CINXE.COM
Search results for: manipulator robot
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: manipulator robot</title> <meta name="description" content="Search results for: manipulator robot"> <meta name="keywords" content="manipulator robot"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="manipulator robot" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="manipulator robot"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 487</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: manipulator robot</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">487</span> Design of a 4-DOF Robot Manipulator with Optimized Algorithm for Inverse Kinematics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20G%C3%B3mez">S. G贸mez</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20S%C3%A1nchez"> G. S谩nchez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Zarama"> J. Zarama</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Casta%C3%B1eda%20Ramos"> M. Casta帽eda Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Escoto%20Alc%C3%A1ntar"> J. Escoto Alc谩ntar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Torres"> J. Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N%C3%BA%C3%B1ez"> A. N煤帽ez</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Santana"> S. Santana</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20%20N%C3%A1jera"> F. N谩jera</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Lopez"> J. A. Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper shows in detail the mathematical model of direct and inverse kinematics for a robot manipulator (welding type) with four degrees of freedom. Using the D-H parameters, screw theory, numerical, geometric and interpolation methods, the theoretical and practical values of the position of robot were determined using an optimized algorithm for inverse kinematics obtaining the values of the particular joints in order to determine the virtual paths in a relatively short time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematics" title="kinematics">kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20freedom" title=" degree of freedom"> degree of freedom</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20manipulator" title=" robot manipulator"> robot manipulator</a> </p> <a href="https://publications.waset.org/abstracts/24981/design-of-a-4-dof-robot-manipulator-with-optimized-algorithm-for-inverse-kinematics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">486</span> Joint Space Hybrid Force/Position Control of 6-DoF Robot Manipulator Using Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habtemariam%20Alemu">Habtemariam Alemu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been known that the performance of position and force control is highly affected by both robot dynamic and environment stiffness uncertainties. In this paper, joint space hybrid force and position control strategy with self-selecting matrix using artificial neural network compensator is proposed. The objective of the work is to improve controller robustness by applying a neural network technique in order to compensate the effect of uncertainties in the robot model. Simulation results for a 6 degree of freedom (6-DoF) manipulator and different types of environments showed the effectiveness of the suggested approach. 6-DoF Puma 560 family robot manipulator is chosen as industrial robot and its efficient dynamic model is designed using Matlab/SimMechanics library. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robot%20manipulator" title="robot manipulator">robot manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=force%2Fposition%20control" title=" force/position control"> force/position control</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab%2FSimulink" title=" Matlab/Simulink"> Matlab/Simulink</a> </p> <a href="https://publications.waset.org/abstracts/6723/joint-space-hybrid-forceposition-control-of-6-dof-robot-manipulator-using-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">485</span> Mobile Robot Manipulator Kinematics Motion Control Analysis with MATLAB/Simulink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wayan%20Widhiada">Wayan Widhiada</a>, <a href="https://publications.waset.org/abstracts/search?q=Cok%20Indra%20Partha"> Cok Indra Partha</a>, <a href="https://publications.waset.org/abstracts/search?q=Gusti%20Ngurah%20Nitya%20Santhiarsa"> Gusti Ngurah Nitya Santhiarsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to investigate the sophistication of the use of Proportional Integral and Derivative Control to control the kinematic motion of the mobile robot manipulator. Simulation and experimental methods will be used to investigate the sophistication of PID control to control the mobile robot arm in the collection and placement of several kinds of objects quickly, accurately and correctly. Mathematical modeling will be done by utilizing the integration of Solidworks and MATLAB / Simmechanics software. This method works by converting the physical model file into the xml file. This method is easy, fast and accurate done in modeling and design robotics. The automatic control design of this robot manipulator will be validated in simulations and experimental in control labs as evidence that the mobile robot manipulator gripper control design can achieve the best performance such as the error signal is lower than 5%, small overshoot and get steady signal response as quickly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20analysis" title="control analysis">control analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematics%20motion" title=" kinematics motion"> kinematics motion</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot%20manipulator" title=" mobile robot manipulator"> mobile robot manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/80909/mobile-robot-manipulator-kinematics-motion-control-analysis-with-matlabsimulink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">484</span> Load Maximization of Two-Link Flexible Manipulator Using Suppression Vibration with Piezoelectric Transducer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Heidari">Hamidreza Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Malmir%20Nasab"> Abdollah Malmir Nasab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the energy equations of a two-link flexible manipulator were extracted using the Euler-Bernoulli beam hypotheses. Applying Assumed mode and considering some finite degrees of freedom, we could obtain dynamic motions of each manipulator using Euler-Lagrange equations. Using its claws, the robots can carry a certain load with the ached control of vibrations for robot flexible links during the travelling path using the piezoceramics transducer; dynamic load carrying capacity increase. The traveling path of flexible robot claw has been taken from that of equivalent rigid manipulator and coupled; therefore to avoid the role of Euler-Bernoulli beam assumptions and linear strains, material and physical characteristics selection of robot cause deflection of link ends not exceed 5% of link length. To do so, the maximum load carrying capacity of robot is calculated at the horizontal plan. The increasing of robot load carrying capacity with vibration control is 53%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20link" title="flexible link">flexible link</a>, <a href="https://publications.waset.org/abstracts/search?q=DLCC" title=" DLCC"> DLCC</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20control%20vibration" title=" active control vibration"> active control vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=assumed%20mode%20method" title=" assumed mode method"> assumed mode method</a> </p> <a href="https://publications.waset.org/abstracts/54871/load-maximization-of-two-link-flexible-manipulator-using-suppression-vibration-with-piezoelectric-transducer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">483</span> Sliding Mode Control of an Internet Teleoperated PUMA 600 Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20Ghoul">Abdallah Ghoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Ouamri"> Bachir Ouamri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Khalil%20Bousserhane"> Ismail Khalil Bousserhane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have developed a sliding mode controller for PUMA 600 manipulator robot, to control the remote robot a teleoperation system was developed. This system includes two sites, local and remote. The sliding mode controller is installed at the remote site. The client asks for a position through an interface and receives the real positions after running of the task by the remote robot. Both sites are interconnected via the Internet. In order to verify the effectiveness of the sliding mode controller, that is compared with a classic PID controller. The developed approach is tested on a virtual robot. The results confirmed the high performance of this approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet" title="internet">internet</a>, <a href="https://publications.waset.org/abstracts/search?q=manipulator%20robot" title=" manipulator robot"> manipulator robot</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20controller" title=" PID controller"> PID controller</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20control" title=" remote control"> remote control</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode" title=" sliding mode"> sliding mode</a>, <a href="https://publications.waset.org/abstracts/search?q=teleoperation" title=" teleoperation"> teleoperation</a> </p> <a href="https://publications.waset.org/abstracts/78157/sliding-mode-control-of-an-internet-teleoperated-puma-600-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">482</span> Basavaraj Kabade, K. T. Nagaraja, Swathi Ramanathan, A. Veeraragavan, P. S. Reashma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dechrit%20Maneetham">Dechrit Maneetham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pick and place task is one among the most important tasks in industrial field handled by 'Selective Compliance Assembly Robot Arm' (SCARA). Repeatability with high-speed movement in a horizontal plane is a remarkable feature of this type of manipulator. The challenge of design SCARA is the difficulty of achieving stability of high-speed movement with the long length of links. Shorter links arm can move more stable. This condition made the links should be considered restrict then followed by restriction of operation area (workspace). In this research, authors demonstrated on expanding SCARA robot鈥檚 workspace in horizontal area via linear sliding actuator that embedded to base link of the robot arm. With one additional prismatic joint, the previous robot manipulator with 3 degree of freedom (3-DOF), 2 revolute joints and 1 prismatic joint becomes 4-DOF PRRP manipulator. This designation increased workspace of robot from 0.5698m虏 performed by the previous arm (without linear actuator) to 1.1281m虏 by the proposed arm (with linear actuator). The increasing rate was about 97.97% of workspace with the same links' lengths. The result of experimentation also indicated that the operation time spent to reach object position was also reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematics" title="kinematics">kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20sliding%20actuator" title=" linear sliding actuator"> linear sliding actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=manipulator" title=" manipulator"> manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a> </p> <a href="https://publications.waset.org/abstracts/88037/basavaraj-kabade-k-t-nagaraja-swathi-ramanathan-a-veeraragavan-p-s-reashma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">481</span> Advanced Mechatronic Design of Robot Manipulator Using Hardware-In-The-Loop Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Karami">Reza Karami</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Ebrahimi"> Ali Akbar Ebrahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses concurrent engineering of robot manipulators, based on the Holistic Concurrent Design (HCD) methodology and by using a hardware-in-the-loop simulation platform. The methodology allows for considering numerous design variables with different natures concurrently. It redefines the ultimate goal of design based on the notion of satisfaction, resulting in the simplification of the multi-objective constrained optimization process. It also formalizes the effect of designer鈥檚 subjective attitude in the process. To enhance modeling efficiency for both computation and accuracy, a hardware-in-the-loop simulation platform is used, which involves physical joint modules and the control unit in addition to the software modules. This platform is implemented in the HCD design architecture to reliably evaluate the design attributes and performance super criterion during the design process. The resulting overall architecture is applied to redesigning kinematic, dynamic and control parameters of an industrial robot manipulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concurrent%20engineering" title="concurrent engineering">concurrent engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware-in-the-loop%20simulation" title=" hardware-in-the-loop simulation"> hardware-in-the-loop simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20manipulator" title=" robot manipulator"> robot manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=multidisciplinary%20systems" title=" multidisciplinary systems"> multidisciplinary systems</a>, <a href="https://publications.waset.org/abstracts/search?q=mechatronics" title=" mechatronics"> mechatronics</a> </p> <a href="https://publications.waset.org/abstracts/2865/advanced-mechatronic-design-of-robot-manipulator-using-hardware-in-the-loop-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">480</span> Technological Development and Implementation of a Robotic Arm Motioned by Programmable Logic Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20G.%20Batista">J. G. Batista</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20J.%20de%20Bessa%20Neto"> L. J. de Bessa Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20F.%20B.%20Lima"> M. A. F. B. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Leite"> J. R. Leite</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20I.%20de%20Andrade%20Nunes"> J. I. de Andrade Nunes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The robot manipulator is an equipment that stands out for two reasons: Firstly because of its characteristics of movement and reprogramming, resembling the arm; secondly, by adding several areas of knowledge of science and engineering. The present work shows the development of the prototype of a robotic manipulator driven by a Programmable Logic Controller (PLC), having two degrees of freedom, which allows the movement and displacement of mechanical parts, tools, and objects in general of small size, through an electronic system. The aim is to study direct and inverse kinematics of the robotic manipulator to describe the translation and rotation between two adjacent links of the robot through the Denavit-Hartenberg parameters. Currently, due to the many resources that microcomputer systems offer us, robotics is going through a period of continuous growth that will allow, in a short time, the development of intelligent robots with the capacity to perform operations that require flexibility, speed and precision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denavit-Hartenberg" title="Denavit-Hartenberg">Denavit-Hartenberg</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20and%20inverse%20kinematics" title=" direct and inverse kinematics"> direct and inverse kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=microcontrollers" title=" microcontrollers"> microcontrollers</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20manipulator" title=" robotic manipulator"> robotic manipulator</a> </p> <a href="https://publications.waset.org/abstracts/63205/technological-development-and-implementation-of-a-robotic-arm-motioned-by-programmable-logic-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">479</span> Optimization of Robot Motion Planning Using Biogeography Based Optimization (Bbo)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaber%20Nikpouri">Jaber Nikpouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Arsalan%20Amralizadeh"> Arsalan Amralizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In robotics manipulators, the trajectory should be optimum, thus the torque of the robot can be minimized in order to save power. This paper includes an optimal path planning scheme for a robotic manipulator. Recently, techniques based on metaheuristics of natural computing, mainly evolutionary algorithms (EA), have been successfully applied to a large number of robotic applications. In this paper, the improved BBO algorithm is used to minimize the objective function in the presence of different obstacles. The simulation represents that the proposed optimal path planning method has satisfactory performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogeography-based%20optimization" title="biogeography-based optimization">biogeography-based optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title=" path planning"> path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20detection" title=" obstacle detection"> obstacle detection</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20manipulator" title=" robotic manipulator"> robotic manipulator</a> </p> <a href="https://publications.waset.org/abstracts/55588/optimization-of-robot-motion-planning-using-biogeography-based-optimization-bbo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">478</span> Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abolfazl%20Mohammadijoo">Abolfazl Mohammadijoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we are investigating the sliding mode control approach for trajectory tracking of a two-link-manipulator with a wheeled mobile robot in its base. The main challenge of this work is the dynamic interaction between mobile base and manipulator, which makes trajectory tracking more difficult than n-link manipulators with a fixed base. Another challenging part of this work is to avoid from chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of the sliding mode control approach for the desired trajectory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20manipulator" title="mobile manipulator">mobile manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20interaction" title=" dynamic interaction"> dynamic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robotics" title=" mobile robotics"> mobile robotics</a> </p> <a href="https://publications.waset.org/abstracts/128498/trajectory-tracking-of-a-2-link-mobile-manipulator-using-sliding-mode-control-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">477</span> Modeling and Simulation of Underwater Flexible Manipulator as Raleigh Beam Using Bond Graph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Kumar">Sumit Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Kumar"> Sunil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandan%20Deep%20Singh"> Chandan Deep Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents modeling and simulation of flexible robot in an underwater environment. The underwater environment completely contrasts with ground or space environment. The robot in an underwater situation is subjected to various dynamic forces like buoyancy forces, hydrostatic and hydrodynamic forces. The underwater robot is modeled as Rayleigh beam. The developed model further allows estimating the deflection of tip in two directions. The complete dynamics of the underwater robot is analyzed, which is the main focus of this investigation. The control of robot trajectory is not discussed in this paper. Simulation is performed using Symbol Shakti software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bond%20graph%20modeling" title="bond graph modeling">bond graph modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics.%20modeling" title=" dynamics. modeling"> dynamics. modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=rayleigh%20beam" title=" rayleigh beam"> rayleigh beam</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater%20robot" title=" underwater robot"> underwater robot</a> </p> <a href="https://publications.waset.org/abstracts/33594/modeling-and-simulation-of-underwater-flexible-manipulator-as-raleigh-beam-using-bond-graph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">476</span> Finite Element Analysis and Multibody Dynamics of 6-DOF Industrial Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Arora">Rahul Arora</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Dhami"> S. S. Dhami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper implements the design structure of industrial robot along with the different transmission components like gear assembly and analysis of complete industrial robot. In this paper, it gives the overview on the most efficient types of modeling and different analysis results that can be obtained for an industrial robot. The investigation is executed in regards to two classifications i.e. the deformation and the stress tests. SolidWorks is utilized to design and review the 3D drawing plan while ANSYS Workbench is utilized to execute the FEA on an industrial robot and the designed component. The CAD evaluation was conducted on a disentangled model of an industrial robot. The study includes design and drafting its transmission system. In CAE study static, modal and dynamic analysis are presented. Every one of the outcomes is divided in regard with the impact of the static and dynamic analysis on the situating exactness of the robot. It gives critical data with respect to parts of the industrial robot that are inclined to harm under higher high force applications. Therefore, the mechanical structure under different operating conditions can help in optimizing the manipulator geometry and in selecting the right material for the same. The FEA analysis is conducted for four different materials on the same industrial robot and gear assembly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAD" title="CAD">CAD</a>, <a href="https://publications.waset.org/abstracts/search?q=CAE" title=" CAE"> CAE</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=robot" title=" robot"> robot</a>, <a href="https://publications.waset.org/abstracts/search?q=static" title=" static"> static</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic" title=" dynamic"> dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=modal" title=" modal"> modal</a>, <a href="https://publications.waset.org/abstracts/search?q=gear%20assembly" title=" gear assembly"> gear assembly</a> </p> <a href="https://publications.waset.org/abstracts/76941/finite-element-analysis-and-multibody-dynamics-of-6-dof-industrial-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">475</span> Flexible Arm Manipulator Control for Industrial Tasks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mircea%20Ivanescu">Mircea Ivanescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirvana%20Popescu"> Nirvana Popescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Decebal%20Popescu"> Decebal Popescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorin%20Popescu"> Dorin Popescu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses the control problem of a class of hyper-redundant arms. In order to avoid discrepancy between the mathematical model and the actual dynamics, the dynamic model with uncertain parameters of this class of manipulators is inferred. A procedure to design a feedback controller which stabilizes the uncertain system has been proposed. A PD boundary control algorithm is used in order to control the desired position of the manipulator. This controller is easy to implement from the point of view of measuring techniques and actuation. Numerical simulations verify the effectiveness of the presented methods. In order to verify the suitability of the control algorithm, a platform with a 3D flexible manipulator has been employed for testing. Experimental tests on this platform illustrate the applications of the techniques developed in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20model" title="distributed model">distributed model</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20manipulator" title=" flexible manipulator"> flexible manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=observer" title=" observer"> observer</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20control" title=" robot control"> robot control</a> </p> <a href="https://publications.waset.org/abstracts/41018/flexible-arm-manipulator-control-for-industrial-tasks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">474</span> Manipulator Development for Telediagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adam%20Kurnicki">Adam Kurnicki</a>, <a href="https://publications.waset.org/abstracts/search?q=Bart%C5%82omiej%20Stanczyk"> Bart艂omiej Stanczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartosz%20Kania"> Bartosz Kania</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents development of the light-weight manipulator with series elastic actuation for medical telediagnostics (USG examination). General structure of realized impedance control algorithm was shown. It was described how to perform force measurements based mainly on elasticity of manipulator links. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=telediagnostics" title="telediagnostics">telediagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20manipulator" title=" elastic manipulator"> elastic manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20control" title=" impedance control"> impedance control</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20measurement" title=" force measurement"> force measurement</a> </p> <a href="https://publications.waset.org/abstracts/12897/manipulator-development-for-telediagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">473</span> Implicit Force Control of a Position Controlled Robot - A Comparison with Explicit Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Winkler">Alexander Winkler</a>, <a href="https://publications.waset.org/abstracts/search?q=Jozef%20Such%C3%BD"> Jozef Such媒</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates simple implicit force control algorithms realizable with industrial robots. A lot of approaches already published are difficult to implement in commercial robot controllers, because the access to the robot joint torques is necessary or the complete dynamic model of the manipulator is used. In the past we already deal with explicit force control of a position controlled robot. Well known schemes of implicit force control are stiffness control, damping control and impedance control. Using such algorithms the contact force cannot be set directly. It is further the result of controller impedance, environment impedance and the commanded robot motion/position. The relationships of these properties are worked out in this paper in detail for the chosen implicit approaches. They have been adapted to be implementable on a position controlled robot. The behaviors of stiffness control and damping control are verified by practical experiments. For this purpose a suitable test bed was configured. Using the full mechanical impedance within the controller structure will not be practical in the case when the robot is in physical contact with the environment. This fact will be verified by simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robot%20force%20control" title="robot force control">robot force control</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness%20control" title=" stiffness control"> stiffness control</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20control" title=" damping control"> damping control</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20control" title=" impedance control"> impedance control</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/22644/implicit-force-control-of-a-position-controlled-robot-a-comparison-with-explicit-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">472</span> A Method for Modeling Flexible Manipulators: Transfer Matrix Method with Finite Segments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haijie%20Li">Haijie Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuping%20Zhang"> Xuping Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a computationally efficient method for the modeling of robot manipulators with flexible links and joints. This approach combines the Discrete Time Transfer Matrix Method with the Finite Segment Method, in which the flexible links are discretized by a number of rigid segments connected by torsion springs; and the flexibility of joints are modeled by torsion springs. The proposed method avoids the global dynamics and has the advantage of modeling non-uniform manipulators. Experiments and simulations of a single-link flexible manipulator are conducted for verifying the proposed methodologies. The simulations of a three-link robot arm with links and joints flexibility are also performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20manipulator" title="flexible manipulator">flexible manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix%20method" title=" transfer matrix method"> transfer matrix method</a>, <a href="https://publications.waset.org/abstracts/search?q=linearization" title=" linearization"> linearization</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20segment%20method" title=" finite segment method"> finite segment method</a> </p> <a href="https://publications.waset.org/abstracts/51465/a-method-for-modeling-flexible-manipulators-transfer-matrix-method-with-finite-segments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">471</span> A Leader-Follower Kinematic-Based Control System for a Cable-Driven Hyper-Redundant Manipulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abolfazl%20Zaraki">Abolfazl Zaraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshikatsu%20Hayashi"> Yoshikatsu Hayashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Harry%20Thorpe"> Harry Thorpe</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Strong"> Vincent Strong</a>, <a href="https://publications.waset.org/abstracts/search?q=Gisle-Andre%20Larsen"> Gisle-Andre Larsen</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Holderbaum"> William Holderbaum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thanks to the high maneuverability of the cable-driven hyper-redundant manipulators (HRMs), this class of robots has shown a superior capability in highly confined and unstructured space applications. Although the large number of degrees of freedom (DOF) of HRMs enhances the motion flexibility and the robot鈥檚 reachability range, it highly increases the complexity of the kinematic configuration which makes the kinematic control problem very challenging or even impossible to solve. This paper presents our current progress achieved on the development of a kinematic-based leader-follower control system which is designed to control not only the robot鈥檚 body posture but also to control the trajectory of the robot鈥檚 movement in a semi-autonomous manner (the human operator is retained in the robot鈥檚 control loop). To obtain the forward kinematic model, the coordinate frames are established by the classical Denavit鈥揌artenburg (D-H) convention for a hyper-redundant serial manipulator which has a controlled cables-driven mechanism. To solve the inverse kinematics of the robot, unlike the conventional methods, a leader-follower mechanism, based on the sequential inverse kinematic, is followed. Using this mechanism, the inverse kinematic problem is solved for all sequential joints starting from the head joint to the base joint of the robot. To verify the kinematic design and simulate the robot motion, the MATLAB robotic toolbox is used. The simulation result demonstrated the promising capability of the proposed leader-follower control system in controlling the robot motion and trajectory in our confined space application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyper-redundant%20robots" title="hyper-redundant robots">hyper-redundant robots</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20analysis" title=" kinematic analysis"> kinematic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-autonomous%20control" title=" semi-autonomous control"> semi-autonomous control</a>, <a href="https://publications.waset.org/abstracts/search?q=serial%20manipulators" title=" serial manipulators"> serial manipulators</a> </p> <a href="https://publications.waset.org/abstracts/109499/a-leader-follower-kinematic-based-control-system-for-a-cable-driven-hyper-redundant-manipulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">470</span> Real-Time Detection of Space Manipulator Self-Collision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Xiaodong">Zhang Xiaodong</a>, <a href="https://publications.waset.org/abstracts/search?q=Tang%20Zixin"> Tang Zixin</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Xin"> Liu Xin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder enveloping surface, and then the detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20manipulator" title="space manipulator">space manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20detection" title=" collision detection"> collision detection</a>, <a href="https://publications.waset.org/abstracts/search?q=self-collision" title=" self-collision"> self-collision</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20real-time%20collision%20detection" title=" the real-time collision detection"> the real-time collision detection</a> </p> <a href="https://publications.waset.org/abstracts/23258/real-time-detection-of-space-manipulator-self-collision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">469</span> BEATRICE: A Low-Cost Manipulator Arm for an Educational Planetary Rover</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Pakulski">T. Pakulski</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kryza"> L. Kryza</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Linossier"> A. Linossier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The BEar Articulated TeleRobotic Inspection and Clasping Extremity is a lightweight, 5 DoF robotic manipulator for the Berlin Educational Assistant Rover (BEAR). BEAR is one of the educational planetary rovers developed under the Space Rover projects at the Chair of Space Technology of the Technische Universit盲t Berlin. The projects serve to conduct research and train engineers by developing rovers for competitions like the European Rover Challenge and the DLR SpaceBot Cup. BEATRICE is the result of a cost-driven design process to deliver a simple but capable platform for a variety of competition tasks: object grasping and manipulation, inspection, instrument wielding and more. The manipulator鈥檚 simple mechatronic design, based on a combination of servomotors and stepper motors with planetary gearboxes, also makes it a practical tool for developing embedded control systems. The platform鈥檚 initial implementation relies on tele-operated control but is fully instrumented for future autonomous functionality. This paper describes BEATRICE鈥檚 development from its preliminary link model to its structural and mechatronic design, embedded control and AI and T. In parallel, it examines the influence of budget constraints and high personnel turnover commonly associated with student teams on the manipulator鈥檚 design. Finally, it comments on the utility of robot design projects for educating future engineers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=education" title="education">education</a>, <a href="https://publications.waset.org/abstracts/search?q=low-cost" title=" low-cost"> low-cost</a>, <a href="https://publications.waset.org/abstracts/search?q=manipulator" title=" manipulator"> manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=rover" title=" rover"> rover</a> </p> <a href="https://publications.waset.org/abstracts/73776/beatrice-a-low-cost-manipulator-arm-for-an-educational-planetary-rover" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">468</span> Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atilla%20Bayram">Atilla Bayram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20force%20method" title="computed force method">computed force method</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20manipulator" title=" hybrid manipulator"> hybrid manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20kinematics%20of%20redundant%20manipulators" title=" inverse kinematics of redundant manipulators"> inverse kinematics of redundant manipulators</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20geometry%20truss" title=" variable geometry truss"> variable geometry truss</a> </p> <a href="https://publications.waset.org/abstracts/50402/trajectory-tracking-of-a-redundant-hybrid-manipulator-using-a-switching-control-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">467</span> Optimal Design of Redundant Hybrid Manipulator for Minimum Singularity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Rahmani">Arash Rahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ghanbari"> Ahmad Ghanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Baghernezhad"> Abbas Baghernezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Safaei"> Babak Safaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the design of parallel manipulators, usually mean value of a dexterity measure over the workspace volume is considered as the objective function to be used in optimization algorithms. The mentioned indexes in a hybrid parallel manipulator (HPM) are quite complicated to solve thanks to infinite solutions for every point within the workspace of the redundant manipulators. In this paper, spatial isotropic design axioms are extended as a well-known method for optimum design of manipulators. An upper limit for the isotropy measure of HPM is calculated and instead of computing and minimizing isotropy measure, minimizing the obtained limit is considered. To this end, two different objective functions are suggested which are obtained from objective functions of comprising modules. Finally, by using genetic algorithm (GA), the best geometric parameters for a specific hybrid parallel robot which is composed of two modified Gough-Stewart platforms (MGSP) are achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20manipulator" title="hybrid manipulator">hybrid manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20isotropy" title=" spatial isotropy"> spatial isotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20design" title=" optimum design"> optimum design</a> </p> <a href="https://publications.waset.org/abstracts/41885/optimal-design-of-redundant-hybrid-manipulator-for-minimum-singularity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">466</span> Development of an Autonomous Automated Guided Vehicle with Robot Manipulator under Robot Operation System Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinsiang%20Shaw">Jinsiang Shaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Xiang%20Xu"> Sheng-Xiang Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of an autonomous automated guided vehicle (AGV) with a robot arm attached on top of it within the framework of robot operation system (ROS). ROS can provide libraries and tools, including hardware abstraction, device drivers, libraries, visualizers, message-passing, package management, etc. For this reason, this AGV can provide automatic navigation and parts transportation and pick-and-place task using robot arm for typical industrial production line use. More specifically, this AGV will be controlled by an on-board host computer running ROS software. Command signals for vehicle and robot arm control and measurement signals from various sensors are transferred to respective microcontrollers. Users can operate the AGV remotely through the TCP / IP protocol and perform SLAM (Simultaneous Localization and Mapping). An RGBD camera and LIDAR sensors are installed on the AGV, using these data to perceive the environment. For SLAM, Gmapping is used to construct the environment map by Rao-Blackwellized particle filter; and AMCL method (Adaptive Monte Carlo localization) is employed for mobile robot localization. In addition, current AGV position and orientation can be visualized by ROS toolkit. As for robot navigation and obstacle avoidance, A* for global path planning and dynamic window approach for local planning are implemented. The developed ROS AGV with a robot arm on it has been experimented in the university factory. A 2-D and 3-D map of the factory were successfully constructed by the SLAM method. Base on this map, robot navigation through the factory with and without dynamic obstacles are shown to perform well. Finally, pick-and-place of parts using robot arm and ensuing delivery in the factory by the mobile robot are also accomplished. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20guided%20vehicle" title="automated guided vehicle">automated guided vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20operation%20system" title=" robot operation system"> robot operation system</a>, <a href="https://publications.waset.org/abstracts/search?q=Simultaneous%20Localization%20and%20Mapping" title=" Simultaneous Localization and Mapping"> Simultaneous Localization and Mapping</a> </p> <a href="https://publications.waset.org/abstracts/99761/development-of-an-autonomous-automated-guided-vehicle-with-robot-manipulator-under-robot-operation-system-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">465</span> Design and Development of 5-DOF Color Sorting Manipulator for Industrial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atef%20A.%20Ata">Atef A. Ata</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohair%20F.%20Rezeka"> Sohair F. Rezeka</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Shenawy"> Ahmed El-Shenawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Diab"> Mohammed Diab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image processing in today鈥檚 world grabs massive attentions as it leads to possibilities of broaden application in many fields of high technology. The real challenge is how to improve existing sorting system applications which consists of two integrated stations of processing and handling with a new image processing feature. Existing color sorting techniques use a set of inductive, capacitive, and optical sensors to differentiate object color. This research presents a mechatronics color sorting system solution with the application of image processing. A 5-DOF robot arm is designed and developed with pick and place operation to be main part of the color sorting system. Image processing procedure senses the circular objects in an image captured in real time by a webcam attached at the end-effector then extracts color and position information out of it. This information is passed as a sequence of sorting commands to the manipulator that has pick-and-place mechanism. Performance analysis proves that this color based object sorting system works very accurate under ideal condition in term of adequate illumination, circular objects shape and color. The circular objects tested for sorting are red, green and blue. For non-ideal condition, such as unspecified color the accuracy reduces to 80%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotics%20manipulator" title="robotics manipulator">robotics manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=5-DOF%20manipulator" title=" 5-DOF manipulator"> 5-DOF manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20sorting" title=" color sorting"> color sorting</a>, <a href="https://publications.waset.org/abstracts/search?q=pick-and-place" title=" pick-and-place"> pick-and-place</a> </p> <a href="https://publications.waset.org/abstracts/1473/design-and-development-of-5-dof-color-sorting-manipulator-for-industrial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">464</span> LogiSun: An Interactive Robot to Reduce Pollution on the Beach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruth%20Manzanares">Ruth Manzanares</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Honores"> Victor Honores</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Zapata"> Hugo Zapata</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Cansaya"> Javier Cansaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Deivid%20Yavar"> Deivid Yavar</a>, <a href="https://publications.waset.org/abstracts/search?q=Junior%20Meza"> Junior Meza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> LogiSum is a robot focused on education like a solution to the ecological crisis. This robot allows reducing the pollution on the beaches by stimulating environmental awareness of not contaminating through the collection of waste. Through the use of the methodology of design thinking, it is intended to reinforce values in adults and with a greater focus on children, so as not to contaminate the beaches. The goal is to encourage the use of the container of the robot LogiSum to put the garbage, with visual interaction and simulation of dialogue with the function of the robot. The results obtained of the testings of the interaction of children with the robot showed an encouraging behavior. With the robot, children left the waste in the right places and not bury it in the sand or in the floor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interaction%20human-robot" title="interaction human-robot">interaction human-robot</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20reduction" title=" pollution reduction"> pollution reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20robot" title=" social robot"> social robot</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20container" title=" robot container"> robot container</a>, <a href="https://publications.waset.org/abstracts/search?q=beach%20pollution" title=" beach pollution"> beach pollution</a> </p> <a href="https://publications.waset.org/abstracts/102137/logisun-an-interactive-robot-to-reduce-pollution-on-the-beach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">463</span> Designing Expressive Behaviors to Improve Human-Robot Relationships</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahil%20Anand">Sahil Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Luetke"> John Luetke</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Venkatesh"> Nikhil Venkatesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorothy%20Wong"> Dorothy Wong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trust plays an important role in building and sustaining long-term relationships between people. In this paper, we present a robot that communicates using nonverbal behaviors such as facial expressions and body movements. Our study reports on an experiment in which participants were asked to team up with the robot to perform specific tasks. We varied the expressivity of the robot and measured the effects on trust, quality of interactions as well as on the praising and punishing behavior of the participant towards the robot. We found that participants developed a stronger affinity towards the expressive robot, but did not show any significant differences in the level of trust. When the same robot made mistakes, participants unconsciously punished it with lesser intensity compared to the neutral robot. The results emphasize the role of expressive behaviors on participant鈥檚 perception of the robot and also on the quality of interactions between humans and robots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human-robot%20interaction" title="human-robot interaction">human-robot interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=nonverbal%20communication" title=" nonverbal communication"> nonverbal communication</a>, <a href="https://publications.waset.org/abstracts/search?q=relationships" title=" relationships"> relationships</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20robot" title=" social robot"> social robot</a>, <a href="https://publications.waset.org/abstracts/search?q=trust" title=" trust"> trust</a> </p> <a href="https://publications.waset.org/abstracts/71682/designing-expressive-behaviors-to-improve-human-robot-relationships" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">462</span> The Follower Robots Tested in Different Lighting Condition and Improved Capabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Muhammed%20Fatih%20Apaydin">Sultan Muhammed Fatih Apaydin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, two types of robot were examined as being pioneer robot and follower robot for improving of the capabilities of tracking robots. Robots continue to tracking each other and measurement of the follow-up distance between them is very important for improvements to be applied. It was achieved that the follower robot follows the pioneer robot in line with intended goals. The tests were applied to the robots in various grounds and environments in point of performance and necessary improvements were implemented by measuring the results of these tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title="mobile robot">mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20and%20autonomous%20control" title=" remote and autonomous control"> remote and autonomous control</a>, <a href="https://publications.waset.org/abstracts/search?q=infra-red%20sensors" title=" infra-red sensors"> infra-red sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=arduino" title=" arduino"> arduino</a> </p> <a href="https://publications.waset.org/abstracts/34758/the-follower-robots-tested-in-different-lighting-condition-and-improved-capabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">461</span> Applying Sliding Autonomy for a Human-Robot Team on USARSim</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fang%20Tang">Fang Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Longazo"> Jacob Longazo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a sliding autonomy approach for coordinating a team of robots to assist the human operator to accomplish tasks while adapting to new or unexpected situations by requesting help from the human operator. While sliding autonomy has been well studied in the context of controlling a single robot. Much work needs to be done to apply sliding autonomy to a multi-robot team, especially human-robot team. Our approach aims at a hierarchical sliding control structure, with components that support human-robot collaboration. We validated our approach in the USARSim simulation and demonstrated that the human-robot team's overall performance can be improved under the sliding autonomy control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sliding%20autonomy" title="sliding autonomy">sliding autonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-robot%20team" title=" multi-robot team"> multi-robot team</a>, <a href="https://publications.waset.org/abstracts/search?q=human-robot%20collaboration" title=" human-robot collaboration"> human-robot collaboration</a>, <a href="https://publications.waset.org/abstracts/search?q=USARSim" title=" USARSim"> USARSim</a> </p> <a href="https://publications.waset.org/abstracts/27177/applying-sliding-autonomy-for-a-human-robot-team-on-usarsim" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">460</span> Deep Learning Application for Object Image Recognition and Robot Automatic Grasping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiuh-Jer%20Huang">Shiuh-Jer Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Zon%20Yan"> Chen-Zon Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20K.%20Huang"> C. K. Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Chien%20Ting"> Chun-Chien Ting</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=convolution%20neural%20network" title=" convolution neural network"> convolution neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLOv2" title=" YOLOv2"> YOLOv2</a>, <a href="https://publications.waset.org/abstracts/search?q=7A6%20series%20manipulator" title=" 7A6 series manipulator"> 7A6 series manipulator</a> </p> <a href="https://publications.waset.org/abstracts/110468/deep-learning-application-for-object-image-recognition-and-robot-automatic-grasping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">459</span> Adaptive Control Approach for an Unmanned Aerial Manipulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samah%20Riache">Samah Riache</a>, <a href="https://publications.waset.org/abstracts/search?q=Madjid%20Kidouche"> Madjid Kidouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a nonlinear controller for Aerial Manipulator (AM) consists of a Quadrotor equipped with two degrees of freedom robotic arm. The kinematic and dynamic models were developed by considering the aerial manipulator as a coupled system. The proposed controller was designed using Nonsingular Terminal Sliding Mode Control. The objective of our approach is to improve performances and attenuate the chattering drawback using an adaptive algorithm in the discontinuous control part. Simulation results prove the effectiveness of the proposed control strategy compared with Sliding Mode Controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20algorithm" title="adaptive algorithm">adaptive algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrotor" title=" quadrotor"> quadrotor</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20arm" title=" robotic arm"> robotic arm</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a> </p> <a href="https://publications.waset.org/abstracts/143411/adaptive-control-approach-for-an-unmanned-aerial-manipulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">458</span> Identification of Vehicle Dynamic Parameters by Using Optimized Exciting Trajectory on 3- DOF Parallel Manipulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Di%20Yao">Di Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunther%20Prokop"> Gunther Prokop</a>, <a href="https://publications.waset.org/abstracts/search?q=Kay%20Buttner"> Kay Buttner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic parameters, including the center of gravity, mass and inertia moments of vehicle, play an essential role in vehicle simulation, collision test and real-time control of vehicle active systems. To identify the important vehicle dynamic parameters, a systematic parameter identification procedure is studied in this work. In the first step of the procedure, a conceptual parallel manipulator (virtual test rig), which possesses three rotational degrees-of-freedom, is firstly proposed. To realize kinematic characteristics of the conceptual parallel manipulator, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Based on the Euler's rotation equations for rigid body dynamics, the dynamic model of parallel manipulator and derivation of measurement matrix for parameter identification are presented subsequently. In order to reduce the sensitivity of parameter identification to measurement noise and other unexpected disturbances, a parameter optimization process of searching for optimal exciting trajectory of parallel manipulator is conducted in the following section. For this purpose, the 321-Euler-angles defined by parameterized finite-Fourier-series are primarily used to describe the general exciting trajectory of parallel manipulator. To minimize the condition number of measurement matrix for achieving better parameter identification accuracy, the unknown coefficients of parameterized finite-Fourier-series are estimated by employing an iterative algorithm based on MATLAB庐. Meanwhile, the iterative algorithm will ensure the parallel manipulator still keeps in an achievable working status during the execution of optimal exciting trajectory. It is showed that the proposed procedure and methods in this work can effectively identify the vehicle dynamic parameters and could be an important application of parallel manipulator in the fields of parameter identification and test rig development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parameter%20identification" title="parameter identification">parameter identification</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20manipulator" title=" parallel manipulator"> parallel manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=singularity%20architecture" title=" singularity architecture"> singularity architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modelling" title=" dynamic modelling"> dynamic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=exciting%20trajectory" title=" exciting trajectory"> exciting trajectory</a> </p> <a href="https://publications.waset.org/abstracts/89199/identification-of-vehicle-dynamic-parameters-by-using-optimized-exciting-trajectory-on-3-dof-parallel-manipulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manipulator%20robot&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manipulator%20robot&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manipulator%20robot&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manipulator%20robot&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manipulator%20robot&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manipulator%20robot&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manipulator%20robot&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manipulator%20robot&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manipulator%20robot&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manipulator%20robot&page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manipulator%20robot&page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manipulator%20robot&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>