;</span></a></sup> Any stochastic process with a countable index set already meets the separability conditions, so discrete-time stochastic processes are always separable.<sup id="cite_ref-Doob1990page56_178-0" class="reference"><a href="#cite_note-Doob1990page56-178"><span class="cite-bracket">&#91;</span>175<span class="cite-bracket">&#93;</span></a></sup> A theorem by Doob, sometimes known as Doob's separability theorem, says that any real-valued continuous-time stochastic process has a separable modification.<sup id="cite_ref-Ito2006page32_170-2" class="reference"><a href="#cite_note-Ito2006page32-170"><span class="cite-bracket">&#91;</span>168<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Todorovic2012page19_172-1" class="reference"><a href="#cite_note-Todorovic2012page19-172"><span class="cite-bracket">&#91;</span>170<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Khoshnevisan2006page155_179-0" class="reference"><a href="#cite_note-Khoshnevisan2006page155-179"><span class="cite-bracket">&#91;</span>176<span class="cite-bracket">&#93;</span></a></sup> Versions of this theorem also exist for more general stochastic processes with index sets and state spaces other than the real line.<sup id="cite_ref-Skorokhod2005page93_137-2" class="reference"><a href="#cite_note-Skorokhod2005page93-137"><span class="cite-bracket">&#91;</span>136<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Independence">Independence</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=25" title="Edit section: Independence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Two stochastic processes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> defined on the same probability space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,{\mathcal {F}},P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,{\mathcal {F}},P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d77104a5c3c49cc0634dcf6908db7ad45f738d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.227ex; height:2.843ex;" alt="{\displaystyle (\Omega ,{\mathcal {F}},P)}"></span> with the same index set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> are said be <b>independent</b> if for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d059936e77a2d707e9ee0a1d9575a1d693ce5d0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.913ex; height:2.176ex;" alt="{\displaystyle n\in \mathbb {N} }"></span> and for every choice of epochs <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{1},\ldots ,t_{n}\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{1},\ldots ,t_{n}\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f716f5b0a4ac4c6438cd38f258beb4c0cbbd4f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.607ex; height:2.509ex;" alt="{\displaystyle t_{1},\ldots ,t_{n}\in T}"></span>, the random vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(X(t_{1}),\ldots ,X(t_{n})\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>X</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(X(t_{1}),\ldots ,X(t_{n})\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95bd90485ef63f13e126bcd90da7eea74c97a13b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.518ex; height:2.843ex;" alt="{\displaystyle \left(X(t_{1}),\ldots ,X(t_{n})\right)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(Y(t_{1}),\ldots ,Y(t_{n})\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>Y</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(Y(t_{1}),\ldots ,Y(t_{n})\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66931d08caf85307b063d4a59e45da0a3354ac71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.105ex; height:2.843ex;" alt="{\displaystyle \left(Y(t_{1}),\ldots ,Y(t_{n})\right)}"></span> are independent.<sup id="cite_ref-Lapidoth_180-0" class="reference"><a href="#cite_note-Lapidoth-180"><span class="cite-bracket">&#91;</span>177<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: p. 515">&#58;&#8202;p. 515&#8202;</span></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Uncorrelatedness">Uncorrelatedness</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=26" title="Edit section: Uncorrelatedness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Two stochastic processes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{X_{t}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{X_{t}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7d06db272f40cad57e421e3a38af88597d0709a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.075ex; height:2.843ex;" alt="{\displaystyle \left\{X_{t}\right\}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{Y_{t}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{Y_{t}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0f6c45b3e23284b76bf9081ac85c1d518ea6fca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.501ex; height:2.843ex;" alt="{\displaystyle \left\{Y_{t}\right\}}"></span> are called <b>uncorrelated</b> if their cross-covariance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }(t_{1},t_{2})=\operatorname {E} \left[\left(X(t_{1})-\mu _{X}(t_{1})\right)\left(Y(t_{2})-\mu _{Y}(t_{2})\right)\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>Y</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }(t_{1},t_{2})=\operatorname {E} \left[\left(X(t_{1})-\mu _{X}(t_{1})\right)\left(Y(t_{2})-\mu _{Y}(t_{2})\right)\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bf123985d84cdc25587546891caea6d23dc4f6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.677ex; height:2.843ex;" alt="{\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }(t_{1},t_{2})=\operatorname {E} \left[\left(X(t_{1})-\mu _{X}(t_{1})\right)\left(Y(t_{2})-\mu _{Y}(t_{2})\right)\right]}"></span> is zero for all times.<sup id="cite_ref-KunIlPark_181-0" class="reference"><a href="#cite_note-KunIlPark-181"><span class="cite-bracket">&#91;</span>178<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: p. 142">&#58;&#8202;p. 142&#8202;</span></sup> Formally: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{X_{t}\right\},\left\{Y_{t}\right\}{\text{ uncorrelated}}\quad \iff \quad \operatorname {K} _{\mathbf {X} \mathbf {Y} }(t_{1},t_{2})=0\quad \forall t_{1},t_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>}</mo> </mrow> <mo>,</mo> <mrow> <mo>{</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>}</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;uncorrelated</mtext> </mrow> <mspace width="1em" /> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mspace width="1em" /> <msub> <mi mathvariant="normal">K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mspace width="1em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{X_{t}\right\},\left\{Y_{t}\right\}{\text{ uncorrelated}}\quad \iff \quad \operatorname {K} _{\mathbf {X} \mathbf {Y} }(t_{1},t_{2})=0\quad \forall t_{1},t_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18e141616473b88be7ac4d7ca1f26ec9e9a87c9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:60.407ex; height:2.843ex;" alt="{\displaystyle \left\{X_{t}\right\},\left\{Y_{t}\right\}{\text{ uncorrelated}}\quad \iff \quad \operatorname {K} _{\mathbf {X} \mathbf {Y} }(t_{1},t_{2})=0\quad \forall t_{1},t_{2}}"></span>.</dd></dl> <div class="mw-heading mw-heading4"><h4 id="Independence_implies_uncorrelatedness">Independence implies uncorrelatedness</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=27" title="Edit section: Independence implies uncorrelatedness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If two stochastic processes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> are independent, then they are also uncorrelated.<sup id="cite_ref-KunIlPark_181-1" class="reference"><a href="#cite_note-KunIlPark-181"><span class="cite-bracket">&#91;</span>178<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: p. 151">&#58;&#8202;p. 151&#8202;</span></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Orthogonality">Orthogonality</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=28" title="Edit section: Orthogonality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Two stochastic processes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{X_{t}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{X_{t}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7d06db272f40cad57e421e3a38af88597d0709a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.075ex; height:2.843ex;" alt="{\displaystyle \left\{X_{t}\right\}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{Y_{t}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{Y_{t}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0f6c45b3e23284b76bf9081ac85c1d518ea6fca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.501ex; height:2.843ex;" alt="{\displaystyle \left\{Y_{t}\right\}}"></span> are called <b>orthogonal</b> if their cross-correlation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {Y} }(t_{1},t_{2})=\operatorname {E} [X(t_{1}){\overline {Y(t_{2})}}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>Y</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {Y} }(t_{1},t_{2})=\operatorname {E} [X(t_{1}){\overline {Y(t_{2})}}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93d58e51ab83745d727396e86c894660ee44857e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.679ex; height:3.676ex;" alt="{\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {Y} }(t_{1},t_{2})=\operatorname {E} [X(t_{1}){\overline {Y(t_{2})}}]}"></span> is zero for all times.<sup id="cite_ref-KunIlPark_181-2" class="reference"><a href="#cite_note-KunIlPark-181"><span class="cite-bracket">&#91;</span>178<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: p. 142">&#58;&#8202;p. 142&#8202;</span></sup> Formally: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{X_{t}\right\},\left\{Y_{t}\right\}{\text{ orthogonal}}\quad \iff \quad \operatorname {R} _{\mathbf {X} \mathbf {Y} }(t_{1},t_{2})=0\quad \forall t_{1},t_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>}</mo> </mrow> <mo>,</mo> <mrow> <mo>{</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>}</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;orthogonal</mtext> </mrow> <mspace width="1em" /> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mspace width="1em" /> <msub> <mi mathvariant="normal">R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Y</mi> </mrow> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mspace width="1em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{X_{t}\right\},\left\{Y_{t}\right\}{\text{ orthogonal}}\quad \iff \quad \operatorname {R} _{\mathbf {X} \mathbf {Y} }(t_{1},t_{2})=0\quad \forall t_{1},t_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7af0fa951e2964129d5561a57172895d54d95bdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:58.496ex; height:2.843ex;" alt="{\displaystyle \left\{X_{t}\right\},\left\{Y_{t}\right\}{\text{ orthogonal}}\quad \iff \quad \operatorname {R} _{\mathbf {X} \mathbf {Y} }(t_{1},t_{2})=0\quad \forall t_{1},t_{2}}"></span>.</dd></dl> <div class="mw-heading mw-heading4"><h4 id="Skorokhod_space">Skorokhod space</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=29" title="Edit section: Skorokhod space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Skorokhod_space" class="mw-redirect" title="Skorokhod space">Skorokhod space</a></div> <p>A <b>Skorokhod space</b>, also written as <b>Skorohod space</b>, is a mathematical space of all the functions that are right-continuous with left limits, defined on some interval of the real line such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738f7d23bb2d9642bab520020873cccbef49768d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.653ex; height:2.843ex;" alt="{\displaystyle [0,1]}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dc2d914c2df66bc0f7893bfb8da36766650fe47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.072ex; height:2.843ex;" alt="{\displaystyle [0,\infty )}"></span>, and take values on the real line or on some metric space.<sup id="cite_ref-Whitt2006page78_182-0" class="reference"><a href="#cite_note-Whitt2006page78-182"><span class="cite-bracket">&#91;</span>179<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GusakKukush2010page24_183-0" class="reference"><a href="#cite_note-GusakKukush2010page24-183"><span class="cite-bracket">&#91;</span>180<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bogachev2007Vol2page53_184-0" class="reference"><a href="#cite_note-Bogachev2007Vol2page53-184"><span class="cite-bracket">&#91;</span>181<span class="cite-bracket">&#93;</span></a></sup> Such functions are known as càdlàg or cadlag functions, based on the acronym of the French phrase <i>continue à droite, limite à gauche</i>.<sup id="cite_ref-Whitt2006page78_182-1" class="reference"><a href="#cite_note-Whitt2006page78-182"><span class="cite-bracket">&#91;</span>179<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Klebaner2005page4_185-0" class="reference"><a href="#cite_note-Klebaner2005page4-185"><span class="cite-bracket">&#91;</span>182<span class="cite-bracket">&#93;</span></a></sup> A Skorokhod function space, introduced by <a href="/wiki/Anatoliy_Skorokhod" title="Anatoliy Skorokhod">Anatoliy Skorokhod</a>,<sup id="cite_ref-Bogachev2007Vol2page53_184-1" class="reference"><a href="#cite_note-Bogachev2007Vol2page53-184"><span class="cite-bracket">&#91;</span>181<span class="cite-bracket">&#93;</span></a></sup> is often denoted with the letter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span>,<sup id="cite_ref-Whitt2006page78_182-2" class="reference"><a href="#cite_note-Whitt2006page78-182"><span class="cite-bracket">&#91;</span>179<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GusakKukush2010page24_183-1" class="reference"><a href="#cite_note-GusakKukush2010page24-183"><span class="cite-bracket">&#91;</span>180<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bogachev2007Vol2page53_184-2" class="reference"><a href="#cite_note-Bogachev2007Vol2page53-184"><span class="cite-bracket">&#91;</span>181<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Klebaner2005page4_185-1" class="reference"><a href="#cite_note-Klebaner2005page4-185"><span class="cite-bracket">&#91;</span>182<span class="cite-bracket">&#93;</span></a></sup> so the function space is also referred to as space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span>.<sup id="cite_ref-Whitt2006page78_182-3" class="reference"><a href="#cite_note-Whitt2006page78-182"><span class="cite-bracket">&#91;</span>179<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Asmussen2003page420_186-0" class="reference"><a href="#cite_note-Asmussen2003page420-186"><span class="cite-bracket">&#91;</span>183<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Billingsley2013page121_187-0" class="reference"><a href="#cite_note-Billingsley2013page121-187"><span class="cite-bracket">&#91;</span>184<span class="cite-bracket">&#93;</span></a></sup> The notation of this function space can also include the interval on which all the càdlàg functions are defined, so, for example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D[0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D[0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4d18229131d1ad9cd7cff586ad63243aa6acaae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.577ex; height:2.843ex;" alt="{\displaystyle D[0,1]}"></span> denotes the space of càdlàg functions defined on the <a href="/wiki/Unit_interval" title="Unit interval">unit interval</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738f7d23bb2d9642bab520020873cccbef49768d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.653ex; height:2.843ex;" alt="{\displaystyle [0,1]}"></span>.<sup id="cite_ref-Klebaner2005page4_185-2" class="reference"><a href="#cite_note-Klebaner2005page4-185"><span class="cite-bracket">&#91;</span>182<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Billingsley2013page121_187-1" class="reference"><a href="#cite_note-Billingsley2013page121-187"><span class="cite-bracket">&#91;</span>184<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bass2011page34_188-0" class="reference"><a href="#cite_note-Bass2011page34-188"><span class="cite-bracket">&#91;</span>185<span class="cite-bracket">&#93;</span></a></sup> </p><p>Skorokhod function spaces are frequently used in the theory of stochastic processes because it often assumed that the sample functions of continuous-time stochastic processes belong to a Skorokhod space.<sup id="cite_ref-Bogachev2007Vol2page53_184-3" class="reference"><a href="#cite_note-Bogachev2007Vol2page53-184"><span class="cite-bracket">&#91;</span>181<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Asmussen2003page420_186-1" class="reference"><a href="#cite_note-Asmussen2003page420-186"><span class="cite-bracket">&#91;</span>183<span class="cite-bracket">&#93;</span></a></sup> Such spaces contain continuous functions, which correspond to sample functions of the Wiener process. But the space also has functions with discontinuities, which means that the sample functions of stochastic processes with jumps, such as the Poisson process (on the real line), are also members of this space.<sup id="cite_ref-Billingsley2013page121_187-2" class="reference"><a href="#cite_note-Billingsley2013page121-187"><span class="cite-bracket">&#91;</span>184<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-BinghamKiesel2013page154_189-0" class="reference"><a href="#cite_note-BinghamKiesel2013page154-189"><span class="cite-bracket">&#91;</span>186<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Regularity">Regularity</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=30" title="Edit section: Regularity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the context of mathematical construction of stochastic processes, the term <b>regularity</b> is used when discussing and assuming certain conditions for a stochastic process to resolve possible construction issues.<sup id="cite_ref-Borovkov2013page532_190-0" class="reference"><a href="#cite_note-Borovkov2013page532-190"><span class="cite-bracket">&#91;</span>187<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Khoshnevisan2006page148to165_191-0" class="reference"><a href="#cite_note-Khoshnevisan2006page148to165-191"><span class="cite-bracket">&#91;</span>188<span class="cite-bracket">&#93;</span></a></sup> For example, to study stochastic processes with uncountable index sets, it is assumed that the stochastic process adheres to some type of regularity condition such as the sample functions being continuous.<sup id="cite_ref-Todorovic2012page22_192-0" class="reference"><a href="#cite_note-Todorovic2012page22-192"><span class="cite-bracket">&#91;</span>189<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Whitt2006page79_193-0" class="reference"><a href="#cite_note-Whitt2006page79-193"><span class="cite-bracket">&#91;</span>190<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Further_examples">Further examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=31" title="Edit section: Further examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Markov_processes_and_chains">Markov processes and chains</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=32" title="Edit section: Markov processes and chains"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Markov_chain" title="Markov chain">Markov chain</a></div> <p>Markov processes are stochastic processes, traditionally in <a href="/wiki/Discrete_time_and_continuous_time" title="Discrete time and continuous time">discrete or continuous time</a>, that have the Markov property, which means the next value of the Markov process depends on the current value, but it is conditionally independent of the previous values of the stochastic process. In other words, the behavior of the process in the future is stochastically independent of its behavior in the past, given the current state of the process.<sup id="cite_ref-Serfozo2009page2_194-0" class="reference"><a href="#cite_note-Serfozo2009page2-194"><span class="cite-bracket">&#91;</span>191<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Rozanov2012page58_195-0" class="reference"><a href="#cite_note-Rozanov2012page58-195"><span class="cite-bracket">&#91;</span>192<span class="cite-bracket">&#93;</span></a></sup> </p><p>The Brownian motion process and the Poisson process (in one dimension) are both examples of Markov processes<sup id="cite_ref-Ross1996page235and358_196-0" class="reference"><a href="#cite_note-Ross1996page235and358-196"><span class="cite-bracket">&#91;</span>193<span class="cite-bracket">&#93;</span></a></sup> in continuous time, while <a href="/wiki/Random_walk" title="Random walk">random walks</a> on the integers and the <a href="/wiki/Gambler%27s_ruin" title="Gambler&#39;s ruin">gambler's ruin</a> problem are examples of Markov processes in discrete time.<sup id="cite_ref-Florescu2014page373_197-0" class="reference"><a href="#cite_note-Florescu2014page373-197"><span class="cite-bracket">&#91;</span>194<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KarlinTaylor2012page49_198-0" class="reference"><a href="#cite_note-KarlinTaylor2012page49-198"><span class="cite-bracket">&#91;</span>195<span class="cite-bracket">&#93;</span></a></sup> </p><p>A Markov chain is a type of Markov process that has either discrete <a href="/wiki/State_space" class="mw-redirect" title="State space">state space</a> or discrete index set (often representing time), but the precise definition of a Markov chain varies.<sup id="cite_ref-Asmussen2003page7_199-0" class="reference"><a href="#cite_note-Asmussen2003page7-199"><span class="cite-bracket">&#91;</span>196<span class="cite-bracket">&#93;</span></a></sup> For example, it is common to define a Markov chain as a Markov process in either <a href="/wiki/Continuous_and_discrete_variables" class="mw-redirect" title="Continuous and discrete variables">discrete or continuous time</a> with a countable state space (thus regardless of the nature of time),<sup id="cite_ref-Parzen1999page188_200-0" class="reference"><a href="#cite_note-Parzen1999page188-200"><span class="cite-bracket">&#91;</span>197<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KarlinTaylor2012page29_201-0" class="reference"><a href="#cite_note-KarlinTaylor2012page29-201"><span class="cite-bracket">&#91;</span>198<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Lamperti1977chap6_202-0" class="reference"><a href="#cite_note-Lamperti1977chap6-202"><span class="cite-bracket">&#91;</span>199<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Ross1996page174and231_203-0" class="reference"><a href="#cite_note-Ross1996page174and231-203"><span class="cite-bracket">&#91;</span>200<span class="cite-bracket">&#93;</span></a></sup> but it has been also common to define a Markov chain as having discrete time in either countable or continuous state space (thus regardless of the state space).<sup id="cite_ref-Asmussen2003page7_199-1" class="reference"><a href="#cite_note-Asmussen2003page7-199"><span class="cite-bracket">&#91;</span>196<span class="cite-bracket">&#93;</span></a></sup> It has been argued that the first definition of a Markov chain, where it has discrete time, now tends to be used, despite the second definition having been used by researchers like <a href="/wiki/Joseph_Doob" class="mw-redirect" title="Joseph Doob">Joseph Doob</a> and <a href="/wiki/Kai_Lai_Chung" class="mw-redirect" title="Kai Lai Chung">Kai Lai Chung</a>.<sup id="cite_ref-MeynTweedie2009_204-0" class="reference"><a href="#cite_note-MeynTweedie2009-204"><span class="cite-bracket">&#91;</span>201<span class="cite-bracket">&#93;</span></a></sup> </p><p>Markov processes form an important class of stochastic processes and have applications in many areas.<sup id="cite_ref-LatoucheRamaswami1999_40-1" class="reference"><a href="#cite_note-LatoucheRamaswami1999-40"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KarlinTaylor2012page47_205-0" class="reference"><a href="#cite_note-KarlinTaylor2012page47-205"><span class="cite-bracket">&#91;</span>202<span class="cite-bracket">&#93;</span></a></sup> For example, they are the basis for a general stochastic simulation method known as <a href="/wiki/Markov_chain_Monte_Carlo" title="Markov chain Monte Carlo">Markov chain Monte Carlo</a>, which is used for simulating random objects with specific probability distributions, and has found application in <a href="/wiki/Bayesian_statistics" title="Bayesian statistics">Bayesian statistics</a>.<sup id="cite_ref-RubinsteinKroese2011page225_206-0" class="reference"><a href="#cite_note-RubinsteinKroese2011page225-206"><span class="cite-bracket">&#91;</span>203<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GamermanLopes2006_207-0" class="reference"><a href="#cite_note-GamermanLopes2006-207"><span class="cite-bracket">&#91;</span>204<span class="cite-bracket">&#93;</span></a></sup> </p><p>The concept of the Markov property was originally for stochastic processes in continuous and discrete time, but the property has been adapted for other index sets such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean space, which results in collections of random variables known as Markov random fields.<sup id="cite_ref-Rozanov2012page61_208-0" class="reference"><a href="#cite_note-Rozanov2012page61-208"><span class="cite-bracket">&#91;</span>205<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-209" class="reference"><a href="#cite_note-209"><span class="cite-bracket">&#91;</span>206<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bremaud2013page253_210-0" class="reference"><a href="#cite_note-Bremaud2013page253-210"><span class="cite-bracket">&#91;</span>207<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Martingale">Martingale</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=33" title="Edit section: Martingale"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Martingale_(probability_theory)" title="Martingale (probability theory)">Martingale (probability theory)</a></div> <p>A martingale is a discrete-time or continuous-time stochastic process with the property that, at every instant, given the current value and all the past values of the process, the conditional expectation of every future value is equal to the current value. In discrete time, if this property holds for the next value, then it holds for all future values. The exact mathematical definition of a martingale requires two other conditions coupled with the mathematical concept of a filtration, which is related to the intuition of increasing available information as time passes. Martingales are usually defined to be real-valued,<sup id="cite_ref-Klebaner2005page65_211-0" class="reference"><a href="#cite_note-Klebaner2005page65-211"><span class="cite-bracket">&#91;</span>208<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KaratzasShreve2014page11_212-0" class="reference"><a href="#cite_note-KaratzasShreve2014page11-212"><span class="cite-bracket">&#91;</span>209<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Williams1991page93_156-1" class="reference"><a href="#cite_note-Williams1991page93-156"><span class="cite-bracket">&#91;</span>155<span class="cite-bracket">&#93;</span></a></sup> but they can also be complex-valued<sup id="cite_ref-Doob1990page292_213-0" class="reference"><a href="#cite_note-Doob1990page292-213"><span class="cite-bracket">&#91;</span>210<span class="cite-bracket">&#93;</span></a></sup> or even more general.<sup id="cite_ref-Pisier2016_214-0" class="reference"><a href="#cite_note-Pisier2016-214"><span class="cite-bracket">&#91;</span>211<span class="cite-bracket">&#93;</span></a></sup> </p><p>A symmetric random walk and a Wiener process (with zero drift) are both examples of martingales, respectively, in discrete and continuous time.<sup id="cite_ref-Klebaner2005page65_211-1" class="reference"><a href="#cite_note-Klebaner2005page65-211"><span class="cite-bracket">&#91;</span>208<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KaratzasShreve2014page11_212-1" class="reference"><a href="#cite_note-KaratzasShreve2014page11-212"><span class="cite-bracket">&#91;</span>209<span class="cite-bracket">&#93;</span></a></sup> For a <a href="/wiki/Sequence" title="Sequence">sequence</a> of <a href="/wiki/Independent_and_identically_distributed" class="mw-redirect" title="Independent and identically distributed">independent and identically distributed</a> random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},X_{2},X_{3},\dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},X_{2},X_{3},\dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7560e97305db33eaed1fc9835fe1487808a9dbc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.761ex; height:2.509ex;" alt="{\displaystyle X_{1},X_{2},X_{3},\dots }"></span> with zero mean, the stochastic process formed from the successive partial sums <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},X_{1}+X_{2},X_{1}+X_{2}+X_{3},\dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},X_{1}+X_{2},X_{1}+X_{2}+X_{3},\dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5281324153001c691b88e6e2e22782a80bf8d0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:32.217ex; height:2.509ex;" alt="{\displaystyle X_{1},X_{1}+X_{2},X_{1}+X_{2}+X_{3},\dots }"></span> is a discrete-time martingale.<sup id="cite_ref-Steele2012page12_215-0" class="reference"><a href="#cite_note-Steele2012page12-215"><span class="cite-bracket">&#91;</span>212<span class="cite-bracket">&#93;</span></a></sup> In this aspect, discrete-time martingales generalize the idea of partial sums of independent random variables.<sup id="cite_ref-HallHeyde2014page2_216-0" class="reference"><a href="#cite_note-HallHeyde2014page2-216"><span class="cite-bracket">&#91;</span>213<span class="cite-bracket">&#93;</span></a></sup> </p><p>Martingales can also be created from stochastic processes by applying some suitable transformations, which is the case for the homogeneous Poisson process (on the real line) resulting in a martingale called the <i>compensated Poisson process</i>.<sup id="cite_ref-KaratzasShreve2014page11_212-2" class="reference"><a href="#cite_note-KaratzasShreve2014page11-212"><span class="cite-bracket">&#91;</span>209<span class="cite-bracket">&#93;</span></a></sup> Martingales can also be built from other martingales.<sup id="cite_ref-Steele2012page12_215-1" class="reference"><a href="#cite_note-Steele2012page12-215"><span class="cite-bracket">&#91;</span>212<span class="cite-bracket">&#93;</span></a></sup> For example, there are martingales based on the martingale the Wiener process, forming continuous-time martingales.<sup id="cite_ref-Klebaner2005page65_211-2" class="reference"><a href="#cite_note-Klebaner2005page65-211"><span class="cite-bracket">&#91;</span>208<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Steele2012page115_217-0" class="reference"><a href="#cite_note-Steele2012page115-217"><span class="cite-bracket">&#91;</span>214<span class="cite-bracket">&#93;</span></a></sup> </p><p>Martingales mathematically formalize the idea of a 'fair game' where it is possible form reasonable expectations for payoffs,<sup id="cite_ref-Ross1996page295_218-0" class="reference"><a href="#cite_note-Ross1996page295-218"><span class="cite-bracket">&#91;</span>215<span class="cite-bracket">&#93;</span></a></sup> and they were originally developed to show that it is not possible to gain an 'unfair' advantage in such a game.<sup id="cite_ref-Steele2012page11_219-0" class="reference"><a href="#cite_note-Steele2012page11-219"><span class="cite-bracket">&#91;</span>216<span class="cite-bracket">&#93;</span></a></sup> But now they are used in many areas of probability, which is one of the main reasons for studying them.<sup id="cite_ref-Williams1991page93_156-2" class="reference"><a href="#cite_note-Williams1991page93-156"><span class="cite-bracket">&#91;</span>155<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Steele2012page11_219-1" class="reference"><a href="#cite_note-Steele2012page11-219"><span class="cite-bracket">&#91;</span>216<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Kallenberg2002page96_220-0" class="reference"><a href="#cite_note-Kallenberg2002page96-220"><span class="cite-bracket">&#91;</span>217<span class="cite-bracket">&#93;</span></a></sup> Many problems in probability have been solved by finding a martingale in the problem and studying it.<sup id="cite_ref-Steele2012page371_221-0" class="reference"><a href="#cite_note-Steele2012page371-221"><span class="cite-bracket">&#91;</span>218<span class="cite-bracket">&#93;</span></a></sup> Martingales will converge, given some conditions on their moments, so they are often used to derive convergence results, due largely to <a href="/wiki/Martingale_convergence_theorem" class="mw-redirect" title="Martingale convergence theorem">martingale convergence theorems</a>.<sup id="cite_ref-HallHeyde2014page2_216-1" class="reference"><a href="#cite_note-HallHeyde2014page2-216"><span class="cite-bracket">&#91;</span>213<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Steele2012page22_222-0" class="reference"><a href="#cite_note-Steele2012page22-222"><span class="cite-bracket">&#91;</span>219<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GrimmettStirzaker2001page336_223-0" class="reference"><a href="#cite_note-GrimmettStirzaker2001page336-223"><span class="cite-bracket">&#91;</span>220<span class="cite-bracket">&#93;</span></a></sup> </p><p>Martingales have many applications in statistics, but it has been remarked that its use and application are not as widespread as it could be in the field of statistics, particularly statistical inference.<sup id="cite_ref-GlassermanKou2006_224-0" class="reference"><a href="#cite_note-GlassermanKou2006-224"><span class="cite-bracket">&#91;</span>221<span class="cite-bracket">&#93;</span></a></sup> They have found applications in areas in probability theory such as queueing theory and Palm calculus<sup id="cite_ref-BaccelliBremaud2013_225-0" class="reference"><a href="#cite_note-BaccelliBremaud2013-225"><span class="cite-bracket">&#91;</span>222<span class="cite-bracket">&#93;</span></a></sup> and other fields such as economics<sup id="cite_ref-HallHeyde2014pageX_226-0" class="reference"><a href="#cite_note-HallHeyde2014pageX-226"><span class="cite-bracket">&#91;</span>223<span class="cite-bracket">&#93;</span></a></sup> and finance.<sup id="cite_ref-MusielaRutkowski2006_17-1" class="reference"><a href="#cite_note-MusielaRutkowski2006-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Lévy_process"><span id="L.C3.A9vy_process"></span>Lévy process</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=34" title="Edit section: Lévy process"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/L%C3%A9vy_process" title="Lévy process">Lévy process</a></div> <p>Lévy processes are types of stochastic processes that can be considered as generalizations of random walks in continuous time.<sup id="cite_ref-Applebaum2004page1337_50-7" class="reference"><a href="#cite_note-Applebaum2004page1337-50"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bertoin1998pageVIII_227-0" class="reference"><a href="#cite_note-Bertoin1998pageVIII-227"><span class="cite-bracket">&#91;</span>224<span class="cite-bracket">&#93;</span></a></sup> These processes have many applications in fields such as finance, fluid mechanics, physics and biology.<sup id="cite_ref-Applebaum2004page1336_228-0" class="reference"><a href="#cite_note-Applebaum2004page1336-228"><span class="cite-bracket">&#91;</span>225<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ApplebaumBook2004page69_229-0" class="reference"><a href="#cite_note-ApplebaumBook2004page69-229"><span class="cite-bracket">&#91;</span>226<span class="cite-bracket">&#93;</span></a></sup> The main defining characteristics of these processes are their stationarity and independence properties, so they were known as <i>processes with stationary and independent increments</i>. In other words, a stochastic process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a Lévy process if for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> non-negatives numbers, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq t_{1}\leq \dots \leq t_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq t_{1}\leq \dots \leq t_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dde63b2a6a06cf603a6457d0c3f9c9ef8ed46d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.133ex; height:2.509ex;" alt="{\displaystyle 0\leq t_{1}\leq \dots \leq t_{n}}"></span>, the corresponding <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbd0b0f32b28f51962943ee9ede4fb34198a2521" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n-1}"></span> increments </p> <div class="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{t_{2}}-X_{t_{1}},\dots ,X_{t_{n}}-X_{t_{n-1}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{t_{2}}-X_{t_{1}},\dots ,X_{t_{n}}-X_{t_{n-1}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbd3adc835e84ef7814eff2f4ed1c8c14e4c41bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.805ex; height:2.843ex;" alt="{\displaystyle X_{t_{2}}-X_{t_{1}},\dots ,X_{t_{n}}-X_{t_{n-1}},}"></span></div> <p>are all independent of each other, and the distribution of each increment only depends on the difference in time.<sup id="cite_ref-Applebaum2004page1337_50-8" class="reference"><a href="#cite_note-Applebaum2004page1337-50"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p><p>A Lévy process can be defined such that its state space is some abstract mathematical space, such as a <a href="/wiki/Banach_space" title="Banach space">Banach space</a>, but the processes are often defined so that they take values in Euclidean space. The index set is the non-negative numbers, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=[0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=[0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3abb1be05fb1164e34416ad00ac5d9705bafff58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.342ex; height:2.843ex;" alt="{\displaystyle I=[0,\infty )}"></span>, which gives the interpretation of time. Important stochastic processes such as the Wiener process, the homogeneous Poisson process (in one dimension), and <a href="/wiki/Subordinator_(mathematics)" title="Subordinator (mathematics)">subordinators</a> are all Lévy processes.<sup id="cite_ref-Applebaum2004page1337_50-9" class="reference"><a href="#cite_note-Applebaum2004page1337-50"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bertoin1998pageVIII_227-1" class="reference"><a href="#cite_note-Bertoin1998pageVIII-227"><span class="cite-bracket">&#91;</span>224<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Random_field">Random field</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=35" title="Edit section: Random field"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Random_field" title="Random field">Random field</a></div> <p>A random field is a collection of random variables indexed by a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean space or some manifold. In general, a random field can be considered an example of a stochastic or random process, where the index set is not necessarily a subset of the real line.<sup id="cite_ref-AdlerTaylor2009page7_31-5" class="reference"><a href="#cite_note-AdlerTaylor2009page7-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> But there is a convention that an indexed collection of random variables is called a random field when the index has two or more dimensions.<sup id="cite_ref-GikhmanSkorokhod1969page1_5-11" class="reference"><a href="#cite_note-GikhmanSkorokhod1969page1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Lamperti1977page1_29-15" class="reference"><a href="#cite_note-Lamperti1977page1-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KoralovSinai2007page171_230-0" class="reference"><a href="#cite_note-KoralovSinai2007page171-230"><span class="cite-bracket">&#91;</span>227<span class="cite-bracket">&#93;</span></a></sup> If the specific definition of a stochastic process requires the index set to be a subset of the real line, then the random field can be considered as a generalization of stochastic process.<sup id="cite_ref-ApplebaumBook2004page19_231-0" class="reference"><a href="#cite_note-ApplebaumBook2004page19-231"><span class="cite-bracket">&#91;</span>228<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Point_process">Point process</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=36" title="Edit section: Point process"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Point_process" title="Point process">Point process</a></div> <p>A point process is a collection of points randomly located on some mathematical space such as the real line, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean space, or more abstract spaces. Sometimes the term <i>point process</i> is not preferred, as historically the word <i>process</i> denoted an evolution of some system in time, so a point process is also called a <b>random point field</b>.<sup id="cite_ref-ChiuStoyan2013page109_232-0" class="reference"><a href="#cite_note-ChiuStoyan2013page109-232"><span class="cite-bracket">&#91;</span>229<span class="cite-bracket">&#93;</span></a></sup> There are different interpretations of a point process, such a random counting measure or a random set.<sup id="cite_ref-ChiuStoyan2013page108_233-0" class="reference"><a href="#cite_note-ChiuStoyan2013page108-233"><span class="cite-bracket">&#91;</span>230<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Haenggi2013page10_234-0" class="reference"><a href="#cite_note-Haenggi2013page10-234"><span class="cite-bracket">&#91;</span>231<span class="cite-bracket">&#93;</span></a></sup> Some authors regard a point process and stochastic process as two different objects such that a point process is a random object that arises from or is associated with a stochastic process,<sup id="cite_ref-DaleyVere-Jones2006page194_235-0" class="reference"><a href="#cite_note-DaleyVere-Jones2006page194-235"><span class="cite-bracket">&#91;</span>232<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-CoxIsham1980page3_236-0" class="reference"><a href="#cite_note-CoxIsham1980page3-236"><span class="cite-bracket">&#91;</span>233<span class="cite-bracket">&#93;</span></a></sup> though it has been remarked that the difference between point processes and stochastic processes is not clear.<sup id="cite_ref-CoxIsham1980page3_236-1" class="reference"><a href="#cite_note-CoxIsham1980page3-236"><span class="cite-bracket">&#91;</span>233<span class="cite-bracket">&#93;</span></a></sup> </p><p>Other authors consider a point process as a stochastic process, where the process is indexed by sets of the underlying space<sup id="cite_ref-239" class="reference"><a href="#cite_note-239"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup> on which it is defined, such as the real line or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean space.<sup id="cite_ref-KarlinTaylor2012page31_240-0" class="reference"><a href="#cite_note-KarlinTaylor2012page31-240"><span class="cite-bracket">&#91;</span>236<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Schmidt2014page99_241-0" class="reference"><a href="#cite_note-Schmidt2014page99-241"><span class="cite-bracket">&#91;</span>237<span class="cite-bracket">&#93;</span></a></sup> Other stochastic processes such as renewal and counting processes are studied in the theory of point processes.<sup id="cite_ref-DaleyVere-Jones200_242-0" class="reference"><a href="#cite_note-DaleyVere-Jones200-242"><span class="cite-bracket">&#91;</span>238<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-CoxIsham1980page3_236-2" class="reference"><a href="#cite_note-CoxIsham1980page3-236"><span class="cite-bracket">&#91;</span>233<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=37" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Early_probability_theory">Early probability theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=38" title="Edit section: Early probability theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Probability theory has its origins in games of chance, which have a long history, with some games being played thousands of years ago,<sup id="cite_ref-David1955_243-0" class="reference"><a href="#cite_note-David1955-243"><span class="cite-bracket">&#91;</span>239<span class="cite-bracket">&#93;</span></a></sup> but very little analysis on them was done in terms of probability.<sup id="cite_ref-Maistrov2014page1_244-0" class="reference"><a href="#cite_note-Maistrov2014page1-244"><span class="cite-bracket">&#91;</span>240<span class="cite-bracket">&#93;</span></a></sup> The year 1654 is often considered the birth of probability theory when French mathematicians <a href="/wiki/Pierre_Fermat" class="mw-redirect" title="Pierre Fermat">Pierre Fermat</a> and <a href="/wiki/Blaise_Pascal" title="Blaise Pascal">Blaise Pascal</a> had a written correspondence on probability, motivated by a <a href="/wiki/Problem_of_points" title="Problem of points">gambling problem</a>.<sup id="cite_ref-Seneta2006page1_245-0" class="reference"><a href="#cite_note-Seneta2006page1-245"><span class="cite-bracket">&#91;</span>241<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Tabak2014page24to26_246-0" class="reference"><a href="#cite_note-Tabak2014page24to26-246"><span class="cite-bracket">&#91;</span>242<span class="cite-bracket">&#93;</span></a></sup> But there was earlier mathematical work done on the probability of gambling games such as <i>Liber de Ludo Aleae</i> by <a href="/wiki/Gerolamo_Cardano" title="Gerolamo Cardano">Gerolamo Cardano</a>, written in the 16th century but posthumously published later in 1663.<sup id="cite_ref-Bellhouse2005_247-0" class="reference"><a href="#cite_note-Bellhouse2005-247"><span class="cite-bracket">&#91;</span>243<span class="cite-bracket">&#93;</span></a></sup> </p><p>After Cardano, <a href="/wiki/Jakob_Bernoulli" class="mw-redirect" title="Jakob Bernoulli">Jakob Bernoulli</a><sup id="cite_ref-249" class="reference"><a href="#cite_note-249"><span class="cite-bracket">&#91;</span>e<span class="cite-bracket">&#93;</span></a></sup> wrote <a href="/wiki/Ars_Conjectandi" title="Ars Conjectandi">Ars Conjectandi</a>, which is considered a significant event in the history of probability theory. Bernoulli's book was published, also posthumously, in 1713 and inspired many mathematicians to study probability.<sup id="cite_ref-Maistrov2014page56_250-0" class="reference"><a href="#cite_note-Maistrov2014page56-250"><span class="cite-bracket">&#91;</span>245<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Tabak2014page37_251-0" class="reference"><a href="#cite_note-Tabak2014page37-251"><span class="cite-bracket">&#91;</span>246<span class="cite-bracket">&#93;</span></a></sup> But despite some renowned mathematicians contributing to probability theory, such as <a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Pierre-Simon Laplace</a>, <a href="/wiki/Abraham_de_Moivre" title="Abraham de Moivre">Abraham de Moivre</a>, <a href="/wiki/Carl_Gauss" class="mw-redirect" title="Carl Gauss">Carl Gauss</a>, <a href="/wiki/Sim%C3%A9on_Poisson" class="mw-redirect" title="Siméon Poisson">Siméon Poisson</a> and <a href="/wiki/Pafnuty_Chebyshev" title="Pafnuty Chebyshev">Pafnuty Chebyshev</a>,<sup id="cite_ref-Chung1998_252-0" class="reference"><a href="#cite_note-Chung1998-252"><span class="cite-bracket">&#91;</span>247<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bingham2000_253-0" class="reference"><a href="#cite_note-Bingham2000-253"><span class="cite-bracket">&#91;</span>248<span class="cite-bracket">&#93;</span></a></sup> most of the mathematical community<sup id="cite_ref-255" class="reference"><a href="#cite_note-255"><span class="cite-bracket">&#91;</span>f<span class="cite-bracket">&#93;</span></a></sup> did not consider probability theory to be part of mathematics until the 20th century.<sup id="cite_ref-Chung1998_252-1" class="reference"><a href="#cite_note-Chung1998-252"><span class="cite-bracket">&#91;</span>247<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-BenziBenzi2007_254-1" class="reference"><a href="#cite_note-BenziBenzi2007-254"><span class="cite-bracket">&#91;</span>249<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Doob1996_256-0" class="reference"><a href="#cite_note-Doob1996-256"><span class="cite-bracket">&#91;</span>250<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Cramer1976_257-0" class="reference"><a href="#cite_note-Cramer1976-257"><span class="cite-bracket">&#91;</span>251<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Statistical_mechanics">Statistical mechanics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=39" title="Edit section: Statistical mechanics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the physical sciences, scientists developed in the 19th century the discipline of <a href="/wiki/Statistical_mechanics" title="Statistical mechanics">statistical mechanics</a>, where physical systems, such as containers filled with gases, are regarded or treated mathematically as collections of many moving particles. Although there were attempts to incorporate randomness into statistical physics by some scientists, such as <a href="/wiki/Rudolf_Clausius" title="Rudolf Clausius">Rudolf Clausius</a>, most of the work had little or no randomness.<sup id="cite_ref-Truesdell1975page22_258-0" class="reference"><a href="#cite_note-Truesdell1975page22-258"><span class="cite-bracket">&#91;</span>252<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Brush1967page150_259-0" class="reference"><a href="#cite_note-Brush1967page150-259"><span class="cite-bracket">&#91;</span>253<span class="cite-bracket">&#93;</span></a></sup> This changed in 1859 when <a href="/wiki/James_Clerk_Maxwell" title="James Clerk Maxwell">James Clerk Maxwell</a> contributed significantly to the field, more specifically, to the kinetic theory of gases, by presenting work where he modelled the gas particles as moving in random directions at random velocities.<sup id="cite_ref-Truesdell1975page31_260-0" class="reference"><a href="#cite_note-Truesdell1975page31-260"><span class="cite-bracket">&#91;</span>254<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Brush1958_261-0" class="reference"><a href="#cite_note-Brush1958-261"><span class="cite-bracket">&#91;</span>255<span class="cite-bracket">&#93;</span></a></sup> The kinetic theory of gases and statistical physics continued to be developed in the second half of the 19th century, with work done chiefly by Clausius, <a href="/wiki/Ludwig_Boltzmann" title="Ludwig Boltzmann">Ludwig Boltzmann</a> and <a href="/wiki/Josiah_Gibbs" class="mw-redirect" title="Josiah Gibbs">Josiah Gibbs</a>, which would later have an influence on <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a>'s mathematical model for <a href="/wiki/Brownian_movement" class="mw-redirect" title="Brownian movement">Brownian movement</a>.<sup id="cite_ref-Brush1968page15_262-0" class="reference"><a href="#cite_note-Brush1968page15-262"><span class="cite-bracket">&#91;</span>256<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Measure_theory_and_probability_theory">Measure theory and probability theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=40" title="Edit section: Measure theory and probability theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>At the <a href="/wiki/International_Congress_of_Mathematicians" title="International Congress of Mathematicians">International Congress of Mathematicians</a> in <a href="/wiki/Paris" title="Paris">Paris</a> in 1900, <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a> presented a list of <a href="/wiki/Hilbert%27s_problems" title="Hilbert&#39;s problems">mathematical problems</a>, where his sixth problem asked for a mathematical treatment of physics and probability involving <a href="/wiki/Axiom" title="Axiom">axioms</a>.<sup id="cite_ref-Bingham2000_253-1" class="reference"><a href="#cite_note-Bingham2000-253"><span class="cite-bracket">&#91;</span>248<span class="cite-bracket">&#93;</span></a></sup> Around the start of the 20th century, mathematicians developed measure theory, a branch of mathematics for studying integrals of mathematical functions, where two of the founders were French mathematicians, <a href="/wiki/Henri_Lebesgue" title="Henri Lebesgue">Henri Lebesgue</a> and <a href="/wiki/%C3%89mile_Borel" title="Émile Borel">Émile Borel</a>. In 1925, another French mathematician <a href="/wiki/Paul_L%C3%A9vy_(mathematician)" title="Paul Lévy (mathematician)">Paul Lévy</a> published the first probability book that used ideas from measure theory.<sup id="cite_ref-Bingham2000_253-2" class="reference"><a href="#cite_note-Bingham2000-253"><span class="cite-bracket">&#91;</span>248<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the 1920s, fundamental contributions to probability theory were made in the Soviet Union by mathematicians such as <a href="/wiki/Sergei_Bernstein" title="Sergei Bernstein">Sergei Bernstein</a>, <a href="/wiki/Aleksandr_Khinchin" title="Aleksandr Khinchin">Aleksandr Khinchin</a>,<sup id="cite_ref-263" class="reference"><a href="#cite_note-263"><span class="cite-bracket">&#91;</span>g<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Andrei_Kolmogorov" class="mw-redirect" title="Andrei Kolmogorov">Andrei Kolmogorov</a>.<sup id="cite_ref-Cramer1976_257-1" class="reference"><a href="#cite_note-Cramer1976-257"><span class="cite-bracket">&#91;</span>251<span class="cite-bracket">&#93;</span></a></sup> Kolmogorov published in 1929 his first attempt at presenting a mathematical foundation, based on measure theory, for probability theory.<sup id="cite_ref-KendallBatchelor1990page33_264-0" class="reference"><a href="#cite_note-KendallBatchelor1990page33-264"><span class="cite-bracket">&#91;</span>257<span class="cite-bracket">&#93;</span></a></sup> In the early 1930s, Khinchin and Kolmogorov set up probability seminars, which were attended by researchers such as <a href="/wiki/Eugene_Slutsky" class="mw-redirect" title="Eugene Slutsky">Eugene Slutsky</a> and <a href="/wiki/Nikolai_Smirnov_(mathematician)" title="Nikolai Smirnov (mathematician)">Nikolai Smirnov</a>,<sup id="cite_ref-Vere-Jones2006page1_265-0" class="reference"><a href="#cite_note-Vere-Jones2006page1-265"><span class="cite-bracket">&#91;</span>258<span class="cite-bracket">&#93;</span></a></sup> and Khinchin gave the first mathematical definition of a stochastic process as a set of random variables indexed by the real line.<sup id="cite_ref-Doob1934_64-2" class="reference"><a href="#cite_note-Doob1934-64"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Vere-Jones2006page4_266-0" class="reference"><a href="#cite_note-Vere-Jones2006page4-266"><span class="cite-bracket">&#91;</span>259<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-268" class="reference"><a href="#cite_note-268"><span class="cite-bracket">&#91;</span>h<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Birth_of_modern_probability_theory">Birth of modern probability theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=41" title="Edit section: Birth of modern probability theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1933, Andrei Kolmogorov published in German, his book on the foundations of probability theory titled <i>Grundbegriffe der Wahrscheinlichkeitsrechnung</i>,<sup id="cite_ref-269" class="reference"><a href="#cite_note-269"><span class="cite-bracket">&#91;</span>i<span class="cite-bracket">&#93;</span></a></sup> where Kolmogorov used measure theory to develop an axiomatic framework for probability theory. The publication of this book is now widely considered to be the birth of modern probability theory, when the theories of probability and stochastic processes became parts of mathematics.<sup id="cite_ref-Bingham2000_253-4" class="reference"><a href="#cite_note-Bingham2000-253"><span class="cite-bracket">&#91;</span>248<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Cramer1976_257-2" class="reference"><a href="#cite_note-Cramer1976-257"><span class="cite-bracket">&#91;</span>251<span class="cite-bracket">&#93;</span></a></sup> </p><p>After the publication of Kolmogorov's book, further fundamental work on probability theory and stochastic processes was done by Khinchin and Kolmogorov as well as other mathematicians such as <a href="/wiki/Joseph_Doob" class="mw-redirect" title="Joseph Doob">Joseph Doob</a>, <a href="/wiki/William_Feller" title="William Feller">William Feller</a>, <a href="/wiki/Maurice_Fr%C3%A9chet" class="mw-redirect" title="Maurice Fréchet">Maurice Fréchet</a>, <a href="/wiki/Paul_L%C3%A9vy_(mathematician)" title="Paul Lévy (mathematician)">Paul Lévy</a>, <a href="/wiki/Wolfgang_Doeblin" title="Wolfgang Doeblin">Wolfgang Doeblin</a>, and <a href="/wiki/Harald_Cram%C3%A9r" title="Harald Cramér">Harald Cramér</a>.<sup id="cite_ref-Bingham2000_253-5" class="reference"><a href="#cite_note-Bingham2000-253"><span class="cite-bracket">&#91;</span>248<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Cramer1976_257-3" class="reference"><a href="#cite_note-Cramer1976-257"><span class="cite-bracket">&#91;</span>251<span class="cite-bracket">&#93;</span></a></sup> Decades later, Cramér referred to the 1930s as the "heroic period of mathematical probability theory".<sup id="cite_ref-Cramer1976_257-4" class="reference"><a href="#cite_note-Cramer1976-257"><span class="cite-bracket">&#91;</span>251<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/World_War_II" title="World War II">World War II</a> greatly interrupted the development of probability theory, causing, for example, the migration of Feller from <a href="/wiki/Sweden" title="Sweden">Sweden</a> to the <a href="/wiki/United_States" title="United States">United States of America</a><sup id="cite_ref-Cramer1976_257-5" class="reference"><a href="#cite_note-Cramer1976-257"><span class="cite-bracket">&#91;</span>251<span class="cite-bracket">&#93;</span></a></sup> and the death of Doeblin, considered now a pioneer in stochastic processes.<sup id="cite_ref-Lindvall1991_270-0" class="reference"><a href="#cite_note-Lindvall1991-270"><span class="cite-bracket">&#91;</span>261<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Joseph_Doob.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Joseph_Doob.jpg/220px-Joseph_Doob.jpg" decoding="async" width="220" height="326" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/9/96/Joseph_Doob.jpg 1.5x" data-file-width="270" data-file-height="400" /></a><figcaption>Mathematician <a href="/wiki/Joseph_Doob" class="mw-redirect" title="Joseph Doob">Joseph Doob</a> did early work on the theory of stochastic processes, making fundamental contributions, particularly in the theory of martingales.<sup id="cite_ref-Getoor2009_271-0" class="reference"><a href="#cite_note-Getoor2009-271"><span class="cite-bracket">&#91;</span>262<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Snell2005_267-1" class="reference"><a href="#cite_note-Snell2005-267"><span class="cite-bracket">&#91;</span>260<span class="cite-bracket">&#93;</span></a></sup> His book <i>Stochastic Processes</i> is considered highly influential in the field of probability theory.<sup id="cite_ref-Bingham2005_272-0" class="reference"><a href="#cite_note-Bingham2005-272"><span class="cite-bracket">&#91;</span>263<span class="cite-bracket">&#93;</span></a></sup> </figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Stochastic_processes_after_World_War_II">Stochastic processes after World War II</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=42" title="Edit section: Stochastic processes after World War II"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>After World War II, the study of probability theory and stochastic processes gained more attention from mathematicians, with significant contributions made in many areas of probability and mathematics as well as the creation of new areas.<sup id="cite_ref-Cramer1976_257-6" class="reference"><a href="#cite_note-Cramer1976-257"><span class="cite-bracket">&#91;</span>251<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Meyer2009_273-0" class="reference"><a href="#cite_note-Meyer2009-273"><span class="cite-bracket">&#91;</span>264<span class="cite-bracket">&#93;</span></a></sup> Starting in the 1940s, <a href="/wiki/Kiyosi_It%C3%B4" title="Kiyosi Itô">Kiyosi Itô</a> published papers developing the field of <a href="/wiki/Stochastic_calculus" title="Stochastic calculus">stochastic calculus</a>, which involves stochastic <a href="/wiki/Integrals" class="mw-redirect" title="Integrals">integrals</a> and stochastic <a href="/wiki/Differential_equations" class="mw-redirect" title="Differential equations">differential equations</a> based on the Wiener or Brownian motion process.<sup id="cite_ref-Ito1998Prize_274-0" class="reference"><a href="#cite_note-Ito1998Prize-274"><span class="cite-bracket">&#91;</span>265<span class="cite-bracket">&#93;</span></a></sup> </p><p>Also starting in the 1940s, connections were made between stochastic processes, particularly martingales, and the mathematical field of <a href="/wiki/Potential_theory" title="Potential theory">potential theory</a>, with early ideas by <a href="/wiki/Shizuo_Kakutani" title="Shizuo Kakutani">Shizuo Kakutani</a> and then later work by Joseph Doob.<sup id="cite_ref-Meyer2009_273-1" class="reference"><a href="#cite_note-Meyer2009-273"><span class="cite-bracket">&#91;</span>264<span class="cite-bracket">&#93;</span></a></sup> Further work, considered pioneering, was done by <a href="/wiki/Gilbert_Hunt" title="Gilbert Hunt">Gilbert Hunt</a> in the 1950s, connecting Markov processes and potential theory, which had a significant effect on the theory of Lévy processes and led to more interest in studying Markov processes with methods developed by Itô.<sup id="cite_ref-JarrowProtter2004_22-2" class="reference"><a href="#cite_note-JarrowProtter2004-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bertoin1998pageVIIIandIX_275-0" class="reference"><a href="#cite_note-Bertoin1998pageVIIIandIX-275"><span class="cite-bracket">&#91;</span>266<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Steele2012page176_276-0" class="reference"><a href="#cite_note-Steele2012page176-276"><span class="cite-bracket">&#91;</span>267<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1953, Doob published his book <i>Stochastic processes</i>, which had a strong influence on the theory of stochastic processes and stressed the importance of measure theory in probability.<sup id="cite_ref-Meyer2009_273-2" class="reference"><a href="#cite_note-Meyer2009-273"><span class="cite-bracket">&#91;</span>264<span class="cite-bracket">&#93;</span></a></sup> <sup id="cite_ref-Bingham2005_272-1" class="reference"><a href="#cite_note-Bingham2005-272"><span class="cite-bracket">&#91;</span>263<span class="cite-bracket">&#93;</span></a></sup> Doob also chiefly developed the theory of martingales, with later substantial contributions by <a href="/wiki/Paul-Andr%C3%A9_Meyer" title="Paul-André Meyer">Paul-André Meyer</a>. Earlier work had been carried out by <a href="/wiki/Sergei_Bernstein" title="Sergei Bernstein">Sergei Bernstein</a>, <a href="/wiki/Paul_L%C3%A9vy_(mathematician)" title="Paul Lévy (mathematician)">Paul Lévy</a> and <a href="/wiki/Jean_Ville" title="Jean Ville">Jean Ville</a>, the latter adopting the term martingale for the stochastic process.<sup id="cite_ref-HallHeyde2014page1_277-0" class="reference"><a href="#cite_note-HallHeyde2014page1-277"><span class="cite-bracket">&#91;</span>268<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Dynkin1989_278-0" class="reference"><a href="#cite_note-Dynkin1989-278"><span class="cite-bracket">&#91;</span>269<span class="cite-bracket">&#93;</span></a></sup> Methods from the theory of martingales became popular for solving various probability problems. Techniques and theory were developed to study Markov processes and then applied to martingales. Conversely, methods from the theory of martingales were established to treat Markov processes.<sup id="cite_ref-Meyer2009_273-3" class="reference"><a href="#cite_note-Meyer2009-273"><span class="cite-bracket">&#91;</span>264<span class="cite-bracket">&#93;</span></a></sup> </p><p>Other fields of probability were developed and used to study stochastic processes, with one main approach being the theory of large deviations.<sup id="cite_ref-Meyer2009_273-4" class="reference"><a href="#cite_note-Meyer2009-273"><span class="cite-bracket">&#91;</span>264<span class="cite-bracket">&#93;</span></a></sup> The theory has many applications in statistical physics, among other fields, and has core ideas going back to at least the 1930s. Later in the 1960s and 1970s, fundamental work was done by Alexander Wentzell in the Soviet Union and <a href="/wiki/Monroe_D._Donsker" title="Monroe D. Donsker">Monroe D. Donsker</a> and <a href="/wiki/Srinivasa_Varadhan" class="mw-redirect" title="Srinivasa Varadhan">Srinivasa Varadhan</a> in the United States of America,<sup id="cite_ref-Ellis1995page98_279-0" class="reference"><a href="#cite_note-Ellis1995page98-279"><span class="cite-bracket">&#91;</span>270<span class="cite-bracket">&#93;</span></a></sup> which would later result in Varadhan winning the 2007 Abel Prize.<sup id="cite_ref-RaussenSkau2008_280-0" class="reference"><a href="#cite_note-RaussenSkau2008-280"><span class="cite-bracket">&#91;</span>271<span class="cite-bracket">&#93;</span></a></sup> In the 1990s and 2000s the theories of <a href="/wiki/Schramm%E2%80%93Loewner_evolution" title="Schramm–Loewner evolution">Schramm–Loewner evolution</a><sup id="cite_ref-HenkelKarevski2012page113_281-0" class="reference"><a href="#cite_note-HenkelKarevski2012page113-281"><span class="cite-bracket">&#91;</span>272<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Rough_paths" class="mw-redirect" title="Rough paths">rough paths</a><sup id="cite_ref-FrizVictoir2010page571_143-4" class="reference"><a href="#cite_note-FrizVictoir2010page571-143"><span class="cite-bracket">&#91;</span>142<span class="cite-bracket">&#93;</span></a></sup> were introduced and developed to study stochastic processes and other mathematical objects in probability theory, which respectively resulted in <a href="/wiki/Fields_Medal" title="Fields Medal">Fields Medals</a> being awarded to <a href="/wiki/Wendelin_Werner" title="Wendelin Werner">Wendelin Werner</a><sup id="cite_ref-Werner2004Fields_282-0" class="reference"><a href="#cite_note-Werner2004Fields-282"><span class="cite-bracket">&#91;</span>273<span class="cite-bracket">&#93;</span></a></sup> in 2008 and to <a href="/wiki/Martin_Hairer" title="Martin Hairer">Martin Hairer</a> in 2014.<sup id="cite_ref-Hairer2004Fields_283-0" class="reference"><a href="#cite_note-Hairer2004Fields-283"><span class="cite-bracket">&#91;</span>274<span class="cite-bracket">&#93;</span></a></sup> </p><p>The theory of stochastic processes still continues to be a focus of research, with yearly international conferences on the topic of stochastic processes.<sup id="cite_ref-BlathImkeller2011_46-1" class="reference"><a href="#cite_note-BlathImkeller2011-46"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Applebaum2004page1336_228-1" class="reference"><a href="#cite_note-Applebaum2004page1336-228"><span class="cite-bracket">&#91;</span>225<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Discoveries_of_specific_stochastic_processes">Discoveries of specific stochastic processes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=43" title="Edit section: Discoveries of specific stochastic processes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although Khinchin gave mathematical definitions of stochastic processes in the 1930s,<sup id="cite_ref-Doob1934_64-3" class="reference"><a href="#cite_note-Doob1934-64"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Vere-Jones2006page4_266-1" class="reference"><a href="#cite_note-Vere-Jones2006page4-266"><span class="cite-bracket">&#91;</span>259<span class="cite-bracket">&#93;</span></a></sup> specific stochastic processes had already been discovered in different settings, such as the Brownian motion process and the Poisson process.<sup id="cite_ref-JarrowProtter2004_22-3" class="reference"><a href="#cite_note-JarrowProtter2004-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GuttorpThorarinsdottir2012_25-1" class="reference"><a href="#cite_note-GuttorpThorarinsdottir2012-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> Some families of stochastic processes such as point processes or renewal processes have long and complex histories, stretching back centuries.<sup id="cite_ref-DaleyVere-Jones2006chap1_284-0" class="reference"><a href="#cite_note-DaleyVere-Jones2006chap1-284"><span class="cite-bracket">&#91;</span>275<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Bernoulli_process_2">Bernoulli process</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=44" title="Edit section: Bernoulli process"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Bernoulli process, which can serve as a mathematical model for flipping a biased coin, is possibly the first stochastic process to have been studied.<sup id="cite_ref-Florescu2014page301_82-1" class="reference"><a href="#cite_note-Florescu2014page301-82"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> The process is a sequence of independent Bernoulli trials,<sup id="cite_ref-BertsekasTsitsiklis2002page273_83-1" class="reference"><a href="#cite_note-BertsekasTsitsiklis2002page273-83"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> which are named after <a href="/wiki/Jacob_Bernoulli" title="Jacob Bernoulli">Jacob Bernoulli</a> who used them to study games of chance, including probability problems proposed and studied earlier by Christiaan Huygens.<sup id="cite_ref-Hald2005page226_285-0" class="reference"><a href="#cite_note-Hald2005page226-285"><span class="cite-bracket">&#91;</span>276<span class="cite-bracket">&#93;</span></a></sup> Bernoulli's work, including the Bernoulli process, were published in his book <i>Ars Conjectandi</i> in 1713.<sup id="cite_ref-Lebowitz1984_286-0" class="reference"><a href="#cite_note-Lebowitz1984-286"><span class="cite-bracket">&#91;</span>277<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Random_walks">Random walks</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=45" title="Edit section: Random walks"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1905, <a href="/wiki/Karl_Pearson" title="Karl Pearson">Karl Pearson</a> coined the term <i>random walk</i> while posing a problem describing a random walk on the plane, which was motivated by an application in biology, but such problems involving random walks had already been studied in other fields. Certain gambling problems that were studied centuries earlier can be considered as problems involving random walks.<sup id="cite_ref-Weiss2006page1_90-2" class="reference"><a href="#cite_note-Weiss2006page1-90"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Lebowitz1984_286-1" class="reference"><a href="#cite_note-Lebowitz1984-286"><span class="cite-bracket">&#91;</span>277<span class="cite-bracket">&#93;</span></a></sup> For example, the problem known as the <i>Gambler's ruin</i> is based on a simple random walk,<sup id="cite_ref-KarlinTaylor2012page49_198-1" class="reference"><a href="#cite_note-KarlinTaylor2012page49-198"><span class="cite-bracket">&#91;</span>195<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Florescu2014page374_287-0" class="reference"><a href="#cite_note-Florescu2014page374-287"><span class="cite-bracket">&#91;</span>278<span class="cite-bracket">&#93;</span></a></sup> and is an example of a random walk with absorbing barriers.<sup id="cite_ref-Seneta2006page1_245-1" class="reference"><a href="#cite_note-Seneta2006page1-245"><span class="cite-bracket">&#91;</span>241<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Ibe2013page5_288-0" class="reference"><a href="#cite_note-Ibe2013page5-288"><span class="cite-bracket">&#91;</span>279<span class="cite-bracket">&#93;</span></a></sup> Pascal, Fermat and Huyens all gave numerical solutions to this problem without detailing their methods,<sup id="cite_ref-Hald2005page63_289-0" class="reference"><a href="#cite_note-Hald2005page63-289"><span class="cite-bracket">&#91;</span>280<span class="cite-bracket">&#93;</span></a></sup> and then more detailed solutions were presented by Jakob Bernoulli and <a href="/wiki/Abraham_de_Moivre" title="Abraham de Moivre">Abraham de Moivre</a>.<sup id="cite_ref-Hald2005page202_290-0" class="reference"><a href="#cite_note-Hald2005page202-290"><span class="cite-bracket">&#91;</span>281<span class="cite-bracket">&#93;</span></a></sup> </p><p>For random walks in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional integer <a href="/wiki/Lattice_(group)" title="Lattice (group)">lattices</a>, <a href="/wiki/George_P%C3%B3lya" title="George Pólya">George Pólya</a> published, in 1919 and 1921, work where he studied the probability of a symmetric random walk returning to a previous position in the lattice. Pólya showed that a symmetric random walk, which has an equal probability to advance in any direction in the lattice, will return to a previous position in the lattice an infinite number of times with probability one in one and two dimensions, but with probability zero in three or higher dimensions.<sup id="cite_ref-Florescu2014page385_291-0" class="reference"><a href="#cite_note-Florescu2014page385-291"><span class="cite-bracket">&#91;</span>282<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Hughes1995page111_292-0" class="reference"><a href="#cite_note-Hughes1995page111-292"><span class="cite-bracket">&#91;</span>283<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Wiener_process_2">Wiener process</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=46" title="Edit section: Wiener process"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Wiener_process" title="Wiener process">Wiener process</a> or Brownian motion process has its origins in different fields including statistics, finance and physics.<sup id="cite_ref-JarrowProtter2004_22-4" class="reference"><a href="#cite_note-JarrowProtter2004-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> In 1880, Danish astronomer <a href="/wiki/Thorvald_Thiele" class="mw-redirect" title="Thorvald Thiele">Thorvald Thiele</a> wrote a paper on the method of least squares, where he used the process to study the errors of a model in time-series analysis.<sup id="cite_ref-Thiele1880_293-0" class="reference"><a href="#cite_note-Thiele1880-293"><span class="cite-bracket">&#91;</span>284<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Hald1981page1and18_294-0" class="reference"><a href="#cite_note-Hald1981page1and18-294"><span class="cite-bracket">&#91;</span>285<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Lauritzen1981page319_295-0" class="reference"><a href="#cite_note-Lauritzen1981page319-295"><span class="cite-bracket">&#91;</span>286<span class="cite-bracket">&#93;</span></a></sup> The work is now considered as an early discovery of the statistical method known as <a href="/wiki/Kalman_filtering" class="mw-redirect" title="Kalman filtering">Kalman filtering</a>, but the work was largely overlooked. It is thought that the ideas in Thiele's paper were too advanced to have been understood by the broader mathematical and statistical community at the time.<sup id="cite_ref-Lauritzen1981page319_295-1" class="reference"><a href="#cite_note-Lauritzen1981page319-295"><span class="cite-bracket">&#91;</span>286<span class="cite-bracket">&#93;</span></a></sup> </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Wiener_Zurich1932.tif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Wiener_Zurich1932.tif/lossy-page1-200px-Wiener_Zurich1932.tif.jpg" decoding="async" width="200" height="418" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Wiener_Zurich1932.tif/lossy-page1-300px-Wiener_Zurich1932.tif.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/38/Wiener_Zurich1932.tif/lossy-page1-400px-Wiener_Zurich1932.tif.jpg 2x" data-file-width="209" data-file-height="437" /></a><figcaption><a href="/wiki/Norbert_Wiener" title="Norbert Wiener">Norbert Wiener</a> gave the first mathematical proof of the existence of the Wiener process. This mathematical object had appeared previously in the work of <a href="/wiki/Thorvald_Thiele" class="mw-redirect" title="Thorvald Thiele">Thorvald Thiele</a>, <a href="/wiki/Louis_Bachelier" title="Louis Bachelier">Louis Bachelier</a>, and <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a>.<sup id="cite_ref-JarrowProtter2004_22-5" class="reference"><a href="#cite_note-JarrowProtter2004-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>The French mathematician <a href="/wiki/Louis_Bachelier" title="Louis Bachelier">Louis Bachelier</a> used a Wiener process in his 1900 thesis<sup id="cite_ref-Bachelier1900a_296-0" class="reference"><a href="#cite_note-Bachelier1900a-296"><span class="cite-bracket">&#91;</span>287<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bachelier1900b_297-0" class="reference"><a href="#cite_note-Bachelier1900b-297"><span class="cite-bracket">&#91;</span>288<span class="cite-bracket">&#93;</span></a></sup> in order to model price changes on the <a href="/wiki/Paris_Bourse" class="mw-redirect" title="Paris Bourse">Paris Bourse</a>, a <a href="/wiki/Stock_exchange" title="Stock exchange">stock exchange</a>,<sup id="cite_ref-CourtaultKabanov2000_298-0" class="reference"><a href="#cite_note-CourtaultKabanov2000-298"><span class="cite-bracket">&#91;</span>289<span class="cite-bracket">&#93;</span></a></sup> without knowing the work of Thiele.<sup id="cite_ref-JarrowProtter2004_22-6" class="reference"><a href="#cite_note-JarrowProtter2004-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> It has been speculated that Bachelier drew ideas from the random walk model of <a href="/wiki/Jules_Regnault" title="Jules Regnault">Jules Regnault</a>, but Bachelier did not cite him,<sup id="cite_ref-Jovanovic2012_299-0" class="reference"><a href="#cite_note-Jovanovic2012-299"><span class="cite-bracket">&#91;</span>290<span class="cite-bracket">&#93;</span></a></sup> and Bachelier's thesis is now considered pioneering in the field of financial mathematics.<sup id="cite_ref-CourtaultKabanov2000_298-1" class="reference"><a href="#cite_note-CourtaultKabanov2000-298"><span class="cite-bracket">&#91;</span>289<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Jovanovic2012_299-1" class="reference"><a href="#cite_note-Jovanovic2012-299"><span class="cite-bracket">&#91;</span>290<span class="cite-bracket">&#93;</span></a></sup> </p><p>It is commonly thought that Bachelier's work gained little attention and was forgotten for decades until it was rediscovered in the 1950s by the <a href="/wiki/Leonard_Savage" class="mw-redirect" title="Leonard Savage">Leonard Savage</a>, and then become more popular after Bachelier's thesis was translated into English in 1964. But the work was never forgotten in the mathematical community, as Bachelier published a book in 1912 detailing his ideas,<sup id="cite_ref-Jovanovic2012_299-2" class="reference"><a href="#cite_note-Jovanovic2012-299"><span class="cite-bracket">&#91;</span>290<span class="cite-bracket">&#93;</span></a></sup> which was cited by mathematicians including Doob, Feller<sup id="cite_ref-Jovanovic2012_299-3" class="reference"><a href="#cite_note-Jovanovic2012-299"><span class="cite-bracket">&#91;</span>290<span class="cite-bracket">&#93;</span></a></sup> and Kolmogorov.<sup id="cite_ref-JarrowProtter2004_22-7" class="reference"><a href="#cite_note-JarrowProtter2004-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> The book continued to be cited, but then starting in the 1960s, the original thesis by Bachelier began to be cited more than his book when economists started citing Bachelier's work.<sup id="cite_ref-Jovanovic2012_299-4" class="reference"><a href="#cite_note-Jovanovic2012-299"><span class="cite-bracket">&#91;</span>290<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1905, <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> published a paper where he studied the physical observation of Brownian motion or movement to explain the seemingly random movements of particles in liquids by using ideas from the <a href="/wiki/Kinetic_theory_of_gases" title="Kinetic theory of gases">kinetic theory of gases</a>. Einstein derived a <a href="/wiki/Differential_equation" title="Differential equation">differential equation</a>, known as a <a href="/wiki/Diffusion_equation" title="Diffusion equation">diffusion equation</a>, for describing the probability of finding a particle in a certain region of space. Shortly after Einstein's first paper on Brownian movement, <a href="/wiki/Marian_Smoluchowski" title="Marian Smoluchowski">Marian Smoluchowski</a> published work where he cited Einstein, but wrote that he had independently derived the equivalent results by using a different method.<sup id="cite_ref-Brush1968page25_300-0" class="reference"><a href="#cite_note-Brush1968page25-300"><span class="cite-bracket">&#91;</span>291<span class="cite-bracket">&#93;</span></a></sup> </p><p>Einstein's work, as well as experimental results obtained by <a href="/wiki/Jean_Perrin" class="mw-redirect" title="Jean Perrin">Jean Perrin</a>, later inspired Norbert Wiener in the 1920s<sup id="cite_ref-Brush1968page30_301-0" class="reference"><a href="#cite_note-Brush1968page30-301"><span class="cite-bracket">&#91;</span>292<span class="cite-bracket">&#93;</span></a></sup> to use a type of measure theory, developed by <a href="/wiki/Percy_Daniell" class="mw-redirect" title="Percy Daniell">Percy Daniell</a>, and Fourier analysis to prove the existence of the Wiener process as a mathematical object.<sup id="cite_ref-JarrowProtter2004_22-8" class="reference"><a href="#cite_note-JarrowProtter2004-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Poisson_process_2">Poisson process</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=47" title="Edit section: Poisson process"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Poisson process is named after <a href="/wiki/Sim%C3%A9on_Poisson" class="mw-redirect" title="Siméon Poisson">Siméon Poisson</a>, due to its definition involving the <a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson distribution</a>, but Poisson never studied the process.<sup id="cite_ref-Stirzaker2000_23-2" class="reference"><a href="#cite_note-Stirzaker2000-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-DaleyVere-Jones2006page8_302-0" class="reference"><a href="#cite_note-DaleyVere-Jones2006page8-302"><span class="cite-bracket">&#91;</span>293<span class="cite-bracket">&#93;</span></a></sup> There are a number of claims for early uses or discoveries of the Poisson process.<sup id="cite_ref-Stirzaker2000_23-3" class="reference"><a href="#cite_note-Stirzaker2000-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GuttorpThorarinsdottir2012_25-2" class="reference"><a href="#cite_note-GuttorpThorarinsdottir2012-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> At the beginning of the 20th century, the Poisson process would arise independently in different situations.<sup id="cite_ref-Stirzaker2000_23-4" class="reference"><a href="#cite_note-Stirzaker2000-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-GuttorpThorarinsdottir2012_25-3" class="reference"><a href="#cite_note-GuttorpThorarinsdottir2012-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> In Sweden 1903, <a href="/wiki/Filip_Lundberg" title="Filip Lundberg">Filip Lundberg</a> published a <a href="/wiki/Thesis" title="Thesis">thesis</a> containing work, now considered fundamental and pioneering, where he proposed to model insurance claims with a homogeneous Poisson process.<sup id="cite_ref-EmbrechtsFrey2001page367_303-0" class="reference"><a href="#cite_note-EmbrechtsFrey2001page367-303"><span class="cite-bracket">&#91;</span>294<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Cramér1969_304-0" class="reference"><a href="#cite_note-Cramér1969-304"><span class="cite-bracket">&#91;</span>295<span class="cite-bracket">&#93;</span></a></sup> </p><p>Another discovery occurred in <a href="/wiki/Denmark" title="Denmark">Denmark</a> in 1909 when <a href="/wiki/A.K._Erlang" class="mw-redirect" title="A.K. Erlang">A.K. Erlang</a> derived the Poisson distribution when developing a mathematical model for the number of incoming phone calls in a finite time interval. Erlang was not at the time aware of Poisson's earlier work and assumed that the number phone calls arriving in each interval of time were independent to each other. He then found the limiting case, which is effectively recasting the Poisson distribution as a limit of the binomial distribution.<sup id="cite_ref-Stirzaker2000_23-5" class="reference"><a href="#cite_note-Stirzaker2000-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1910, <a href="/wiki/Ernest_Rutherford" title="Ernest Rutherford">Ernest Rutherford</a> and <a href="/wiki/Hans_Geiger" title="Hans Geiger">Hans Geiger</a> published experimental results on counting alpha particles. Motivated by their work, <a href="/wiki/Harry_Bateman" title="Harry Bateman">Harry Bateman</a> studied the counting problem and derived Poisson probabilities as a solution to a family of differential equations, resulting in the independent discovery of the Poisson process.<sup id="cite_ref-Stirzaker2000_23-6" class="reference"><a href="#cite_note-Stirzaker2000-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> After this time there were many studies and applications of the Poisson process, but its early history is complicated, which has been explained by the various applications of the process in numerous fields by biologists, ecologists, engineers and various physical scientists.<sup id="cite_ref-Stirzaker2000_23-7" class="reference"><a href="#cite_note-Stirzaker2000-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Markov_processes">Markov processes</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=48" title="Edit section: Markov processes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Markov processes and Markov chains are named after <a href="/wiki/Andrey_Markov" title="Andrey Markov">Andrey Markov</a> who studied Markov chains in the early 20th century. Markov was interested in studying an extension of independent random sequences. In his first paper on Markov chains, published in 1906, Markov showed that under certain conditions the average outcomes of the Markov chain would converge to a fixed vector of values, so proving a <a href="/wiki/Weak_law_of_large_numbers" class="mw-redirect" title="Weak law of large numbers">weak law of large numbers</a> without the independence assumption,<sup id="cite_ref-GrinsteadSnell1997page464_305-0" class="reference"><a href="#cite_note-GrinsteadSnell1997page464-305"><span class="cite-bracket">&#91;</span>296<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bremaud2013pageIX_306-0" class="reference"><a href="#cite_note-Bremaud2013pageIX-306"><span class="cite-bracket">&#91;</span>297<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Hayes2013_307-0" class="reference"><a href="#cite_note-Hayes2013-307"><span class="cite-bracket">&#91;</span>298<span class="cite-bracket">&#93;</span></a></sup> which had been commonly regarded as a requirement for such mathematical laws to hold.<sup id="cite_ref-Hayes2013_307-1" class="reference"><a href="#cite_note-Hayes2013-307"><span class="cite-bracket">&#91;</span>298<span class="cite-bracket">&#93;</span></a></sup> Markov later used Markov chains to study the distribution of vowels in <a href="/wiki/Eugene_Onegin" title="Eugene Onegin">Eugene Onegin</a>, written by <a href="/wiki/Alexander_Pushkin" title="Alexander Pushkin">Alexander Pushkin</a>, and proved a <a href="/wiki/Central_limit_theorem" title="Central limit theorem">central limit theorem</a> for such chains. </p><p>In 1912, Poincaré studied Markov chains on <a href="/wiki/Finite_group" title="Finite group">finite groups</a> with an aim to study card shuffling. Other early uses of Markov chains include a diffusion model, introduced by <a href="/wiki/Paul_Ehrenfest" title="Paul Ehrenfest">Paul</a> and <a href="/wiki/Tatyana_Ehrenfest" title="Tatyana Ehrenfest">Tatyana Ehrenfest</a> in 1907, and a branching process, introduced by <a href="/wiki/Francis_Galton" title="Francis Galton">Francis Galton</a> and <a href="/wiki/Henry_William_Watson" title="Henry William Watson">Henry William Watson</a> in 1873, preceding the work of Markov.<sup id="cite_ref-GrinsteadSnell1997page464_305-1" class="reference"><a href="#cite_note-GrinsteadSnell1997page464-305"><span class="cite-bracket">&#91;</span>296<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bremaud2013pageIX_306-1" class="reference"><a href="#cite_note-Bremaud2013pageIX-306"><span class="cite-bracket">&#91;</span>297<span class="cite-bracket">&#93;</span></a></sup> After the work of Galton and Watson, it was later revealed that their branching process had been independently discovered and studied around three decades earlier by <a href="/wiki/Ir%C3%A9n%C3%A9e-Jules_Bienaym%C3%A9" title="Irénée-Jules Bienaymé">Irénée-Jules Bienaymé</a>.<sup id="cite_ref-Seneta1998_308-0" class="reference"><a href="#cite_note-Seneta1998-308"><span class="cite-bracket">&#91;</span>299<span class="cite-bracket">&#93;</span></a></sup> Starting in 1928, <a href="/wiki/Maurice_Fr%C3%A9chet" class="mw-redirect" title="Maurice Fréchet">Maurice Fréchet</a> became interested in Markov chains, eventually resulting in him publishing in 1938 a detailed study on Markov chains.<sup id="cite_ref-GrinsteadSnell1997page464_305-2" class="reference"><a href="#cite_note-GrinsteadSnell1997page464-305"><span class="cite-bracket">&#91;</span>296<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-BruHertz2001_309-0" class="reference"><a href="#cite_note-BruHertz2001-309"><span class="cite-bracket">&#91;</span>300<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Andrei_Kolmogorov" class="mw-redirect" title="Andrei Kolmogorov">Andrei Kolmogorov</a> developed in a 1931 paper a large part of the early theory of continuous-time Markov processes.<sup id="cite_ref-Cramer1976_257-7" class="reference"><a href="#cite_note-Cramer1976-257"><span class="cite-bracket">&#91;</span>251<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-KendallBatchelor1990page33_264-1" class="reference"><a href="#cite_note-KendallBatchelor1990page33-264"><span class="cite-bracket">&#91;</span>257<span class="cite-bracket">&#93;</span></a></sup> Kolmogorov was partly inspired by Louis Bachelier's 1900 work on fluctuations in the stock market as well as <a href="/wiki/Norbert_Wiener" title="Norbert Wiener">Norbert Wiener</a>'s work on Einstein's model of Brownian movement.<sup id="cite_ref-KendallBatchelor1990page33_264-2" class="reference"><a href="#cite_note-KendallBatchelor1990page33-264"><span class="cite-bracket">&#91;</span>257<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-BarbutLocker2016page5_310-0" class="reference"><a href="#cite_note-BarbutLocker2016page5-310"><span class="cite-bracket">&#91;</span>301<span class="cite-bracket">&#93;</span></a></sup> He introduced and studied a particular set of Markov processes known as diffusion processes, where he derived a set of differential equations describing the processes.<sup id="cite_ref-KendallBatchelor1990page33_264-3" class="reference"><a href="#cite_note-KendallBatchelor1990page33-264"><span class="cite-bracket">&#91;</span>257<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Skorokhod2005page146_311-0" class="reference"><a href="#cite_note-Skorokhod2005page146-311"><span class="cite-bracket">&#91;</span>302<span class="cite-bracket">&#93;</span></a></sup> Independent of Kolmogorov's work, <a href="/wiki/Sydney_Chapman_(mathematician)" title="Sydney Chapman (mathematician)">Sydney Chapman</a> derived in a 1928 paper an equation, now called the <a href="/wiki/Chapman%E2%80%93Kolmogorov_equation" title="Chapman–Kolmogorov equation">Chapman–Kolmogorov equation</a>, in a less mathematically rigorous way than Kolmogorov, while studying Brownian movement.<sup id="cite_ref-Bernstein2005_312-0" class="reference"><a href="#cite_note-Bernstein2005-312"><span class="cite-bracket">&#91;</span>303<span class="cite-bracket">&#93;</span></a></sup> The differential equations are now called the Kolmogorov equations<sup id="cite_ref-Anderson2012pageVII_313-0" class="reference"><a href="#cite_note-Anderson2012pageVII-313"><span class="cite-bracket">&#91;</span>304<span class="cite-bracket">&#93;</span></a></sup> or the Kolmogorov–Chapman equations.<sup id="cite_ref-KendallBatchelor1990page57_314-0" class="reference"><a href="#cite_note-KendallBatchelor1990page57-314"><span class="cite-bracket">&#91;</span>305<span class="cite-bracket">&#93;</span></a></sup> Other mathematicians who contributed significantly to the foundations of Markov processes include William Feller, starting in the 1930s, and then later Eugene Dynkin, starting in the 1950s.<sup id="cite_ref-Cramer1976_257-8" class="reference"><a href="#cite_note-Cramer1976-257"><span class="cite-bracket">&#91;</span>251<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Lévy_processes"><span id="L.C3.A9vy_processes"></span>Lévy processes</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=49" title="Edit section: Lévy processes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Lévy processes such as the Wiener process and the Poisson process (on the real line) are named after Paul Lévy who started studying them in the 1930s,<sup id="cite_ref-Applebaum2004page1336_228-2" class="reference"><a href="#cite_note-Applebaum2004page1336-228"><span class="cite-bracket">&#91;</span>225<span class="cite-bracket">&#93;</span></a></sup> but they have connections to <a href="/wiki/Infinitely_divisible_distribution" class="mw-redirect" title="Infinitely divisible distribution">infinitely divisible distributions</a> going back to the 1920s.<sup id="cite_ref-Bertoin1998pageVIII_227-2" class="reference"><a href="#cite_note-Bertoin1998pageVIII-227"><span class="cite-bracket">&#91;</span>224<span class="cite-bracket">&#93;</span></a></sup> In a 1932 paper, Kolmogorov derived a <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic function</a> for random variables associated with Lévy processes. This result was later derived under more general conditions by Lévy in 1934, and then Khinchin independently gave an alternative form for this characteristic function in 1937.<sup id="cite_ref-Cramer1976_257-9" class="reference"><a href="#cite_note-Cramer1976-257"><span class="cite-bracket">&#91;</span>251<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ApplebaumBook2004page67_315-0" class="reference"><a href="#cite_note-ApplebaumBook2004page67-315"><span class="cite-bracket">&#91;</span>306<span class="cite-bracket">&#93;</span></a></sup> In addition to Lévy, Khinchin and Kolomogrov, early fundamental contributions to the theory of Lévy processes were made by <a href="/wiki/Bruno_de_Finetti" title="Bruno de Finetti">Bruno de Finetti</a> and <a href="/wiki/Kiyosi_It%C3%B4" title="Kiyosi Itô">Kiyosi Itô</a>.<sup id="cite_ref-Bertoin1998pageVIII_227-3" class="reference"><a href="#cite_note-Bertoin1998pageVIII-227"><span class="cite-bracket">&#91;</span>224<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Mathematical_construction">Mathematical construction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=50" title="Edit section: Mathematical construction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In mathematics, constructions of mathematical objects are needed, which is also the case for stochastic processes, to prove that they exist mathematically.<sup id="cite_ref-Rosenthal2006page177_58-2" class="reference"><a href="#cite_note-Rosenthal2006page177-58"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> There are two main approaches for constructing a stochastic process. One approach involves considering a measurable space of functions, defining a suitable measurable mapping from a probability space to this measurable space of functions, and then deriving the corresponding finite-dimensional distributions.<sup id="cite_ref-Adler2010page13_316-0" class="reference"><a href="#cite_note-Adler2010page13-316"><span class="cite-bracket">&#91;</span>307<span class="cite-bracket">&#93;</span></a></sup> </p><p>Another approach involves defining a collection of random variables to have specific finite-dimensional distributions, and then using <a href="/wiki/Kolmogorov_extension_theorem" title="Kolmogorov extension theorem">Kolmogorov's existence theorem</a><sup id="cite_ref-320" class="reference"><a href="#cite_note-320"><span class="cite-bracket">&#91;</span>j<span class="cite-bracket">&#93;</span></a></sup> to prove a corresponding stochastic process exists.<sup id="cite_ref-Rosenthal2006page177_58-3" class="reference"><a href="#cite_note-Rosenthal2006page177-58"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Adler2010page13_316-1" class="reference"><a href="#cite_note-Adler2010page13-316"><span class="cite-bracket">&#91;</span>307<span class="cite-bracket">&#93;</span></a></sup> This theorem, which is an existence theorem for measures on infinite product spaces,<sup id="cite_ref-Durrett2010page410_321-0" class="reference"><a href="#cite_note-Durrett2010page410-321"><span class="cite-bracket">&#91;</span>311<span class="cite-bracket">&#93;</span></a></sup> says that if any finite-dimensional distributions satisfy two conditions, known as <i>consistency conditions</i>, then there exists a stochastic process with those finite-dimensional distributions.<sup id="cite_ref-Rosenthal2006page177_58-4" class="reference"><a href="#cite_note-Rosenthal2006page177-58"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Construction_issues">Construction issues</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=51" title="Edit section: Construction issues"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When constructing continuous-time stochastic processes certain mathematical difficulties arise, due to the uncountable index sets, which do not occur with discrete-time processes.<sup id="cite_ref-KloedenPlaten2013page63_59-1" class="reference"><a href="#cite_note-KloedenPlaten2013page63-59"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Khoshnevisan2006page153_60-1" class="reference"><a href="#cite_note-Khoshnevisan2006page153-60"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> One problem is that it is possible to have more than one stochastic process with the same finite-dimensional distributions. For example, both the left-continuous modification and the right-continuous modification of a Poisson process have the same finite-dimensional distributions.<sup id="cite_ref-Billingsley2008page493to494_322-0" class="reference"><a href="#cite_note-Billingsley2008page493to494-322"><span class="cite-bracket">&#91;</span>312<span class="cite-bracket">&#93;</span></a></sup> This means that the distribution of the stochastic process does not, necessarily, specify uniquely the properties of the sample functions of the stochastic process.<sup id="cite_ref-Adler2010page13_316-2" class="reference"><a href="#cite_note-Adler2010page13-316"><span class="cite-bracket">&#91;</span>307<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Borovkov2013page529_323-0" class="reference"><a href="#cite_note-Borovkov2013page529-323"><span class="cite-bracket">&#91;</span>313<span class="cite-bracket">&#93;</span></a></sup> </p><p>Another problem is that functionals of continuous-time process that rely upon an uncountable number of points of the index set may not be measurable, so the probabilities of certain events may not be well-defined.<sup id="cite_ref-Ito2006page32_170-3" class="reference"><a href="#cite_note-Ito2006page32-170"><span class="cite-bracket">&#91;</span>168<span class="cite-bracket">&#93;</span></a></sup> For example, the supremum of a stochastic process or random field is not necessarily a well-defined random variable.<sup id="cite_ref-AdlerTaylor2009page7_31-6" class="reference"><a href="#cite_note-AdlerTaylor2009page7-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Khoshnevisan2006page153_60-2" class="reference"><a href="#cite_note-Khoshnevisan2006page153-60"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> For a continuous-time stochastic process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, other characteristics that depend on an uncountable number of points of the index set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> include:<sup id="cite_ref-Ito2006page32_170-4" class="reference"><a href="#cite_note-Ito2006page32-170"><span class="cite-bracket">&#91;</span>168<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>a sample function of a stochastic process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a <a href="/wiki/Continuous_function" title="Continuous function">continuous function</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4fe93f70df3818ecca67c2ca44f087483951856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.317ex; height:2.176ex;" alt="{\displaystyle t\in T}"></span>;</li> <li>a sample function of a stochastic process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a <a href="/wiki/Bounded_function" title="Bounded function">bounded function</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4fe93f70df3818ecca67c2ca44f087483951856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.317ex; height:2.176ex;" alt="{\displaystyle t\in T}"></span>; and</li> <li>a sample function of a stochastic process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is an <a href="/wiki/Increasing_function" class="mw-redirect" title="Increasing function">increasing function</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4fe93f70df3818ecca67c2ca44f087483951856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.317ex; height:2.176ex;" alt="{\displaystyle t\in T}"></span>.</li></ul> <p>where the symbol <b>∈</b> can be read "a member of the set", as in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> a member of the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>. </p><p>To overcome the two difficulties described above, i.e., "more than one..." and "functionals of...", different assumptions and approaches are possible.<sup id="cite_ref-Asmussen2003page408_70-3" class="reference"><a href="#cite_note-Asmussen2003page408-70"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Resolving_construction_issues">Resolving construction issues</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=52" title="Edit section: Resolving construction issues"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One approach for avoiding mathematical construction issues of stochastic processes, proposed by <a href="/wiki/Joseph_Doob" class="mw-redirect" title="Joseph Doob">Joseph Doob</a>, is to assume that the stochastic process is separable.<sup id="cite_ref-AthreyaLahiri2006page221_324-0" class="reference"><a href="#cite_note-AthreyaLahiri2006page221-324"><span class="cite-bracket">&#91;</span>314<span class="cite-bracket">&#93;</span></a></sup> Separability ensures that infinite-dimensional distributions determine the properties of sample functions by requiring that sample functions are essentially determined by their values on a dense countable set of points in the index set.<sup id="cite_ref-AdlerTaylor2009page14_325-0" class="reference"><a href="#cite_note-AdlerTaylor2009page14-325"><span class="cite-bracket">&#91;</span>315<span class="cite-bracket">&#93;</span></a></sup> Furthermore, if a stochastic process is separable, then functionals of an uncountable number of points of the index set are measurable and their probabilities can be studied.<sup id="cite_ref-Ito2006page32_170-5" class="reference"><a href="#cite_note-Ito2006page32-170"><span class="cite-bracket">&#91;</span>168<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AdlerTaylor2009page14_325-1" class="reference"><a href="#cite_note-AdlerTaylor2009page14-325"><span class="cite-bracket">&#91;</span>315<span class="cite-bracket">&#93;</span></a></sup> </p><p>Another approach is possible, originally developed by <a href="/wiki/Anatoliy_Skorokhod" title="Anatoliy Skorokhod">Anatoliy Skorokhod</a> and <a href="/wiki/Andrei_Kolmogorov" class="mw-redirect" title="Andrei Kolmogorov">Andrei Kolmogorov</a>,<sup id="cite_ref-AthreyaLahiri2006page211_326-0" class="reference"><a href="#cite_note-AthreyaLahiri2006page211-326"><span class="cite-bracket">&#91;</span>316<span class="cite-bracket">&#93;</span></a></sup> for a continuous-time stochastic process with any metric space as its state space. For the construction of such a stochastic process, it is assumed that the sample functions of the stochastic process belong to some suitable function space, which is usually the Skorokhod space consisting of all right-continuous functions with left limits. This approach is now more used than the separability assumption,<sup id="cite_ref-Asmussen2003page408_70-4" class="reference"><a href="#cite_note-Asmussen2003page408-70"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Getoor2009_271-1" class="reference"><a href="#cite_note-Getoor2009-271"><span class="cite-bracket">&#91;</span>262<span class="cite-bracket">&#93;</span></a></sup> but such a stochastic process based on this approach will be automatically separable.<sup id="cite_ref-Borovkov2013page536_327-0" class="reference"><a href="#cite_note-Borovkov2013page536-327"><span class="cite-bracket">&#91;</span>317<span class="cite-bracket">&#93;</span></a></sup> </p><p>Although less used, the separability assumption is considered more general because every stochastic process has a separable version.<sup id="cite_ref-Getoor2009_271-2" class="reference"><a href="#cite_note-Getoor2009-271"><span class="cite-bracket">&#91;</span>262<span class="cite-bracket">&#93;</span></a></sup> It is also used when it is not possible to construct a stochastic process in a Skorokhod space.<sup id="cite_ref-Borovkov2013page535_175-1" class="reference"><a href="#cite_note-Borovkov2013page535-175"><span class="cite-bracket">&#91;</span>173<span class="cite-bracket">&#93;</span></a></sup> For example, separability is assumed when constructing and studying random fields, where the collection of random variables is now indexed by sets other than the real line such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional Euclidean space.<sup id="cite_ref-AdlerTaylor2009page7_31-7" class="reference"><a href="#cite_note-AdlerTaylor2009page7-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Yakir2013page5_328-0" class="reference"><a href="#cite_note-Yakir2013page5-328"><span class="cite-bracket">&#91;</span>318<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Application">Application</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=53" title="Edit section: Application"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Applications_in_Finance">Applications in Finance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=54" title="Edit section: Applications in Finance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Black-Scholes_Model">Black-Scholes Model</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=55" title="Edit section: Black-Scholes Model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One of the most famous applications of stochastic processes in finance is the <b><a href="/wiki/Black-Scholes_model" class="mw-redirect" title="Black-Scholes model">Black-Scholes model</a></b> for option pricing. Developed by <a href="/wiki/Fischer_Black" title="Fischer Black">Fischer Black</a>, <a href="/wiki/Myron_Scholes" title="Myron Scholes">Myron Scholes</a>, and <a href="/wiki/Robert_Solow" title="Robert Solow">Robert Solow</a>, this model uses <b><a href="/wiki/Geometric_Brownian_motion" title="Geometric Brownian motion">Geometric Brownian motion</a></b>, a specific type of stochastic process, to describe the dynamics of asset prices.<sup id="cite_ref-329" class="reference"><a href="#cite_note-329"><span class="cite-bracket">&#91;</span>319<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-330" class="reference"><a href="#cite_note-330"><span class="cite-bracket">&#91;</span>320<span class="cite-bracket">&#93;</span></a></sup> The model assumes that the price of a stock follows a continuous-time stochastic process and provides a closed-form solution for pricing European-style options. The Black-Scholes formula has had a profound impact on financial markets, forming the basis for much of modern options trading. </p><p>The key assumption of the Black-Scholes model is that the price of a financial asset, such as a stock, follows a <b><a href="/wiki/Log-normal_distribution" title="Log-normal distribution">log-normal distribution</a></b>, with its continuous returns following a normal distribution. Although the model has limitations, such as the assumption of constant volatility, it remains widely used due to its simplicity and practical relevance. </p> <div class="mw-heading mw-heading4"><h4 id="Stochastic_Volatility_Models">Stochastic Volatility Models</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=56" title="Edit section: Stochastic Volatility Models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Another significant application of stochastic processes in finance is in <b><a href="/wiki/Stochastic_volatility" title="Stochastic volatility">stochastic volatility models</a></b>, which aim to capture the time-varying nature of market volatility. The <b><a href="/wiki/Heston_model" title="Heston model">Heston model</a></b><sup id="cite_ref-331" class="reference"><a href="#cite_note-331"><span class="cite-bracket">&#91;</span>321<span class="cite-bracket">&#93;</span></a></sup> is a popular example, allowing for the volatility of asset prices to follow its own stochastic process. Unlike the Black-Scholes model, which assumes constant volatility, stochastic volatility models provide a more flexible framework for modeling market dynamics, particularly during periods of high uncertainty or market stress. </p> <div class="mw-heading mw-heading3"><h3 id="Applications_in_Biology">Applications in Biology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=57" title="Edit section: Applications in Biology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Population_Dynamics">Population Dynamics</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=58" title="Edit section: Population Dynamics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One of the primary applications of stochastic processes in biology is in <b><a href="/wiki/Population_dynamics" title="Population dynamics">population dynamics</a></b>. In contrast to <a href="/wiki/Deterministic_model" class="mw-redirect" title="Deterministic model">deterministic models</a>, which assume that populations change in predictable ways, stochastic models account for the inherent randomness in births, deaths, and migration. The <b><a href="/wiki/Birth-death_process" class="mw-redirect" title="Birth-death process">birth-death process</a></b>,<sup id="cite_ref-332" class="reference"><a href="#cite_note-332"><span class="cite-bracket">&#91;</span>322<span class="cite-bracket">&#93;</span></a></sup> a simple stochastic model, describes how populations fluctuate over time due to random births and deaths. These models are particularly important when dealing with small populations, where random events can have large impacts, such as in the case of endangered species or small microbial populations. </p><p>Another example is the <b><a href="/wiki/Branching_process" title="Branching process">branching process</a></b>,<sup id="cite_ref-333" class="reference"><a href="#cite_note-333"><span class="cite-bracket">&#91;</span>323<span class="cite-bracket">&#93;</span></a></sup> which models the growth of a population where each individual reproduces independently. The branching process is often used to describe population extinction or explosion, particularly in epidemiology, where it can model the spread of infectious diseases within a population. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=59" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 30em;"> <ul><li><a href="/wiki/List_of_stochastic_processes_topics" title="List of stochastic processes topics">List of stochastic processes topics</a></li> <li><a href="/wiki/Covariance_function" title="Covariance function">Covariance function</a></li> <li><a href="/wiki/Deterministic_system" title="Deterministic system">Deterministic system</a></li> <li><a href="/wiki/Dynamics_of_Markovian_particles" title="Dynamics of Markovian particles">Dynamics of Markovian particles</a></li> <li><a href="/wiki/Entropy_rate" title="Entropy rate">Entropy rate</a> (for a stochastic process)</li> <li><a href="/wiki/Ergodic_process" title="Ergodic process">Ergodic process</a></li> <li><a href="/wiki/Gillespie_algorithm" title="Gillespie algorithm">Gillespie algorithm</a></li> <li><a href="/wiki/Interacting_particle_system" title="Interacting particle system">Interacting particle system</a></li> <li><a href="/wiki/Markov_chain" title="Markov chain">Markov chain</a></li> <li><a href="/wiki/Stochastic_cellular_automaton" title="Stochastic cellular automaton">Stochastic cellular automaton</a></li> <li><a href="/wiki/Random_field" title="Random field">Random field</a></li> <li><a href="/wiki/Randomness" title="Randomness">Randomness</a></li> <li><a href="/wiki/Stationary_process" title="Stationary process">Stationary process</a></li> <li><a href="/wiki/Statistical_model" title="Statistical model">Statistical model</a></li> <li><a href="/wiki/Stochastic_calculus" title="Stochastic calculus">Stochastic calculus</a></li> <li><a href="/wiki/Stochastic_control" title="Stochastic control">Stochastic control</a></li> <li><a href="/wiki/Stochastic_parrot" title="Stochastic parrot">Stochastic parrot</a></li> <li><a href="/wiki/Stochastic_processes_and_boundary_value_problems" title="Stochastic processes and boundary value problems">Stochastic processes and boundary value problems</a></li></ul></div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=60" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">The term <i>Brownian motion</i> can refer to the physical process, also known as <i>Brownian movement</i>, and the stochastic process, a mathematical object, but to avoid ambiguity this article uses the terms <i>Brownian motion process</i> or <i>Wiener process</i> for the latter in a style similar to, for example, <a href="/wiki/Iosif_Gikhman" title="Iosif Gikhman">Gikhman</a> and <a href="/wiki/Anatoliy_Skorokhod" title="Anatoliy Skorokhod">Skorokhod</a><sup id="cite_ref-GikhmanSkorokhod1969_19-0" class="reference"><a href="#cite_note-GikhmanSkorokhod1969-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> or Rosenblatt.<sup id="cite_ref-Rosenblatt1962_20-0" class="reference"><a href="#cite_note-Rosenblatt1962-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-169"><span class="mw-cite-backlink"><b><a href="#cite_ref-169">^</a></b></span> <span class="reference-text">The term "separable" appears twice here with two different meanings, where the first meaning is from probability and the second from topology and analysis. For a stochastic process to be separable (in a probabilistic sense), its index set must be a separable space (in a topological or analytic sense), in addition to other conditions.<sup id="cite_ref-Skorokhod2005page93_137-1" class="reference"><a href="#cite_note-Skorokhod2005page93-137"><span class="cite-bracket">&#91;</span>136<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-176"><span class="mw-cite-backlink"><b><a href="#cite_ref-176">^</a></b></span> <span class="reference-text">The definition of separability for a continuous-time real-valued stochastic process can be stated in other ways.<sup id="cite_ref-Billingsley2008page526_174-0" class="reference"><a href="#cite_note-Billingsley2008page526-174"><span class="cite-bracket">&#91;</span>172<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Borovkov2013page535_175-0" class="reference"><a href="#cite_note-Borovkov2013page535-175"><span class="cite-bracket">&#91;</span>173<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-239"><span class="mw-cite-backlink"><b><a href="#cite_ref-239">^</a></b></span> <span class="reference-text">In the context of point processes, the term "state space" can mean the space on which the point process is defined such as the real line,<sup id="cite_ref-Kingman1992page8_237-0" class="reference"><a href="#cite_note-Kingman1992page8-237"><span class="cite-bracket">&#91;</span>234<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-MollerWaagepetersen2003page7_238-0" class="reference"><a href="#cite_note-MollerWaagepetersen2003page7-238"><span class="cite-bracket">&#91;</span>235<span class="cite-bracket">&#93;</span></a></sup> which corresponds to the index set in stochastic process terminology.</span> </li> <li id="cite_note-249"><span class="mw-cite-backlink"><b><a href="#cite_ref-249">^</a></b></span> <span class="reference-text">Also known as James or Jacques Bernoulli.<sup id="cite_ref-Hald2005page221_248-0" class="reference"><a href="#cite_note-Hald2005page221-248"><span class="cite-bracket">&#91;</span>244<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-255"><span class="mw-cite-backlink"><b><a href="#cite_ref-255">^</a></b></span> <span class="reference-text">It has been remarked that a notable exception was the St Petersburg School in Russia, where mathematicians led by Chebyshev studied probability theory.<sup id="cite_ref-BenziBenzi2007_254-0" class="reference"><a href="#cite_note-BenziBenzi2007-254"><span class="cite-bracket">&#91;</span>249<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-263"><span class="mw-cite-backlink"><b><a href="#cite_ref-263">^</a></b></span> <span class="reference-text">The name Khinchin is also written in (or transliterated into) English as Khintchine.<sup id="cite_ref-Doob1934_64-1" class="reference"><a href="#cite_note-Doob1934-64"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-268"><span class="mw-cite-backlink"><b><a href="#cite_ref-268">^</a></b></span> <span class="reference-text">Doob, when citing Khinchin, uses the term 'chance variable', which used to be an alternative term for 'random variable'.<sup id="cite_ref-Snell2005_267-0" class="reference"><a href="#cite_note-Snell2005-267"><span class="cite-bracket">&#91;</span>260<span class="cite-bracket">&#93;</span></a></sup> </span> </li> <li id="cite_note-269"><span class="mw-cite-backlink"><b><a href="#cite_ref-269">^</a></b></span> <span class="reference-text">Later translated into English and published in 1950 as Foundations of the Theory of Probability<sup id="cite_ref-Bingham2000_253-3" class="reference"><a href="#cite_note-Bingham2000-253"><span class="cite-bracket">&#91;</span>248<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-320"><span class="mw-cite-backlink"><b><a href="#cite_ref-320">^</a></b></span> <span class="reference-text">The theorem has other names including Kolmogorov's consistency theorem,<sup id="cite_ref-AthreyaLahiri2006_317-0" class="reference"><a href="#cite_note-AthreyaLahiri2006-317"><span class="cite-bracket">&#91;</span>308<span class="cite-bracket">&#93;</span></a></sup> Kolmogorov's extension theorem<sup id="cite_ref-Øksendal2003page11_318-0" class="reference"><a href="#cite_note-Øksendal2003page11-318"><span class="cite-bracket">&#91;</span>309<span class="cite-bracket">&#93;</span></a></sup> or the Daniell–Kolmogorov theorem.<sup id="cite_ref-Williams1991page124_319-0" class="reference"><a href="#cite_note-Williams1991page124-319"><span class="cite-bracket">&#91;</span>310<span class="cite-bracket">&#93;</span></a></sup></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=61" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-doob1953stochasticP46to47-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-doob1953stochasticP46to47_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-doob1953stochasticP46to47_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-doob1953stochasticP46to47_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-doob1953stochasticP46to47_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-doob1953stochasticP46to47_1-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-doob1953stochasticP46to47_1-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-doob1953stochasticP46to47_1-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-doob1953stochasticP46to47_1-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-doob1953stochasticP46to47_1-8"><sup><i><b>i</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFJoseph_L._Doob1990" class="citation book cs1">Joseph L. Doob (1990). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=7Bu8jgEACAAJ"><i>Stochastic processes</i></a>. Wiley. pp.&#160;46, 47.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+processes&amp;rft.pages=46%2C+47&amp;rft.pub=Wiley&amp;rft.date=1990&amp;rft.au=Joseph+L.+Doob&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D7Bu8jgEACAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-RogersWilliams2000page1-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-RogersWilliams2000page1_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-RogersWilliams2000page1_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-RogersWilliams2000page1_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-RogersWilliams2000page1_2-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFL._C._G._RogersDavid_Williams2000" class="citation book cs1">L. C. G. Rogers; David Williams (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=W0ydAgAAQBAJ&amp;pg=PA1"><i>Diffusions, Markov Processes, and Martingales: Volume 1, Foundations</i></a>. Cambridge University Press. p.&#160;1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-71749-7" title="Special:BookSources/978-1-107-71749-7"><bdi>978-1-107-71749-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Diffusions%2C+Markov+Processes%2C+and+Martingales%3A+Volume+1%2C+Foundations&amp;rft.pages=1&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2000&amp;rft.isbn=978-1-107-71749-7&amp;rft.au=L.+C.+G.+Rogers&amp;rft.au=David+Williams&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DW0ydAgAAQBAJ%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Steele2012page29-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Steele2012page29_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Steele2012page29_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Steele2012page29_3-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ._Michael_Steele2012" class="citation book cs1">J. Michael Steele (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=fsgkBAAAQBAJ&amp;pg=PR4"><i>Stochastic Calculus and Financial Applications</i></a>. Springer Science &amp; Business Media. p.&#160;29. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4684-9305-4" title="Special:BookSources/978-1-4684-9305-4"><bdi>978-1-4684-9305-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Calculus+and+Financial+Applications&amp;rft.pages=29&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4684-9305-4&amp;rft.au=J.+Michael+Steele&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DfsgkBAAAQBAJ%26pg%3DPR4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Parzen1999-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-Parzen1999_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Parzen1999_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Parzen1999_4-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Parzen1999_4-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Parzen1999_4-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEmanuel_Parzen2015" class="citation book cs1">Emanuel Parzen (2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0mB2CQAAQBAJ"><i>Stochastic Processes</i></a>. Courier Dover Publications. pp.&#160;7, 8. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-79688-8" title="Special:BookSources/978-0-486-79688-8"><bdi>978-0-486-79688-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Processes&amp;rft.pages=7%2C+8&amp;rft.pub=Courier+Dover+Publications&amp;rft.date=2015&amp;rft.isbn=978-0-486-79688-8&amp;rft.au=Emanuel+Parzen&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0mB2CQAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GikhmanSkorokhod1969page1-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-GikhmanSkorokhod1969page1_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GikhmanSkorokhod1969page1_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-GikhmanSkorokhod1969page1_5-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-GikhmanSkorokhod1969page1_5-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-GikhmanSkorokhod1969page1_5-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-GikhmanSkorokhod1969page1_5-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-GikhmanSkorokhod1969page1_5-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-GikhmanSkorokhod1969page1_5-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-GikhmanSkorokhod1969page1_5-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-GikhmanSkorokhod1969page1_5-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-GikhmanSkorokhod1969page1_5-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-GikhmanSkorokhod1969page1_5-11"><sup><i><b>l</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIosif_Ilyich_GikhmanAnatoly_Vladimirovich_Skorokhod1969" class="citation book cs1">Iosif Ilyich Gikhman; Anatoly Vladimirovich Skorokhod (1969). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=q0lo91imeD0C"><i>Introduction to the Theory of Random Processes</i></a>. Courier Corporation. p.&#160;1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-69387-3" title="Special:BookSources/978-0-486-69387-3"><bdi>978-0-486-69387-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+Theory+of+Random+Processes&amp;rft.pages=1&amp;rft.pub=Courier+Corporation&amp;rft.date=1969&amp;rft.isbn=978-0-486-69387-3&amp;rft.au=Iosif+Ilyich+Gikhman&amp;rft.au=Anatoly+Vladimirovich+Skorokhod&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dq0lo91imeD0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Bressloff2014-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bressloff2014_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBressloff2014" class="citation book cs1"><a href="/wiki/Paul_Bressloff" title="Paul Bressloff">Bressloff, Paul C.</a> (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=SwZYBAAAQBAJ"><i>Stochastic Processes in Cell Biology</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-08488-6" title="Special:BookSources/978-3-319-08488-6"><bdi>978-3-319-08488-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Processes+in+Cell+Biology&amp;rft.pub=Springer&amp;rft.date=2014&amp;rft.isbn=978-3-319-08488-6&amp;rft.aulast=Bressloff&amp;rft.aufirst=Paul+C.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSwZYBAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Kampen2011-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kampen2011_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_Kampen2011" class="citation book cs1">Van Kampen, N. G. (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=N6II-6HlPxEC"><i>Stochastic Processes in Physics and Chemistry</i></a>. <a href="/wiki/Elsevier" title="Elsevier">Elsevier</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-047536-3" title="Special:BookSources/978-0-08-047536-3"><bdi>978-0-08-047536-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Processes+in+Physics+and+Chemistry&amp;rft.pub=Elsevier&amp;rft.date=2011&amp;rft.isbn=978-0-08-047536-3&amp;rft.aulast=Van+Kampen&amp;rft.aufirst=N.+G.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DN6II-6HlPxEC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-LandeEngen2003-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-LandeEngen2003_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLandeEngenSæther2003" class="citation book cs1">Lande, Russell; Engen, Steinar; Sæther, Bernt-Erik (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6KClauq8OekC"><i>Stochastic Population Dynamics in Ecology and Conservation</i></a>. <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-852525-7" title="Special:BookSources/978-0-19-852525-7"><bdi>978-0-19-852525-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Population+Dynamics+in+Ecology+and+Conservation&amp;rft.pub=Oxford+University+Press&amp;rft.date=2003&amp;rft.isbn=978-0-19-852525-7&amp;rft.aulast=Lande&amp;rft.aufirst=Russell&amp;rft.au=Engen%2C+Steinar&amp;rft.au=S%C3%A6ther%2C+Bernt-Erik&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6KClauq8OekC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-LaingLord2010-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-LaingLord2010_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaingLord2010" class="citation book cs1">Laing, Carlo; Lord, Gabriel J. (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=RaYSDAAAQBAJ"><i>Stochastic Methods in Neuroscience</i></a>. <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-923507-0" title="Special:BookSources/978-0-19-923507-0"><bdi>978-0-19-923507-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Methods+in+Neuroscience&amp;rft.pub=Oxford+University+Press&amp;rft.date=2010&amp;rft.isbn=978-0-19-923507-0&amp;rft.aulast=Laing&amp;rft.aufirst=Carlo&amp;rft.au=Lord%2C+Gabriel+J.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DRaYSDAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-PaulBaschnagel2013-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-PaulBaschnagel2013_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPaulBaschnagel2013" class="citation book cs1">Paul, Wolfgang; Baschnagel, Jörg (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OWANAAAAQBAJ"><i>Stochastic Processes: From Physics to Finance</i></a>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer Science+Business Media</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-00327-6" title="Special:BookSources/978-3-319-00327-6"><bdi>978-3-319-00327-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Processes%3A+From+Physics+to+Finance&amp;rft.pub=Springer+Science%2BBusiness+Media&amp;rft.date=2013&amp;rft.isbn=978-3-319-00327-6&amp;rft.aulast=Paul&amp;rft.aufirst=Wolfgang&amp;rft.au=Baschnagel%2C+J%C3%B6rg&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOWANAAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Dougherty1999-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Dougherty1999_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDougherty1999" class="citation book cs1">Dougherty, Edward R. (1999). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ePxDAQAAIAAJ"><i>Random processes for image and signal processing</i></a>. <a href="/wiki/SPIE" title="SPIE">SPIE</a> Optical Engineering Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8194-2513-3" title="Special:BookSources/978-0-8194-2513-3"><bdi>978-0-8194-2513-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+processes+for+image+and+signal+processing&amp;rft.pub=SPIE+Optical+Engineering+Press&amp;rft.date=1999&amp;rft.isbn=978-0-8194-2513-3&amp;rft.aulast=Dougherty&amp;rft.aufirst=Edward+R.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DePxDAQAAIAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Bertsekas1996-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bertsekas1996_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBertsekas1996" class="citation book cs1"><a href="/wiki/Dimitri_Bertsekas" title="Dimitri Bertsekas">Bertsekas, Dimitri P.</a> (1996). <a rel="nofollow" class="external text" href="https://athenasc.com/socbook.html"><i>Stochastic Optimal Control: The Discrete-Time Case</i></a>. Athena Scientific. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1-886529-03-5" title="Special:BookSources/1-886529-03-5"><bdi>1-886529-03-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Optimal+Control%3A+The+Discrete-Time+Case&amp;rft.pub=Athena+Scientific&amp;rft.date=1996&amp;rft.isbn=1-886529-03-5&amp;rft.aulast=Bertsekas&amp;rft.aufirst=Dimitri+P.&amp;rft_id=https%3A%2F%2Fathenasc.com%2Fsocbook.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-CoverThomas2012page71-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-CoverThomas2012page71_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomas_M._CoverJoy_A._Thomas2012" class="citation book cs1">Thomas M. Cover; Joy A. Thomas (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VWq5GG6ycxMC"><i>Elements of Information Theory</i></a>. <a href="/wiki/Wiley_(publisher)" title="Wiley (publisher)">John Wiley &amp; Sons</a>. p.&#160;71. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-58577-1" title="Special:BookSources/978-1-118-58577-1"><bdi>978-1-118-58577-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Information+Theory&amp;rft.pages=71&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2012&amp;rft.isbn=978-1-118-58577-1&amp;rft.au=Thomas+M.+Cover&amp;rft.au=Joy+A.+Thomas&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVWq5GG6ycxMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Baron2015-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Baron2015_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaron2015" class="citation book cs1">Baron, Michael (2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CwQZCwAAQBAJ"><i>Probability and Statistics for Computer Scientists</i></a> (2nd&#160;ed.). <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>. p.&#160;131. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4987-6060-7" title="Special:BookSources/978-1-4987-6060-7"><bdi>978-1-4987-6060-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Statistics+for+Computer+Scientists&amp;rft.pages=131&amp;rft.edition=2nd&amp;rft.pub=CRC+Press&amp;rft.date=2015&amp;rft.isbn=978-1-4987-6060-7&amp;rft.aulast=Baron&amp;rft.aufirst=Michael&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCwQZCwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-BaccelliBlaszczyszyn2009-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-BaccelliBlaszczyszyn2009_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaccelliBlaszczyszyn2009" class="citation book cs1">Baccelli, François; Blaszczyszyn, Bartlomiej (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=H3ZkTN2pYS4C"><i>Stochastic Geometry and Wireless Networks</i></a>. <a href="/w/index.php?title=Now_Publishers&amp;action=edit&amp;redlink=1" class="new" title="Now Publishers (page does not exist)">Now Publishers</a> Inc. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-60198-264-3" title="Special:BookSources/978-1-60198-264-3"><bdi>978-1-60198-264-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Geometry+and+Wireless+Networks&amp;rft.pub=Now+Publishers+Inc.&amp;rft.date=2009&amp;rft.isbn=978-1-60198-264-3&amp;rft.aulast=Baccelli&amp;rft.aufirst=Fran%C3%A7ois&amp;rft.au=Blaszczyszyn%2C+Bartlomiej&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DH3ZkTN2pYS4C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Steele2001-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-Steele2001_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteele2001" class="citation book cs1">Steele, J. Michael (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=H06xzeRQgV4C"><i>Stochastic Calculus and Financial Applications</i></a>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer Science+Business Media</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-95016-7" title="Special:BookSources/978-0-387-95016-7"><bdi>978-0-387-95016-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Calculus+and+Financial+Applications&amp;rft.pub=Springer+Science%2BBusiness+Media&amp;rft.date=2001&amp;rft.isbn=978-0-387-95016-7&amp;rft.aulast=Steele&amp;rft.aufirst=J.+Michael&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DH06xzeRQgV4C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-MusielaRutkowski2006-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-MusielaRutkowski2006_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-MusielaRutkowski2006_17-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMusielaRutkowski2006" class="citation book cs1">Musiela, Marek; Rutkowski, Marek (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=iojEts9YAxIC"><i>Martingale Methods in Financial Modelling</i></a>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer Science+Business Media</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-26653-2" title="Special:BookSources/978-3-540-26653-2"><bdi>978-3-540-26653-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Martingale+Methods+in+Financial+Modelling&amp;rft.pub=Springer+Science%2BBusiness+Media&amp;rft.date=2006&amp;rft.isbn=978-3-540-26653-2&amp;rft.aulast=Musiela&amp;rft.aufirst=Marek&amp;rft.au=Rutkowski%2C+Marek&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DiojEts9YAxIC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Shreve2004-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-Shreve2004_18-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShreve2004" class="citation book cs1">Shreve, Steven E. (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=O8kD1NwQBsQC"><i>Stochastic Calculus for Finance II: Continuous-Time Models</i></a>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer Science+Business Media</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-40101-0" title="Special:BookSources/978-0-387-40101-0"><bdi>978-0-387-40101-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Calculus+for+Finance+II%3A+Continuous-Time+Models&amp;rft.pub=Springer+Science%2BBusiness+Media&amp;rft.date=2004&amp;rft.isbn=978-0-387-40101-0&amp;rft.aulast=Shreve&amp;rft.aufirst=Steven+E.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DO8kD1NwQBsQC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GikhmanSkorokhod1969-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-GikhmanSkorokhod1969_19-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIosif_Ilyich_GikhmanAnatoly_Vladimirovich_Skorokhod1969" class="citation book cs1">Iosif Ilyich Gikhman; Anatoly Vladimirovich Skorokhod (1969). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yJyLzG7N7r8C"><i>Introduction to the Theory of Random Processes</i></a>. Courier Corporation. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-69387-3" title="Special:BookSources/978-0-486-69387-3"><bdi>978-0-486-69387-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+Theory+of+Random+Processes&amp;rft.pub=Courier+Corporation&amp;rft.date=1969&amp;rft.isbn=978-0-486-69387-3&amp;rft.au=Iosif+Ilyich+Gikhman&amp;rft.au=Anatoly+Vladimirovich+Skorokhod&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyJyLzG7N7r8C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Rosenblatt1962-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rosenblatt1962_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurray_Rosenblatt1962" class="citation book cs1">Murray Rosenblatt (1962). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/randomprocesses00rose_0"><i>Random Processes</i></a></span>. Oxford University Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Processes&amp;rft.pub=Oxford+University+Press&amp;rft.date=1962&amp;rft.au=Murray+Rosenblatt&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Frandomprocesses00rose_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-JarrowProtter2004-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-JarrowProtter2004_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-JarrowProtter2004_22-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-JarrowProtter2004_22-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-JarrowProtter2004_22-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-JarrowProtter2004_22-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-JarrowProtter2004_22-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-JarrowProtter2004_22-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-JarrowProtter2004_22-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-JarrowProtter2004_22-8"><sup><i><b>i</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJarrowProtter2004" class="citation book cs1">Jarrow, Robert; Protter, Philip (2004). "A short history of stochastic integration and mathematical finance: the early years, 1880–1970". <i>A Festschrift for Herman Rubin</i>. Institute of Mathematical Statistics Lecture Notes - Monograph Series. pp.&#160;75–80. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.114.632">10.1.1.114.632</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Flnms%2F1196285381">10.1214/lnms/1196285381</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-940600-61-4" title="Special:BookSources/978-0-940600-61-4"><bdi>978-0-940600-61-4</bdi></a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0749-2170">0749-2170</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=A+short+history+of+stochastic+integration+and+mathematical+finance%3A+the+early+years%2C+1880%E2%80%931970&amp;rft.btitle=A+Festschrift+for+Herman+Rubin&amp;rft.series=Institute+of+Mathematical+Statistics+Lecture+Notes+-+Monograph+Series&amp;rft.pages=75-80&amp;rft.date=2004&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.114.632%23id-name%3DCiteSeerX&amp;rft.issn=0749-2170&amp;rft_id=info%3Adoi%2F10.1214%2Flnms%2F1196285381&amp;rft.isbn=978-0-940600-61-4&amp;rft.aulast=Jarrow&amp;rft.aufirst=Robert&amp;rft.au=Protter%2C+Philip&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Stirzaker2000-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-Stirzaker2000_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Stirzaker2000_23-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Stirzaker2000_23-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Stirzaker2000_23-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Stirzaker2000_23-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Stirzaker2000_23-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Stirzaker2000_23-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Stirzaker2000_23-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStirzaker2000" class="citation journal cs1">Stirzaker, David (2000). "Advice to Hedgehogs, or, Constants Can Vary". <i>The Mathematical Gazette</i>. <b>84</b> (500): 197–210. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3621649">10.2307/3621649</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0025-5572">0025-5572</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3621649">3621649</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125163415">125163415</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Mathematical+Gazette&amp;rft.atitle=Advice+to+Hedgehogs%2C+or%2C+Constants+Can+Vary&amp;rft.volume=84&amp;rft.issue=500&amp;rft.pages=197-210&amp;rft.date=2000&amp;rft.issn=0025-5572&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125163415%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3621649%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F3621649&amp;rft.aulast=Stirzaker&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDonald_L._SnyderMichael_I._Miller2012" class="citation book cs1">Donald L. Snyder; Michael I. Miller (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=c_3UBwAAQBAJ"><i>Random Point Processes in Time and Space</i></a>. Springer Science &amp; Business Media. p.&#160;32. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-3166-0" title="Special:BookSources/978-1-4612-3166-0"><bdi>978-1-4612-3166-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Point+Processes+in+Time+and+Space&amp;rft.pages=32&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4612-3166-0&amp;rft.au=Donald+L.+Snyder&amp;rft.au=Michael+I.+Miller&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dc_3UBwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GuttorpThorarinsdottir2012-25"><span class="mw-cite-backlink">^ <a href="#cite_ref-GuttorpThorarinsdottir2012_25-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GuttorpThorarinsdottir2012_25-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-GuttorpThorarinsdottir2012_25-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-GuttorpThorarinsdottir2012_25-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuttorpThorarinsdottir2012" class="citation journal cs1">Guttorp, Peter; Thorarinsdottir, Thordis L. (2012). "What Happened to Discrete Chaos, the Quenouille Process, and the Sharp Markov Property? Some History of Stochastic Point Processes". <i>International Statistical Review</i>. <b>80</b> (2): 253–268. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1751-5823.2012.00181.x">10.1111/j.1751-5823.2012.00181.x</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0306-7734">0306-7734</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:80836">80836</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Statistical+Review&amp;rft.atitle=What+Happened+to+Discrete+Chaos%2C+the+Quenouille+Process%2C+and+the+Sharp+Markov+Property%3F+Some+History+of+Stochastic+Point+Processes&amp;rft.volume=80&amp;rft.issue=2&amp;rft.pages=253-268&amp;rft.date=2012&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A80836%23id-name%3DS2CID&amp;rft.issn=0306-7734&amp;rft_id=info%3Adoi%2F10.1111%2Fj.1751-5823.2012.00181.x&amp;rft.aulast=Guttorp&amp;rft.aufirst=Peter&amp;rft.au=Thorarinsdottir%2C+Thordis+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GusakKukush2010page21-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-GusakKukush2010page21_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGusakKukushKulikMishura2010" class="citation book cs1">Gusak, Dmytro; Kukush, Alexander; Kulik, Alexey; <a href="/wiki/Yuliya_Mishura" title="Yuliya Mishura">Mishura, Yuliya</a>; Pilipenko, Andrey (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=8Nzn51YTbX4C"><i>Theory of Stochastic Processes: With Applications to Financial Mathematics and Risk Theory</i></a>. Springer Science &amp; Business Media. p.&#160;21. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-87862-1" title="Special:BookSources/978-0-387-87862-1"><bdi>978-0-387-87862-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+Stochastic+Processes%3A+With+Applications+to+Financial+Mathematics+and+Risk+Theory&amp;rft.pages=21&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2010&amp;rft.isbn=978-0-387-87862-1&amp;rft.aulast=Gusak&amp;rft.aufirst=Dmytro&amp;rft.au=Kukush%2C+Alexander&amp;rft.au=Kulik%2C+Alexey&amp;rft.au=Mishura%2C+Yuliya&amp;rft.au=Pilipenko%2C+Andrey&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8Nzn51YTbX4C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Skorokhod2005page42-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-Skorokhod2005page42_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValeriy_Skorokhod2005" class="citation book cs1">Valeriy Skorokhod (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dQkYMjRK3fYC"><i>Basic Principles and Applications of Probability Theory</i></a>. Springer Science &amp; Business Media. p.&#160;42. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-26312-8" title="Special:BookSources/978-3-540-26312-8"><bdi>978-3-540-26312-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Basic+Principles+and+Applications+of+Probability+Theory&amp;rft.pages=42&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2005&amp;rft.isbn=978-3-540-26312-8&amp;rft.au=Valeriy+Skorokhod&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdQkYMjRK3fYC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Kallenberg2002page24-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kallenberg2002page24_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kallenberg2002page24_28-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Kallenberg2002page24_28-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Kallenberg2002page24_28-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Kallenberg2002page24_28-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Kallenberg2002page24_28-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOlav_Kallenberg2002" class="citation book cs1">Olav Kallenberg (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=L6fhXh13OyMC"><i>Foundations of Modern Probability</i></a>. Springer Science &amp; Business Media. pp.&#160;24–25. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-95313-7" title="Special:BookSources/978-0-387-95313-7"><bdi>978-0-387-95313-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Modern+Probability&amp;rft.pages=24-25&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2002&amp;rft.isbn=978-0-387-95313-7&amp;rft.au=Olav+Kallenberg&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DL6fhXh13OyMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Lamperti1977page1-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lamperti1977page1_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lamperti1977page1_29-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Lamperti1977page1_29-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Lamperti1977page1_29-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Lamperti1977page1_29-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Lamperti1977page1_29-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Lamperti1977page1_29-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Lamperti1977page1_29-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Lamperti1977page1_29-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Lamperti1977page1_29-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Lamperti1977page1_29-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Lamperti1977page1_29-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-Lamperti1977page1_29-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-Lamperti1977page1_29-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-Lamperti1977page1_29-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-Lamperti1977page1_29-15"><sup><i><b>p</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_Lamperti1977" class="citation book cs1">John Lamperti (1977). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Pd4cvgAACAAJ"><i>Stochastic processes: a survey of the mathematical theory</i></a>. Springer-Verlag. pp.&#160;1–2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-90275-1" title="Special:BookSources/978-3-540-90275-1"><bdi>978-3-540-90275-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+processes%3A+a+survey+of+the+mathematical+theory&amp;rft.pages=1-2&amp;rft.pub=Springer-Verlag&amp;rft.date=1977&amp;rft.isbn=978-3-540-90275-1&amp;rft.au=John+Lamperti&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DPd4cvgAACAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-ChaumontYor2012-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-ChaumontYor2012_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ChaumontYor2012_30-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-ChaumontYor2012_30-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-ChaumontYor2012_30-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLoïc_ChaumontMarc_Yor2012" class="citation book cs1">Loïc Chaumont; Marc Yor (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1dcqV9mtQloC&amp;pg=PR4"><i>Exercises in Probability: A Guided Tour from Measure Theory to Random Processes, Via Conditioning</i></a>. Cambridge University Press. p.&#160;175. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-60655-5" title="Special:BookSources/978-1-107-60655-5"><bdi>978-1-107-60655-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Exercises+in+Probability%3A+A+Guided+Tour+from+Measure+Theory+to+Random+Processes%2C+Via+Conditioning&amp;rft.pages=175&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2012&amp;rft.isbn=978-1-107-60655-5&amp;rft.au=Lo%C3%AFc+Chaumont&amp;rft.au=Marc+Yor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1dcqV9mtQloC%26pg%3DPR4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-AdlerTaylor2009page7-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-AdlerTaylor2009page7_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-AdlerTaylor2009page7_31-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-AdlerTaylor2009page7_31-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-AdlerTaylor2009page7_31-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-AdlerTaylor2009page7_31-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-AdlerTaylor2009page7_31-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-AdlerTaylor2009page7_31-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-AdlerTaylor2009page7_31-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobert_J._AdlerJonathan_E._Taylor2009" class="citation book cs1">Robert J. Adler; Jonathan E. Taylor (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=R5BGvQ3ejloC"><i>Random Fields and Geometry</i></a>. Springer Science &amp; Business Media. pp.&#160;7–8. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-48116-6" title="Special:BookSources/978-0-387-48116-6"><bdi>978-0-387-48116-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Fields+and+Geometry&amp;rft.pages=7-8&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2009&amp;rft.isbn=978-0-387-48116-6&amp;rft.au=Robert+J.+Adler&amp;rft.au=Jonathan+E.+Taylor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DR5BGvQ3ejloC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-LawlerLimic2010-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-LawlerLimic2010_32-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGregory_F._LawlerVlada_Limic2010" class="citation book cs1">Gregory F. Lawler; Vlada Limic (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=UBQdwAZDeOEC"><i>Random Walk: A Modern Introduction</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-139-48876-1" title="Special:BookSources/978-1-139-48876-1"><bdi>978-1-139-48876-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Walk%3A+A+Modern+Introduction&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft.isbn=978-1-139-48876-1&amp;rft.au=Gregory+F.+Lawler&amp;rft.au=Vlada+Limic&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DUBQdwAZDeOEC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Williams1991-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-Williams1991_33-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Williams1991" class="citation book cs1">David Williams (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=e9saZ0YSi-AC"><i>Probability with Martingales</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-40605-5" title="Special:BookSources/978-0-521-40605-5"><bdi>978-0-521-40605-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+with+Martingales&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1991&amp;rft.isbn=978-0-521-40605-5&amp;rft.au=David+Williams&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3De9saZ0YSi-AC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-RogersWilliams2000-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-RogersWilliams2000_34-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFL._C._G._RogersDavid_Williams2000" class="citation book cs1">L. C. G. Rogers; David Williams (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=W0ydAgAAQBAJ&amp;pg=PA1"><i>Diffusions, Markov Processes, and Martingales: Volume 1, Foundations</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-71749-7" title="Special:BookSources/978-1-107-71749-7"><bdi>978-1-107-71749-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Diffusions%2C+Markov+Processes%2C+and+Martingales%3A+Volume+1%2C+Foundations&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2000&amp;rft.isbn=978-1-107-71749-7&amp;rft.au=L.+C.+G.+Rogers&amp;rft.au=David+Williams&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DW0ydAgAAQBAJ%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-ApplebaumBook2004-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-ApplebaumBook2004_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Applebaum2004" class="citation book cs1">David Applebaum (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=q7eDUjdJxIkC"><i>Lévy Processes and Stochastic Calculus</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-83263-2" title="Special:BookSources/978-0-521-83263-2"><bdi>978-0-521-83263-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=L%C3%A9vy+Processes+and+Stochastic+Calculus&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2004&amp;rft.isbn=978-0-521-83263-2&amp;rft.au=David+Applebaum&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dq7eDUjdJxIkC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMikhail_Lifshits2012" class="citation book cs1">Mikhail Lifshits (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=03m2UxI-UYMC"><i>Lectures on Gaussian Processes</i></a>. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-642-24939-6" title="Special:BookSources/978-3-642-24939-6"><bdi>978-3-642-24939-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lectures+on+Gaussian+Processes&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-3-642-24939-6&amp;rft.au=Mikhail+Lifshits&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D03m2UxI-UYMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Adler2010-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-Adler2010_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobert_J._Adler2010" class="citation book cs1">Robert J. Adler (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ryejJmJAj28C&amp;pg=PA1"><i>The Geometry of Random Fields</i></a>. SIAM. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-89871-693-1" title="Special:BookSources/978-0-89871-693-1"><bdi>978-0-89871-693-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Geometry+of+Random+Fields&amp;rft.pub=SIAM&amp;rft.date=2010&amp;rft.isbn=978-0-89871-693-1&amp;rft.au=Robert+J.+Adler&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DryejJmJAj28C%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KarlinTaylor2012-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-KarlinTaylor2012_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamuel_KarlinHoward_E._Taylor2012" class="citation book cs1">Samuel Karlin; Howard E. Taylor (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dSDxjX9nmmMC"><i>A First Course in Stochastic Processes</i></a>. Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-057041-9" title="Special:BookSources/978-0-08-057041-9"><bdi>978-0-08-057041-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+Stochastic+Processes&amp;rft.pub=Academic+Press&amp;rft.date=2012&amp;rft.isbn=978-0-08-057041-9&amp;rft.au=Samuel+Karlin&amp;rft.au=Howard+E.+Taylor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdSDxjX9nmmMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Hajek2015-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hajek2015_39-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBruce_Hajek2015" class="citation book cs1">Bruce Hajek (2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Owy0BgAAQBAJ"><i>Random Processes for Engineers</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-316-24124-0" title="Special:BookSources/978-1-316-24124-0"><bdi>978-1-316-24124-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Processes+for+Engineers&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2015&amp;rft.isbn=978-1-316-24124-0&amp;rft.au=Bruce+Hajek&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOwy0BgAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-LatoucheRamaswami1999-40"><span class="mw-cite-backlink">^ <a href="#cite_ref-LatoucheRamaswami1999_40-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LatoucheRamaswami1999_40-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFG._LatoucheV._Ramaswami1999" class="citation book cs1">G. Latouche; V. Ramaswami (1999). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Kan2ki8jqzgC"><i>Introduction to Matrix Analytic Methods in Stochastic Modeling</i></a>. SIAM. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-89871-425-8" title="Special:BookSources/978-0-89871-425-8"><bdi>978-0-89871-425-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Matrix+Analytic+Methods+in+Stochastic+Modeling&amp;rft.pub=SIAM&amp;rft.date=1999&amp;rft.isbn=978-0-89871-425-8&amp;rft.au=G.+Latouche&amp;rft.au=V.+Ramaswami&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DKan2ki8jqzgC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-DaleyVere-Jones2007-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-DaleyVere-Jones2007_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD.J._DaleyDavid_Vere-Jones2007" class="citation book cs1">D.J. Daley; David Vere-Jones (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nPENXKw5kwcC"><i>An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure</i></a>. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-21337-8" title="Special:BookSources/978-0-387-21337-8"><bdi>978-0-387-21337-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+Theory+of+Point+Processes%3A+Volume+II%3A+General+Theory+and+Structure&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2007&amp;rft.isbn=978-0-387-21337-8&amp;rft.au=D.J.+Daley&amp;rft.au=David+Vere-Jones&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DnPENXKw5kwcC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Billingsley2008-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-Billingsley2008_42-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPatrick_Billingsley2008" class="citation book cs1">Patrick Billingsley (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QyXqOXyxEeIC"><i>Probability and Measure</i></a>. Wiley India Pvt. Limited. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-81-265-1771-8" title="Special:BookSources/978-81-265-1771-8"><bdi>978-81-265-1771-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Measure&amp;rft.pub=Wiley+India+Pvt.+Limited&amp;rft.date=2008&amp;rft.isbn=978-81-265-1771-8&amp;rft.au=Patrick+Billingsley&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQyXqOXyxEeIC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Brémaud2014-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-Brémaud2014_43-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPierre_Brémaud2014" class="citation book cs1">Pierre Brémaud (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dP2JBAAAQBAJ&amp;pg=PA1"><i>Fourier Analysis and Stochastic Processes</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-09590-5" title="Special:BookSources/978-3-319-09590-5"><bdi>978-3-319-09590-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Analysis+and+Stochastic+Processes&amp;rft.pub=Springer&amp;rft.date=2014&amp;rft.isbn=978-3-319-09590-5&amp;rft.au=Pierre+Br%C3%A9maud&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdP2JBAAAQBAJ%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Bobrowski2005-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bobrowski2005_44-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdam_Bobrowski2005" class="citation book cs1">Adam Bobrowski (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=q7dR3d5nqaUC"><i>Functional Analysis for Probability and Stochastic Processes: An Introduction</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-83166-6" title="Special:BookSources/978-0-521-83166-6"><bdi>978-0-521-83166-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Functional+Analysis+for+Probability+and+Stochastic+Processes%3A+An+Introduction&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2005&amp;rft.isbn=978-0-521-83166-6&amp;rft.au=Adam+Bobrowski&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dq7dR3d5nqaUC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Applebaum2004-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-Applebaum2004_45-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApplebaum2004" class="citation journal cs1">Applebaum, David (2004). "Lévy processes: From probability to finance and quantum groups". <i>Notices of the AMS</i>. <b>51</b> (11): 1336–1347.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+AMS&amp;rft.atitle=L%C3%A9vy+processes%3A+From+probability+to+finance+and+quantum+groups&amp;rft.volume=51&amp;rft.issue=11&amp;rft.pages=1336-1347&amp;rft.date=2004&amp;rft.aulast=Applebaum&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-BlathImkeller2011-46"><span class="mw-cite-backlink">^ <a href="#cite_ref-BlathImkeller2011_46-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BlathImkeller2011_46-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJochen_BlathPeter_ImkellerSylvie_Roelly2011" class="citation book cs1">Jochen Blath; Peter Imkeller; <a href="/wiki/Sylvie_Roelly" title="Sylvie Roelly">Sylvie Roelly</a> (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CyK6KAjwdYkC"><i>Surveys in Stochastic Processes</i></a>. European Mathematical Society. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-03719-072-2" title="Special:BookSources/978-3-03719-072-2"><bdi>978-3-03719-072-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Surveys+in+Stochastic+Processes&amp;rft.pub=European+Mathematical+Society&amp;rft.date=2011&amp;rft.isbn=978-3-03719-072-2&amp;rft.au=Jochen+Blath&amp;rft.au=Peter+Imkeller&amp;rft.au=Sylvie+Roelly&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCyK6KAjwdYkC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Talagrand2014-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-Talagrand2014_47-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMichel_Talagrand2014" class="citation book cs1">Michel Talagrand (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=tfa5BAAAQBAJ&amp;pg=PR4"><i>Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems</i></a>. Springer Science &amp; Business Media. pp.&#160;4–. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-642-54075-2" title="Special:BookSources/978-3-642-54075-2"><bdi>978-3-642-54075-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Upper+and+Lower+Bounds+for+Stochastic+Processes%3A+Modern+Methods+and+Classical+Problems&amp;rft.pages=4-&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2014&amp;rft.isbn=978-3-642-54075-2&amp;rft.au=Michel+Talagrand&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dtfa5BAAAQBAJ%26pg%3DPR4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Bressloff2014VII-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bressloff2014VII_48-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPaul_C._Bressloff2014" class="citation book cs1"><a href="/w/index.php?title=Paul_C._Bressloff&amp;action=edit&amp;redlink=1" class="new" title="Paul C. Bressloff (page does not exist)">Paul C. Bressloff</a> (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=SwZYBAAAQBAJ&amp;pg=PA1"><i>Stochastic Processes in Cell Biology</i></a>. Springer. pp.&#160;vii–ix. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-08488-6" title="Special:BookSources/978-3-319-08488-6"><bdi>978-3-319-08488-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Processes+in+Cell+Biology&amp;rft.pages=vii-ix&amp;rft.pub=Springer&amp;rft.date=2014&amp;rft.isbn=978-3-319-08488-6&amp;rft.au=Paul+C.+Bressloff&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSwZYBAAAQBAJ%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KarlinTaylor2012page27-49"><span class="mw-cite-backlink">^ <a href="#cite_ref-KarlinTaylor2012page27_49-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KarlinTaylor2012page27_49-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-KarlinTaylor2012page27_49-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-KarlinTaylor2012page27_49-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamuel_KarlinHoward_E._Taylor2012" class="citation book cs1">Samuel Karlin; Howard E. Taylor (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dSDxjX9nmmMC"><i>A First Course in Stochastic Processes</i></a>. Academic Press. p.&#160;27. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-057041-9" title="Special:BookSources/978-0-08-057041-9"><bdi>978-0-08-057041-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+Stochastic+Processes&amp;rft.pages=27&amp;rft.pub=Academic+Press&amp;rft.date=2012&amp;rft.isbn=978-0-08-057041-9&amp;rft.au=Samuel+Karlin&amp;rft.au=Howard+E.+Taylor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdSDxjX9nmmMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Applebaum2004page1337-50"><span class="mw-cite-backlink">^ <a href="#cite_ref-Applebaum2004page1337_50-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Applebaum2004page1337_50-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Applebaum2004page1337_50-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Applebaum2004page1337_50-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Applebaum2004page1337_50-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Applebaum2004page1337_50-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Applebaum2004page1337_50-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Applebaum2004page1337_50-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Applebaum2004page1337_50-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Applebaum2004page1337_50-9"><sup><i><b>j</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApplebaum2004" class="citation journal cs1">Applebaum, David (2004). "Lévy processes: From probability to finance and quantum groups". <i>Notices of the AMS</i>. <b>51</b> (11): 1337.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+AMS&amp;rft.atitle=L%C3%A9vy+processes%3A+From+probability+to+finance+and+quantum+groups&amp;rft.volume=51&amp;rft.issue=11&amp;rft.pages=1337&amp;rft.date=2004&amp;rft.aulast=Applebaum&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-RogersWilliams2000page121b-51"><span class="mw-cite-backlink">^ <a href="#cite_ref-RogersWilliams2000page121b_51-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-RogersWilliams2000page121b_51-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFL._C._G._RogersDavid_Williams2000" class="citation book cs1">L. C. G. Rogers; David Williams (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=W0ydAgAAQBAJ&amp;pg=PA1"><i>Diffusions, Markov Processes, and Martingales: Volume 1, Foundations</i></a>. Cambridge University Press. pp.&#160;121–124. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-71749-7" title="Special:BookSources/978-1-107-71749-7"><bdi>978-1-107-71749-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Diffusions%2C+Markov+Processes%2C+and+Martingales%3A+Volume+1%2C+Foundations&amp;rft.pages=121-124&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2000&amp;rft.isbn=978-1-107-71749-7&amp;rft.au=L.+C.+G.+Rogers&amp;rft.au=David+Williams&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DW0ydAgAAQBAJ%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Florescu2014page294-52"><span class="mw-cite-backlink">^ <a href="#cite_ref-Florescu2014page294_52-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Florescu2014page294_52-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Florescu2014page294_52-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Florescu2014page294_52-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Florescu2014page294_52-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Florescu2014page294_52-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIonut_Florescu2014" class="citation book cs1">Ionut Florescu (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Z5xEBQAAQBAJ&amp;pg=PR22"><i>Probability and Stochastic Processes</i></a>. John Wiley &amp; Sons. pp.&#160;294, 295. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-59320-2" title="Special:BookSources/978-1-118-59320-2"><bdi>978-1-118-59320-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Stochastic+Processes&amp;rft.pages=294%2C+295&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2014&amp;rft.isbn=978-1-118-59320-2&amp;rft.au=Ionut+Florescu&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZ5xEBQAAQBAJ%26pg%3DPR22&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KarlinTaylor2012page26-53"><span class="mw-cite-backlink">^ <a href="#cite_ref-KarlinTaylor2012page26_53-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KarlinTaylor2012page26_53-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamuel_KarlinHoward_E._Taylor2012" class="citation book cs1">Samuel Karlin; Howard E. Taylor (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dSDxjX9nmmMC"><i>A First Course in Stochastic Processes</i></a>. Academic Press. p.&#160;26. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-057041-9" title="Special:BookSources/978-0-08-057041-9"><bdi>978-0-08-057041-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+Stochastic+Processes&amp;rft.pages=26&amp;rft.pub=Academic+Press&amp;rft.date=2012&amp;rft.isbn=978-0-08-057041-9&amp;rft.au=Samuel+Karlin&amp;rft.au=Howard+E.+Taylor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdSDxjX9nmmMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDonald_L._SnyderMichael_I._Miller2012" class="citation book cs1">Donald L. Snyder; Michael I. Miller (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=c_3UBwAAQBAJ"><i>Random Point Processes in Time and Space</i></a>. Springer Science &amp; Business Media. pp.&#160;24, 25. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-3166-0" title="Special:BookSources/978-1-4612-3166-0"><bdi>978-1-4612-3166-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Point+Processes+in+Time+and+Space&amp;rft.pages=24%2C+25&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4612-3166-0&amp;rft.au=Donald+L.+Snyder&amp;rft.au=Michael+I.+Miller&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dc_3UBwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Billingsley2008page482-55"><span class="mw-cite-backlink">^ <a href="#cite_ref-Billingsley2008page482_55-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Billingsley2008page482_55-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPatrick_Billingsley2008" class="citation book cs1">Patrick Billingsley (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QyXqOXyxEeIC"><i>Probability and Measure</i></a>. Wiley India Pvt. Limited. p.&#160;482. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-81-265-1771-8" title="Special:BookSources/978-81-265-1771-8"><bdi>978-81-265-1771-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Measure&amp;rft.pages=482&amp;rft.pub=Wiley+India+Pvt.+Limited&amp;rft.date=2008&amp;rft.isbn=978-81-265-1771-8&amp;rft.au=Patrick+Billingsley&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQyXqOXyxEeIC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Borovkov2013page527-56"><span class="mw-cite-backlink">^ <a href="#cite_ref-Borovkov2013page527_56-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Borovkov2013page527_56-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlexander_A._Borovkov2013" class="citation book cs1">Alexander A. Borovkov (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=hRk_AAAAQBAJ"><i>Probability Theory</i></a>. Springer Science &amp; Business Media. p.&#160;527. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4471-5201-9" title="Special:BookSources/978-1-4471-5201-9"><bdi>978-1-4471-5201-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+Theory&amp;rft.pages=527&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-1-4471-5201-9&amp;rft.au=Alexander+A.+Borovkov&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DhRk_AAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Brémaud2014page120-57"><span class="mw-cite-backlink">^ <a href="#cite_ref-Brémaud2014page120_57-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Brémaud2014page120_57-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Brémaud2014page120_57-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPierre_Brémaud2014" class="citation book cs1">Pierre Brémaud (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dP2JBAAAQBAJ&amp;pg=PA1"><i>Fourier Analysis and Stochastic Processes</i></a>. Springer. p.&#160;120. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-09590-5" title="Special:BookSources/978-3-319-09590-5"><bdi>978-3-319-09590-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Analysis+and+Stochastic+Processes&amp;rft.pages=120&amp;rft.pub=Springer&amp;rft.date=2014&amp;rft.isbn=978-3-319-09590-5&amp;rft.au=Pierre+Br%C3%A9maud&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdP2JBAAAQBAJ%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Rosenthal2006page177-58"><span class="mw-cite-backlink">^ <a href="#cite_ref-Rosenthal2006page177_58-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Rosenthal2006page177_58-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Rosenthal2006page177_58-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Rosenthal2006page177_58-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Rosenthal2006page177_58-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJeffrey_S_Rosenthal2006" class="citation book cs1">Jeffrey S Rosenthal (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=am1IDQAAQBAJ"><i>A First Look at Rigorous Probability Theory</i></a>. World Scientific Publishing Co Inc. pp.&#160;177–178. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-310-165-4" title="Special:BookSources/978-981-310-165-4"><bdi>978-981-310-165-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Look+at+Rigorous+Probability+Theory&amp;rft.pages=177-178&amp;rft.pub=World+Scientific+Publishing+Co+Inc&amp;rft.date=2006&amp;rft.isbn=978-981-310-165-4&amp;rft.au=Jeffrey+S+Rosenthal&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dam1IDQAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KloedenPlaten2013page63-59"><span class="mw-cite-backlink">^ <a href="#cite_ref-KloedenPlaten2013page63_59-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KloedenPlaten2013page63_59-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeter_E._KloedenEckhard_Platen2013" class="citation book cs1">Peter E. Kloeden; Eckhard Platen (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=r9r6CAAAQBAJ"><i>Numerical Solution of Stochastic Differential Equations</i></a>. Springer Science &amp; Business Media. p.&#160;63. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-662-12616-5" title="Special:BookSources/978-3-662-12616-5"><bdi>978-3-662-12616-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Numerical+Solution+of+Stochastic+Differential+Equations&amp;rft.pages=63&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-3-662-12616-5&amp;rft.au=Peter+E.+Kloeden&amp;rft.au=Eckhard+Platen&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dr9r6CAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Khoshnevisan2006page153-60"><span class="mw-cite-backlink">^ <a href="#cite_ref-Khoshnevisan2006page153_60-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Khoshnevisan2006page153_60-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Khoshnevisan2006page153_60-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavar_Khoshnevisan2006" class="citation book cs1"><a href="/wiki/Davar_Khoshnevisan" title="Davar Khoshnevisan">Davar Khoshnevisan</a> (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XADpBwAAQBAJ"><i>Multiparameter Processes: An Introduction to Random Fields</i></a>. Springer Science &amp; Business Media. pp.&#160;153–155. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-21631-7" title="Special:BookSources/978-0-387-21631-7"><bdi>978-0-387-21631-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Multiparameter+Processes%3A+An+Introduction+to+Random+Fields&amp;rft.pages=153-155&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-21631-7&amp;rft.au=Davar+Khoshnevisan&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXADpBwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-OxfordStochastic-61"><span class="mw-cite-backlink">^ <a href="#cite_ref-OxfordStochastic_61-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-OxfordStochastic_61-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReference-OED-Stochastic" class="citation encyclopaedia cs1"><span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="https://www.oed.com/search/dictionary/?q=Stochastic">"Stochastic"</a></span>. <i><a href="/wiki/Oxford_English_Dictionary" title="Oxford English Dictionary">Oxford English Dictionary</a></i> (Online&#160;ed.). <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Stochastic&amp;rft.btitle=Oxford+English+Dictionary&amp;rft.edition=Online&amp;rft.pub=Oxford+University+Press&amp;rft_id=https%3A%2F%2Fwww.oed.com%2Fsearch%2Fdictionary%2F%3Fq%3DStochastic&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span>&#32;<span style="font-size:0.95em; font-size:95%; color: var( --color-subtle, #555 )">(Subscription or <a rel="nofollow" class="external text" href="https://www.oed.com/public/login/loggingin#withyourlibrary">participating institution membership</a> required.)</span></span> </li> <li id="cite_note-Sheĭnin2006page5-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sheĭnin2006page5_62-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO._B._Sheĭnin2006" class="citation book cs1">O. B. Sheĭnin (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XqMZAQAAIAAJ"><i>Theory of probability and statistics as exemplified in short dictums</i></a>. NG Verlag. p.&#160;5. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-938417-40-9" title="Special:BookSources/978-3-938417-40-9"><bdi>978-3-938417-40-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+probability+and+statistics+as+exemplified+in+short+dictums&amp;rft.pages=5&amp;rft.pub=NG+Verlag&amp;rft.date=2006&amp;rft.isbn=978-3-938417-40-9&amp;rft.au=O.+B.+She%C4%ADnin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXqMZAQAAIAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-SheyninStrecker2011page136-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-SheyninStrecker2011page136_63-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOscar_SheyninHeinrich_Strecker2011" class="citation book cs1">Oscar Sheynin; Heinrich Strecker (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1EJZqFIGxBIC&amp;pg=PA9"><i>Alexandr A. Chuprov: Life, Work, Correspondence</i></a>. V&amp;R unipress GmbH. p.&#160;136. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-89971-812-6" title="Special:BookSources/978-3-89971-812-6"><bdi>978-3-89971-812-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Alexandr+A.+Chuprov%3A+Life%2C+Work%2C+Correspondence&amp;rft.pages=136&amp;rft.pub=V%26R+unipress+GmbH&amp;rft.date=2011&amp;rft.isbn=978-3-89971-812-6&amp;rft.au=Oscar+Sheynin&amp;rft.au=Heinrich+Strecker&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1EJZqFIGxBIC%26pg%3DPA9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Doob1934-64"><span class="mw-cite-backlink">^ <a href="#cite_ref-Doob1934_64-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Doob1934_64-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Doob1934_64-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Doob1934_64-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDoob1934" class="citation journal cs1">Doob, Joseph (1934). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076423">"Stochastic Processes and Statistics"</a>. <i>Proceedings of the National Academy of Sciences of the United States of America</i>. <b>20</b> (6): 376–379. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1934PNAS...20..376D">1934PNAS...20..376D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.20.6.376">10.1073/pnas.20.6.376</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076423">1076423</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16587907">16587907</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+of+the+United+States+of+America&amp;rft.atitle=Stochastic+Processes+and+Statistics&amp;rft.volume=20&amp;rft.issue=6&amp;rft.pages=376-379&amp;rft.date=1934&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1076423%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F16587907&amp;rft_id=info%3Adoi%2F10.1073%2Fpnas.20.6.376&amp;rft_id=info%3Abibcode%2F1934PNAS...20..376D&amp;rft.aulast=Doob&amp;rft.aufirst=Joseph&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1076423&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Khintchine1934-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-Khintchine1934_65-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKhintchine1934" class="citation journal cs1">Khintchine, A. (1934). "Korrelationstheorie der stationeren stochastischen Prozesse". <i>Mathematische Annalen</i>. <b>109</b> (1): 604–615. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01449156">10.1007/BF01449156</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0025-5831">0025-5831</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122842868">122842868</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematische+Annalen&amp;rft.atitle=Korrelationstheorie+der+stationeren+stochastischen+Prozesse&amp;rft.volume=109&amp;rft.issue=1&amp;rft.pages=604-615&amp;rft.date=1934&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122842868%23id-name%3DS2CID&amp;rft.issn=0025-5831&amp;rft_id=info%3Adoi%2F10.1007%2FBF01449156&amp;rft.aulast=Khintchine&amp;rft.aufirst=A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Kolmogoroff1931page1-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kolmogoroff1931page1_66-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKolmogoroff1931" class="citation journal cs1">Kolmogoroff, A. (1931). "Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung". <i>Mathematische Annalen</i>. <b>104</b> (1): 1. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01457949">10.1007/BF01457949</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0025-5831">0025-5831</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119439925">119439925</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematische+Annalen&amp;rft.atitle=%C3%9Cber+die+analytischen+Methoden+in+der+Wahrscheinlichkeitsrechnung&amp;rft.volume=104&amp;rft.issue=1&amp;rft.pages=1&amp;rft.date=1931&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119439925%23id-name%3DS2CID&amp;rft.issn=0025-5831&amp;rft_id=info%3Adoi%2F10.1007%2FBF01457949&amp;rft.aulast=Kolmogoroff&amp;rft.aufirst=A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-OxfordRandom-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-OxfordRandom_67-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReference-OED-Random" class="citation encyclopaedia cs1"><span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="https://www.oed.com/search/dictionary/?q=Random">"Random"</a></span>. <i><a href="/wiki/Oxford_English_Dictionary" title="Oxford English Dictionary">Oxford English Dictionary</a></i> (Online&#160;ed.). <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Random&amp;rft.btitle=Oxford+English+Dictionary&amp;rft.edition=Online&amp;rft.pub=Oxford+University+Press&amp;rft_id=https%3A%2F%2Fwww.oed.com%2Fsearch%2Fdictionary%2F%3Fq%3DRandom&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span>&#32;<span style="font-size:0.95em; font-size:95%; color: var( --color-subtle, #555 )">(Subscription or <a rel="nofollow" class="external text" href="https://www.oed.com/public/login/loggingin#withyourlibrary">participating institution membership</a> required.)</span></span> </li> <li id="cite_note-FristedtGray2013page580-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-FristedtGray2013page580_68-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBert_E._FristedtLawrence_F._Gray2013" class="citation book cs1">Bert E. Fristedt; Lawrence F. Gray (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9xT3BwAAQBAJ&amp;pg=PA716"><i>A Modern Approach to Probability Theory</i></a>. Springer Science &amp; Business Media. p.&#160;580. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4899-2837-5" title="Special:BookSources/978-1-4899-2837-5"><bdi>978-1-4899-2837-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Modern+Approach+to+Probability+Theory&amp;rft.pages=580&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-1-4899-2837-5&amp;rft.au=Bert+E.+Fristedt&amp;rft.au=Lawrence+F.+Gray&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9xT3BwAAQBAJ%26pg%3DPA716&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-RogersWilliams2000page121-69"><span class="mw-cite-backlink">^ <a href="#cite_ref-RogersWilliams2000page121_69-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-RogersWilliams2000page121_69-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-RogersWilliams2000page121_69-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-RogersWilliams2000page121_69-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFL._C._G._RogersDavid_Williams2000" class="citation book cs1">L. C. G. Rogers; David Williams (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=W0ydAgAAQBAJ&amp;pg=PA1"><i>Diffusions, Markov Processes, and Martingales: Volume 1, Foundations</i></a>. Cambridge University Press. pp.&#160;121, 122. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-71749-7" title="Special:BookSources/978-1-107-71749-7"><bdi>978-1-107-71749-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Diffusions%2C+Markov+Processes%2C+and+Martingales%3A+Volume+1%2C+Foundations&amp;rft.pages=121%2C+122&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2000&amp;rft.isbn=978-1-107-71749-7&amp;rft.au=L.+C.+G.+Rogers&amp;rft.au=David+Williams&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DW0ydAgAAQBAJ%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Asmussen2003page408-70"><span class="mw-cite-backlink">^ <a href="#cite_ref-Asmussen2003page408_70-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Asmussen2003page408_70-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Asmussen2003page408_70-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Asmussen2003page408_70-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Asmussen2003page408_70-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSøren_Asmussen2003" class="citation book cs1">Søren Asmussen (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=BeYaTxesKy0C"><i>Applied Probability and Queues</i></a>. Springer Science &amp; Business Media. p.&#160;408. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-00211-8" title="Special:BookSources/978-0-387-00211-8"><bdi>978-0-387-00211-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Applied+Probability+and+Queues&amp;rft.pages=408&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2003&amp;rft.isbn=978-0-387-00211-8&amp;rft.au=S%C3%B8ren+Asmussen&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DBeYaTxesKy0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Stirzaker2005page45-71"><span class="mw-cite-backlink">^ <a href="#cite_ref-Stirzaker2005page45_71-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Stirzaker2005page45_71-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Stirzaker2005" class="citation book cs1">David Stirzaker (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0avUelS7e7cC"><i>Stochastic Processes and Models</i></a>. Oxford University Press. p.&#160;45. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-856814-8" title="Special:BookSources/978-0-19-856814-8"><bdi>978-0-19-856814-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Processes+and+Models&amp;rft.pages=45&amp;rft.pub=Oxford+University+Press&amp;rft.date=2005&amp;rft.isbn=978-0-19-856814-8&amp;rft.au=David+Stirzaker&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0avUelS7e7cC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Rosenblatt1962page91-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rosenblatt1962page91_72-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurray_Rosenblatt1962" class="citation book cs1">Murray Rosenblatt (1962). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/randomprocesses00rose_0"><i>Random Processes</i></a></span>. Oxford University Press. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/randomprocesses00rose_0/page/91">91</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Processes&amp;rft.pages=91&amp;rft.pub=Oxford+University+Press&amp;rft.date=1962&amp;rft.au=Murray+Rosenblatt&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Frandomprocesses00rose_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Gubner2006page383-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gubner2006page383_73-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_A._Gubner2006" class="citation book cs1">John A. Gubner (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pa20eZJe4LIC"><i>Probability and Random Processes for Electrical and Computer Engineers</i></a>. Cambridge University Press. p.&#160;383. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-139-45717-0" title="Special:BookSources/978-1-139-45717-0"><bdi>978-1-139-45717-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Random+Processes+for+Electrical+and+Computer+Engineers&amp;rft.pages=383&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2006&amp;rft.isbn=978-1-139-45717-0&amp;rft.au=John+A.+Gubner&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dpa20eZJe4LIC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Ito2006page13-74"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ito2006page13_74-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ito2006page13_74-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKiyosi_Itō2006" class="citation book cs1">Kiyosi Itō (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pY5_DkvI-CcC&amp;pg=PR4"><i>Essentials of Stochastic Processes</i></a>. American Mathematical Soc. p.&#160;13. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-3898-3" title="Special:BookSources/978-0-8218-3898-3"><bdi>978-0-8218-3898-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Essentials+of+Stochastic+Processes&amp;rft.pages=13&amp;rft.pub=American+Mathematical+Soc.&amp;rft.date=2006&amp;rft.isbn=978-0-8218-3898-3&amp;rft.au=Kiyosi+It%C5%8D&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpY5_DkvI-CcC%26pg%3DPR4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Loeve1978-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-Loeve1978_75-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFM._Loève1978" class="citation book cs1">M. Loève (1978). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1y229yBbULIC"><i>Probability Theory II</i></a>. Springer Science &amp; Business Media. p.&#160;163. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-90262-3" title="Special:BookSources/978-0-387-90262-3"><bdi>978-0-387-90262-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+Theory+II&amp;rft.pages=163&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=1978&amp;rft.isbn=978-0-387-90262-3&amp;rft.au=M.+Lo%C3%A8ve&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1y229yBbULIC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Brémaud2014page133-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-Brémaud2014page133_76-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPierre_Brémaud2014" class="citation book cs1">Pierre Brémaud (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dP2JBAAAQBAJ&amp;pg=PA1"><i>Fourier Analysis and Stochastic Processes</i></a>. Springer. p.&#160;133. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-09590-5" title="Special:BookSources/978-3-319-09590-5"><bdi>978-3-319-09590-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Analysis+and+Stochastic+Processes&amp;rft.pages=133&amp;rft.pub=Springer&amp;rft.date=2014&amp;rft.isbn=978-3-319-09590-5&amp;rft.au=Pierre+Br%C3%A9maud&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdP2JBAAAQBAJ%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GusakKukush2010page1-77"><span class="mw-cite-backlink">^ <a href="#cite_ref-GusakKukush2010page1_77-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GusakKukush2010page1_77-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFGusakKukushKulikMishura2010">Gusak et al. (2010)</a>, p. 1</span> </li> <li id="cite_note-Bass2011page1-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bass2011page1_78-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichard_F._Bass2011" class="citation book cs1">Richard F. Bass (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Ll0T7PIkcKMC"><i>Stochastic Processes</i></a>. Cambridge University Press. p.&#160;1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-139-50147-7" title="Special:BookSources/978-1-139-50147-7"><bdi>978-1-139-50147-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Processes&amp;rft.pages=1&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2011&amp;rft.isbn=978-1-139-50147-7&amp;rft.au=Richard+F.+Bass&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLl0T7PIkcKMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Lamperti1977page3-79"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lamperti1977page3_79-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lamperti1977page3_79-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_Lamperti1977" class="citation book cs1">John Lamperti (1977). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Pd4cvgAACAAJ"><i>Stochastic processes: a survey of the mathematical theory</i></a>. Springer-Verlag. p.&#160;3. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-90275-1" title="Special:BookSources/978-3-540-90275-1"><bdi>978-3-540-90275-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+processes%3A+a+survey+of+the+mathematical+theory&amp;rft.pages=3&amp;rft.pub=Springer-Verlag&amp;rft.date=1977&amp;rft.isbn=978-3-540-90275-1&amp;rft.au=John+Lamperti&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DPd4cvgAACAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Klebaner2005page55-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-Klebaner2005page55_80-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFima_C._Klebaner2005" class="citation book cs1">Fima C. Klebaner (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JYzW0uqQxB0C"><i>Introduction to Stochastic Calculus with Applications</i></a>. Imperial College Press. p.&#160;55. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-86094-555-7" title="Special:BookSources/978-1-86094-555-7"><bdi>978-1-86094-555-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Stochastic+Calculus+with+Applications&amp;rft.pages=55&amp;rft.pub=Imperial+College+Press&amp;rft.date=2005&amp;rft.isbn=978-1-86094-555-7&amp;rft.au=Fima+C.+Klebaner&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJYzW0uqQxB0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Florescu2014page293-81"><span class="mw-cite-backlink">^ <a href="#cite_ref-Florescu2014page293_81-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Florescu2014page293_81-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIonut_Florescu2014" class="citation book cs1">Ionut Florescu (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Z5xEBQAAQBAJ&amp;pg=PR22"><i>Probability and Stochastic Processes</i></a>. John Wiley &amp; Sons. p.&#160;293. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-59320-2" title="Special:BookSources/978-1-118-59320-2"><bdi>978-1-118-59320-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Stochastic+Processes&amp;rft.pages=293&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2014&amp;rft.isbn=978-1-118-59320-2&amp;rft.au=Ionut+Florescu&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZ5xEBQAAQBAJ%26pg%3DPR22&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Florescu2014page301-82"><span class="mw-cite-backlink">^ <a href="#cite_ref-Florescu2014page301_82-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Florescu2014page301_82-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFlorescu2014" class="citation book cs1">Florescu, Ionut (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Z5xEBQAAQBAJ&amp;pg=PR22"><i>Probability and Stochastic Processes</i></a>. John Wiley &amp; Sons. p.&#160;301. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-59320-2" title="Special:BookSources/978-1-118-59320-2"><bdi>978-1-118-59320-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Stochastic+Processes&amp;rft.pages=301&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2014&amp;rft.isbn=978-1-118-59320-2&amp;rft.aulast=Florescu&amp;rft.aufirst=Ionut&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZ5xEBQAAQBAJ%26pg%3DPR22&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-BertsekasTsitsiklis2002page273-83"><span class="mw-cite-backlink">^ <a href="#cite_ref-BertsekasTsitsiklis2002page273_83-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BertsekasTsitsiklis2002page273_83-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBertsekasTsitsiklis2002" class="citation book cs1">Bertsekas, Dimitri P.; Tsitsiklis, John N. (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=bcHaAAAAMAAJ"><i>Introduction to Probability</i></a>. Athena Scientific. p.&#160;273. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-886529-40-3" title="Special:BookSources/978-1-886529-40-3"><bdi>978-1-886529-40-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Probability&amp;rft.pages=273&amp;rft.pub=Athena+Scientific&amp;rft.date=2002&amp;rft.isbn=978-1-886529-40-3&amp;rft.aulast=Bertsekas&amp;rft.aufirst=Dimitri+P.&amp;rft.au=Tsitsiklis%2C+John+N.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DbcHaAAAAMAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Ibe2013page11-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ibe2013page11_84-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIbe2013" class="citation book cs1">Ibe, Oliver C. (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=DUqaAAAAQBAJ&amp;pg=PT10"><i>Elements of Random Walk and Diffusion Processes</i></a>. John Wiley &amp; Sons. p.&#160;11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-61793-9" title="Special:BookSources/978-1-118-61793-9"><bdi>978-1-118-61793-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Random+Walk+and+Diffusion+Processes&amp;rft.pages=11&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2013&amp;rft.isbn=978-1-118-61793-9&amp;rft.aulast=Ibe&amp;rft.aufirst=Oliver+C.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DDUqaAAAAQBAJ%26pg%3DPT10&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Klenke2013page347-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-Klenke2013page347_85-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAchim_Klenke2013" class="citation book cs1">Achim Klenke (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=aqURswEACAAJ"><i>Probability Theory: A Comprehensive Course</i></a>. Springer. p.&#160;347. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4471-5362-7" title="Special:BookSources/978-1-4471-5362-7"><bdi>978-1-4471-5362-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+Theory%3A+A+Comprehensive+Course&amp;rft.pages=347&amp;rft.pub=Springer&amp;rft.date=2013&amp;rft.isbn=978-1-4471-5362-7&amp;rft.au=Achim+Klenke&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DaqURswEACAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-LawlerLimic2010page1-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-LawlerLimic2010page1_86-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGregory_F._LawlerVlada_Limic2010" class="citation book cs1">Gregory F. Lawler; Vlada Limic (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=UBQdwAZDeOEC"><i>Random Walk: A Modern Introduction</i></a>. Cambridge University Press. p.&#160;1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-139-48876-1" title="Special:BookSources/978-1-139-48876-1"><bdi>978-1-139-48876-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Walk%3A+A+Modern+Introduction&amp;rft.pages=1&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft.isbn=978-1-139-48876-1&amp;rft.au=Gregory+F.+Lawler&amp;rft.au=Vlada+Limic&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DUBQdwAZDeOEC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Kallenberg2002page136-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kallenberg2002page136_87-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOlav_Kallenberg2002" class="citation book cs1">Olav Kallenberg (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=L6fhXh13OyMC"><i>Foundations of Modern Probability</i></a>. Springer Science &amp; Business Media. p.&#160;136. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-95313-7" title="Special:BookSources/978-0-387-95313-7"><bdi>978-0-387-95313-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Modern+Probability&amp;rft.pages=136&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2002&amp;rft.isbn=978-0-387-95313-7&amp;rft.au=Olav+Kallenberg&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DL6fhXh13OyMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Florescu2014page383-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-Florescu2014page383_88-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIonut_Florescu2014" class="citation book cs1">Ionut Florescu (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Z5xEBQAAQBAJ&amp;pg=PR22"><i>Probability and Stochastic Processes</i></a>. John Wiley &amp; Sons. p.&#160;383. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-59320-2" title="Special:BookSources/978-1-118-59320-2"><bdi>978-1-118-59320-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Stochastic+Processes&amp;rft.pages=383&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2014&amp;rft.isbn=978-1-118-59320-2&amp;rft.au=Ionut+Florescu&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZ5xEBQAAQBAJ%26pg%3DPR22&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Durrett2010page277-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-Durrett2010page277_89-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRick_Durrett2010" class="citation book cs1">Rick Durrett (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=evbGTPhuvSoC"><i>Probability: Theory and Examples</i></a>. Cambridge University Press. p.&#160;277. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-139-49113-6" title="Special:BookSources/978-1-139-49113-6"><bdi>978-1-139-49113-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability%3A+Theory+and+Examples&amp;rft.pages=277&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft.isbn=978-1-139-49113-6&amp;rft.au=Rick+Durrett&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DevbGTPhuvSoC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Weiss2006page1-90"><span class="mw-cite-backlink">^ <a href="#cite_ref-Weiss2006page1_90-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Weiss2006page1_90-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Weiss2006page1_90-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeiss2006" class="citation book cs1">Weiss, George H. (2006). "Random Walks". <i>Encyclopedia of Statistical Sciences</i>. p.&#160;1. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F0471667196.ess2180.pub2">10.1002/0471667196.ess2180.pub2</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0471667193" title="Special:BookSources/978-0471667193"><bdi>978-0471667193</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Random+Walks&amp;rft.btitle=Encyclopedia+of+Statistical+Sciences&amp;rft.pages=1&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1002%2F0471667196.ess2180.pub2&amp;rft.isbn=978-0471667193&amp;rft.aulast=Weiss&amp;rft.aufirst=George+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Spanos1999page454-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-Spanos1999page454_91-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAris_Spanos1999" class="citation book cs1">Aris Spanos (1999). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=G0_HxBubGAwC"><i>Probability Theory and Statistical Inference: Econometric Modeling with Observational Data</i></a>. Cambridge University Press. p.&#160;454. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-42408-0" title="Special:BookSources/978-0-521-42408-0"><bdi>978-0-521-42408-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+Theory+and+Statistical+Inference%3A+Econometric+Modeling+with+Observational+Data&amp;rft.pages=454&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1999&amp;rft.isbn=978-0-521-42408-0&amp;rft.au=Aris+Spanos&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DG0_HxBubGAwC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Klebaner2005page81-92"><span class="mw-cite-backlink">^ <a href="#cite_ref-Klebaner2005page81_92-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Klebaner2005page81_92-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFima_C._Klebaner2005" class="citation book cs1">Fima C. Klebaner (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JYzW0uqQxB0C"><i>Introduction to Stochastic Calculus with Applications</i></a>. Imperial College Press. p.&#160;81. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-86094-555-7" title="Special:BookSources/978-1-86094-555-7"><bdi>978-1-86094-555-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Stochastic+Calculus+with+Applications&amp;rft.pages=81&amp;rft.pub=Imperial+College+Press&amp;rft.date=2005&amp;rft.isbn=978-1-86094-555-7&amp;rft.au=Fima+C.+Klebaner&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJYzW0uqQxB0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Gut2012page88-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gut2012page88_93-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAllan_Gut2012" class="citation book cs1">Allan Gut (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XDFA-n_M5hMC"><i>Probability: A Graduate Course</i></a>. Springer Science &amp; Business Media. p.&#160;88. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4614-4708-5" title="Special:BookSources/978-1-4614-4708-5"><bdi>978-1-4614-4708-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability%3A+A+Graduate+Course&amp;rft.pages=88&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4614-4708-5&amp;rft.au=Allan+Gut&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXDFA-n_M5hMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GrimmettStirzaker2001page71-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-GrimmettStirzaker2001page71_94-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeoffrey_GrimmettDavid_Stirzaker2001" class="citation book cs1">Geoffrey Grimmett; David Stirzaker (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=G3ig-0M4wSIC"><i>Probability and Random Processes</i></a>. OUP Oxford. p.&#160;71. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-857222-0" title="Special:BookSources/978-0-19-857222-0"><bdi>978-0-19-857222-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Random+Processes&amp;rft.pages=71&amp;rft.pub=OUP+Oxford&amp;rft.date=2001&amp;rft.isbn=978-0-19-857222-0&amp;rft.au=Geoffrey+Grimmett&amp;rft.au=David+Stirzaker&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DG3ig-0M4wSIC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Klebaner2005page56-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-Klebaner2005page56_95-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFima_C._Klebaner2005" class="citation book cs1">Fima C. Klebaner (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JYzW0uqQxB0C"><i>Introduction to Stochastic Calculus with Applications</i></a>. Imperial College Press. p.&#160;56. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-86094-555-7" title="Special:BookSources/978-1-86094-555-7"><bdi>978-1-86094-555-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Stochastic+Calculus+with+Applications&amp;rft.pages=56&amp;rft.pub=Imperial+College+Press&amp;rft.date=2005&amp;rft.isbn=978-1-86094-555-7&amp;rft.au=Fima+C.+Klebaner&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJYzW0uqQxB0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Brush1968page1-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-Brush1968page1_96-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrush1968" class="citation journal cs1">Brush, Stephen G. (1968). "A history of random processes". <i>Archive for History of Exact Sciences</i>. <b>5</b> (1): 1–2. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00328110">10.1007/BF00328110</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-9519">0003-9519</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117623580">117623580</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=A+history+of+random+processes&amp;rft.volume=5&amp;rft.issue=1&amp;rft.pages=1-2&amp;rft.date=1968&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117623580%23id-name%3DS2CID&amp;rft.issn=0003-9519&amp;rft_id=info%3Adoi%2F10.1007%2FBF00328110&amp;rft.aulast=Brush&amp;rft.aufirst=Stephen+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Applebaum2004page1338-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-Applebaum2004page1338_97-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApplebaum2004" class="citation journal cs1">Applebaum, David (2004). "Lévy processes: From probability to finance and quantum groups". <i>Notices of the AMS</i>. <b>51</b> (11): 1338.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+AMS&amp;rft.atitle=L%C3%A9vy+processes%3A+From+probability+to+finance+and+quantum+groups&amp;rft.volume=51&amp;rft.issue=11&amp;rft.pages=1338&amp;rft.date=2004&amp;rft.aulast=Applebaum&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GikhmanSkorokhod1969page21-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-GikhmanSkorokhod1969page21_98-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIosif_Ilyich_GikhmanAnatoly_Vladimirovich_Skorokhod1969" class="citation book cs1">Iosif Ilyich Gikhman; Anatoly Vladimirovich Skorokhod (1969). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yJyLzG7N7r8C&amp;pg=PR2"><i>Introduction to the Theory of Random Processes</i></a>. Courier Corporation. p.&#160;21. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-69387-3" title="Special:BookSources/978-0-486-69387-3"><bdi>978-0-486-69387-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+Theory+of+Random+Processes&amp;rft.pages=21&amp;rft.pub=Courier+Corporation&amp;rft.date=1969&amp;rft.isbn=978-0-486-69387-3&amp;rft.au=Iosif+Ilyich+Gikhman&amp;rft.au=Anatoly+Vladimirovich+Skorokhod&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyJyLzG7N7r8C%26pg%3DPR2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Florescu2014page471-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-Florescu2014page471_99-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIonut_Florescu2014" class="citation book cs1">Ionut Florescu (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Z5xEBQAAQBAJ&amp;pg=PR22"><i>Probability and Stochastic Processes</i></a>. John Wiley &amp; Sons. p.&#160;471. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-59320-2" title="Special:BookSources/978-1-118-59320-2"><bdi>978-1-118-59320-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Stochastic+Processes&amp;rft.pages=471&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2014&amp;rft.isbn=978-1-118-59320-2&amp;rft.au=Ionut+Florescu&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZ5xEBQAAQBAJ%26pg%3DPR22&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KarlinTaylor2012page21-100"><span class="mw-cite-backlink">^ <a href="#cite_ref-KarlinTaylor2012page21_100-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KarlinTaylor2012page21_100-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamuel_KarlinHoward_E._Taylor2012" class="citation book cs1">Samuel Karlin; Howard E. Taylor (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dSDxjX9nmmMC"><i>A First Course in Stochastic Processes</i></a>. Academic Press. pp.&#160;21, 22. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-057041-9" title="Special:BookSources/978-0-08-057041-9"><bdi>978-0-08-057041-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+Stochastic+Processes&amp;rft.pages=21%2C+22&amp;rft.pub=Academic+Press&amp;rft.date=2012&amp;rft.isbn=978-0-08-057041-9&amp;rft.au=Samuel+Karlin&amp;rft.au=Howard+E.+Taylor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdSDxjX9nmmMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KaratzasShreve2014pageVIII-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-KaratzasShreve2014pageVIII_101-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIoannis_KaratzasSteven_Shreve1991" class="citation book cs1">Ioannis Karatzas; Steven Shreve (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=w0SgBQAAQBAJ&amp;pg=PT5"><i>Brownian Motion and Stochastic Calculus</i></a>. Springer. p.&#160;VIII. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-0949-2" title="Special:BookSources/978-1-4612-0949-2"><bdi>978-1-4612-0949-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Brownian+Motion+and+Stochastic+Calculus&amp;rft.pages=VIII&amp;rft.pub=Springer&amp;rft.date=1991&amp;rft.isbn=978-1-4612-0949-2&amp;rft.au=Ioannis+Karatzas&amp;rft.au=Steven+Shreve&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dw0SgBQAAQBAJ%26pg%3DPT5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-RevuzYor2013pageIX-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-RevuzYor2013pageIX_102-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaniel_RevuzMarc_Yor2013" class="citation book cs1"><a href="/wiki/Daniel_Revuz" title="Daniel Revuz">Daniel Revuz</a>; Marc Yor (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OYbnCAAAQBAJ"><i>Continuous Martingales and Brownian Motion</i></a>. Springer Science &amp; Business Media. p.&#160;IX. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-662-06400-9" title="Special:BookSources/978-3-662-06400-9"><bdi>978-3-662-06400-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Continuous+Martingales+and+Brownian+Motion&amp;rft.pages=IX&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-3-662-06400-9&amp;rft.au=Daniel+Revuz&amp;rft.au=Marc+Yor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOYbnCAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Rosenthal2006page186-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rosenthal2006page186_103-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJeffrey_S_Rosenthal2006" class="citation book cs1">Jeffrey S Rosenthal (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=am1IDQAAQBAJ"><i>A First Look at Rigorous Probability Theory</i></a>. World Scientific Publishing Co Inc. p.&#160;186. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-310-165-4" title="Special:BookSources/978-981-310-165-4"><bdi>978-981-310-165-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Look+at+Rigorous+Probability+Theory&amp;rft.pages=186&amp;rft.pub=World+Scientific+Publishing+Co+Inc&amp;rft.date=2006&amp;rft.isbn=978-981-310-165-4&amp;rft.au=Jeffrey+S+Rosenthal&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dam1IDQAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDonald_L._SnyderMichael_I._Miller2012" class="citation book cs1">Donald L. Snyder; Michael I. Miller (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=c_3UBwAAQBAJ"><i>Random Point Processes in Time and Space</i></a>. Springer Science &amp; Business Media. p.&#160;33. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-3166-0" title="Special:BookSources/978-1-4612-3166-0"><bdi>978-1-4612-3166-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Point+Processes+in+Time+and+Space&amp;rft.pages=33&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4612-3166-0&amp;rft.au=Donald+L.+Snyder&amp;rft.au=Michael+I.+Miller&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dc_3UBwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Steele2012page118-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-Steele2012page118_105-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ._Michael_Steele2012" class="citation book cs1">J. Michael Steele (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=fsgkBAAAQBAJ&amp;pg=PR4"><i>Stochastic Calculus and Financial Applications</i></a>. Springer Science &amp; Business Media. p.&#160;118. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4684-9305-4" title="Special:BookSources/978-1-4684-9305-4"><bdi>978-1-4684-9305-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Calculus+and+Financial+Applications&amp;rft.pages=118&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4684-9305-4&amp;rft.au=J.+Michael+Steele&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DfsgkBAAAQBAJ%26pg%3DPR4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-MörtersPeres2010page1-106"><span class="mw-cite-backlink">^ <a href="#cite_ref-MörtersPeres2010page1_106-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-MörtersPeres2010page1_106-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeter_MörtersYuval_Peres2010" class="citation book cs1">Peter Mörters; Yuval Peres (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=e-TbA-dSrzYC"><i>Brownian Motion</i></a>. Cambridge University Press. pp.&#160;1, 3. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-139-48657-6" title="Special:BookSources/978-1-139-48657-6"><bdi>978-1-139-48657-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Brownian+Motion&amp;rft.pages=1%2C+3&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft.isbn=978-1-139-48657-6&amp;rft.au=Peter+M%C3%B6rters&amp;rft.au=Yuval+Peres&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3De-TbA-dSrzYC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KaratzasShreve2014page78-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-KaratzasShreve2014page78_107-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIoannis_KaratzasSteven_Shreve1991" class="citation book cs1">Ioannis Karatzas; Steven Shreve (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=w0SgBQAAQBAJ&amp;pg=PT5"><i>Brownian Motion and Stochastic Calculus</i></a>. Springer. p.&#160;78. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-0949-2" title="Special:BookSources/978-1-4612-0949-2"><bdi>978-1-4612-0949-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Brownian+Motion+and+Stochastic+Calculus&amp;rft.pages=78&amp;rft.pub=Springer&amp;rft.date=1991&amp;rft.isbn=978-1-4612-0949-2&amp;rft.au=Ioannis+Karatzas&amp;rft.au=Steven+Shreve&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dw0SgBQAAQBAJ%26pg%3DPT5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KaratzasShreve2014page61-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-KaratzasShreve2014page61_108-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIoannis_KaratzasSteven_Shreve1991" class="citation book cs1">Ioannis Karatzas; Steven Shreve (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=w0SgBQAAQBAJ&amp;pg=PT5"><i>Brownian Motion and Stochastic Calculus</i></a>. Springer. p.&#160;61. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-0949-2" title="Special:BookSources/978-1-4612-0949-2"><bdi>978-1-4612-0949-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Brownian+Motion+and+Stochastic+Calculus&amp;rft.pages=61&amp;rft.pub=Springer&amp;rft.date=1991&amp;rft.isbn=978-1-4612-0949-2&amp;rft.au=Ioannis+Karatzas&amp;rft.au=Steven+Shreve&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dw0SgBQAAQBAJ%26pg%3DPT5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Shreve2004page93-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-Shreve2004page93_109-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteven_E._Shreve2004" class="citation book cs1">Steven E. Shreve (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=O8kD1NwQBsQC"><i>Stochastic Calculus for Finance II: Continuous-Time Models</i></a>. Springer Science &amp; Business Media. p.&#160;93. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-40101-0" title="Special:BookSources/978-0-387-40101-0"><bdi>978-0-387-40101-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Calculus+for+Finance+II%3A+Continuous-Time+Models&amp;rft.pages=93&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2004&amp;rft.isbn=978-0-387-40101-0&amp;rft.au=Steven+E.+Shreve&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DO8kD1NwQBsQC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Kallenberg2002page225and260-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kallenberg2002page225and260_110-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOlav_Kallenberg2002" class="citation book cs1">Olav Kallenberg (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=L6fhXh13OyMC"><i>Foundations of Modern Probability</i></a>. Springer Science &amp; Business Media. pp.&#160;225, 260. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-95313-7" title="Special:BookSources/978-0-387-95313-7"><bdi>978-0-387-95313-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Modern+Probability&amp;rft.pages=225%2C+260&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2002&amp;rft.isbn=978-0-387-95313-7&amp;rft.au=Olav+Kallenberg&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DL6fhXh13OyMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KaratzasShreve2014page70-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-KaratzasShreve2014page70_111-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIoannis_KaratzasSteven_Shreve1991" class="citation book cs1">Ioannis Karatzas; Steven Shreve (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=w0SgBQAAQBAJ&amp;pg=PT5"><i>Brownian Motion and Stochastic Calculus</i></a>. Springer. p.&#160;70. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-0949-2" title="Special:BookSources/978-1-4612-0949-2"><bdi>978-1-4612-0949-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Brownian+Motion+and+Stochastic+Calculus&amp;rft.pages=70&amp;rft.pub=Springer&amp;rft.date=1991&amp;rft.isbn=978-1-4612-0949-2&amp;rft.au=Ioannis+Karatzas&amp;rft.au=Steven+Shreve&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dw0SgBQAAQBAJ%26pg%3DPT5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-MörtersPeres2010page131-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-MörtersPeres2010page131_112-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeter_MörtersYuval_Peres2010" class="citation book cs1">Peter Mörters; Yuval Peres (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=e-TbA-dSrzYC"><i>Brownian Motion</i></a>. Cambridge University Press. p.&#160;131. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-139-48657-6" title="Special:BookSources/978-1-139-48657-6"><bdi>978-1-139-48657-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Brownian+Motion&amp;rft.pages=131&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft.isbn=978-1-139-48657-6&amp;rft.au=Peter+M%C3%B6rters&amp;rft.au=Yuval+Peres&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3De-TbA-dSrzYC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Klebaner2005-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-Klebaner2005_113-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFima_C._Klebaner2005" class="citation book cs1">Fima C. Klebaner (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JYzW0uqQxB0C"><i>Introduction to Stochastic Calculus with Applications</i></a>. Imperial College Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-86094-555-7" title="Special:BookSources/978-1-86094-555-7"><bdi>978-1-86094-555-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Stochastic+Calculus+with+Applications&amp;rft.pub=Imperial+College+Press&amp;rft.date=2005&amp;rft.isbn=978-1-86094-555-7&amp;rft.au=Fima+C.+Klebaner&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJYzW0uqQxB0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KaratzasShreve2014page-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-KaratzasShreve2014page_114-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIoannis_KaratzasSteven_Shreve1991" class="citation book cs1">Ioannis Karatzas; Steven Shreve (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=w0SgBQAAQBAJ&amp;pg=PT5"><i>Brownian Motion and Stochastic Calculus</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-0949-2" title="Special:BookSources/978-1-4612-0949-2"><bdi>978-1-4612-0949-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Brownian+Motion+and+Stochastic+Calculus&amp;rft.pub=Springer&amp;rft.date=1991&amp;rft.isbn=978-1-4612-0949-2&amp;rft.au=Ioannis+Karatzas&amp;rft.au=Steven+Shreve&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dw0SgBQAAQBAJ%26pg%3DPT5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Applebaum2004page1341-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-Applebaum2004page1341_115-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApplebaum2004" class="citation journal cs1">Applebaum, David (2004). "Lévy processes: From probability to finance and quantum groups". <i>Notices of the AMS</i>. <b>51</b> (11): 1341.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+AMS&amp;rft.atitle=L%C3%A9vy+processes%3A+From+probability+to+finance+and+quantum+groups&amp;rft.volume=51&amp;rft.issue=11&amp;rft.pages=1341&amp;rft.date=2004&amp;rft.aulast=Applebaum&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KarlinTaylor2012page340-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-KarlinTaylor2012page340_116-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamuel_KarlinHoward_E._Taylor2012" class="citation book cs1">Samuel Karlin; Howard E. Taylor (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dSDxjX9nmmMC"><i>A First Course in Stochastic Processes</i></a>. Academic Press. p.&#160;340. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-057041-9" title="Special:BookSources/978-0-08-057041-9"><bdi>978-0-08-057041-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+Stochastic+Processes&amp;rft.pages=340&amp;rft.pub=Academic+Press&amp;rft.date=2012&amp;rft.isbn=978-0-08-057041-9&amp;rft.au=Samuel+Karlin&amp;rft.au=Howard+E.+Taylor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdSDxjX9nmmMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Klebaner2005page124-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-Klebaner2005page124_117-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFima_C._Klebaner2005" class="citation book cs1">Fima C. Klebaner (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JYzW0uqQxB0C"><i>Introduction to Stochastic Calculus with Applications</i></a>. Imperial College Press. p.&#160;124. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-86094-555-7" title="Special:BookSources/978-1-86094-555-7"><bdi>978-1-86094-555-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Stochastic+Calculus+with+Applications&amp;rft.pages=124&amp;rft.pub=Imperial+College+Press&amp;rft.date=2005&amp;rft.isbn=978-1-86094-555-7&amp;rft.au=Fima+C.+Klebaner&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJYzW0uqQxB0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KaratzasShreve2014page47-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-KaratzasShreve2014page47_118-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIoannis_KaratzasSteven_Shreve1991" class="citation book cs1">Ioannis Karatzas; Steven Shreve (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=w0SgBQAAQBAJ&amp;pg=PT5"><i>Brownian Motion and Stochastic Calculus</i></a>. Springer. p.&#160;47. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-0949-2" title="Special:BookSources/978-1-4612-0949-2"><bdi>978-1-4612-0949-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Brownian+Motion+and+Stochastic+Calculus&amp;rft.pages=47&amp;rft.pub=Springer&amp;rft.date=1991&amp;rft.isbn=978-1-4612-0949-2&amp;rft.au=Ioannis+Karatzas&amp;rft.au=Steven+Shreve&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dw0SgBQAAQBAJ%26pg%3DPT5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Wiersema2008page2-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wiersema2008page2_119-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUbbo_F._Wiersema2008" class="citation book cs1">Ubbo F. Wiersema (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0h-n0WWuD9cC"><i>Brownian Motion Calculus</i></a>. John Wiley &amp; Sons. p.&#160;2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-470-02171-2" title="Special:BookSources/978-0-470-02171-2"><bdi>978-0-470-02171-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Brownian+Motion+Calculus&amp;rft.pages=2&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2008&amp;rft.isbn=978-0-470-02171-2&amp;rft.au=Ubbo+F.+Wiersema&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0h-n0WWuD9cC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Tijms2003page1-120"><span class="mw-cite-backlink">^ <a href="#cite_ref-Tijms2003page1_120-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Tijms2003page1_120-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Tijms2003page1_120-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHenk_C._Tijms2003" class="citation book cs1">Henk C. Tijms (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=eBeNngEACAAJ"><i>A First Course in Stochastic Models</i></a>. Wiley. pp.&#160;1, 2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-49881-0" title="Special:BookSources/978-0-471-49881-0"><bdi>978-0-471-49881-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+Stochastic+Models&amp;rft.pages=1%2C+2&amp;rft.pub=Wiley&amp;rft.date=2003&amp;rft.isbn=978-0-471-49881-0&amp;rft.au=Henk+C.+Tijms&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DeBeNngEACAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-DaleyVere-Jones2006chap2-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-DaleyVere-Jones2006chap2_121-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD.J._DaleyD._Vere-Jones2006" class="citation book cs1">D.J. Daley; D. Vere-Jones (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6Sv4BwAAQBAJ"><i>An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods</i></a>. Springer Science &amp; Business Media. pp.&#160;19–36. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-21564-8" title="Special:BookSources/978-0-387-21564-8"><bdi>978-0-387-21564-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+Theory+of+Point+Processes%3A+Volume+I%3A+Elementary+Theory+and+Methods&amp;rft.pages=19-36&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-21564-8&amp;rft.au=D.J.+Daley&amp;rft.au=D.+Vere-Jones&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6Sv4BwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-PinskyKarlin2011-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-PinskyKarlin2011_122-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMark_A._PinskySamuel_Karlin2011" class="citation book cs1">Mark A. Pinsky; Samuel Karlin (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=PqUmjp7k1kEC"><i>An Introduction to Stochastic Modeling</i></a>. Academic Press. p.&#160;241. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-381416-6" title="Special:BookSources/978-0-12-381416-6"><bdi>978-0-12-381416-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Stochastic+Modeling&amp;rft.pages=241&amp;rft.pub=Academic+Press&amp;rft.date=2011&amp;rft.isbn=978-0-12-381416-6&amp;rft.au=Mark+A.+Pinsky&amp;rft.au=Samuel+Karlin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DPqUmjp7k1kEC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Kingman1992page38-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kingman1992page38_123-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ._F._C._Kingman1992" class="citation book cs1">J. F. C. Kingman (1992). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VEiM-OtwDHkC"><i>Poisson Processes</i></a>. Clarendon Press. p.&#160;38. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-159124-2" title="Special:BookSources/978-0-19-159124-2"><bdi>978-0-19-159124-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Poisson+Processes&amp;rft.pages=38&amp;rft.pub=Clarendon+Press&amp;rft.date=1992&amp;rft.isbn=978-0-19-159124-2&amp;rft.au=J.+F.+C.+Kingman&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVEiM-OtwDHkC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-DaleyVere-Jones2006page19-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-DaleyVere-Jones2006page19_124-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD.J._DaleyD._Vere-Jones2006" class="citation book cs1">D.J. Daley; D. Vere-Jones (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6Sv4BwAAQBAJ"><i>An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods</i></a>. Springer Science &amp; Business Media. p.&#160;19. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-21564-8" title="Special:BookSources/978-0-387-21564-8"><bdi>978-0-387-21564-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+Theory+of+Point+Processes%3A+Volume+I%3A+Elementary+Theory+and+Methods&amp;rft.pages=19&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-21564-8&amp;rft.au=D.J.+Daley&amp;rft.au=D.+Vere-Jones&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6Sv4BwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Kingman1992page22-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kingman1992page22_125-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ._F._C._Kingman1992" class="citation book cs1">J. F. C. Kingman (1992). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VEiM-OtwDHkC"><i>Poisson Processes</i></a>. Clarendon Press. p.&#160;22. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-159124-2" title="Special:BookSources/978-0-19-159124-2"><bdi>978-0-19-159124-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Poisson+Processes&amp;rft.pages=22&amp;rft.pub=Clarendon+Press&amp;rft.date=1992&amp;rft.isbn=978-0-19-159124-2&amp;rft.au=J.+F.+C.+Kingman&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVEiM-OtwDHkC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KarlinTaylor2012page118-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-KarlinTaylor2012page118_126-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamuel_KarlinHoward_E._Taylor2012" class="citation book cs1">Samuel Karlin; Howard E. Taylor (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dSDxjX9nmmMC"><i>A First Course in Stochastic Processes</i></a>. Academic Press. pp.&#160;118, 119. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-057041-9" title="Special:BookSources/978-0-08-057041-9"><bdi>978-0-08-057041-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+Stochastic+Processes&amp;rft.pages=118%2C+119&amp;rft.pub=Academic+Press&amp;rft.date=2012&amp;rft.isbn=978-0-08-057041-9&amp;rft.au=Samuel+Karlin&amp;rft.au=Howard+E.+Taylor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdSDxjX9nmmMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Kleinrock1976page61-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kleinrock1976page61_127-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeonard_Kleinrock1976" class="citation book cs1">Leonard Kleinrock (1976). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/queueingsystems00klei"><i>Queueing Systems: Theory</i></a></span>. Wiley. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/queueingsystems00klei/page/61">61</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-49110-1" title="Special:BookSources/978-0-471-49110-1"><bdi>978-0-471-49110-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Queueing+Systems%3A+Theory&amp;rft.pages=61&amp;rft.pub=Wiley&amp;rft.date=1976&amp;rft.isbn=978-0-471-49110-1&amp;rft.au=Leonard+Kleinrock&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fqueueingsystems00klei&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Rosenblatt1962page94-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rosenblatt1962page94_128-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurray_Rosenblatt1962" class="citation book cs1">Murray Rosenblatt (1962). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/randomprocesses00rose_0"><i>Random Processes</i></a></span>. Oxford University Press. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/randomprocesses00rose_0/page/94">94</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Processes&amp;rft.pages=94&amp;rft.pub=Oxford+University+Press&amp;rft.date=1962&amp;rft.au=Murray+Rosenblatt&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Frandomprocesses00rose_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Haenggi2013page10and18-129"><span class="mw-cite-backlink">^ <a href="#cite_ref-Haenggi2013page10and18_129-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Haenggi2013page10and18_129-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartin_Haenggi2013" class="citation book cs1">Martin Haenggi (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CLtDhblwWEgC"><i>Stochastic Geometry for Wireless Networks</i></a>. Cambridge University Press. pp.&#160;10, 18. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-01469-5" title="Special:BookSources/978-1-107-01469-5"><bdi>978-1-107-01469-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Geometry+for+Wireless+Networks&amp;rft.pages=10%2C+18&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2013&amp;rft.isbn=978-1-107-01469-5&amp;rft.au=Martin+Haenggi&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCLtDhblwWEgC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-ChiuStoyan2013page41and108-130"><span class="mw-cite-backlink">^ <a href="#cite_ref-ChiuStoyan2013page41and108_130-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ChiuStoyan2013page41and108_130-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSung_Nok_ChiuDietrich_StoyanWilfrid_S._KendallJoseph_Mecke2013" class="citation book cs1">Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=825NfM6Nc-EC"><i>Stochastic Geometry and Its Applications</i></a>. John Wiley &amp; Sons. pp.&#160;41, 108. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-65825-3" title="Special:BookSources/978-1-118-65825-3"><bdi>978-1-118-65825-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Geometry+and+Its+Applications&amp;rft.pages=41%2C+108&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2013&amp;rft.isbn=978-1-118-65825-3&amp;rft.au=Sung+Nok+Chiu&amp;rft.au=Dietrich+Stoyan&amp;rft.au=Wilfrid+S.+Kendall&amp;rft.au=Joseph+Mecke&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D825NfM6Nc-EC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Kingman1992page11-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kingman1992page11_131-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ._F._C._Kingman1992" class="citation book cs1">J. F. C. Kingman (1992). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VEiM-OtwDHkC"><i>Poisson Processes</i></a>. Clarendon Press. p.&#160;11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-159124-2" title="Special:BookSources/978-0-19-159124-2"><bdi>978-0-19-159124-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Poisson+Processes&amp;rft.pages=11&amp;rft.pub=Clarendon+Press&amp;rft.date=1992&amp;rft.isbn=978-0-19-159124-2&amp;rft.au=J.+F.+C.+Kingman&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVEiM-OtwDHkC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Streit2010page1-132"><span class="mw-cite-backlink">^ <a href="#cite_ref-Streit2010page1_132-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Streit2010page1_132-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoy_L._Streit2010" class="citation book cs1">Roy L. Streit (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=KAWmFYUJ5zsC&amp;pg=PA11"><i>Poisson Point Processes: Imaging, Tracking, and Sensing</i></a>. Springer Science &amp; Business Media. p.&#160;1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4419-6923-1" title="Special:BookSources/978-1-4419-6923-1"><bdi>978-1-4419-6923-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Poisson+Point+Processes%3A+Imaging%2C+Tracking%2C+and+Sensing&amp;rft.pages=1&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2010&amp;rft.isbn=978-1-4419-6923-1&amp;rft.au=Roy+L.+Streit&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DKAWmFYUJ5zsC%26pg%3DPA11&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Kingman1992pagev-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kingman1992pagev_133-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ._F._C._Kingman1992" class="citation book cs1">J. F. C. Kingman (1992). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VEiM-OtwDHkC"><i>Poisson Processes</i></a>. Clarendon Press. p.&#160;v. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-159124-2" title="Special:BookSources/978-0-19-159124-2"><bdi>978-0-19-159124-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Poisson+Processes&amp;rft.pages=v&amp;rft.pub=Clarendon+Press&amp;rft.date=1992&amp;rft.isbn=978-0-19-159124-2&amp;rft.au=J.+F.+C.+Kingman&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVEiM-OtwDHkC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Borovkov2013page528-134"><span class="mw-cite-backlink">^ <a href="#cite_ref-Borovkov2013page528_134-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Borovkov2013page528_134-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlexander_A._Borovkov2013" class="citation book cs1"><a href="/wiki/Alexander_A._Borovkov" class="mw-redirect" title="Alexander A. Borovkov">Alexander A. Borovkov</a> (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=hRk_AAAAQBAJ"><i>Probability Theory</i></a>. Springer Science &amp; Business Media. p.&#160;528. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4471-5201-9" title="Special:BookSources/978-1-4471-5201-9"><bdi>978-1-4471-5201-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+Theory&amp;rft.pages=528&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-1-4471-5201-9&amp;rft.au=Alexander+A.+Borovkov&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DhRk_AAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-LindgrenRootzen2013page11-135"><span class="mw-cite-backlink"><b><a href="#cite_ref-LindgrenRootzen2013page11_135-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeorg_LindgrenHolger_RootzenMaria_Sandsten2013" class="citation book cs1">Georg Lindgren; Holger Rootzen; Maria Sandsten (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=FYJFAQAAQBAJ&amp;pg=PR1"><i>Stationary Stochastic Processes for Scientists and Engineers</i></a>. CRC Press. p.&#160;11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4665-8618-5" title="Special:BookSources/978-1-4665-8618-5"><bdi>978-1-4665-8618-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stationary+Stochastic+Processes+for+Scientists+and+Engineers&amp;rft.pages=11&amp;rft.pub=CRC+Press&amp;rft.date=2013&amp;rft.isbn=978-1-4665-8618-5&amp;rft.au=Georg+Lindgren&amp;rft.au=Holger+Rootzen&amp;rft.au=Maria+Sandsten&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DFYJFAQAAQBAJ%26pg%3DPR1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-aumann-136"><span class="mw-cite-backlink"><b><a href="#cite_ref-aumann_136-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAumann1961" class="citation journal cs1">Aumann, Robert (December 1961). <a rel="nofollow" class="external text" href="https://doi.org/10.1215%2Fijm%2F1255631584">"Borel structures for function spaces"</a>. <i>Illinois Journal of Mathematics</i>. <b>5</b> (4). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1215%2Fijm%2F1255631584">10.1215/ijm/1255631584</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117171116">117171116</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Illinois+Journal+of+Mathematics&amp;rft.atitle=Borel+structures+for+function+spaces&amp;rft.volume=5&amp;rft.issue=4&amp;rft.date=1961-12&amp;rft_id=info%3Adoi%2F10.1215%2Fijm%2F1255631584&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117171116%23id-name%3DS2CID&amp;rft.aulast=Aumann&amp;rft.aufirst=Robert&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1215%252Fijm%252F1255631584&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Skorokhod2005page93-137"><span class="mw-cite-backlink">^ <a href="#cite_ref-Skorokhod2005page93_137-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Skorokhod2005page93_137-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Skorokhod2005page93_137-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValeriy_Skorokhod2005" class="citation book cs1">Valeriy Skorokhod (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dQkYMjRK3fYC"><i>Basic Principles and Applications of Probability Theory</i></a>. Springer Science &amp; Business Media. pp.&#160;93, 94. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-26312-8" title="Special:BookSources/978-3-540-26312-8"><bdi>978-3-540-26312-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Basic+Principles+and+Applications+of+Probability+Theory&amp;rft.pages=93%2C+94&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2005&amp;rft.isbn=978-3-540-26312-8&amp;rft.au=Valeriy+Skorokhod&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdQkYMjRK3fYC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-138"><span class="mw-cite-backlink"><b><a href="#cite_ref-138">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDonald_L._SnyderMichael_I._Miller2012" class="citation book cs1">Donald L. Snyder; Michael I. Miller (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=c_3UBwAAQBAJ"><i>Random Point Processes in Time and Space</i></a>. Springer Science &amp; Business Media. p.&#160;25. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-3166-0" title="Special:BookSources/978-1-4612-3166-0"><bdi>978-1-4612-3166-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Point+Processes+in+Time+and+Space&amp;rft.pages=25&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4612-3166-0&amp;rft.au=Donald+L.+Snyder&amp;rft.au=Michael+I.+Miller&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dc_3UBwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Skorokhod2005page104-139"><span class="mw-cite-backlink"><b><a href="#cite_ref-Skorokhod2005page104_139-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValeriy_Skorokhod2005" class="citation book cs1">Valeriy Skorokhod (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dQkYMjRK3fYC"><i>Basic Principles and Applications of Probability Theory</i></a>. Springer Science &amp; Business Media. p.&#160;104. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-26312-8" title="Special:BookSources/978-3-540-26312-8"><bdi>978-3-540-26312-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Basic+Principles+and+Applications+of+Probability+Theory&amp;rft.pages=104&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2005&amp;rft.isbn=978-3-540-26312-8&amp;rft.au=Valeriy+Skorokhod&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdQkYMjRK3fYC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Florescu2014page296-140"><span class="mw-cite-backlink"><b><a href="#cite_ref-Florescu2014page296_140-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIonut_Florescu2014" class="citation book cs1">Ionut Florescu (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Z5xEBQAAQBAJ&amp;pg=PR22"><i>Probability and Stochastic Processes</i></a>. John Wiley &amp; Sons. p.&#160;296. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-59320-2" title="Special:BookSources/978-1-118-59320-2"><bdi>978-1-118-59320-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Stochastic+Processes&amp;rft.pages=296&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2014&amp;rft.isbn=978-1-118-59320-2&amp;rft.au=Ionut+Florescu&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZ5xEBQAAQBAJ%26pg%3DPR22&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Billingsley2008page493-141"><span class="mw-cite-backlink"><b><a href="#cite_ref-Billingsley2008page493_141-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPatrick_Billingsley2008" class="citation book cs1">Patrick Billingsley (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QyXqOXyxEeIC"><i>Probability and Measure</i></a>. Wiley India Pvt. Limited. p.&#160;493. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-81-265-1771-8" title="Special:BookSources/978-81-265-1771-8"><bdi>978-81-265-1771-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Measure&amp;rft.pages=493&amp;rft.pub=Wiley+India+Pvt.+Limited&amp;rft.date=2008&amp;rft.isbn=978-81-265-1771-8&amp;rft.au=Patrick+Billingsley&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQyXqOXyxEeIC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Øksendal2003page10-142"><span class="mw-cite-backlink"><b><a href="#cite_ref-Øksendal2003page10_142-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernt_Øksendal2003" class="citation book cs1">Bernt Øksendal (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VgQDWyihxKYC"><i>Stochastic Differential Equations: An Introduction with Applications</i></a>. Springer Science &amp; Business Media. p.&#160;10. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-04758-2" title="Special:BookSources/978-3-540-04758-2"><bdi>978-3-540-04758-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Differential+Equations%3A+An+Introduction+with+Applications&amp;rft.pages=10&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2003&amp;rft.isbn=978-3-540-04758-2&amp;rft.au=Bernt+%C3%98ksendal&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVgQDWyihxKYC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-FrizVictoir2010page571-143"><span class="mw-cite-backlink">^ <a href="#cite_ref-FrizVictoir2010page571_143-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FrizVictoir2010page571_143-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FrizVictoir2010page571_143-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FrizVictoir2010page571_143-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-FrizVictoir2010page571_143-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeter_K._FrizNicolas_B._Victoir2010" class="citation book cs1"><a href="/wiki/Peter_Friz" title="Peter Friz">Peter K. Friz</a>; Nicolas B. Victoir (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CVgwLatxfGsC"><i>Multidimensional Stochastic Processes as Rough Paths: Theory and Applications</i></a>. Cambridge University Press. p.&#160;571. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-139-48721-4" title="Special:BookSources/978-1-139-48721-4"><bdi>978-1-139-48721-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Multidimensional+Stochastic+Processes+as+Rough+Paths%3A+Theory+and+Applications&amp;rft.pages=571&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft.isbn=978-1-139-48721-4&amp;rft.au=Peter+K.+Friz&amp;rft.au=Nicolas+B.+Victoir&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCVgwLatxfGsC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Resnick2013page40-144"><span class="mw-cite-backlink"><b><a href="#cite_ref-Resnick2013page40_144-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSidney_I._Resnick2013" class="citation book cs1">Sidney I. Resnick (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VQrpBwAAQBAJ"><i>Adventures in Stochastic Processes</i></a>. Springer Science &amp; Business Media. pp.&#160;40–41. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-0387-2" title="Special:BookSources/978-1-4612-0387-2"><bdi>978-1-4612-0387-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Adventures+in+Stochastic+Processes&amp;rft.pages=40-41&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-1-4612-0387-2&amp;rft.au=Sidney+I.+Resnick&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVQrpBwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Whitt2006page23-145"><span class="mw-cite-backlink"><b><a href="#cite_ref-Whitt2006page23_145-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWard_Whitt2006" class="citation book cs1">Ward Whitt (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=LkQOBwAAQBAJ&amp;pg=PR5"><i>Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues</i></a>. Springer Science &amp; Business Media. p.&#160;23. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-21748-2" title="Special:BookSources/978-0-387-21748-2"><bdi>978-0-387-21748-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic-Process+Limits%3A+An+Introduction+to+Stochastic-Process+Limits+and+Their+Application+to+Queues&amp;rft.pages=23&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-21748-2&amp;rft.au=Ward+Whitt&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLkQOBwAAQBAJ%26pg%3DPR5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-ApplebaumBook2004page4-146"><span class="mw-cite-backlink"><b><a href="#cite_ref-ApplebaumBook2004page4_146-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Applebaum2004" class="citation book cs1">David Applebaum (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=q7eDUjdJxIkC"><i>Lévy Processes and Stochastic Calculus</i></a>. Cambridge University Press. p.&#160;4. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-83263-2" title="Special:BookSources/978-0-521-83263-2"><bdi>978-0-521-83263-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=L%C3%A9vy+Processes+and+Stochastic+Calculus&amp;rft.pages=4&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2004&amp;rft.isbn=978-0-521-83263-2&amp;rft.au=David+Applebaum&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dq7eDUjdJxIkC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-RevuzYor2013page10-147"><span class="mw-cite-backlink"><b><a href="#cite_ref-RevuzYor2013page10_147-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaniel_RevuzMarc_Yor2013" class="citation book cs1">Daniel Revuz; Marc Yor (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OYbnCAAAQBAJ"><i>Continuous Martingales and Brownian Motion</i></a>. Springer Science &amp; Business Media. p.&#160;10. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-662-06400-9" title="Special:BookSources/978-3-662-06400-9"><bdi>978-3-662-06400-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Continuous+Martingales+and+Brownian+Motion&amp;rft.pages=10&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-3-662-06400-9&amp;rft.au=Daniel+Revuz&amp;rft.au=Marc+Yor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOYbnCAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-RogersWilliams2000page123-148"><span class="mw-cite-backlink"><b><a href="#cite_ref-RogersWilliams2000page123_148-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFL._C._G._RogersDavid_Williams2000" class="citation book cs1">L. C. G. Rogers; David Williams (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=W0ydAgAAQBAJ&amp;pg=PA356"><i>Diffusions, Markov Processes, and Martingales: Volume 1, Foundations</i></a>. Cambridge University Press. p.&#160;123. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-71749-7" title="Special:BookSources/978-1-107-71749-7"><bdi>978-1-107-71749-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Diffusions%2C+Markov+Processes%2C+and+Martingales%3A+Volume+1%2C+Foundations&amp;rft.pages=123&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2000&amp;rft.isbn=978-1-107-71749-7&amp;rft.au=L.+C.+G.+Rogers&amp;rft.au=David+Williams&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DW0ydAgAAQBAJ%26pg%3DPA356&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Lamperti1977page6-149"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lamperti1977page6_149-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lamperti1977page6_149-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Lamperti1977page6_149-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Lamperti1977page6_149-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_Lamperti1977" class="citation book cs1">John Lamperti (1977). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Pd4cvgAACAAJ"><i>Stochastic processes: a survey of the mathematical theory</i></a>. Springer-Verlag. pp.&#160;6 and 7. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-90275-1" title="Special:BookSources/978-3-540-90275-1"><bdi>978-3-540-90275-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+processes%3A+a+survey+of+the+mathematical+theory&amp;rft.pages=6+and+7&amp;rft.pub=Springer-Verlag&amp;rft.date=1977&amp;rft.isbn=978-3-540-90275-1&amp;rft.au=John+Lamperti&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DPd4cvgAACAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GikhmanSkorokhod1969page4-150"><span class="mw-cite-backlink"><b><a href="#cite_ref-GikhmanSkorokhod1969page4_150-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIosif_I._GikhmanAnatoly_Vladimirovich_Skorokhod1969" class="citation book cs1">Iosif I. Gikhman; Anatoly Vladimirovich Skorokhod (1969). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yJyLzG7N7r8C&amp;pg=PR2"><i>Introduction to the Theory of Random Processes</i></a>. Courier Corporation. p.&#160;4. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-69387-3" title="Special:BookSources/978-0-486-69387-3"><bdi>978-0-486-69387-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+Theory+of+Random+Processes&amp;rft.pages=4&amp;rft.pub=Courier+Corporation&amp;rft.date=1969&amp;rft.isbn=978-0-486-69387-3&amp;rft.au=Iosif+I.+Gikhman&amp;rft.au=Anatoly+Vladimirovich+Skorokhod&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyJyLzG7N7r8C%26pg%3DPR2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Adler2010page14-151"><span class="mw-cite-backlink">^ <a href="#cite_ref-Adler2010page14_151-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Adler2010page14_151-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Adler2010page14_151-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Adler2010page14_151-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobert_J._Adler2010" class="citation book cs1">Robert J. Adler (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ryejJmJAj28C&amp;pg=PA263"><i>The Geometry of Random Fields</i></a>. SIAM. pp.&#160;14, 15. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-89871-693-1" title="Special:BookSources/978-0-89871-693-1"><bdi>978-0-89871-693-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Geometry+of+Random+Fields&amp;rft.pages=14%2C+15&amp;rft.pub=SIAM&amp;rft.date=2010&amp;rft.isbn=978-0-89871-693-1&amp;rft.au=Robert+J.+Adler&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DryejJmJAj28C%26pg%3DPA263&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-ChiuStoyan2013page112-152"><span class="mw-cite-backlink"><b><a href="#cite_ref-ChiuStoyan2013page112_152-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSung_Nok_ChiuDietrich_StoyanWilfrid_S._KendallJoseph_Mecke2013" class="citation book cs1">Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=825NfM6Nc-EC"><i>Stochastic Geometry and Its Applications</i></a>. John Wiley &amp; Sons. p.&#160;112. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-65825-3" title="Special:BookSources/978-1-118-65825-3"><bdi>978-1-118-65825-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Geometry+and+Its+Applications&amp;rft.pages=112&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2013&amp;rft.isbn=978-1-118-65825-3&amp;rft.au=Sung+Nok+Chiu&amp;rft.au=Dietrich+Stoyan&amp;rft.au=Wilfrid+S.+Kendall&amp;rft.au=Joseph+Mecke&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D825NfM6Nc-EC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Doob1990page94-153"><span class="mw-cite-backlink">^ <a href="#cite_ref-Doob1990page94_153-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Doob1990page94_153-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoseph_L._Doob1990" class="citation book cs1">Joseph L. Doob (1990). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NrsrAAAAYAAJ"><i>Stochastic processes</i></a>. Wiley. pp.&#160;94–96.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+processes&amp;rft.pages=94-96&amp;rft.pub=Wiley&amp;rft.date=1990&amp;rft.au=Joseph+L.+Doob&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNrsrAAAAYAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Florescu2014page298-154"><span class="mw-cite-backlink">^ <a href="#cite_ref-Florescu2014page298_154-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Florescu2014page298_154-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIonut_Florescu2014" class="citation book cs1">Ionut Florescu (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Z5xEBQAAQBAJ&amp;pg=PR22"><i>Probability and Stochastic Processes</i></a>. John Wiley &amp; Sons. pp.&#160;298, 299. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-59320-2" title="Special:BookSources/978-1-118-59320-2"><bdi>978-1-118-59320-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Stochastic+Processes&amp;rft.pages=298%2C+299&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2014&amp;rft.isbn=978-1-118-59320-2&amp;rft.au=Ionut+Florescu&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZ5xEBQAAQBAJ%26pg%3DPR22&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GikhmanSkorokhod1969page8-155"><span class="mw-cite-backlink"><b><a href="#cite_ref-GikhmanSkorokhod1969page8_155-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIosif_Ilyich_GikhmanAnatoly_Vladimirovich_Skorokhod1969" class="citation book cs1">Iosif Ilyich Gikhman; Anatoly Vladimirovich Skorokhod (1969). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yJyLzG7N7r8C&amp;pg=PR2"><i>Introduction to the Theory of Random Processes</i></a>. Courier Corporation. p.&#160;8. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-69387-3" title="Special:BookSources/978-0-486-69387-3"><bdi>978-0-486-69387-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+Theory+of+Random+Processes&amp;rft.pages=8&amp;rft.pub=Courier+Corporation&amp;rft.date=1969&amp;rft.isbn=978-0-486-69387-3&amp;rft.au=Iosif+Ilyich+Gikhman&amp;rft.au=Anatoly+Vladimirovich+Skorokhod&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyJyLzG7N7r8C%26pg%3DPR2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Williams1991page93-156"><span class="mw-cite-backlink">^ <a href="#cite_ref-Williams1991page93_156-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Williams1991page93_156-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Williams1991page93_156-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Williams1991" class="citation book cs1">David Williams (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=e9saZ0YSi-AC"><i>Probability with Martingales</i></a>. Cambridge University Press. pp.&#160;93, 94. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-40605-5" title="Special:BookSources/978-0-521-40605-5"><bdi>978-0-521-40605-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+with+Martingales&amp;rft.pages=93%2C+94&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1991&amp;rft.isbn=978-0-521-40605-5&amp;rft.au=David+Williams&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3De9saZ0YSi-AC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Klebaner2005page22-157"><span class="mw-cite-backlink"><b><a href="#cite_ref-Klebaner2005page22_157-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFima_C._Klebaner2005" class="citation book cs1">Fima C. Klebaner (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JYzW0uqQxB0C"><i>Introduction to Stochastic Calculus with Applications</i></a>. Imperial College Press. pp.&#160;22–23. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-86094-555-7" title="Special:BookSources/978-1-86094-555-7"><bdi>978-1-86094-555-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Stochastic+Calculus+with+Applications&amp;rft.pages=22-23&amp;rft.pub=Imperial+College+Press&amp;rft.date=2005&amp;rft.isbn=978-1-86094-555-7&amp;rft.au=Fima+C.+Klebaner&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJYzW0uqQxB0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-MörtersPeres2010page37-158"><span class="mw-cite-backlink"><b><a href="#cite_ref-MörtersPeres2010page37_158-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeter_MörtersYuval_Peres2010" class="citation book cs1">Peter Mörters; Yuval Peres (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=e-TbA-dSrzYC"><i>Brownian Motion</i></a>. Cambridge University Press. p.&#160;37. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-139-48657-6" title="Special:BookSources/978-1-139-48657-6"><bdi>978-1-139-48657-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Brownian+Motion&amp;rft.pages=37&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft.isbn=978-1-139-48657-6&amp;rft.au=Peter+M%C3%B6rters&amp;rft.au=Yuval+Peres&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3De-TbA-dSrzYC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-RogersWilliams2000page130-159"><span class="mw-cite-backlink">^ <a href="#cite_ref-RogersWilliams2000page130_159-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-RogersWilliams2000page130_159-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFL._C._G._RogersDavid_Williams2000" class="citation book cs1">L. C. G. Rogers; David Williams (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=W0ydAgAAQBAJ&amp;pg=PA356"><i>Diffusions, Markov Processes, and Martingales: Volume 1, Foundations</i></a>. Cambridge University Press. p.&#160;130. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-71749-7" title="Special:BookSources/978-1-107-71749-7"><bdi>978-1-107-71749-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Diffusions%2C+Markov+Processes%2C+and+Martingales%3A+Volume+1%2C+Foundations&amp;rft.pages=130&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2000&amp;rft.isbn=978-1-107-71749-7&amp;rft.au=L.+C.+G.+Rogers&amp;rft.au=David+Williams&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DW0ydAgAAQBAJ%26pg%3DPA356&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Borovkov2013page530-160"><span class="mw-cite-backlink"><b><a href="#cite_ref-Borovkov2013page530_160-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlexander_A._Borovkov2013" class="citation book cs1">Alexander A. Borovkov (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=hRk_AAAAQBAJ"><i>Probability Theory</i></a>. Springer Science &amp; Business Media. p.&#160;530. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4471-5201-9" title="Special:BookSources/978-1-4471-5201-9"><bdi>978-1-4471-5201-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+Theory&amp;rft.pages=530&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-1-4471-5201-9&amp;rft.au=Alexander+A.+Borovkov&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DhRk_AAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Klebaner2005page48-161"><span class="mw-cite-backlink"><b><a href="#cite_ref-Klebaner2005page48_161-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFima_C._Klebaner2005" class="citation book cs1">Fima C. Klebaner (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JYzW0uqQxB0C"><i>Introduction to Stochastic Calculus with Applications</i></a>. Imperial College Press. p.&#160;48. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-86094-555-7" title="Special:BookSources/978-1-86094-555-7"><bdi>978-1-86094-555-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Stochastic+Calculus+with+Applications&amp;rft.pages=48&amp;rft.pub=Imperial+College+Press&amp;rft.date=2005&amp;rft.isbn=978-1-86094-555-7&amp;rft.au=Fima+C.+Klebaner&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJYzW0uqQxB0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Øksendal2003page14-162"><span class="mw-cite-backlink">^ <a href="#cite_ref-Øksendal2003page14_162-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Øksendal2003page14_162-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernt_Øksendal2003" class="citation book cs1">Bernt Øksendal (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VgQDWyihxKYC"><i>Stochastic Differential Equations: An Introduction with Applications</i></a>. Springer Science &amp; Business Media. p.&#160;14. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-04758-2" title="Special:BookSources/978-3-540-04758-2"><bdi>978-3-540-04758-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Differential+Equations%3A+An+Introduction+with+Applications&amp;rft.pages=14&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2003&amp;rft.isbn=978-3-540-04758-2&amp;rft.au=Bernt+%C3%98ksendal&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVgQDWyihxKYC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Florescu2014page472-163"><span class="mw-cite-backlink">^ <a href="#cite_ref-Florescu2014page472_163-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Florescu2014page472_163-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIonut_Florescu2014" class="citation book cs1">Ionut Florescu (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Z5xEBQAAQBAJ&amp;pg=PR22"><i>Probability and Stochastic Processes</i></a>. John Wiley &amp; Sons. p.&#160;472. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-59320-2" title="Special:BookSources/978-1-118-59320-2"><bdi>978-1-118-59320-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Stochastic+Processes&amp;rft.pages=472&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2014&amp;rft.isbn=978-1-118-59320-2&amp;rft.au=Ionut+Florescu&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZ5xEBQAAQBAJ%26pg%3DPR22&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-RevuzYor2013page18-164"><span class="mw-cite-backlink"><b><a href="#cite_ref-RevuzYor2013page18_164-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaniel_RevuzMarc_Yor2013" class="citation book cs1">Daniel Revuz; Marc Yor (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OYbnCAAAQBAJ"><i>Continuous Martingales and Brownian Motion</i></a>. Springer Science &amp; Business Media. pp.&#160;18–19. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-662-06400-9" title="Special:BookSources/978-3-662-06400-9"><bdi>978-3-662-06400-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Continuous+Martingales+and+Brownian+Motion&amp;rft.pages=18-19&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-3-662-06400-9&amp;rft.au=Daniel+Revuz&amp;rft.au=Marc+Yor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOYbnCAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-ApplebaumBook2004page20-165"><span class="mw-cite-backlink"><b><a href="#cite_ref-ApplebaumBook2004page20_165-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Applebaum2004" class="citation book cs1">David Applebaum (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=q7eDUjdJxIkC"><i>Lévy Processes and Stochastic Calculus</i></a>. Cambridge University Press. p.&#160;20. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-83263-2" title="Special:BookSources/978-0-521-83263-2"><bdi>978-0-521-83263-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=L%C3%A9vy+Processes+and+Stochastic+Calculus&amp;rft.pages=20&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2004&amp;rft.isbn=978-0-521-83263-2&amp;rft.au=David+Applebaum&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dq7eDUjdJxIkC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Kunita1997page31-166"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kunita1997page31_166-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHiroshi_Kunita1997" class="citation book cs1">Hiroshi Kunita (1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_S1RiCosqbMC"><i>Stochastic Flows and Stochastic Differential Equations</i></a>. Cambridge University Press. p.&#160;31. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-59925-2" title="Special:BookSources/978-0-521-59925-2"><bdi>978-0-521-59925-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Flows+and+Stochastic+Differential+Equations&amp;rft.pages=31&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1997&amp;rft.isbn=978-0-521-59925-2&amp;rft.au=Hiroshi+Kunita&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D_S1RiCosqbMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Kallenberg2002page-167"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kallenberg2002page_167-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOlav_Kallenberg2002" class="citation book cs1">Olav Kallenberg (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=L6fhXh13OyMC"><i>Foundations of Modern Probability</i></a>. Springer Science &amp; Business Media. p.&#160;35. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-95313-7" title="Special:BookSources/978-0-387-95313-7"><bdi>978-0-387-95313-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Modern+Probability&amp;rft.pages=35&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2002&amp;rft.isbn=978-0-387-95313-7&amp;rft.au=Olav+Kallenberg&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DL6fhXh13OyMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-JeanblancYor2009page11-168"><span class="mw-cite-backlink"><b><a href="#cite_ref-JeanblancYor2009page11_168-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMonique_JeanblancMarc_YorMarc_Chesney2009" class="citation book cs1"><a href="/wiki/Monique_Jeanblanc" title="Monique Jeanblanc">Monique Jeanblanc</a>; <a href="/wiki/Marc_Yor" title="Marc Yor">Marc Yor</a>; Marc Chesney (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ZhbROxoQ-ZMC"><i>Mathematical Methods for Financial Markets</i></a>. Springer Science &amp; Business Media. p.&#160;11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-85233-376-8" title="Special:BookSources/978-1-85233-376-8"><bdi>978-1-85233-376-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Methods+for+Financial+Markets&amp;rft.pages=11&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2009&amp;rft.isbn=978-1-85233-376-8&amp;rft.au=Monique+Jeanblanc&amp;rft.au=Marc+Yor&amp;rft.au=Marc+Chesney&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZhbROxoQ-ZMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Ito2006page32-170"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ito2006page32_170-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ito2006page32_170-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Ito2006page32_170-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Ito2006page32_170-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Ito2006page32_170-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Ito2006page32_170-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKiyosi_Itō2006" class="citation book cs1">Kiyosi Itō (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pY5_DkvI-CcC&amp;pg=PR4"><i>Essentials of Stochastic Processes</i></a>. American Mathematical Soc. pp.&#160;32–33. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-3898-3" title="Special:BookSources/978-0-8218-3898-3"><bdi>978-0-8218-3898-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Essentials+of+Stochastic+Processes&amp;rft.pages=32-33&amp;rft.pub=American+Mathematical+Soc.&amp;rft.date=2006&amp;rft.isbn=978-0-8218-3898-3&amp;rft.au=Kiyosi+It%C5%8D&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpY5_DkvI-CcC%26pg%3DPR4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GikhmanSkorokhod1969page150-171"><span class="mw-cite-backlink"><b><a href="#cite_ref-GikhmanSkorokhod1969page150_171-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIosif_Ilyich_GikhmanAnatoly_Vladimirovich_Skorokhod1969" class="citation book cs1">Iosif Ilyich Gikhman; Anatoly Vladimirovich Skorokhod (1969). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yJyLzG7N7r8C&amp;pg=PR2"><i>Introduction to the Theory of Random Processes</i></a>. Courier Corporation. p.&#160;150. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-69387-3" title="Special:BookSources/978-0-486-69387-3"><bdi>978-0-486-69387-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+Theory+of+Random+Processes&amp;rft.pages=150&amp;rft.pub=Courier+Corporation&amp;rft.date=1969&amp;rft.isbn=978-0-486-69387-3&amp;rft.au=Iosif+Ilyich+Gikhman&amp;rft.au=Anatoly+Vladimirovich+Skorokhod&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyJyLzG7N7r8C%26pg%3DPR2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Todorovic2012page19-172"><span class="mw-cite-backlink">^ <a href="#cite_ref-Todorovic2012page19_172-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Todorovic2012page19_172-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPetar_Todorovic2012" class="citation book cs1">Petar Todorovic (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XpjqBwAAQBAJ&amp;pg=PP5"><i>An Introduction to Stochastic Processes and Their Applications</i></a>. Springer Science &amp; Business Media. pp.&#160;19–20. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4613-9742-7" title="Special:BookSources/978-1-4613-9742-7"><bdi>978-1-4613-9742-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Stochastic+Processes+and+Their+Applications&amp;rft.pages=19-20&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4613-9742-7&amp;rft.au=Petar+Todorovic&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXpjqBwAAQBAJ%26pg%3DPP5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Molchanov2005page340-173"><span class="mw-cite-backlink"><b><a href="#cite_ref-Molchanov2005page340_173-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIlya_Molchanov2005" class="citation book cs1">Ilya Molchanov (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=kWEwk1UL42AC"><i>Theory of Random Sets</i></a>. Springer Science &amp; Business Media. p.&#160;340. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-85233-892-3" title="Special:BookSources/978-1-85233-892-3"><bdi>978-1-85233-892-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+Random+Sets&amp;rft.pages=340&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2005&amp;rft.isbn=978-1-85233-892-3&amp;rft.au=Ilya+Molchanov&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DkWEwk1UL42AC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Billingsley2008page526-174"><span class="mw-cite-backlink">^ <a href="#cite_ref-Billingsley2008page526_174-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Billingsley2008page526_174-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPatrick_Billingsley2008" class="citation book cs1">Patrick Billingsley (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QyXqOXyxEeIC"><i>Probability and Measure</i></a>. Wiley India Pvt. Limited. pp.&#160;526–527. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-81-265-1771-8" title="Special:BookSources/978-81-265-1771-8"><bdi>978-81-265-1771-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Measure&amp;rft.pages=526-527&amp;rft.pub=Wiley+India+Pvt.+Limited&amp;rft.date=2008&amp;rft.isbn=978-81-265-1771-8&amp;rft.au=Patrick+Billingsley&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQyXqOXyxEeIC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Borovkov2013page535-175"><span class="mw-cite-backlink">^ <a href="#cite_ref-Borovkov2013page535_175-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Borovkov2013page535_175-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlexander_A._Borovkov2013" class="citation book cs1">Alexander A. Borovkov (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=hRk_AAAAQBAJ"><i>Probability Theory</i></a>. Springer Science &amp; Business Media. p.&#160;535. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4471-5201-9" title="Special:BookSources/978-1-4471-5201-9"><bdi>978-1-4471-5201-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+Theory&amp;rft.pages=535&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-1-4471-5201-9&amp;rft.au=Alexander+A.+Borovkov&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DhRk_AAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GusakKukush2010page22-177"><span class="mw-cite-backlink"><b><a href="#cite_ref-GusakKukush2010page22_177-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGusakKukushKulikMishura2010">Gusak et al. (2010)</a>, p. 22</span> </li> <li id="cite_note-Doob1990page56-178"><span class="mw-cite-backlink"><b><a href="#cite_ref-Doob1990page56_178-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoseph_L._Doob1990" class="citation book cs1">Joseph L. Doob (1990). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NrsrAAAAYAAJ"><i>Stochastic processes</i></a>. Wiley. p.&#160;56.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+processes&amp;rft.pages=56&amp;rft.pub=Wiley&amp;rft.date=1990&amp;rft.au=Joseph+L.+Doob&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNrsrAAAAYAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Khoshnevisan2006page155-179"><span class="mw-cite-backlink"><b><a href="#cite_ref-Khoshnevisan2006page155_179-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavar_Khoshnevisan2006" class="citation book cs1">Davar Khoshnevisan (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XADpBwAAQBAJ"><i>Multiparameter Processes: An Introduction to Random Fields</i></a>. Springer Science &amp; Business Media. p.&#160;155. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-21631-7" title="Special:BookSources/978-0-387-21631-7"><bdi>978-0-387-21631-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Multiparameter+Processes%3A+An+Introduction+to+Random+Fields&amp;rft.pages=155&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-21631-7&amp;rft.au=Davar+Khoshnevisan&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXADpBwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Lapidoth-180"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lapidoth_180-0">^</a></b></span> <span class="reference-text">Lapidoth, Amos, <i>A Foundation in Digital Communication</i>, Cambridge University Press, 2009.</span> </li> <li id="cite_note-KunIlPark-181"><span class="mw-cite-backlink">^ <a href="#cite_ref-KunIlPark_181-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KunIlPark_181-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-KunIlPark_181-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">Kun Il Park, Fundamentals of Probability and Stochastic Processes with Applications to Communications, Springer, 2018, 978-3-319-68074-3</span> </li> <li id="cite_note-Whitt2006page78-182"><span class="mw-cite-backlink">^ <a href="#cite_ref-Whitt2006page78_182-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Whitt2006page78_182-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Whitt2006page78_182-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Whitt2006page78_182-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWard_Whitt2006" class="citation book cs1">Ward Whitt (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=LkQOBwAAQBAJ&amp;pg=PR5"><i>Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues</i></a>. Springer Science &amp; Business Media. pp.&#160;78–79. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-21748-2" title="Special:BookSources/978-0-387-21748-2"><bdi>978-0-387-21748-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic-Process+Limits%3A+An+Introduction+to+Stochastic-Process+Limits+and+Their+Application+to+Queues&amp;rft.pages=78-79&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-21748-2&amp;rft.au=Ward+Whitt&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLkQOBwAAQBAJ%26pg%3DPR5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GusakKukush2010page24-183"><span class="mw-cite-backlink">^ <a href="#cite_ref-GusakKukush2010page24_183-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GusakKukush2010page24_183-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFGusakKukushKulikMishura2010">Gusak et al. (2010)</a>, p. 24</span> </li> <li id="cite_note-Bogachev2007Vol2page53-184"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bogachev2007Vol2page53_184-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bogachev2007Vol2page53_184-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bogachev2007Vol2page53_184-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Bogachev2007Vol2page53_184-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVladimir_I._Bogachev2007" class="citation book cs1">Vladimir I. Bogachev (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CoSIe7h5mTsC"><i>Measure Theory (Volume 2)</i></a>. Springer Science &amp; Business Media. p.&#160;53. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-34514-5" title="Special:BookSources/978-3-540-34514-5"><bdi>978-3-540-34514-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Measure+Theory+%28Volume+2%29&amp;rft.pages=53&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2007&amp;rft.isbn=978-3-540-34514-5&amp;rft.au=Vladimir+I.+Bogachev&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCoSIe7h5mTsC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Klebaner2005page4-185"><span class="mw-cite-backlink">^ <a href="#cite_ref-Klebaner2005page4_185-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Klebaner2005page4_185-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Klebaner2005page4_185-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFima_C._Klebaner2005" class="citation book cs1">Fima C. Klebaner (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JYzW0uqQxB0C"><i>Introduction to Stochastic Calculus with Applications</i></a>. Imperial College Press. p.&#160;4. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-86094-555-7" title="Special:BookSources/978-1-86094-555-7"><bdi>978-1-86094-555-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Stochastic+Calculus+with+Applications&amp;rft.pages=4&amp;rft.pub=Imperial+College+Press&amp;rft.date=2005&amp;rft.isbn=978-1-86094-555-7&amp;rft.au=Fima+C.+Klebaner&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJYzW0uqQxB0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Asmussen2003page420-186"><span class="mw-cite-backlink">^ <a href="#cite_ref-Asmussen2003page420_186-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Asmussen2003page420_186-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSøren_Asmussen2003" class="citation book cs1">Søren Asmussen (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=BeYaTxesKy0C"><i>Applied Probability and Queues</i></a>. Springer Science &amp; Business Media. p.&#160;420. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-00211-8" title="Special:BookSources/978-0-387-00211-8"><bdi>978-0-387-00211-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Applied+Probability+and+Queues&amp;rft.pages=420&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2003&amp;rft.isbn=978-0-387-00211-8&amp;rft.au=S%C3%B8ren+Asmussen&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DBeYaTxesKy0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Billingsley2013page121-187"><span class="mw-cite-backlink">^ <a href="#cite_ref-Billingsley2013page121_187-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Billingsley2013page121_187-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Billingsley2013page121_187-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPatrick_Billingsley2013" class="citation book cs1">Patrick Billingsley (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6ItqtwaWZZQC"><i>Convergence of Probability Measures</i></a>. John Wiley &amp; Sons. p.&#160;121. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-62596-5" title="Special:BookSources/978-1-118-62596-5"><bdi>978-1-118-62596-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Convergence+of+Probability+Measures&amp;rft.pages=121&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2013&amp;rft.isbn=978-1-118-62596-5&amp;rft.au=Patrick+Billingsley&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6ItqtwaWZZQC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Bass2011page34-188"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bass2011page34_188-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichard_F._Bass2011" class="citation book cs1">Richard F. Bass (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Ll0T7PIkcKMC"><i>Stochastic Processes</i></a>. Cambridge University Press. p.&#160;34. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-139-50147-7" title="Special:BookSources/978-1-139-50147-7"><bdi>978-1-139-50147-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Processes&amp;rft.pages=34&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2011&amp;rft.isbn=978-1-139-50147-7&amp;rft.au=Richard+F.+Bass&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLl0T7PIkcKMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-BinghamKiesel2013page154-189"><span class="mw-cite-backlink"><b><a href="#cite_ref-BinghamKiesel2013page154_189-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNicholas_H._BinghamRüdiger_Kiesel2013" class="citation book cs1">Nicholas H. Bingham; Rüdiger Kiesel (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=AOIlBQAAQBAJ"><i>Risk-Neutral Valuation: Pricing and Hedging of Financial Derivatives</i></a>. Springer Science &amp; Business Media. p.&#160;154. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4471-3856-3" title="Special:BookSources/978-1-4471-3856-3"><bdi>978-1-4471-3856-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Risk-Neutral+Valuation%3A+Pricing+and+Hedging+of+Financial+Derivatives&amp;rft.pages=154&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-1-4471-3856-3&amp;rft.au=Nicholas+H.+Bingham&amp;rft.au=R%C3%BCdiger+Kiesel&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DAOIlBQAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Borovkov2013page532-190"><span class="mw-cite-backlink"><b><a href="#cite_ref-Borovkov2013page532_190-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlexander_A._Borovkov2013" class="citation book cs1">Alexander A. Borovkov (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=hRk_AAAAQBAJ"><i>Probability Theory</i></a>. Springer Science &amp; Business Media. p.&#160;532. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4471-5201-9" title="Special:BookSources/978-1-4471-5201-9"><bdi>978-1-4471-5201-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+Theory&amp;rft.pages=532&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-1-4471-5201-9&amp;rft.au=Alexander+A.+Borovkov&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DhRk_AAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Khoshnevisan2006page148to165-191"><span class="mw-cite-backlink"><b><a href="#cite_ref-Khoshnevisan2006page148to165_191-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavar_Khoshnevisan2006" class="citation book cs1">Davar Khoshnevisan (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XADpBwAAQBAJ"><i>Multiparameter Processes: An Introduction to Random Fields</i></a>. Springer Science &amp; Business Media. pp.&#160;148–165. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-21631-7" title="Special:BookSources/978-0-387-21631-7"><bdi>978-0-387-21631-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Multiparameter+Processes%3A+An+Introduction+to+Random+Fields&amp;rft.pages=148-165&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-21631-7&amp;rft.au=Davar+Khoshnevisan&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXADpBwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Todorovic2012page22-192"><span class="mw-cite-backlink"><b><a href="#cite_ref-Todorovic2012page22_192-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPetar_Todorovic2012" class="citation book cs1">Petar Todorovic (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XpjqBwAAQBAJ&amp;pg=PP5"><i>An Introduction to Stochastic Processes and Their Applications</i></a>. Springer Science &amp; Business Media. p.&#160;22. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4613-9742-7" title="Special:BookSources/978-1-4613-9742-7"><bdi>978-1-4613-9742-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Stochastic+Processes+and+Their+Applications&amp;rft.pages=22&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4613-9742-7&amp;rft.au=Petar+Todorovic&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXpjqBwAAQBAJ%26pg%3DPP5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Whitt2006page79-193"><span class="mw-cite-backlink"><b><a href="#cite_ref-Whitt2006page79_193-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWard_Whitt2006" class="citation book cs1">Ward Whitt (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=LkQOBwAAQBAJ&amp;pg=PR5"><i>Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues</i></a>. Springer Science &amp; Business Media. p.&#160;79. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-21748-2" title="Special:BookSources/978-0-387-21748-2"><bdi>978-0-387-21748-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic-Process+Limits%3A+An+Introduction+to+Stochastic-Process+Limits+and+Their+Application+to+Queues&amp;rft.pages=79&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-21748-2&amp;rft.au=Ward+Whitt&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLkQOBwAAQBAJ%26pg%3DPR5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Serfozo2009page2-194"><span class="mw-cite-backlink"><b><a href="#cite_ref-Serfozo2009page2_194-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichard_Serfozo2009" class="citation book cs1">Richard Serfozo (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JBBRiuxTN0QC"><i>Basics of Applied Stochastic Processes</i></a>. Springer Science &amp; Business Media. p.&#160;2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-89332-5" title="Special:BookSources/978-3-540-89332-5"><bdi>978-3-540-89332-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Basics+of+Applied+Stochastic+Processes&amp;rft.pages=2&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2009&amp;rft.isbn=978-3-540-89332-5&amp;rft.au=Richard+Serfozo&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJBBRiuxTN0QC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Rozanov2012page58-195"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rozanov2012page58_195-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFY.A._Rozanov2012" class="citation book cs1">Y.A. Rozanov (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wGUECAAAQBAJ"><i>Markov Random Fields</i></a>. Springer Science &amp; Business Media. p.&#160;58. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4613-8190-7" title="Special:BookSources/978-1-4613-8190-7"><bdi>978-1-4613-8190-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Markov+Random+Fields&amp;rft.pages=58&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4613-8190-7&amp;rft.au=Y.A.+Rozanov&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DwGUECAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Ross1996page235and358-196"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ross1996page235and358_196-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSheldon_M._Ross1996" class="citation book cs1">Sheldon M. Ross (1996). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ImUPAQAAMAAJ"><i>Stochastic processes</i></a>. Wiley. pp.&#160;235, 358. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-12062-9" title="Special:BookSources/978-0-471-12062-9"><bdi>978-0-471-12062-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+processes&amp;rft.pages=235%2C+358&amp;rft.pub=Wiley&amp;rft.date=1996&amp;rft.isbn=978-0-471-12062-9&amp;rft.au=Sheldon+M.+Ross&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DImUPAQAAMAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Florescu2014page373-197"><span class="mw-cite-backlink"><b><a href="#cite_ref-Florescu2014page373_197-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIonut_Florescu2014" class="citation book cs1">Ionut Florescu (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Z5xEBQAAQBAJ&amp;pg=PR22"><i>Probability and Stochastic Processes</i></a>. John Wiley &amp; Sons. pp.&#160;373, 374. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-59320-2" title="Special:BookSources/978-1-118-59320-2"><bdi>978-1-118-59320-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Stochastic+Processes&amp;rft.pages=373%2C+374&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2014&amp;rft.isbn=978-1-118-59320-2&amp;rft.au=Ionut+Florescu&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZ5xEBQAAQBAJ%26pg%3DPR22&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KarlinTaylor2012page49-198"><span class="mw-cite-backlink">^ <a href="#cite_ref-KarlinTaylor2012page49_198-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KarlinTaylor2012page49_198-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamuel_KarlinHoward_E._Taylor2012" class="citation book cs1">Samuel Karlin; Howard E. Taylor (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dSDxjX9nmmMC"><i>A First Course in Stochastic Processes</i></a>. Academic Press. p.&#160;49. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-057041-9" title="Special:BookSources/978-0-08-057041-9"><bdi>978-0-08-057041-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+Stochastic+Processes&amp;rft.pages=49&amp;rft.pub=Academic+Press&amp;rft.date=2012&amp;rft.isbn=978-0-08-057041-9&amp;rft.au=Samuel+Karlin&amp;rft.au=Howard+E.+Taylor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdSDxjX9nmmMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Asmussen2003page7-199"><span class="mw-cite-backlink">^ <a href="#cite_ref-Asmussen2003page7_199-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Asmussen2003page7_199-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSøren_Asmussen2003" class="citation book cs1">Søren Asmussen (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=BeYaTxesKy0C"><i>Applied Probability and Queues</i></a>. Springer Science &amp; Business Media. p.&#160;7. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-00211-8" title="Special:BookSources/978-0-387-00211-8"><bdi>978-0-387-00211-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Applied+Probability+and+Queues&amp;rft.pages=7&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2003&amp;rft.isbn=978-0-387-00211-8&amp;rft.au=S%C3%B8ren+Asmussen&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DBeYaTxesKy0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Parzen1999page188-200"><span class="mw-cite-backlink"><b><a href="#cite_ref-Parzen1999page188_200-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEmanuel_Parzen2015" class="citation book cs1">Emanuel Parzen (2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0mB2CQAAQBAJ"><i>Stochastic Processes</i></a>. Courier Dover Publications. p.&#160;188. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-79688-8" title="Special:BookSources/978-0-486-79688-8"><bdi>978-0-486-79688-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Processes&amp;rft.pages=188&amp;rft.pub=Courier+Dover+Publications&amp;rft.date=2015&amp;rft.isbn=978-0-486-79688-8&amp;rft.au=Emanuel+Parzen&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0mB2CQAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KarlinTaylor2012page29-201"><span class="mw-cite-backlink"><b><a href="#cite_ref-KarlinTaylor2012page29_201-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamuel_KarlinHoward_E._Taylor2012" class="citation book cs1">Samuel Karlin; Howard E. Taylor (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dSDxjX9nmmMC"><i>A First Course in Stochastic Processes</i></a>. Academic Press. pp.&#160;29, 30. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-057041-9" title="Special:BookSources/978-0-08-057041-9"><bdi>978-0-08-057041-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+Stochastic+Processes&amp;rft.pages=29%2C+30&amp;rft.pub=Academic+Press&amp;rft.date=2012&amp;rft.isbn=978-0-08-057041-9&amp;rft.au=Samuel+Karlin&amp;rft.au=Howard+E.+Taylor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdSDxjX9nmmMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Lamperti1977chap6-202"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lamperti1977chap6_202-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_Lamperti1977" class="citation book cs1">John Lamperti (1977). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Pd4cvgAACAAJ"><i>Stochastic processes: a survey of the mathematical theory</i></a>. Springer-Verlag. pp.&#160;106–121. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-90275-1" title="Special:BookSources/978-3-540-90275-1"><bdi>978-3-540-90275-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+processes%3A+a+survey+of+the+mathematical+theory&amp;rft.pages=106-121&amp;rft.pub=Springer-Verlag&amp;rft.date=1977&amp;rft.isbn=978-3-540-90275-1&amp;rft.au=John+Lamperti&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DPd4cvgAACAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Ross1996page174and231-203"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ross1996page174and231_203-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSheldon_M._Ross1996" class="citation book cs1">Sheldon M. Ross (1996). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ImUPAQAAMAAJ"><i>Stochastic processes</i></a>. Wiley. pp.&#160;174, 231. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-12062-9" title="Special:BookSources/978-0-471-12062-9"><bdi>978-0-471-12062-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+processes&amp;rft.pages=174%2C+231&amp;rft.pub=Wiley&amp;rft.date=1996&amp;rft.isbn=978-0-471-12062-9&amp;rft.au=Sheldon+M.+Ross&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DImUPAQAAMAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-MeynTweedie2009-204"><span class="mw-cite-backlink"><b><a href="#cite_ref-MeynTweedie2009_204-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSean_MeynRichard_L._Tweedie2009" class="citation book cs1">Sean Meyn; Richard L. Tweedie (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Md7RnYEPkJwC"><i>Markov Chains and Stochastic Stability</i></a>. Cambridge University Press. p.&#160;19. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-73182-9" title="Special:BookSources/978-0-521-73182-9"><bdi>978-0-521-73182-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Markov+Chains+and+Stochastic+Stability&amp;rft.pages=19&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2009&amp;rft.isbn=978-0-521-73182-9&amp;rft.au=Sean+Meyn&amp;rft.au=Richard+L.+Tweedie&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DMd7RnYEPkJwC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KarlinTaylor2012page47-205"><span class="mw-cite-backlink"><b><a href="#cite_ref-KarlinTaylor2012page47_205-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamuel_KarlinHoward_E._Taylor2012" class="citation book cs1">Samuel Karlin; Howard E. Taylor (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dSDxjX9nmmMC"><i>A First Course in Stochastic Processes</i></a>. Academic Press. p.&#160;47. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-057041-9" title="Special:BookSources/978-0-08-057041-9"><bdi>978-0-08-057041-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+Stochastic+Processes&amp;rft.pages=47&amp;rft.pub=Academic+Press&amp;rft.date=2012&amp;rft.isbn=978-0-08-057041-9&amp;rft.au=Samuel+Karlin&amp;rft.au=Howard+E.+Taylor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdSDxjX9nmmMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-RubinsteinKroese2011page225-206"><span class="mw-cite-backlink"><b><a href="#cite_ref-RubinsteinKroese2011page225_206-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReuven_Y._RubinsteinDirk_P._Kroese2011" class="citation book cs1">Reuven Y. Rubinstein; Dirk P. Kroese (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yWcvT80gQK4C"><i>Simulation and the Monte Carlo Method</i></a>. John Wiley &amp; Sons. p.&#160;225. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-21052-9" title="Special:BookSources/978-1-118-21052-9"><bdi>978-1-118-21052-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Simulation+and+the+Monte+Carlo+Method&amp;rft.pages=225&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2011&amp;rft.isbn=978-1-118-21052-9&amp;rft.au=Reuven+Y.+Rubinstein&amp;rft.au=Dirk+P.+Kroese&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyWcvT80gQK4C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GamermanLopes2006-207"><span class="mw-cite-backlink"><b><a href="#cite_ref-GamermanLopes2006_207-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDani_GamermanHedibert_F._Lopes2006" class="citation book cs1">Dani Gamerman; Hedibert F. Lopes (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yPvECi_L3bwC"><i>Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition</i></a>. CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-58488-587-0" title="Special:BookSources/978-1-58488-587-0"><bdi>978-1-58488-587-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Markov+Chain+Monte+Carlo%3A+Stochastic+Simulation+for+Bayesian+Inference%2C+Second+Edition&amp;rft.pub=CRC+Press&amp;rft.date=2006&amp;rft.isbn=978-1-58488-587-0&amp;rft.au=Dani+Gamerman&amp;rft.au=Hedibert+F.+Lopes&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyPvECi_L3bwC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Rozanov2012page61-208"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rozanov2012page61_208-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFY.A._Rozanov2012" class="citation book cs1">Y.A. Rozanov (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wGUECAAAQBAJ"><i>Markov Random Fields</i></a>. Springer Science &amp; Business Media. p.&#160;61. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4613-8190-7" title="Special:BookSources/978-1-4613-8190-7"><bdi>978-1-4613-8190-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Markov+Random+Fields&amp;rft.pages=61&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4613-8190-7&amp;rft.au=Y.A.+Rozanov&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DwGUECAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-209"><span class="mw-cite-backlink"><b><a href="#cite_ref-209">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDonald_L._SnyderMichael_I._Miller2012" class="citation book cs1">Donald L. Snyder; Michael I. Miller (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=c_3UBwAAQBAJ"><i>Random Point Processes in Time and Space</i></a>. Springer Science &amp; Business Media. p.&#160;27. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-3166-0" title="Special:BookSources/978-1-4612-3166-0"><bdi>978-1-4612-3166-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Point+Processes+in+Time+and+Space&amp;rft.pages=27&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4612-3166-0&amp;rft.au=Donald+L.+Snyder&amp;rft.au=Michael+I.+Miller&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dc_3UBwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Bremaud2013page253-210"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bremaud2013page253_210-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPierre_Bremaud2013" class="citation book cs1">Pierre Bremaud (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jrPVBwAAQBAJ"><i>Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues</i></a>. Springer Science &amp; Business Media. p.&#160;253. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4757-3124-8" title="Special:BookSources/978-1-4757-3124-8"><bdi>978-1-4757-3124-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Markov+Chains%3A+Gibbs+Fields%2C+Monte+Carlo+Simulation%2C+and+Queues&amp;rft.pages=253&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-1-4757-3124-8&amp;rft.au=Pierre+Bremaud&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjrPVBwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Klebaner2005page65-211"><span class="mw-cite-backlink">^ <a href="#cite_ref-Klebaner2005page65_211-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Klebaner2005page65_211-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Klebaner2005page65_211-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFima_C._Klebaner2005" class="citation book cs1">Fima C. Klebaner (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JYzW0uqQxB0C"><i>Introduction to Stochastic Calculus with Applications</i></a>. Imperial College Press. p.&#160;65. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-86094-555-7" title="Special:BookSources/978-1-86094-555-7"><bdi>978-1-86094-555-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Stochastic+Calculus+with+Applications&amp;rft.pages=65&amp;rft.pub=Imperial+College+Press&amp;rft.date=2005&amp;rft.isbn=978-1-86094-555-7&amp;rft.au=Fima+C.+Klebaner&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJYzW0uqQxB0C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KaratzasShreve2014page11-212"><span class="mw-cite-backlink">^ <a href="#cite_ref-KaratzasShreve2014page11_212-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KaratzasShreve2014page11_212-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-KaratzasShreve2014page11_212-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIoannis_KaratzasSteven_Shreve1991" class="citation book cs1">Ioannis Karatzas; Steven Shreve (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=w0SgBQAAQBAJ&amp;pg=PT5"><i>Brownian Motion and Stochastic Calculus</i></a>. Springer. p.&#160;11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-0949-2" title="Special:BookSources/978-1-4612-0949-2"><bdi>978-1-4612-0949-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Brownian+Motion+and+Stochastic+Calculus&amp;rft.pages=11&amp;rft.pub=Springer&amp;rft.date=1991&amp;rft.isbn=978-1-4612-0949-2&amp;rft.au=Ioannis+Karatzas&amp;rft.au=Steven+Shreve&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dw0SgBQAAQBAJ%26pg%3DPT5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Doob1990page292-213"><span class="mw-cite-backlink"><b><a href="#cite_ref-Doob1990page292_213-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoseph_L._Doob1990" class="citation book cs1">Joseph L. Doob (1990). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NrsrAAAAYAAJ"><i>Stochastic processes</i></a>. Wiley. pp.&#160;292, 293.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+processes&amp;rft.pages=292%2C+293&amp;rft.pub=Wiley&amp;rft.date=1990&amp;rft.au=Joseph+L.+Doob&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNrsrAAAAYAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Pisier2016-214"><span class="mw-cite-backlink"><b><a href="#cite_ref-Pisier2016_214-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGilles_Pisier2016" class="citation book cs1">Gilles Pisier (2016). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=n3JNDAAAQBAJ&amp;pg=PR4"><i>Martingales in Banach Spaces</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-316-67946-3" title="Special:BookSources/978-1-316-67946-3"><bdi>978-1-316-67946-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Martingales+in+Banach+Spaces&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2016&amp;rft.isbn=978-1-316-67946-3&amp;rft.au=Gilles+Pisier&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dn3JNDAAAQBAJ%26pg%3DPR4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Steele2012page12-215"><span class="mw-cite-backlink">^ <a href="#cite_ref-Steele2012page12_215-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Steele2012page12_215-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ._Michael_Steele2012" class="citation book cs1">J. Michael Steele (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=fsgkBAAAQBAJ&amp;pg=PR4"><i>Stochastic Calculus and Financial Applications</i></a>. Springer Science &amp; Business Media. pp.&#160;12, 13. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4684-9305-4" title="Special:BookSources/978-1-4684-9305-4"><bdi>978-1-4684-9305-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Calculus+and+Financial+Applications&amp;rft.pages=12%2C+13&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4684-9305-4&amp;rft.au=J.+Michael+Steele&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DfsgkBAAAQBAJ%26pg%3DPR4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-HallHeyde2014page2-216"><span class="mw-cite-backlink">^ <a href="#cite_ref-HallHeyde2014page2_216-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HallHeyde2014page2_216-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFP._HallC._C._Heyde2014" class="citation book cs1">P. Hall; <a href="/wiki/Chris_Heyde" title="Chris Heyde">C. C. Heyde</a> (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=gqriBQAAQBAJ&amp;pg=PR10"><i>Martingale Limit Theory and Its Application</i></a>. Elsevier Science. p.&#160;2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4832-6322-9" title="Special:BookSources/978-1-4832-6322-9"><bdi>978-1-4832-6322-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Martingale+Limit+Theory+and+Its+Application&amp;rft.pages=2&amp;rft.pub=Elsevier+Science&amp;rft.date=2014&amp;rft.isbn=978-1-4832-6322-9&amp;rft.au=P.+Hall&amp;rft.au=C.+C.+Heyde&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DgqriBQAAQBAJ%26pg%3DPR10&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Steele2012page115-217"><span class="mw-cite-backlink"><b><a href="#cite_ref-Steele2012page115_217-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ._Michael_Steele2012" class="citation book cs1">J. Michael Steele (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=fsgkBAAAQBAJ&amp;pg=PR4"><i>Stochastic Calculus and Financial Applications</i></a>. Springer Science &amp; Business Media. p.&#160;115. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4684-9305-4" title="Special:BookSources/978-1-4684-9305-4"><bdi>978-1-4684-9305-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Calculus+and+Financial+Applications&amp;rft.pages=115&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4684-9305-4&amp;rft.au=J.+Michael+Steele&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DfsgkBAAAQBAJ%26pg%3DPR4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Ross1996page295-218"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ross1996page295_218-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSheldon_M._Ross1996" class="citation book cs1">Sheldon M. Ross (1996). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ImUPAQAAMAAJ"><i>Stochastic processes</i></a>. Wiley. p.&#160;295. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-12062-9" title="Special:BookSources/978-0-471-12062-9"><bdi>978-0-471-12062-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+processes&amp;rft.pages=295&amp;rft.pub=Wiley&amp;rft.date=1996&amp;rft.isbn=978-0-471-12062-9&amp;rft.au=Sheldon+M.+Ross&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DImUPAQAAMAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Steele2012page11-219"><span class="mw-cite-backlink">^ <a href="#cite_ref-Steele2012page11_219-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Steele2012page11_219-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ._Michael_Steele2012" class="citation book cs1">J. Michael Steele (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=fsgkBAAAQBAJ&amp;pg=PR4"><i>Stochastic Calculus and Financial Applications</i></a>. Springer Science &amp; Business Media. p.&#160;11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4684-9305-4" title="Special:BookSources/978-1-4684-9305-4"><bdi>978-1-4684-9305-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Calculus+and+Financial+Applications&amp;rft.pages=11&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4684-9305-4&amp;rft.au=J.+Michael+Steele&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DfsgkBAAAQBAJ%26pg%3DPR4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Kallenberg2002page96-220"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kallenberg2002page96_220-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOlav_Kallenberg2002" class="citation book cs1">Olav Kallenberg (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=L6fhXh13OyMC"><i>Foundations of Modern Probability</i></a>. Springer Science &amp; Business Media. p.&#160;96. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-95313-7" title="Special:BookSources/978-0-387-95313-7"><bdi>978-0-387-95313-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Modern+Probability&amp;rft.pages=96&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2002&amp;rft.isbn=978-0-387-95313-7&amp;rft.au=Olav+Kallenberg&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DL6fhXh13OyMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Steele2012page371-221"><span class="mw-cite-backlink"><b><a href="#cite_ref-Steele2012page371_221-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ._Michael_Steele2012" class="citation book cs1">J. Michael Steele (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=fsgkBAAAQBAJ&amp;pg=PR4"><i>Stochastic Calculus and Financial Applications</i></a>. Springer Science &amp; Business Media. p.&#160;371. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4684-9305-4" title="Special:BookSources/978-1-4684-9305-4"><bdi>978-1-4684-9305-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Calculus+and+Financial+Applications&amp;rft.pages=371&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4684-9305-4&amp;rft.au=J.+Michael+Steele&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DfsgkBAAAQBAJ%26pg%3DPR4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Steele2012page22-222"><span class="mw-cite-backlink"><b><a href="#cite_ref-Steele2012page22_222-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ._Michael_Steele2012" class="citation book cs1">J. Michael Steele (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=fsgkBAAAQBAJ&amp;pg=PR4"><i>Stochastic Calculus and Financial Applications</i></a>. Springer Science &amp; Business Media. p.&#160;22. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4684-9305-4" title="Special:BookSources/978-1-4684-9305-4"><bdi>978-1-4684-9305-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Calculus+and+Financial+Applications&amp;rft.pages=22&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4684-9305-4&amp;rft.au=J.+Michael+Steele&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DfsgkBAAAQBAJ%26pg%3DPR4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GrimmettStirzaker2001page336-223"><span class="mw-cite-backlink"><b><a href="#cite_ref-GrimmettStirzaker2001page336_223-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeoffrey_GrimmettDavid_Stirzaker2001" class="citation book cs1">Geoffrey Grimmett; David Stirzaker (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=G3ig-0M4wSIC"><i>Probability and Random Processes</i></a>. OUP Oxford. p.&#160;336. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-857222-0" title="Special:BookSources/978-0-19-857222-0"><bdi>978-0-19-857222-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Random+Processes&amp;rft.pages=336&amp;rft.pub=OUP+Oxford&amp;rft.date=2001&amp;rft.isbn=978-0-19-857222-0&amp;rft.au=Geoffrey+Grimmett&amp;rft.au=David+Stirzaker&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DG3ig-0M4wSIC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GlassermanKou2006-224"><span class="mw-cite-backlink"><b><a href="#cite_ref-GlassermanKou2006_224-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGlassermanKou2006" class="citation journal cs1">Glasserman, Paul; Kou, Steven (2006). "A Conversation with Chris Heyde". <i>Statistical Science</i>. <b>21</b> (2): 292, 293. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0609294">math/0609294</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006math......9294G">2006math......9294G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1214%2F088342306000000088">10.1214/088342306000000088</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0883-4237">0883-4237</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:62552177">62552177</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Statistical+Science&amp;rft.atitle=A+Conversation+with+Chris+Heyde&amp;rft.volume=21&amp;rft.issue=2&amp;rft.pages=292%2C+293&amp;rft.date=2006&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A62552177%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2006math......9294G&amp;rft_id=info%3Aarxiv%2Fmath%2F0609294&amp;rft.issn=0883-4237&amp;rft_id=info%3Adoi%2F10.1214%2F088342306000000088&amp;rft.aulast=Glasserman&amp;rft.aufirst=Paul&amp;rft.au=Kou%2C+Steven&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-BaccelliBremaud2013-225"><span class="mw-cite-backlink"><b><a href="#cite_ref-BaccelliBremaud2013_225-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrancois_BaccelliPierre_Bremaud2013" class="citation book cs1">Francois Baccelli; Pierre Bremaud (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=DH3pCAAAQBAJ&amp;pg=PR2"><i>Elements of Queueing Theory: Palm Martingale Calculus and Stochastic Recurrences</i></a>. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-662-11657-9" title="Special:BookSources/978-3-662-11657-9"><bdi>978-3-662-11657-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Queueing+Theory%3A+Palm+Martingale+Calculus+and+Stochastic+Recurrences&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-3-662-11657-9&amp;rft.au=Francois+Baccelli&amp;rft.au=Pierre+Bremaud&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DDH3pCAAAQBAJ%26pg%3DPR2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-HallHeyde2014pageX-226"><span class="mw-cite-backlink"><b><a href="#cite_ref-HallHeyde2014pageX_226-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFP._HallC._C._Heyde2014" class="citation book cs1">P. Hall; C. C. Heyde (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=gqriBQAAQBAJ&amp;pg=PR10"><i>Martingale Limit Theory and Its Application</i></a>. Elsevier Science. p.&#160;x. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4832-6322-9" title="Special:BookSources/978-1-4832-6322-9"><bdi>978-1-4832-6322-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Martingale+Limit+Theory+and+Its+Application&amp;rft.pages=x&amp;rft.pub=Elsevier+Science&amp;rft.date=2014&amp;rft.isbn=978-1-4832-6322-9&amp;rft.au=P.+Hall&amp;rft.au=C.+C.+Heyde&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DgqriBQAAQBAJ%26pg%3DPR10&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Bertoin1998pageVIII-227"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bertoin1998pageVIII_227-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bertoin1998pageVIII_227-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bertoin1998pageVIII_227-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Bertoin1998pageVIII_227-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJean_Bertoin1998" class="citation book cs1">Jean Bertoin (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ftcsQgMp5cUC&amp;pg=PR8"><i>Lévy Processes</i></a>. Cambridge University Press. p.&#160;viii. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-64632-1" title="Special:BookSources/978-0-521-64632-1"><bdi>978-0-521-64632-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=L%C3%A9vy+Processes&amp;rft.pages=viii&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1998&amp;rft.isbn=978-0-521-64632-1&amp;rft.au=Jean+Bertoin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DftcsQgMp5cUC%26pg%3DPR8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Applebaum2004page1336-228"><span class="mw-cite-backlink">^ <a href="#cite_ref-Applebaum2004page1336_228-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Applebaum2004page1336_228-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Applebaum2004page1336_228-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApplebaum2004" class="citation journal cs1">Applebaum, David (2004). "Lévy processes: From probability to finance and quantum groups". <i>Notices of the AMS</i>. <b>51</b> (11): 1336.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+AMS&amp;rft.atitle=L%C3%A9vy+processes%3A+From+probability+to+finance+and+quantum+groups&amp;rft.volume=51&amp;rft.issue=11&amp;rft.pages=1336&amp;rft.date=2004&amp;rft.aulast=Applebaum&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-ApplebaumBook2004page69-229"><span class="mw-cite-backlink"><b><a href="#cite_ref-ApplebaumBook2004page69_229-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Applebaum2004" class="citation book cs1">David Applebaum (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=q7eDUjdJxIkC"><i>Lévy Processes and Stochastic Calculus</i></a>. Cambridge University Press. p.&#160;69. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-83263-2" title="Special:BookSources/978-0-521-83263-2"><bdi>978-0-521-83263-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=L%C3%A9vy+Processes+and+Stochastic+Calculus&amp;rft.pages=69&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2004&amp;rft.isbn=978-0-521-83263-2&amp;rft.au=David+Applebaum&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dq7eDUjdJxIkC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KoralovSinai2007page171-230"><span class="mw-cite-backlink"><b><a href="#cite_ref-KoralovSinai2007page171_230-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeonid_KoralovYakov_G._Sinai2007" class="citation book cs1">Leonid Koralov; Yakov G. Sinai (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=tlWOphOFRgwC"><i>Theory of Probability and Random Processes</i></a>. Springer Science &amp; Business Media. p.&#160;171. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-68829-7" title="Special:BookSources/978-3-540-68829-7"><bdi>978-3-540-68829-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+Probability+and+Random+Processes&amp;rft.pages=171&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2007&amp;rft.isbn=978-3-540-68829-7&amp;rft.au=Leonid+Koralov&amp;rft.au=Yakov+G.+Sinai&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DtlWOphOFRgwC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-ApplebaumBook2004page19-231"><span class="mw-cite-backlink"><b><a href="#cite_ref-ApplebaumBook2004page19_231-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Applebaum2004" class="citation book cs1">David Applebaum (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=q7eDUjdJxIkC"><i>Lévy Processes and Stochastic Calculus</i></a>. Cambridge University Press. p.&#160;19. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-83263-2" title="Special:BookSources/978-0-521-83263-2"><bdi>978-0-521-83263-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=L%C3%A9vy+Processes+and+Stochastic+Calculus&amp;rft.pages=19&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2004&amp;rft.isbn=978-0-521-83263-2&amp;rft.au=David+Applebaum&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dq7eDUjdJxIkC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-ChiuStoyan2013page109-232"><span class="mw-cite-backlink"><b><a href="#cite_ref-ChiuStoyan2013page109_232-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSung_Nok_ChiuDietrich_StoyanWilfrid_S._KendallJoseph_Mecke2013" class="citation book cs1">Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=825NfM6Nc-EC"><i>Stochastic Geometry and Its Applications</i></a>. John Wiley &amp; Sons. p.&#160;109. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-65825-3" title="Special:BookSources/978-1-118-65825-3"><bdi>978-1-118-65825-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Geometry+and+Its+Applications&amp;rft.pages=109&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2013&amp;rft.isbn=978-1-118-65825-3&amp;rft.au=Sung+Nok+Chiu&amp;rft.au=Dietrich+Stoyan&amp;rft.au=Wilfrid+S.+Kendall&amp;rft.au=Joseph+Mecke&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D825NfM6Nc-EC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-ChiuStoyan2013page108-233"><span class="mw-cite-backlink"><b><a href="#cite_ref-ChiuStoyan2013page108_233-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSung_Nok_ChiuDietrich_StoyanWilfrid_S._KendallJoseph_Mecke2013" class="citation book cs1">Sung Nok Chiu; Dietrich Stoyan; Wilfrid S. Kendall; Joseph Mecke (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=825NfM6Nc-EC"><i>Stochastic Geometry and Its Applications</i></a>. John Wiley &amp; Sons. p.&#160;108. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-65825-3" title="Special:BookSources/978-1-118-65825-3"><bdi>978-1-118-65825-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Geometry+and+Its+Applications&amp;rft.pages=108&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2013&amp;rft.isbn=978-1-118-65825-3&amp;rft.au=Sung+Nok+Chiu&amp;rft.au=Dietrich+Stoyan&amp;rft.au=Wilfrid+S.+Kendall&amp;rft.au=Joseph+Mecke&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D825NfM6Nc-EC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Haenggi2013page10-234"><span class="mw-cite-backlink"><b><a href="#cite_ref-Haenggi2013page10_234-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartin_Haenggi2013" class="citation book cs1">Martin Haenggi (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CLtDhblwWEgC"><i>Stochastic Geometry for Wireless Networks</i></a>. Cambridge University Press. p.&#160;10. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-01469-5" title="Special:BookSources/978-1-107-01469-5"><bdi>978-1-107-01469-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Geometry+for+Wireless+Networks&amp;rft.pages=10&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2013&amp;rft.isbn=978-1-107-01469-5&amp;rft.au=Martin+Haenggi&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCLtDhblwWEgC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-DaleyVere-Jones2006page194-235"><span class="mw-cite-backlink"><b><a href="#cite_ref-DaleyVere-Jones2006page194_235-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD.J._DaleyD._Vere-Jones2006" class="citation book cs1">D.J. Daley; D. Vere-Jones (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6Sv4BwAAQBAJ"><i>An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods</i></a>. Springer Science &amp; Business Media. p.&#160;194. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-21564-8" title="Special:BookSources/978-0-387-21564-8"><bdi>978-0-387-21564-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+Theory+of+Point+Processes%3A+Volume+I%3A+Elementary+Theory+and+Methods&amp;rft.pages=194&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-21564-8&amp;rft.au=D.J.+Daley&amp;rft.au=D.+Vere-Jones&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6Sv4BwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-CoxIsham1980page3-236"><span class="mw-cite-backlink">^ <a href="#cite_ref-CoxIsham1980page3_236-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-CoxIsham1980page3_236-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-CoxIsham1980page3_236-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCoxIsham1980" class="citation book cs1"><a href="/wiki/David_Cox_(statistician)" title="David Cox (statistician)">Cox, D. R.</a>; <a href="/wiki/Valerie_Isham" title="Valerie Isham">Isham, Valerie</a> (1980). <a href="/wiki/Point_Processes" title="Point Processes"><i>Point Processes</i></a>. CRC Press. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=KWF2xY6s3PoC&amp;pg=PA3">p. 3</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-412-21910-8" title="Special:BookSources/978-0-412-21910-8"><bdi>978-0-412-21910-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Point+Processes&amp;rft.pages=p.+3&amp;rft.pub=CRC+Press&amp;rft.date=1980&amp;rft.isbn=978-0-412-21910-8&amp;rft.aulast=Cox&amp;rft.aufirst=D.+R.&amp;rft.au=Isham%2C+Valerie&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Kingman1992page8-237"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kingman1992page8_237-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ._F._C._Kingman1992" class="citation book cs1">J. F. C. Kingman (1992). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VEiM-OtwDHkC"><i>Poisson Processes</i></a>. Clarendon Press. p.&#160;8. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-159124-2" title="Special:BookSources/978-0-19-159124-2"><bdi>978-0-19-159124-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Poisson+Processes&amp;rft.pages=8&amp;rft.pub=Clarendon+Press&amp;rft.date=1992&amp;rft.isbn=978-0-19-159124-2&amp;rft.au=J.+F.+C.+Kingman&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVEiM-OtwDHkC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-MollerWaagepetersen2003page7-238"><span class="mw-cite-backlink"><b><a href="#cite_ref-MollerWaagepetersen2003page7_238-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJesper_MollerRasmus_Plenge_Waagepetersen2003" class="citation book cs1">Jesper Moller; Rasmus Plenge Waagepetersen (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dBNOHvElXZ4C"><i>Statistical Inference and Simulation for Spatial Point Processes</i></a>. CRC Press. p.&#160;7. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-203-49693-0" title="Special:BookSources/978-0-203-49693-0"><bdi>978-0-203-49693-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Statistical+Inference+and+Simulation+for+Spatial+Point+Processes&amp;rft.pages=7&amp;rft.pub=CRC+Press&amp;rft.date=2003&amp;rft.isbn=978-0-203-49693-0&amp;rft.au=Jesper+Moller&amp;rft.au=Rasmus+Plenge+Waagepetersen&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdBNOHvElXZ4C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KarlinTaylor2012page31-240"><span class="mw-cite-backlink"><b><a href="#cite_ref-KarlinTaylor2012page31_240-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamuel_KarlinHoward_E._Taylor2012" class="citation book cs1">Samuel Karlin; Howard E. Taylor (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dSDxjX9nmmMC"><i>A First Course in Stochastic Processes</i></a>. Academic Press. p.&#160;31. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-08-057041-9" title="Special:BookSources/978-0-08-057041-9"><bdi>978-0-08-057041-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+First+Course+in+Stochastic+Processes&amp;rft.pages=31&amp;rft.pub=Academic+Press&amp;rft.date=2012&amp;rft.isbn=978-0-08-057041-9&amp;rft.au=Samuel+Karlin&amp;rft.au=Howard+E.+Taylor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdSDxjX9nmmMC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Schmidt2014page99-241"><span class="mw-cite-backlink"><b><a href="#cite_ref-Schmidt2014page99_241-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVolker_Schmidt2014" class="citation book cs1">Volker Schmidt (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=brsUBQAAQBAJ&amp;pg=PR5"><i>Stochastic Geometry, Spatial Statistics and Random Fields: Models and Algorithms</i></a>. Springer. p.&#160;99. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-10064-7" title="Special:BookSources/978-3-319-10064-7"><bdi>978-3-319-10064-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Geometry%2C+Spatial+Statistics+and+Random+Fields%3A+Models+and+Algorithms&amp;rft.pages=99&amp;rft.pub=Springer&amp;rft.date=2014&amp;rft.isbn=978-3-319-10064-7&amp;rft.au=Volker+Schmidt&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DbrsUBQAAQBAJ%26pg%3DPR5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-DaleyVere-Jones200-242"><span class="mw-cite-backlink"><b><a href="#cite_ref-DaleyVere-Jones200_242-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD.J._DaleyD._Vere-Jones2006" class="citation book cs1">D.J. Daley; D. Vere-Jones (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6Sv4BwAAQBAJ"><i>An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods</i></a>. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-21564-8" title="Special:BookSources/978-0-387-21564-8"><bdi>978-0-387-21564-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+Theory+of+Point+Processes%3A+Volume+I%3A+Elementary+Theory+and+Methods&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-21564-8&amp;rft.au=D.J.+Daley&amp;rft.au=D.+Vere-Jones&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6Sv4BwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-David1955-243"><span class="mw-cite-backlink"><b><a href="#cite_ref-David1955_243-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid1955" class="citation journal cs1">David, F. N. (1955). "Studies in the History of Probability and Statistics I. Dicing and Gaming (A Note on the History of Probability)". <i>Biometrika</i>. <b>42</b> (1/2): 1–15. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2333419">10.2307/2333419</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0006-3444">0006-3444</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2333419">2333419</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biometrika&amp;rft.atitle=Studies+in+the+History+of+Probability+and+Statistics+I.+Dicing+and+Gaming+%28A+Note+on+the+History+of+Probability%29&amp;rft.volume=42&amp;rft.issue=1%2F2&amp;rft.pages=1-15&amp;rft.date=1955&amp;rft.issn=0006-3444&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2333419%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F2333419&amp;rft.aulast=David&amp;rft.aufirst=F.+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Maistrov2014page1-244"><span class="mw-cite-backlink"><b><a href="#cite_ref-Maistrov2014page1_244-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFL._E._Maistrov2014" class="citation book cs1">L. E. Maistrov (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=2ZbiBQAAQBAJ&amp;pg=PR9"><i>Probability Theory: A Historical Sketch</i></a>. Elsevier Science. p.&#160;1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4832-1863-2" title="Special:BookSources/978-1-4832-1863-2"><bdi>978-1-4832-1863-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+Theory%3A+A+Historical+Sketch&amp;rft.pages=1&amp;rft.pub=Elsevier+Science&amp;rft.date=2014&amp;rft.isbn=978-1-4832-1863-2&amp;rft.au=L.+E.+Maistrov&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D2ZbiBQAAQBAJ%26pg%3DPR9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Seneta2006page1-245"><span class="mw-cite-backlink">^ <a href="#cite_ref-Seneta2006page1_245-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Seneta2006page1_245-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSeneta2006" class="citation book cs1"><a href="/wiki/Eugene_Seneta" title="Eugene Seneta">Seneta, E.</a> (2006). "Probability, History of". <i>Encyclopedia of Statistical Sciences</i>. p.&#160;1. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F0471667196.ess2065.pub2">10.1002/0471667196.ess2065.pub2</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0471667193" title="Special:BookSources/978-0471667193"><bdi>978-0471667193</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Probability%2C+History+of&amp;rft.btitle=Encyclopedia+of+Statistical+Sciences&amp;rft.pages=1&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1002%2F0471667196.ess2065.pub2&amp;rft.isbn=978-0471667193&amp;rft.aulast=Seneta&amp;rft.aufirst=E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Tabak2014page24to26-246"><span class="mw-cite-backlink"><b><a href="#cite_ref-Tabak2014page24to26_246-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_Tabak2014" class="citation book cs1">John Tabak (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=h3WVqBPHboAC"><i>Probability and Statistics: The Science of Uncertainty</i></a>. Infobase Publishing. pp.&#160;24–26. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8160-6873-9" title="Special:BookSources/978-0-8160-6873-9"><bdi>978-0-8160-6873-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Statistics%3A+The+Science+of+Uncertainty&amp;rft.pages=24-26&amp;rft.pub=Infobase+Publishing&amp;rft.date=2014&amp;rft.isbn=978-0-8160-6873-9&amp;rft.au=John+Tabak&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dh3WVqBPHboAC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Bellhouse2005-247"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bellhouse2005_247-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBellhouse2005" class="citation journal cs1">Bellhouse, David (2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.hm.2004.04.001">"Decoding Cardano's Liber de Ludo Aleae"</a>. <i>Historia Mathematica</i>. <b>32</b> (2): 180–202. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.hm.2004.04.001">10.1016/j.hm.2004.04.001</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0315-0860">0315-0860</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=Decoding+Cardano%27s+Liber+de+Ludo+Aleae&amp;rft.volume=32&amp;rft.issue=2&amp;rft.pages=180-202&amp;rft.date=2005&amp;rft_id=info%3Adoi%2F10.1016%2Fj.hm.2004.04.001&amp;rft.issn=0315-0860&amp;rft.aulast=Bellhouse&amp;rft.aufirst=David&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.hm.2004.04.001&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Hald2005page221-248"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hald2005page221_248-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnders_Hald2005" class="citation book cs1">Anders Hald (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pOQy6-qnVx8C"><i>A History of Probability and Statistics and Their Applications before 1750</i></a>. John Wiley &amp; Sons. p.&#160;221. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-72517-6" title="Special:BookSources/978-0-471-72517-6"><bdi>978-0-471-72517-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Probability+and+Statistics+and+Their+Applications+before+1750&amp;rft.pages=221&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2005&amp;rft.isbn=978-0-471-72517-6&amp;rft.au=Anders+Hald&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpOQy6-qnVx8C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Maistrov2014page56-250"><span class="mw-cite-backlink"><b><a href="#cite_ref-Maistrov2014page56_250-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFL._E._Maistrov2014" class="citation book cs1">L. E. Maistrov (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=2ZbiBQAAQBAJ&amp;pg=PR9"><i>Probability Theory: A Historical Sketch</i></a>. Elsevier Science. p.&#160;56. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4832-1863-2" title="Special:BookSources/978-1-4832-1863-2"><bdi>978-1-4832-1863-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+Theory%3A+A+Historical+Sketch&amp;rft.pages=56&amp;rft.pub=Elsevier+Science&amp;rft.date=2014&amp;rft.isbn=978-1-4832-1863-2&amp;rft.au=L.+E.+Maistrov&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D2ZbiBQAAQBAJ%26pg%3DPR9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Tabak2014page37-251"><span class="mw-cite-backlink"><b><a href="#cite_ref-Tabak2014page37_251-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_Tabak2014" class="citation book cs1">John Tabak (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=h3WVqBPHboAC"><i>Probability and Statistics: The Science of Uncertainty</i></a>. Infobase Publishing. p.&#160;37. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8160-6873-9" title="Special:BookSources/978-0-8160-6873-9"><bdi>978-0-8160-6873-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Statistics%3A+The+Science+of+Uncertainty&amp;rft.pages=37&amp;rft.pub=Infobase+Publishing&amp;rft.date=2014&amp;rft.isbn=978-0-8160-6873-9&amp;rft.au=John+Tabak&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dh3WVqBPHboAC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Chung1998-252"><span class="mw-cite-backlink">^ <a href="#cite_ref-Chung1998_252-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Chung1998_252-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChung1998" class="citation journal cs1">Chung, Kai Lai (1998). "Probability and Doob". <i>The American Mathematical Monthly</i>. <b>105</b> (1): 28–35. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2589523">10.2307/2589523</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0002-9890">0002-9890</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2589523">2589523</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=Probability+and+Doob&amp;rft.volume=105&amp;rft.issue=1&amp;rft.pages=28-35&amp;rft.date=1998&amp;rft.issn=0002-9890&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2589523%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F2589523&amp;rft.aulast=Chung&amp;rft.aufirst=Kai+Lai&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Bingham2000-253"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bingham2000_253-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bingham2000_253-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bingham2000_253-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Bingham2000_253-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Bingham2000_253-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Bingham2000_253-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBingham2000" class="citation journal cs1">Bingham, N. (2000). "Studies in the history of probability and statistics XLVI. Measure into probability: from Lebesgue to Kolmogorov". <i>Biometrika</i>. <b>87</b> (1): 145–156. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbiomet%2F87.1.145">10.1093/biomet/87.1.145</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0006-3444">0006-3444</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biometrika&amp;rft.atitle=Studies+in+the+history+of+probability+and+statistics+XLVI.+Measure+into+probability%3A+from+Lebesgue+to+Kolmogorov&amp;rft.volume=87&amp;rft.issue=1&amp;rft.pages=145-156&amp;rft.date=2000&amp;rft_id=info%3Adoi%2F10.1093%2Fbiomet%2F87.1.145&amp;rft.issn=0006-3444&amp;rft.aulast=Bingham&amp;rft.aufirst=N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-BenziBenzi2007-254"><span class="mw-cite-backlink">^ <a href="#cite_ref-BenziBenzi2007_254-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BenziBenzi2007_254-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenziBenziSeneta2007" class="citation journal cs1">Benzi, Margherita; Benzi, Michele; Seneta, Eugene (2007). "Francesco Paolo Cantelli. b. 20 December 1875 d. 21 July 1966". <i>International Statistical Review</i>. <b>75</b> (2): 128. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1751-5823.2007.00009.x">10.1111/j.1751-5823.2007.00009.x</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0306-7734">0306-7734</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118011380">118011380</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Statistical+Review&amp;rft.atitle=Francesco+Paolo+Cantelli.+b.+20+December+1875+d.+21+July+1966&amp;rft.volume=75&amp;rft.issue=2&amp;rft.pages=128&amp;rft.date=2007&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118011380%23id-name%3DS2CID&amp;rft.issn=0306-7734&amp;rft_id=info%3Adoi%2F10.1111%2Fj.1751-5823.2007.00009.x&amp;rft.aulast=Benzi&amp;rft.aufirst=Margherita&amp;rft.au=Benzi%2C+Michele&amp;rft.au=Seneta%2C+Eugene&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Doob1996-256"><span class="mw-cite-backlink"><b><a href="#cite_ref-Doob1996_256-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDoob1996" class="citation journal cs1">Doob, Joseph L. (1996). "The Development of Rigor in Mathematical Probability (1900-1950)". <i>The American Mathematical Monthly</i>. <b>103</b> (7): 586–595. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2974673">10.2307/2974673</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0002-9890">0002-9890</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2974673">2974673</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=The+Development+of+Rigor+in+Mathematical+Probability+%281900-1950%29&amp;rft.volume=103&amp;rft.issue=7&amp;rft.pages=586-595&amp;rft.date=1996&amp;rft.issn=0002-9890&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2974673%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F2974673&amp;rft.aulast=Doob&amp;rft.aufirst=Joseph+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Cramer1976-257"><span class="mw-cite-backlink">^ <a href="#cite_ref-Cramer1976_257-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Cramer1976_257-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Cramer1976_257-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Cramer1976_257-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Cramer1976_257-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Cramer1976_257-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Cramer1976_257-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Cramer1976_257-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Cramer1976_257-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Cramer1976_257-9"><sup><i><b>j</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCramer1976" class="citation journal cs1">Cramer, Harald (1976). <a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faop%2F1176996025">"Half a Century with Probability Theory: Some Personal Recollections"</a>. <i>The Annals of Probability</i>. <b>4</b> (4): 509–546. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faop%2F1176996025">10.1214/aop/1176996025</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0091-1798">0091-1798</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Annals+of+Probability&amp;rft.atitle=Half+a+Century+with+Probability+Theory%3A+Some+Personal+Recollections&amp;rft.volume=4&amp;rft.issue=4&amp;rft.pages=509-546&amp;rft.date=1976&amp;rft_id=info%3Adoi%2F10.1214%2Faop%2F1176996025&amp;rft.issn=0091-1798&amp;rft.aulast=Cramer&amp;rft.aufirst=Harald&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1214%252Faop%252F1176996025&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Truesdell1975page22-258"><span class="mw-cite-backlink"><b><a href="#cite_ref-Truesdell1975page22_258-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTruesdell1975" class="citation journal cs1">Truesdell, C. (1975). "Early kinetic theories of gases". <i>Archive for History of Exact Sciences</i>. <b>15</b> (1): 22–23. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00327232">10.1007/BF00327232</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-9519">0003-9519</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:189764116">189764116</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=Early+kinetic+theories+of+gases&amp;rft.volume=15&amp;rft.issue=1&amp;rft.pages=22-23&amp;rft.date=1975&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A189764116%23id-name%3DS2CID&amp;rft.issn=0003-9519&amp;rft_id=info%3Adoi%2F10.1007%2FBF00327232&amp;rft.aulast=Truesdell&amp;rft.aufirst=C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Brush1967page150-259"><span class="mw-cite-backlink"><b><a href="#cite_ref-Brush1967page150_259-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrush1967" class="citation journal cs1">Brush, Stephen G. (1967). "Foundations of statistical mechanics 1845?1915". <i>Archive for History of Exact Sciences</i>. <b>4</b> (3): 150–151. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00412958">10.1007/BF00412958</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-9519">0003-9519</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120059181">120059181</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=Foundations+of+statistical+mechanics+1845%3F1915&amp;rft.volume=4&amp;rft.issue=3&amp;rft.pages=150-151&amp;rft.date=1967&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120059181%23id-name%3DS2CID&amp;rft.issn=0003-9519&amp;rft_id=info%3Adoi%2F10.1007%2FBF00412958&amp;rft.aulast=Brush&amp;rft.aufirst=Stephen+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Truesdell1975page31-260"><span class="mw-cite-backlink"><b><a href="#cite_ref-Truesdell1975page31_260-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTruesdell1975" class="citation journal cs1">Truesdell, C. (1975). "Early kinetic theories of gases". <i>Archive for History of Exact Sciences</i>. <b>15</b> (1): 31–32. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00327232">10.1007/BF00327232</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-9519">0003-9519</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:189764116">189764116</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=Early+kinetic+theories+of+gases&amp;rft.volume=15&amp;rft.issue=1&amp;rft.pages=31-32&amp;rft.date=1975&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A189764116%23id-name%3DS2CID&amp;rft.issn=0003-9519&amp;rft_id=info%3Adoi%2F10.1007%2FBF00327232&amp;rft.aulast=Truesdell&amp;rft.aufirst=C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Brush1958-261"><span class="mw-cite-backlink"><b><a href="#cite_ref-Brush1958_261-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrush1958" class="citation journal cs1">Brush, S.G. (1958). "The development of the kinetic theory of gases IV. Maxwell". <i>Annals of Science</i>. <b>14</b> (4): 243–255. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00033795800200147">10.1080/00033795800200147</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-3790">0003-3790</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annals+of+Science&amp;rft.atitle=The+development+of+the+kinetic+theory+of+gases+IV.+Maxwell&amp;rft.volume=14&amp;rft.issue=4&amp;rft.pages=243-255&amp;rft.date=1958&amp;rft_id=info%3Adoi%2F10.1080%2F00033795800200147&amp;rft.issn=0003-3790&amp;rft.aulast=Brush&amp;rft.aufirst=S.G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Brush1968page15-262"><span class="mw-cite-backlink"><b><a href="#cite_ref-Brush1968page15_262-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrush1968" class="citation journal cs1">Brush, Stephen G. (1968). "A history of random processes". <i>Archive for History of Exact Sciences</i>. <b>5</b> (1): 15–16. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00328110">10.1007/BF00328110</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-9519">0003-9519</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117623580">117623580</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=A+history+of+random+processes&amp;rft.volume=5&amp;rft.issue=1&amp;rft.pages=15-16&amp;rft.date=1968&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117623580%23id-name%3DS2CID&amp;rft.issn=0003-9519&amp;rft_id=info%3Adoi%2F10.1007%2FBF00328110&amp;rft.aulast=Brush&amp;rft.aufirst=Stephen+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KendallBatchelor1990page33-264"><span class="mw-cite-backlink">^ <a href="#cite_ref-KendallBatchelor1990page33_264-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KendallBatchelor1990page33_264-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-KendallBatchelor1990page33_264-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-KendallBatchelor1990page33_264-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKendallBatchelorBinghamHayman1990" class="citation journal cs1">Kendall, D. G.; Batchelor, G. K.; Bingham, N. H.; Hayman, W. K.; Hyland, J. M. E.; Lorentz, G. G.; Moffatt, H. K.; Parry, W.; Razborov, A. A.; Robinson, C. A.; Whittle, P. (1990). "Andrei Nikolaevich Kolmogorov (1903–1987)". <i>Bulletin of the London Mathematical Society</i>. <b>22</b> (1): 33. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fblms%2F22.1.31">10.1112/blms/22.1.31</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0024-6093">0024-6093</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+of+the+London+Mathematical+Society&amp;rft.atitle=Andrei+Nikolaevich+Kolmogorov+%281903%E2%80%931987%29&amp;rft.volume=22&amp;rft.issue=1&amp;rft.pages=33&amp;rft.date=1990&amp;rft_id=info%3Adoi%2F10.1112%2Fblms%2F22.1.31&amp;rft.issn=0024-6093&amp;rft.aulast=Kendall&amp;rft.aufirst=D.+G.&amp;rft.au=Batchelor%2C+G.+K.&amp;rft.au=Bingham%2C+N.+H.&amp;rft.au=Hayman%2C+W.+K.&amp;rft.au=Hyland%2C+J.+M.+E.&amp;rft.au=Lorentz%2C+G.+G.&amp;rft.au=Moffatt%2C+H.+K.&amp;rft.au=Parry%2C+W.&amp;rft.au=Razborov%2C+A.+A.&amp;rft.au=Robinson%2C+C.+A.&amp;rft.au=Whittle%2C+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Vere-Jones2006page1-265"><span class="mw-cite-backlink"><b><a href="#cite_ref-Vere-Jones2006page1_265-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVere-Jones2006" class="citation book cs1">Vere-Jones, David (2006). "Khinchin, Aleksandr Yakovlevich". <i>Encyclopedia of Statistical Sciences</i>. p.&#160;1. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F0471667196.ess6027.pub2">10.1002/0471667196.ess6027.pub2</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0471667193" title="Special:BookSources/978-0471667193"><bdi>978-0471667193</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Khinchin%2C+Aleksandr+Yakovlevich&amp;rft.btitle=Encyclopedia+of+Statistical+Sciences&amp;rft.pages=1&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1002%2F0471667196.ess6027.pub2&amp;rft.isbn=978-0471667193&amp;rft.aulast=Vere-Jones&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Vere-Jones2006page4-266"><span class="mw-cite-backlink">^ <a href="#cite_ref-Vere-Jones2006page4_266-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Vere-Jones2006page4_266-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVere-Jones2006" class="citation book cs1">Vere-Jones, David (2006). "Khinchin, Aleksandr Yakovlevich". <i>Encyclopedia of Statistical Sciences</i>. p.&#160;4. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F0471667196.ess6027.pub2">10.1002/0471667196.ess6027.pub2</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0471667193" title="Special:BookSources/978-0471667193"><bdi>978-0471667193</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Khinchin%2C+Aleksandr+Yakovlevich&amp;rft.btitle=Encyclopedia+of+Statistical+Sciences&amp;rft.pages=4&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1002%2F0471667196.ess6027.pub2&amp;rft.isbn=978-0471667193&amp;rft.aulast=Vere-Jones&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Snell2005-267"><span class="mw-cite-backlink">^ <a href="#cite_ref-Snell2005_267-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Snell2005_267-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSnell2005" class="citation journal cs1">Snell, J. Laurie (2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1239%2Fjap%2F1110381384">"Obituary: Joseph Leonard Doob"</a>. <i>Journal of Applied Probability</i>. <b>42</b> (1): 251. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1239%2Fjap%2F1110381384">10.1239/jap/1110381384</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-9002">0021-9002</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Applied+Probability&amp;rft.atitle=Obituary%3A+Joseph+Leonard+Doob&amp;rft.volume=42&amp;rft.issue=1&amp;rft.pages=251&amp;rft.date=2005&amp;rft_id=info%3Adoi%2F10.1239%2Fjap%2F1110381384&amp;rft.issn=0021-9002&amp;rft.aulast=Snell&amp;rft.aufirst=J.+Laurie&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1239%252Fjap%252F1110381384&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Lindvall1991-270"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lindvall1991_270-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLindvall1991" class="citation journal cs1">Lindvall, Torgny (1991). <a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faop%2F1176990329">"W. Doeblin, 1915-1940"</a>. <i>The Annals of Probability</i>. <b>19</b> (3): 929–934. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faop%2F1176990329">10.1214/aop/1176990329</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0091-1798">0091-1798</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Annals+of+Probability&amp;rft.atitle=W.+Doeblin%2C+1915-1940&amp;rft.volume=19&amp;rft.issue=3&amp;rft.pages=929-934&amp;rft.date=1991&amp;rft_id=info%3Adoi%2F10.1214%2Faop%2F1176990329&amp;rft.issn=0091-1798&amp;rft.aulast=Lindvall&amp;rft.aufirst=Torgny&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1214%252Faop%252F1176990329&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Getoor2009-271"><span class="mw-cite-backlink">^ <a href="#cite_ref-Getoor2009_271-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Getoor2009_271-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Getoor2009_271-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGetoor2009" class="citation journal cs1">Getoor, Ronald (2009). "J. L. Doob: Foundations of stochastic processes and probabilistic potential theory". <i>The Annals of Probability</i>. <b>37</b> (5): 1655. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0909.4213">0909.4213</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009arXiv0909.4213G">2009arXiv0909.4213G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1214%2F09-AOP465">10.1214/09-AOP465</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0091-1798">0091-1798</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17288507">17288507</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Annals+of+Probability&amp;rft.atitle=J.+L.+Doob%3A+Foundations+of+stochastic+processes+and+probabilistic+potential+theory&amp;rft.volume=37&amp;rft.issue=5&amp;rft.pages=1655&amp;rft.date=2009&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17288507%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2009arXiv0909.4213G&amp;rft_id=info%3Aarxiv%2F0909.4213&amp;rft.issn=0091-1798&amp;rft_id=info%3Adoi%2F10.1214%2F09-AOP465&amp;rft.aulast=Getoor&amp;rft.aufirst=Ronald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Bingham2005-272"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bingham2005_272-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bingham2005_272-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBingham2005" class="citation journal cs1">Bingham, N. H. (2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1239%2Fjap%2F1110381385">"Doob: a half-century on"</a>. <i>Journal of Applied Probability</i>. <b>42</b> (1): 257–266. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1239%2Fjap%2F1110381385">10.1239/jap/1110381385</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-9002">0021-9002</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Applied+Probability&amp;rft.atitle=Doob%3A+a+half-century+on&amp;rft.volume=42&amp;rft.issue=1&amp;rft.pages=257-266&amp;rft.date=2005&amp;rft_id=info%3Adoi%2F10.1239%2Fjap%2F1110381385&amp;rft.issn=0021-9002&amp;rft.aulast=Bingham&amp;rft.aufirst=N.+H.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1239%252Fjap%252F1110381385&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Meyer2009-273"><span class="mw-cite-backlink">^ <a href="#cite_ref-Meyer2009_273-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Meyer2009_273-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Meyer2009_273-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Meyer2009_273-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Meyer2009_273-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeyer2009" class="citation journal cs1">Meyer, Paul-André (2009). "Stochastic Processes from 1950 to the Present". <i>Electronic Journal for History of Probability and Statistics</i>. <b>5</b> (1): 1–42.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Electronic+Journal+for+History+of+Probability+and+Statistics&amp;rft.atitle=Stochastic+Processes+from+1950+to+the+Present&amp;rft.volume=5&amp;rft.issue=1&amp;rft.pages=1-42&amp;rft.date=2009&amp;rft.aulast=Meyer&amp;rft.aufirst=Paul-Andr%C3%A9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Ito1998Prize-274"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ito1998Prize_274-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1">"Kiyosi Itô receives Kyoto Prize". <i>Notices of the AMS</i>. <b>45</b> (8): 981–982. 1998.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+AMS&amp;rft.atitle=Kiyosi+It%C3%B4+receives+Kyoto+Prize&amp;rft.volume=45&amp;rft.issue=8&amp;rft.pages=981-982&amp;rft.date=1998&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Bertoin1998pageVIIIandIX-275"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bertoin1998pageVIIIandIX_275-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJean_Bertoin1998" class="citation book cs1">Jean Bertoin (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ftcsQgMp5cUC&amp;pg=PR8"><i>Lévy Processes</i></a>. Cambridge University Press. p.&#160;viii and ix. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-64632-1" title="Special:BookSources/978-0-521-64632-1"><bdi>978-0-521-64632-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=L%C3%A9vy+Processes&amp;rft.pages=viii+and+ix&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1998&amp;rft.isbn=978-0-521-64632-1&amp;rft.au=Jean+Bertoin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DftcsQgMp5cUC%26pg%3DPR8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Steele2012page176-276"><span class="mw-cite-backlink"><b><a href="#cite_ref-Steele2012page176_276-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ._Michael_Steele2012" class="citation book cs1">J. Michael Steele (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=fsgkBAAAQBAJ&amp;pg=PR4"><i>Stochastic Calculus and Financial Applications</i></a>. Springer Science &amp; Business Media. p.&#160;176. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4684-9305-4" title="Special:BookSources/978-1-4684-9305-4"><bdi>978-1-4684-9305-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Calculus+and+Financial+Applications&amp;rft.pages=176&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4684-9305-4&amp;rft.au=J.+Michael+Steele&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DfsgkBAAAQBAJ%26pg%3DPR4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-HallHeyde2014page1-277"><span class="mw-cite-backlink"><b><a href="#cite_ref-HallHeyde2014page1_277-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFP._HallC._C._Heyde2014" class="citation book cs1">P. Hall; C. C. Heyde (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=gqriBQAAQBAJ&amp;pg=PR10"><i>Martingale Limit Theory and Its Application</i></a>. Elsevier Science. pp.&#160;1, 2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4832-6322-9" title="Special:BookSources/978-1-4832-6322-9"><bdi>978-1-4832-6322-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Martingale+Limit+Theory+and+Its+Application&amp;rft.pages=1%2C+2&amp;rft.pub=Elsevier+Science&amp;rft.date=2014&amp;rft.isbn=978-1-4832-6322-9&amp;rft.au=P.+Hall&amp;rft.au=C.+C.+Heyde&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DgqriBQAAQBAJ%26pg%3DPR10&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Dynkin1989-278"><span class="mw-cite-backlink"><b><a href="#cite_ref-Dynkin1989_278-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDynkin1989" class="citation journal cs1">Dynkin, E. B. (1989). <a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faop%2F1176991248">"Kolmogorov and the Theory of Markov Processes"</a>. <i>The Annals of Probability</i>. <b>17</b> (3): 822–832. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faop%2F1176991248">10.1214/aop/1176991248</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0091-1798">0091-1798</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Annals+of+Probability&amp;rft.atitle=Kolmogorov+and+the+Theory+of+Markov+Processes&amp;rft.volume=17&amp;rft.issue=3&amp;rft.pages=822-832&amp;rft.date=1989&amp;rft_id=info%3Adoi%2F10.1214%2Faop%2F1176991248&amp;rft.issn=0091-1798&amp;rft.aulast=Dynkin&amp;rft.aufirst=E.+B.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1214%252Faop%252F1176991248&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Ellis1995page98-279"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ellis1995page98_279-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEllis1995" class="citation journal cs1">Ellis, Richard S. (1995). "An overview of the theory of large deviations and applications to statistical mechanics". <i>Scandinavian Actuarial Journal</i>. <b>1995</b> (1): 98. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F03461238.1995.10413952">10.1080/03461238.1995.10413952</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0346-1238">0346-1238</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scandinavian+Actuarial+Journal&amp;rft.atitle=An+overview+of+the+theory+of+large+deviations+and+applications+to+statistical+mechanics&amp;rft.volume=1995&amp;rft.issue=1&amp;rft.pages=98&amp;rft.date=1995&amp;rft_id=info%3Adoi%2F10.1080%2F03461238.1995.10413952&amp;rft.issn=0346-1238&amp;rft.aulast=Ellis&amp;rft.aufirst=Richard+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-RaussenSkau2008-280"><span class="mw-cite-backlink"><b><a href="#cite_ref-RaussenSkau2008_280-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaussenSkau2008" class="citation journal cs1">Raussen, Martin; Skau, Christian (2008). "Interview with Srinivasa Varadhan". <i>Notices of the AMS</i>. <b>55</b> (2): 238–246.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+AMS&amp;rft.atitle=Interview+with+Srinivasa+Varadhan&amp;rft.volume=55&amp;rft.issue=2&amp;rft.pages=238-246&amp;rft.date=2008&amp;rft.aulast=Raussen&amp;rft.aufirst=Martin&amp;rft.au=Skau%2C+Christian&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-HenkelKarevski2012page113-281"><span class="mw-cite-backlink"><b><a href="#cite_ref-HenkelKarevski2012page113_281-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMalte_HenkelDragi_Karevski2012" class="citation book cs1">Malte Henkel; Dragi Karevski (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=fnCQWd0GEZ8C&amp;pg=PA113"><i>Conformal Invariance: an Introduction to Loops, Interfaces and Stochastic Loewner Evolution</i></a>. Springer Science &amp; Business Media. p.&#160;113. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-642-27933-1" title="Special:BookSources/978-3-642-27933-1"><bdi>978-3-642-27933-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Conformal+Invariance%3A+an+Introduction+to+Loops%2C+Interfaces+and+Stochastic+Loewner+Evolution&amp;rft.pages=113&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-3-642-27933-1&amp;rft.au=Malte+Henkel&amp;rft.au=Dragi+Karevski&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DfnCQWd0GEZ8C%26pg%3DPA113&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Werner2004Fields-282"><span class="mw-cite-backlink"><b><a href="#cite_ref-Werner2004Fields_282-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1">"2006 Fields Medals Awarded". <i>Notices of the AMS</i>. <b>53</b> (9): 1041–1044. 2015.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+AMS&amp;rft.atitle=2006+Fields+Medals+Awarded&amp;rft.volume=53&amp;rft.issue=9&amp;rft.pages=1041-1044&amp;rft.date=2015&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Hairer2004Fields-283"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hairer2004Fields_283-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQuastel2015" class="citation journal cs1">Quastel, Jeremy (2015). "The Work of the 2014 Fields Medalists". <i>Notices of the AMS</i>. <b>62</b> (11): 1341–1344.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+AMS&amp;rft.atitle=The+Work+of+the+2014+Fields+Medalists&amp;rft.volume=62&amp;rft.issue=11&amp;rft.pages=1341-1344&amp;rft.date=2015&amp;rft.aulast=Quastel&amp;rft.aufirst=Jeremy&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-DaleyVere-Jones2006chap1-284"><span class="mw-cite-backlink"><b><a href="#cite_ref-DaleyVere-Jones2006chap1_284-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD.J._DaleyD._Vere-Jones2006" class="citation book cs1">D.J. Daley; D. Vere-Jones (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6Sv4BwAAQBAJ"><i>An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods</i></a>. Springer Science &amp; Business Media. pp.&#160;1–4. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-21564-8" title="Special:BookSources/978-0-387-21564-8"><bdi>978-0-387-21564-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+Theory+of+Point+Processes%3A+Volume+I%3A+Elementary+Theory+and+Methods&amp;rft.pages=1-4&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-21564-8&amp;rft.au=D.J.+Daley&amp;rft.au=D.+Vere-Jones&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6Sv4BwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Hald2005page226-285"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hald2005page226_285-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnders_Hald2005" class="citation book cs1">Anders Hald (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pOQy6-qnVx8C"><i>A History of Probability and Statistics and Their Applications before 1750</i></a>. John Wiley &amp; Sons. p.&#160;226. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-72517-6" title="Special:BookSources/978-0-471-72517-6"><bdi>978-0-471-72517-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Probability+and+Statistics+and+Their+Applications+before+1750&amp;rft.pages=226&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2005&amp;rft.isbn=978-0-471-72517-6&amp;rft.au=Anders+Hald&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpOQy6-qnVx8C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Lebowitz1984-286"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lebowitz1984_286-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lebowitz1984_286-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoel_Louis_Lebowitz1984" class="citation book cs1">Joel Louis Lebowitz (1984). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=E8IRAQAAIAAJ"><i>Nonequilibrium phenomena II: from stochastics to hydrodynamics</i></a>. North-Holland Pub. pp.&#160;8–10. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-444-86806-0" title="Special:BookSources/978-0-444-86806-0"><bdi>978-0-444-86806-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Nonequilibrium+phenomena+II%3A+from+stochastics+to+hydrodynamics&amp;rft.pages=8-10&amp;rft.pub=North-Holland+Pub.&amp;rft.date=1984&amp;rft.isbn=978-0-444-86806-0&amp;rft.au=Joel+Louis+Lebowitz&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DE8IRAQAAIAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Florescu2014page374-287"><span class="mw-cite-backlink"><b><a href="#cite_ref-Florescu2014page374_287-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIonut_Florescu2014" class="citation book cs1">Ionut Florescu (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Z5xEBQAAQBAJ&amp;pg=PR22"><i>Probability and Stochastic Processes</i></a>. John Wiley &amp; Sons. p.&#160;374. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-59320-2" title="Special:BookSources/978-1-118-59320-2"><bdi>978-1-118-59320-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Stochastic+Processes&amp;rft.pages=374&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2014&amp;rft.isbn=978-1-118-59320-2&amp;rft.au=Ionut+Florescu&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZ5xEBQAAQBAJ%26pg%3DPR22&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Ibe2013page5-288"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ibe2013page5_288-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOliver_C._Ibe2013" class="citation book cs1">Oliver C. Ibe (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=DUqaAAAAQBAJ&amp;pg=PT10"><i>Elements of Random Walk and Diffusion Processes</i></a>. John Wiley &amp; Sons. p.&#160;5. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-61793-9" title="Special:BookSources/978-1-118-61793-9"><bdi>978-1-118-61793-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Random+Walk+and+Diffusion+Processes&amp;rft.pages=5&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2013&amp;rft.isbn=978-1-118-61793-9&amp;rft.au=Oliver+C.+Ibe&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DDUqaAAAAQBAJ%26pg%3DPT10&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Hald2005page63-289"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hald2005page63_289-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnders_Hald2005" class="citation book cs1">Anders Hald (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pOQy6-qnVx8C"><i>A History of Probability and Statistics and Their Applications before 1750</i></a>. John Wiley &amp; Sons. p.&#160;63. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-72517-6" title="Special:BookSources/978-0-471-72517-6"><bdi>978-0-471-72517-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Probability+and+Statistics+and+Their+Applications+before+1750&amp;rft.pages=63&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2005&amp;rft.isbn=978-0-471-72517-6&amp;rft.au=Anders+Hald&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpOQy6-qnVx8C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Hald2005page202-290"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hald2005page202_290-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnders_Hald2005" class="citation book cs1">Anders Hald (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pOQy6-qnVx8C"><i>A History of Probability and Statistics and Their Applications before 1750</i></a>. John Wiley &amp; Sons. p.&#160;202. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-72517-6" title="Special:BookSources/978-0-471-72517-6"><bdi>978-0-471-72517-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Probability+and+Statistics+and+Their+Applications+before+1750&amp;rft.pages=202&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2005&amp;rft.isbn=978-0-471-72517-6&amp;rft.au=Anders+Hald&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpOQy6-qnVx8C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Florescu2014page385-291"><span class="mw-cite-backlink"><b><a href="#cite_ref-Florescu2014page385_291-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIonut_Florescu2014" class="citation book cs1">Ionut Florescu (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Z5xEBQAAQBAJ&amp;pg=PR22"><i>Probability and Stochastic Processes</i></a>. John Wiley &amp; Sons. p.&#160;385. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-59320-2" title="Special:BookSources/978-1-118-59320-2"><bdi>978-1-118-59320-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Stochastic+Processes&amp;rft.pages=385&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2014&amp;rft.isbn=978-1-118-59320-2&amp;rft.au=Ionut+Florescu&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZ5xEBQAAQBAJ%26pg%3DPR22&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Hughes1995page111-292"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hughes1995page111_292-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarry_D._Hughes1995" class="citation book cs1">Barry D. Hughes (1995). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QhOen_t0LeQC"><i>Random Walks and Random Environments: Random walks</i></a>. Clarendon Press. p.&#160;111. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-853788-5" title="Special:BookSources/978-0-19-853788-5"><bdi>978-0-19-853788-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Walks+and+Random+Environments%3A+Random+walks&amp;rft.pages=111&amp;rft.pub=Clarendon+Press&amp;rft.date=1995&amp;rft.isbn=978-0-19-853788-5&amp;rft.au=Barry+D.+Hughes&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQhOen_t0LeQC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Thiele1880-293"><span class="mw-cite-backlink"><b><a href="#cite_ref-Thiele1880_293-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThiele1880" class="citation journal cs1 cs1-prop-long-vol">Thiele, Thorwald N. (1880). <a rel="nofollow" class="external text" href="https://biodiversitylibrary.org/page/43213604">"Om Anvendelse af mindste Kvadraterbs Methode i nogle Tilfælde, hvoren Komplikation af visse Slags uensartede tilfældige Fejlkilder giver Fejleneen "systematisk" Karakter"</a>. <i>Kongelige Danske Videnskabernes Selskabs Skrifter</i>. Series 5 (12): 381–408.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Kongelige+Danske+Videnskabernes+Selskabs+Skrifter&amp;rft.atitle=Om+Anvendelse+af+mindste+Kvadraterbs+Methode+i+nogle+Tilf%C3%A6lde%2C+hvoren+Komplikation+af+visse+Slags+uensartede+tilf%C3%A6ldige+Fejlkilder+giver+Fejleneen+%22systematisk%22+Karakter&amp;rft.volume=Series+5&amp;rft.issue=12&amp;rft.pages=381-408&amp;rft.date=1880&amp;rft.aulast=Thiele&amp;rft.aufirst=Thorwald+N.&amp;rft_id=https%3A%2F%2Fbiodiversitylibrary.org%2Fpage%2F43213604&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Hald1981page1and18-294"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hald1981page1and18_294-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHald1981" class="citation journal cs1">Hald, Anders (1981). "T. N. Thiele's Contributions to Statistics". <i>International Statistical Review / Revue Internationale de Statistique</i>. <b>49</b> (1): 1–20. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1403034">10.2307/1403034</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0306-7734">0306-7734</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1403034">1403034</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Statistical+Review+%2F+Revue+Internationale+de+Statistique&amp;rft.atitle=T.+N.+Thiele%27s+Contributions+to+Statistics&amp;rft.volume=49&amp;rft.issue=1&amp;rft.pages=1-20&amp;rft.date=1981&amp;rft.issn=0306-7734&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1403034%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F1403034&amp;rft.aulast=Hald&amp;rft.aufirst=Anders&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Lauritzen1981page319-295"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lauritzen1981page319_295-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lauritzen1981page319_295-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLauritzen1981" class="citation journal cs1">Lauritzen, Steffen L. (1981). "Time Series Analysis in 1880: A Discussion of Contributions Made by T.N. Thiele". <i>International Statistical Review / Revue Internationale de Statistique</i>. <b>49</b> (3): 319–320. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1402616">10.2307/1402616</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0306-7734">0306-7734</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1402616">1402616</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Statistical+Review+%2F+Revue+Internationale+de+Statistique&amp;rft.atitle=Time+Series+Analysis+in+1880%3A+A+Discussion+of+Contributions+Made+by+T.N.+Thiele&amp;rft.volume=49&amp;rft.issue=3&amp;rft.pages=319-320&amp;rft.date=1981&amp;rft.issn=0306-7734&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1402616%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F1402616&amp;rft.aulast=Lauritzen&amp;rft.aufirst=Steffen+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Bachelier1900a-296"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bachelier1900a_296-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBachelier1900" class="citation journal cs1 cs1-prop-long-vol">Bachelier, Luis (1900). <a rel="nofollow" class="external text" href="http://archive.numdam.org/article/ASENS_1900_3_17__21_0.pdf">"Théorie de la spéculation"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Ann._Sci._%C3%89c._Norm._Sup%C3%A9r." class="mw-redirect" title="Ann. Sci. Éc. Norm. Supér.">Ann. Sci. Éc. Norm. Supér.</a></i> Serie 3, 17: 21–89. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.24033%2Fasens.476">10.24033/asens.476</a></span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110605013545/http://archive.numdam.org/article/ASENS_1900_3_17__21_0.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2011-06-05.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Ann.+Sci.+%C3%89c.+Norm.+Sup%C3%A9r.&amp;rft.atitle=Th%C3%A9orie+de+la+sp%C3%A9culation&amp;rft.volume=Serie+3%3B17&amp;rft.pages=21-89&amp;rft.date=1900&amp;rft_id=info%3Adoi%2F10.24033%2Fasens.476&amp;rft.aulast=Bachelier&amp;rft.aufirst=Luis&amp;rft_id=http%3A%2F%2Farchive.numdam.org%2Farticle%2FASENS_1900_3_17&#95;_21_0.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Bachelier1900b-297"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bachelier1900b_297-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBachelier1900" class="citation journal cs1 cs1-prop-long-vol">Bachelier, Luis (1900). <a rel="nofollow" class="external text" href="https://drive.google.com/file/d/0B5LLDy7-d3SKNGI0M2E0NGItYzFlMS00NGU2LWE2ZDAtODc3MDY3MzdiNmY0/view">"The Theory of Speculation"</a>. <i>Ann. Sci. Éc. Norm. Supér</i>. Serie 3, 17: 21–89 (Engl. translation by David R. May, 2011). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.24033%2Fasens.476">10.24033/asens.476</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Ann.+Sci.+%C3%89c.+Norm.+Sup%C3%A9r.&amp;rft.atitle=The+Theory+of+Speculation&amp;rft.volume=Serie+3%3B17&amp;rft.pages=21-89+%28Engl.+translation+by+David+R.+May%2C+2011%29&amp;rft.date=1900&amp;rft_id=info%3Adoi%2F10.24033%2Fasens.476&amp;rft.aulast=Bachelier&amp;rft.aufirst=Luis&amp;rft_id=https%3A%2F%2Fdrive.google.com%2Ffile%2Fd%2F0B5LLDy7-d3SKNGI0M2E0NGItYzFlMS00NGU2LWE2ZDAtODc3MDY3MzdiNmY0%2Fview&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-CourtaultKabanov2000-298"><span class="mw-cite-backlink">^ <a href="#cite_ref-CourtaultKabanov2000_298-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-CourtaultKabanov2000_298-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCourtaultKabanovBruCrepel2000" class="citation journal cs1">Courtault, Jean-Michel; Kabanov, Yuri; Bru, Bernard; Crepel, Pierre; Lebon, Isabelle; Le Marchand, Arnaud (2000). <a rel="nofollow" class="external text" href="https://halshs.archives-ouvertes.fr/halshs-00447592/file/BACHEL2.PDF">"Louis Bachelier on the Centenary of Theorie de la Speculation"</a> <span class="cs1-format">(PDF)</span>. <i>Mathematical Finance</i>. <b>10</b> (3): 339–353. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2F1467-9965.00098">10.1111/1467-9965.00098</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0960-1627">0960-1627</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14422885">14422885</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180721214136/https://halshs.archives-ouvertes.fr/halshs-00447592/file/BACHEL2.PDF">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2018-07-21.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematical+Finance&amp;rft.atitle=Louis+Bachelier+on+the+Centenary+of+Theorie+de+la+Speculation&amp;rft.volume=10&amp;rft.issue=3&amp;rft.pages=339-353&amp;rft.date=2000&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14422885%23id-name%3DS2CID&amp;rft.issn=0960-1627&amp;rft_id=info%3Adoi%2F10.1111%2F1467-9965.00098&amp;rft.aulast=Courtault&amp;rft.aufirst=Jean-Michel&amp;rft.au=Kabanov%2C+Yuri&amp;rft.au=Bru%2C+Bernard&amp;rft.au=Crepel%2C+Pierre&amp;rft.au=Lebon%2C+Isabelle&amp;rft.au=Le+Marchand%2C+Arnaud&amp;rft_id=https%3A%2F%2Fhalshs.archives-ouvertes.fr%2Fhalshs-00447592%2Ffile%2FBACHEL2.PDF&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Jovanovic2012-299"><span class="mw-cite-backlink">^ <a href="#cite_ref-Jovanovic2012_299-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Jovanovic2012_299-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Jovanovic2012_299-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Jovanovic2012_299-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Jovanovic2012_299-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJovanovic2012" class="citation journal cs1">Jovanovic, Franck (2012). <a rel="nofollow" class="external text" href="http://r-libre.teluq.ca/1168/1/dissemination%20of%20Louis%20Bachelier_EJHET_R2.pdf">"Bachelier: Not the forgotten forerunner he has been depicted as. An analysis of the dissemination of Louis Bachelier's work in economics"</a> <span class="cs1-format">(PDF)</span>. <i>The European Journal of the History of Economic Thought</i>. <b>19</b> (3): 431–451. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F09672567.2010.540343">10.1080/09672567.2010.540343</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0967-2567">0967-2567</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:154003579">154003579</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180721111017/http://r-libre.teluq.ca/1168/1/dissemination%20of%20Louis%20Bachelier_EJHET_R2.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2018-07-21.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+European+Journal+of+the+History+of+Economic+Thought&amp;rft.atitle=Bachelier%3A+Not+the+forgotten+forerunner+he+has+been+depicted+as.+An+analysis+of+the+dissemination+of+Louis+Bachelier%27s+work+in+economics&amp;rft.volume=19&amp;rft.issue=3&amp;rft.pages=431-451&amp;rft.date=2012&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A154003579%23id-name%3DS2CID&amp;rft.issn=0967-2567&amp;rft_id=info%3Adoi%2F10.1080%2F09672567.2010.540343&amp;rft.aulast=Jovanovic&amp;rft.aufirst=Franck&amp;rft_id=http%3A%2F%2Fr-libre.teluq.ca%2F1168%2F1%2Fdissemination%2520of%2520Louis%2520Bachelier_EJHET_R2.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Brush1968page25-300"><span class="mw-cite-backlink"><b><a href="#cite_ref-Brush1968page25_300-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrush1968" class="citation journal cs1">Brush, Stephen G. (1968). "A history of random processes". <i>Archive for History of Exact Sciences</i>. <b>5</b> (1): 25. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00328110">10.1007/BF00328110</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-9519">0003-9519</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117623580">117623580</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=A+history+of+random+processes&amp;rft.volume=5&amp;rft.issue=1&amp;rft.pages=25&amp;rft.date=1968&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117623580%23id-name%3DS2CID&amp;rft.issn=0003-9519&amp;rft_id=info%3Adoi%2F10.1007%2FBF00328110&amp;rft.aulast=Brush&amp;rft.aufirst=Stephen+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Brush1968page30-301"><span class="mw-cite-backlink"><b><a href="#cite_ref-Brush1968page30_301-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrush1968" class="citation journal cs1">Brush, Stephen G. (1968). "A history of random processes". <i>Archive for History of Exact Sciences</i>. <b>5</b> (1): 1–36. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00328110">10.1007/BF00328110</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-9519">0003-9519</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117623580">117623580</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=A+history+of+random+processes&amp;rft.volume=5&amp;rft.issue=1&amp;rft.pages=1-36&amp;rft.date=1968&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117623580%23id-name%3DS2CID&amp;rft.issn=0003-9519&amp;rft_id=info%3Adoi%2F10.1007%2FBF00328110&amp;rft.aulast=Brush&amp;rft.aufirst=Stephen+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-DaleyVere-Jones2006page8-302"><span class="mw-cite-backlink"><b><a href="#cite_ref-DaleyVere-Jones2006page8_302-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD.J._DaleyD._Vere-Jones2006" class="citation book cs1">D.J. Daley; D. Vere-Jones (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6Sv4BwAAQBAJ"><i>An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods</i></a>. Springer Science &amp; Business Media. pp.&#160;8–9. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-21564-8" title="Special:BookSources/978-0-387-21564-8"><bdi>978-0-387-21564-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+Theory+of+Point+Processes%3A+Volume+I%3A+Elementary+Theory+and+Methods&amp;rft.pages=8-9&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-21564-8&amp;rft.au=D.J.+Daley&amp;rft.au=D.+Vere-Jones&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6Sv4BwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-EmbrechtsFrey2001page367-303"><span class="mw-cite-backlink"><b><a href="#cite_ref-EmbrechtsFrey2001page367_303-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEmbrechtsFreyFurrer2001" class="citation book cs1">Embrechts, Paul; Frey, Rüdiger; Furrer, Hansjörg (2001). "Stochastic processes in insurance and finance". <i>Stochastic Processes: Theory and Methods</i>. Handbook of Statistics. Vol.&#160;19. p.&#160;367. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0169-7161%2801%2919014-0">10.1016/S0169-7161(01)19014-0</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0444500144" title="Special:BookSources/978-0444500144"><bdi>978-0444500144</bdi></a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0169-7161">0169-7161</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Stochastic+processes+in+insurance+and+finance&amp;rft.btitle=Stochastic+Processes%3A+Theory+and+Methods&amp;rft.series=Handbook+of+Statistics&amp;rft.pages=367&amp;rft.date=2001&amp;rft.issn=0169-7161&amp;rft_id=info%3Adoi%2F10.1016%2FS0169-7161%2801%2919014-0&amp;rft.isbn=978-0444500144&amp;rft.aulast=Embrechts&amp;rft.aufirst=Paul&amp;rft.au=Frey%2C+R%C3%BCdiger&amp;rft.au=Furrer%2C+Hansj%C3%B6rg&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Cramér1969-304"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cramér1969_304-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCramér1969" class="citation journal cs1">Cramér, Harald (1969). "Historical review of Filip Lundberg's works on risk theory". <i>Scandinavian Actuarial Journal</i>. <b>1969</b> (sup3): 6–12. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F03461238.1969.10404602">10.1080/03461238.1969.10404602</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0346-1238">0346-1238</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scandinavian+Actuarial+Journal&amp;rft.atitle=Historical+review+of+Filip+Lundberg%27s+works+on+risk+theory&amp;rft.volume=1969&amp;rft.issue=sup3&amp;rft.pages=6-12&amp;rft.date=1969&amp;rft_id=info%3Adoi%2F10.1080%2F03461238.1969.10404602&amp;rft.issn=0346-1238&amp;rft.aulast=Cram%C3%A9r&amp;rft.aufirst=Harald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-GrinsteadSnell1997page464-305"><span class="mw-cite-backlink">^ <a href="#cite_ref-GrinsteadSnell1997page464_305-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GrinsteadSnell1997page464_305-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-GrinsteadSnell1997page464_305-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCharles_Miller_GrinsteadJames_Laurie_Snell1997" class="citation book cs1">Charles Miller Grinstead; James Laurie Snell (1997). <a rel="nofollow" class="external text" href="https://archive.org/details/flooved3489"><i>Introduction to Probability</i></a>. American Mathematical Soc. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/flooved3489/page/n473">464</a>–466. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-0749-1" title="Special:BookSources/978-0-8218-0749-1"><bdi>978-0-8218-0749-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Probability&amp;rft.pages=464-466&amp;rft.pub=American+Mathematical+Soc.&amp;rft.date=1997&amp;rft.isbn=978-0-8218-0749-1&amp;rft.au=Charles+Miller+Grinstead&amp;rft.au=James+Laurie+Snell&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fflooved3489&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Bremaud2013pageIX-306"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bremaud2013pageIX_306-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bremaud2013pageIX_306-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPierre_Bremaud2013" class="citation book cs1">Pierre Bremaud (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jrPVBwAAQBAJ"><i>Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues</i></a>. Springer Science &amp; Business Media. p.&#160;ix. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4757-3124-8" title="Special:BookSources/978-1-4757-3124-8"><bdi>978-1-4757-3124-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Markov+Chains%3A+Gibbs+Fields%2C+Monte+Carlo+Simulation%2C+and+Queues&amp;rft.pages=ix&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-1-4757-3124-8&amp;rft.au=Pierre+Bremaud&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjrPVBwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Hayes2013-307"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hayes2013_307-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hayes2013_307-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHayes2013" class="citation journal cs1">Hayes, Brian (2013). "First links in the Markov chain". <i>American Scientist</i>. <b>101</b> (2): 92–96. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1511%2F2013.101.92">10.1511/2013.101.92</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Scientist&amp;rft.atitle=First+links+in+the+Markov+chain&amp;rft.volume=101&amp;rft.issue=2&amp;rft.pages=92-96&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1511%2F2013.101.92&amp;rft.aulast=Hayes&amp;rft.aufirst=Brian&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Seneta1998-308"><span class="mw-cite-backlink"><b><a href="#cite_ref-Seneta1998_308-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSeneta1998" class="citation journal cs1">Seneta, E. (1998). "I.J. Bienaymé [1796-1878]: Criticality, Inequality, and Internationalization". <i>International Statistical Review / Revue Internationale de Statistique</i>. <b>66</b> (3): 291–292. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1403518">10.2307/1403518</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0306-7734">0306-7734</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1403518">1403518</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Statistical+Review+%2F+Revue+Internationale+de+Statistique&amp;rft.atitle=I.J.+Bienaym%C3%A9+%5B1796-1878%5D%3A+Criticality%2C+Inequality%2C+and+Internationalization&amp;rft.volume=66&amp;rft.issue=3&amp;rft.pages=291-292&amp;rft.date=1998&amp;rft.issn=0306-7734&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1403518%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F1403518&amp;rft.aulast=Seneta&amp;rft.aufirst=E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-BruHertz2001-309"><span class="mw-cite-backlink"><b><a href="#cite_ref-BruHertz2001_309-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBruHertz2001" class="citation book cs1">Bru, B.; Hertz, S. (2001). "Maurice Fréchet". <i>Statisticians of the Centuries</i>. pp.&#160;331–334. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4613-0179-0_71">10.1007/978-1-4613-0179-0_71</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-95283-3" title="Special:BookSources/978-0-387-95283-3"><bdi>978-0-387-95283-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Maurice+Fr%C3%A9chet&amp;rft.btitle=Statisticians+of+the+Centuries&amp;rft.pages=331-334&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4613-0179-0_71&amp;rft.isbn=978-0-387-95283-3&amp;rft.aulast=Bru&amp;rft.aufirst=B.&amp;rft.au=Hertz%2C+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-BarbutLocker2016page5-310"><span class="mw-cite-backlink"><b><a href="#cite_ref-BarbutLocker2016page5_310-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarc_BarbutBernard_LockerLaurent_Mazliak2016" class="citation book cs1">Marc Barbut; Bernard Locker; Laurent Mazliak (2016). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=lSz_vQAACAAJ"><i>Paul Lévy and Maurice Fréchet: 50 Years of Correspondence in 107 Letters</i></a>. Springer London. p.&#160;5. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4471-7262-8" title="Special:BookSources/978-1-4471-7262-8"><bdi>978-1-4471-7262-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Paul+L%C3%A9vy+and+Maurice+Fr%C3%A9chet%3A+50+Years+of+Correspondence+in+107+Letters&amp;rft.pages=5&amp;rft.pub=Springer+London&amp;rft.date=2016&amp;rft.isbn=978-1-4471-7262-8&amp;rft.au=Marc+Barbut&amp;rft.au=Bernard+Locker&amp;rft.au=Laurent+Mazliak&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DlSz_vQAACAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Skorokhod2005page146-311"><span class="mw-cite-backlink"><b><a href="#cite_ref-Skorokhod2005page146_311-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValeriy_Skorokhod2005" class="citation book cs1">Valeriy Skorokhod (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dQkYMjRK3fYC"><i>Basic Principles and Applications of Probability Theory</i></a>. Springer Science &amp; Business Media. p.&#160;146. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-26312-8" title="Special:BookSources/978-3-540-26312-8"><bdi>978-3-540-26312-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Basic+Principles+and+Applications+of+Probability+Theory&amp;rft.pages=146&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2005&amp;rft.isbn=978-3-540-26312-8&amp;rft.au=Valeriy+Skorokhod&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdQkYMjRK3fYC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Bernstein2005-312"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bernstein2005_312-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernstein2005" class="citation journal cs1">Bernstein, Jeremy (2005). "Bachelier". <i>American Journal of Physics</i>. <b>73</b> (5): 398–396. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005AmJPh..73..395B">2005AmJPh..73..395B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.1848117">10.1119/1.1848117</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0002-9505">0002-9505</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Physics&amp;rft.atitle=Bachelier&amp;rft.volume=73&amp;rft.issue=5&amp;rft.pages=398-396&amp;rft.date=2005&amp;rft.issn=0002-9505&amp;rft_id=info%3Adoi%2F10.1119%2F1.1848117&amp;rft_id=info%3Abibcode%2F2005AmJPh..73..395B&amp;rft.aulast=Bernstein&amp;rft.aufirst=Jeremy&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Anderson2012pageVII-313"><span class="mw-cite-backlink"><b><a href="#cite_ref-Anderson2012pageVII_313-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliam_J._Anderson2012" class="citation book cs1">William J. Anderson (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=YpHfBwAAQBAJ&amp;pg=PR8"><i>Continuous-Time Markov Chains: An Applications-Oriented Approach</i></a>. Springer Science &amp; Business Media. p.&#160;vii. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-3038-0" title="Special:BookSources/978-1-4612-3038-0"><bdi>978-1-4612-3038-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Continuous-Time+Markov+Chains%3A+An+Applications-Oriented+Approach&amp;rft.pages=vii&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=978-1-4612-3038-0&amp;rft.au=William+J.+Anderson&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DYpHfBwAAQBAJ%26pg%3DPR8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-KendallBatchelor1990page57-314"><span class="mw-cite-backlink"><b><a href="#cite_ref-KendallBatchelor1990page57_314-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKendallBatchelorBinghamHayman1990" class="citation journal cs1">Kendall, D. G.; Batchelor, G. K.; Bingham, N. H.; Hayman, W. K.; Hyland, J. M. E.; Lorentz, G. G.; Moffatt, H. K.; Parry, W.; Razborov, A. A.; Robinson, C. A.; Whittle, P. (1990). "Andrei Nikolaevich Kolmogorov (1903–1987)". <i>Bulletin of the London Mathematical Society</i>. <b>22</b> (1): 57. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fblms%2F22.1.31">10.1112/blms/22.1.31</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0024-6093">0024-6093</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+of+the+London+Mathematical+Society&amp;rft.atitle=Andrei+Nikolaevich+Kolmogorov+%281903%E2%80%931987%29&amp;rft.volume=22&amp;rft.issue=1&amp;rft.pages=57&amp;rft.date=1990&amp;rft_id=info%3Adoi%2F10.1112%2Fblms%2F22.1.31&amp;rft.issn=0024-6093&amp;rft.aulast=Kendall&amp;rft.aufirst=D.+G.&amp;rft.au=Batchelor%2C+G.+K.&amp;rft.au=Bingham%2C+N.+H.&amp;rft.au=Hayman%2C+W.+K.&amp;rft.au=Hyland%2C+J.+M.+E.&amp;rft.au=Lorentz%2C+G.+G.&amp;rft.au=Moffatt%2C+H.+K.&amp;rft.au=Parry%2C+W.&amp;rft.au=Razborov%2C+A.+A.&amp;rft.au=Robinson%2C+C.+A.&amp;rft.au=Whittle%2C+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-ApplebaumBook2004page67-315"><span class="mw-cite-backlink"><b><a href="#cite_ref-ApplebaumBook2004page67_315-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Applebaum2004" class="citation book cs1">David Applebaum (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=q7eDUjdJxIkC"><i>Lévy Processes and Stochastic Calculus</i></a>. Cambridge University Press. p.&#160;67. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-83263-2" title="Special:BookSources/978-0-521-83263-2"><bdi>978-0-521-83263-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=L%C3%A9vy+Processes+and+Stochastic+Calculus&amp;rft.pages=67&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2004&amp;rft.isbn=978-0-521-83263-2&amp;rft.au=David+Applebaum&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dq7eDUjdJxIkC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Adler2010page13-316"><span class="mw-cite-backlink">^ <a href="#cite_ref-Adler2010page13_316-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Adler2010page13_316-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Adler2010page13_316-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobert_J._Adler2010" class="citation book cs1">Robert J. Adler (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ryejJmJAj28C&amp;pg=PA263"><i>The Geometry of Random Fields</i></a>. SIAM. p.&#160;13. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-89871-693-1" title="Special:BookSources/978-0-89871-693-1"><bdi>978-0-89871-693-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Geometry+of+Random+Fields&amp;rft.pages=13&amp;rft.pub=SIAM&amp;rft.date=2010&amp;rft.isbn=978-0-89871-693-1&amp;rft.au=Robert+J.+Adler&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DryejJmJAj28C%26pg%3DPA263&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-AthreyaLahiri2006-317"><span class="mw-cite-backlink"><b><a href="#cite_ref-AthreyaLahiri2006_317-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrishna_B._AthreyaSoumendra_N._Lahiri2006" class="citation book cs1">Krishna B. Athreya; Soumendra N. Lahiri (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9tv0taI8l6YC"><i>Measure Theory and Probability Theory</i></a>. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-32903-1" title="Special:BookSources/978-0-387-32903-1"><bdi>978-0-387-32903-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Measure+Theory+and+Probability+Theory&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-32903-1&amp;rft.au=Krishna+B.+Athreya&amp;rft.au=Soumendra+N.+Lahiri&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9tv0taI8l6YC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Øksendal2003page11-318"><span class="mw-cite-backlink"><b><a href="#cite_ref-Øksendal2003page11_318-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernt_Øksendal2003" class="citation book cs1">Bernt Øksendal (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VgQDWyihxKYC"><i>Stochastic Differential Equations: An Introduction with Applications</i></a>. Springer Science &amp; Business Media. p.&#160;11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-04758-2" title="Special:BookSources/978-3-540-04758-2"><bdi>978-3-540-04758-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Differential+Equations%3A+An+Introduction+with+Applications&amp;rft.pages=11&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2003&amp;rft.isbn=978-3-540-04758-2&amp;rft.au=Bernt+%C3%98ksendal&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVgQDWyihxKYC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Williams1991page124-319"><span class="mw-cite-backlink"><b><a href="#cite_ref-Williams1991page124_319-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Williams1991" class="citation book cs1">David Williams (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=e9saZ0YSi-AC"><i>Probability with Martingales</i></a>. Cambridge University Press. p.&#160;124. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-40605-5" title="Special:BookSources/978-0-521-40605-5"><bdi>978-0-521-40605-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+with+Martingales&amp;rft.pages=124&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1991&amp;rft.isbn=978-0-521-40605-5&amp;rft.au=David+Williams&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3De9saZ0YSi-AC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Durrett2010page410-321"><span class="mw-cite-backlink"><b><a href="#cite_ref-Durrett2010page410_321-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRick_Durrett2010" class="citation book cs1">Rick Durrett (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=evbGTPhuvSoC"><i>Probability: Theory and Examples</i></a>. Cambridge University Press. p.&#160;410. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-139-49113-6" title="Special:BookSources/978-1-139-49113-6"><bdi>978-1-139-49113-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability%3A+Theory+and+Examples&amp;rft.pages=410&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft.isbn=978-1-139-49113-6&amp;rft.au=Rick+Durrett&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DevbGTPhuvSoC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Billingsley2008page493to494-322"><span class="mw-cite-backlink"><b><a href="#cite_ref-Billingsley2008page493to494_322-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPatrick_Billingsley2008" class="citation book cs1">Patrick Billingsley (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QyXqOXyxEeIC"><i>Probability and Measure</i></a>. Wiley India Pvt. Limited. pp.&#160;493–494. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-81-265-1771-8" title="Special:BookSources/978-81-265-1771-8"><bdi>978-81-265-1771-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Measure&amp;rft.pages=493-494&amp;rft.pub=Wiley+India+Pvt.+Limited&amp;rft.date=2008&amp;rft.isbn=978-81-265-1771-8&amp;rft.au=Patrick+Billingsley&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQyXqOXyxEeIC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Borovkov2013page529-323"><span class="mw-cite-backlink"><b><a href="#cite_ref-Borovkov2013page529_323-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlexander_A._Borovkov2013" class="citation book cs1">Alexander A. Borovkov (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=hRk_AAAAQBAJ"><i>Probability Theory</i></a>. Springer Science &amp; Business Media. pp.&#160;529–530. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4471-5201-9" title="Special:BookSources/978-1-4471-5201-9"><bdi>978-1-4471-5201-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+Theory&amp;rft.pages=529-530&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-1-4471-5201-9&amp;rft.au=Alexander+A.+Borovkov&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DhRk_AAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-AthreyaLahiri2006page221-324"><span class="mw-cite-backlink"><b><a href="#cite_ref-AthreyaLahiri2006page221_324-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrishna_B._AthreyaSoumendra_N._Lahiri2006" class="citation book cs1">Krishna B. Athreya; Soumendra N. Lahiri (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9tv0taI8l6YC"><i>Measure Theory and Probability Theory</i></a>. Springer Science &amp; Business Media. p.&#160;221. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-32903-1" title="Special:BookSources/978-0-387-32903-1"><bdi>978-0-387-32903-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Measure+Theory+and+Probability+Theory&amp;rft.pages=221&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-32903-1&amp;rft.au=Krishna+B.+Athreya&amp;rft.au=Soumendra+N.+Lahiri&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9tv0taI8l6YC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-AdlerTaylor2009page14-325"><span class="mw-cite-backlink">^ <a href="#cite_ref-AdlerTaylor2009page14_325-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-AdlerTaylor2009page14_325-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobert_J._AdlerJonathan_E._Taylor2009" class="citation book cs1">Robert J. Adler; Jonathan E. Taylor (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=R5BGvQ3ejloC"><i>Random Fields and Geometry</i></a>. Springer Science &amp; Business Media. p.&#160;14. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-48116-6" title="Special:BookSources/978-0-387-48116-6"><bdi>978-0-387-48116-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Fields+and+Geometry&amp;rft.pages=14&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2009&amp;rft.isbn=978-0-387-48116-6&amp;rft.au=Robert+J.+Adler&amp;rft.au=Jonathan+E.+Taylor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DR5BGvQ3ejloC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-AthreyaLahiri2006page211-326"><span class="mw-cite-backlink"><b><a href="#cite_ref-AthreyaLahiri2006page211_326-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrishna_B._AthreyaSoumendra_N._Lahiri2006" class="citation book cs1">Krishna B. Athreya; Soumendra N. Lahiri (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9tv0taI8l6YC"><i>Measure Theory and Probability Theory</i></a>. Springer Science &amp; Business Media. p.&#160;211. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-32903-1" title="Special:BookSources/978-0-387-32903-1"><bdi>978-0-387-32903-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Measure+Theory+and+Probability+Theory&amp;rft.pages=211&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006&amp;rft.isbn=978-0-387-32903-1&amp;rft.au=Krishna+B.+Athreya&amp;rft.au=Soumendra+N.+Lahiri&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9tv0taI8l6YC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Borovkov2013page536-327"><span class="mw-cite-backlink"><b><a href="#cite_ref-Borovkov2013page536_327-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlexander_A._Borovkov2013" class="citation book cs1">Alexander A. Borovkov (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=hRk_AAAAQBAJ"><i>Probability Theory</i></a>. Springer Science &amp; Business Media. p.&#160;536. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4471-5201-9" title="Special:BookSources/978-1-4471-5201-9"><bdi>978-1-4471-5201-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+Theory&amp;rft.pages=536&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-1-4471-5201-9&amp;rft.au=Alexander+A.+Borovkov&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DhRk_AAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-Yakir2013page5-328"><span class="mw-cite-backlink"><b><a href="#cite_ref-Yakir2013page5_328-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenjamin_Yakir2013" class="citation book cs1">Benjamin Yakir (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=HShwAAAAQBAJ&amp;pg=PT97"><i>Extremes in Random Fields: A Theory and Its Applications</i></a>. John Wiley &amp; Sons. p.&#160;5. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-72062-2" title="Special:BookSources/978-1-118-72062-2"><bdi>978-1-118-72062-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Extremes+in+Random+Fields%3A+A+Theory+and+Its+Applications&amp;rft.pages=5&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2013&amp;rft.isbn=978-1-118-72062-2&amp;rft.au=Benjamin+Yakir&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DHShwAAAAQBAJ%26pg%3DPT97&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-329"><span class="mw-cite-backlink"><b><a href="#cite_ref-329">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlackScholes1973" class="citation journal cs1">Black, Fischer; Scholes, Myron (1973). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1831029">"The Pricing of Options and Corporate Liabilities"</a>. <i>Journal of Political Economy</i>. <b>81</b> (3): 637–654. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F260062">10.1086/260062</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-3808">0022-3808</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1831029">1831029</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Political+Economy&amp;rft.atitle=The+Pricing+of+Options+and+Corporate+Liabilities&amp;rft.volume=81&amp;rft.issue=3&amp;rft.pages=637-654&amp;rft.date=1973&amp;rft.issn=0022-3808&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1831029%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1086%2F260062&amp;rft.aulast=Black&amp;rft.aufirst=Fischer&amp;rft.au=Scholes%2C+Myron&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1831029&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-330"><span class="mw-cite-backlink"><b><a href="#cite_ref-330">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMerton2005" class="citation cs2">Merton, Robert C. (July 2005), <a rel="nofollow" class="external text" href="http://www.worldscientific.com/doi/abs/10.1142/9789812701022_0008">"Theory of rational option pricing"</a>, <i>Theory of Valuation</i> (2&#160;ed.), WORLD SCIENTIFIC, pp.&#160;229–288, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F9789812701022_0008">10.1142/9789812701022_0008</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-256-374-3" title="Special:BookSources/978-981-256-374-3"><bdi>978-981-256-374-3</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2024-09-30</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Theory+of+Valuation&amp;rft.atitle=Theory+of+rational+option+pricing&amp;rft.pages=229-288&amp;rft.date=2005-07&amp;rft_id=info%3Adoi%2F10.1142%2F9789812701022_0008&amp;rft.isbn=978-981-256-374-3&amp;rft.aulast=Merton&amp;rft.aufirst=Robert+C.&amp;rft_id=http%3A%2F%2Fwww.worldscientific.com%2Fdoi%2Fabs%2F10.1142%2F9789812701022_0008&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-331"><span class="mw-cite-backlink"><b><a href="#cite_ref-331">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeston1993" class="citation journal cs1">Heston, Steven L. (1993). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2962057">"A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options"</a>. <i>The Review of Financial Studies</i>. <b>6</b> (2): 327–343. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Frfs%2F6.2.327">10.1093/rfs/6.2.327</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0893-9454">0893-9454</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2962057">2962057</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Review+of+Financial+Studies&amp;rft.atitle=A+Closed-Form+Solution+for+Options+with+Stochastic+Volatility+with+Applications+to+Bond+and+Currency+Options&amp;rft.volume=6&amp;rft.issue=2&amp;rft.pages=327-343&amp;rft.date=1993&amp;rft.issn=0893-9454&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2962057%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1093%2Frfs%2F6.2.327&amp;rft.aulast=Heston&amp;rft.aufirst=Steven+L.&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2962057&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-332"><span class="mw-cite-backlink"><b><a href="#cite_ref-332">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoss2010" class="citation book cs1">Ross, Sheldon M. (2010). <i>Introduction to probability models</i> (10th&#160;ed.). Amsterdam Heidelberg: Elsevier. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-375686-2" title="Special:BookSources/978-0-12-375686-2"><bdi>978-0-12-375686-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+probability+models&amp;rft.place=Amsterdam+Heidelberg&amp;rft.edition=10th&amp;rft.pub=Elsevier&amp;rft.date=2010&amp;rft.isbn=978-0-12-375686-2&amp;rft.aulast=Ross&amp;rft.aufirst=Sheldon+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> <li id="cite_note-333"><span class="mw-cite-backlink"><b><a href="#cite_ref-333">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoss2010" class="citation book cs1">Ross, Sheldon M. (2010). <i>Introduction to probability models</i> (10th&#160;ed.). Amsterdam Heidelberg: Elsevier. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-375686-2" title="Special:BookSources/978-0-12-375686-2"><bdi>978-0-12-375686-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+probability+models&amp;rft.place=Amsterdam+Heidelberg&amp;rft.edition=10th&amp;rft.pub=Elsevier&amp;rft.date=2010&amp;rft.isbn=978-0-12-375686-2&amp;rft.aulast=Ross&amp;rft.aufirst=Sheldon+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=62" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Further_reading_cleanup plainlinks metadata ambox ambox-style" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This "<a href="/wiki/Wikipedia:Manual_of_Style/Layout#Further_reading" title="Wikipedia:Manual of Style/Layout">Further reading</a>" section <b>may need cleanup</b>.<span class="hide-when-compact"> Please read the <a href="/wiki/Wikipedia:Further_reading" title="Wikipedia:Further reading">editing guide</a> and help improve the section.</span> <span class="date-container"><i>(<span class="date">July 2018</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Articles">Articles</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=63" title="Edit section: Articles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApplebaum2004" class="citation journal cs1">Applebaum, David (2004). "Lévy processes: From probability to finance and quantum groups". <i>Notices of the AMS</i>. <b>51</b> (11): 1336–1347.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+AMS&amp;rft.atitle=L%C3%A9vy+processes%3A+From+probability+to+finance+and+quantum+groups&amp;rft.volume=51&amp;rft.issue=11&amp;rft.pages=1336-1347&amp;rft.date=2004&amp;rft.aulast=Applebaum&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCramer1976" class="citation journal cs1">Cramer, Harald (1976). <a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faop%2F1176996025">"Half a Century with Probability Theory: Some Personal Recollections"</a>. <i>The Annals of Probability</i>. <b>4</b> (4): 509–546. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faop%2F1176996025">10.1214/aop/1176996025</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0091-1798">0091-1798</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Annals+of+Probability&amp;rft.atitle=Half+a+Century+with+Probability+Theory%3A+Some+Personal+Recollections&amp;rft.volume=4&amp;rft.issue=4&amp;rft.pages=509-546&amp;rft.date=1976&amp;rft_id=info%3Adoi%2F10.1214%2Faop%2F1176996025&amp;rft.issn=0091-1798&amp;rft.aulast=Cramer&amp;rft.aufirst=Harald&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1214%252Faop%252F1176996025&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuttorpThorarinsdottir2012" class="citation journal cs1">Guttorp, Peter; Thorarinsdottir, Thordis L. (2012). "What Happened to Discrete Chaos, the Quenouille Process, and the Sharp Markov Property? Some History of Stochastic Point Processes". <i>International Statistical Review</i>. <b>80</b> (2): 253–268. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1751-5823.2012.00181.x">10.1111/j.1751-5823.2012.00181.x</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0306-7734">0306-7734</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:80836">80836</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Statistical+Review&amp;rft.atitle=What+Happened+to+Discrete+Chaos%2C+the+Quenouille+Process%2C+and+the+Sharp+Markov+Property%3F+Some+History+of+Stochastic+Point+Processes&amp;rft.volume=80&amp;rft.issue=2&amp;rft.pages=253-268&amp;rft.date=2012&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A80836%23id-name%3DS2CID&amp;rft.issn=0306-7734&amp;rft_id=info%3Adoi%2F10.1111%2Fj.1751-5823.2012.00181.x&amp;rft.aulast=Guttorp&amp;rft.aufirst=Peter&amp;rft.au=Thorarinsdottir%2C+Thordis+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJarrowProtter2004" class="citation book cs1">Jarrow, Robert; Protter, Philip (2004). "A short history of stochastic integration and mathematical finance: the early years, 1880–1970". <i>A Festschrift for Herman Rubin</i>. Institute of Mathematical Statistics Lecture Notes - Monograph Series. pp.&#160;75–91. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Flnms%2F1196285381">10.1214/lnms/1196285381</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-940600-61-4" title="Special:BookSources/978-0-940600-61-4"><bdi>978-0-940600-61-4</bdi></a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0749-2170">0749-2170</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=A+short+history+of+stochastic+integration+and+mathematical+finance%3A+the+early+years%2C+1880%E2%80%931970&amp;rft.btitle=A+Festschrift+for+Herman+Rubin&amp;rft.series=Institute+of+Mathematical+Statistics+Lecture+Notes+-+Monograph+Series&amp;rft.pages=75-91&amp;rft.date=2004&amp;rft.issn=0749-2170&amp;rft_id=info%3Adoi%2F10.1214%2Flnms%2F1196285381&amp;rft.isbn=978-0-940600-61-4&amp;rft.aulast=Jarrow&amp;rft.aufirst=Robert&amp;rft.au=Protter%2C+Philip&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeyer2009" class="citation journal cs1">Meyer, Paul-André (2009). "Stochastic Processes from 1950 to the Present". <i>Electronic Journal for History of Probability and Statistics</i>. <b>5</b> (1): 1–42.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Electronic+Journal+for+History+of+Probability+and+Statistics&amp;rft.atitle=Stochastic+Processes+from+1950+to+the+Present&amp;rft.volume=5&amp;rft.issue=1&amp;rft.pages=1-42&amp;rft.date=2009&amp;rft.aulast=Meyer&amp;rft.aufirst=Paul-Andr%C3%A9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Books">Books</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=64" title="Edit section: Books"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobert_J._Adler2010" class="citation book cs1">Robert J. Adler (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ryejJmJAj28C&amp;pg=PA263"><i>The Geometry of Random Fields</i></a>. SIAM. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-89871-693-1" title="Special:BookSources/978-0-89871-693-1"><bdi>978-0-89871-693-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Geometry+of+Random+Fields&amp;rft.pub=SIAM&amp;rft.date=2010&amp;rft.isbn=978-0-89871-693-1&amp;rft.au=Robert+J.+Adler&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DryejJmJAj28C%26pg%3DPA263&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobert_J._AdlerJonathan_E._Taylor2009" class="citation book cs1">Robert J. Adler; Jonathan E. Taylor (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=R5BGvQ3ejloC"><i>Random Fields and Geometry</i></a>. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-48116-6" title="Special:BookSources/978-0-387-48116-6"><bdi>978-0-387-48116-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Fields+and+Geometry&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2009&amp;rft.isbn=978-0-387-48116-6&amp;rft.au=Robert+J.+Adler&amp;rft.au=Jonathan+E.+Taylor&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DR5BGvQ3ejloC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPierre_Brémaud2013" class="citation book cs1">Pierre Brémaud (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jrPVBwAAQBAJ"><i>Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues</i></a>. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4757-3124-8" title="Special:BookSources/978-1-4757-3124-8"><bdi>978-1-4757-3124-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Markov+Chains%3A+Gibbs+Fields%2C+Monte+Carlo+Simulation%2C+and+Queues&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013&amp;rft.isbn=978-1-4757-3124-8&amp;rft.au=Pierre+Br%C3%A9maud&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjrPVBwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoseph_L._Doob1990" class="citation book cs1"><a href="/wiki/Joseph_L._Doob" title="Joseph L. Doob">Joseph L. Doob</a> (1990). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NrsrAAAAYAAJ"><i>Stochastic processes</i></a>. Wiley.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+processes&amp;rft.pub=Wiley&amp;rft.date=1990&amp;rft.au=Joseph+L.+Doob&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNrsrAAAAYAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnders_Hald2005" class="citation book cs1">Anders Hald (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pOQy6-qnVx8C"><i>A History of Probability and Statistics and Their Applications before 1750</i></a>. John Wiley &amp; Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-72517-6" title="Special:BookSources/978-0-471-72517-6"><bdi>978-0-471-72517-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Probability+and+Statistics+and+Their+Applications+before+1750&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2005&amp;rft.isbn=978-0-471-72517-6&amp;rft.au=Anders+Hald&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpOQy6-qnVx8C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCrispin_Gardiner2010" class="citation book cs1"><a href="/wiki/Crispin_Gardiner" title="Crispin Gardiner">Crispin Gardiner</a> (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=321EuQAACAAJ&amp;q=Stochastic+methods"><i>Stochastic Methods</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-70712-7" title="Special:BookSources/978-3-540-70712-7"><bdi>978-3-540-70712-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Methods&amp;rft.pub=Springer&amp;rft.date=2010&amp;rft.isbn=978-3-540-70712-7&amp;rft.au=Crispin+Gardiner&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D321EuQAACAAJ%26q%3DStochastic%2Bmethods&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIosif_I._GikhmanAnatoly_Vladimirovich_Skorokhod1996" class="citation book cs1">Iosif I. Gikhman; Anatoly Vladimirovich Skorokhod (1996). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yJyLzG7N7r8C&amp;pg=PR2"><i>Introduction to the Theory of Random Processes</i></a>. Courier Corporation. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-69387-3" title="Special:BookSources/978-0-486-69387-3"><bdi>978-0-486-69387-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+the+Theory+of+Random+Processes&amp;rft.pub=Courier+Corporation&amp;rft.date=1996&amp;rft.isbn=978-0-486-69387-3&amp;rft.au=Iosif+I.+Gikhman&amp;rft.au=Anatoly+Vladimirovich+Skorokhod&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyJyLzG7N7r8C%26pg%3DPR2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEmanuel_Parzen2015" class="citation book cs1"><a href="/wiki/Emanuel_Parzen" title="Emanuel Parzen">Emanuel Parzen</a> (2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0mB2CQAAQBAJ"><i>Stochastic Processes</i></a>. Courier Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-79688-8" title="Special:BookSources/978-0-486-79688-8"><bdi>978-0-486-79688-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stochastic+Processes&amp;rft.pub=Courier+Dover+Publications&amp;rft.date=2015&amp;rft.isbn=978-0-486-79688-8&amp;rft.au=Emanuel+Parzen&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0mB2CQAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurray_Rosenblatt1962" class="citation book cs1"><a href="/wiki/Murray_Rosenblatt" title="Murray Rosenblatt">Murray Rosenblatt</a> (1962). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/randomprocesses00rose_0"><i>Random Processes</i></a></span>. Oxford University Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Random+Processes&amp;rft.pub=Oxford+University+Press&amp;rft.date=1962&amp;rft.au=Murray+Rosenblatt&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Frandomprocesses00rose_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AStochastic+process" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Stochastic_process&amp;action=edit&amp;section=65" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Media related to <a href="https://commons.wikimedia.org/wiki/Category:Stochastic_processes" class="extiw" title="commons:Category:Stochastic processes">Stochastic processes</a> at Wikimedia Commons</li></ul> <div style="clear:both;" class=""></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Stochastic_processes" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Stochastic_processes" title="Template:Stochastic processes"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Stochastic_processes" title="Template talk:Stochastic processes"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Stochastic_processes" title="Special:EditPage/Template:Stochastic processes"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Stochastic_processes" style="font-size:114%;margin:0 4em"><a class="mw-selflink selflink">Stochastic processes</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Discrete-time_stochastic_process" class="mw-redirect" title="Discrete-time stochastic process">Discrete time</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bernoulli_process" title="Bernoulli process">Bernoulli process</a></li> <li><a href="/wiki/Branching_process" title="Branching process">Branching process</a></li> <li><a href="/wiki/Chinese_restaurant_process" title="Chinese restaurant process">Chinese restaurant process</a></li> <li><a href="/wiki/Galton%E2%80%93Watson_process" title="Galton–Watson process">Galton–Watson process</a></li> <li><a href="/wiki/Independent_and_identically_distributed_random_variables" title="Independent and identically distributed random variables">Independent and identically distributed random variables</a></li> <li><a href="/wiki/Markov_chain" title="Markov chain">Markov chain</a></li> <li><a href="/wiki/Moran_process" title="Moran process">Moran process</a></li> <li><a href="/wiki/Random_walk" title="Random walk">Random walk</a> <ul><li><a href="/wiki/Loop-erased_random_walk" title="Loop-erased random walk">Loop-erased</a></li> <li><a href="/wiki/Self-avoiding_walk" title="Self-avoiding walk">Self-avoiding</a></li> <li><a href="/wiki/Biased_random_walk_on_a_graph" title="Biased random walk on a graph"> Biased</a></li> <li><a href="/wiki/Maximal_entropy_random_walk" title="Maximal entropy random walk">Maximal entropy</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Continuous-time_stochastic_process" title="Continuous-time stochastic process">Continuous time</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Additive_process" title="Additive process">Additive process</a></li> <li><a href="/wiki/Bessel_process" title="Bessel process">Bessel process</a></li> <li><a href="/wiki/Birth%E2%80%93death_process" title="Birth–death process">Birth–death process</a> <ul><li><a href="/wiki/Birth_process" title="Birth process">pure birth</a></li></ul></li> <li><a href="/wiki/Wiener_process" title="Wiener process">Brownian motion</a> <ul><li><a href="/wiki/Brownian_bridge" title="Brownian bridge">Bridge</a></li> <li><a href="/wiki/Brownian_excursion" title="Brownian excursion">Excursion</a></li> <li><a href="/wiki/Fractional_Brownian_motion" title="Fractional Brownian motion">Fractional</a></li> <li><a href="/wiki/Geometric_Brownian_motion" title="Geometric Brownian motion">Geometric</a></li> <li><a href="/wiki/Brownian_meander" title="Brownian meander">Meander</a></li></ul></li> <li><a href="/wiki/Cauchy_process" title="Cauchy process">Cauchy process</a></li> <li><a href="/wiki/Contact_process_(mathematics)" title="Contact process (mathematics)">Contact process</a></li> <li><a href="/wiki/Continuous-time_random_walk" title="Continuous-time random walk">Continuous-time random walk</a></li> <li><a href="/wiki/Cox_process" title="Cox process">Cox process</a></li> <li><a href="/wiki/Diffusion_process" title="Diffusion process">Diffusion process</a></li> <li><a href="/wiki/Dyson_Brownian_motion" title="Dyson Brownian motion">Dyson Brownian motion</a></li> <li><a href="/wiki/Empirical_process" title="Empirical process">Empirical process</a></li> <li><a href="/wiki/Feller_process" title="Feller process">Feller process</a></li> <li><a href="/wiki/Fleming%E2%80%93Viot_process" title="Fleming–Viot process">Fleming–Viot process</a></li> <li><a href="/wiki/Gamma_process" title="Gamma process">Gamma process</a></li> <li><a href="/wiki/Geometric_process" title="Geometric process">Geometric process</a></li> <li><a href="/wiki/Hawkes_process" title="Hawkes process">Hawkes process</a></li> <li><a href="/wiki/Hunt_process" title="Hunt process">Hunt process</a></li> <li><a href="/wiki/Interacting_particle_system" title="Interacting particle system">Interacting particle systems</a></li> <li><a href="/wiki/It%C3%B4_diffusion" title="Itô diffusion">Itô diffusion</a></li> <li><a href="/wiki/It%C3%B4_process" class="mw-redirect" title="Itô process">Itô process</a></li> <li><a href="/wiki/Jump_diffusion" title="Jump diffusion">Jump diffusion</a></li> <li><a href="/wiki/Jump_process" title="Jump process">Jump process</a></li> <li><a href="/wiki/L%C3%A9vy_process" title="Lévy process">Lévy process</a></li> <li><a href="/wiki/Local_time_(mathematics)" title="Local time (mathematics)">Local time</a></li> <li><a href="/wiki/Markov_additive_process" title="Markov additive process">Markov additive process</a></li> <li><a href="/wiki/McKean%E2%80%93Vlasov_process" title="McKean–Vlasov process">McKean–Vlasov process</a></li> <li><a href="/wiki/Ornstein%E2%80%93Uhlenbeck_process" title="Ornstein–Uhlenbeck process">Ornstein–Uhlenbeck process</a></li> <li><a href="/wiki/Poisson_point_process" title="Poisson point process">Poisson process</a> <ul><li><a href="/wiki/Compound_Poisson_process" title="Compound Poisson process">Compound</a></li> <li><a href="/wiki/Non-homogeneous_Poisson_process" class="mw-redirect" title="Non-homogeneous Poisson process">Non-homogeneous</a></li></ul></li> <li><a href="/wiki/Schramm%E2%80%93Loewner_evolution" title="Schramm–Loewner evolution">Schramm–Loewner evolution</a></li> <li><a href="/wiki/Semimartingale" title="Semimartingale">Semimartingale</a></li> <li><a href="/wiki/Sigma-martingale" title="Sigma-martingale">Sigma-martingale</a></li> <li><a href="/wiki/Stable_process" title="Stable process">Stable process</a></li> <li><a href="/wiki/Superprocess" title="Superprocess">Superprocess</a></li> <li><a href="/wiki/Telegraph_process" title="Telegraph process">Telegraph process</a></li> <li><a href="/wiki/Variance_gamma_process" title="Variance gamma process">Variance gamma process</a></li> <li><a href="/wiki/Wiener_process" title="Wiener process">Wiener process</a></li> <li><a href="/wiki/Wiener_sausage" title="Wiener sausage">Wiener sausage</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Both</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Branching_process" title="Branching process">Branching process</a></li> <li><a href="/wiki/Gaussian_process" title="Gaussian process">Gaussian process</a></li> <li><a href="/wiki/Hidden_Markov_model" title="Hidden Markov model">Hidden Markov model (HMM)</a></li> <li><a href="/wiki/Markov_process" class="mw-redirect" title="Markov process">Markov process</a></li> <li><a href="/wiki/Martingale_(probability_theory)" title="Martingale (probability theory)">Martingale</a> <ul><li><a href="/wiki/Martingale_difference_sequence" title="Martingale difference sequence">Differences</a></li> <li><a href="/wiki/Local_martingale" title="Local martingale">Local</a></li> <li><a href="/wiki/Submartingale" class="mw-redirect" title="Submartingale">Sub-</a></li> <li><a href="/wiki/Supermartingale" class="mw-redirect" title="Supermartingale">Super-</a></li></ul></li> <li><a href="/wiki/Random_dynamical_system" title="Random dynamical system">Random dynamical system</a></li> <li><a href="/wiki/Regenerative_process" title="Regenerative process">Regenerative process</a></li> <li><a href="/wiki/Renewal_process" class="mw-redirect" title="Renewal process">Renewal process</a></li> <li><a href="/wiki/Stochastic_chains_with_memory_of_variable_length" title="Stochastic chains with memory of variable length">Stochastic chains with memory of variable length</a></li> <li><a href="/wiki/White_noise" title="White noise">White noise</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fields and other</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dirichlet_process" title="Dirichlet process">Dirichlet process</a></li> <li><a href="/wiki/Gaussian_random_field" title="Gaussian random field">Gaussian random field</a></li> <li><a href="/wiki/Gibbs_measure" title="Gibbs measure">Gibbs measure</a></li> <li><a href="/wiki/Hopfield_model" class="mw-redirect" title="Hopfield model">Hopfield model</a></li> <li><a href="/wiki/Ising_model" title="Ising model">Ising model</a> <ul><li><a href="/wiki/Potts_model" title="Potts model">Potts model</a></li> <li><a href="/wiki/Boolean_network" title="Boolean network">Boolean network</a></li></ul></li> <li><a href="/wiki/Markov_random_field" title="Markov random field">Markov random field</a></li> <li><a href="/wiki/Percolation_theory" title="Percolation theory">Percolation</a></li> <li><a href="/wiki/Pitman%E2%80%93Yor_process" title="Pitman–Yor process">Pitman–Yor process</a></li> <li><a href="/wiki/Point_process" title="Point process">Point process</a> <ul><li><a href="/wiki/Point_process#Cox_point_process" title="Point process">Cox</a></li> <li><a href="/wiki/Poisson_point_process" title="Poisson point process">Poisson</a></li></ul></li> <li><a href="/wiki/Random_field" title="Random field">Random field</a></li> <li><a href="/wiki/Random_graph" title="Random graph">Random graph</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Time_series" title="Time series">Time series models</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Autoregressive_conditional_heteroskedasticity" title="Autoregressive conditional heteroskedasticity">Autoregressive conditional heteroskedasticity (ARCH) model</a></li> <li><a href="/wiki/Autoregressive_integrated_moving_average" title="Autoregressive integrated moving average">Autoregressive integrated moving average (ARIMA) model</a></li> <li><a href="/wiki/Autoregressive_model" title="Autoregressive model">Autoregressive (AR) model</a></li> <li><a href="/wiki/Autoregressive%E2%80%93moving-average_model" class="mw-redirect" title="Autoregressive–moving-average model">Autoregressive–moving-average (ARMA) model</a></li> <li><a href="/wiki/Autoregressive_conditional_heteroskedasticity" title="Autoregressive conditional heteroskedasticity">Generalized autoregressive conditional heteroskedasticity (GARCH) model</a></li> <li><a href="/wiki/Moving-average_model" title="Moving-average model">Moving-average (MA) model</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Asset_pricing_model" class="mw-redirect" title="Asset pricing model">Financial models</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Binomial_options_pricing_model" title="Binomial options pricing model">Binomial options pricing model</a></li> <li><a href="/wiki/Black%E2%80%93Derman%E2%80%93Toy_model" title="Black–Derman–Toy model">Black–Derman–Toy</a></li> <li><a href="/wiki/Black%E2%80%93Karasinski_model" title="Black–Karasinski model">Black–Karasinski</a></li> <li><a href="/wiki/Black%E2%80%93Scholes_model" title="Black–Scholes model">Black–Scholes</a></li> <li><a href="/wiki/Chan%E2%80%93Karolyi%E2%80%93Longstaff%E2%80%93Sanders_process" title="Chan–Karolyi–Longstaff–Sanders process">Chan–Karolyi–Longstaff–Sanders (CKLS)</a></li> <li><a href="/wiki/Chen_model" title="Chen model">Chen</a></li> <li><a href="/wiki/Constant_elasticity_of_variance_model" title="Constant elasticity of variance model">Constant elasticity of variance (CEV)</a></li> <li><a href="/wiki/Cox%E2%80%93Ingersoll%E2%80%93Ross_model" title="Cox–Ingersoll–Ross model">Cox–Ingersoll–Ross (CIR)</a></li> <li><a href="/wiki/Garman%E2%80%93Kohlhagen_model" class="mw-redirect" title="Garman–Kohlhagen model">Garman–Kohlhagen</a></li> <li><a href="/wiki/Heath%E2%80%93Jarrow%E2%80%93Morton_framework" title="Heath–Jarrow–Morton framework">Heath–Jarrow–Morton (HJM)</a></li> <li><a href="/wiki/Heston_model" title="Heston model">Heston</a></li> <li><a href="/wiki/Ho%E2%80%93Lee_model" title="Ho–Lee model">Ho–Lee</a></li> <li><a href="/wiki/Hull%E2%80%93White_model" title="Hull–White model">Hull–White</a></li> <li><a href="/wiki/Korn%E2%80%93Kreer%E2%80%93Lenssen_model" title="Korn–Kreer–Lenssen model">Korn-Kreer-Lenssen</a></li> <li><a href="/wiki/LIBOR_market_model" title="LIBOR market model">LIBOR market</a></li> <li><a href="/wiki/Rendleman%E2%80%93Bartter_model" title="Rendleman–Bartter model">Rendleman–Bartter</a></li> <li><a href="/wiki/SABR_volatility_model" title="SABR volatility model">SABR volatility</a></li> <li><a href="/wiki/Vasicek_model" title="Vasicek model">Vašíček</a></li> <li><a href="/wiki/Wilkie_investment_model" title="Wilkie investment model">Wilkie</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Actuarial_mathematics" class="mw-redirect" title="Actuarial mathematics">Actuarial models</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/B%C3%BChlmann_model" title="Bühlmann model">Bühlmann</a></li> <li><a href="/wiki/Cram%C3%A9r%E2%80%93Lundberg_model" class="mw-redirect" title="Cramér–Lundberg model">Cramér–Lundberg</a></li> <li><a href="/wiki/Risk_process" class="mw-redirect" title="Risk process">Risk process</a></li> <li><a href="/wiki/Sparre%E2%80%93Anderson_model" class="mw-redirect" title="Sparre–Anderson model">Sparre–Anderson</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Queueing_model" class="mw-redirect" title="Queueing model">Queueing models</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bulk_queue" title="Bulk queue">Bulk</a></li> <li><a href="/wiki/Fluid_queue" title="Fluid queue">Fluid</a></li> <li><a href="/wiki/G-network" title="G-network">Generalized queueing network</a></li> <li><a href="/wiki/M/G/1_queue" title="M/G/1 queue">M/G/1</a></li> <li><a href="/wiki/M/M/1_queue" title="M/M/1 queue">M/M/1</a></li> <li><a href="/wiki/M/M/c_queue" title="M/M/c queue">M/M/c</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Properties</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/C%C3%A0dl%C3%A0g" title="Càdlàg">Càdlàg paths</a></li> <li><a href="/wiki/Continuous_stochastic_process" title="Continuous stochastic process">Continuous</a></li> <li><a href="/wiki/Sample-continuous_process" title="Sample-continuous process">Continuous paths</a></li> <li><a href="/wiki/Ergodicity" title="Ergodicity">Ergodic</a></li> <li><a href="/wiki/Exchangeable_random_variables" title="Exchangeable random variables">Exchangeable</a></li> <li><a href="/wiki/Feller-continuous_process" title="Feller-continuous process">Feller-continuous</a></li> <li><a href="/wiki/Gauss%E2%80%93Markov_process" title="Gauss–Markov process">Gauss–Markov</a></li> <li><a href="/wiki/Markov_property" title="Markov property">Markov</a></li> <li><a href="/wiki/Mixing_(mathematics)" title="Mixing (mathematics)">Mixing</a></li> <li><a href="/wiki/Piecewise-deterministic_Markov_process" title="Piecewise-deterministic Markov process">Piecewise-deterministic</a></li> <li><a href="/wiki/Predictable_process" title="Predictable process">Predictable</a></li> <li><a href="/wiki/Progressively_measurable_process" title="Progressively measurable process">Progressively measurable</a></li> <li><a href="/wiki/Self-similar_process" title="Self-similar process">Self-similar</a></li> <li><a href="/wiki/Stationary_process" title="Stationary process">Stationary</a></li> <li><a href="/wiki/Time_reversibility" title="Time reversibility">Time-reversible</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Limit theorems</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Central_limit_theorem" title="Central limit theorem">Central limit theorem</a></li> <li><a href="/wiki/Donsker%27s_theorem" title="Donsker&#39;s theorem">Donsker's theorem</a></li> <li><a href="/wiki/Doob%27s_martingale_convergence_theorems" title="Doob&#39;s martingale convergence theorems">Doob's martingale convergence theorems</a></li> <li><a href="/wiki/Ergodic_theorem" class="mw-redirect" title="Ergodic theorem">Ergodic theorem</a></li> <li><a href="/wiki/Fisher%E2%80%93Tippett%E2%80%93Gnedenko_theorem" title="Fisher–Tippett–Gnedenko theorem">Fisher–Tippett–Gnedenko theorem</a></li> <li><a href="/wiki/Large_deviation_principle" class="mw-redirect" title="Large deviation principle">Large deviation principle</a></li> <li><a href="/wiki/Law_of_large_numbers" title="Law of large numbers">Law of large numbers (weak/strong)</a></li> <li><a href="/wiki/Law_of_the_iterated_logarithm" title="Law of the iterated logarithm">Law of the iterated logarithm</a></li> <li><a href="/wiki/Maximal_ergodic_theorem" title="Maximal ergodic theorem">Maximal ergodic theorem</a></li> <li><a href="/wiki/Sanov%27s_theorem" title="Sanov&#39;s theorem">Sanov's theorem</a></li> <li><a href="/wiki/Zero%E2%80%93one_law" title="Zero–one law">Zero–one laws</a> (<a href="/wiki/Blumenthal%27s_zero%E2%80%93one_law" title="Blumenthal&#39;s zero–one law">Blumenthal</a>, <a href="/wiki/Borel%E2%80%93Cantelli_lemma" title="Borel–Cantelli lemma">Borel–Cantelli</a>, <a href="/wiki/Engelbert%E2%80%93Schmidt_zero%E2%80%93one_law" title="Engelbert–Schmidt zero–one law">Engelbert–Schmidt</a>, <a href="/wiki/Hewitt%E2%80%93Savage_zero%E2%80%93one_law" title="Hewitt–Savage zero–one law">Hewitt–Savage</a>, <a href="/wiki/Kolmogorov%27s_zero%E2%80%93one_law" title="Kolmogorov&#39;s zero–one law"> Kolmogorov</a>, <a href="/wiki/L%C3%A9vy%27s_zero%E2%80%93one_law" class="mw-redirect" title="Lévy&#39;s zero–one law">Lévy</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/List_of_inequalities#Probability_theory_and_statistics" title="List of inequalities">Inequalities</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Burkholder%E2%80%93Davis%E2%80%93Gundy_inequalities" class="mw-redirect" title="Burkholder–Davis–Gundy inequalities">Burkholder–Davis–Gundy</a></li> <li><a href="/wiki/Doob%27s_martingale_inequality" title="Doob&#39;s martingale inequality">Doob's martingale</a></li> <li><a href="/wiki/Doob%27s_upcrossing_inequality" class="mw-redirect" title="Doob&#39;s upcrossing inequality">Doob's upcrossing</a></li> <li><a href="/wiki/Kunita%E2%80%93Watanabe_inequality" title="Kunita–Watanabe inequality">Kunita–Watanabe</a></li> <li><a href="/wiki/Marcinkiewicz%E2%80%93Zygmund_inequality" title="Marcinkiewicz–Zygmund inequality">Marcinkiewicz–Zygmund</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Tools</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cameron%E2%80%93Martin_formula" class="mw-redirect" title="Cameron–Martin formula">Cameron–Martin formula</a></li> <li><a href="/wiki/Convergence_of_random_variables" title="Convergence of random variables">Convergence of random variables</a></li> <li><a href="/wiki/Dol%C3%A9ans-Dade_exponential" title="Doléans-Dade exponential">Doléans-Dade exponential</a></li> <li><a href="/wiki/Doob_decomposition_theorem" title="Doob decomposition theorem">Doob decomposition theorem</a></li> <li><a href="/wiki/Doob%E2%80%93Meyer_decomposition_theorem" title="Doob–Meyer decomposition theorem">Doob–Meyer decomposition theorem</a></li> <li><a href="/wiki/Doob%27s_optional_stopping_theorem" class="mw-redirect" title="Doob&#39;s optional stopping theorem">Doob's optional stopping theorem</a></li> <li><a href="/wiki/Dynkin%27s_formula" title="Dynkin&#39;s formula">Dynkin's formula</a></li> <li><a href="/wiki/Feynman%E2%80%93Kac_formula" title="Feynman–Kac formula">Feynman–Kac formula</a></li> <li><a href="/wiki/Filtration_(probability_theory)" title="Filtration (probability theory)">Filtration</a></li> <li><a href="/wiki/Girsanov_theorem" title="Girsanov theorem">Girsanov theorem</a></li> <li><a href="/wiki/Infinitesimal_generator_(stochastic_processes)" title="Infinitesimal generator (stochastic processes)">Infinitesimal generator</a></li> <li><a href="/wiki/It%C3%B4_integral" class="mw-redirect" title="Itô integral">Itô integral</a></li> <li><a href="/wiki/It%C3%B4%27s_lemma" title="Itô&#39;s lemma">Itô's lemma</a></li> <li><a href="/wiki/Karhunen%E2%80%93Lo%C3%A8ve_theorem" class="mw-redirect" title="Karhunen–Loève theorem">Karhunen–Loève theorem</a></li> <li><a href="/wiki/Kolmogorov_continuity_theorem" title="Kolmogorov continuity theorem">Kolmogorov continuity theorem</a></li> <li><a href="/wiki/Kolmogorov_extension_theorem" title="Kolmogorov extension theorem">Kolmogorov extension theorem</a></li> <li><a href="/wiki/L%C3%A9vy%E2%80%93Prokhorov_metric" title="Lévy–Prokhorov metric">Lévy–Prokhorov metric</a></li> <li><a href="/wiki/Malliavin_calculus" title="Malliavin calculus">Malliavin calculus</a></li> <li><a href="/wiki/Martingale_representation_theorem" title="Martingale representation theorem">Martingale representation theorem</a></li> <li><a href="/wiki/Optional_stopping_theorem" title="Optional stopping theorem">Optional stopping theorem</a></li> <li><a href="/wiki/Prokhorov%27s_theorem" title="Prokhorov&#39;s theorem">Prokhorov's theorem</a></li> <li><a href="/wiki/Quadratic_variation" title="Quadratic variation">Quadratic variation</a></li> <li><a href="/wiki/Reflection_principle_(Wiener_process)" title="Reflection principle (Wiener process)">Reflection principle</a></li> <li><a href="/wiki/Skorokhod_integral" title="Skorokhod integral">Skorokhod integral</a></li> <li><a href="/wiki/Skorokhod%27s_representation_theorem" title="Skorokhod&#39;s representation theorem">Skorokhod's representation theorem</a></li> <li><a href="/wiki/Skorokhod_space" class="mw-redirect" title="Skorokhod space">Skorokhod space</a></li> <li><a href="/wiki/Snell_envelope" title="Snell envelope">Snell envelope</a></li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic differential equation</a> <ul><li><a href="/wiki/Tanaka_equation" title="Tanaka equation">Tanaka</a></li></ul></li> <li><a href="/wiki/Stopping_time" title="Stopping time">Stopping time</a></li> <li><a href="/wiki/Stratonovich_integral" title="Stratonovich integral">Stratonovich integral</a></li> <li><a href="/wiki/Uniform_integrability" title="Uniform integrability">Uniform integrability</a></li> <li><a href="/wiki/Usual_hypotheses" class="mw-redirect" title="Usual hypotheses">Usual hypotheses</a></li> <li><a href="/wiki/Wiener_space" class="mw-redirect" title="Wiener space">Wiener space</a> <ul><li><a href="/wiki/Classical_Wiener_space" title="Classical Wiener space">Classical</a></li> <li><a href="/wiki/Abstract_Wiener_space" title="Abstract Wiener space">Abstract</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Disciplines</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Actuarial_mathematics" class="mw-redirect" title="Actuarial mathematics">Actuarial mathematics</a></li> <li><a href="/wiki/Stochastic_control" title="Stochastic control">Control theory</a></li> <li><a href="/wiki/Econometrics" title="Econometrics">Econometrics</a></li> <li><a href="/wiki/Ergodic_theory" title="Ergodic theory">Ergodic theory</a></li> <li><a href="/wiki/Extreme_value_theory" title="Extreme value theory">Extreme value theory (EVT)</a></li> <li><a href="/wiki/Large_deviations_theory" title="Large deviations theory">Large deviations theory</a></li> <li><a href="/wiki/Mathematical_finance" title="Mathematical finance">Mathematical finance</a></li> <li><a href="/wiki/Mathematical_statistics" title="Mathematical statistics">Mathematical statistics</a></li> <li><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></li> <li><a href="/wiki/Queueing_theory" title="Queueing theory">Queueing theory</a></li> <li><a href="/wiki/Renewal_theory" title="Renewal theory">Renewal theory</a></li> <li><a href="/wiki/Ruin_theory" title="Ruin theory">Ruin theory</a></li> <li><a href="/wiki/Signal_processing" title="Signal processing">Signal processing</a></li> <li><a href="/wiki/Statistics" title="Statistics">Statistics</a></li> <li><a href="/wiki/Stochastic_analysis" class="mw-redirect" title="Stochastic analysis">Stochastic analysis</a></li> <li><a href="/wiki/Time_series_analysis" class="mw-redirect" title="Time series analysis">Time series analysis</a></li> <li><a href="/wiki/Machine_learning" title="Machine learning">Machine learning</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2"><div> <ul><li><a href="/wiki/List_of_stochastic_processes_topics" title="List of stochastic processes topics">List of topics</a></li> <li><a href="/wiki/Category:Stochastic_processes" title="Category:Stochastic processes">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Industrial_and_applied_mathematics" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Industrial_and_applied_mathematics" title="Template:Industrial and applied mathematics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Industrial_and_applied_mathematics" title="Template talk:Industrial and applied mathematics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Industrial_and_applied_mathematics" title="Special:EditPage/Template:Industrial and applied mathematics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Industrial_and_applied_mathematics" style="font-size:114%;margin:0 4em"><a href="/wiki/Applied_mathematics" title="Applied mathematics">Industrial and applied mathematics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Computational_mathematics" title="Computational mathematics">Computational</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Algorithm" title="Algorithm">Algorithms</a> <ul><li><a href="/wiki/Algorithm_design" class="mw-redirect" title="Algorithm design">design</a></li> <li><a href="/wiki/Analysis_of_algorithms" title="Analysis of algorithms">analysis</a></li></ul></li> <li><a href="/wiki/Automata_theory" title="Automata theory">Automata theory</a></li> <li><a href="/wiki/Automated_theorem_proving" title="Automated theorem proving">Automated theorem proving</a></li> <li><a href="/wiki/Coding_theory" title="Coding theory">Coding theory</a></li> <li><a href="/wiki/Computational_geometry" title="Computational geometry">Computational geometry</a></li> <li><a href="/wiki/Constraint_satisfaction_problem" title="Constraint satisfaction problem">Constraint satisfaction</a> <ul><li><a href="/wiki/Constraint_programming" title="Constraint programming">Constraint programming</a></li></ul></li> <li><a href="/wiki/Logic_in_computer_science" title="Logic in computer science">Computational logic</a></li> <li><a href="/wiki/Cryptography" title="Cryptography">Cryptography</a></li> <li><a href="/wiki/Information_theory" title="Information theory">Information theory</a></li> <li><a href="/wiki/Computational_statistics" title="Computational statistics">Statistics</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Mathematical_software" scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Mathematical_software" title="Mathematical software">Mathematical software</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_arbitrary-precision_arithmetic_software" title="List of arbitrary-precision arithmetic software">Arbitrary-precision arithmetic</a></li> <li><a href="/wiki/List_of_finite_element_software_packages" title="List of finite element software packages">Finite element analysis</a></li> <li><a href="/wiki/Tensor_software" title="Tensor software">Tensor software</a></li> <li><a href="/wiki/List_of_interactive_geometry_software" title="List of interactive geometry software">Interactive geometry software</a></li> <li><a href="/wiki/List_of_optimization_software" title="List of optimization software">Optimization software</a></li> <li><a href="/wiki/List_of_statistical_software" title="List of statistical software">Statistical software</a></li> <li><a href="/wiki/List_of_numerical-analysis_software" title="List of numerical-analysis software">Numerical-analysis software</a></li> <li><a href="/wiki/List_of_numerical-analysis_software" title="List of numerical-analysis software">Numerical libraries</a></li> <li><a href="/wiki/Solver" title="Solver">Solvers</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Discrete_mathematics" title="Discrete mathematics">Discrete</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Computer_algebra" title="Computer algebra">Computer algebra</a></li> <li><a href="/wiki/Computational_number_theory" title="Computational number theory">Computational number theory</a></li> <li><a href="/wiki/Combinatorics" title="Combinatorics">Combinatorics</a></li> <li><a href="/wiki/Graph_theory" title="Graph theory">Graph theory</a></li> <li><a href="/wiki/Discrete_geometry" title="Discrete geometry">Discrete geometry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Mathematical_analysis" title="Mathematical analysis">Analysis</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Approximation_theory" title="Approximation theory">Approximation theory</a></li> <li><a href="/wiki/Clifford_analysis" title="Clifford analysis">Clifford analysis</a> <ul><li><a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebra</a></li></ul></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Differential equations</a> <ul><li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">Ordinary differential equations</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial differential equations</a></li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic differential equations</a></li></ul></li> <li><a href="/wiki/Differential_geometry" title="Differential geometry">Differential geometry</a> <ul><li><a href="/wiki/Differential_form" title="Differential form">Differential forms</a></li> <li><a href="/wiki/Gauge_theory_(mathematics)" title="Gauge theory (mathematics)">Gauge theory</a></li> <li><a href="/wiki/Geometric_analysis" title="Geometric analysis">Geometric analysis</a></li></ul></li> <li><a href="/wiki/Dynamical_system" title="Dynamical system">Dynamical systems</a> <ul><li><a href="/wiki/Chaos_theory" title="Chaos theory">Chaos theory</a></li> <li><a href="/wiki/Control_theory" title="Control theory">Control theory</a></li></ul></li> <li><a href="/wiki/Functional_analysis" title="Functional analysis">Functional analysis</a> <ul><li><a href="/wiki/Operator_algebra" title="Operator algebra">Operator algebra</a></li> <li><a href="/wiki/Operator_theory" title="Operator theory">Operator theory</a></li></ul></li> <li><a href="/wiki/Harmonic_analysis_(mathematics)" class="mw-redirect" title="Harmonic analysis (mathematics)">Harmonic analysis</a> <ul><li><a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a></li></ul></li> <li><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a> <ul><li><a href="/wiki/Exterior_algebra" title="Exterior algebra">Exterior</a></li> <li><a href="/wiki/Geometric_algebra" title="Geometric algebra">Geometric</a></li> <li><a href="/wiki/Tensor" title="Tensor">Tensor</a></li> <li><a href="/wiki/Vector_calculus#Vector_algebra" title="Vector calculus">Vector</a></li></ul></li> <li><a href="/wiki/Multivariable_calculus" title="Multivariable calculus">Multivariable calculus</a> <ul><li><a href="/wiki/Exterior_calculus" class="mw-redirect" title="Exterior calculus">Exterior</a></li> <li><a href="/wiki/Geometric_calculus" title="Geometric calculus">Geometric</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor</a></li> <li><a href="/wiki/Vector_calculus" title="Vector calculus">Vector</a></li></ul></li> <li><a href="/wiki/Numerical_analysis" title="Numerical analysis">Numerical analysis</a> <ul><li><a href="/wiki/Numerical_linear_algebra" title="Numerical linear algebra">Numerical linear algebra</a></li> <li><a href="/wiki/Numerical_methods_for_ordinary_differential_equations" title="Numerical methods for ordinary differential equations">Numerical methods for ordinary differential equations</a></li> <li><a href="/wiki/Numerical_methods_for_partial_differential_equations" title="Numerical methods for partial differential equations">Numerical methods for partial differential equations</a></li> <li><a href="/wiki/Validated_numerics" title="Validated numerics">Validated numerics</a></li></ul></li> <li><a href="/wiki/Calculus_of_variations" title="Calculus of variations">Variational calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Probability_distribution" title="Probability distribution">Distributions</a>&#160;(<a href="/wiki/Random_variable" title="Random variable">random variables</a>)</li> <li><a class="mw-selflink selflink">Stochastic processes</a>&#160;/&#32;<a href="/wiki/Stochastic_calculus" title="Stochastic calculus">analysis</a></li> <li><a href="/wiki/Functional_integration" title="Functional integration">Path integral</a></li> <li><a href="/wiki/Malliavin_calculus" title="Malliavin calculus">Stochastic variational calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Mathematical_physics" title="Mathematical physics">Mathematical<br />physics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Analytical_mechanics" title="Analytical mechanics">Analytical mechanics</a> <ul><li><a href="/wiki/Lagrangian_mechanics" title="Lagrangian mechanics">Lagrangian</a></li> <li><a href="/wiki/Hamiltonian_mechanics" title="Hamiltonian mechanics">Hamiltonian</a></li></ul></li> <li><a href="/wiki/Field_theory_(physics)" class="mw-redirect" title="Field theory (physics)">Field theory</a> <ul><li><a href="/wiki/Classical_field_theory" title="Classical field theory">Classical</a></li> <li><a href="/wiki/Conformal_field_theory" title="Conformal field theory">Conformal</a></li> <li><a href="/wiki/Effective_field_theory" title="Effective field theory">Effective</a></li> <li><a href="/wiki/Gauge_theory" title="Gauge theory">Gauge</a></li> <li><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum</a></li> <li><a href="/wiki/Statistical_field_theory" title="Statistical field theory">Statistical</a></li> <li><a href="/wiki/Topological_field_theory" class="mw-redirect" title="Topological field theory">Topological</a></li></ul></li> <li><a href="/wiki/Perturbation_theory" title="Perturbation theory">Perturbation theory</a> <ul><li><a href="/wiki/Perturbation_theory_(quantum_mechanics)" title="Perturbation theory (quantum mechanics)">in quantum mechanics</a></li></ul></li> <li><a href="/wiki/Potential_theory" title="Potential theory">Potential theory</a></li> <li><a href="/wiki/String_theory" title="String theory">String theory</a> <ul><li><a href="/wiki/Bosonic_string_theory" title="Bosonic string theory">Bosonic</a></li> <li><a href="/wiki/Topological_string_theory" title="Topological string theory">Topological</a></li></ul></li> <li><a href="/wiki/Supersymmetry" title="Supersymmetry">Supersymmetry</a> <ul><li><a href="/wiki/Supersymmetric_quantum_mechanics" title="Supersymmetric quantum mechanics">Supersymmetric quantum mechanics</a></li> <li><a href="/wiki/Supersymmetric_theory_of_stochastic_dynamics" title="Supersymmetric theory of stochastic dynamics">Supersymmetric theory of stochastic dynamics</a></li></ul></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Algebraic_structures" scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Algebraic_structures" class="mw-redirect" title="Algebraic structures">Algebraic structures</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Algebra_of_physical_space" title="Algebra of physical space">Algebra of physical space</a></li> <li><a href="/wiki/Path_integral_formulation" title="Path integral formulation">Feynman integral</a></li> <li><a href="/wiki/Poisson_algebra" title="Poisson algebra">Poisson algebra</a></li> <li><a href="/wiki/Quantum_group" title="Quantum group">Quantum group</a></li> <li><a href="/wiki/Renormalization_group" title="Renormalization group">Renormalization group</a></li> <li><a href="/wiki/Particle_physics_and_representation_theory" title="Particle physics and representation theory">Representation theory</a></li> <li><a href="/wiki/Spacetime_algebra" title="Spacetime algebra">Spacetime algebra</a></li> <li><a href="/wiki/Superalgebra" title="Superalgebra">Superalgebra</a></li> <li><a href="/wiki/Supersymmetry_algebra" title="Supersymmetry algebra">Supersymmetry algebra</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Decision_theory" title="Decision theory">Decision sciences</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Game_theory" title="Game theory">Game theory</a></li> <li><a href="/wiki/Operations_research" title="Operations research">Operations research</a></li> <li><a href="/wiki/Mathematical_optimization" title="Mathematical optimization">Optimization</a></li> <li><a href="/wiki/Social_choice_theory" title="Social choice theory">Social choice theory</a></li> <li><a href="/wiki/Statistics" title="Statistics">Statistics</a></li> <li><a href="/wiki/Mathematical_economics" title="Mathematical economics">Mathematical economics</a></li> <li><a href="/wiki/Mathematical_finance" title="Mathematical finance">Mathematical finance</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematical_and_theoretical_biology" title="Mathematical and theoretical biology">Biology</a></li> <li><a href="/wiki/Mathematical_chemistry" title="Mathematical chemistry">Chemistry</a></li> <li><a href="/wiki/Mathematical_psychology" title="Mathematical psychology">Psychology</a></li> <li><a href="/wiki/Mathematical_sociology" title="Mathematical sociology">Sociology</a></li> <li>"<a href="/wiki/The_Unreasonable_Effectiveness_of_Mathematics_in_the_Natural_Sciences" title="The Unreasonable Effectiveness of Mathematics in the Natural Sciences">The Unreasonable Effectiveness of Mathematics in the Natural Sciences</a>"</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematics" title="Mathematics">Mathematics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Organizations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Society_for_Industrial_and_Applied_Mathematics" title="Society for Industrial and Applied Mathematics">Society for Industrial and Applied Mathematics</a> <ul><li><a href="/wiki/Japan_Society_for_Industrial_and_Applied_Mathematics" title="Japan Society for Industrial and Applied Mathematics">Japan Society for Industrial and Applied Mathematics</a></li></ul></li> <li><a href="/wiki/Soci%C3%A9t%C3%A9_de_Math%C3%A9matiques_Appliqu%C3%A9es_et_Industrielles" title="Société de Mathématiques Appliquées et Industrielles">Société de Mathématiques Appliquées et Industrielles</a></li> <li><a href="/wiki/International_Council_for_Industrial_and_Applied_Mathematics" title="International Council for Industrial and Applied Mathematics">International Council for Industrial and Applied Mathematics</a></li> <li><a href="/w/index.php?title=European_Community_on_Computational_Methods_in_Applied_Sciences&amp;action=edit&amp;redlink=1" class="new" title="European Community on Computational Methods in Applied Sciences (page does not exist)">European Community on Computational Methods in Applied Sciences</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><b><a href="/wiki/Category:Mathematics" title="Category:Mathematics">Category</a></b></li> <li><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a>&#160;/&#32;<a href="/wiki/Topic_outline_of_mathematics" class="mw-redirect" title="Topic outline of mathematics">outline</a>&#160;/&#32;<a href="/wiki/List_of_mathematics_topics" class="mw-redirect" title="List of mathematics topics">topics list</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q176737#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q176737#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q176737#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">International</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/1133519/">FAST</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Stochastischer Prozess"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4057630-9">Germany</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85128181">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Processus stochastiques"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119326416">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Processus stochastiques"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119326416">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00564752">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="stochastické procesy"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph116285&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Procesos estocásticos"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&amp;authority_id=XX4576445">Spain</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007536303605171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6b7f745dd4‐bmlwf Cached time: 20241125134128 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.868 seconds Real time usage: 3.113 seconds Preprocessor visited node count: 20312/1000000 Post‐expand include size: 667561/2097152 bytes Template argument size: 6693/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 14/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 1291067/5000000 bytes Lua time usage: 1.664/10.000 seconds Lua memory usage: 9309648/52428800 bytes Lua Profile: dataWrapper <mw.lua:672> 220 ms 14.3% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 200 ms 13.0% ? 180 ms 11.7% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 120 ms 7.8% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 100 ms 6.5% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getEntityStatements 60 ms 3.9% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::setTTL 40 ms 2.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::anchorEncode 40 ms 2.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::preprocess 40 ms 2.6% is_set <Module:Citation/CS1/Utilities:23> 40 ms 2.6% [others] 500 ms 32.5% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2360.878 1 -total 70.03% 1653.356 2 Template:Reflist 47.06% 1111.147 272 Template:Cite_book 10.74% 253.566 57 Template:Cite_journal 5.45% 128.749 3 Template:Harvtxt 3.49% 82.314 1 Template:Probability_fundamentals 3.41% 80.501 1 Template:Short_description 3.33% 78.540 1 Template:Sidebar 2.47% 58.268 2 Template:Pagetype 1.76% 41.514 12 Template:Main --> <!-- Saved in parser cache with key enwiki:pcache:idhash:47895-0!canonical and timestamp 20241125134128 and revision id 1257085679. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Stochastic_process&amp;oldid=1257085679">https://en.wikipedia.org/w/index.php?title=Stochastic_process&amp;oldid=1257085679</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Stochastic_processes" title="Category:Stochastic processes">Stochastic processes</a></li><li><a href="/wiki/Category:Stochastic_models" title="Category:Stochastic models">Stochastic models</a></li><li><a href="/wiki/Category:Statistical_data_types" title="Category:Statistical data types">Statistical data types</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_spam_cleanup_from_July_2018" title="Category:Wikipedia spam cleanup from July 2018">Wikipedia spam cleanup from July 2018</a></li><li><a href="/wiki/Category:Wikipedia_further_reading_cleanup" title="Category:Wikipedia further reading cleanup">Wikipedia further reading cleanup</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 13 November 2024, at 04:16<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Stochastic_process&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6b7f745dd4-8mfqd","wgBackendResponseTime":167,"wgPageParseReport":{"limitreport":{"cputime":"2.868","walltime":"3.113","ppvisitednodes":{"value":20312,"limit":1000000},"postexpandincludesize":{"value":667561,"limit":2097152},"templateargumentsize":{"value":6693,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":14,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":1291067,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 2360.878 1 -total"," 70.03% 1653.356 2 Template:Reflist"," 47.06% 1111.147 272 Template:Cite_book"," 10.74% 253.566 57 Template:Cite_journal"," 5.45% 128.749 3 Template:Harvtxt"," 3.49% 82.314 1 Template:Probability_fundamentals"," 3.41% 80.501 1 Template:Short_description"," 3.33% 78.540 1 Template:Sidebar"," 2.47% 58.268 2 Template:Pagetype"," 1.76% 41.514 12 Template:Main"]},"scribunto":{"limitreport-timeusage":{"value":"1.664","limit":"10.000"},"limitreport-memusage":{"value":9309648,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAchim_Klenke2013\"] = 1,\n [\"CITEREFAdam_Bobrowski2005\"] = 1,\n [\"CITEREFAlexander_A._Borovkov2013\"] = 7,\n [\"CITEREFAllan_Gut2012\"] = 1,\n [\"CITEREFAnders_Hald2005\"] = 5,\n [\"CITEREFApplebaum2004\"] = 6,\n [\"CITEREFAris_Spanos1999\"] = 1,\n [\"CITEREFAumann1961\"] = 1,\n [\"CITEREFBaccelliBlaszczyszyn2009\"] = 1,\n [\"CITEREFBachelier1900\"] = 2,\n [\"CITEREFBaron2015\"] = 1,\n [\"CITEREFBarry_D._Hughes1995\"] = 1,\n [\"CITEREFBellhouse2005\"] = 1,\n [\"CITEREFBenjamin_Yakir2013\"] = 1,\n [\"CITEREFBenziBenziSeneta2007\"] = 1,\n [\"CITEREFBernstein2005\"] = 1,\n [\"CITEREFBernt_Øksendal2003\"] = 3,\n [\"CITEREFBert_E._FristedtLawrence_F._Gray2013\"] = 1,\n [\"CITEREFBertsekas1996\"] = 1,\n [\"CITEREFBertsekasTsitsiklis2002\"] = 1,\n [\"CITEREFBingham2000\"] = 1,\n [\"CITEREFBingham2005\"] = 1,\n [\"CITEREFBlackScholes1973\"] = 1,\n [\"CITEREFBressloff2014\"] = 1,\n [\"CITEREFBruHertz2001\"] = 1,\n [\"CITEREFBruce_Hajek2015\"] = 1,\n [\"CITEREFBrush1958\"] = 1,\n [\"CITEREFBrush1967\"] = 1,\n [\"CITEREFBrush1968\"] = 4,\n [\"CITEREFCharles_Miller_GrinsteadJames_Laurie_Snell1997\"] = 1,\n [\"CITEREFChung1998\"] = 1,\n [\"CITEREFCourtaultKabanovBruCrepel2000\"] = 1,\n [\"CITEREFCoxIsham1980\"] = 1,\n [\"CITEREFCramer1976\"] = 2,\n [\"CITEREFCramér1969\"] = 1,\n [\"CITEREFCrispin_Gardiner2010\"] = 1,\n [\"CITEREFD.J._DaleyD._Vere-Jones2006\"] = 6,\n [\"CITEREFD.J._DaleyDavid_Vere-Jones2007\"] = 1,\n [\"CITEREFDani_GamermanHedibert_F._Lopes2006\"] = 1,\n [\"CITEREFDaniel_RevuzMarc_Yor2013\"] = 3,\n [\"CITEREFDavar_Khoshnevisan2006\"] = 3,\n [\"CITEREFDavid1955\"] = 1,\n [\"CITEREFDavid_Applebaum2004\"] = 6,\n [\"CITEREFDavid_Stirzaker2005\"] = 1,\n [\"CITEREFDavid_Williams1991\"] = 3,\n [\"CITEREFDonald_L._SnyderMichael_I._Miller2012\"] = 5,\n [\"CITEREFDoob1934\"] = 1,\n [\"CITEREFDoob1996\"] = 1,\n [\"CITEREFDougherty1999\"] = 1,\n [\"CITEREFDynkin1989\"] = 1,\n [\"CITEREFEllis1995\"] = 1,\n [\"CITEREFEmanuel_Parzen2015\"] = 3,\n [\"CITEREFEmbrechtsFreyFurrer2001\"] = 1,\n [\"CITEREFFima_C._Klebaner2005\"] = 9,\n [\"CITEREFFlorescu2014\"] = 1,\n [\"CITEREFFrancois_BaccelliPierre_Bremaud2013\"] = 1,\n [\"CITEREFG._LatoucheV._Ramaswami1999\"] = 1,\n [\"CITEREFGeoffrey_GrimmettDavid_Stirzaker2001\"] = 2,\n [\"CITEREFGeorg_LindgrenHolger_RootzenMaria_Sandsten2013\"] = 1,\n [\"CITEREFGetoor2009\"] = 1,\n [\"CITEREFGilles_Pisier2016\"] = 1,\n [\"CITEREFGlassermanKou2006\"] = 1,\n [\"CITEREFGregory_F._LawlerVlada_Limic2010\"] = 2,\n [\"CITEREFGusakKukushKulikMishura2010\"] = 1,\n [\"CITEREFGuttorpThorarinsdottir2012\"] = 2,\n [\"CITEREFHald1981\"] = 1,\n [\"CITEREFHayes2013\"] = 1,\n [\"CITEREFHenk_C._Tijms2003\"] = 1,\n [\"CITEREFHeston1993\"] = 1,\n [\"CITEREFHiroshi_Kunita1997\"] = 1,\n [\"CITEREFIbe2013\"] = 1,\n [\"CITEREFIlya_Molchanov2005\"] = 1,\n [\"CITEREFIoannis_KaratzasSteven_Shreve1991\"] = 7,\n [\"CITEREFIonut_Florescu2014\"] = 10,\n [\"CITEREFIosif_I._GikhmanAnatoly_Vladimirovich_Skorokhod1969\"] = 1,\n [\"CITEREFIosif_I._GikhmanAnatoly_Vladimirovich_Skorokhod1996\"] = 1,\n [\"CITEREFIosif_Ilyich_GikhmanAnatoly_Vladimirovich_Skorokhod1969\"] = 5,\n [\"CITEREFJ._F._C._Kingman1992\"] = 5,\n [\"CITEREFJ._Michael_Steele2012\"] = 8,\n [\"CITEREFJarrowProtter2004\"] = 2,\n [\"CITEREFJean_Bertoin1998\"] = 2,\n [\"CITEREFJeffrey_S_Rosenthal2006\"] = 2,\n [\"CITEREFJesper_MollerRasmus_Plenge_Waagepetersen2003\"] = 1,\n [\"CITEREFJochen_BlathPeter_ImkellerSylvie_Roelly2011\"] = 1,\n [\"CITEREFJoel_Louis_Lebowitz1984\"] = 1,\n [\"CITEREFJohn_A._Gubner2006\"] = 1,\n [\"CITEREFJohn_Lamperti1977\"] = 4,\n [\"CITEREFJohn_Tabak2014\"] = 2,\n [\"CITEREFJoseph_L._Doob1990\"] = 5,\n [\"CITEREFJovanovic2012\"] = 1,\n [\"CITEREFKendallBatchelorBinghamHayman1990\"] = 2,\n [\"CITEREFKhintchine1934\"] = 1,\n [\"CITEREFKiyosi_Itō2006\"] = 2,\n [\"CITEREFKolmogoroff1931\"] = 1,\n [\"CITEREFKrishna_B._AthreyaSoumendra_N._Lahiri2006\"] = 3,\n [\"CITEREFL._C._G._RogersDavid_Williams2000\"] = 6,\n [\"CITEREFL._E._Maistrov2014\"] = 2,\n [\"CITEREFLaingLord2010\"] = 1,\n [\"CITEREFLandeEngenSæther2003\"] = 1,\n [\"CITEREFLauritzen1981\"] = 1,\n [\"CITEREFLeonard_Kleinrock1976\"] = 1,\n [\"CITEREFLeonid_KoralovYakov_G._Sinai2007\"] = 1,\n [\"CITEREFLindvall1991\"] = 1,\n [\"CITEREFLoïc_ChaumontMarc_Yor2012\"] = 1,\n [\"CITEREFM._Loève1978\"] = 1,\n [\"CITEREFMalte_HenkelDragi_Karevski2012\"] = 1,\n [\"CITEREFMarc_BarbutBernard_LockerLaurent_Mazliak2016\"] = 1,\n [\"CITEREFMark_A._PinskySamuel_Karlin2011\"] = 1,\n [\"CITEREFMartin_Haenggi2013\"] = 2,\n [\"CITEREFMerton2005\"] = 1,\n [\"CITEREFMeyer2009\"] = 2,\n [\"CITEREFMichel_Talagrand2014\"] = 1,\n [\"CITEREFMikhail_Lifshits2012\"] = 1,\n [\"CITEREFMonique_JeanblancMarc_YorMarc_Chesney2009\"] = 1,\n [\"CITEREFMurray_Rosenblatt1962\"] = 4,\n [\"CITEREFMusielaRutkowski2006\"] = 1,\n [\"CITEREFNicholas_H._BinghamRüdiger_Kiesel2013\"] = 1,\n [\"CITEREFO._B._Sheĭnin2006\"] = 1,\n [\"CITEREFOlav_Kallenberg2002\"] = 5,\n [\"CITEREFOliver_C._Ibe2013\"] = 1,\n [\"CITEREFOscar_SheyninHeinrich_Strecker2011\"] = 1,\n [\"CITEREFP._HallC._C._Heyde2014\"] = 3,\n [\"CITEREFPatrick_Billingsley2008\"] = 5,\n [\"CITEREFPatrick_Billingsley2013\"] = 1,\n [\"CITEREFPaulBaschnagel2013\"] = 1,\n [\"CITEREFPaul_C._Bressloff2014\"] = 1,\n [\"CITEREFPetar_Todorovic2012\"] = 2,\n [\"CITEREFPeter_E._KloedenEckhard_Platen2013\"] = 1,\n [\"CITEREFPeter_K._FrizNicolas_B._Victoir2010\"] = 1,\n [\"CITEREFPeter_MörtersYuval_Peres2010\"] = 3,\n [\"CITEREFPierre_Bremaud2013\"] = 2,\n [\"CITEREFPierre_Brémaud2013\"] = 1,\n [\"CITEREFPierre_Brémaud2014\"] = 3,\n [\"CITEREFQuastel2015\"] = 1,\n [\"CITEREFRaussenSkau2008\"] = 1,\n [\"CITEREFReuven_Y._RubinsteinDirk_P._Kroese2011\"] = 1,\n [\"CITEREFRichard_F._Bass2011\"] = 2,\n [\"CITEREFRichard_Serfozo2009\"] = 1,\n [\"CITEREFRick_Durrett2010\"] = 2,\n [\"CITEREFRobert_J._Adler2010\"] = 4,\n [\"CITEREFRobert_J._AdlerJonathan_E._Taylor2009\"] = 3,\n [\"CITEREFRoss2010\"] = 2,\n [\"CITEREFRoy_L._Streit2010\"] = 1,\n [\"CITEREFSamuel_KarlinHoward_E._Taylor2012\"] = 10,\n [\"CITEREFSean_MeynRichard_L._Tweedie2009\"] = 1,\n [\"CITEREFSeneta1998\"] = 1,\n [\"CITEREFSeneta2006\"] = 1,\n [\"CITEREFSheldon_M._Ross1996\"] = 3,\n [\"CITEREFShreve2004\"] = 1,\n [\"CITEREFSidney_I._Resnick2013\"] = 1,\n [\"CITEREFSnell2005\"] = 1,\n [\"CITEREFSteele2001\"] = 1,\n [\"CITEREFSteven_E._Shreve2004\"] = 1,\n [\"CITEREFStirzaker2000\"] = 1,\n [\"CITEREFSung_Nok_ChiuDietrich_StoyanWilfrid_S._KendallJoseph_Mecke2013\"] = 4,\n [\"CITEREFSøren_Asmussen2003\"] = 3,\n [\"CITEREFThiele1880\"] = 1,\n [\"CITEREFThomas_M._CoverJoy_A._Thomas2012\"] = 1,\n [\"CITEREFTruesdell1975\"] = 2,\n [\"CITEREFUbbo_F._Wiersema2008\"] = 1,\n [\"CITEREFValeriy_Skorokhod2005\"] = 4,\n [\"CITEREFVan_Kampen2011\"] = 1,\n [\"CITEREFVere-Jones2006\"] = 2,\n [\"CITEREFVladimir_I._Bogachev2007\"] = 1,\n [\"CITEREFVolker_Schmidt2014\"] = 1,\n [\"CITEREFWard_Whitt2006\"] = 3,\n [\"CITEREFWeiss2006\"] = 1,\n [\"CITEREFWilliam_J._Anderson2012\"] = 1,\n [\"CITEREFY.A._Rozanov2012\"] = 2,\n}\ntemplate_list = table#1 {\n [\"-\"] = 1,\n [\"Authority control\"] = 1,\n [\"Citation\"] = 1,\n [\"Cite OED\"] = 2,\n [\"Cite book\"] = 272,\n [\"Cite journal\"] = 57,\n [\"Color\"] = 2,\n [\"Columns-list\"] = 1,\n [\"Commons category-inline\"] = 1,\n [\"DEFAULTSORT:Stochastic Process\"] = 1,\n [\"Efn\"] = 10,\n [\"Further cleanup\"] = 1,\n [\"Harvtxt\"] = 3,\n [\"IPAc-en\"] = 1,\n [\"Industrial and applied mathematics\"] = 1,\n [\"Main\"] = 12,\n [\"Notelist\"] = 1,\n [\"Probability fundamentals\"] = 1,\n [\"Reflist\"] = 1,\n [\"Rp\"] = 4,\n [\"Short description\"] = 1,\n [\"Stochastic processes\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n","limitreport-profile":[["dataWrapper \u003Cmw.lua:672\u003E","220","14.3"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","200","13.0"],["?","180","11.7"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","120","7.8"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","100","6.5"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getEntityStatements","60","3.9"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::setTTL","40","2.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::anchorEncode","40","2.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::preprocess","40","2.6"],["is_set \u003CModule:Citation/CS1/Utilities:23\u003E","40","2.6"],["[others]","500","32.5"]]},"cachereport":{"origin":"mw-web.codfw.main-6b7f745dd4-bmlwf","timestamp":"20241125134128","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Stochastic process","url":"https:\/\/en.wikipedia.org\/wiki\/Stochastic_process","sameAs":"http:\/\/www.wikidata.org\/entity\/Q176737","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q176737","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-04-06T07:24:28Z","dateModified":"2024-11-13T04:16:34Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/3\/3a\/Standard_deviation_diagram_micro.svg","headline":"mathematical object usually defined as a collection of random variables"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10