CINXE.COM

Search results for: poly (ε–caprolactone)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: poly (ε–caprolactone)</title> <meta name="description" content="Search results for: poly (ε–caprolactone)"> <meta name="keywords" content="poly (ε–caprolactone)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="poly (ε–caprolactone)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="poly (ε–caprolactone)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 630</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: poly (ε–caprolactone)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">630</span> Fabrication and Assessment of Poly (butylene succinate)/ Poly (ԑ-caprolactone)/Eucomis Autumnalis Cellulose Bio-Composites for Tissue Engineering Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumalo%20F.%20I.">Kumalo F. I.</a>, <a href="https://publications.waset.org/abstracts/search?q=Malimabe%20M.%20A."> Malimabe M. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumede%20T.%20P."> Gumede T. P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mosoabisane%20M.%20F.%20T."> Mosoabisane M. F. T.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the fabrication and characterization of bio-nanocomposites consisting of poly (butylene succinate) (PBS) and poly (ԑ-caprolactone) (PCL), reinforced with cellulose extracted from Eucomis autumnalis, a medicinal plant. Bio-nanocomposite films were prepared using the solvent casting method, with cellulose content ranging from 1 to 3 wt%. Comprehensive analysis was conducted using FTIR, SEM, TEM, DSC, TGA, and XRD, to assess morphological, thermal, and structural properties. The results indicated significant improvements in the thermal stability and morphological properties with increasing cellulose content, showcasing the potential of these materials for tissue engineering applications. The use of cellulose extracted from a medicinal plant highlight the potential for sustainable and biocompatible materials in biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bionanocomposites" title="Bionanocomposites">Bionanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28butylene%20succinate%29" title=" poly(butylene succinate)"> poly(butylene succinate)</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28caprolactone%29" title=" poly(caprolactone)"> poly(caprolactone)</a>, <a href="https://publications.waset.org/abstracts/search?q=eucomis%20autumnalis" title=" eucomis autumnalis"> eucomis autumnalis</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plant" title=" medicinal plant"> medicinal plant</a> </p> <a href="https://publications.waset.org/abstracts/183450/fabrication-and-assessment-of-poly-butylene-succinate-poly-caprolactoneeucomis-autumnalis-cellulose-bio-composites-for-tissue-engineering-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">629</span> Fabrication and Assessment of Poly (Butylene Succinate)/Poly (ԑ-Caprolactone)/Eucomis autumnalis Cellulose Bio-Composites for Tissue Engineering Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumalo%20F.%20I.">Kumalo F. I.</a>, <a href="https://publications.waset.org/abstracts/search?q=Malimabe%20M.%20A."> Malimabe M. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumede%20T.%20P."> Gumede T. P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mosoabisane%20M.%20F.%20T."> Mosoabisane M. F. T.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the fabrication and characterization of bio-nanocomposites consisting of poly (butylene succinate) (PBS) and poly (ԑ-caprolactone) (PCL), reinforced with cellulose extracted from Eucomis autumnalis, a medicinal plant. Bio-nanocomposite films were prepared using the solvent casting method, with cellulose content ranging from 1 to 3 wt%. During the solution casting method, 15 ml of chloroform was used to dissolve an overall mass of 0.5g of each polymer as well as the combination of their bio-nanocomposites. Comprehensive analysis was conducted using FTIR, SEM, TEM, DSC, TGA, and XRD to assess morphological, thermal, and structural properties. Mechanical properties were not investigated due to the thin nature of the films. The results indicated significant improvements in the thermal stability and morphological properties with increasing cellulose content, showcasing the potential of these materials for tissue engineering applications. The use of cellulose extracted from a medicinal plant highlights the potential for sustainable and biocompatible materials in biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-nanocomposites" title="bio-nanocomposites">bio-nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%28butylene%20succinate%29" title=" poly (butylene succinate)"> poly (butylene succinate)</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28%D4%91-caprolactone%29" title=" poly(ԑ-caprolactone)"> poly(ԑ-caprolactone)</a>, <a href="https://publications.waset.org/abstracts/search?q=Eucomis%20autumnalis" title=" Eucomis autumnalis"> Eucomis autumnalis</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plant" title=" medicinal plant"> medicinal plant</a> </p> <a href="https://publications.waset.org/abstracts/183437/fabrication-and-assessment-of-poly-butylene-succinatepoly-caprolactoneeucomis-autumnalis-cellulose-bio-composites-for-tissue-engineering-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">628</span> Synthesis of Solid Polymeric Materials by Maghnite-H⁺ as a Green Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Draoua%20Zohra">Draoua Zohra</a>, <a href="https://publications.waset.org/abstracts/search?q=Harrane%20Amine"> Harrane Amine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Solid Polymeric Materials have been successfully prepared by the copolymerization of e-caprolactone (CL) and poly (ethylene glycol) (PEG) employing Maghnite-H+ at 80°C. Maghnite-H+ is a solid catalyst non-toxic. The presence of PEG chains leads to a break in the growth of PCL chains and consequently leads to the copolymer tri-block PCL-PEG-PCL. The objective of this study was to synthesize and characterize of Solid Polymeric Materials. The highly hydrophilic nature of polyethylene glycol has sparked our interest in developing a Solid Polymeric based e-caprolactone and poly (ethylene glycol). PCL and PEG are biocompatible materials. Their ring-opening copolymerization using Maghnite H+ makes to the Solid Polymeric Materials. The morphology and structure of Solid polymeric Materials were characterized by ¹H and ¹³C-NMR spectra and Gel Permeation Chromatography (GPC). This paper developed the application of Maghnite-H+ as an efficient catalyst by an easy-to-handle procedure to get solid polymeric materials. A cationic mechanism for the copolymerization reaction was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20copolymers" title="block copolymers">block copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=maghnite" title=" maghnite"> maghnite</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28e-caprolactone%29" title=" poly(e-caprolactone)"> poly(e-caprolactone)</a> </p> <a href="https://publications.waset.org/abstracts/97417/synthesis-of-solid-polymeric-materials-by-maghnite-h-as-a-green-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">627</span> Direct In-Situ Ring Opening Polymerization of E-caprolactone to Produce Biodegradable PCL/Montmorillonite Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amine%20Harrane">Amine Harrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Belalia"> Mahmoud Belalia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decade, polymer layered silicate nanocomposites have received increasing attention from scientists and industrial researchers because they generally exhibit greatly improved mechanical, thermal, barrier and flame-retardant properties at low clay content in comparison with unfilled polymers or more conventional micro composites. Poly(ε-caprolactone) (PCL)-layered silicate nanocomposites have the advantage of adding biocompatibility and biodegradability to the traditional properties of nanocomposites. They can be prepared by in situ ring-opening polymerization of ε-caprolactone using a conventional initiator to induce polymerization in the presence of an organophilic clay, such as organomodified montmorillonite. Messersmith and Giannelis used montmorillonite exchanged with protonated 12-amino dodecanoic acid and Cr3+ exchanged fluorohectorite, a synthetic mica type of silicate. Sn-based catalysts such as tin (II) octoate and dibutyltin (IV) dimethoxide have been reported to efficiently promote the polymerization of ε-caprolactone in the presence of organomodified clays. In this work, we have used an alternative method to prepare PCL/montmorillonite nanocomposites. The cationic polymerization of ε-caprolactone was initiated directly by Maghnite-TOA, organomodified montmorillonite clay, to produce nanocomposites (Scheme 1). Resulted from nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), force atomic microscopy (AFM) and thermogravimetry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone" title="polycaprolactone">polycaprolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone%2Fclay%20nanocomposites" title=" polycaprolactone/clay nanocomposites"> polycaprolactone/clay nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradables%20nanocomposites" title=" biodegradables nanocomposites"> biodegradables nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=Maghnite" title=" Maghnite"> Maghnite</a>, <a href="https://publications.waset.org/abstracts/search?q=Insitu%20polymeriation" title=" Insitu polymeriation"> Insitu polymeriation</a> </p> <a href="https://publications.waset.org/abstracts/163797/direct-in-situ-ring-opening-polymerization-of-e-caprolactone-to-produce-biodegradable-pclmontmorillonite-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">626</span> Preparation and Characterization of Poly (ε-caprolactone) Loaded with Layered Double Hydroxide Nanohybrid Intercalated with Alendronate for Osteoporosis Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Faranak%20Baniahmad">Seyedeh Faranak Baniahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Soroor%20Yousefi"> Soroor Yousefi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Osteoporosis is a bone disease which increases the bone fracture risk, reduces the bone mineral density (BMD) and alters the amount and variety of proteins in bones. Antiresorptive therapy is one the most popular Osteoporosis treatment methods. In this method the bisphosphonates, hormones, calcitonin or the selective estrogen receptor modulators is replaced. In order to reduce undesirable effects and to increase the bioavailability of drug agents, the controlled drug delivery systems have been utilized. In current study, the controlled release of Alendronate from LDH-PCL with (0, 5, 10, 15 % wt. of LDH) was investigated. The results showed that the release of alendronate from the lamellar LDH incorporated into the PCL matrix is much slower than the release of alendronate from the PCL. Therefore such systems are very promising, in which the antiresorptive drug has to remain in the matrix for longer time and can be released in controlled manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title="osteoporosis">osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=alendronate" title=" alendronate"> alendronate</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%28%CE%B5%E2%80%93caprolactone%29" title=" poly (ε–caprolactone)"> poly (ε–caprolactone)</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20double%20hydroxide" title=" layered double hydroxide"> layered double hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/1526/preparation-and-characterization-of-poly-e-caprolactone-loaded-with-layered-double-hydroxide-nanohybrid-intercalated-with-alendronate-for-osteoporosis-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">625</span> Liquid Tin(II) Alkoxide Initiators for Use in the Ring-Opening Polymerisation of Cyclic Ester Monomers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujitra%20Ruengdechawiwat">Sujitra Ruengdechawiwat</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Molloy"> Robert Molloy</a>, <a href="https://publications.waset.org/abstracts/search?q=Jintana%20Siripitayananon"> Jintana Siripitayananon</a>, <a href="https://publications.waset.org/abstracts/search?q=Runglawan%20Somsunan"> Runglawan Somsunan</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20D.%20Topham"> Paul D. Topham</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20J.%20Tighe"> Brian J. Tighe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of this research has been to design and synthesize some completely soluble liquid tin(II) alkoxide initiators for use in the ring-opening polymerisation (ROP) of cyclic ester monomers. This is in contrast to conventional tin(II) alkoxides in solid form which tend to be molecular aggregates and difficult to dissolve. The liquid initiators prepared were bis(tin(II) monooctoate) diethylene glycol ([Sn(Oct)]2DEG) and bis(tin(II) monooctoate) ethylene glycol ([Sn(Oct)]2EG). Their efficiencies as initiators in the bulk ROP of ε-caprolactone (CL) at 130oC were studied kinetically by dilatometry. Kinetic data over the 20-70% conversion range was used to construct both first-order and zero-order rate plots. It was found that the rate data fitted more closely to first-order kinetics with respect to the monomer concentration and gave higher first-order rate constants than the corresponding tin(II) octoate/diol initiating systems normally used to generate the tin(II) alkoxide in situ. Since the ultimate objective of this work is to produce copolymers suitable for biomedical use as absorbable monofilament surgical sutures, poly(L-lactide-co-ε-caprolactone) 75:25 mol %, P(LL-co-CL), copolymers were synthesized using both solid and liquid tin(II) alkoxide initiators at 130°C for 48 hrs. The statistical copolymers were obtained in near-quantitative yields with compositions (from 1H-NMR) close to the initial comonomer feed ratios. The monomer sequencing (from 13C-NMR) was partly random and partly blocky (gradient-type) due to the much differing monomer reactivity ratios (rLL >> rCL). From GPC, the copolymers obtained using the soluble liquid tin(II) alkoxides were found to have higher molecular weights (Mn = 40,000-100,000) than those from the only partially soluble solid initiators (Mn = 30,000-52,000). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20polyesters" title="biodegradable polyesters">biodegradable polyesters</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28L-lactide-co-%CE%B5-caprolactone%29" title=" poly(L-lactide-co-ε-caprolactone)"> poly(L-lactide-co-ε-caprolactone)</a>, <a href="https://publications.waset.org/abstracts/search?q=ring-opening%20polymerisation" title=" ring-opening polymerisation"> ring-opening polymerisation</a>, <a href="https://publications.waset.org/abstracts/search?q=tin%28II%29%20alkoxide" title=" tin(II) alkoxide"> tin(II) alkoxide</a> </p> <a href="https://publications.waset.org/abstracts/55694/liquid-tinii-alkoxide-initiators-for-use-in-the-ring-opening-polymerisation-of-cyclic-ester-monomers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">624</span> Poly(ε-caprolactone)/Halloysite Nanotube Nanocomposites Scaffolds for Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Terzopoulou">Z. Terzopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Koliakou"> I. Koliakou</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Bikiaris"> D. Bikiaris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tissue engineering offers a new approach to regenerate diseased or damaged tissues such as bone. Great effort is devoted to eliminating the need of removing non-degradable implants at the end of their life span, with biodegradable polymers playing a major part. Poly(ε-caprolactone) (PCL) is one of the best candidates for this purpose due to its high permeability, good biodegradability and exceptional biocompatibility, which has stimulated extensive research into its potential application in the biomedical fields. However, PCL degrades much slower than other known biodegradable polymers and has a total degradation of 2-4 years depending on the initial molecular weight of the device. This is due to its relatively hydrophobic character and high crystallinity. Consequently, much attention has been given to the tunable degradation of PCL to meet the diverse requirements of biomedicine. Poly(ε-caprolactone) (PCL) is a biodegradable polyester that lacks bioactivity, so when used in bone tissue engineering, new bone tissue cannot bond tightly on the polymeric surface. Therefore, it is important to incorporate reinforcing fillers into PCL matrix in order to result in a promising combination of bioactivity, biodegradability, and strength. Natural clay halloysite nanotubes (HNTs) were incorporated into PCL polymeric matrix, via in situ ring-opening polymerization of caprolactone, in concentrations 0.5, 1 and 2.5 wt%. Both unmodified and modified with aminopropyltrimethoxysilane (APTES) HNTs were used in this study. The effect of nanofiller concentration and functionalization with end-amino groups on the physicochemical properties of the prepared nanocomposites was studied. Mechanical properties were found enhanced after the incorporation of nanofillers, while the modification increased further the values of tensile and impact strength. Thermal stability of PCL was not affected by the presence of nanofillers, while the crystallization rate that was studied by Differential Scanning Calorimetry (DSC) and Polarized Light Optical Microscopy (POM) increased. All materials were subjected to enzymatic hydrolysis in phosphate buffer in the presence of lipases. Due to the hydrophilic nature of HNTs, the biodegradation rate of nanocomposites was higher compared to neat PCL. In order to confirm the effect of hydrophilicity, contact angle measurements were also performed. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. All scaffolds were tested in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title="biomaterials">biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffolds" title=" scaffolds"> scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/45213/polye-caprolactonehalloysite-nanotube-nanocomposites-scaffolds-for-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">623</span> Biodegradable Poly-ε-Caprolactone-Based Siloxane Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20E.%20Fortun%C4%83">Maria E. Fortună</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Ungureanu"> Elena Ungureanu</a>, <a href="https://publications.waset.org/abstracts/search?q=R%C4%83zvan%20Rotaru"> Răzvan Rotaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Valeria%20Harabagiu"> Valeria Harabagiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymers are used in a variety of areas due to their unique mechanical and chemical properties. Natural polymers are biodegradable, whereas synthetic polymers are rarely biodegradable but can be modified. As a result, by combining the benefits of natural and synthetic polymers, composite materials that are biodegradable can be obtained with potential for biomedical and environmental applications. However, because of their strong resistance to degradation, it may be difficult to eliminate waste. As a result, interest in developing biodegradable polymers has risen significantly. This research involves obtaining and characterizing two biodegradable poly-ε-caprolactone-polydimethylsiloxane copolymers. A comparison study was conducted using an aminopropyl-terminated polydimethylsiloxane macroinitiator with two distinct molecular weights. The copolymers were obtained by ring-opening polymerization of poly (ɛ-caprolactone) in the presence of aminopropyl-terminated polydimethylsiloxane as initiator and comonomers and stannous 2-ethylhexanoate as a catalyst. The materials were characterized using a number of techniques, including NMR, FTIR, EDX, SEM, AFM, and DSC. Additionally, the water contact angle and water vapor sorption capacity were assessed. Furthermore, the copolymers were examined for environmental susceptibility by conducting biological tests on tomato plants (Lypercosium esculentum), with an accent on biological stability and metabolism. Subsequent to the copolymer's degradation, the dynamics of nitrogen experience evolutionary alterations, validating the progression of the process accompanied by the liberation of organic nitrogen. The biological tests performed (germination index, average seedling height, green and dry biomass) on Lypercosium esculentum, San Marzano variety tomato plants in direct contact with the copolymer indicated normal growth and development, suggesting a minimal toxic effect and, by extension, compatibility of the copolymer with the environment. The total chlorophyll concentration of plant leaves in contact with copolymers was determined, considering the pigment's critical role in photosynthesis and, implicitly, plant metabolism and physiological state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title="biodegradable">biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20stability" title=" biological stability"> biological stability</a>, <a href="https://publications.waset.org/abstracts/search?q=copolymers" title=" copolymers"> copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=polydimethylsiloxane" title=" polydimethylsiloxane"> polydimethylsiloxane</a> </p> <a href="https://publications.waset.org/abstracts/191885/biodegradable-poly-e-caprolactone-based-siloxane-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">622</span> Fabrication of Hybrid Scaffolds Consisting of Cell-laden Electrospun Micro/Nanofibers and PCL Micro-structures for Tissue Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=MyungGu%20Yeo">MyungGu Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=JongHan%20Ha"> JongHan Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Gi-Hoon%20Yang"> Gi-Hoon Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=JaeYoon%20Lee"> JaeYoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=SeungHyun%20Ahn"> SeungHyun Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeongjin%20Lee"> Hyeongjin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=HoJun%20Jeon"> HoJun Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=YongBok%20Kim"> YongBok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minseong%20Kim"> Minseong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=GeunHyung%20Kim"> GeunHyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tissue engineering is a rapidly growing interdisciplinary research area that may provide options for treating damaged tissues and organs. As a promising technique for regenerating various tissues, this technology requires biomedical scaffolds, which serve as an artificial extracellular matrix (ECM) to support neotissue growth. Electrospun micro/nanofibers have been used widely in tissue engineering because of their high surface-area-to-volume ratio and structural similarity to extracellular matrix. However, low mechanical sustainability, low 3D shape-ability, and low cell infiltration have been major limitations to their use. In this work, we propose new hybrid scaffolds interlayered with cell-laden electrospun micro/nano fibers and poly(caprolactone) microstructures. Also, we applied various concentrations of alginate and electric field strengths to determine optimal conditions for the cell-electrospinning process. The combination of cell-laden bioink (2 ⅹ 10^5 osteoblast-like MG63 cells/mL, 2 wt% alginate, 2 wt% poly(ethylene oxide), and 0.7 wt% lecithin) and a 0.16 kV/mm electric field showed the highest cell viability and fiber formation in this process. Using these conditions and PCL microstructures, we achieved mechanically stable hybrid scaffolds. In addition, the cells embedded in the fibrous structure were viable and proliferated. We suggest that the cell-embedded hybrid scaffolds fabricated using the cell-electrospinning process may be useful for various soft- and hard-tissue regeneration applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioink" title="bioink">bioink</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-laden%20scaffold" title=" cell-laden scaffold"> cell-laden scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%2Fnanofibers" title=" micro/nanofibers"> micro/nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28caprolactone%29" title=" poly(caprolactone)"> poly(caprolactone)</a> </p> <a href="https://publications.waset.org/abstracts/40640/fabrication-of-hybrid-scaffolds-consisting-of-cell-laden-electrospun-micronanofibers-and-pcl-micro-structures-for-tissue-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">621</span> Mechanical and Biodegradability of Porous Poly-ε-Caprolactone/Polyethylene Glycol Copolymer-Reinforced Cellulose Nanofibers for Soft Tissue Engineering Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Abu%20Ghalia">Mustafa Abu Ghalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Seddik"> Mohammed Seddik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design and development of a new class of biomaterial has gained particular interest in producing polymer scaffold for biomedical applications. Improving mechanical properties, biological and controlling pores scaffold are important factors to provide appropriate biomaterial for implement in soft tissue repair and regeneration. In this study, poly-ε-caprolactone (PCL) /polyethylene glycol (PEG) copolymer (80/20) incorporated with CNF scaffolds were made employing solvent casting and particulate leaching methods. Four mass percentages of CNF (1, 2.5, 5, and 10 wt.%) were integrated into the copolymer through a silane coupling agent. Mechanical properties were determined using Tensile Tester data acquisition to investigate the effect of porosity, pore size, and CNF contents. Tensile strength obtained for PCL/PEG- 5 wt.% CNF was 16 MPa, which drastically decreased after creating a porous structure to 7.1 MPa. The optimum parameters of the results were found to be 5 wt.% for CNF, 240 μm for pore size, and 83% for porosity. Scanning electron microscopy (SEM) micrograph reveals that consistent pore size and regular pore shape were accomplished after the addition of CNF-5 wt. % into PCL/PEG. The results of mass loss of PCL/PEG reinforced-CNF 1% have clearly enhanced to double values compared with PCL/PEG copolymer and three times with PCL/PEG scaffold-CNF 1%. In addition, all PCL/PEG reinforced and scaffold- CNF were partially disintegrated under composting conditions confirming their biodegradable behavior. This also provides a possible solution for the end life of these biomaterials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PCL%2FPEG" title="PCL/PEG">PCL/PEG</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanofibers" title=" cellulose nanofibers"> cellulose nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=compost%20polymers" title=" compost polymers"> compost polymers</a> </p> <a href="https://publications.waset.org/abstracts/171912/mechanical-and-biodegradability-of-porous-poly-e-caprolactonepolyethylene-glycol-copolymer-reinforced-cellulose-nanofibers-for-soft-tissue-engineering-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">620</span> The Effect of Micro/Nano Structure of Poly (ε-caprolactone) (PCL) Film Using a Two-Step Process (Casting/Plasma) on Cellular Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=JaeYoon%20Lee">JaeYoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Gi-Hoon%20Yang"> Gi-Hoon Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=JongHan%20Ha"> JongHan Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=MyungGu%20Yeo"> MyungGu Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=SeungHyun%20Ahn"> SeungHyun Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeongjin%20Lee"> Hyeongjin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=HoJun%20Jeon"> HoJun Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=YongBok%20Kim"> YongBok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minseong%20Kim"> Minseong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=GeunHyung%20Kim"> GeunHyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important factors in tissue engineering is to design optimal biomedical scaffolds, which can be governed by topographical surface characteristics, such as size, shape, and direction. Of these properties, we focused on the effects of nano- to micro-sized hierarchical surface. To fabricate the hierarchical surface structure on poly(ε-caprolactone) (PCL) film, we employed a micro-casting technique by pressing the mold and nano-etching technique using a modified plasma process. The micro-sized topography of PCL film was controlled by sizes of the micro structures on lotus leaf. Also, the nano-sized topography and hydrophilicity of PCL film were controlled by a modified plasma process. After the plasma treatment, the hydrophobic property of the PCL film was significantly changed into hydrophilic property, and the nano-sized structure was well developed. The surface properties of the modified PCL film were investigated in terms of initial cell morphology, attachment, and proliferation using osteoblast-like-cells (MG63). In particular, initial cell attachment, proliferation and osteogenic differentiation in the hierarchical structure were enhanced dramatically compared to those of the smooth surface. We believe that these results are because of a synergistic effect between the hierarchical structure and the reactive functional groups due to the plasma process. Based on the results presented here, we propose a new biomimetic surface model that maybe useful for effectively regenerating hard tissues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20surface" title="hierarchical surface">hierarchical surface</a>, <a href="https://publications.waset.org/abstracts/search?q=lotus%20leaf" title=" lotus leaf"> lotus leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-etching" title=" nano-etching"> nano-etching</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20treatment" title=" plasma treatment"> plasma treatment</a> </p> <a href="https://publications.waset.org/abstracts/40656/the-effect-of-micronano-structure-of-poly-e-caprolactone-pcl-film-using-a-two-step-process-castingplasma-on-cellular-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">619</span> Poly(ε-Caprolactone)-Based Bilayered Scaffolds Prepared by Electrospinning for Tissue Engineering of Small-Diameter Vascular Grafts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Fayez%20Al%20Rez">Mohammed Fayez Al Rez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, there is an unmet clinical need for new small-diameter vascular grafts to overcome the drawbacks of traditional methods used for treatment of widespread cardiovascular diseases. Vascular tissue engineering (VTE) is a promising approach that can be utilized to develop viable vascular grafts by in vitro seeding of functional cells onto a scaffold allowing them to attach, proliferate and differentiate. To achieve this purpose, the scaffold should provide cells with the initial necessary extracellular matrix environment and structure until being able to reconstruct the required vascular tissue. Therefore, producing scaffolds with suitable features is crucial for guiding cells properly to develop the desired tissue-engineered vascular grafts for clinical applications. The main objective of this work is fabrication and characterization of tubular small-diameter ( < 6 mm) bilayered scaffolds for VTE. The scaffolds were prepared via mixing electrospinning approach of biodegradable poly(ε-caprolactone) (PCL) polymer – due to its favorable physicochemical properties – to mimic the natural environment-extracellular matrix. Firstly, tubular nanofibrous construct with inner diameter of 3, 4 or 5 mm was electrospun as inner layer, and secondly, microfibrous construct was electrospun as outer layer directly on the first produced inner layer. To improve the biological properties of PCL, a group of the electrospun scaffolds was immersed in type-1 collagen solution. The morphology and structure of the resulting fibrous scaffolds were investigated by scanning electron microscope. The electrospun nanofibrous inner layer contained fibers measuring 219±35 nm in diameter, while the electrospun microfibrous outer layer contained fibers measuring 1011 ± 150 nm. Furthermore, mechanical, thermal and physical tests were conducted with both electrospun bilayered scaffold types where revealed improved properties. Biological investigations using endothelial, smooth muscle and fibroblast cell line showed good biocompatibility of both tested electrospun scaffolds. Better attachment and proliferation were obviously found when cells were cultured on the scaffolds immersed with collagen due to increasing the hydrophilicity of the PCL. The easy, inexpensive and versatile electrospinning approach used in this work was able to successfully produce double layered tubular elastic structures containing both nanofibers and microfibers to imitate the native vascular structure. The PCL – as a suitable and approved biomaterial for many biomedical and tissue engineering applications – can ensure favorable mechanical properties of scaffolds used for VTE. The VTE approach using electrospun bilayered scaffolds offers optimal solutions and holds significant promises for treatment of many cardiovascular diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28%CE%B5-caprolactone%29%20%28PCL%29" title=" poly(ε-caprolactone) (PCL)"> poly(ε-caprolactone) (PCL)</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue-engineered%20vascular%20graft" title=" tissue-engineered vascular graft"> tissue-engineered vascular graft</a>, <a href="https://publications.waset.org/abstracts/search?q=tubular%20bilayered%20scaffolds" title=" tubular bilayered scaffolds"> tubular bilayered scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular%20cells" title=" vascular cells"> vascular cells</a> </p> <a href="https://publications.waset.org/abstracts/70732/polye-caprolactone-based-bilayered-scaffolds-prepared-by-electrospinning-for-tissue-engineering-of-small-diameter-vascular-grafts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">618</span> Preconcentration and Determination of Lead Ion in Environmental Samples by Poly Urea-Formaldehyde</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Moniri">Elham Moniri</a>, <a href="https://publications.waset.org/abstracts/search?q=Parvane%20Bozorgniya"> Parvane Bozorgniya</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Shahbazi"> Hamidreza Shahbazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, poly urea-formaldehyde was prepared. The poly urea-formaldehyde was characterized by fourier transform infra-red spectroscopy. Then the effects of various parameters on Pb(II) sorption such as pH, contact time were studied. The optimum pH value for sorption of Pb(II) was 5. The sorption capacity of poly urea-formaldehyde for Pb(II) were 40 mg g−1. A Pb(II) removal of 90% was obtained. The profile of Pb(II) uptake on this sorbent reflects good accessibility of the chelating sites in the poly urea-formaldehyde. The developed method was utilized for determination of Pb(II) in environmental water samples by flame atomic absorption spectrometry with satisfactory results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly%20urea-formaldehyde" title="poly urea-formaldehyde">poly urea-formaldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20Ion" title=" lead Ion"> lead Ion</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sample" title=" environmental sample"> environmental sample</a>, <a href="https://publications.waset.org/abstracts/search?q=determination" title=" determination "> determination </a> </p> <a href="https://publications.waset.org/abstracts/15683/preconcentration-and-determination-of-lead-ion-in-environmental-samples-by-poly-urea-formaldehyde" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">617</span> Multi-Walled Carbon Nanotubes as Nucleating Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabindranath%20Jana">Rabindranath Jana</a>, <a href="https://publications.waset.org/abstracts/search?q=Plabani%20Basu"> Plabani Basu</a>, <a href="https://publications.waset.org/abstracts/search?q=Keka%20Rana"> Keka Rana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nucleating agents are widely used to modify the properties of various polymers. The rate of crystallization and the size of the crystals have a strong impact on mechanical and optical properties of a polymer. The addition of nucleating agents to the semi-crystalline polymers provides a surface on which the crystal growth can start easily. As a consequence, fast crystal formation will result in many small crystal domains so that the cycle times for injection molding may be reduced. Moreover, the mechanical properties e.g., modulus, tensile strength, heat distortion temperature and hardness may increase. In the present work, multi-walled carbon nanotubes (MWNTs) as nucleating agents for the crystallization of poly (e-caprolactone)diol (PCL). Thus nanocomposites of PCL filled with MWNTs were prepared by solution blending. Differential scanning calorimetry (DSC) tests were carried out to study the effect of CNTs on on-isothermal crystallization of PCL. The polarizing optical microscopy (POM), and wide-angle X-ray diffraction (WAXD) were used to study the morphology and crystal structure of PCL and its nanocomposites. It is found that MWNTs act as effective nucleating agents that significantly shorten the induction period of crystallization and however, decrease the crystallization rate of PCL, exhibiting a remarkable decrease in the Avrami exponent n, surface folding energy σe and crystallization activation energy ΔE. The carbon-based fillers act as templates for hard block chains of PCL to form an ordered structure on the surface of nanoparticles during the induction period, bringing about some increase in equilibrium temperature. The melting process of PCL and its nanocomposites are also studied; the nanocomposites exhibit two melting peaks at higher crystallization temperature which mainly refer to the melting of the crystals with different crystal sizes however, PCL shows only one melting temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly%28e-caprolactone%29diol" title="poly(e-caprolactone)diol">poly(e-caprolactone)diol</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwalled%20carbon%20nanotubes" title=" multiwalled carbon nanotubes"> multiwalled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=nonisothermal%20crystallization" title=" nonisothermal crystallization"> nonisothermal crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20structure" title=" crystal structure"> crystal structure</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleation" title=" nucleation"> nucleation</a> </p> <a href="https://publications.waset.org/abstracts/28233/multi-walled-carbon-nanotubes-as-nucleating-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">616</span> Poly-ε-Caprolactone Nanofibers with Synthetic Growth Factor Enriched Liposomes as Controlled Drug Delivery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vera%20Sovkova">Vera Sovkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Mickova"> Andrea Mickova</a>, <a href="https://publications.waset.org/abstracts/search?q=Matej%20Buzgo"> Matej Buzgo</a>, <a href="https://publications.waset.org/abstracts/search?q=Karolina%20Vocetkova"> Karolina Vocetkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Filova"> Eva Filova</a>, <a href="https://publications.waset.org/abstracts/search?q=Evzen%20Amler"> Evzen Amler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PCL (poly-ε-caprolactone) nanofibrous scaffolds with adhered liposomes were prepared and tested as a possible drug delivery system for various synthetic growth factors. TGFβ, bFGF, and IGF-I have been shown to increase hMSC (human mesenchymal stem cells) proliferation and to induce hMSC differentiation. Functionalized PCL nanofibers were prepared with synthetic growth factors encapsulated in liposomes adhered to them in three different concentrations. Other samples contained PCL nanofibers with adhered, free synthetic growth factors. The synthetic growth factors free medium served as a control. The interaction of liposomes with the PCL nanofibers was visualized by SEM, and the release kinetics were determined by ELISA testing. The potential of liposomes, immobilized on the biodegradable scaffolds, as a delivery system for synthetic growth factors, and as a suitable system for MSCs adhesion, proliferation and differentiation in vitro was evaluated by MTS assay, dsDNA amount determination, confocal microscopy, flow cytometry and real-time PCR. The results showed that the growth factors adhered to the PCL nanofibers stimulated cell proliferation mainly up to day 11 and that subsequently their effect was lower. By contrast, the release of the lowest concentration of growth factors from liposomes resulted in gradual proliferation of MSCs throughout the experiment. Moreover, liposomes, as well as free growth factors, stimulated type II collagen production, which was confirmed by immunohistochemical staining using monoclonal antibody against type II collagen. The results of this study indicate that growth factors enriched liposomes adhered to surface of PCL nanofibers could be useful as a drug delivery instrument for application in short timescales, be combined with nanofiber scaffolds to promote local and persistent delivery while mimicking the local microenvironment. This work was supported by project LO1508 from the Ministry of Education, Youth and Sports of the Czech Republic <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title="drug delivery">drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20factors" title=" growth factors"> growth factors</a>, <a href="https://publications.waset.org/abstracts/search?q=hMSC" title=" hMSC"> hMSC</a>, <a href="https://publications.waset.org/abstracts/search?q=liposomes" title=" liposomes"> liposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibres" title=" nanofibres"> nanofibres</a> </p> <a href="https://publications.waset.org/abstracts/52564/poly-e-caprolactone-nanofibers-with-synthetic-growth-factor-enriched-liposomes-as-controlled-drug-delivery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">615</span> Biophysical Study of the Interaction of Harmalol with Nucleic Acids of Different Motifs: Spectroscopic and Calorimetric Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kakali%20Bhadra">Kakali Bhadra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Binding of small molecules to DNA and recently to RNA, continues to attract considerable attention for developing effective therapeutic agents for control of gene expression. This work focuses towards understanding interaction of harmalol, a dihydro beta-carboline alkaloid, with different nucleic acid motifs viz. double stranded CT DNA, single stranded A-form poly(A), double-stranded A-form of poly(C)·poly(G) and clover leaf tRNAphe by different spectroscopic, calorimetric and molecular modeling techniques. Results of this study converge to suggest that (i) binding constant varied in the order of CT DNA > poly(C)·poly(G) > tRNAphe > poly(A), (ii) non-cooperative binding of harmalol to poly(C)·poly(G) and poly(A) and cooperative binding with CT DNA and tRNAphe, (iii) significant structural changes of CT DNA, poly(C)·poly(G) and tRNAphe with concomitant induction of optical activity in the bound achiral alkaloid molecules, while with poly(A) no intrinsic CD perturbation was observed, (iv) the binding was predominantly exothermic, enthalpy driven, entropy favoured with CT DNA and poly(C)·poly(G) while it was entropy driven with tRNAphe and poly(A), (v) a hydrophobic contribution and comparatively large role of non-polyelectrolytic forces to Gibbs energy changes with CT DNA, poly(C)·poly(G) and tRNAphe, and (vi) intercalated state of harmalol with CT DNA and poly(C)·poly(G) structure as revealed from molecular docking and supported by the viscometric data. Furthermore, with competition dialysis assay it was shown that harmalol prefers hetero GC sequences. All these findings unequivocally pointed out that harmalol prefers binding with ds CT DNA followed by ds poly(C)·poly(G), clover leaf tRNAphe and least with ss poly(A). The results highlight the importance of structural elements in these natural beta-carboline alkaloids in stabilizing different DNA and RNA of various motifs for developing nucleic acid based better therapeutic agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calorimetry" title="calorimetry">calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%2FRNA-alkaloid%20interaction" title=" DNA/RNA-alkaloid interaction"> DNA/RNA-alkaloid interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=harmalol" title=" harmalol"> harmalol</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/55814/biophysical-study-of-the-interaction-of-harmalol-with-nucleic-acids-of-different-motifs-spectroscopic-and-calorimetric-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">614</span> Poly Urea-Formaldehyde for Preconcentration and Determination of Cadmium Ion in Environmental Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Homayon%20Ahmad%20Panahi">Homayon Ahmad Panahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Tajik"> Samira Tajik</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Hadi%20Dehghani"> Mohamad Hadi Dehghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Khezri"> Mostafa Khezri</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Moniri"> Elham Moniri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, poly urea-formaldehyde was prepared. The poly urea-formaldehyde was characterized by fourier transform infra-red spectroscopy. Then the effects of various parameters on Cd (II) sorption such as pH, contact time were studied. The optimum pH value for sorption of Cd(II) was 5.5. The sorption capacity of poly urea-formaldehyde for Cd (II) were 76.3 mg g−1. A Cd (II) removal of 55% was obtained. The profile of Cd (II) uptake on this sorbent reflects good accessibility of the chelating sites in the poly urea-formaldehyde. The developed method was utilized for determination of Cd (II) in environmental water samples by flame atomic absorption spectrometry with satisfactory results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly%20urea-formaldehyde" title="poly urea-formaldehyde">poly urea-formaldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium%20ion" title=" cadmium ion"> cadmium ion</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sample" title=" environmental sample"> environmental sample</a>, <a href="https://publications.waset.org/abstracts/search?q=determination" title=" determination "> determination </a> </p> <a href="https://publications.waset.org/abstracts/15609/poly-urea-formaldehyde-for-preconcentration-and-determination-of-cadmium-ion-in-environmental-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">613</span> Thermal Stabilisation of Poly(a)•Poly(U) by TMPyP4 and Zn(X)TMPyP4 Derivatives in Aqueous Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kudrev">A. Kudrev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The duplex Poly(A)-Poly(U) denaturation in an aqueous solutions in mixtures with the tetracationic MeTMPyP4 (Me = 2H, Zn(II); TMPyP4 is 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin), was investigated by monitoring the changes in the UV-Vis absorbance spectrum with increasing temperatures from 20°С to 70°С (рН 7.0, I=0.15M). The absorbance data matrices were analyzed with a versatile chemometric procedure that provides the melting profile (distribution of species) and the pure spectrum for each chemical species present along the heating experiment. As revealed by the increase of Tm, the duplex structure was stabilized by these porphyrins. The values of stabilization temperature ΔTm in the presence of these porphyrins are relatively large, 1.2-8.4 °C, indicating that the porphyrins contribute differently in stabilizing the duplex Poly(A)-Poly(U) structure. Remarkable is the fact that the porphyrin TMPyP4 was less effective in the stabilization of the duplex structure than the metalloporphyrin Zn(X)TMPyP4 which suggests that metallization play an important role in porphyrin-RNA binding. Molecular Dynamics Simulations has been used to illustrate melting of the duplex dsRNA bound with a porphyrin molecule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melting" title="melting">melting</a>, <a href="https://publications.waset.org/abstracts/search?q=Poly%28A%29-Poly%28U%29" title=" Poly(A)-Poly(U)"> Poly(A)-Poly(U)</a>, <a href="https://publications.waset.org/abstracts/search?q=TMPyP4" title=" TMPyP4"> TMPyP4</a>, <a href="https://publications.waset.org/abstracts/search?q=Zn%28X%29TMPyP4" title=" Zn(X)TMPyP4"> Zn(X)TMPyP4</a> </p> <a href="https://publications.waset.org/abstracts/75747/thermal-stabilisation-of-polyapolyu-by-tmpyp4-and-znxtmpyp4-derivatives-in-aqueous-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">612</span> Poly(Trimethylene Carbonate)/Poly(ε-Caprolactone) Phase-Separated Triblock Copolymers with Advanced Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikola%20Toshikj">Nikola Toshikj</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Ramonda"> Michel Ramonda</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Catrouillet"> Sylvain Catrouillet</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Jacques%20Robin"> Jean-Jacques Robin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastien%20Blanquer"> Sebastien Blanquer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodegradable and biocompatible block copolymers have risen as the golden materials in both medical and environmental applications. Moreover, if their architecture is of controlled manner, higher applications can be foreseen. In the meantime, organocatalytic ROP has been promoted as more rapid and immaculate route, compared to the traditional organometallic catalysis, towards efficient synthesis of block copolymer architectures. Therefore, herein we report novel organocatalytic pathway with guanidine molecules (TBD) for supported synthesis of trimethylene carbonate initiated by poly(caprolactone) as pre-polymer. Pristine PTMC-b-PCL-b-PTMC block copolymer structure, without any residual products and clear desired block proportions, was achieved under 1.5 hours at room temperature and verified by NMR spectroscopies and size-exclusion chromatography. Besides, when elaborating block copolymer films, further stability and amelioration of mechanical properties can be achieved via additional reticulation step of precedently methacrylated block copolymers. Subsequently, stimulated by the insufficient studies on the phase-separation/crystallinity relationship in these semi-crystalline block copolymer systems, their intrinsic thermal and morphology properties were investigated by differential scanning calorimetry and atomic force microscopy. Firstly, by DSC measurements, the block copolymers with χABN values superior to 20 presented two distinct glass transition temperatures, close to the ones of the respecting homopolymers, demonstrating an initial indication of a phase-separated system. In the interim, the existence of the crystalline phase was supported by the presence of melting temperature. As expected, the crystallinity driven phase-separated morphology predominated in the AFM analysis of the block copolymers. Neither crosslinking at melted state, hence creation of a dense polymer network, disturbed the crystallinity phenomena. However, the later revealed as sensible to rapid liquid nitrogen quenching directly from the melted state. Therefore, AFM analysis of liquid nitrogen quenched and crosslinked block copolymer films demonstrated a thermodynamically driven phase-separation clearly predominating over the originally crystalline one. These AFM films remained stable with their morphology unchanged even after 4 months at room temperature. However, as demonstrated by DSC analysis once rising the temperature above the melting temperature of the PCL block, neither the crosslinking nor the liquid nitrogen quenching shattered the semi-crystalline network, while the access to thermodynamical phase-separated structures was possible for temperatures under the poly (caprolactone) melting point. Precisely this coexistence of dual crosslinked/crystalline networks in the same copolymer structure allowed us to establish, for the first time, the shape-memory properties in such materials, as verified by thermomechanical analysis. Moreover, the response temperature to the material original shape depended on the block copolymer emplacement, hence PTMC or PCL as end-block. Therefore, it has been possible to reach a block copolymer with transition temperature around 40°C thus opening potential real-life medical applications. In conclusion, the initial study of phase-separation/crystallinity relationship in PTMC-b-PCL-b-PTMC block copolymers lead to the discovery of novel shape memory materials with superior properties, widely demanded in modern-life applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20block%20copolymers" title="biodegradable block copolymers">biodegradable block copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=organocatalytic%20ROP" title=" organocatalytic ROP"> organocatalytic ROP</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=shape-memory" title=" shape-memory"> shape-memory</a> </p> <a href="https://publications.waset.org/abstracts/137126/polytrimethylene-carbonatepolye-caprolactone-phase-separated-triblock-copolymers-with-advanced-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">611</span> Properties of Poly(Amide-Imide) with Low Residual Stress for Electronic Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwangin%20Kim">Kwangin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Taewon%20Yoo"> Taewon Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Haksoo%20Han"> Haksoo Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyimide is a superior polymer in the electronics industry, and we conducted a study to synthesize poly(amide-imide) at low temperatures. Poly(amide-imide) was synthesized at low-temperature curing to offer a thermal stable membrane with low residual stress and good processability. As a result, the low crack polymer with good processability could be used to various applications such as semiconductors, integrated circuits, coating materials, membranes, and display. The synthesis of poly(amide-imide) at low temperatures was confirmed by Fourier transform infrared spectroscopy (FT-IR). Thermal stabilities of the polymer was confirmed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly%28amide-imide%29" title="poly(amide-imide)">poly(amide-imide)</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/23349/properties-of-polyamide-imide-with-low-residual-stress-for-electronic-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">610</span> Assessment of Vermiculite Concrete Containing Bio-Polymer Aggregate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliakbar%20Sayadi">Aliakbar Sayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20R.%20Neitzert"> Thomas R. Neitzert</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Charles%20Clifton"> G. Charles Clifton</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Cheol%20Han"> Min Cheol Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aims to assess the performance of vermiculite concrete containing poly-lactic acid beads as an eco-friendly aggregate. Vermiculite aggregate was replaced by poly-lactic acid in percentages of 0%, 20%, 40%, 60% and 80%. Mechanical and thermal properties of concrete were investigated. Test results indicated that the inclusion of poly-lactic acid decreased the PH value of concrete and all the poly-lactic acid particles were dissolved due to the formation of sodium lactide and lactide oligomers when subjected to the high alkaline environment of concrete. In addition, an increase in thermal conductivity value of concrete was observed as the ratio of poly-lactic acid increased. Moreover, a set of equations was proposed to estimate the water-cement ratio, cement content and water absorption ratio of concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly-lactic%20acid%20%28PLA%29" title="poly-lactic acid (PLA)">poly-lactic acid (PLA)</a>, <a href="https://publications.waset.org/abstracts/search?q=vermiculite%20concrete" title=" vermiculite concrete"> vermiculite concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly" title=" eco-friendly"> eco-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/55427/assessment-of-vermiculite-concrete-containing-bio-polymer-aggregate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">609</span> Polymer Advancement with Poly(High Internal Phase Emulsion) Poly(S/DVB) Modified via Layer-by-Layer for CO2 Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saifon%20Chongthub">Saifon Chongthub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research is to synthesize adsorbent foam for CO2 adsorption. The polymer was prepared from poly High Internal Phase Emulsion (PolyHIPE) using styrene as monomer and divinylbenzene as comonomer. Its morphology was determined by Scanning Electron Microscopy (SEM). To further increased CO2 adsorption of the prepared polyHIPE, the layer by layer (LbL) technique was applied, which alternated polyelectrolyte injection between layers of Poly(styrenesulfonate) (PSS) and Poly(diallyldimetyl-ammonium chloride)(PDADMAC) as primary layer, and layers of PSS and polyetyleneimine (PEI) as secondary layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20internal%20phase%20emulsion" title="high internal phase emulsion">high internal phase emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=polyHIPE" title=" polyHIPE"> polyHIPE</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=layer%20by%20layer%20technique" title=" layer by layer technique"> layer by layer technique</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20adsorption" title=" CO2 adsorption"> CO2 adsorption</a> </p> <a href="https://publications.waset.org/abstracts/2180/polymer-advancement-with-polyhigh-internal-phase-emulsion-polysdvb-modified-via-layer-by-layer-for-co2-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">608</span> Preparation and Evaluation of Poly(Ethylene Glycol)-B-Poly(Caprolactone) Diblock Copolymers with Zwitterionic End Group for Thermo-Responsive Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Keun%20Lee">Bo Keun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Doo%20Yeon%20Kwon"> Doo Yeon Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Hoon%20Park"> Ji Hoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Gun%20Hee%20Lee"> Gun Hee Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Hye%20Baek"> Ji Hye Baek</a>, <a href="https://publications.waset.org/abstracts/search?q=Heung%20Jae%20Chun"> Heung Jae Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Joo%20Koh"> Young Joo Koh</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Suk%20Kim"> Moon Suk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermo-responsive materials are viscoelastic materials that undergo a sol-to-gel phase transition at a specific temperature and many materials have been developed. MPEG-b-PCL (MPC) as a thermo-responsive material contained hydrophilic and hydrophobic segments and it formed an ordered crystalline structure of hydrophobic PCL segments in aqueous solutions. The ordered crystalline structure packed tightly or aggregated and finally induced an aggregated gel through intra- and inter-molecular interactions as a function of temperature. Thus, we introduced anionic and cationic groups into the end positions of the PCL chain to alter the hydrophobicity of the PCL segment. Introducing anionic and cationic groups into the PCL end position altered their solubility by changing the crystallinity and hydrophobicity of the PCL block domains. These results indicated that the properties of the end group in the hydrophobic PCL blockand the balance between hydrophobicity and hydrophilicity affect thermo-responsivebehavior of the copolymers in aqueous solutions. Thus, we concluded that determinant of the temperature-dependent thermo-responsive behavior of MPC depend on the ionic end group in the PCL block. So, we introduced zwitterionic end groups to investigate the thermo-responsive behavior of MPC. Methoxypoly(ethylene oxide) and ε-caprolactone (CL) were randomly copolymerized that introduced varying hydrophobic PCL lengths and an MPC featuring a zwitterionic sulfobetaine (MPC-ZW) at the chain end of the PCL segment. The MPC and MPC-ZW copolymers were obtained formed sol-state at room temperature when prepared as 20-wt% aqueous solutions. The solubility of MPC decreased when the PCL block was increased from molecular weight. The solubilization time of MPC-2.4k was around 20 min and MPC-2.8k, MPC-3.0k increased to 30 min and 1 h, respectively. MPC-3.6k was not solubilized. In case of MPC-ZW 3.6k, However, the zwitterion-modified MPC copolymers were solubilized in 3–5 min. This result indicates that the zwitterionic end group of the MPC-ZW diblock copolymer increased the aqueous solubility of the diblock copolymer even when the length of the hydrophobic PCL segment was increased. MPC and MPC-ZW diblock copolymers that featuring zwitterionic end groups were synthesized successfully. The sol-to-gel phase-transition was formed that specific temperature depend on the length of the PCL hydrophobic segments introduced and on the zwitterion groups attached to the MPC chain end. This result indicated that the zwitterionic end groups reduced the hydrophobicity in the PCL block and changed the solubilization. The MPC-ZW diblock copolymer can be utilized as a potential injectable drug and cell carrier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermo-responsive%20material" title="thermo-responsive material">thermo-responsive material</a>, <a href="https://publications.waset.org/abstracts/search?q=zwitterionic" title=" zwitterionic"> zwitterionic</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic" title=" hydrophobic"> hydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a> </p> <a href="https://publications.waset.org/abstracts/9288/preparation-and-evaluation-of-polyethylene-glycol-b-polycaprolactone-diblock-copolymers-with-zwitterionic-end-group-for-thermo-responsive-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">607</span> Dry Modifications of PCL/Chitosan/PCL Tissue Scaffolds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozan%20Ozkan">Ozan Ozkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilal%20Turkoglu%20Sasmazel"> Hilal Turkoglu Sasmazel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural polymers are widely used in tissue engineering applications, because of their biocompatibility, biodegradability and solubility in the physiological medium. On the other hand, synthetic polymers are also widely utilized in tissue engineering applications, because they carry no risk of infectious diseases and do not cause immune system reaction. However, the disadvantages of both polymer types block their individual usages as tissue scaffolds efficiently. Therefore, the idea of usage of natural and synthetic polymers together as a single 3D hybrid scaffold which has the advantages of both and the disadvantages of none has been entered to the literature. On the other hand, even though these hybrid structures support the cell adhesion and/or proliferation, various surface modification techniques applied to the surfaces of them to create topographical changes on the surfaces and to obtain reactive functional groups required for the immobilization of biomolecules, especially on the surfaces of synthetic polymers in order to improve cell adhesion and proliferation. In a study presented here, to improve the surface functionality and topography of the layer by layer electrospun 3D poly-epsilon-caprolactone/chitosan/poly-epsilon-caprolactone hybrid tissue scaffolds by using atmospheric pressure plasma method, thus to improve cell adhesion and proliferation of these tissue scaffolds were aimed. The formation/creation of the functional hydroxyl and amine groups and topographical changes on the surfaces of scaffolds were realized by using two different atmospheric pressure plasma systems (nozzle type and dielectric barrier discharge (DBD) type) carried out under different gas medium (air, Ar+O2, Ar+N2). The plasma modification time and distance for the nozzle type plasma system as well as the plasma modification time and the gas flow rate for DBD type plasma system were optimized with monitoring the changes in surface hydrophilicity by using contact angle measurements. The topographical and chemical characterizations of these modified biomaterials’ surfaces were carried out with SEM and ESCA, respectively. The results showed that the atmospheric pressure plasma modifications carried out with both nozzle type plasma and DBD plasma caused topographical and functionality changes on the surfaces of the layer by layer electrospun tissue scaffolds. However, the shelf life studies indicated that the hydrophilicity introduced to the surfaces was mainly because of the functionality changes. Therefore, according to the optimized results, samples treated with nozzle type air plasma modification applied for 9 minutes from a distance of 17 cm and Ar+O2 DBD plasma modification applied for 1 minute under 70 cm3/min O2 flow rate were found to have the highest hydrophilicity compared to pristine samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title="biomaterial">biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a> </p> <a href="https://publications.waset.org/abstracts/10533/dry-modifications-of-pclchitosanpcl-tissue-scaffolds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">606</span> Studies on Pesticide Usage Pattern and Farmers Knowledge on Pesticide Usage and Technologies in Open Field and Poly House Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Raghu">B. Raghu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashi%20Vemuri"> Shashi Vemuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Sreenivasa%20Rao"> Ch. Sreenivasa Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The survey on pesticide use pattern was carried out by interviewing farmers growing chill in open fields and poly houses based on the questionnaire prepared to assess their knowledge and practices on crop cultivation, general awareness on pesticide recommendations and use. Education levels of poly house farmers are high compared to open field farmers, where 57.14% poly house farmers are high school educated, whereas 35% open field farmers are illiterates. Majority farmers use nursery of 35 days and grow in <0.5 acre poly house in summer and rabi and < 1 acre in open field during kharif. Awareness on pesticide related issues is varying among poly house and open field farmers with some commonality, where 28.57% poly house farmers know about recommended pesticides while only 10% open field farmers are aware of this issue. However, in general, all farmers contact pesticide dealer for recommendations, poly house farmers prefer to contact scientists (35.71%) and open field farmers prefer to contact agricultural officers (33.33). Most farmers are unaware about pesticide classification and toxicity symbols on packing. Farmers are aware about endosulfan ban, but only 21.42% poly house and 11.66% open field farmers know about ban of monocrotofos on vegetables. Very few farmers know about pesticide residues and related issues, but know washing helps to reduce contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20field" title="open field">open field</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20usage" title=" pesticide usage"> pesticide usage</a>, <a href="https://publications.waset.org/abstracts/search?q=polyhouses" title=" polyhouses"> polyhouses</a>, <a href="https://publications.waset.org/abstracts/search?q=residues%20survey" title=" residues survey"> residues survey</a> </p> <a href="https://publications.waset.org/abstracts/21476/studies-on-pesticide-usage-pattern-and-farmers-knowledge-on-pesticide-usage-and-technologies-in-open-field-and-poly-house-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">605</span> Synthesis and Charaterization of Nanocomposite Poly (4,4&#039; Methylenedianiline) Catalyzed by Maghnite-H+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Belmokhtar">A. Belmokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yahiaoui"> A. Yahiaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benyoucef"> A. Benyoucef</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belbachir"> M. Belbachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We reported the synthesis and characterization of nanocomposite poly (4,4’ methylenedianiline) via chemical polymerization of monomers 4,4’ methylenedianiline by ammonium persulfate (APS) at room temperature catalyzed by Maghnite-H+. A facile method was demonstrated to grow poly (4,4’ methylenedianiline) nanocomposite, which was carried out by mixing Ammonium Persulfate (APS) aqueous and 4,4’ methylenedianiline solution in the presence of Maghnite-H+ at room temperature The effect of amount of catalyst and time on the polymerization yield of the polymers was studied. Structure was confirmed by elemental analysis, UV vis, RMN-1H, and voltammetry cyclique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charaterization" title="charaterization">charaterization</a>, <a href="https://publications.waset.org/abstracts/search?q=maghnite-h%2B" title=" maghnite-h+"> maghnite-h+</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerization" title=" polymerization"> polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%284" title=" poly (4"> poly (4</a>, <a href="https://publications.waset.org/abstracts/search?q=4%E2%80%99%20methylenedianiline%29" title="4’ methylenedianiline)">4’ methylenedianiline)</a> </p> <a href="https://publications.waset.org/abstracts/30737/synthesis-and-charaterization-of-nanocomposite-poly-44-methylenedianiline-catalyzed-by-maghnite-h" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">604</span> Anticorrosive Properties of Poly(O-Phenylendiamine)/ZnO Nanocomposites Coated Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Ganash">Aisha Ganash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poly(o-phenylendiamine) and poly(ophenylendiamine)/ZnO(PoPd/ZnO) nanocomposites coating were prepared on type-304 austenitic stainless steel (SS) using H2SO4 acid as electrolyte by potentiostatic methods. Fourier transforms infrared spectroscopy and scanning electron microscopy techniques were used to characterize the composition and structure of PoPd/ZnO nanocomposites. The corrosion protection of polymer coatings ability was studied by Eocp-time measurement, anodic and cathodic potentiodynamic polarization and Impedance techniques in 3.5% NaCl as a corrosive solution. It was found that ZnO nanoparticles improve the barrier and electrochemical anticorrosive properties of poly(o-phenylendiamine). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticorrosion" title="anticorrosion">anticorrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymers" title=" conducting polymers"> conducting polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title=" electrochemistry"> electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/46496/anticorrosive-properties-of-polyo-phenylendiaminezno-nanocomposites-coated-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">603</span> Improval of Fracture Healing of Osteoporotic Bone by Lovastatin-Incorporated Poly-(DL-Lactide)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Izzah%20Ibrahim">Nurul Izzah Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Isa%20Naina%20Mohamed"> Isa Naina Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Norazlina%20Mohamed"> Norazlina Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nazrun%20Shuid"> Ahmad Nazrun Shuid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Osteoporosis disease delays fracture healing. Statins have shown potential for osteoporosis and to promote fracture healing. The effects of statin can be further potentiated by combining it with a carrier known as poly-(DL-lactide), which would provide persistent release of statin to the fracture site. This study was designed to investigate the effects of direct injection of poly-(DL-lactide)-incorporated lovastatin on fracture healing of postmenopausal osteoporosis rat model. Twenty-four Sprague-Dawley female rats were divided into 3 groups: sham-operated (SO), ovariectomized-control rats (OVxC) and poly-(DL-lactide)-incorporated lovastatin (OVx+Lov) groups. The OVx+Lov group was given a single injection of 750 µg/kg lovastatin particles incorporated with poly-(DL-lactide). After 4 weeks, the fractured tibiae were dissected out for biomechanical assessments of the callus. The OVx+Lov group showed significantly better callus strength than the OVxC group (p<0.05). In conclusion, a single injection of lovastatin-incorporated poly-(DL-lactide) was able to promote better fracture healing of osteoporotic bone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statins" title="statins">statins</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20healing" title=" fracture healing"> fracture healing</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title=" osteoporosis"> osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=poly-%28DL-lactide%29" title=" poly-(DL-lactide)"> poly-(DL-lactide)</a> </p> <a href="https://publications.waset.org/abstracts/9413/improval-of-fracture-healing-of-osteoporotic-bone-by-lovastatin-incorporated-poly-dl-lactide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">602</span> Biologically Active Caffeic Acid-Derived Biopolymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Barbakadze">V. Barbakadze</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Gogilashvili"> L. Gogilashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Amiranashvili"> L. Amiranashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Merlani"> M. Merlani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mulkijanyan"> K. Mulkijanyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high-molecular water-soluble preparations from several species of two genera (Symphytum and Anchusa) of Boraginaceae family Symphytum asperum, S. caucasicum, S.officinale and Anchusa italica were isolated. According to IR, 13C and 1H NMR, APT, 1D NOE, 2D heteronuclear 1H/13C HSQC and 2D DOSY experiments, the main chemical constit¬uent of these preparations was found to be caffeic acid-derived polyether, namely poly[3-(3,4-dihydroxyphenyl)glyceric acid] (PDPGA) or poly[oxy-1-carboxy-2-(3,4-dihydroxyphenyl)ethylene]. Most carboxylic groups of this caffeic acid-derived polymer of A. italica are methylated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anchusa" title="Anchusa">Anchusa</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%5B3-%283" title=" poly[3-(3"> poly[3-(3</a>, <a href="https://publications.waset.org/abstracts/search?q=4-dihydroxyphenyl%29glyceric%20acid%5D" title="4-dihydroxyphenyl)glyceric acid]">4-dihydroxyphenyl)glyceric acid]</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%5Boxy-1-carboxy-2-%283" title=" poly[oxy-1-carboxy-2-(3"> poly[oxy-1-carboxy-2-(3</a>, <a href="https://publications.waset.org/abstracts/search?q=4-dihydroxyphenyl%29ethylene%5D" title="4-dihydroxyphenyl)ethylene]">4-dihydroxyphenyl)ethylene]</a>, <a href="https://publications.waset.org/abstracts/search?q=Symphytum" title=" Symphytum"> Symphytum</a> </p> <a href="https://publications.waset.org/abstracts/1643/biologically-active-caffeic-acid-derived-biopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">601</span> The Effect of Surface Modified Nano-Hydroxyapatite Incorporation into Polymethylmethacrylate Cement on Biocompatibility and Mechanical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Shan%20Wu">Yu-Shan Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Liang%20Lai"> Po-Liang Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Ming%20Chu"> I-Ming Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poly(methylmethacrylate)(PMMA) is the most frequently used bone void filler for vertebral augmentation in osteoporotic fracture. PMMA bone cement not only exhibits strong mechanical properties but also can fabricate according to the shape of bone defect. However, the adhesion between the PMMA-based cement and the adjacent bone is usually weak and as PMMA bone cement is inherently bioinert. The combination of bioceramics and polymers as composites may increase cell adhesion and improve biocompatibility. The nano-hydroxyapatite(HAP) not only plays a significant role in maintaining the properties of the natural bone but also offers a favorable environment for osteoconduction, protein adhesion, and osteoblast proliferation. However, defects and cracks can form at the polymer/ceramics interface, resulting in uneven distribution of stress and subsequent inferior mechanical strength. Surface-modified HAP nano-crystals were prepared by chemically grafting poly(ε-caprolactone)(PCL) on surface-modified nano-HAP surface to increase the affinity of polymer/ceramic phases .Thus, incorporation of surface-modified nano-hydroxyapatite (EC-HAP) may not only improve the interfacial adhesion between cement and bone and between nanoparticles and cement, but also increase biocompatibility. In this research, PMMA mixing with 0, 5, 10, 15, 20, 25 and 30 wt% EC-HAP were examined. MC3T3-E1 cells were used for the biological evaluation of the response to the cements in vitro. Morphology was observed using scanning electron microscopy (SEM). Mechanical properties of HAP/PMMA and EC-HAP/PMMA cement were investigated by compression test. Surface wettability of the cements was measured by contact angles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20cement" title="bone cement">bone cement</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title=" biocompatibility"> biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-hydroxyapatite" title=" nano-hydroxyapatite"> nano-hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone" title=" polycaprolactone"> polycaprolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA" title=" PMMA"> PMMA</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20grafting" title=" surface grafting"> surface grafting</a> </p> <a href="https://publications.waset.org/abstracts/45200/the-effect-of-surface-modified-nano-hydroxyapatite-incorporation-into-polymethylmethacrylate-cement-on-biocompatibility-and-mechanical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=poly%20%28%CE%B5%E2%80%93caprolactone%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=poly%20%28%CE%B5%E2%80%93caprolactone%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=poly%20%28%CE%B5%E2%80%93caprolactone%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=poly%20%28%CE%B5%E2%80%93caprolactone%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=poly%20%28%CE%B5%E2%80%93caprolactone%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=poly%20%28%CE%B5%E2%80%93caprolactone%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=poly%20%28%CE%B5%E2%80%93caprolactone%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=poly%20%28%CE%B5%E2%80%93caprolactone%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=poly%20%28%CE%B5%E2%80%93caprolactone%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=poly%20%28%CE%B5%E2%80%93caprolactone%29&amp;page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=poly%20%28%CE%B5%E2%80%93caprolactone%29&amp;page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=poly%20%28%CE%B5%E2%80%93caprolactone%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10