CINXE.COM
Topos in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Topos in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Topos </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/2884/#Item_5" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="topos_theory">Topos Theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/topos+theory">topos theory</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Toposes">Toposes</a></li> </ul> <h2 id="background">Background</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> </li> </ul> </li> </ul> <h2 id="toposes">Toposes</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-topos">(0,1)-topos</a>, <a class="existingWikiWord" href="/nlab/show/Heyting+algebra">Heyting algebra</a>, <a class="existingWikiWord" href="/nlab/show/locale">locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pretopos">pretopos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topos">topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+topos">Grothendieck topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+presheaves">category of presheaves</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/presheaf">presheaf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/representable+functor">representable presheaf</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+sheaves">category of sheaves</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/site">site</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sieve">sieve</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/coverage">coverage</a>, <a class="existingWikiWord" href="/nlab/show/Grothendieck+pretopology">pretopology</a>, <a class="existingWikiWord" href="/nlab/show/Grothendieck+topology">topology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sheaf">sheaf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sheafification">sheafification</a></p> </li> </ul> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quasitopos">quasitopos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/base+topos">base topos</a>, <a class="existingWikiWord" href="/nlab/show/indexed+topos">indexed topos</a></p> </li> </ul> <h2 id="toc_internal_logic">Internal Logic</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/categorical+semantics">categorical semantics</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+logic">internal logic</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/subobject+classifier">subobject classifier</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+numbers+object">natural numbers object</a></p> </li> </ul> </li> </ul> <h2 id="topos_morphisms">Topos morphisms</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/logical+morphism">logical morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+morphism">geometric morphism</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/direct+image">direct image</a>/<a class="existingWikiWord" href="/nlab/show/inverse+image">inverse image</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/global+section">global sections</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+embedding">geometric embedding</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/surjective+geometric+morphism">surjective geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/essential+geometric+morphism">essential geometric morphism</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+connected+geometric+morphism">locally connected geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connected+geometric+morphism">connected geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/totally+connected+geometric+morphism">totally connected geometric morphism</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%C3%A9tale+geometric+morphism">étale geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/open+geometric+morphism">open geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proper+geometric+morphism">proper geometric morphism</a>, <a class="existingWikiWord" href="/nlab/show/compact+topos">compact topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/separated+geometric+morphism">separated geometric morphism</a>, <a class="existingWikiWord" href="/nlab/show/Hausdorff+topos">Hausdorff topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+geometric+morphism">local geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bounded+geometric+morphism">bounded geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/base+change">base change</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/localic+geometric+morphism">localic geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hyperconnected+geometric+morphism">hyperconnected geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/atomic+geometric+morphism">atomic geometric morphism</a></p> </li> </ul> </li> </ul> <h2 id="extra_stuff_structure_properties">Extra stuff, structure, properties</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+locale">topological locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/localic+topos">localic topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/petit+topos">petit topos/gros topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+connected+topos">locally connected topos</a>, <a class="existingWikiWord" href="/nlab/show/connected+topos">connected topos</a>, <a class="existingWikiWord" href="/nlab/show/totally+connected+topos">totally connected topos</a>, <a class="existingWikiWord" href="/nlab/show/strongly+connected+topos">strongly connected topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+topos">local topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohesive+topos">cohesive topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classifying+topos">classifying topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+topos">smooth topos</a></p> </li> </ul> <h2 id="cohomology_and_homotopy">Cohomology and homotopy</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+groups+in+an+%28infinity%2C1%29-topos">homotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+presheaves">model structure on simplicial presheaves</a></p> </li> </ul> <h2 id="in_higher_category_theory">In higher category theory</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+topos+theory">higher topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-topos">(0,1)-topos</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-site">(0,1)-site</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-topos">2-topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-site">2-site</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-sheaf">2-sheaf</a>, <a class="existingWikiWord" href="/nlab/show/stack">stack</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-site">(∞,1)-site</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-sheaf">(∞,1)-sheaf</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-stack">∞-stack</a>, <a class="existingWikiWord" href="/nlab/show/derived+stack">derived stack</a></p> </li> </ul> </li> </ul> <h2 id="theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Diaconescu%27s+theorem">Diaconescu's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Barr%27s+theorem">Barr's theorem</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/topos+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="category_theory">Category Theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></strong></p> <h2 id="sidebar_concepts">Concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cat">Cat</a></p> </li> </ul> <h2 id="sidebar_universal_constructions">Universal constructions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+construction">universal construction</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/representable+functor">representable functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor">adjoint functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/limit">limit</a>/<a class="existingWikiWord" href="/nlab/show/colimit">colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weighted+limit">weighted limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end</a>/<a class="existingWikiWord" href="/nlab/show/coend">coend</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a></p> </li> </ul> </li> </ul> <h2 id="sidebar_theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+construction">Grothendieck construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor+theorem">adjoint functor theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadicity+theorem">monadicity theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+lifting+theorem">adjoint lifting theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gabriel-Ulmer+duality">Gabriel-Ulmer duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/small+object+argument">small object argument</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freyd-Mitchell+embedding+theorem">Freyd-Mitchell embedding theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+type+theory+and+category+theory">relation between type theory and category theory</a></p> </li> </ul> <h2 id="sidebar_extensions">Extensions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sheaf+and+topos+theory">sheaf and topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+category+theory">enriched category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> </li> </ul> <h2 id="sidebar_applications">Applications</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/applications+of+%28higher%29+category+theory">applications of (higher) category theory</a></li> </ul> <div> <p> <a href="/nlab/edit/category+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#definition'>Definition</a></li> <ul> <li><a href='#related_2categories'>Related 2-categories</a></li> </ul> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#from_topological_spaces_to_toposes'>From topological spaces to toposes</a></li> <li><a href='#from_toposes_to_higher_toposes'>From toposes to higher toposes</a></li> <li><a href='#AdjunctionToLocallyPresentable'>From locally presentable categories to toposes</a></li> <li><a href='#Limits'>Limits and colimits</a></li> <ul> <li><a href='#Colimits'>Colimits</a></li> <li><a href='#Pullbacks'>Pullbacks</a></li> </ul> <li><a href='#free_loop_spaces'>Free loop spaces</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="definition">Definition</h2> <p>By <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Topos</mi></mrow><annotation encoding="application/x-tex">Topos</annotation></semantics></math></strong> (or <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Toposes</mi></mrow><annotation encoding="application/x-tex">Toposes</annotation></semantics></math></strong>) is denoted the <a class="existingWikiWord" href="/nlab/show/category">category</a> of <a class="existingWikiWord" href="/nlab/show/topos">topos</a>es. Usually this means:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/object">object</a>s are <a class="existingWikiWord" href="/nlab/show/topos">topos</a>es;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/morphism">morphism</a>s are <a class="existingWikiWord" href="/nlab/show/geometric+morphism">geometric morphism</a>s of toposes.</p> </li> </ul> <p>This is naturally a <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a>, where</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/2-morphism">2-morphism</a> are <a class="existingWikiWord" href="/nlab/show/geometric+transformation">geometric transformation</a>s</li> </ul> <p>That is, a 2-morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>→</mo><mi>g</mi></mrow><annotation encoding="application/x-tex">f\to g</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup><mo>→</mo><msup><mi>g</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">f^* \to g^*</annotation></semantics></math> (which is, by <a class="existingWikiWord" href="/nlab/show/mate">mate</a> calculus, equivalent to a natural transformation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>g</mi> <mo>*</mo></msub><mo>→</mo><msub><mi>f</mi> <mo>*</mo></msub></mrow><annotation encoding="application/x-tex">g_* \to f_*</annotation></semantics></math> between <a class="existingWikiWord" href="/nlab/show/direct+image">direct image</a>s). Thus, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Toposes</mi></mrow><annotation encoding="application/x-tex">Toposes</annotation></semantics></math> is equivalent to both of</p> <ul> <li>the (non-full) <a class="existingWikiWord" href="/nlab/show/sub-2-category">sub-2-category</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Cat</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">Cat^{op}</annotation></semantics></math> on categories that are toposes and morphisms that are the inverse image parts of geometric morphisms, and</li> <li>the (non-full) sub-2-category of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Cat</mi> <mi>co</mi></msup></mrow><annotation encoding="application/x-tex">Cat^{co}</annotation></semantics></math> on categories that are toposes and morphisms that are the direct image parts of geometric morphisms.</li> </ul> <h3 id="related_2categories">Related 2-categories</h3> <ul> <li> <p>There is also the sub-2-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ShToposes</mi><mo>=</mo><mi>GrToposes</mi></mrow><annotation encoding="application/x-tex">ShToposes = GrToposes</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/sheaf+topos">sheaf topos</a>es (i.e. Grothendieck toposes).</p> </li> <li> <p>Note that in some literature this 2-category is denoted merely <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Top</mi></mrow><annotation encoding="application/x-tex">Top</annotation></semantics></math>, but that is also commonly used to denote <a class="existingWikiWord" href="/nlab/show/Top">the category</a> of <a class="existingWikiWord" href="/nlab/show/topological+spaces">topological spaces</a>.</p> </li> <li> <p>We obtain a very different 2-category of toposes if we take the morphisms to be <a class="existingWikiWord" href="/nlab/show/logical+functors">logical functors</a>; this 2-category is sometimes denoted <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Log</mi></mrow><annotation encoding="application/x-tex">Log</annotation></semantics></math> or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>LogTopos</mi></mrow><annotation encoding="application/x-tex">LogTopos</annotation></semantics></math>.</p> </li> </ul> <h2 id="properties">Properties</h2> <h3 id="from_topological_spaces_to_toposes">From topological spaces to toposes</h3> <p>The operation of forming <a class="existingWikiWord" href="/nlab/show/categories+of+sheaves">categories of sheaves</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Sh</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>:</mo><mi>Top</mi><mo>→</mo><mi>ShToposes</mi></mrow><annotation encoding="application/x-tex"> Sh(-) : Top \to ShToposes </annotation></semantics></math></div> <p>embeds <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>s into toposes. For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">f : X \to Y</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/continuous+map">continuous map</a> we have that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Sh</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Sh(f)</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/geometric+morphism">geometric morphism</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Sh</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>:</mo><mi>Sh</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mover><munder><mo>→</mo><mrow><msub><mi>f</mi> <mo>*</mo></msub></mrow></munder><mover><mo>←</mo><mrow><msup><mi>f</mi> <mo>*</mo></msup></mrow></mover></mover><mi>Sh</mi><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> Sh(f) : Sh(X) \stackrel{\overset{f^*}{\leftarrow}}{\underset{f_*}{\to}} Sh(Y) </annotation></semantics></math></div> <p>with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mo>*</mo></msub></mrow><annotation encoding="application/x-tex">f_*</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/direct+image">direct image</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">f^*</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/inverse+image">inverse image</a>.</p> <p>Strictly speaking, this functor is not an <a class="existingWikiWord" href="/nlab/show/embedding">embedding</a> if we consider <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Top</mi></mrow><annotation encoding="application/x-tex">Top</annotation></semantics></math> as a 1-category and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Toposes</mi></mrow><annotation encoding="application/x-tex">Toposes</annotation></semantics></math> as a 2-category, since it is then not <a class="existingWikiWord" href="/nlab/show/fully+faithful">fully faithful</a> in the 2-categorical sense—there can be nontrivial 2-cells between geometric morphisms between toposes of sheaves on topological spaces.</p> <p>However, if we regard <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Top</mi></mrow><annotation encoding="application/x-tex">Top</annotation></semantics></math> as a <a class="existingWikiWord" href="/nlab/show/%281%2C2%29-category">(1,2)-category</a> where the 2-cells are inequalities in the <a class="existingWikiWord" href="/nlab/show/specialization+ordering">specialization ordering</a>, then this functor does become a 2-categorically full embedding (i.e. an equivalence on hom-categories) if we restrict to the full subcategory <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SobTop</mi></mrow><annotation encoding="application/x-tex">SobTop</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/sober+spaces">sober spaces</a>. This embedding can also be extended from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SobTop</mi></mrow><annotation encoding="application/x-tex">SobTop</annotation></semantics></math> to the entire category of <a class="existingWikiWord" href="/nlab/show/locales">locales</a> (which can be viewed as “Grothendieck 0-toposes”).</p> <h3 id="from_toposes_to_higher_toposes">From toposes to higher toposes</h3> <p>There are similar full embeddings <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ShTopos</mi><mo>↪</mo><mi>Sh</mi><mn>2</mn><mi>Topos</mi></mrow><annotation encoding="application/x-tex">ShTopos \hookrightarrow Sh 2 Topos</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ShTopos</mi><mo>↪</mo><mi>Sh</mi><mo stretchy="false">(</mo><mi>n</mi><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Topos</mi></mrow><annotation encoding="application/x-tex">ShTopos \hookrightarrow Sh(n,1)Topos</annotation></semantics></math> of sheaf (1-)toposes into <a class="existingWikiWord" href="/nlab/show/2-sheaf">2-sheaf</a> <a class="existingWikiWord" href="/nlab/show/2-topos">2-topos</a>es and sheaf <a class="existingWikiWord" href="/nlab/show/%28n%2C1%29-topos">(n,1)-topos</a>es for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>∞</mn></mrow><annotation encoding="application/x-tex">2\le n\le \infty</annotation></semantics></math>. Note that these embeddings are <em>not</em> the identity functor on underlying categories: a 1-topos is not itself an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-topos, instead we have to take <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-sheaves on a suitable generating <a class="existingWikiWord" href="/nlab/show/site">site</a> for it.</p> <h3 id="AdjunctionToLocallyPresentable">From locally presentable categories to toposes</h3> <p>There is a canonical <a class="existingWikiWord" href="/nlab/show/forgetful+functor">forgetful functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>:</mo><mi>Topos</mi><mo>→</mo></mrow><annotation encoding="application/x-tex"> U : Topos \to</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a> that lands, by definition, in the sub-2-category of <a class="existingWikiWord" href="/nlab/show/locally+presentable+categories">locally presentable categories</a> and <a class="existingWikiWord" href="/nlab/show/functors">functors</a> which preserve all limits / are <a class="existingWikiWord" href="/nlab/show/right+adjoints">right adjoints</a>.</p> <p>This <a class="existingWikiWord" href="/nlab/show/2-functor">2-functor</a> has a <a class="existingWikiWord" href="/nlab/show/2-adjunction">right 2-adjoint</a> (<a href="#BungeCarboni">Bunge-Carboni</a>).</p> <h3 id="Limits">Limits and colimits</h3> <p>The 2-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Topos</mi></mrow><annotation encoding="application/x-tex">Topos</annotation></semantics></math> is not all that well-endowed with <a class="existingWikiWord" href="/nlab/show/limits">limits</a>, but its <a class="existingWikiWord" href="/nlab/show/slice+categories">slice categories</a> are finitely complete <a class="existingWikiWord" href="/nlab/show/2-limit">as 2-categories</a>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ShTopos</mi></mrow><annotation encoding="application/x-tex">ShTopos</annotation></semantics></math> is closed under finite limits in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Topos</mi><mo stretchy="false">/</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">Topos/Set</annotation></semantics></math>. In particular, the <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal object</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ShToposes</mi></mrow><annotation encoding="application/x-tex">ShToposes</annotation></semantics></math> is the topos <a class="existingWikiWord" href="/nlab/show/Set">Set</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>≃</mo><mi>Sh</mi><mo stretchy="false">(</mo><mo>*</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\simeq Sh(*)</annotation></semantics></math>.</p> <h4 id="Colimits">Colimits</h4> <p>The supply with colimits is better:</p> <div class="num_prop" id="ColimitsByInverseImageLimits"> <h6 id="proposition">Proposition</h6> <p>All small (indexed) <a class="existingWikiWord" href="/nlab/show/2-colimit">2-colimit</a>s in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ShTopos</mi></mrow><annotation encoding="application/x-tex">ShTopos</annotation></semantics></math> exists and are computed as (indexed) <a class="existingWikiWord" href="/nlab/show/2-limit">2-limit</a>s in <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a> of the underlying <a class="existingWikiWord" href="/nlab/show/inverse+image">inverse image</a> functors.</p> </div> <p>This appears as (<a href="#Moerdijk">Moerdijk, theorem 2.5</a>)</p> <div class="num_prop"> <h6 id="proposition_2">Proposition</h6> <p>Let</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>ℱ</mi></mtd> <mtd><mover><mo>→</mo><mrow><msub><mi>p</mi> <mn>2</mn></msub></mrow></mover></mtd> <mtd><msub><mi>ℰ</mi> <mn>2</mn></msub></mtd></mtr> <mtr><mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><msub><mi>p</mi> <mn>1</mn></msub></mrow></mpadded></msup><mo stretchy="false">↓</mo></mtd> <mtd><mo>⇙</mo></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mrow><msub><mi>f</mi> <mn>2</mn></msub></mrow></mpadded></msup></mtd></mtr> <mtr><mtd><msub><mi>ℰ</mi> <mn>1</mn></msub></mtd> <mtd><munder><mo>→</mo><mrow><msub><mi>f</mi> <mn>1</mn></msub></mrow></munder></mtd> <mtd><mi>ℰ</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \mathcal{F} &\stackrel{p_2}{\to}& \mathcal{E}_2 \\ {}^{\mathllap{p_1}}\downarrow &\swArrow& \downarrow^{\mathrlap{f_2}} \\ \mathcal{E}_1 &\underset{f_1}{\to}& \mathcal{E} } </annotation></semantics></math></div> <p>be a <a class="existingWikiWord" href="/nlab/show/2-pullback">2-pullback</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Topos</mi></mrow><annotation encoding="application/x-tex">Topos</annotation></semantics></math> such that</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>f</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">f_1, f_2</annotation></semantics></math> are both <a class="existingWikiWord" href="/nlab/show/pseudomonic+morphism">pseudomonic morphism</a>s</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℰ</mi> <mn>1</mn></msub><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo><msub><mi>ℰ</mi> <mn>2</mn></msub><mo>→</mo><mi>ℰ</mi></mrow><annotation encoding="application/x-tex">\mathcal{E}_1 \coprod \mathcal{E}_2 \to \mathcal{E}</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/effective+epimorphism">effective epimorphism</a>;</p> </li> </ul> <p>then the diagram of <a class="existingWikiWord" href="/nlab/show/inverse+image">inverse image</a> functors</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>ℱ</mi></mtd> <mtd><mover><mo>←</mo><mrow><msubsup><mi>p</mi> <mn>2</mn> <mo>*</mo></msubsup></mrow></mover></mtd> <mtd><msub><mi>ℰ</mi> <mn>2</mn></msub></mtd></mtr> <mtr><mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><msubsup><mi>p</mi> <mn>1</mn> <mo>*</mo></msubsup></mrow></mpadded></msup><mo stretchy="false">↑</mo></mtd> <mtd><mo>⇙</mo></mtd> <mtd><msup><mo stretchy="false">↑</mo> <mpadded width="0"><mrow><msubsup><mi>f</mi> <mn>2</mn> <mo>*</mo></msubsup></mrow></mpadded></msup></mtd></mtr> <mtr><mtd><msub><mi>ℰ</mi> <mn>1</mn></msub></mtd> <mtd><munder><mo>←</mo><mrow><msubsup><mi>f</mi> <mn>1</mn> <mo>*</mo></msubsup></mrow></munder></mtd> <mtd><mi>ℰ</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \mathcal{F} &\stackrel{p_2^*}{\leftarrow}& \mathcal{E}_2 \\ {}^{\mathllap{p_1^*}}\uparrow &\swArrow& \uparrow^{\mathrlap{f_2^*}} \\ \mathcal{E}_1 &\underset{f_1^*}{\leftarrow}& \mathcal{E} } </annotation></semantics></math></div> <p>is a 2-pullback in <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a> and so by the <a href="#ColimitsByInverseImageLimits">above</a> the original square is also a 2-pushout.</p> </div> <p>This appears as theorem 5.1 in (<a href="#BungeLack">BungeLack</a>)</p> <div class="num_prop"> <h6 id="proposition_3">Proposition</h6> <p>The 2-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Topos</mi></mrow><annotation encoding="application/x-tex">Topos</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/extensive+category">extensive category</a>. Same for toposes bounded over a base.</p> </div> <p>This is in (<a href="#BungeLack">BungeLack, proposition 4.3</a>).</p> <h4 id="Pullbacks">Pullbacks</h4> <div class="num_prop"> <h6 id="proposition_4">Proposition</h6> <p>Let</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>𝒳</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mrow><mo stretchy="false">(</mo><msup><mi>g</mi> <mo>*</mo></msup><mo>⊣</mo><msub><mi>g</mi> <mo>*</mo></msub><mo stretchy="false">)</mo></mrow></mpadded></msup></mtd></mtr> <mtr><mtd><mi>𝒴</mi></mtd> <mtd><mover><mo>→</mo><mrow><mo stretchy="false">(</mo><msup><mi>f</mi> <mo>*</mo></msup><mo>⊣</mo><msub><mi>f</mi> <mo>*</mo></msub><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mi>𝒵</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ && \mathcal{X} \\ && \downarrow^{\mathrlap{(g^* \dashv g_*)}} \\ \mathcal{Y} &\stackrel{(f^* \dashv f_*)}{\to}& \mathcal{Z} } </annotation></semantics></math></div> <p>be a <a class="existingWikiWord" href="/nlab/show/diagram">diagram</a> of <a class="existingWikiWord" href="/nlab/show/toposes">toposes</a>. Then its <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a> in the <a class="existingWikiWord" href="/nlab/show/%282%2C1%29-category">(2,1)-category</a> version of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Topos</mi></mrow><annotation encoding="application/x-tex">Topos</annotation></semantics></math> is computed, roughly, by the <a class="existingWikiWord" href="/nlab/show/pushout">pushout</a> of their <a class="existingWikiWord" href="/nlab/show/sites">sites</a> of definition.</p> <p>More in detail: there exist <a class="existingWikiWord" href="/nlab/show/sites">sites</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>𝒟</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding="application/x-tex">\tilde \mathcal{D}</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">\mathcal{D}</annotation></semantics></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> with <a class="existingWikiWord" href="/nlab/show/finite+limit">finite limit</a>s and <a class="existingWikiWord" href="/nlab/show/morphisms+of+sites">morphisms of sites</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>𝒟</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↑</mo> <mpadded width="0"><mi>g</mi></mpadded></msup></mtd></mtr> <mtr><mtd><mover><mi>𝒟</mi><mo stretchy="false">˜</mo></mover></mtd> <mtd><mover><mo>←</mo><mi>f</mi></mover></mtd> <mtd><mi>𝒞</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ && \mathcal{D} \\ && \uparrow^{\mathrlap{g}} \\ \tilde \mathcal{D} &\stackrel{f}{\leftarrow}& \mathcal{C} } </annotation></semantics></math></div> <p>such that</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>𝒳</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mrow><mo stretchy="false">(</mo><msup><mi>g</mi> <mo>*</mo></msup><mo>⊣</mo><msub><mi>g</mi> <mo>*</mo></msub><mo stretchy="false">)</mo></mrow></mpadded></msup></mtd></mtr> <mtr><mtd><mi>𝒴</mi></mtd> <mtd><mover><mo>→</mo><mrow><mo stretchy="false">(</mo><msup><mi>f</mi> <mo>*</mo></msup><mo>⊣</mo><msub><mi>f</mi> <mo>*</mo></msub><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mi>𝒵</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mo>≃</mo><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>Sh</mi><mo stretchy="false">(</mo><mi>𝒟</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mrow><mo stretchy="false">(</mo><msub><mi>Lan</mi> <mi>g</mi></msub><mo>⊣</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>∘</mo><mi>g</mi><mo stretchy="false">)</mo></mrow></mpadded></msup></mtd></mtr> <mtr><mtd><mi>Sh</mi><mo stretchy="false">(</mo><mover><mi>𝒟</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo></mtd> <mtd><mover><mo>→</mo><mrow><mo stretchy="false">(</mo><msub><mi>Lan</mi> <mi>f</mi></msub><mo>⊣</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>∘</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mi>Sh</mi><mo stretchy="false">(</mo><mi>𝒞</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mo>)</mo></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \left( \array{ && \mathcal{X} \\ && \downarrow^{\mathrlap{(g^* \dashv g_*)}} \\ \mathcal{Y} &\stackrel{(f^* \dashv f_*)}{\to}& \mathcal{Z} } \right) \,\,\, \simeq \,\,\, \left( \array{ && Sh(\mathcal{D}) \\ && \downarrow^{\mathrlap{(Lan_g \dashv (-)\circ g)}} \\ Sh(\tilde \mathcal{D}) &\stackrel{(Lan_f \dashv (-)\circ f)}{\to}& Sh(\mathcal{C}) } \right) \,. </annotation></semantics></math></div> <p>Let then</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mover><mi>𝒟</mi><mo stretchy="false">˜</mo></mover><munder><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mi>𝒞</mi></munder><mi>𝒟</mi></mtd> <mtd><mover><mo>←</mo><mrow><mi>f</mi><mo>′</mo></mrow></mover></mtd> <mtd><mi>𝒟</mi></mtd></mtr> <mtr><mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><mi>g</mi><mo>′</mo></mrow></mpadded></msup><mo stretchy="false">↑</mo></mtd> <mtd><msub><mo>⇙</mo> <mo>≃</mo></msub></mtd> <mtd><msup><mo stretchy="false">↑</mo> <mpadded width="0"><mi>g</mi></mpadded></msup></mtd></mtr> <mtr><mtd><mover><mi>𝒟</mi><mo stretchy="false">˜</mo></mover></mtd> <mtd><mover><mo>←</mo><mi>f</mi></mover></mtd> <mtd><mi>𝒞</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mo>∈</mo><msup><mi>Cat</mi> <mi>lex</mi></msup></mrow><annotation encoding="application/x-tex"> \array{ \tilde \mathcal{D} \coprod_{\mathcal{C}} \mathcal{D} &\stackrel{f'}{\leftarrow}& \mathcal{D} \\ {}^{\mathllap{g'}}\uparrow &\swArrow_{\simeq}& \uparrow^{\mathrlap{g}} \\ \tilde \mathcal{D} &\stackrel{f}{\leftarrow}& \mathcal{C} } \,\,\,\,\, \in Cat^{lex} </annotation></semantics></math></div> <p>be the <a class="existingWikiWord" href="/nlab/show/pushout">pushout</a> of the underlying <a class="existingWikiWord" href="/nlab/show/categories">categories</a> in the <a class="existingWikiWord" href="/nlab/show/full+subcategory">full subcategory</a> <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mrow></mrow> <mi>lex</mi></msup><mo>⊂</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">{}^{lex} \subset Cat</annotation></semantics></math> of categories with finite limits.</p> <p>Let moreover</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Sh</mi><mo stretchy="false">(</mo><mover><mi>𝒟</mi><mo stretchy="false">˜</mo></mover><munder><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mi>𝒞</mi></munder><mi>𝒟</mi><mo stretchy="false">)</mo><mo>↪</mo><mi>PSh</mi><mo stretchy="false">(</mo><mover><mi>𝒟</mi><mo stretchy="false">˜</mo></mover><munder><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mi>𝒞</mi></munder><mi>𝒟</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> Sh(\tilde \mathcal{D} \coprod_{\mathcal{C}} \mathcal{D}) \hookrightarrow PSh(\tilde \mathcal{D} \coprod_{\mathcal{C}} \mathcal{D}) </annotation></semantics></math></div> <p>be the <a class="existingWikiWord" href="/nlab/show/reflective+subcategory">reflective subcategory</a> obtained by <a class="existingWikiWord" href="/nlab/show/localization">localization</a> at the class of morphisms generated by the inverse image <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Lan</mi> <mrow><mi>f</mi><mo>′</mo></mrow></msub><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Lan_{f'}(-)</annotation></semantics></math> of the <a class="existingWikiWord" href="/nlab/show/covering">covering</a>s of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">\mathcal{D}</annotation></semantics></math> and the inverse image <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Lan</mi> <mrow><mi>g</mi><mo>′</mo></mrow></msub><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Lan_{g'}(-)</annotation></semantics></math> of the coverings of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>𝒟</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding="application/x-tex">\tilde \mathcal{D}</annotation></semantics></math>.</p> <p>Then</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>Sh</mi><mo stretchy="false">(</mo><mover><mi>𝒟</mi><mo stretchy="false">˜</mo></mover><munder><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mi>𝒞</mi></munder><mi>𝒟</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>𝒳</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mrow><mo stretchy="false">(</mo><msup><mi>g</mi> <mo>*</mo></msup><mo>⊣</mo><msub><mi>g</mi> <mo>*</mo></msub><mo stretchy="false">)</mo></mrow></mpadded></msup></mtd></mtr> <mtr><mtd><mi>𝒴</mi></mtd> <mtd><mover><mo>→</mo><mrow><mo stretchy="false">(</mo><msup><mi>f</mi> <mo>*</mo></msup><mo>⊣</mo><msub><mi>f</mi> <mo>*</mo></msub><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mi>𝒵</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ Sh(\tilde \mathcal{D} \coprod_{\mathcal{C}} \mathcal{D}) &\to& \mathcal{X} \\ \downarrow && \downarrow^{\mathrlap{(g^* \dashv g_*)}} \\ \mathcal{Y} &\stackrel{(f^* \dashv f_*)}{\to}& \mathcal{Z} } </annotation></semantics></math></div> <p>is a <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a> square.</p> </div> <p>This appears for instance as (<a href="#Lurie">Lurie, prop. 6.3.4.6</a>).</p> <div class="num_remark"> <h6 id="remark">Remark</h6> <p>For <a class="existingWikiWord" href="/nlab/show/localic+toposes">localic toposes</a> this reduces to the statement of <a class="existingWikiWord" href="/nlab/show/localic+reflection">localic reflection</a>: the pullback of toposes is given by the of the underlying <a class="existingWikiWord" href="/nlab/show/locales">locales</a> which in turn is the <a class="existingWikiWord" href="/nlab/show/pushout">pushout</a> of the corresponding <a class="existingWikiWord" href="/nlab/show/frames">frames</a>.</p> </div> <h3 id="free_loop_spaces">Free loop spaces</h3> <p>The <a class="existingWikiWord" href="/nlab/show/free+loop+space+object">free loop space object</a> of a topos in <a class="existingWikiWord" href="/nlab/show/Topos">Topos</a> is called the <a class="existingWikiWord" href="/nlab/show/isotropy+group+of+a+topos">isotropy group of a topos</a>.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><strong>Topos</strong></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29Topos">(∞,1)Topos</a></p> </li> </ul> <h2 id="references">References</h2> <p>The characterization of colimits in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Topos</mi></mrow><annotation encoding="application/x-tex">Topos</annotation></semantics></math> is in</p> <ul id="Moerdijk"> <li><a class="existingWikiWord" href="/nlab/show/Ieke+Moerdijk">Ieke Moerdijk</a>, <em>The classifying topos of a continuous groupoid. I</em> Transaction of the American mathematical society Volume 310, Number 2, (1988) (<a href="http://www.ams.org/journals/tran/1988-310-02/S0002-9947-1988-0973173-9/S0002-9947-1988-0973173-9.pdf">pdf</a>)</li> </ul> <p>The fact that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Topos</mi></mrow><annotation encoding="application/x-tex">Topos</annotation></semantics></math> is extensive is in</p> <ul id="BungeLack"> <li><a class="existingWikiWord" href="/nlab/show/Marta+Bunge">Marta Bunge</a>, <a class="existingWikiWord" href="/nlab/show/Steve+Lack">Steve Lack</a>, <em>van Kampen theorem for toposes</em> (<a href="http://www.maths.usyd.edu.au/u/stevel/papers/vkt.ps.gz">ps</a>)</li> </ul> <p>Limits and colimits of toposes are discussed in 6.3.2-6.3.4 of</p> <ul id="Lurie"> <li><a class="existingWikiWord" href="/nlab/show/Jacob+Lurie">Jacob Lurie</a>, <em><a class="existingWikiWord" href="/nlab/show/Higher+Topos+Theory">Higher Topos Theory</a></em> .</li> </ul> <p>There this is discussed for for <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a>es, but the statements are verbatim true also for ordinary toposes (in the <a class="existingWikiWord" href="/nlab/show/%282%2C1%29-category">(2,1)-category</a> version of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Topos</mi></mrow><annotation encoding="application/x-tex">Topos</annotation></semantics></math>).</p> <p>The adjunction between toposes and locally presentable categories is discussed in</p> <ul id="BungeCarboni"> <li><a class="existingWikiWord" href="/nlab/show/Marta+Bunge">Marta Bunge</a>, <a class="existingWikiWord" href="/nlab/show/Aurelio+Carboni">Aurelio Carboni</a>, <em>The symmetric topos</em>, Journal of Pure and Applied Algebra 105:233-249, (1995)</li> </ul> <div class="property">category: <a class="category_link" href="/nlab/all_pages/category">category</a></div></body></html> </div> <div class="revisedby"> <p> Last revised on June 16, 2017 at 08:41:13. See the <a href="/nlab/history/Topos" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Topos" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/2884/#Item_5">Discuss</a><span class="backintime"><a href="/nlab/revision/Topos/15" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Topos" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Topos" accesskey="S" class="navlink" id="history" rel="nofollow">History (15 revisions)</a> <a href="/nlab/show/Topos/cite" style="color: black">Cite</a> <a href="/nlab/print/Topos" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Topos" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>