CINXE.COM

Relation (mathematics) - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Relation (mathematics) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"672852ef-d639-43c3-88ec-5f6efade9080","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Relation_(mathematics)","wgTitle":"Relation (mathematics)","wgCurRevisionId":1253399838,"wgRevisionId":1253399838,"wgArticleId":22517558,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description with empty Wikidata description","Mathematical relations"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Relation_(mathematics)","wgRelevantArticleId":22517558,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false, "wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q107223533","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={ "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.tablesorter.styles":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.tablesorter","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cjquery.tablesorter.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Relaci%C3%B3n_binaria_01.svg/1200px-Relaci%C3%B3n_binaria_01.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="960"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Relaci%C3%B3n_binaria_01.svg/800px-Relaci%C3%B3n_binaria_01.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="640"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Relaci%C3%B3n_binaria_01.svg/640px-Relaci%C3%B3n_binaria_01.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="512"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Relation (mathematics) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Relation_(mathematics)"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Relation_(mathematics)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Relation_(mathematics)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Relation_mathematics rootpage-Relation_mathematics skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Relation+%28mathematics%29" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Relation+%28mathematics%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Relation+%28mathematics%29" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Relation+%28mathematics%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Representation_of_relations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Representation_of_relations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Representation of relations</span> </div> </a> <ul id="toc-Representation_of_relations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties_of_relations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties_of_relations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Properties of relations</span> </div> </a> <button aria-controls="toc-Properties_of_relations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties of relations subsection</span> </button> <ul id="toc-Properties_of_relations-sublist" class="vector-toc-list"> <li id="toc-Combinations_of_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Combinations_of_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Combinations of properties</span> </div> </a> <ul id="toc-Combinations_of_properties-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Operations_on_relations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Operations_on_relations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Operations on relations</span> </div> </a> <ul id="toc-Operations_on_relations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Theorems_about_relations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Theorems_about_relations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Theorems about relations</span> </div> </a> <ul id="toc-Theorems_about_relations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Generalizations</span> </div> </a> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliography" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliography"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Bibliography</span> </div> </a> <ul id="toc-Bibliography-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Relation (mathematics)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 4 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-4" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">4 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Relacija_(matematika)" title="Relacija (matematika) – Bosnian" lang="bs" hreflang="bs" data-title="Relacija (matematika)" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Relaci%C3%B3n_matem%C3%A1tica" title="Relación matemática – Spanish" lang="es" hreflang="es" data-title="Relación matemática" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%82%E0%A4%AC%E0%A4%82%E0%A4%A7_(%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4)" title="संबंध (गणित) – Hindi" lang="hi" hreflang="hi" data-title="संबंध (गणित)" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%BE%DB%95%DB%8C%D9%88%DB%95%D9%86%D8%AF%DB%8C_(%D9%85%D8%A7%D8%AA%D9%85%D8%A7%D8%AA%DB%8C%DA%A9)" title="پەیوەندی (ماتماتیک) – Central Kurdish" lang="ckb" hreflang="ckb" data-title="پەیوەندی (ماتماتیک)" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q107223533#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Relation_(mathematics)" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Relation_(mathematics)" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Relation_(mathematics)"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Relation_(mathematics)&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Relation_(mathematics)&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Relation_(mathematics)"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Relation_(mathematics)&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Relation_(mathematics)&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Relation_(mathematics)" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Relation_(mathematics)" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Relation_(mathematics)&amp;oldid=1253399838" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Relation_(mathematics)&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Relation_%28mathematics%29&amp;id=1253399838&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRelation_%28mathematics%29"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRelation_%28mathematics%29"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Relation_%28mathematics%29&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Relation_(mathematics)&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q107223533" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Relationship between two sets, defined by a set of ordered pairs</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about basic notions of (homogeneous binary) relations in mathematics. For a more in-depth treatment, see <a href="/wiki/Binary_relation" title="Binary relation">Binary relation</a>. For relations on any number of elements, see <a href="/wiki/Finitary_relation" title="Finitary relation">Finitary relation</a>.</div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Relaci%C3%B3n_binaria_01.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Relaci%C3%B3n_binaria_01.svg/300px-Relaci%C3%B3n_binaria_01.svg.png" decoding="async" width="300" height="240" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Relaci%C3%B3n_binaria_01.svg/450px-Relaci%C3%B3n_binaria_01.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/68/Relaci%C3%B3n_binaria_01.svg/600px-Relaci%C3%B3n_binaria_01.svg.png 2x" data-file-width="250" data-file-height="200" /></a><figcaption>Illustration of an example relation on a set <span class="texhtml"><i>A</i> = { a, b, c, d }</span>. An arrow from <span class="texhtml mvar" style="font-style:italic;">x</span> to <span class="texhtml mvar" style="font-style:italic;">y</span> indicates that the relation holds between <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span>. The relation is represented by the set <span class="texhtml">{ (a,a),</span> <span class="texhtml">(a,b),</span> <span class="texhtml">(a,d),</span> <span class="texhtml">(b,a),</span> <span class="texhtml">(b,d),</span> <span class="texhtml">(c,b),</span> <span class="texhtml">(d,c),</span> <span class="texhtml">(d,d) } </span> of ordered pairs.</figcaption></figure> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a <b>relation</b> denotes some kind of <i>relationship</i> between two <a href="/wiki/Mathematical_object" title="Mathematical object">objects</a> in a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a>, which may or may not hold.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> As an example, "<i>is less than</i>" is a relation on the set of <a href="/wiki/Natural_number" title="Natural number">natural numbers</a>; it holds, for instance, between the values <span class="texhtml">1</span> and <span class="texhtml">3</span> (denoted as <span class="texhtml">1 &lt; 3</span>), and likewise between <span class="texhtml">3</span> and <span class="texhtml">4</span> (denoted as <span class="texhtml">3 &lt; 4</span>), but not between the values <span class="texhtml">3</span> and <span class="texhtml">1</span> nor between <span class="texhtml">4</span> and <span class="texhtml">4</span>, that is, <span class="texhtml">3 &lt; 1</span> and <span class="texhtml">4 &lt; 4</span> both evaluate to false. As another example, "<i>is sister of</i><span style="padding-left:.15em;">"</span> is a relation on the set of all people, it holds e.g. between <a href="/wiki/Marie_Curie" title="Marie Curie">Marie Curie</a> and <a href="/wiki/Bronis%C5%82awa_D%C5%82uska" title="Bronisława Dłuska">Bronisława Dłuska</a>, and likewise vice versa. Set members may not be in relation "to a certain degree" – either they are in relation or they are not. </p><p>Formally, a relation <span class="texhtml mvar" style="font-style:italic;">R</span> over a set <span class="texhtml mvar" style="font-style:italic;">X</span> can be seen as a set of <a href="/wiki/Ordered_pair" title="Ordered pair">ordered pairs</a> <span class="texhtml">(<i>x</i>,<i>y</i>)</span> of members of <span class="texhtml mvar" style="font-style:italic;">X</span>.<sup id="cite_ref-FOOTNOTECodd1970_2-0" class="reference"><a href="#cite_note-FOOTNOTECodd1970-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> The relation <span class="texhtml mvar" style="font-style:italic;">R</span> holds between <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> if <span class="texhtml">(<i>x</i>,<i>y</i>)</span> is a member of <span class="texhtml mvar" style="font-style:italic;">R</span>. For example, the relation "<i>is less than</i>" on the natural numbers is an infinite set <span class="texhtml"><i>R</i><sub>less</sub></span> of pairs of natural numbers that contains both <span class="texhtml">(1,3)</span> and <span class="texhtml">(3,4)</span>, but neither <span class="texhtml">(3,1)</span> nor <span class="texhtml">(4,4)</span>. The relation "<i>is a <a href="/wiki/Nontrivial_divisor" class="mw-redirect" title="Nontrivial divisor">nontrivial divisor</a> of</i><span style="padding-left:.15em;">"</span> on the set of one-digit natural numbers is sufficiently small to be shown here: <span class="texhtml"><i>R</i><sub>dv</sub> = { (2,4), (2,6), (2,8), (3,6), (3,9), (4,8) }</span>; for example <span class="texhtml">2</span> is a nontrivial divisor of <span class="texhtml">8</span>, but not vice versa, hence <span class="texhtml">(2,8) ∈ <i>R</i><sub>dv</sub></span>, but <span class="texhtml">(8,2) ∉ <i>R</i><sub>dv</sub></span>. </p><p>If <span class="texhtml mvar" style="font-style:italic;">R</span> is a relation that holds for <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> one often writes <span class="texhtml"><i>xRy</i></span>. For most common relations in mathematics, special symbols are introduced, like "<span class="texhtml">&lt;</span>" for <i>"is less than"</i>, and "<span class="texhtml">|</span>" for <i>"is a nontrivial divisor of"</i>, and, most popular "<span class="texhtml">=</span>" for <i>"is equal to"</i>. For example, "<span class="texhtml">1 &lt; 3</span>", "<span class="texhtml">1</span> is less than <span class="texhtml">3</span>", and "<span class="texhtml">(1,3) ∈ <i>R</i><sub>less</sub></span>" mean all the same; some authors also write "<span class="texhtml">(1,3) ∈ (&lt;)</span>". </p><p>Various properties of relations are investigated. A relation <span class="texhtml mvar" style="font-style:italic;">R</span> is reflexive if <span class="texhtml"><i>xRx</i></span> holds for all <span class="texhtml mvar" style="font-style:italic;">x</span>, and irreflexive if <span class="texhtml"><i>xRx</i></span> holds for no <span class="texhtml mvar" style="font-style:italic;">x</span>. It is symmetric if <span class="texhtml"><i>xRy</i></span> always implies <span class="texhtml"><i>yRx</i></span>, and asymmetric if <span class="texhtml"><i>xRy</i></span> implies that <span class="texhtml"><i>yRx</i></span> is impossible. It is transitive if <span class="texhtml"><i>xRy</i></span> and <span class="texhtml"><i>yRz</i></span> always implies <span class="texhtml"><i>xRz</i></span>. For example, "<i>is less than</i>" is irreflexive, asymmetric, and transitive, but neither reflexive nor symmetric. "<i>is sister of</i><span style="padding-left:.15em;">"</span> is transitive, but neither reflexive (e.g. <a href="/wiki/Pierre_Curie" title="Pierre Curie">Pierre Curie</a> is not a sister of himself), nor symmetric, nor asymmetric; while being irreflexive or not may be a matter of definition (is every woman a sister of herself?), "<i>is ancestor of</i><span style="padding-left:.15em;">"</span> is transitive, while "<i>is parent of</i><span style="padding-left:.15em;">"</span> is not. Mathematical theorems are known about combinations of relation properties, such as "a transitive relation is irreflexive if, and only if, it is asymmetric". </p><p>Of particular importance are relations that satisfy certain combinations of properties. A <a href="/wiki/Partial_order" class="mw-redirect" title="Partial order">partial order</a> is a relation that is reflexive, antisymmetric, and transitive,<sup id="cite_ref-FOOTNOTEHalmos1968Ch_14_3-0" class="reference"><a href="#cite_note-FOOTNOTEHalmos1968Ch_14-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> an <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a> is a relation that is reflexive, symmetric, and transitive,<sup id="cite_ref-FOOTNOTEHalmos1968Ch_7_4-0" class="reference"><a href="#cite_note-FOOTNOTEHalmos1968Ch_7-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> is a relation that is right-unique and left-total (see <a class="mw-selflink-fragment" href="#Properties_of_relations">below</a>).<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEHalmos1968Ch_8_6-0" class="reference"><a href="#cite_note-FOOTNOTEHalmos1968Ch_8-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>Since relations are sets, they can be manipulated using set operations, including <a href="/wiki/Union_(set_theory)" title="Union (set theory)">union</a>, <a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a>, and <a href="/wiki/Complement_(set_theory)" title="Complement (set theory)">complementation</a>, leading to the <a href="/wiki/Algebra_of_sets" title="Algebra of sets">algebra of sets</a>. Furthermore, the <a href="/wiki/Calculus_of_relations" class="mw-redirect" title="Calculus of relations">calculus of relations</a> includes the operations of taking the <a href="/wiki/Converse_relation" title="Converse relation">converse</a> and <a href="/wiki/Composition_of_relations" title="Composition of relations">composing relations</a>.<sup id="cite_ref-Schroder.1895_7-0" class="reference"><a href="#cite_note-Schroder.1895-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Lewis.1918_8-0" class="reference"><a href="#cite_note-Lewis.1918-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTESchmidt2010Chapt._5_9-0" class="reference"><a href="#cite_note-FOOTNOTESchmidt2010Chapt._5-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>The above concept of relation<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> has been generalized to admit relations between members of two different sets (<i><a href="/wiki/Heterogeneous_relation" class="mw-redirect" title="Heterogeneous relation">heterogeneous relation</a></i>, like "<i>lies on</i>" between the set of all <a href="/wiki/Point_(geometry)" title="Point (geometry)">points</a> and that of all <a href="/wiki/Line_(geometry)" title="Line (geometry)">lines</a> in geometry), relations between three or more sets (<i><a href="/wiki/Finitary_relation" title="Finitary relation">finitary relation</a></i>, like <i>"person <span class="texhtml">x</span> lives in town <span class="texhtml">y</span> at time <span class="texhtml">z</span>"</i>), and relations between <a href="/wiki/Class_(mathematics)" class="mw-redirect" title="Class (mathematics)">classes</a><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> (like "<i>is an element of</i><span style="padding-left:.15em;">"</span> on the class of all sets, see <i><a href="/wiki/Binary_relation#Sets_versus_classes" title="Binary relation">Binary relation §&#160;Sets versus classes</a></i>). </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Relation_(mathematics)&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a set <span class="texhtml"><i>X</i></span>, a relation <span class="texhtml"><i>R</i></span> over <span class="texhtml"><i>X</i></span> is a set of <a href="/wiki/Ordered_pair" title="Ordered pair">ordered pairs</a> of elements from <span class="texhtml"><i>X</i></span>, formally: <span class="texhtml"><i>R</i> ⊆ { (<i>x</i>,<i>y</i>) | <i>x</i>, <i>y</i> ∈ <i>X</i> }</span>.<sup id="cite_ref-FOOTNOTECodd1970_2-1" class="reference"><a href="#cite_note-FOOTNOTECodd1970-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEEnderton1977Ch_3._p._40_12-0" class="reference"><a href="#cite_note-FOOTNOTEEnderton1977Ch_3._p._40-12"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p><p>The statement <span class="texhtml">(<i>x</i>,<i>y</i>) ∈ <i>R</i></span> reads "<span class="texhtml"><i>x</i></span> is <span class="texhtml"><i>R</i></span>-related to <span class="texhtml"><i>y</i></span>" and is written in <a href="/wiki/Infix_notation" title="Infix notation">infix notation</a> as <span class="texhtml"><i>xRy</i></span>.<sup id="cite_ref-Schroder.1895_7-1" class="reference"><a href="#cite_note-Schroder.1895-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Lewis.1918_8-1" class="reference"><a href="#cite_note-Lewis.1918-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> The order of the elements is important; if <span class="texhtml"><i>x</i> ≠ <i>y</i></span> then <span class="texhtml"><i>yRx</i></span> can be true or false independently of <span class="texhtml"><i>xRy</i></span>. For example, <span class="texhtml">3</span> divides <span class="texhtml">9</span>, but <span class="texhtml">9</span> does not divide <span class="texhtml">3</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Representation_of_relations">Representation of relations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Relation_(mathematics)&amp;action=edit&amp;section=2" title="Edit section: Representation of relations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table style="float: right"> <tbody><tr> <td><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Rotated_ellipse_bg_red.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Rotated_ellipse_bg_red.svg/220px-Rotated_ellipse_bg_red.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Rotated_ellipse_bg_red.svg/330px-Rotated_ellipse_bg_red.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Rotated_ellipse_bg_red.svg/440px-Rotated_ellipse_bg_red.svg.png 2x" data-file-width="320" data-file-height="320" /></a><figcaption>The representation of the relation <span class="texhtml"><i>R</i><sub>el</sub> =</span> <span class="texhtml">{ (<i>x</i>,<i>y</i>) ∈ <b>R</b> × <b>R</b> &#124;</span> <span class="texhtml"><i>x</i><sup>2</sup> + <i>xy</i> + <i>y</i><sup>2</sup> = 1 }</span> as a 2D-plot yields an <a href="/wiki/Ellipse" title="Ellipse">ellipse</a>.</figcaption></figure> </td></tr></tbody></table> <table class="wikitable" style="float: right"> <tbody><tr> <th style="background:#EAECF0;background:linear-gradient(to top right,#EAECF0 49%,#AAA 49.5%,#AAA 50.5%,#EAECF0 51%);line-height:1.2;padding:0.1em 0.4em;"><div style="margin-left:2em;text-align:right"><i>y</i></div><div style="margin-right:2em;text-align:left"><i>x</i></div> </th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>6</th> <th>12 </th></tr> <tr> <th>1 </th> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> </td></tr> <tr> <th>2 </th> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></td> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> </td></tr> <tr> <th>3 </th> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></td> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> </td></tr> <tr> <th>4 </th> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></td> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> </td></tr> <tr> <th>6 </th> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> </td></tr> <tr> <th>12 </th> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="No" style="background: #FFE3E3; color:black; vertical-align: middle; text-align: center;" class="table-no2"><span typeof="mw:File"><span title="No"><img alt="No" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></span></span></td> <td data-sort-value="Yes" style="background: #DFD; color:black; vertical-align: middle; text-align: center;" class="table-yes2"><span typeof="mw:File"><span title="Yes"><img alt="Yes" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/20px-Check-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/26px-Check-green.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> </td></tr> <tr> <td colspan="7">Representation of <span class="texhtml"><i>R</i><sub>div</sub></span><br />as a Boolean matrix </td></tr></tbody></table> <table style="float: right"> <tbody><tr> <td><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Relation_repr_12div_svg.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Relation_repr_12div_svg.svg/220px-Relation_repr_12div_svg.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Relation_repr_12div_svg.svg/330px-Relation_repr_12div_svg.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Relation_repr_12div_svg.svg/440px-Relation_repr_12div_svg.svg.png 2x" data-file-width="248" data-file-height="248" /></a><figcaption>Representation <i>R</i><sub>div</sub> as <a href="/wiki/Hasse_diagram" title="Hasse diagram">Hasse diagram</a> (black lines) and <a href="/wiki/Directed_graph" title="Directed graph">directed graph</a> (all lines)</figcaption></figure> </td></tr></tbody></table> <p>A relation <span class="texhtml"><i>R</i></span> on a finite set <span class="texhtml"><i>X</i></span> may be represented as: </p> <ul><li><a href="/wiki/Directed_graph" title="Directed graph">Directed graph</a>: Each member of <span class="texhtml"><i>X</i></span> corresponds to a vertex; a directed edge from <span class="texhtml"><i>x</i></span> to <span class="texhtml"><i>y</i></span> exists if and only if <span class="texhtml">(<i>x</i>,<i>y</i>) ∈ <i>R</i></span>.</li> <li><a href="/wiki/Boolean_matrix" title="Boolean matrix">Boolean matrix</a>: The members of <span class="texhtml"><i>X</i></span> are arranged in some fixed sequence <span class="texhtml"><i>x</i><sub>1</sub></span>, ..., <span class="texhtml"><i>x</i><sub><i>n</i></sub></span>; the matrix has dimensions <span class="texhtml"><i>n</i> × <i>n</i></span>, with the element in line <span class="texhtml"><i>i</i></span>, column <span class="texhtml"><i>j</i></span>, being <span typeof="mw:File"><a href="/wiki/File:Yes_check.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/f/fb/Yes_check.svg/13px-Yes_check.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/fb/Yes_check.svg/20px-Yes_check.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/fb/Yes_check.svg/26px-Yes_check.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span>, if <span class="texhtml">(<i>x</i><sub><i>i</i></sub>,<i>x</i><sub><i>j</i></sub>) ∈ <i>R</i></span>, and <span typeof="mw:File"><a href="/wiki/File:Dark_Red_x.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/20px-Dark_Red_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/26px-Dark_Red_x.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span>, otherwise.</li> <li><a href="/wiki/Plot_(graphics)" title="Plot (graphics)">2D-plot</a>: As a generalization of a Boolean matrix, a relation on the –infinite– set <span class="texhtml"><b>R</b></span> of <a href="/wiki/Real_number" title="Real number">real numbers</a> can be represented as a two-dimensional geometric figure: using <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a>, draw a <a href="/wiki/Point_(geometry)" title="Point (geometry)">point</a> at <span class="texhtml">(<i>x</i>,<i>y</i>)</span> whenever <span class="texhtml">(<i>x</i>,<i>y</i>) ∈ <i>R</i></span>.</li></ul> <p>A transitive<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>c<span class="cite-bracket">&#93;</span></a></sup> relation <span class="texhtml"><i>R</i></span> on a finite set <span class="texhtml"><i>X</i></span> may be also represented as </p> <ul><li><a href="/wiki/Hasse_diagram" title="Hasse diagram">Hasse diagram</a>: Each member of <span class="texhtml"><i>X</i></span> corresponds to a vertex; directed edges are drawn such that a <a href="/wiki/Directed_path" class="mw-redirect" title="Directed path">directed path</a> from <span class="texhtml"><i>x</i></span> to <span class="texhtml"><i>y</i></span> exists if and only if <span class="texhtml">(<i>x</i>,<i>y</i>) ∈ <i>R</i></span>. Compared to a directed-graph representation, a Hasse diagram needs fewer edges, leading to a less tangled image. Since the relation "<i>a directed path exists from <span class="texhtml">x</span> to <span class="texhtml">y</span></i>" is transitive, only transitive relations can be represented in Hasse diagrams. Usually the diagram is laid out such that all edges point in an upward direction, and the arrows are omitted.</li></ul> <p>For example, on the set of all divisors of <span class="texhtml">12</span>, define the relation <span class="texhtml"><i>R</i><sub>div</sub></span> by </p> <dl><dd><span class="texhtml"><i>x</i> <i>R</i><sub>div</sub> <i>y</i></span> if <span class="texhtml"><i>x</i></span> is a divisor of <span class="texhtml"><i>y</i></span> and <span class="texhtml"><i>x</i> ≠ <i>y</i></span>.</dd></dl> <p>Formally, <span class="texhtml"><i>X</i> = { 1, 2, 3, 4, 6, 12 }</span> and <span class="texhtml"><i>R</i><sub>div</sub> = { (1,2), (1,3), (1,4), (1,6), (1,12), (2,4), (2,6), (2,12), (3,6), (3,12), (4,12), (6,12) }</span>. The representation of <span class="texhtml"><i>R</i><sub>div</sub></span> as a Boolean matrix is shown in the middle table; the representation both as a Hasse diagram and as a directed graph is shown in the left picture. </p><p>The following are equivalent: </p> <ul><li><span class="texhtml"><i>x</i> <i>R</i><sub>div</sub> <i>y</i></span> is true.</li> <li><span class="texhtml">(<i>x</i>,<i>y</i>) ∈ <i>R</i><sub>div</sub></span>.</li> <li>A path from <span class="texhtml"><i>x</i></span> to <span class="texhtml"><i>y</i></span> exists in the Hasse diagram representing <span class="texhtml"><i>R</i><sub>div</sub></span>.</li> <li>An edge from <span class="texhtml"><i>x</i></span> to <span class="texhtml"><i>y</i></span> exists in the directed graph representing <span class="texhtml"><i>R</i><sub>div</sub></span>.</li> <li>In the Boolean matrix representing <span class="texhtml"><i>R</i><sub>div</sub></span>, the element in line <span class="texhtml"><i>x</i></span>, column <span class="texhtml"><i>y</i></span> is "<span typeof="mw:File"><a href="/wiki/File:Yes_check.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/f/fb/Yes_check.svg/13px-Yes_check.svg.png" decoding="async" width="13" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/fb/Yes_check.svg/20px-Yes_check.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/fb/Yes_check.svg/26px-Yes_check.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span>".</li></ul> <p>As another example, define the relation <span class="texhtml"><i>R</i><sub>el</sub></span> on <span class="texhtml"><b>R</b></span> by </p> <dl><dd><span class="texhtml"><i>x</i> <i>R</i><sub>el</sub> <i>y</i></span> if <span class="texhtml"><i>x</i><sup>2</sup> + <i>xy</i> + <i>y</i><sup>2</sup> = 1</span>.</dd></dl> <p>The representation of <span class="texhtml"><i>R</i><sub>el</sub></span> as a 2D-plot obtains an ellipse, see right picture. Since <span class="texhtml"><b>R</b></span> is not finite, neither a directed graph, nor a finite Boolean matrix, nor a Hasse diagram can be used to depict <span class="texhtml"><i>R</i><sub>el</sub></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Properties_of_relations">Properties of relations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Relation_(mathematics)&amp;action=edit&amp;section=3" title="Edit section: Properties of relations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Some important properties that a relation <span class="texhtml mvar" style="font-style:italic;">R</span> over a set <span class="texhtml mvar" style="font-style:italic;">X</span> may have are: </p> <dl><dt><em><a href="/wiki/Reflexive_relation" title="Reflexive relation">Reflexive</a></em></dt> <dd>for all <span class="texhtml"><i>x</i> ∈ <i>X</i></span>, <span class="texhtml"><i>xRx</i></span>. For example, <span class="texhtml">≥</span> is a reflexive relation but <span class="texhtml">&gt;</span> is not.</dd></dl> <dl><dt><em><a href="/wiki/Irreflexive_relation" class="mw-redirect" title="Irreflexive relation">Irreflexive</a></em> (or <em>strict</em>)</dt> <dd>for all <span class="texhtml"><i>x</i> ∈ <i>X</i></span>, not <span class="texhtml"><i>xRx</i></span>. For example, <span class="texhtml">&gt;</span> is an irreflexive relation, but <span class="texhtml">≥</span> is not.</dd></dl> <p>The previous 2 alternatives are not exhaustive; e.g., the red relation <span class="texhtml"><i>y</i> = <i>x</i><sup>2</sup></span> given in the diagram below is neither irreflexive, nor reflexive, since it contains the pair <span class="texhtml">(0,0)</span>, but not <span class="texhtml">(2,2)</span>, respectively. </p> <dl><dt><em><a href="/wiki/Symmetric_relation" title="Symmetric relation">Symmetric</a></em></dt> <dd>for all <span class="texhtml"><i>x</i>, <i>y</i> ∈ <i>X</i></span>, if <span class="texhtml"><i>xRy</i></span> then <span class="texhtml"><i>yRx</i></span>. For example, "is a blood relative of" is a symmetric relation, because <span class="texhtml mvar" style="font-style:italic;">x</span> is a blood relative of <span class="texhtml mvar" style="font-style:italic;">y</span> if and only if <span class="texhtml mvar" style="font-style:italic;">y</span> is a blood relative of <span class="texhtml mvar" style="font-style:italic;">x</span>.</dd></dl> <dl><dt><em><a href="/wiki/Antisymmetric_relation" title="Antisymmetric relation">Antisymmetric</a></em></dt> <dd>for all <span class="texhtml"><i>x</i>, <i>y</i> ∈ <i>X</i></span>, if <span class="texhtml"><i>xRy</i></span> and <span class="texhtml"><i>yRx</i></span> then <span class="texhtml"><i>x</i> = <i>y</i></span>. For example, <span class="texhtml">≥</span> is an antisymmetric relation; so is <span class="texhtml">&gt;</span>, but <a href="/wiki/Vacuous_truth" title="Vacuous truth">vacuously</a> (the condition in the definition is always false).<sup id="cite_ref-FOOTNOTESmithEggenSt._Andre2006160_14-0" class="reference"><a href="#cite_note-FOOTNOTESmithEggenSt._Andre2006160-14"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <dl><dt><em><a href="/wiki/Asymmetric_relation" title="Asymmetric relation">Asymmetric</a></em></dt> <dd>for all <span class="texhtml"><i>x</i>, <i>y</i> ∈ <i>X</i></span>, if <span class="texhtml"><i>xRy</i></span> then not <span class="texhtml"><i>yRx</i></span>. A relation is asymmetric if and only if it is both antisymmetric and irreflexive.<sup id="cite_ref-FOOTNOTENievergelt2002&#91;httpsbooksgooglecombooksid_H_nJdagqL8CpgPA158_158&#93;_15-0" class="reference"><a href="#cite_note-FOOTNOTENievergelt2002[httpsbooksgooglecombooksid_H_nJdagqL8CpgPA158_158]-15"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> For example, <span class="texhtml">&gt;</span> is an asymmetric relation, but <span class="texhtml">≥</span> is not.</dd></dl> <p>Again, the previous 3 alternatives are far from being exhaustive; as an example over the natural numbers, the relation <span class="texhtml"><i>xRy</i></span> defined by <span class="texhtml"><i>x</i> &gt; 2</span> is neither symmetric (e.g. <span class="texhtml">5<i>R</i>1</span>, but not <span class="texhtml">1<i>R</i>5</span>) nor antisymmetric (e.g. <span class="texhtml">6<i>R</i>4</span>, but also <span class="texhtml">4<i>R</i>6</span>), let alone asymmetric. </p> <dl><dt><em><a href="/wiki/Transitive_relation" title="Transitive relation">Transitive</a></em></dt> <dd>for all <span class="texhtml"><i>x</i>, <i>y</i>, <i>z</i> ∈ <i>X</i></span>, if <span class="texhtml"><i>xRy</i></span> and <span class="texhtml"><i>yRz</i></span> then <span class="texhtml"><i>xRz</i></span>. A transitive relation is irreflexive if and only if it is asymmetric.<sup id="cite_ref-FOOTNOTEFlaškaJežekKepkaKortelainen2007p.1_Lemma_1.1_(iv)._This_source_refers_to_asymmetric_relations_as_&quot;strictly_antisymmetric&quot;._16-0" class="reference"><a href="#cite_note-FOOTNOTEFlaškaJežekKepkaKortelainen2007p.1_Lemma_1.1_(iv)._This_source_refers_to_asymmetric_relations_as_&quot;strictly_antisymmetric&quot;.-16"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> For example, "is ancestor of" is a transitive relation, while "is parent of" is not.</dd></dl> <dl><dt><em><a href="/wiki/Connected_relation" title="Connected relation">Connected</a></em></dt> <dd>for all <span class="texhtml"><i>x</i>, <i>y</i> ∈ <i>X</i></span>, if <span class="texhtml"><i>x</i> ≠ <i>y</i></span> then <span class="texhtml"><i>xRy</i></span> or <span class="texhtml"><i>yRx</i></span>. For example, on the natural numbers, <span class="texhtml">&lt;</span> is connected, while "<i>is a divisor of</i><span style="padding-left:.15em;">"</span> is not (e.g. neither <span class="texhtml">5<i>R</i>7</span> nor <span class="texhtml">7<i>R</i>5</span>).</dd></dl> <dl><dt><em><a href="/wiki/Connected_relation" title="Connected relation">Strongly connected</a></em></dt> <dd>for all <span class="texhtml"><i>x</i>, <i>y</i> ∈ <i>X</i></span>, <span class="texhtml"><i>xRy</i></span> or <span class="texhtml"><i>yRx</i></span>. For example, on the natural numbers, <span class="texhtml">≤</span> is strongly connected, but <span class="texhtml">&lt;</span> is not. A relation is strongly connected if, and only if, it is connected and reflexive.</dd></dl> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:The_four_types_of_binary_relations.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b6/The_four_types_of_binary_relations.png/220px-The_four_types_of_binary_relations.png" decoding="async" width="220" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b6/The_four_types_of_binary_relations.png/330px-The_four_types_of_binary_relations.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b6/The_four_types_of_binary_relations.png/440px-The_four_types_of_binary_relations.png 2x" data-file-width="6865" data-file-height="6888" /></a><figcaption>Examples of four types of relations over the <a href="/wiki/Real_number" title="Real number">real numbers</a>: one-to-one (in green), one-to-many (in blue), many-to-one (in red), many-to-many (in black). 2D-plot representation is used.</figcaption></figure> <p>Uniqueness properties: </p> <dl><dt><i>Injective</i><sup id="cite_ref-heterogeneous_17-0" class="reference"><a href="#cite_note-heterogeneous-17"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup> (also called <i>left-unique</i><sup id="cite_ref-kkm_18-0" class="reference"><a href="#cite_note-kkm-18"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup>)</dt> <dd>For all <span class="texhtml"><i>x</i>, <i>y</i>, <i>z</i> ∈ <i>X</i></span>, if <span class="texhtml"><i>xRy</i></span> and <span class="texhtml"><i>zRy</i></span> then <span class="texhtml"><i>x</i> = <i>z</i></span>. For example, the green and blue relations in the diagram are injective, but the red one is not (as it relates both <span class="texhtml">−1</span> and <span class="texhtml">1</span> to <span class="texhtml">1</span>), nor is the black one (as it relates both <span class="texhtml">−1</span> and <span class="texhtml">1</span> to <span class="texhtml">0</span>).</dd> <dt><i>Functional</i><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-heterogeneous_17-1" class="reference"><a href="#cite_note-heterogeneous-17"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup> (also called <i>right-unique</i>,<sup id="cite_ref-kkm_18-1" class="reference"><a href="#cite_note-kkm-18"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> <i>right-definite</i><sup id="cite_ref-FOOTNOTEMäs2007_22-0" class="reference"><a href="#cite_note-FOOTNOTEMäs2007-22"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> or <i>univalent</i><sup id="cite_ref-FOOTNOTESchmidt2010Chapt._5_9-1" class="reference"><a href="#cite_note-FOOTNOTESchmidt2010Chapt._5-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup>)</dt> <dd>For all <span class="texhtml"><i>x</i>, <i>y</i>, <i>z</i> ∈ <i>X</i></span>, if <span class="texhtml"><i>xRy</i></span> and <span class="texhtml"><i>xRz</i></span> then <span class="texhtml"><i>y</i> = <i>z</i></span>. Such a relation is called a <em><a href="/wiki/Partial_function" title="Partial function">partial function</a></em>. For example, the red and green relations in the diagram are functional, but the blue one is not (as it relates <span class="texhtml">1</span> to both <span class="texhtml">−1</span> and <span class="texhtml">1</span>), nor is the black one (as it relates 0 to both −1 and 1).</dd></dl> <p>Totality properties: </p> <dl><dt><em><a href="/wiki/Serial_relation" title="Serial relation">Serial</a></em><sup id="cite_ref-heterogeneous_17-2" class="reference"><a href="#cite_note-heterogeneous-17"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup> (also called <em>total</em> or <em>left-total</em>)</dt> <dd>For all <span class="texhtml"><i>x</i> ∈ <i>X</i></span>, there exists some <span class="texhtml"><i>y</i> ∈ <i>X</i></span> such that <span class="texhtml"><i>xRy</i></span>. Such a relation is called a <i><a href="/wiki/Multivalued_function" title="Multivalued function">multivalued function</a></i>. For example, the red and green relations in the diagram are total, but the blue one is not (as it does not relate <span class="texhtml">−1</span> to any real number), nor is the black one (as it does not relate <span class="texhtml">2</span> to any real number). As another example, <span class="texhtml">&gt;</span> is a serial relation over the integers. But it is not a serial relation over the positive integers, because there is no <span class="texhtml mvar" style="font-style:italic;">y</span> in the positive integers such that <span class="texhtml">1 &gt; <i>y</i></span>.<sup id="cite_ref-FOOTNOTEYaoWong1995_23-0" class="reference"><a href="#cite_note-FOOTNOTEYaoWong1995-23"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> However, <span class="texhtml">&lt;</span> is a serial relation over the positive integers, the rational numbers and the real numbers. Every reflexive relation is serial: for a given <span class="texhtml mvar" style="font-style:italic;">x</span>, choose <span class="texhtml"><i>y</i> = <i>x</i></span>.</dd></dl> <dl><dt><i>Surjective</i><sup id="cite_ref-heterogeneous_17-3" class="reference"><a href="#cite_note-heterogeneous-17"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup> (also called <i>right-total</i><sup id="cite_ref-kkm_18-2" class="reference"><a href="#cite_note-kkm-18"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> or <i>onto</i>)</dt> <dd>For all <span class="texhtml"><i>y</i> ∈ <i>Y</i></span>, there exists an <span class="texhtml"><i>x</i> ∈ <i>X</i></span> such that <span class="texhtml"><i>xRy</i></span>. For example, the green and blue relations in the diagram are surjective, but the red one is not (as it does not relate any real number to <span class="texhtml">−1</span>), nor is the black one (as it does not relate any real number to <span class="texhtml">2</span>).</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Combinations_of_properties">Combinations of properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Relation_(mathematics)&amp;action=edit&amp;section=4" title="Edit section: Combinations of properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><table class="wikitable mw-collapsible" style="text-align:center;float:right;"> <caption align="top">Relations by property </caption> <tbody><tr> <th> </th> <th class="nowrap ts-vertical-header" style=""><div style=""><style data-mw-deduplicate="TemplateStyles:r1221560606">@supports(writing-mode:vertical-rl){.mw-parser-output .ts-vertical-header{line-height:1;max-width:1em;padding:0.4em;vertical-align:bottom;width:1em}html.client-js .mw-parser-output .sortable:not(.jquery-tablesorter) .ts-vertical-header:not(.unsortable),html.client-js .mw-parser-output .ts-vertical-header.headerSort{background-position:50%.4em;padding-right:0.4em;padding-top:21px}.mw-parser-output .ts-vertical-header.is-valign-top{vertical-align:top}.mw-parser-output .ts-vertical-header.is-valign-middle{vertical-align:middle}.mw-parser-output .ts-vertical-header.is-normal{font-weight:normal}.mw-parser-output .ts-vertical-header>*{display:inline-block;transform:rotate(180deg);writing-mode:vertical-rl}@supports(writing-mode:sideways-lr){.mw-parser-output .ts-vertical-header>*{transform:none;writing-mode:sideways-lr}}}</style><a href="/wiki/Reflexive_relation" title="Reflexive relation">Reflexivity</a></div> </th> <th class="nowrap ts-vertical-header" style=""><div style=""><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1221560606"><a href="/wiki/Symmetric_relation" title="Symmetric relation">Symmetry</a></div> </th> <th class="nowrap ts-vertical-header" style=""><div style=""><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1221560606"><a href="/wiki/Transitive_relation" title="Transitive relation">Transitivity</a></div> </th> <th class="nowrap ts-vertical-header" style=""><div style=""><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1221560606"><a href="/wiki/Connected_relation" title="Connected relation">Connectedness</a></div> </th> <th class="nowrap ts-vertical-header" style=""><div style=""><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1221560606">Example</div> </th></tr> <tr> <th><a href="/wiki/Partially_ordered_set#Formal_definition" title="Partially ordered set">Partial order</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Refl </td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Antisym </td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes </td> <td> </td> <td><a href="/wiki/Subset" title="Subset">Subset</a> </td></tr> <tr> <th><a href="/wiki/Partially_ordered_set#Correspondence_of_strict_and_non-strict_partial_order_relations" title="Partially ordered set">Strict partial order</a> </th> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Irrefl </td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Asym </td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes </td> <td> </td> <td>Strict subset </td></tr> <tr> <th><a href="/wiki/Total_order" title="Total order">Total order</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Refl </td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Antisym </td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes </td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes </td> <td><a href="/wiki/Alphabetical_order" title="Alphabetical order">Alphabetical order</a> </td></tr> <tr> <th><a href="/wiki/Total_order#Strict_total_order" title="Total order">Strict total order</a> </th> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Irrefl </td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">Asym </td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes </td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes </td> <td>Strict alphabetical order </td></tr> <tr> <th><a href="/wiki/Equivalence_relation" title="Equivalence relation">Equivalence relation</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Refl </td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Sym </td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes </td> <td> </td> <td><a href="/wiki/Equality_(mathematics)" title="Equality (mathematics)">Equality</a> </td></tr></tbody></table></dd></dl> <p>Relations that satisfy certain combinations of the above properties are particularly useful, and thus have received names by their own. </p> <dl><dt><em><a href="/wiki/Equivalence_relation" title="Equivalence relation">Equivalence relation</a></em></dt> <dd>A relation that is reflexive, symmetric, and transitive. It is also a relation that is symmetric, transitive, and serial, since these properties imply reflexivity.</dd></dl> <p>Orderings: </p> <dl><dt><em><a href="/wiki/Partially_ordered_set#Formal_definition" title="Partially ordered set">Partial order</a></em></dt> <dd>A relation that is reflexive, antisymmetric, and transitive.</dd></dl> <dl><dt><em><a href="/wiki/Partially_ordered_set#Correspondence_of_strict_and_non-strict_partial_order_relations" title="Partially ordered set">Strict partial order</a></em></dt> <dd>A relation that is irreflexive, asymmetric, and transitive.</dd></dl> <dl><dt><em><a href="/wiki/Total_order" title="Total order">Total order</a></em></dt> <dd>A relation that is reflexive, antisymmetric, transitive and connected.<sup id="cite_ref-FOOTNOTERosenstein19824_24-0" class="reference"><a href="#cite_note-FOOTNOTERosenstein19824-24"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <dl><dt><em><a href="/wiki/Total_order#Strict_total_order" title="Total order">Strict total order</a></em></dt> <dd>A relation that is irreflexive, asymmetric, transitive and connected.</dd></dl> <p>Uniqueness properties: </p> <dl><dt><i>One-to-one</i><sup id="cite_ref-heterogeneous_17-4" class="reference"><a href="#cite_note-heterogeneous-17"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup></dt> <dd>Injective and functional. For example, the green relation in the diagram is one-to-one, but the red, blue and black ones are not.</dd> <dt><i>One-to-many</i><sup id="cite_ref-heterogeneous_17-5" class="reference"><a href="#cite_note-heterogeneous-17"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup></dt> <dd>Injective and not functional. For example, the blue relation in the diagram is one-to-many, but the red, green and black ones are not.</dd> <dt><i>Many-to-one</i><sup id="cite_ref-heterogeneous_17-6" class="reference"><a href="#cite_note-heterogeneous-17"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup></dt> <dd>Functional and not injective. For example, the red relation in the diagram is many-to-one, but the green, blue and black ones are not.</dd> <dt><i>Many-to-many</i><sup id="cite_ref-heterogeneous_17-7" class="reference"><a href="#cite_note-heterogeneous-17"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup></dt> <dd>Not injective nor functional. For example, the black relation in the diagram is many-to-many, but the red, green and blue ones are not.</dd></dl> <p>Uniqueness and totality properties: </p> <dl><dt>A <em><a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a></em><sup id="cite_ref-heterogeneous_17-8" class="reference"><a href="#cite_note-heterogeneous-17"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup></dt> <dd>A relation that is functional and total. For example, the red and green relations in the diagram are functions, but the blue and black ones are not.</dd> <dt>An <em><a href="/wiki/Injective_function" title="Injective function">injection</a></em><sup id="cite_ref-heterogeneous_17-9" class="reference"><a href="#cite_note-heterogeneous-17"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup></dt> <dd>A function that is injective. For example, the green relation in the diagram is an injection, but the red, blue and black ones are not.</dd> <dt>A <em><a href="/wiki/Surjective_function" title="Surjective function">surjection</a></em><sup id="cite_ref-heterogeneous_17-10" class="reference"><a href="#cite_note-heterogeneous-17"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup></dt> <dd>A function that is surjective. For example, the green relation in the diagram is a surjection, but the red, blue and black ones are not.</dd> <dt>A <em><a href="/wiki/Bijection" title="Bijection">bijection</a></em><sup id="cite_ref-heterogeneous_17-11" class="reference"><a href="#cite_note-heterogeneous-17"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup></dt> <dd>A function that is injective and surjective. For example, the green relation in the diagram is a bijection, but the red, blue and black ones are not.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Operations_on_relations">Operations on relations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Relation_(mathematics)&amp;action=edit&amp;section=5" title="Edit section: Operations on relations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dt><em>Union</em><sup id="cite_ref-heterogeneous_operation_25-0" class="reference"><a href="#cite_note-heterogeneous_operation-25"><span class="cite-bracket">&#91;</span>e<span class="cite-bracket">&#93;</span></a></sup></dt> <dd>If <span class="texhtml"><i>R</i></span> and <span class="texhtml"><i>S</i></span> are relations over <span class="texhtml"><i>X</i></span> then <span class="texhtml"><i>R</i> ∪ <i>S</i> = { (<i>x</i>, <i>y</i>) | <i>xRy</i> or <i>xSy</i> }</span> is the <em>union relation</em> of <span class="texhtml"><i>R</i></span> and <span class="texhtml"><i>S</i></span>. The identity element of this operation is the empty relation. For example, <span class="texhtml">≤</span> is the union of <span class="texhtml">&lt;</span> and <span class="texhtml">=</span>, and <span class="texhtml">≥</span> is the union of <span class="texhtml">&gt;</span> and <span class="texhtml">=</span>.</dd></dl> <dl><dt><em> Intersection</em><sup id="cite_ref-heterogeneous_operation_25-1" class="reference"><a href="#cite_note-heterogeneous_operation-25"><span class="cite-bracket">&#91;</span>e<span class="cite-bracket">&#93;</span></a></sup></dt> <dd>If <span class="texhtml"><i>R</i></span> and <span class="texhtml"><i>S</i></span> are relations over <span class="texhtml"><i>X</i></span> then <span class="texhtml"><i>R</i> ∩ <i>S</i> = { (<i>x</i>, <i>y</i>) | <i>xRy</i> and <i>xSy</i> }</span> is the <em>intersection relation</em> of <span class="texhtml"><i>R</i></span> and <span class="texhtml"><i>S</i></span>. The identity element of this operation is the universal relation. For example, "is a lower card of the same suit as" is the intersection of "is a lower card than" and "belongs to the same suit as".</dd></dl> <dl><dt><em> Composition</em><sup id="cite_ref-heterogeneous_operation_25-2" class="reference"><a href="#cite_note-heterogeneous_operation-25"><span class="cite-bracket">&#91;</span>e<span class="cite-bracket">&#93;</span></a></sup></dt> <dd>If <span class="texhtml"><i>R</i></span> and <span class="texhtml"><i>S</i></span> are relations over <span class="texhtml"><i>X</i></span> then <span class="texhtml"><i>S</i> ∘ <i>R</i> = { (<i>x</i>, <i>z</i>) | there exists <i>y</i> ∈ <i>X</i> such that <i>xRy</i> and <i>ySz</i> }</span> (also denoted by <span class="texhtml"><i>R</i>; <i>S</i></span>) is the <a href="/wiki/Relative_product" class="mw-redirect" title="Relative product">relative product</a> of <span class="texhtml"><i>R</i></span> and <span class="texhtml"><i>S</i></span>. The identity element is the identity relation. The order of <span class="texhtml"><i>R</i></span> and <span class="texhtml"><i>S</i></span> in the notation <span class="texhtml"><i>S</i> ∘ <i>R</i></span>, used here agrees with the standard notational order for <a href="/wiki/Composition_of_functions" class="mw-redirect" title="Composition of functions">composition of functions</a>. For example, the composition "is mother of" <span class="texhtml">∘</span> "is parent of" yields "is maternal grandparent of", while the composition "is parent of" <span class="texhtml">∘</span> "is mother of" yields "is grandmother of". For the former case, if <span class="texhtml"><i>x</i></span> is the parent of <span class="texhtml"><i>y</i></span> and <span class="texhtml"><i>y</i></span> is the mother of <span class="texhtml"><i>z</i></span>, then <span class="texhtml"><i>x</i></span> is the maternal grandparent of <span class="texhtml"><i>z</i></span>.</dd></dl> <dl><dt><em> Converse</em><sup id="cite_ref-heterogeneous_operation_25-3" class="reference"><a href="#cite_note-heterogeneous_operation-25"><span class="cite-bracket">&#91;</span>e<span class="cite-bracket">&#93;</span></a></sup></dt> <dd>If <span class="texhtml"><i>R</i></span> is a relation over sets <span class="texhtml"><i>X</i></span> and <span class="texhtml"><i>Y</i></span> then <span class="texhtml"><i>R</i><sup>T</sup> = { (<i>y</i>, <i>x</i>) | <i>xRy</i> }</span> is the <i>converse relation</i> of <span class="texhtml"><i>R</i></span> over <span class="texhtml"><i>Y</i></span> and <span class="texhtml"><i>X</i></span>. For example, <span class="texhtml">=</span> is the converse of itself, as is <span class="texhtml">≠</span>, and <span class="texhtml">&lt;</span> and <span class="texhtml">&gt;</span> are each other's converse, as are <span class="texhtml">≤</span> and <span class="texhtml">≥</span>.</dd></dl> <dl><dt><em> Complement</em><sup id="cite_ref-heterogeneous_operation_25-4" class="reference"><a href="#cite_note-heterogeneous_operation-25"><span class="cite-bracket">&#91;</span>e<span class="cite-bracket">&#93;</span></a></sup></dt> <dd>If <span class="texhtml"><i>R</i></span> is a relation over <span class="texhtml"><i>X</i></span> then <span class="texhtml"><span style="text-decoration:overline;"><i>R</i></span> = { (<i>x</i>, <i>y</i>) | <i>x</i>, <i>y</i> ∈ <i>X</i> and not <i>xRy</i> }</span> (also denoted by <span class="texhtml"><s><i>R</i></s></span> or <span class="texhtml">&#172;<i>R</i></span>) is the <i>complementary relation</i> of <span class="texhtml"><i>R</i></span>. For example, <span class="texhtml">=</span> and <span class="texhtml">≠</span> are each other's complement, as are <span class="texhtml">⊆</span> and <span class="texhtml">⊈</span>, <span class="texhtml">⊇</span> and <span class="texhtml">⊉</span>, and <span class="texhtml">∈</span> and <span class="texhtml">∉</span>, and, for <a href="/wiki/Total_order" title="Total order">total orders</a>, also <span class="texhtml">&lt;</span> and <span class="texhtml">≥</span>, and <span class="texhtml">&gt;</span> and <span class="texhtml">≤</span>. The complement of the <a href="/wiki/Converse_relation" title="Converse relation">converse relation</a> <span class="texhtml"><i>R</i><sup>T</sup></span> is the converse of the complement: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {R^{\mathsf {T}}}}={\bar {R}}^{\mathsf {T}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {R^{\mathsf {T}}}}={\bar {R}}^{\mathsf {T}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1161afbd80cdae2d70f4533340bd2313e3f430e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.091ex; height:3.509ex;" alt="{\displaystyle {\overline {R^{\mathsf {T}}}}={\bar {R}}^{\mathsf {T}}.}"></span></dd></dl> <dl><dt><em> Restriction</em><sup id="cite_ref-heterogeneous_operation_25-5" class="reference"><a href="#cite_note-heterogeneous_operation-25"><span class="cite-bracket">&#91;</span>e<span class="cite-bracket">&#93;</span></a></sup></dt> <dd>If <span class="texhtml"><i>R</i></span> is a relation over <span class="texhtml"><i>X</i></span> and <span class="texhtml"><i>S</i></span> is a subset of <span class="texhtml"><i>X</i></span> then <span class="texhtml"><i>R</i><sub>|<i>S</i></sub> = { (<i>x</i>, <i>y</i>) | <i>xRy</i> and <i>x</i>, <i>y</i> ∈ <i>S</i> }</span> is the <em><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="restriction_relation"></span><span id="Restriction_relation"></span><span id="Restriction_of_a_homogeneous_relation"></span><span class="vanchor-text">restriction relation</span></span></em> of <span class="texhtml"><i>R</i></span> to <span class="texhtml"><i>S</i></span>. The expression <span class="texhtml"><i>R</i><sub>|<i>S</i></sub> = { (<i>x</i>, <i>y</i>) | <i>xRy</i> and <i>x</i> ∈ <i>S</i> }</span> is the <em><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="left-restriction_relation"></span><span id="Left-restriction_relation"></span><span class="vanchor-text">left-restriction relation</span></span></em> of <span class="texhtml"><i>R</i></span> to <span class="texhtml"><i>S</i></span>; the expression <span class="texhtml"><i>R</i><sup>|<i>S</i></sup> = { (<i>x</i>, <i>y</i>) | <i>xRy</i> and <i>y</i> ∈ <i>S</i> }</span> is called the <em><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="right-restriction_relation"></span><span id="Right-restriction_relation"></span><span class="vanchor-text">right-restriction relation</span></span></em> of <span class="texhtml"><i>R</i></span> to <span class="texhtml"><i>S</i></span>. If a relation is <a href="/wiki/Reflexive_relation" title="Reflexive relation">reflexive</a>, irreflexive, <a href="/wiki/Symmetric_relation" title="Symmetric relation">symmetric</a>, <a href="/wiki/Antisymmetric_relation" title="Antisymmetric relation">antisymmetric</a>, <a href="/wiki/Asymmetric_relation" title="Asymmetric relation">asymmetric</a>, <a href="/wiki/Transitive_relation" title="Transitive relation">transitive</a>, <a href="/wiki/Serial_relation" title="Serial relation">total</a>, <a href="/wiki/Trichotomy_(mathematics)" class="mw-redirect" title="Trichotomy (mathematics)">trichotomous</a>, a <a href="/wiki/Partial_order" class="mw-redirect" title="Partial order">partial order</a>, <a href="/wiki/Total_order" title="Total order">total order</a>, <a href="/wiki/Strict_weak_order" class="mw-redirect" title="Strict weak order">strict weak order</a>, <a href="/wiki/Strict_weak_order#Total_preorders" class="mw-redirect" title="Strict weak order">total preorder</a> (weak order), or an <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a>, then so too are its restrictions. However, the transitive closure of a restriction is a subset of the restriction of the transitive closure, i.e., in general not equal. For example, restricting the relation "<span class="texhtml"><i>x</i></span> is parent of <span class="texhtml"><i>y</i></span>" to females yields the relation "<span class="texhtml"><i>x</i></span> is mother of the woman <span class="texhtml"><i>y</i></span>"; its transitive closure does not relate a woman with her paternal grandmother. On the other hand, the transitive closure of "is parent of" is "is ancestor of"; its restriction to females does relate a woman with her paternal grandmother.</dd></dl> <p>A relation <span class="texhtml"><i>R</i></span> over sets <span class="texhtml"><i>X</i></span> and <span class="texhtml"><i>Y</i></span> is said to be <em><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="contained_in"></span><span id="Containment_of_relations"></span><span class="vanchor-text">contained in</span></span></em> a relation <span class="texhtml"><i>S</i></span> over <span class="texhtml"><i>X</i></span> and <span class="texhtml"><i>Y</i></span>, written <span class="texhtml"><i>R</i> ⊆ <i>S</i></span>, if <span class="texhtml"><i>R</i></span> is a subset of <span class="texhtml"><i>S</i></span>, that is, for all <span class="texhtml"><i>x</i> ∈ <i>X</i></span> and <span class="texhtml"><i>y</i> ∈ <i>Y</i></span>, if <span class="texhtml"><i>xRy</i></span>, then <span class="texhtml"><i>xSy</i></span>. If <span class="texhtml"><i>R</i></span> is contained in <span class="texhtml"><i>S</i></span> and <span class="texhtml"><i>S</i></span> is contained in <span class="texhtml"><i>R</i></span>, then <span class="texhtml"><i>R</i></span> and <span class="texhtml"><i>S</i></span> are called <i>equal</i> written <span class="texhtml"><i>R</i> = <i>S</i></span>. If <span class="texhtml"><i>R</i></span> is contained in <span class="texhtml"><i>S</i></span> but <span class="texhtml"><i>S</i></span> is not contained in <span class="texhtml"><i>R</i></span>, then <span class="texhtml"><i>R</i></span> is said to be <em><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="smaller"></span><span id="Smaller_relation"></span><span class="vanchor-text">smaller</span></span></em> than <span class="texhtml"><i>S</i></span>, written <span class="texhtml"><i>R</i> ⊊ <i>S</i></span>. For example, on the <a href="/wiki/Rational_number" title="Rational number">rational numbers</a>, the relation <span class="texhtml">&gt;</span> is smaller than <span class="texhtml">≥</span>, and equal to the composition <span class="texhtml">&gt; ∘ &gt;</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Theorems_about_relations">Theorems about relations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Relation_(mathematics)&amp;action=edit&amp;section=6" title="Edit section: Theorems about relations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>A relation is asymmetric if, and only if, it is antisymmetric and irreflexive.</li> <li>A transitive relation is irreflexive if, and only if, it is asymmetric.</li> <li>A relation is reflexive if, and only if, its complement is irreflexive.</li> <li>A relation is strongly connected if, and only if, it is connected and reflexive.</li> <li>A relation is equal to its converse if, and only if, it is symmetric.</li> <li>A relation is connected if, and only if, its complement is anti-symmetric.</li> <li>A relation is strongly connected if, and only if, its complement is asymmetric.<sup id="cite_ref-FOOTNOTESchmidtStröhlein1993_26-0" class="reference"><a href="#cite_note-FOOTNOTESchmidtStröhlein1993-26"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup></li> <li>If relation <span class="texhtml"><i>R</i></span> is contained in relation <span class="texhtml"><i>S</i></span>, then <ul><li>If <span class="texhtml"><i>R</i></span> is reflexive, connected, strongly connected, left-total, or right-total, then so is <span class="texhtml"><i>S</i></span>.</li> <li>If <span class="texhtml"><i>S</i></span> is irreflexive, asymmetric, anti-symmetric, left-unique, or right-unique, then so is <span class="texhtml"><i>R</i></span>.</li></ul></li> <li>A relation is reflexive, irreflexive, symmetric, asymmetric, anti-symmetric, connected, strongly connected, and transitive if its converse is, respectively.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Relation_(mathematics)&amp;action=edit&amp;section=7" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Order_relation" class="mw-redirect" title="Order relation">Order relations</a>, including <a href="/wiki/Strict_order" class="mw-redirect" title="Strict order">strict orders</a>: <ul><li><a href="/wiki/Greater_than" class="mw-redirect" title="Greater than">Greater than</a></li> <li>Greater than or equal to</li> <li><a href="/wiki/Less_than" class="mw-redirect" title="Less than">Less than</a></li> <li>Less than or equal to</li> <li><a href="/wiki/Divides" class="mw-redirect" title="Divides">Divides</a> (evenly)</li> <li><a href="/wiki/Subset" title="Subset">Subset</a> of</li></ul></li> <li><a href="/wiki/Equivalence_relation" title="Equivalence relation">Equivalence relations</a>: <ul><li><a href="/wiki/Equality_(mathematics)" title="Equality (mathematics)">Equality</a></li> <li><a href="/wiki/Parallel_(geometry)" title="Parallel (geometry)">Parallel</a> with (for <a href="/wiki/Affine_space" title="Affine space">affine spaces</a>)</li> <li>Is in <a href="/wiki/Bijection" title="Bijection">bijection</a> with</li> <li><a href="/wiki/Isomorphism" title="Isomorphism">Isomorphic</a></li></ul></li> <li><a href="/wiki/Tolerance_relation" title="Tolerance relation">Tolerance relation</a>, a reflexive and symmetric relation: <ul><li><a href="/wiki/Dependency_relation" title="Dependency relation">Dependency relation</a>, a finite tolerance relation</li> <li><a href="/wiki/Independency_relation" class="mw-redirect" title="Independency relation">Independency relation</a>, the complement of some dependency relation</li></ul></li> <li><a href="/wiki/Kinship#Composition_of_relations" title="Kinship">Kinship relations</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Relation_(mathematics)&amp;action=edit&amp;section=8" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The above concept of relation has been generalized to admit relations between members of two different sets. Given sets <span class="texhtml"><i>X</i></span> and <span class="texhtml"><i>Y</i></span>, a <i><a href="/wiki/Heterogeneous_relation" class="mw-redirect" title="Heterogeneous relation">heterogeneous relation</a></i> <span class="texhtml"><i>R</i></span> over <span class="texhtml"><i>X</i></span> and <span class="texhtml"><i>Y</i></span> is a subset of <span class="texhtml">{ (<i>x</i>,<i>y</i>) | <i>x</i>∈<i>X</i>, <i>y</i>∈<i>Y</i> }</span>.<sup id="cite_ref-FOOTNOTECodd1970_2-2" class="reference"><a href="#cite_note-FOOTNOTECodd1970-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> When <span class="texhtml"><i>X</i> = <i>Y</i></span>, the relation concept described above is obtained; it is often called <i>homogeneous relation</i> (or <i>endorelation</i>)<sup id="cite_ref-FOOTNOTEMüller201222_28-0" class="reference"><a href="#cite_note-FOOTNOTEMüller201222-28"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEPahlDamrath2001496_29-0" class="reference"><a href="#cite_note-FOOTNOTEPahlDamrath2001496-29"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> to distinguish it from its generalization. The above properties and operations that are marked "<sup id="cite_ref-heterogeneous_17-12" class="reference"><a href="#cite_note-heterogeneous-17"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup>" and "<sup id="cite_ref-heterogeneous_operation_25-6" class="reference"><a href="#cite_note-heterogeneous_operation-25"><span class="cite-bracket">&#91;</span>e<span class="cite-bracket">&#93;</span></a></sup>", respectively, generalize to heterogeneous relations. An example of a heterogeneous relation is "ocean <span class="texhtml"><i>x</i></span> borders continent <span class="texhtml"><i>y</i></span>". The best-known examples are <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>f<span class="cite-bracket">&#93;</span></a></sup> with distinct domains and ranges, such as <span class="texhtml">sqrt&#160;: <b>N</b> → <b>R</b><sub>+</sub></span>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Relation_(mathematics)&amp;action=edit&amp;section=9" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Incidence_structure" title="Incidence structure">Incidence structure</a>, a heterogeneous relation between set of points and lines</li> <li><a href="/wiki/Order_theory" title="Order theory">Order theory</a>, investigates properties of order relations</li> <li><a href="/wiki/Relation_algebra" title="Relation algebra">Relation algebra</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Relation_(mathematics)&amp;action=edit&amp;section=10" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">called "homogeneous binary relation (on sets)" when delineation from its generalizations is important</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">a generalization of sets</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">see <a href="#Properties_of_relations">below</a></span> </li> <li id="cite_note-heterogeneous-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-heterogeneous_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-heterogeneous_17-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-heterogeneous_17-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-heterogeneous_17-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-heterogeneous_17-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-heterogeneous_17-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-heterogeneous_17-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-heterogeneous_17-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-heterogeneous_17-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-heterogeneous_17-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-heterogeneous_17-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-heterogeneous_17-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-heterogeneous_17-12"><sup><i><b>m</b></i></sup></a></span> <span class="reference-text">These properties also generalize to heterogeneous relations.</span> </li> <li id="cite_note-heterogeneous_operation-25"><span class="mw-cite-backlink">^ <a href="#cite_ref-heterogeneous_operation_25-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-heterogeneous_operation_25-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-heterogeneous_operation_25-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-heterogeneous_operation_25-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-heterogeneous_operation_25-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-heterogeneous_operation_25-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-heterogeneous_operation_25-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text">This operation also generalizes to heterogeneous relations.</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text">that is, right-unique and left-total heterogeneous relations</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Relation_(mathematics)&amp;action=edit&amp;section=11" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFStoll" class="citation book cs1">Stoll, Robert R. <i>Set Theory and Logic</i>. San Francisco, CA: Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-63829-4" title="Special:BookSources/978-0-486-63829-4"><bdi>978-0-486-63829-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Set+Theory+and+Logic&amp;rft.place=San+Francisco%2C+CA&amp;rft.pub=Dover+Publications&amp;rft.isbn=978-0-486-63829-4&amp;rft.aulast=Stoll&amp;rft.aufirst=Robert+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTECodd1970-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTECodd1970_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTECodd1970_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTECodd1970_2-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFCodd1970">Codd 1970</a></span> </li> <li id="cite_note-FOOTNOTEHalmos1968Ch_14-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHalmos1968Ch_14_3-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1968">Halmos 1968</a>, Ch 14</span> </li> <li id="cite_note-FOOTNOTEHalmos1968Ch_7-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHalmos1968Ch_7_4-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1968">Halmos 1968</a>, Ch 7</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://mathinsight.org/definition/relation">"Relation definition – Math Insight"</a>. <i>mathinsight.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2019-12-11</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=mathinsight.org&amp;rft.atitle=Relation+definition+%E2%80%93+Math+Insight&amp;rft_id=https%3A%2F%2Fmathinsight.org%2Fdefinition%2Frelation&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEHalmos1968Ch_8-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHalmos1968Ch_8_6-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1968">Halmos 1968</a>, Ch 8</span> </li> <li id="cite_note-Schroder.1895-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-Schroder.1895_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Schroder.1895_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="/wiki/Ernst_Schr%C3%B6der_(mathematician)" title="Ernst Schröder (mathematician)">Ernst Schröder</a> (1895) <a rel="nofollow" class="external text" href="https://archive.org/details/vorlesungenberd03mlgoog">Algebra und Logic der Relative</a>, via <a href="/wiki/Internet_Archive" title="Internet Archive">Internet Archive</a></span> </li> <li id="cite_note-Lewis.1918-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lewis.1918_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lewis.1918_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="/wiki/C._I._Lewis" title="C. I. Lewis">C. I. Lewis</a> (1918) <a rel="nofollow" class="external text" href="https://archive.org/details/asurveyofsymboli00lewiuoft">A Survey of Symbolic Logic</a>, pp. 269–279, via internet Archive</span> </li> <li id="cite_note-FOOTNOTESchmidt2010Chapt._5-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTESchmidt2010Chapt._5_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTESchmidt2010Chapt._5_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFSchmidt2010">Schmidt 2010</a>, Chapt. 5</span> </li> <li id="cite_note-FOOTNOTEEnderton1977Ch_3._p._40-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEEnderton1977Ch_3._p._40_12-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFEnderton1977">Enderton 1977</a>, Ch 3. p. 40</span> </li> <li id="cite_note-FOOTNOTESmithEggenSt._Andre2006160-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESmithEggenSt._Andre2006160_14-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSmithEggenSt._Andre2006">Smith, Eggen &amp; St. Andre 2006</a>, p.&#160;160</span> </li> <li id="cite_note-FOOTNOTENievergelt2002&#91;httpsbooksgooglecombooksid_H_nJdagqL8CpgPA158_158&#93;-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENievergelt2002[httpsbooksgooglecombooksid_H_nJdagqL8CpgPA158_158]_15-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNievergelt2002">Nievergelt 2002</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=_H_nJdagqL8C&amp;pg=PA158">158</a></span> </li> <li id="cite_note-FOOTNOTEFlaškaJežekKepkaKortelainen2007p.1_Lemma_1.1_(iv)._This_source_refers_to_asymmetric_relations_as_&quot;strictly_antisymmetric&quot;.-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEFlaškaJežekKepkaKortelainen2007p.1_Lemma_1.1_(iv)._This_source_refers_to_asymmetric_relations_as_&quot;strictly_antisymmetric&quot;._16-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFFlaškaJežekKepkaKortelainen2007">Flaška et al. 2007</a>, p.1 Lemma 1.1 (iv). This source refers to asymmetric relations as "strictly antisymmetric".</span> </li> <li id="cite_note-kkm-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-kkm_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-kkm_18-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-kkm_18-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFKilpKnauerMikhalev2000">Kilp, Knauer &amp; Mikhalev 2000</a>, p.&#160;3. The same four definitions appear in the following: <a href="#CITEREFPahlDamrath2001">Pahl &amp; Damrath 2001</a>, p.&#160;506, <a href="#CITEREFBest1996">Best 1996</a>, pp.&#160;19–21, <a href="#CITEREFRiemann1999">Riemann 1999</a>, pp.&#160;21–22</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">Van Gasteren 1990, p. 45.</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Functional_relation">"Functional relation - Encyclopedia of Mathematics"</a>. <i>encyclopediaofmath.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-06-13</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=encyclopediaofmath.org&amp;rft.atitle=Functional+relation+-+Encyclopedia+of+Mathematics&amp;rft_id=https%3A%2F%2Fencyclopediaofmath.org%2Fwiki%2FFunctional_relation&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/functional+relation">"functional relation in nLab"</a>. <i>ncatlab.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-06-13</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=ncatlab.org&amp;rft.atitle=functional+relation+in+nLab&amp;rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2Ffunctional%2Brelation&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEMäs2007-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMäs2007_22-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMäs2007">Mäs 2007</a></span> </li> <li id="cite_note-FOOTNOTEYaoWong1995-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEYaoWong1995_23-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFYaoWong1995">Yao &amp; Wong 1995</a></span> </li> <li id="cite_note-FOOTNOTERosenstein19824-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERosenstein19824_24-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRosenstein1982">Rosenstein 1982</a>, p.&#160;4</span> </li> <li id="cite_note-FOOTNOTESchmidtStröhlein1993-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESchmidtStröhlein1993_26-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSchmidtStröhlein1993">Schmidt &amp; Ströhlein 1993</a></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><a href="#CITEREFEnderton1977">Enderton 1977</a>, Ch 3. p. 40</span> </li> <li id="cite_note-FOOTNOTEMüller201222-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMüller201222_28-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMüller2012">Müller 2012</a>, p.&#160;22</span> </li> <li id="cite_note-FOOTNOTEPahlDamrath2001496-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPahlDamrath2001496_29-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPahlDamrath2001">Pahl &amp; Damrath 2001</a>, p.&#160;496</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Bibliography">Bibliography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Relation_(mathematics)&amp;action=edit&amp;section=12" title="Edit section: Bibliography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBest1996" class="citation book cs1"><a href="/wiki/Eike_Best" title="Eike Best">Best, Eike</a> (1996). <i>Semantics of Sequential and Parallel Programs</i>. Prentice Hall. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-13-460643-9" title="Special:BookSources/978-0-13-460643-9"><bdi>978-0-13-460643-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Semantics+of+Sequential+and+Parallel+Programs&amp;rft.pub=Prentice+Hall&amp;rft.date=1996&amp;rft.isbn=978-0-13-460643-9&amp;rft.aulast=Best&amp;rft.aufirst=Eike&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCodd1970" class="citation journal cs1">Codd, Edgar Frank (June 1970). <a rel="nofollow" class="external text" href="https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf">"A Relational Model of Data for Large Shared Data Banks"</a> <span class="cs1-format">(PDF)</span>. <i>Communications of the ACM</i>. <b>13</b> (6): 377–387. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F362384.362685">10.1145/362384.362685</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:207549016">207549016</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-04-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+of+the+ACM&amp;rft.atitle=A+Relational+Model+of+Data+for+Large+Shared+Data+Banks&amp;rft.volume=13&amp;rft.issue=6&amp;rft.pages=377-387&amp;rft.date=1970-06&amp;rft_id=info%3Adoi%2F10.1145%2F362384.362685&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A207549016%23id-name%3DS2CID&amp;rft.aulast=Codd&amp;rft.aufirst=Edgar+Frank&amp;rft_id=https%3A%2F%2Fwww.seas.upenn.edu%2F~zives%2F03f%2Fcis550%2Fcodd.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCodd1990" class="citation book cs1"><a href="/wiki/Edgar_F._Codd" title="Edgar F. Codd">Codd, Edgar Frank</a> (1990). <a rel="nofollow" class="external text" href="https://dl.acm.org/doi/pdf/10.5555/77708"><i>The Relational Model for Database Management: Version 2</i></a>. Boston: <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0201141924" title="Special:BookSources/978-0201141924"><bdi>978-0201141924</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Relational+Model+for+Database+Management%3A+Version+2&amp;rft.place=Boston&amp;rft.pub=Addison-Wesley&amp;rft.date=1990&amp;rft.isbn=978-0201141924&amp;rft.aulast=Codd&amp;rft.aufirst=Edgar+Frank&amp;rft_id=https%3A%2F%2Fdl.acm.org%2Fdoi%2Fpdf%2F10.5555%2F77708&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEnderton1977" class="citation book cs1"><a href="/wiki/Herbert_Enderton" title="Herbert Enderton">Enderton, Herbert</a> (1977). <i>Elements of Set Theory</i>. Boston: <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-238440-0" title="Special:BookSources/978-0-12-238440-0"><bdi>978-0-12-238440-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Set+Theory&amp;rft.place=Boston&amp;rft.pub=Academic+Press&amp;rft.date=1977&amp;rft.isbn=978-0-12-238440-0&amp;rft.aulast=Enderton&amp;rft.aufirst=Herbert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFlaškaJežekKepkaKortelainen2007" class="citation book cs1">Flaška, V.; Ježek, J.; Kepka, T.; Kortelainen, J. (2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131102214049/http://www.karlin.mff.cuni.cz/~jezek/120/transitive1.pdf"><i>Transitive Closures of Binary Relations I</i></a> <span class="cs1-format">(PDF)</span>. Prague: School of Mathematics&#160;– Physics Charles University. Archived from <a rel="nofollow" class="external text" href="http://www.karlin.mff.cuni.cz/~jezek/120/transitive1.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2013-11-02.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Transitive+Closures+of+Binary+Relations+I&amp;rft.place=Prague&amp;rft.pub=School+of+Mathematics+%E2%80%93+Physics+Charles+University&amp;rft.date=2007&amp;rft.aulast=Fla%C5%A1ka&amp;rft.aufirst=V.&amp;rft.au=Je%C5%BEek%2C+J.&amp;rft.au=Kepka%2C+T.&amp;rft.au=Kortelainen%2C+J.&amp;rft_id=http%3A%2F%2Fwww.karlin.mff.cuni.cz%2F~jezek%2F120%2Ftransitive1.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalmos1968" class="citation book cs1">Halmos, Paul R. (1968). <i><a href="/wiki/Naive_Set_Theory_(book)" title="Naive Set Theory (book)">Naive Set Theory</a></i>. Princeton: Nostrand.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Naive+Set+Theory&amp;rft.place=Princeton&amp;rft.pub=Nostrand&amp;rft.date=1968&amp;rft.aulast=Halmos&amp;rft.aufirst=Paul+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKilpKnauerMikhalev2000" class="citation book cs1">Kilp, Mati; Knauer, Ulrich; Mikhalev, Alexander (2000). <i>Monoids, Acts and Categories: with Applications to Wreath Products and Graphs</i>. Berlin: <a href="/wiki/Walter_de_Gruyter" class="mw-redirect" title="Walter de Gruyter">De Gruyter</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-11-015248-7" title="Special:BookSources/978-3-11-015248-7"><bdi>978-3-11-015248-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Monoids%2C+Acts+and+Categories%3A+with+Applications+to+Wreath+Products+and+Graphs&amp;rft.place=Berlin&amp;rft.pub=De+Gruyter&amp;rft.date=2000&amp;rft.isbn=978-3-11-015248-7&amp;rft.aulast=Kilp&amp;rft.aufirst=Mati&amp;rft.au=Knauer%2C+Ulrich&amp;rft.au=Mikhalev%2C+Alexander&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMäs2007" class="citation cs2">Mäs, Stephan (2007), "Reasoning on Spatial Semantic Integrity Constraints", <i>Spatial Information Theory: 8th International Conference, COSIT 2007, Melbourne, Australia, September 19–23, Proceedings</i>, Lecture Notes in Computer Science, vol.&#160;4736, Springer, pp.&#160;285–302, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-540-74788-8_18">10.1007/978-3-540-74788-8_18</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Reasoning+on+Spatial+Semantic+Integrity+Constraints&amp;rft.btitle=Spatial+Information+Theory%3A+8th+International+Conference%2C+COSIT+2007%2C+Melbourne%2C+Australia%2C+September+19%E2%80%9323%2C+Proceedings&amp;rft.series=Lecture+Notes+in+Computer+Science&amp;rft.pages=285-302&amp;rft.pub=Springer&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-540-74788-8_18&amp;rft.aulast=M%C3%A4s&amp;rft.aufirst=Stephan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMüller2012" class="citation book cs1">Müller, M. E. (2012). <i>Relational Knowledge Discovery</i>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-19021-3" title="Special:BookSources/978-0-521-19021-3"><bdi>978-0-521-19021-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Relational+Knowledge+Discovery&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2012&amp;rft.isbn=978-0-521-19021-3&amp;rft.aulast=M%C3%BCller&amp;rft.aufirst=M.+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNievergelt2002" class="citation cs2">Nievergelt, Yves (2002), <i>Foundations of Logic and Mathematics: Applications to Computer Science and Cryptography</i>, Springer-Verlag</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Logic+and+Mathematics%3A+Applications+to+Computer+Science+and+Cryptography&amp;rft.pub=Springer-Verlag&amp;rft.date=2002&amp;rft.aulast=Nievergelt&amp;rft.aufirst=Yves&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPahlDamrath2001" class="citation book cs1">Pahl, Peter J.; Damrath, Rudolf (2001). <i>Mathematical Foundations of Computational Engineering: A Handbook</i>. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-67995-0" title="Special:BookSources/978-3-540-67995-0"><bdi>978-3-540-67995-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Foundations+of+Computational+Engineering%3A+A+Handbook&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2001&amp;rft.isbn=978-3-540-67995-0&amp;rft.aulast=Pahl&amp;rft.aufirst=Peter+J.&amp;rft.au=Damrath%2C+Rudolf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeirce1873" class="citation journal cs1"><a href="/wiki/Charles_Sanders_Peirce" title="Charles Sanders Peirce">Peirce, Charles Sanders</a> (1873). <a rel="nofollow" class="external text" href="https://archive.org/details/descriptionanot00peirgoog/mode/2up">"Description of a Notation for the Logic of Relatives, Resulting from an Amplification of the Conceptions of Boole's Calculus of Logic"</a>. <i>Memoirs of the American Academy of Arts and Sciences</i>. <b>9</b> (2): 317–178. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1873MAAAS...9..317P">1873MAAAS...9..317P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F25058006">10.2307/25058006</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2027%2Fhvd.32044019561034">2027/hvd.32044019561034</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/25058006">25058006</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-05-05</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Memoirs+of+the+American+Academy+of+Arts+and+Sciences&amp;rft.atitle=Description+of+a+Notation+for+the+Logic+of+Relatives%2C+Resulting+from+an+Amplification+of+the+Conceptions+of+Boole%27s+Calculus+of+Logic&amp;rft.volume=9&amp;rft.issue=2&amp;rft.pages=317-178&amp;rft.date=1873&amp;rft_id=info%3Ahdl%2F2027%2Fhvd.32044019561034&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F25058006%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F25058006&amp;rft_id=info%3Abibcode%2F1873MAAAS...9..317P&amp;rft.aulast=Peirce&amp;rft.aufirst=Charles+Sanders&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdescriptionanot00peirgoog%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiemann1999" class="citation book cs1">Riemann, Robert-Christoph (1999). <i>Modelling of Concurrent Systems: Structural and Semantical Methods in the High Level Petri Net Calculus</i>. Herbert Utz Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-89675-629-9" title="Special:BookSources/978-3-89675-629-9"><bdi>978-3-89675-629-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Modelling+of+Concurrent+Systems%3A+Structural+and+Semantical+Methods+in+the+High+Level+Petri+Net+Calculus&amp;rft.pub=Herbert+Utz+Verlag&amp;rft.date=1999&amp;rft.isbn=978-3-89675-629-9&amp;rft.aulast=Riemann&amp;rft.aufirst=Robert-Christoph&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRosenstein1982" class="citation cs2">Rosenstein, Joseph G. (1982), <i>Linear orderings</i>, Academic Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-12-597680-1" title="Special:BookSources/0-12-597680-1"><bdi>0-12-597680-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+orderings&amp;rft.pub=Academic+Press&amp;rft.date=1982&amp;rft.isbn=0-12-597680-1&amp;rft.aulast=Rosenstein&amp;rft.aufirst=Joseph+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchmidt2010" class="citation book cs1"><a href="/wiki/Gunther_Schmidt" title="Gunther Schmidt">Schmidt, Gunther</a> (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=E4dREBTs5WsC"><i>Relational Mathematics</i></a>. Cambridge: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-76268-7" title="Special:BookSources/978-0-521-76268-7"><bdi>978-0-521-76268-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Relational+Mathematics&amp;rft.place=Cambridge&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft.isbn=978-0-521-76268-7&amp;rft.aulast=Schmidt&amp;rft.aufirst=Gunther&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DE4dREBTs5WsC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchmidtStröhlein1993" class="citation book cs1"><a href="/wiki/Gunther_Schmidt" title="Gunther Schmidt">Schmidt, Gunther</a>; Ströhlein, Thomas (1993). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ZgarCAAAQBAJ"><i>Relations and Graphs: Discrete Mathematics for Computer Scientists</i></a>. Berlin: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-642-77970-1" title="Special:BookSources/978-3-642-77970-1"><bdi>978-3-642-77970-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Relations+and+Graphs%3A+Discrete+Mathematics+for+Computer+Scientists&amp;rft.place=Berlin&amp;rft.pub=Springer&amp;rft.date=1993&amp;rft.isbn=978-3-642-77970-1&amp;rft.aulast=Schmidt&amp;rft.aufirst=Gunther&amp;rft.au=Str%C3%B6hlein%2C+Thomas&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZgarCAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmithEggenSt._Andre2006" class="citation cs2">Smith, Douglas; Eggen, Maurice; St. Andre, Richard (2006), <i>A Transition to Advanced Mathematics</i> (6th&#160;ed.), Brooks/Cole, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-534-39900-2" title="Special:BookSources/0-534-39900-2"><bdi>0-534-39900-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Transition+to+Advanced+Mathematics&amp;rft.edition=6th&amp;rft.pub=Brooks%2FCole&amp;rft.date=2006&amp;rft.isbn=0-534-39900-2&amp;rft.aulast=Smith&amp;rft.aufirst=Douglas&amp;rft.au=Eggen%2C+Maurice&amp;rft.au=St.+Andre%2C+Richard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_Gasteren1990" class="citation book cs1">Van Gasteren, Antonetta (1990). <i>On the Shape of Mathematical Arguments</i>. Berlin: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9783540528494" title="Special:BookSources/9783540528494"><bdi>9783540528494</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=On+the+Shape+of+Mathematical+Arguments&amp;rft.place=Berlin&amp;rft.pub=Springer&amp;rft.date=1990&amp;rft.isbn=9783540528494&amp;rft.aulast=Van+Gasteren&amp;rft.aufirst=Antonetta&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYaoWong1995" class="citation journal cs1">Yao, Y.Y.; Wong, S.K.M. (1995). <a rel="nofollow" class="external text" href="http://www2.cs.uregina.ca/~yyao/PAPERS/relation.pdf">"Generalization of rough sets using relationships between attribute values"</a> <span class="cs1-format">(PDF)</span>. <i>Proceedings of the 2nd Annual Joint Conference on Information Sciences</i>: 30–33.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+2nd+Annual+Joint+Conference+on+Information+Sciences&amp;rft.atitle=Generalization+of+rough+sets+using+relationships+between+attribute+values&amp;rft.pages=30-33&amp;rft.date=1995&amp;rft.aulast=Yao&amp;rft.aufirst=Y.Y.&amp;rft.au=Wong%2C+S.K.M.&amp;rft_id=http%3A%2F%2Fwww2.cs.uregina.ca%2F~yyao%2FPAPERS%2Frelation.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARelation+%28mathematics%29" class="Z3988"></span></li></ul> </div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Function" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Functions_navbox" title="Template:Functions navbox"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/w/index.php?title=Template_talk:Functions_navbox&amp;action=edit&amp;redlink=1" class="new" title="Template talk:Functions navbox (page does not exist)"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Functions_navbox" title="Special:EditPage/Template:Functions navbox"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Function" style="font-size:114%;margin:0 4em"><a href="/wiki/Function_(mathematics)" title="Function (mathematics)">Function</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/History_of_the_function_concept" title="History of the function concept">History</a></li> <li><a href="/wiki/List_of_mathematical_functions" title="List of mathematical functions">List of specific functions</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types by domain and codomain</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Boolean-valued_function" title="Boolean-valued function"><span class="texhtml">X → 𝔹</span></a></li> <li><a href="/wiki/Ordered_pair" title="Ordered pair"><span class="texhtml">𝔹 → X</span></a></li> <li><a href="/wiki/Boolean_function" title="Boolean function"><span class="texhtml">𝔹ⁿ → X</span></a></li> <li><a href="/wiki/Integer-valued_function" title="Integer-valued function"><span class="texhtml">X → ℤ</span></a></li> <li><a href="/wiki/Sequence" title="Sequence"><span class="texhtml">ℤ → X</span></a></li> <li><a href="/wiki/Real-valued_function" title="Real-valued function"><span class="texhtml">X → ℝ</span></a></li> <li><a href="/wiki/Function_of_a_real_variable" title="Function of a real variable"><span class="texhtml">ℝ → X</span></a></li> <li><a href="/wiki/Function_of_several_real_variables" title="Function of several real variables"><span class="texhtml">ℝⁿ → X</span></a></li> <li><a href="/wiki/Complex-valued_function" class="mw-redirect" title="Complex-valued function"><span class="texhtml">X → ℂ</span></a></li> <li><a href="/wiki/Function_of_a_complex_variable" class="mw-redirect" title="Function of a complex variable"><span class="texhtml">ℂ → X</span></a></li> <li><a href="/wiki/Function_of_several_complex_variables" title="Function of several complex variables"><span class="texhtml">ℂⁿ → X</span></a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Classes/properties</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Constant_function" title="Constant function">Constant</a></li> <li><a href="/wiki/Identity_function" title="Identity function">Identity</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear</a></li> <li><a href="/wiki/Polynomial" title="Polynomial">Polynomial</a></li> <li><a href="/wiki/Rational_function" title="Rational function">Rational</a></li> <li><a href="/wiki/Algebraic_function" title="Algebraic function">Algebraic</a></li> <li><a href="/wiki/Analytic_function" title="Analytic function">Analytic</a></li> <li><a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function">Smooth</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuous</a></li> <li><a href="/wiki/Measurable_function" title="Measurable function">Measurable</a></li> <li><a href="/wiki/Injective_function" title="Injective function">Injective</a></li> <li><a href="/wiki/Surjective_function" title="Surjective function">Surjective</a></li> <li><a href="/wiki/Bijection" title="Bijection">Bijective</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Constructions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Restriction_(mathematics)" title="Restriction (mathematics)">Restriction</a></li> <li><a href="/wiki/Function_composition" title="Function composition">Composition</a></li> <li><a href="/wiki/Lambda_calculus" title="Lambda calculus">λ</a></li> <li><a href="/wiki/Inverse_function" title="Inverse function">Inverse</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Generalizations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Relation</a> (<a href="/wiki/Binary_relation" title="Binary relation">Binary relation</a>)</li> <li><a href="/wiki/Set-valued_function" title="Set-valued function">Set-valued</a></li> <li><a href="/wiki/Multivalued_function" title="Multivalued function">Multivalued</a></li> <li><a href="/wiki/Partial_function" title="Partial function">Partial</a></li> <li><a href="/wiki/Implicit_function" title="Implicit function">Implicit</a></li> <li><a href="/wiki/Function_space" title="Function space">Space</a></li> <li><a href="/wiki/Higher-order_function" title="Higher-order function">Higher-order</a></li> <li><a href="/wiki/Morphism" title="Morphism">Morphism</a></li> <li><a href="/wiki/Functor" title="Functor">Functor</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Functions" title="Category:Functions">Category</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6b7f745dd4‐7lg6z Cached time: 20241125134646 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.226 seconds Real time usage: 1.384 seconds Preprocessor visited node count: 20956/1000000 Post‐expand include size: 134969/2097152 bytes Template argument size: 31612/2097152 bytes Highest expansion depth: 11/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 92049/5000000 bytes Lua time usage: 0.603/10.000 seconds Lua memory usage: 7380860/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1189.507 1 -total 36.26% 431.366 346 Template:Math 12.90% 153.470 13 Template:Cite_book 12.47% 148.283 2 Template:Reflist 9.77% 116.258 1 Template:Short_description 9.13% 108.579 1 Template:Functions_navbox 8.87% 105.499 1 Template:Navbox 8.11% 96.457 18 Template:Sfn 7.40% 88.061 2 Template:Pagetype 7.15% 85.017 369 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:idhash:22517558-0!canonical and timestamp 20241125134646 and revision id 1253399838. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Relation_(mathematics)&amp;oldid=1253399838">https://en.wikipedia.org/w/index.php?title=Relation_(mathematics)&amp;oldid=1253399838</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Mathematical_relations" title="Category:Mathematical relations">Mathematical relations</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_with_empty_Wikidata_description" title="Category:Short description with empty Wikidata description">Short description with empty Wikidata description</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 25 October 2024, at 19:49<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Relation_(mathematics)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-688fc9465-s62kh","wgBackendResponseTime":153,"wgPageParseReport":{"limitreport":{"cputime":"1.226","walltime":"1.384","ppvisitednodes":{"value":20956,"limit":1000000},"postexpandincludesize":{"value":134969,"limit":2097152},"templateargumentsize":{"value":31612,"limit":2097152},"expansiondepth":{"value":11,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":92049,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1189.507 1 -total"," 36.26% 431.366 346 Template:Math"," 12.90% 153.470 13 Template:Cite_book"," 12.47% 148.283 2 Template:Reflist"," 9.77% 116.258 1 Template:Short_description"," 9.13% 108.579 1 Template:Functions_navbox"," 8.87% 105.499 1 Template:Navbox"," 8.11% 96.457 18 Template:Sfn"," 7.40% 88.061 2 Template:Pagetype"," 7.15% 85.017 369 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.603","limit":"10.000"},"limitreport-memusage":{"value":7380860,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBest1996\"] = 1,\n [\"CITEREFCodd1970\"] = 1,\n [\"CITEREFCodd1990\"] = 1,\n [\"CITEREFEnderton1977\"] = 1,\n [\"CITEREFFlaškaJežekKepkaKortelainen2007\"] = 1,\n [\"CITEREFHalmos1968\"] = 1,\n [\"CITEREFKilpKnauerMikhalev2000\"] = 1,\n [\"CITEREFMäs2007\"] = 1,\n [\"CITEREFMüller2012\"] = 1,\n [\"CITEREFNievergelt2002\"] = 1,\n [\"CITEREFPahlDamrath2001\"] = 1,\n [\"CITEREFPeirce1873\"] = 1,\n [\"CITEREFRiemann1999\"] = 1,\n [\"CITEREFRosenstein1982\"] = 1,\n [\"CITEREFSchmidt2010\"] = 1,\n [\"CITEREFSchmidtStröhlein1993\"] = 1,\n [\"CITEREFSmithEggenSt._Andre2006\"] = 1,\n [\"CITEREFStoll\"] = 1,\n [\"CITEREFVan_Gasteren1990\"] = 1,\n [\"CITEREFYaoWong1995\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 14,\n [\"(\"] = 1,\n [\")\"] = 1,\n [\"-\\\"\"] = 7,\n [\"=\"] = 1,\n [\"About\"] = 1,\n [\"Citation\"] = 4,\n [\"Cite book\"] = 13,\n [\"Cite journal\"] = 3,\n [\"Cite web\"] = 3,\n [\"DEFAULTSORT:Relation\"] = 1,\n [\"Diagonal split header\"] = 1,\n [\"Efn\"] = 24,\n [\"Em\"] = 35,\n [\"Functions navbox\"] = 1,\n [\"Harvnb\"] = 5,\n [\"Math\"] = 335,\n [\"Mset\"] = 14,\n [\"Mvar\"] = 25,\n [\"Na\"] = 18,\n [\"No\"] = 6,\n [\"Notelist\"] = 1,\n [\"Overline\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"Section link\"] = 1,\n [\"Sfn\"] = 18,\n [\"Short description\"] = 1,\n [\"Strikethrough\"] = 1,\n [\"Sub\"] = 1,\n [\"Text\"] = 3,\n [\"Vertical header\"] = 5,\n [\"Visible anchor\"] = 5,\n [\"Ya\"] = 18,\n [\"Yes\"] = 11,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-6b7f745dd4-7lg6z","timestamp":"20241125134646","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Relation (mathematics)","url":"https:\/\/en.wikipedia.org\/wiki\/Relation_(mathematics)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q107223533","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q107223533","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2009-04-22T03:44:13Z","dateModified":"2024-10-25T19:49:55Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/6\/68\/Relaci%C3%B3n_binaria_01.svg"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10