CINXE.COM

Trigonometreg - Wicipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="cy" dir="ltr"> <head> <meta charset="UTF-8"> <title>Trigonometreg - Wicipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )cywikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy" ,"wgMonthNames":["","Ionawr","Chwefror","Mawrth","Ebrill","Mai","Mehefin","Gorffennaf","Awst","Medi","Hydref","Tachwedd","Rhagfyr"],"wgRequestId":"c16cffa1-b498-4659-bafb-ad55a5b89be5","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Trigonometreg","wgTitle":"Trigonometreg","wgCurRevisionId":12650481,"wgRevisionId":12650481,"wgArticleId":24512,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Tudalennau gyda meysydd deublyg yn y Nodion","Erthyglau sy'n defnyddio Nodyn Gwybodlen pethau Wicidata","Tudalennau a chysylltiadau toredig i ffeiliau ynddynt","Trigonometreg"],"wgPageViewLanguage":"cy","wgPageContentLanguage":"cy","wgPageContentModel":"wikitext","wgRelevantPageName":"Trigonometreg","wgRelevantArticleId":24512,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"cy","pageLanguageDir":"ltr","pageVariantFallbacks":"cy"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q8084","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles": "ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions", "wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=cy&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=cy&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=cy&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/7/78/Fotothek_df_tg_0000230_Geometrie_%5E_Trigonometrie.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="755"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/7/78/Fotothek_df_tg_0000230_Geometrie_%5E_Trigonometrie.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="503"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/78/Fotothek_df_tg_0000230_Geometrie_%5E_Trigonometrie.jpg/640px-Fotothek_df_tg_0000230_Geometrie_%5E_Trigonometrie.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="402"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Trigonometreg - Wicipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//cy.m.wikipedia.org/wiki/Trigonometreg"> <link rel="alternate" type="application/x-wiki" title="Golygu" href="/w/index.php?title=Trigonometreg&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wicipedia (cy)"> <link rel="EditURI" type="application/rsd+xml" href="//cy.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://cy.wikipedia.org/wiki/Trigonometreg"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.cy"> <link rel="alternate" type="application/atom+xml" title="Ffrwd Atom Wicipedia" href="/w/index.php?title=Arbennig:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Trigonometreg rootpage-Trigonometreg skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Neidio i&#039;r cynnwys</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Safle"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Prif ddewislen" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Prif ddewislen</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Prif ddewislen</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">symud i&#039;r bar ochr</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">cuddio</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Panel llywio </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Hafan" title="Ymweld â&#039;r Hafan [z]" accesskey="z"><span>Hafan</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wicipedia:Porth_y_Gymuned" title="Pethau i&#039;w gwneud, adnoddau a thudalennau&#039;r gymuned"><span>Porth y Gymuned</span></a></li><li id="n-cafe" class="mw-list-item"><a href="/wiki/Wicipedia:Y_Caffi"><span>Y Caffi</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Categori:Materion_cyfoes" title="Gwybodaeth yn gysylltiedig â materion cyfoes"><span>Materion cyfoes</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Arbennig:RecentChanges" title="Rhestr y newidiadau diweddar ar y wici. [r]" accesskey="r"><span>Newidiadau diweddar</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Arbennig:Random" title="Llwytho tudalen ar hap [x]" accesskey="x"><span>Erthygl ar hap</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Wicipedia:Cymorth" title="Tudalennau cymorth"><span>Cymorth</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Hafan" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wicipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-cy.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-cy.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Arbennig:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Chwilio Wicipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Chwilio</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Chwilio Wicipedia" aria-label="Chwilio Wicipedia" autocapitalize="sentences" title="Chwilio Wicipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Arbennig:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Chwilio</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Offer personol"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Gwedd"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Newidiwch ymddangosiad maint ffont, lled a lliw y dudalen" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Gwedd" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Gwedd</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_cy.wikipedia.org&amp;uselang=cy" class=""><span>Rhoi</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Arbennig:CreateAccount&amp;returnto=Trigonometreg" title="Rydym yn argymell eich bod yn creu cyfri ac yn menwgofnodi. Fodd bynnag, dydy hyn ddim yn orfodol" class=""><span>Creu cyfrif</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Arbennig:UserLogin&amp;returnto=Trigonometreg" title="Fe&#039;ch anogir i fewngofnodi, er nad oes rhaid gwneud. [o]" accesskey="o" class=""><span>Mewngofnodi</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Rhagor o opsiynau" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Offer personol" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Offer personol</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Dewislen defnyddiwr" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_cy.wikipedia.org&amp;uselang=cy"><span>Rhoi</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Arbennig:CreateAccount&amp;returnto=Trigonometreg" title="Rydym yn argymell eich bod yn creu cyfri ac yn menwgofnodi. Fodd bynnag, dydy hyn ddim yn orfodol"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Creu cyfrif</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Arbennig:UserLogin&amp;returnto=Trigonometreg" title="Fe&#039;ch anogir i fewngofnodi, er nad oes rhaid gwneud. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Mewngofnodi</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Tudalennau ar gyfer golygyddion allgofnodedig <a href="/wiki/Cymorth:Cyflwyniad" aria-label="Dysgu mwy am olygu"><span>dysgu mwy</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Arbennig:MyContributions" title="Rhestr golygiadau o&#039;r cyfeiriad IP hwn [y]" accesskey="y"><span>Cyfraniadau</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Arbennig:MyTalk" title="Sgwrs ynglŷn â golygiadau o&#039;r cyfeiriad IP hwn [n]" accesskey="n"><span>Sgwrs</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Safle"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Cynnwys" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Cynnwys</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">symud i&#039;r bar ochr</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">cuddio</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Y dechrau</div> </a> </li> <li id="toc-Gofod_metrig" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Gofod_metrig"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Gofod metrig</span> </div> </a> <ul id="toc-Gofod_metrig-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hanes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Hanes"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Hanes</span> </div> </a> <ul id="toc-Hanes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cymarebau_trigonometrig" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Cymarebau_trigonometrig"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Cymarebau trigonometrig</span> </div> </a> <button aria-controls="toc-Cymarebau_trigonometrig-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toglo is-adran Cymarebau trigonometrig</span> </button> <ul id="toc-Cymarebau_trigonometrig-sublist" class="vector-toc-list"> <li id="toc-Cofyddiaeth_(Mnemonics)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cofyddiaeth_(Mnemonics)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Cofyddiaeth (Mnemonics)</span> </div> </a> <ul id="toc-Cofyddiaeth_(Mnemonics)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Y_cylch_fel_uned_a_gwerthoedd_trigonometrig_cyffredin" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Y_cylch_fel_uned_a_gwerthoedd_trigonometrig_cyffredin"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Y cylch fel uned a gwerthoedd trigonometrig cyffredin</span> </div> </a> <ul id="toc-Y_cylch_fel_uned_a_gwerthoedd_trigonometrig_cyffredin-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Ffwythianau_trigonometrig_newidynnau_real_neu_gymhlyg" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ffwythianau_trigonometrig_newidynnau_real_neu_gymhlyg"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Ffwythianau trigonometrig newidynnau real neu gymhlyg</span> </div> </a> <button aria-controls="toc-Ffwythianau_trigonometrig_newidynnau_real_neu_gymhlyg-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toglo is-adran Ffwythianau trigonometrig newidynnau real neu gymhlyg</span> </button> <ul id="toc-Ffwythianau_trigonometrig_newidynnau_real_neu_gymhlyg-sublist" class="vector-toc-list"> <li id="toc-Graffiau_o_ffwythianau_trigonometrig" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Graffiau_o_ffwythianau_trigonometrig"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Graffiau o ffwythianau trigonometrig</span> </div> </a> <ul id="toc-Graffiau_o_ffwythianau_trigonometrig-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ffwythiant_trigonometrig_gwrthdro" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ffwythiant_trigonometrig_gwrthdro"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Ffwythiant trigonometrig gwrthdro</span> </div> </a> <ul id="toc-Ffwythiant_trigonometrig_gwrthdro-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cynrychioliadau_cyfresi_pŵer" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cynrychioliadau_cyfresi_pŵer"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Cynrychioliadau cyfresi pŵer</span> </div> </a> <ul id="toc-Cynrychioliadau_cyfresi_pŵer-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cyfrifo_ffwythiannau_trigonometrig" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cyfrifo_ffwythiannau_trigonometrig"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Cyfrifo ffwythiannau trigonometrig</span> </div> </a> <ul id="toc-Cyfrifo_ffwythiannau_trigonometrig-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Ceisiadau" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ceisiadau"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Ceisiadau</span> </div> </a> <button aria-controls="toc-Ceisiadau-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toglo is-adran Ceisiadau</span> </button> <ul id="toc-Ceisiadau-sublist" class="vector-toc-list"> <li id="toc-Seryddiaeth" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Seryddiaeth"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Seryddiaeth</span> </div> </a> <ul id="toc-Seryddiaeth-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fforio" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fforio"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Fforio</span> </div> </a> <ul id="toc-Fforio-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mesur_tir" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mesur_tir"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Mesur tir</span> </div> </a> <ul id="toc-Mesur_tir-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ffwythiannau_cyfnodol" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ffwythiannau_cyfnodol"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Ffwythiannau cyfnodol</span> </div> </a> <ul id="toc-Ffwythiannau_cyfnodol-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Darllen_pellach" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Darllen_pellach"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Darllen pellach</span> </div> </a> <ul id="toc-Darllen_pellach-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dolenni_allanol" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Dolenni_allanol"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Dolenni allanol</span> </div> </a> <ul id="toc-Dolenni_allanol-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cyfeiriadau" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Cyfeiriadau"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Cyfeiriadau</span> </div> </a> <ul id="toc-Cyfeiriadau-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Cynnwys" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toglo&#039;r tabl cynnwys" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toglo&#039;r tabl cynnwys</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Trigonometreg</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Ewch i erthygl mewn iaith arall. Ar gael mewn 139 iaith" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-139" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">139 iaith</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Driehoeksmeting" title="Driehoeksmeting - Affricaneg" lang="af" hreflang="af" data-title="Driehoeksmeting" data-language-autonym="Afrikaans" data-language-local-name="Affricaneg" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Trigonometrie" title="Trigonometrie - Almaeneg y Swistir" lang="gsw" hreflang="gsw" data-title="Trigonometrie" data-language-autonym="Alemannisch" data-language-local-name="Almaeneg y Swistir" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%89%B5%E1%88%AA%E1%8C%8E%E1%8A%96%E1%88%9C%E1%89%B5%E1%88%AA" title="ትሪጎኖሜትሪ - Amhareg" lang="am" hreflang="am" data-title="ትሪጎኖሜትሪ" data-language-autonym="አማርኛ" data-language-local-name="Amhareg" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Trigonometr%C3%ADa" title="Trigonometría - Aragoneg" lang="an" hreflang="an" data-title="Trigonometría" data-language-autonym="Aragonés" data-language-local-name="Aragoneg" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-anp mw-list-item"><a href="https://anp.wikipedia.org/wiki/%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A5%8B%E0%A4%A3%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A4%BF" title="त्रिकोणमिति - Angika" lang="anp" hreflang="anp" data-title="त्रिकोणमिति" data-language-autonym="अंगिका" data-language-local-name="Angika" class="interlanguage-link-target"><span>अंगिका</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AD%D8%B3%D8%A7%D8%A8_%D8%A7%D9%84%D9%85%D8%AB%D9%84%D8%AB%D8%A7%D8%AA" title="حساب المثلثات - Arabeg" lang="ar" hreflang="ar" data-title="حساب المثلثات" data-language-autonym="العربية" data-language-local-name="Arabeg" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D8%AD%D8%B3%D8%A7%D8%A8_%D8%A7%D9%84%D9%85%D8%AB%D9%84%D8%AB%D8%A7%D8%AA" title="حساب المثلثات - Arabeg yr Aifft" lang="arz" hreflang="arz" data-title="حساب المثلثات" data-language-autonym="مصرى" data-language-local-name="Arabeg yr Aifft" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%A4%E0%A7%8D%E0%A7%B0%E0%A6%BF%E0%A6%95%E0%A7%8B%E0%A6%A3%E0%A6%AE%E0%A6%BF%E0%A6%A4%E0%A6%BF" title="ত্ৰিকোণমিতি - Asameg" lang="as" hreflang="as" data-title="ত্ৰিকোণমিতি" data-language-autonym="অসমীয়া" data-language-local-name="Asameg" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Trigonometr%C3%ADa" title="Trigonometría - Astwrianeg" lang="ast" hreflang="ast" data-title="Trigonometría" data-language-autonym="Asturianu" data-language-local-name="Astwrianeg" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Triqonometriya" title="Triqonometriya - Aserbaijaneg" lang="az" hreflang="az" data-title="Triqonometriya" data-language-autonym="Azərbaycanca" data-language-local-name="Aserbaijaneg" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%A7%D9%88%DA%86%E2%80%8C%D8%A8%D9%88%D8%AC%D8%A7%D9%82_%D8%A8%DB%8C%D9%84%DB%8C%D9%85%DB%8C" title="اوچ‌بوجاق بیلیمی - South Azerbaijani" lang="azb" hreflang="azb" data-title="اوچ‌بوجاق بیلیمی" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Тригонометрия - Bashcorteg" lang="ba" hreflang="ba" data-title="Тригонометрия" data-language-autonym="Башҡортса" data-language-local-name="Bashcorteg" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Tr%C4%97guonuometr%C4%97j%C4%97" title="Trėguonuometrėjė - Samogiteg" lang="sgs" hreflang="sgs" data-title="Trėguonuometrėjė" data-language-autonym="Žemaitėška" data-language-local-name="Samogiteg" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Trigonometriya" title="Trigonometriya - Central Bikol" lang="bcl" hreflang="bcl" data-title="Trigonometriya" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A2%D1%80%D1%8B%D0%B3%D0%B0%D0%BD%D0%B0%D0%BC%D0%B5%D1%82%D1%80%D1%8B%D1%8F" title="Трыганаметрыя - Belarwseg" lang="be" hreflang="be" data-title="Трыганаметрыя" data-language-autonym="Беларуская" data-language-local-name="Belarwseg" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A2%D1%80%D1%8B%D0%B3%D0%B0%D0%BD%D0%B0%D0%BC%D1%8D%D1%82%D1%80%D1%8B%D1%8F" title="Трыганамэтрыя - Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Трыганамэтрыя" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Тригонометрия - Bwlgareg" lang="bg" hreflang="bg" data-title="Тригонометрия" data-language-autonym="Български" data-language-local-name="Bwlgareg" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%A4%E0%A7%8D%E0%A6%B0%E0%A6%BF%E0%A6%95%E0%A7%8B%E0%A6%A3%E0%A6%AE%E0%A6%BF%E0%A6%A4%E0%A6%BF" title="ত্রিকোণমিতি - Bengaleg" lang="bn" hreflang="bn" data-title="ত্রিকোণমিতি" data-language-autonym="বাংলা" data-language-local-name="Bengaleg" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Trigonometriezh" title="Trigonometriezh - Llydaweg" lang="br" hreflang="br" data-title="Trigonometriezh" data-language-autonym="Brezhoneg" data-language-local-name="Llydaweg" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Trigonometrija" title="Trigonometrija - Bosnieg" lang="bs" hreflang="bs" data-title="Trigonometrija" data-language-autonym="Bosanski" data-language-local-name="Bosnieg" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Catalaneg" lang="ca" hreflang="ca" data-title="Trigonometria" data-language-autonym="Català" data-language-local-name="Catalaneg" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%B3%DB%8E%DA%AF%DB%86%D8%B4%DB%95%D8%B2%D8%A7%D9%86%DB%8C" title="سێگۆشەزانی - Cwrdeg Sorani" lang="ckb" hreflang="ckb" data-title="سێگۆشەزانی" data-language-autonym="کوردی" data-language-local-name="Cwrdeg Sorani" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-co mw-list-item"><a href="https://co.wikipedia.org/wiki/Trigunumitria" title="Trigunumitria - Corseg" lang="co" hreflang="co" data-title="Trigunumitria" data-language-autonym="Corsu" data-language-local-name="Corseg" class="interlanguage-link-target"><span>Corsu</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Trigonometrie" title="Trigonometrie - Tsieceg" lang="cs" hreflang="cs" data-title="Trigonometrie" data-language-autonym="Čeština" data-language-local-name="Tsieceg" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8" title="Тригонометри - Tshwfasheg" lang="cv" hreflang="cv" data-title="Тригонометри" data-language-autonym="Чӑвашла" data-language-local-name="Tshwfasheg" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Trigonometri" title="Trigonometri - Daneg" lang="da" hreflang="da" data-title="Trigonometri" data-language-autonym="Dansk" data-language-local-name="Daneg" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Trigonometrie" title="Trigonometrie - Almaeneg" lang="de" hreflang="de" data-title="Trigonometrie" data-language-autonym="Deutsch" data-language-local-name="Almaeneg" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A4%CF%81%CE%B9%CE%B3%CF%89%CE%BD%CE%BF%CE%BC%CE%B5%CF%84%CF%81%CE%AF%CE%B1" title="Τριγωνομετρία - Groeg" lang="el" hreflang="el" data-title="Τριγωνομετρία" data-language-autonym="Ελληνικά" data-language-local-name="Groeg" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/Trigonometr%C3%AE" title="Trigonometrî - Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Trigonometrî" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Trigonometry" title="Trigonometry - Saesneg" lang="en" hreflang="en" data-title="Trigonometry" data-language-autonym="English" data-language-local-name="Saesneg" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Trigonometrio" title="Trigonometrio - Esperanto" lang="eo" hreflang="eo" data-title="Trigonometrio" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Trigonometr%C3%ADa" title="Trigonometría - Sbaeneg" lang="es" hreflang="es" data-title="Trigonometría" data-language-autonym="Español" data-language-local-name="Sbaeneg" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Trigonomeetria" title="Trigonomeetria - Estoneg" lang="et" hreflang="et" data-title="Trigonomeetria" data-language-autonym="Eesti" data-language-local-name="Estoneg" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Basgeg" lang="eu" hreflang="eu" data-title="Trigonometria" data-language-autonym="Euskara" data-language-local-name="Basgeg" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-ext mw-list-item"><a href="https://ext.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Extremadureg" lang="ext" hreflang="ext" data-title="Trigonometria" data-language-autonym="Estremeñu" data-language-local-name="Extremadureg" class="interlanguage-link-target"><span>Estremeñu</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%AB%D9%84%D8%AB%D8%A7%D8%AA" title="مثلثات - Perseg" lang="fa" hreflang="fa" data-title="مثلثات" data-language-autonym="فارسی" data-language-local-name="Perseg" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Ffinneg" lang="fi" hreflang="fi" data-title="Trigonometria" data-language-autonym="Suomi" data-language-local-name="Ffinneg" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Trigonomeetri%C3%A4" title="Trigonomeetriä - Võro" lang="vro" hreflang="vro" data-title="Trigonomeetriä" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Trigonometri" title="Trigonometri - Ffaröeg" lang="fo" hreflang="fo" data-title="Trigonometri" data-language-autonym="Føroyskt" data-language-local-name="Ffaröeg" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Trigonom%C3%A9trie" title="Trigonométrie - Ffrangeg" lang="fr" hreflang="fr" data-title="Trigonométrie" data-language-autonym="Français" data-language-local-name="Ffrangeg" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Trigonometrii" title="Trigonometrii - Ffriseg Gogleddol" lang="frr" hreflang="frr" data-title="Trigonometrii" data-language-autonym="Nordfriisk" data-language-local-name="Ffriseg Gogleddol" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Triant%C3%A1nacht" title="Triantánacht - Gwyddeleg" lang="ga" hreflang="ga" data-title="Triantánacht" data-language-autonym="Gaeilge" data-language-local-name="Gwyddeleg" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E5%AD%B8" title="三角學 - Gan" lang="gan" hreflang="gan" data-title="三角學" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Trigonom%C3%A9tri" title="Trigonométri - Guianan Creole" lang="gcr" hreflang="gcr" data-title="Trigonométri" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Trigonometr%C3%ADa" title="Trigonometría - Galisieg" lang="gl" hreflang="gl" data-title="Trigonometría" data-language-autonym="Galego" data-language-local-name="Galisieg" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%A4%E0%AB%8D%E0%AA%B0%E0%AA%BF%E0%AA%95%E0%AB%8B%E0%AA%A3%E0%AA%AE%E0%AA%BF%E0%AA%A4%E0%AA%BF" title="ત્રિકોણમિતિ - Gwjarati" lang="gu" hreflang="gu" data-title="ત્રિકોણમિતિ" data-language-autonym="ગુજરાતી" data-language-local-name="Gwjarati" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%98%D7%A8%D7%99%D7%92%D7%95%D7%A0%D7%95%D7%9E%D7%98%D7%A8%D7%99%D7%94" title="טריגונומטריה - Hebraeg" lang="he" hreflang="he" data-title="טריגונומטריה" data-language-autonym="עברית" data-language-local-name="Hebraeg" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A5%8B%E0%A4%A3%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A4%BF" title="त्रिकोणमिति - Hindi" lang="hi" hreflang="hi" data-title="त्रिकोणमिति" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Trigonometry" title="Trigonometry - Fiji Hindi" lang="hif" hreflang="hif" data-title="Trigonometry" data-language-autonym="Fiji Hindi" data-language-local-name="Fiji Hindi" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Trigonometrija" title="Trigonometrija - Croateg" lang="hr" hreflang="hr" data-title="Trigonometrija" data-language-autonym="Hrvatski" data-language-local-name="Croateg" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Hwngareg" lang="hu" hreflang="hu" data-title="Trigonometria" data-language-autonym="Magyar" data-language-local-name="Hwngareg" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B5%D5%BC%D5%A1%D5%B6%D5%AF%D5%B5%D5%B8%D6%82%D5%B6%D5%A1%D5%B9%D5%A1%D6%83%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Եռանկյունաչափություն - Armeneg" lang="hy" hreflang="hy" data-title="Եռանկյունաչափություն" data-language-autonym="Հայերեն" data-language-local-name="Armeneg" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Interlingua" lang="ia" hreflang="ia" data-title="Trigonometria" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-iba mw-list-item"><a href="https://iba.wikipedia.org/wiki/Trigonometri" title="Trigonometri - Ibaneg" lang="iba" hreflang="iba" data-title="Trigonometri" data-language-autonym="Jaku Iban" data-language-local-name="Ibaneg" class="interlanguage-link-target"><span>Jaku Iban</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Trigonometri" title="Trigonometri - Indoneseg" lang="id" hreflang="id" data-title="Trigonometri" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indoneseg" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ilo mw-list-item"><a href="https://ilo.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Ilocaneg" lang="ilo" hreflang="ilo" data-title="Trigonometria" data-language-autonym="Ilokano" data-language-local-name="Ilocaneg" class="interlanguage-link-target"><span>Ilokano</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Trigonometrio" title="Trigonometrio - Ido" lang="io" hreflang="io" data-title="Trigonometrio" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Hornafr%C3%A6%C3%B0i" title="Hornafræði - Islandeg" lang="is" hreflang="is" data-title="Hornafræði" data-language-autonym="Íslenska" data-language-local-name="Islandeg" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Eidaleg" lang="it" hreflang="it" data-title="Trigonometria" data-language-autonym="Italiano" data-language-local-name="Eidaleg" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E6%B3%95" title="三角法 - Japaneeg" lang="ja" hreflang="ja" data-title="三角法" data-language-autonym="日本語" data-language-local-name="Japaneeg" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Chriganamichri" title="Chriganamichri - Jamaican Creole English" lang="jam" hreflang="jam" data-title="Chriganamichri" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/Trigonom%C3%A8tri" title="Trigonomètri - Jafanaeg" lang="jv" hreflang="jv" data-title="Trigonomètri" data-language-autonym="Jawa" data-language-local-name="Jafanaeg" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A2%E1%83%A0%E1%83%98%E1%83%92%E1%83%9D%E1%83%9C%E1%83%9D%E1%83%9B%E1%83%94%E1%83%A2%E1%83%A0%E1%83%98%E1%83%90" title="ტრიგონომეტრია - Georgeg" lang="ka" hreflang="ka" data-title="ტრიგონომეტრია" data-language-autonym="ქართული" data-language-local-name="Georgeg" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kaa mw-list-item"><a href="https://kaa.wikipedia.org/wiki/Trigonometriya" title="Trigonometriya - Cara-Calpaceg" lang="kaa" hreflang="kaa" data-title="Trigonometriya" data-language-autonym="Qaraqalpaqsha" data-language-local-name="Cara-Calpaceg" class="interlanguage-link-target"><span>Qaraqalpaqsha</span></a></li><li class="interlanguage-link interwiki-kbp mw-list-item"><a href="https://kbp.wikipedia.org/wiki/K%C9%94l%C9%94m%C9%A9%C5%8B_naadozo_t%CA%8A_pilinzi_maz%CA%8A%CA%8A" title="Kɔlɔmɩŋ naadozo tʊ pilinzi mazʊʊ - Kabiye" lang="kbp" hreflang="kbp" data-title="Kɔlɔmɩŋ naadozo tʊ pilinzi mazʊʊ" data-language-autonym="Kabɩyɛ" data-language-local-name="Kabiye" class="interlanguage-link-target"><span>Kabɩyɛ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Тригонометрия - Casacheg" lang="kk" hreflang="kk" data-title="Тригонометрия" data-language-autonym="Қазақша" data-language-local-name="Casacheg" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%8F%E1%9F%92%E1%9E%9A%E1%9E%B8%E1%9E%80%E1%9F%84%E1%9E%8E%E1%9E%98%E1%9E%B6%E1%9E%8F%E1%9F%92%E1%9E%9A" title="ត្រីកោណមាត្រ - Chmereg" lang="km" hreflang="km" data-title="ត្រីកោណមាត្រ" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Chmereg" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%82%BC%EA%B0%81%EB%B2%95" title="삼각법 - Coreeg" lang="ko" hreflang="ko" data-title="삼각법" data-language-autonym="한국어" data-language-local-name="Coreeg" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/S%C3%AAgo%C5%9Fenas%C3%AE" title="Sêgoşenasî - Cwrdeg" lang="ku" hreflang="ku" data-title="Sêgoşenasî" data-language-autonym="Kurdî" data-language-local-name="Cwrdeg" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Тригонометрия - Cirgiseg" lang="ky" hreflang="ky" data-title="Тригонометрия" data-language-autonym="Кыргызча" data-language-local-name="Cirgiseg" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Lladin" lang="la" hreflang="la" data-title="Trigonometria" data-language-autonym="Latina" data-language-local-name="Lladin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Lingua Franca Nova" lang="lfn" hreflang="lfn" data-title="Trigonometria" data-language-autonym="Lingua Franca Nova" data-language-local-name="Lingua Franca Nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-lg mw-list-item"><a href="https://lg.wikipedia.org/wiki/Essomampuyisatu_(Trigonometry)" title="Essomampuyisatu (Trigonometry) - Ganda" lang="lg" hreflang="lg" data-title="Essomampuyisatu (Trigonometry)" data-language-autonym="Luganda" data-language-local-name="Ganda" class="interlanguage-link-target"><span>Luganda</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Goniometrie" title="Goniometrie - Limbwrgeg" lang="li" hreflang="li" data-title="Goniometrie" data-language-autonym="Limburgs" data-language-local-name="Limbwrgeg" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Lombardeg" lang="lmo" hreflang="lmo" data-title="Trigonometria" data-language-autonym="Lombard" data-language-local-name="Lombardeg" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BB%84%E0%BA%95%E0%BA%A1%E0%BA%B8%E0%BA%A1" title="ໄຕມຸມ - Laoeg" lang="lo" hreflang="lo" data-title="ໄຕມຸມ" data-language-autonym="ລາວ" data-language-local-name="Laoeg" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Trigonometrija" title="Trigonometrija - Lithwaneg" lang="lt" hreflang="lt" data-title="Trigonometrija" data-language-autonym="Lietuvių" data-language-local-name="Lithwaneg" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Trigonometrija" title="Trigonometrija - Latfieg" lang="lv" hreflang="lv" data-title="Trigonometrija" data-language-autonym="Latviešu" data-language-local-name="Latfieg" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%98%D0%B0" title="Тригонометрија - Macedoneg" lang="mk" hreflang="mk" data-title="Тригонометрија" data-language-autonym="Македонски" data-language-local-name="Macedoneg" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%A4%E0%B5%8D%E0%B4%B0%E0%B4%BF%E0%B4%95%E0%B5%8B%E0%B4%A3%E0%B4%AE%E0%B4%BF%E0%B4%A4%E0%B4%BF" title="ത്രികോണമിതി - Malayalam" lang="ml" hreflang="ml" data-title="ത്രികോണമിതി" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A5%8B%E0%A4%A3%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A5%80" title="त्रिकोणमिती - Marathi" lang="mr" hreflang="mr" data-title="त्रिकोणमिती" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Trigonometri" title="Trigonometri - Maleieg" lang="ms" hreflang="ms" data-title="Trigonometri" data-language-autonym="Bahasa Melayu" data-language-local-name="Maleieg" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%90%E1%80%BC%E1%80%AE%E1%80%82%E1%80%AD%E1%80%AF%E1%80%94%E1%80%AD%E1%80%AF%E1%80%99%E1%80%B1%E1%80%90%E1%80%BC%E1%80%AE" title="တြီဂိုနိုမေတြီ - Byrmaneg" lang="my" hreflang="my" data-title="တြီဂိုနိုမေတြီ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Byrmaneg" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Trigonometrie" title="Trigonometrie - Almaeneg Isel" lang="nds" hreflang="nds" data-title="Trigonometrie" data-language-autonym="Plattdüütsch" data-language-local-name="Almaeneg Isel" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A5%8B%E0%A4%A3%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A4%BF" title="त्रिकोणमिति - Nepaleg" lang="ne" hreflang="ne" data-title="त्रिकोणमिति" data-language-autonym="नेपाली" data-language-local-name="Nepaleg" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-new mw-list-item"><a href="https://new.wikipedia.org/wiki/%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%97%E0%A5%8B%E0%A4%A8%E0%A5%8B%E0%A4%AE%E0%A5%87%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF" title="त्रिगोनोमेत्रि - Newaeg" lang="new" hreflang="new" data-title="त्रिगोनोमेत्रि" data-language-autonym="नेपाल भाषा" data-language-local-name="Newaeg" class="interlanguage-link-target"><span>नेपाल भाषा</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Goniometrie" title="Goniometrie - Iseldireg" lang="nl" hreflang="nl" data-title="Goniometrie" data-language-autonym="Nederlands" data-language-local-name="Iseldireg" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Trigonometri" title="Trigonometri - Norwyeg Nynorsk" lang="nn" hreflang="nn" data-title="Trigonometri" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwyeg Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Trigonometri" title="Trigonometri - Norwyeg Bokmål" lang="nb" hreflang="nb" data-title="Trigonometri" data-language-autonym="Norsk bokmål" data-language-local-name="Norwyeg Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Ocsitaneg" lang="oc" hreflang="oc" data-title="Trigonometria" data-language-autonym="Occitan" data-language-local-name="Ocsitaneg" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Rogkofa" title="Rogkofa - Oromo" lang="om" hreflang="om" data-title="Rogkofa" data-language-autonym="Oromoo" data-language-local-name="Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%A4%E0%AD%8D%E0%AC%B0%E0%AC%BF%E0%AC%95%E0%AD%8B%E0%AC%A3%E0%AC%AE%E0%AC%BF%E0%AC%A4%E0%AC%BF" title="ତ୍ରିକୋଣମିତି - Odia" lang="or" hreflang="or" data-title="ତ୍ରିକୋଣମିତି" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="Odia" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%A4%E0%A8%BF%E0%A8%95%E0%A9%8B%E0%A8%A3%E0%A8%AE%E0%A8%BF%E0%A8%A4%E0%A9%80" title="ਤਿਕੋਣਮਿਤੀ - Pwnjabeg" lang="pa" hreflang="pa" data-title="ਤਿਕੋਣਮਿਤੀ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Pwnjabeg" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Trygonometria" title="Trygonometria - Pwyleg" lang="pl" hreflang="pl" data-title="Trygonometria" data-language-autonym="Polski" data-language-local-name="Pwyleg" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Trigonometr%C3%ACa" title="Trigonometrìa - Piedmonteg" lang="pms" hreflang="pms" data-title="Trigonometrìa" data-language-autonym="Piemontèis" data-language-local-name="Piedmonteg" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%B9%D8%B1%DB%8C%DA%AF%D9%86%D9%88%D9%85%DB%8C%D9%B9%D8%B1%DB%8C" title="ٹریگنومیٹری - Western Punjabi" lang="pnb" hreflang="pnb" data-title="ٹریگنومیٹری" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Portiwgaleg" lang="pt" hreflang="pt" data-title="Trigonometria" data-language-autonym="Português" data-language-local-name="Portiwgaleg" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Wamp%27artupuykama" title="Wamp&#039;artupuykama - Quechua" lang="qu" hreflang="qu" data-title="Wamp&#039;artupuykama" data-language-autonym="Runa Simi" data-language-local-name="Quechua" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Trigonometrie" title="Trigonometrie - Rwmaneg" lang="ro" hreflang="ro" data-title="Trigonometrie" data-language-autonym="Română" data-language-local-name="Rwmaneg" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Тригонометрия - Rwseg" lang="ru" hreflang="ru" data-title="Тригонометрия" data-language-autonym="Русский" data-language-local-name="Rwseg" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-rue mw-list-item"><a href="https://rue.wikipedia.org/wiki/%D0%A2%D1%80%D1%96%D2%91%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F" title="Тріґонометрія - Rusyn" lang="rue" hreflang="rue" data-title="Тріґонометрія" data-language-autonym="Русиньскый" data-language-local-name="Rusyn" class="interlanguage-link-target"><span>Русиньскый</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Trigunomitr%C3%ACa" title="Trigunomitrìa - Sisileg" lang="scn" hreflang="scn" data-title="Trigunomitrìa" data-language-autonym="Sicilianu" data-language-local-name="Sisileg" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Trigonometry" title="Trigonometry - Sgoteg" lang="sco" hreflang="sco" data-title="Trigonometry" data-language-autonym="Scots" data-language-local-name="Sgoteg" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Trigonometrija" title="Trigonometrija - Serbo-Croateg" lang="sh" hreflang="sh" data-title="Trigonometrija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croateg" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-shi mw-list-item"><a href="https://shi.wikipedia.org/wiki/Askti%C9%A3mr" title="Asktiɣmr - Tachelhit" lang="shi" hreflang="shi" data-title="Asktiɣmr" data-language-autonym="Taclḥit" data-language-local-name="Tachelhit" class="interlanguage-link-target"><span>Taclḥit</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%AD%E0%B7%8A%E2%80%8D%E0%B6%BB%E0%B7%92%E0%B6%9A%E0%B7%9D%E0%B6%AB%E0%B6%B8%E0%B7%92%E0%B6%AD%E0%B7%92%E0%B6%BA" title="ත්‍රිකෝණමිතිය - Sinhaleg" lang="si" hreflang="si" data-title="ත්‍රිකෝණමිතිය" data-language-autonym="සිංහල" data-language-local-name="Sinhaleg" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Trigonometry" title="Trigonometry - Simple English" lang="en-simple" hreflang="en-simple" data-title="Trigonometry" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Slofaceg" lang="sk" hreflang="sk" data-title="Trigonometria" data-language-autonym="Slovenčina" data-language-local-name="Slofaceg" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Trigonometrija" title="Trigonometrija - Slofeneg" lang="sl" hreflang="sl" data-title="Trigonometrija" data-language-autonym="Slovenščina" data-language-local-name="Slofeneg" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Pimagonyonhatu" title="Pimagonyonhatu - Shona" lang="sn" hreflang="sn" data-title="Pimagonyonhatu" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Tirignoometeri" title="Tirignoometeri - Somaleg" lang="so" hreflang="so" data-title="Tirignoometeri" data-language-autonym="Soomaaliga" data-language-local-name="Somaleg" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Albaneg" lang="sq" hreflang="sq" data-title="Trigonometria" data-language-autonym="Shqip" data-language-local-name="Albaneg" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%98%D0%B0" title="Тригонометрија - Serbeg" lang="sr" hreflang="sr" data-title="Тригонометрија" data-language-autonym="Српски / srpski" data-language-local-name="Serbeg" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-stq mw-list-item"><a href="https://stq.wikipedia.org/wiki/Trigonometrie" title="Trigonometrie - Ffriseg Saterland" lang="stq" hreflang="stq" data-title="Trigonometrie" data-language-autonym="Seeltersk" data-language-local-name="Ffriseg Saterland" class="interlanguage-link-target"><span>Seeltersk</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Trigonometri" title="Trigonometri - Swedeg" lang="sv" hreflang="sv" data-title="Trigonometri" data-language-autonym="Svenska" data-language-local-name="Swedeg" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Swahili" lang="sw" hreflang="sw" data-title="Trigonometria" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AF%81%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AF%8B%E0%AE%A3%E0%AE%B5%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D" title="முக்கோணவியல் - Tamileg" lang="ta" hreflang="ta" data-title="முக்கோணவியல்" data-language-autonym="தமிழ்" data-language-local-name="Tamileg" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%A4%E0%B1%8D%E0%B0%B0%E0%B0%BF%E0%B0%95%E0%B1%8B%E0%B0%A3%E0%B0%AE%E0%B0%BF%E0%B0%A4%E0%B0%BF" title="త్రికోణమితి - Telugu" lang="te" hreflang="te" data-title="త్రికోణమితి" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Тригонометрия - Tajiceg" lang="tg" hreflang="tg" data-title="Тригонометрия" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajiceg" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%95%E0%B8%A3%E0%B8%B5%E0%B9%82%E0%B8%81%E0%B8%93%E0%B8%A1%E0%B8%B4%E0%B8%95%E0%B8%B4" title="ตรีโกณมิติ - Thai" lang="th" hreflang="th" data-title="ตรีโกณมิติ" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tk mw-list-item"><a href="https://tk.wikipedia.org/wiki/Trigonometri%C3%BDa" title="Trigonometriýa - Tyrcmeneg" lang="tk" hreflang="tk" data-title="Trigonometriýa" data-language-autonym="Türkmençe" data-language-local-name="Tyrcmeneg" class="interlanguage-link-target"><span>Türkmençe</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Trigonometriya" title="Trigonometriya - Tagalog" lang="tl" hreflang="tl" data-title="Trigonometriya" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Trigonometri" title="Trigonometri - Tyrceg" lang="tr" hreflang="tr" data-title="Trigonometri" data-language-autonym="Türkçe" data-language-local-name="Tyrceg" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Тригонометрия - Tatareg" lang="tt" hreflang="tt" data-title="Тригонометрия" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatareg" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F" title="Тригонометрія - Wcreineg" lang="uk" hreflang="uk" data-title="Тригонометрія" data-language-autonym="Українська" data-language-local-name="Wcreineg" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D8%AB%D9%84%D8%AB%DB%8C%D8%A7%D8%AA" title="مثلثیات - Wrdw" lang="ur" hreflang="ur" data-title="مثلثیات" data-language-autonym="اردو" data-language-local-name="Wrdw" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Trigonometriya" title="Trigonometriya - Wsbeceg" lang="uz" hreflang="uz" data-title="Trigonometriya" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Wsbeceg" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Trigonometria" title="Trigonometria - Feniseg" lang="vec" hreflang="vec" data-title="Trigonometria" data-language-autonym="Vèneto" data-language-local-name="Feniseg" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Trigonometrii" title="Trigonometrii - Feps" lang="vep" hreflang="vep" data-title="Trigonometrii" data-language-autonym="Vepsän kel’" data-language-local-name="Feps" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/L%C6%B0%E1%BB%A3ng_gi%C3%A1c" title="Lượng giác - Fietnameg" lang="vi" hreflang="vi" data-title="Lượng giác" data-language-autonym="Tiếng Việt" data-language-local-name="Fietnameg" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wa mw-list-item"><a href="https://wa.wikipedia.org/wiki/Trigonometreye" title="Trigonometreye - Walwneg" lang="wa" hreflang="wa" data-title="Trigonometreye" data-language-autonym="Walon" data-language-local-name="Walwneg" class="interlanguage-link-target"><span>Walon</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Trigonometriya" title="Trigonometriya - Winarayeg" lang="war" hreflang="war" data-title="Trigonometriya" data-language-autonym="Winaray" data-language-local-name="Winarayeg" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E5%AD%A6" title="三角学 - Wu Tsieineaidd" lang="wuu" hreflang="wuu" data-title="三角学" data-language-autonym="吴语" data-language-local-name="Wu Tsieineaidd" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xmf mw-list-item"><a href="https://xmf.wikipedia.org/wiki/%E1%83%A2%E1%83%A0%E1%83%98%E1%83%92%E1%83%9D%E1%83%9C%E1%83%9D%E1%83%9B%E1%83%94%E1%83%A2%E1%83%A0%E1%83%98%E1%83%90" title="ტრიგონომეტრია - Mingrelian" lang="xmf" hreflang="xmf" data-title="ტრიგონომეტრია" data-language-autonym="მარგალური" data-language-local-name="Mingrelian" class="interlanguage-link-target"><span>მარგალური</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%98%D7%A8%D7%99%D7%92%D7%90%D7%A0%D7%90%D7%9E%D7%A2%D7%98%D7%A8%D7%99%D7%A2" title="טריגאנאמעטריע - Iddew-Almaeneg" lang="yi" hreflang="yi" data-title="טריגאנאמעטריע" data-language-autonym="ייִדיש" data-language-local-name="Iddew-Almaeneg" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-yo mw-list-item"><a href="https://yo.wikipedia.org/wiki/Trigonom%E1%BA%B9%CC%81tr%C3%AC" title="Trigonomẹ́trì - Iorwba" lang="yo" hreflang="yo" data-title="Trigonomẹ́trì" data-language-autonym="Yorùbá" data-language-local-name="Iorwba" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E5%AD%A6" title="三角学 - Tsieinëeg" lang="zh" hreflang="zh" data-title="三角学" data-language-autonym="中文" data-language-local-name="Tsieinëeg" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Sa%E2%81%BF-kak-hoat" title="Saⁿ-kak-hoat - Minnan" lang="nan" hreflang="nan" data-title="Saⁿ-kak-hoat" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E5%AD%B8" title="三角學 - Cantoneeg" lang="yue" hreflang="yue" data-title="三角學" data-language-autonym="粵語" data-language-local-name="Cantoneeg" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q8084#sitelinks-wikipedia" title="Golygu dolenni rhyngwici" class="wbc-editpage">Golygu dolenni</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Parthau"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Trigonometreg" title="Gweld y dudalen bwnc [c]" accesskey="c"><span>Erthygl</span></a></li><li id="ca-talk" class="new vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Sgwrs:Trigonometreg&amp;action=edit&amp;redlink=1" rel="discussion" class="new" title="Sgwrsio am y dudalen (dim tudalen ar gael) [t]" accesskey="t"><span>Sgwrs</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Newid amrywiad iaith" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Cymraeg</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Golygon"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Trigonometreg"><span>Darllen</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit" title="Golygu&#039;r dudalen hon [v]" accesskey="v"><span>Golygu</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trigonometreg&amp;action=edit" title="Golygu cod ffynhonnell y dudalen hon [e]" accesskey="e"><span>Golygu cod</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trigonometreg&amp;action=history" title="Fersiynau cynt o&#039;r dudalen hon. [h]" accesskey="h"><span>Gweld hanes</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Offer tudalen"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Blwch offer" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Blwch offer</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Blwch offer</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">symud i&#039;r bar ochr</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">cuddio</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Rhagor o opsiynau" > <div class="vector-menu-heading"> Gweithredoedd </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Trigonometreg"><span>Darllen</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit" title="Golygu&#039;r dudalen hon [v]" accesskey="v"><span>Golygu</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trigonometreg&amp;action=edit" title="Golygu cod ffynhonnell y dudalen hon [e]" accesskey="e"><span>Golygu cod</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trigonometreg&amp;action=history"><span>Gweld hanes</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Cyffredinol </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Arbennig:WhatLinksHere/Trigonometreg" title="Rhestr o bob tudalen sy&#039;n cysylltu â hon [j]" accesskey="j"><span>Beth sy'n cysylltu yma</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Arbennig:RecentChangesLinked/Trigonometreg" rel="nofollow" title="Newidiadau diweddar i dudalennau sydd yn cysylltu â hon [k]" accesskey="k"><span>Newidiadau perthnasol</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Arbennig:SpecialPages" title="Rhestr o&#039;r holl dudalennau arbennig [q]" accesskey="q"><span>Tudalennau arbennig</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Trigonometreg&amp;oldid=12650481" title="Dolen barhaol i&#039;r fersiwn hwn y dudalen hon"><span>Dolen barhaol</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Trigonometreg&amp;action=info" title="Mwy o wybodaeth am y dudalen hon"><span>Gwybodaeth am y dudalen</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Arbennig:CiteThisPage&amp;page=Trigonometreg&amp;id=12650481&amp;wpFormIdentifier=titleform" title="Gwybodaeth ar sut i gyfeirio at y dudalen hon"><span>Cyfeirio at y dudalen hon</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Arbennig:UrlShortener&amp;url=https%3A%2F%2Fcy.wikipedia.org%2Fwiki%2FTrigonometreg"><span>Cael URL byr</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Arbennig:QrCode&amp;url=https%3A%2F%2Fcy.wikipedia.org%2Fwiki%2FTrigonometreg"><span>Lawrlwytho cod QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Argraffu / allforio </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Arbennig:Book&amp;bookcmd=book_creator&amp;referer=Trigonometreg"><span>Llunio llyfr</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Arbennig:DownloadAsPdf&amp;page=Trigonometreg&amp;action=show-download-screen"><span>Lawrlwytho fel PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Trigonometreg&amp;printable=yes" title="Cynhyrchwch fersiwn o&#039;r dudalen yn barod at ei hargraffu [p]" accesskey="p"><span>Fersiwn argraffu</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Mewn prosiectau eraill </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Trigonometry" hreflang="en"><span>Comin Wikimedia</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q8084" title="Cysylltu i eitem ystorfa gysylltiedig [g]" accesskey="g"><span>Eitem Wicidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Offer tudalen"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Gwedd"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Gwedd</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">symud i&#039;r bar ochr</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">cuddio</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Oddi ar Wicipedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="cy" dir="ltr"><table class="infobox" style="width:22em"><caption>Trigonometreg</caption><tbody><tr><td colspan="2" style="text-align:center"><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/Delwedd:Fotothek_df_tg_0000230_Geometrie_%5E_Trigonometrie.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/Fotothek_df_tg_0000230_Geometrie_%5E_Trigonometrie.jpg/220px-Fotothek_df_tg_0000230_Geometrie_%5E_Trigonometrie.jpg" decoding="async" width="220" height="138" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/Fotothek_df_tg_0000230_Geometrie_%5E_Trigonometrie.jpg/330px-Fotothek_df_tg_0000230_Geometrie_%5E_Trigonometrie.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/78/Fotothek_df_tg_0000230_Geometrie_%5E_Trigonometrie.jpg/440px-Fotothek_df_tg_0000230_Geometrie_%5E_Trigonometrie.jpg 2x" data-file-width="800" data-file-height="503" /></a></span></td></tr><tr><th scope="row">Enghraifft o'r&#160;canlynol</th><td>maes o fewn mathemateg&#160;<span class="penicon autoconfirmed-show"><span class="mw-valign-text-top" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q8084?uselang=cy#P31" title="Edit this on Wikidata"><img alt="Edit this on Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></span></td></tr><tr><th scope="row">Math</th><td><a href="/wiki/Geometreg" title="Geometreg">geometreg</a>&#160;<span class="penicon autoconfirmed-show"><span class="mw-valign-text-top" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q8084?uselang=cy#P279" title="Edit this on Wikidata"><img alt="Edit this on Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></span></td></tr><tr><th scope="row">Yn&#160;cynnwys</th><td>trigonometric table&#160;<span class="penicon autoconfirmed-show"><span class="mw-valign-text-top" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q8084?uselang=cy#P527" title="Edit this on Wikidata"><img alt="Edit this on Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></span></td></tr><tr><td colspan="2" style="text-align:center"><span typeof="mw:File"><span title="Tudalen Comin"><img alt="Tudalen Comin" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Trigonometry" class="extiw" title="commons:Category:Trigonometry">Ffeiliau perthnasol ar Gomin Wicimedia</a></td></tr></tbody></table> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Delwedd:Rheolau_Syml_Trig.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/cy/thumb/a/ab/Rheolau_Syml_Trig.jpg/400px-Rheolau_Syml_Trig.jpg" decoding="async" width="400" height="143" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/cy/thumb/a/ab/Rheolau_Syml_Trig.jpg/600px-Rheolau_Syml_Trig.jpg 1.5x, //upload.wikimedia.org/wikipedia/cy/thumb/a/ab/Rheolau_Syml_Trig.jpg/800px-Rheolau_Syml_Trig.jpg 2x" data-file-width="2243" data-file-height="802" /></a><figcaption>Rheolau Syml Trig</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r10960980">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable">Mae "Trigonometreg" yn ailgyfeirio i'r erthygl hon. Am ddefnyddiau eraill, gweler <a href="/wiki/Trigonometreg_(gwahaniaethu)" class="mw-disambig" title="Trigonometreg (gwahaniaethu)">Trigonometreg (gwahaniaethu)</a>.</div> <p>Mae <b>trigonometreg</b> (<a href="/wiki/Iaith_Roeg" class="mw-redirect" title="Iaith Roeg">Groeg</a>: τρίγωνον "triongl" + μέτρον "mesur") yn gangen o <a href="/wiki/Mathemateg" title="Mathemateg">fathemateg</a> sy'n delio gyda hyd ochrau ac onglau <a href="/wiki/Triongl" title="Triongl">thrionglau</a>, yn enwedig y <a href="/w/index.php?title=Trionglau_ongl_sgw%C3%A2r&amp;action=edit&amp;redlink=1" class="new" title="Trionglau ongl sgwâr (dim tudalen ar gael)">trionglau ongl sgwâr</a>. Gelwir trigonometreg yn "trig" yn anffurfiol. Mae trigonometreg yn delio gyda'r berthynas rhwng ochrau a'r onglau a'r <a href="/wiki/Ffwythiant" title="Ffwythiant">ffwythiannau</a> trigonometregol sy'n disgrifio'r perthnasau hynny. </p><p>Mae gan drigonometreg gymwysiadau mewn <a href="/wiki/Mathemateg_bur" title="Mathemateg bur">mathemateg bur</a> ac mewn <a href="/wiki/Mathemateg_gymhwysol" title="Mathemateg gymhwysol">mathemateg gymhwysol</a>, ac ystyrir y ddisgyblaeth hon yn anghenrheidiol o fewn nifer o ganghennau o <a href="/w/index.php?title=Gwyddiniaeth&amp;action=edit&amp;redlink=1" class="new" title="Gwyddiniaeth (dim tudalen ar gael)">wyddoniaeth</a> a <a href="/wiki/Technoleg" title="Technoleg">thechnoleg</a>. Câi ei dysgu mewn ysgolion uwchradd fel naill ai cwrs ar wahân neu fel rhan o gwrs cyn-galcwlws. </p> <table align="center"> <tbody><tr> <td><figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/Delwedd:Circle-trig6.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Circle-trig6.svg/300px-Circle-trig6.svg.png" decoding="async" width="300" height="192" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Circle-trig6.svg/450px-Circle-trig6.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Circle-trig6.svg/600px-Circle-trig6.svg.png 2x" data-file-width="1250" data-file-height="800" /></a><figcaption>Gall yr holl <a href="/wiki/Ffwythiant" title="Ffwythiant">ffwythiannau</a> trigonometregol ongl <i>θ</i> gael eu creu yn geometregol yn nhermau cylch unedol o amgylch <i>O</i>.</figcaption></figure> </td> <td> </td> <td><figure class="mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/Delwedd:Sine_cosine_plot.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Sine_cosine_plot.svg/350px-Sine_cosine_plot.svg.png" decoding="async" width="350" height="233" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Sine_cosine_plot.svg/525px-Sine_cosine_plot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/38/Sine_cosine_plot.svg/700px-Sine_cosine_plot.svg.png 2x" data-file-width="1200" data-file-height="800" /></a><figcaption>Y ffwythiannau sin(x) a cos(x) wedi'u graffio</figcaption></figure> </td> <td> </td></tr></tbody></table> <p>Daeth y maes i'r amlwg yn yr <a href="/wiki/Oes_Helenistaidd" title="Oes Helenistaidd">oes Helenistaidd</a> yr ystod y <a href="/wiki/3g_CC" class="mw-redirect" title="3g CC">3g CC</a> o gymhwyso <a href="/wiki/Geometreg" title="Geometreg">geometreg</a> ac meysydd eraill megis <a href="/wiki/Seryddiaeth" title="Seryddiaeth">astudiaethau seryddol</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Canolbwyntiodd y <a href="/wiki/Groegiaid" title="Groegiaid">Groegiaid</a> ar gyfrifo "cordiau" (e.e. <i>Almagest</i> <a href="/wiki/Ptolemi" title="Ptolemi">Ptolemi</a>), tra chreodd mathemategwyr India y tablau gwerthoedd cynharaf y gwyddys amdanynt ar gyfer cymarebau trigonometrig, a elwir hefyd yn <a href="/wiki/Ffwythiannau_trigonometrig" title="Ffwythiannau trigonometrig">swyddogaethau trigonometrig</a> ee <a href="/wiki/Sine" title="Sine">sin</a>.[3] </p><p>Trwy gydol hanes, cymhwyswyd trigonometreg mewn meysydd fel <a href="/wiki/Geodedd" title="Geodedd">geodesi</a>, tirfesur, mecaneg nefol, a <a href="/wiki/Mordwyo" title="Mordwyo">fforio</a>.<sup id="cite_ref-Hackley1853_2-0" class="reference"><a href="#cite_note-Hackley1853-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>Mae trigonometreg yn adnabyddus am ei <a href="/wiki/Rhestr_unfathiannau_trigonometrig" title="Rhestr unfathiannau trigonometrig">unfathiannau trigonometrig</a> a ddefnyddir yn aml ar gyfer ailysgrifennu <a href="/wiki/Mynegiad_(mathemateg)" title="Mynegiad (mathemateg)">ymadroddion</a> trigonometreg gyda'r nod o symleiddio'r mynegiad, dod o hyd i ffurf fwy defnyddiol o fynegiant, neu i <a href="/wiki/Hafaliad" title="Hafaliad">ddatrys hafaliad</a>.<sup id="cite_ref-LarsonHostetler2006_3-0" class="reference"><a href="#cite_note-LarsonHostetler2006-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Sterling2014_4-0" class="reference"><a href="#cite_note-Sterling2014-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Halmos2013_5-0" class="reference"><a href="#cite_note-Halmos2013-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Gofod_metrig">Gofod metrig</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=1" title="Golygu&#039;r adran: Gofod metrig" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=1" title="Edit section&#039;s source code: Gofod metrig"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Mae trigonometreg yn un disgyblaeth oddi fewn i Ofod: </p> <dl><dd><table style="border:1px solid #ddd; text-align:center; margin:auto" cellspacing="15"> <tbody><tr> <td><span typeof="mw:File"><a href="/wiki/Delwedd:Illustration_to_Euclid%27s_proof_of_the_Pythagorean_theorem.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Illustration_to_Euclid%27s_proof_of_the_Pythagorean_theorem.svg/96px-Illustration_to_Euclid%27s_proof_of_the_Pythagorean_theorem.svg.png" decoding="async" width="96" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Illustration_to_Euclid%27s_proof_of_the_Pythagorean_theorem.svg/144px-Illustration_to_Euclid%27s_proof_of_the_Pythagorean_theorem.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Illustration_to_Euclid%27s_proof_of_the_Pythagorean_theorem.svg/192px-Illustration_to_Euclid%27s_proof_of_the_Pythagorean_theorem.svg.png 2x" data-file-width="500" data-file-height="540" /></a></span></td> <td><span typeof="mw:File"><a href="/wiki/Delwedd:Sinusv%C3%A5g_400px.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Sinusv%C3%A5g_400px.png/96px-Sinusv%C3%A5g_400px.png" decoding="async" width="96" height="96" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Sinusv%C3%A5g_400px.png/144px-Sinusv%C3%A5g_400px.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Sinusv%C3%A5g_400px.png/192px-Sinusv%C3%A5g_400px.png 2x" data-file-width="400" data-file-height="400" /></a></span></td> <td><span typeof="mw:File"><a href="/wiki/Delwedd:Hyperbolic_triangle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Hyperbolic_triangle.svg/96px-Hyperbolic_triangle.svg.png" decoding="async" width="96" height="66" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Hyperbolic_triangle.svg/144px-Hyperbolic_triangle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/89/Hyperbolic_triangle.svg/192px-Hyperbolic_triangle.svg.png 2x" data-file-width="809" data-file-height="559" /></a></span></td> <td><span typeof="mw:File"><a href="/wiki/Delwedd:Torus.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/Torus.png/96px-Torus.png" decoding="async" width="96" height="61" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/Torus.png/144px-Torus.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/17/Torus.png/192px-Torus.png 2x" data-file-width="784" data-file-height="502" /></a></span></td> <td><span typeof="mw:File"><a href="/wiki/Delwedd:Mandel_zoom_07_satellite.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Mandel_zoom_07_satellite.jpg/96px-Mandel_zoom_07_satellite.jpg" decoding="async" width="96" height="72" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Mandel_zoom_07_satellite.jpg/144px-Mandel_zoom_07_satellite.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Mandel_zoom_07_satellite.jpg/192px-Mandel_zoom_07_satellite.jpg 2x" data-file-width="2560" data-file-height="1920" /></a></span></td> <td><span typeof="mw:File"><a href="/wiki/Delwedd:Measure_illustration.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Measure_illustration.png/70px-Measure_illustration.png" decoding="async" width="70" height="115" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Measure_illustration.png/105px-Measure_illustration.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Measure_illustration.png/140px-Measure_illustration.png 2x" data-file-width="364" data-file-height="598" /></a></span> </td></tr> <tr> <td><a href="/wiki/Geometreg" title="Geometreg">Geometreg</a></td> <td>Trigonometreg</td> <td><a href="/w/index.php?title=Geometreg_Gwahaniaethol&amp;action=edit&amp;redlink=1" class="new" title="Geometreg Gwahaniaethol (dim tudalen ar gael)">Geometreg Gwahaniaethol</a></td> <td><a href="/w/index.php?title=Topoloeg&amp;action=edit&amp;redlink=1" class="new" title="Topoloeg (dim tudalen ar gael)">Topoloeg</a></td> <td><a href="/w/index.php?title=Fractaliaeth&amp;action=edit&amp;redlink=1" class="new" title="Fractaliaeth (dim tudalen ar gael)">Geometreg ffractalaidd</a></td> <td><a href="/w/index.php?title=Theori_mesuredd&amp;action=edit&amp;redlink=1" class="new" title="Theori mesuredd (dim tudalen ar gael)">Theori mesuredd</a> </td></tr></tbody></table></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Hanes">Hanes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=2" title="Golygu&#039;r adran: Hanes" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=2" title="Edit section&#039;s source code: Hanes"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:Error mw:File/Thumb"><a href="/w/index.php?title=Arbennig:Upload&amp;wpDestFile=Hipparchos_1.jpeg" class="new" title="Delwedd:Hipparchos 1.jpeg"><span class="mw-file-element mw-broken-media" data-width="180">Delwedd:Hipparchos 1.jpeg</span></a><figcaption>Credir mai<a href="/w/index.php?title=Hipparchus&amp;action=edit&amp;redlink=1" class="new" title="Hipparchus (dim tudalen ar gael)">Hipparchus</a>, a luniodd y tabl trigonometrig cyntaf, ac oherwydd hyn, adnabyddir ef fel "tad trigonometreg".[8] Myn eraill mai <a href="/w/index.php?title=Nasir_al-Din_al-Tusi&amp;action=edit&amp;redlink=1" class="new" title="Nasir al-Din al-Tusi (dim tudalen ar gael)">Nasir al-Din al-Tusi</a> mathemategydd o Bersia yw tad go-iawn trigonometreg.</figcaption></figure> <p>Astudiodd <a href="/wiki/Swmer" title="Swmer">seryddwyr Swmeraidd</a> fesur onglau, gan ddefnyddio rhanu'r cylch yn 360 gradd.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> Fe astudio nhw (ac yn ddiweddarach y Babiloniaid) <a href="/wiki/Cymhareb" title="Cymhareb">gymarebau</a> ochrau <a href="/wiki/Cyflunedd" title="Cyflunedd">trionglau cyflun</a> (tebyg) a darganfod rhai priodweddau'r cymarebau hyn, ond ni wnaethant droi hynny'n ddull systematig ar gyfer dod o hyd i ochrau ac onglau trionglau. Defnyddiodd yr Nwbiaid hynafol ddull tebyg.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>Yn y <a href="/wiki/3g_CC" class="mw-redirect" title="3g CC">3g CC</a>, astudiodd rhai <a href="/wiki/Oes_Helenistaidd" title="Oes Helenistaidd">mathemategwyr Helenistaidd</a> fel <a href="/wiki/Euclid" title="Euclid">Euclid</a> ac <a href="/wiki/Archimedes" title="Archimedes">Archimedes</a> briodweddau cordiau ac onglau arysgrifedig mewn cylchoedd, a phrofwyd theoremausy'n cael eu hadnabod heddiw fel fformwlâu trigonometrig modern, er eu bod yn eu cyflwyno yn geometregol yn hytrach nag yn algebraidd. Yn <a href="/wiki/140_CC" title="140 CC">140 CC</a>, rhoddodd Hipparchus (o Nicaea, <a href="/wiki/Asia_Leiaf" title="Asia Leiaf">Asia Leiaf</a>) y tablau cyntaf o gordiau, sy'n cyfateb i dablau modern o werthoedd sin at ei gilydd, a'u defnyddio i ddatrys problemau mewn trigonometreg a <a href="/w/index.php?title=Trigonometreg_sfferig&amp;action=edit&amp;redlink=1" class="new" title="Trigonometreg sfferig (dim tudalen ar gael)">thrigonometreg sfferig</a>. [11] Yn yr <a href="/wiki/2il_ganrif" title="2il ganrif">2g OC</a>, lluniodd y seryddwr Groegaidd-Eifftaidd <a href="/wiki/Ptolemi" title="Ptolemi">Ptolemi</a> (o Alexandria, yr Aifft) dablau trigonometrig manwl ("tabl cordiau Ptolemi") yn Llyfr 1, pennod 11 o'i <i>Almagest</i>.<sup id="cite_ref-toomer_8-0" class="reference"><a href="#cite_note-toomer-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> Defnyddiodd Ptolemi hyd cord i ddiffinio ei swyddogaethau trigonometrig, sy'n eithriadol o debyg i'r <a href="/wiki/Sine" title="Sine">confensiwn sin</a> a ddefnyddiwn heddiw.[13] </p><p>Aeth canrifoedd heibio cyn cynhyrchu tablau manylach, ac defnyddiwyd traethawd Ptolemi ar gyfer perfformio cyfrifiadau trigonometrig mewn seryddiaeth trwy gydol y 1,200 mlynedd nesaf yn y gwledydd <a href="/wiki/Yr_Ymerodraeth_Fysantaidd" title="Yr Ymerodraeth Fysantaidd">Bysantaidd</a>, <a href="/wiki/Islam_yn_%C3%B4l_gwlad" title="Islam yn ôl gwlad">Islamaidd</a>, ac yn ddiweddarach, Gorllewin Ewrop. </p><p>Ardystiwyd y confensiwn sin modern gyntaf yn y <i>Surya Siddhanta,</i> sef erthygl <a href="/wiki/Sansgrit" title="Sansgrit">Sansgrit</a> o'r <a href="/wiki/15g" class="mw-redirect" title="15g">15g</a>, a chofnodwyd ei briodweddau ymhellach gan fathemategydd a seryddwr Indiaidd y <a href="/wiki/5g" class="mw-redirect" title="5g">5g</a> (OC) o'r enw Aryabhata.[14] Cyfieithwyd ac ehangwyd y gweithiau Groegaidd ac Indiaidd hyn gan fathemategwyr Islamaidd canoloesol. Erbyn y <a href="/w/index.php?title=10g,&amp;action=edit&amp;redlink=1" class="new" title="10g, (dim tudalen ar gael)">10g,</a> roedd mathemategwyr Islamaidd yn defnyddio pob un o'r chwe swyddogaeth trigonometrig, wedi tablu eu gwerthoedd, ac yn eu cymhwyso i broblemau mewn geometreg sfferig.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Willers2018_10-0" class="reference"><a href="#cite_note-Willers2018-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Disgrifiwyd y polymath <a href="/wiki/Persiaid" title="Persiaid">Persiaidd</a> <a href="/w/index.php?title=Nasir_al-Din_al-Tusi&amp;action=edit&amp;redlink=1" class="new" title="Nasir al-Din al-Tusi (dim tudalen ar gael)">Nasir al-Din al-Tusi</a> fel crëwr trigonometreg fel disgyblaeth fathemategol ynddo'i hun.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> Nasīr al-Dīn al-Tūsī oedd y cyntaf i drin trigonometreg fel disgyblaeth fathemategol yn annibynnol ar <a href="/wiki/Seryddiaeth" title="Seryddiaeth">seryddiaeth</a>, a datblygodd <a href="/w/index.php?title=Trigonometreg_sfferig&amp;action=edit&amp;redlink=1" class="new" title="Trigonometreg sfferig (dim tudalen ar gael)">trigonometreg sfferig</a> i'w ffurf bresennol.<sup id="cite_ref-Britannica_13-0" class="reference"><a href="#cite_note-Britannica-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> Rhestrodd y chwe achos gwahanol o <a href="/wiki/Triongl_ongl_sgw%C3%A2r" title="Triongl ongl sgwâr">driongl ongl sgwâr</a> mewn trigonometreg sfferig, ac yn ei <i>Ffigur ar y Sector</i>, nododd ddeddfau sin ar gyfer trionglau <a href="/wiki/Pl%C3%A2n_geometraidd" title="Plân geometraidd">pl</a><a href="/wiki/Pl%C3%A2n_geometraidd" title="Plân geometraidd">ân</a> a <a href="/wiki/Sff%C3%AAr" title="Sffêr">thrionglau sfferig</a>; darganfu gyfraith tangiadau ar gyfer trionglau sfferig, ac yn bennaf, darparodd brofion ar gyfer y deddfau hyn.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>Cyrhaeddodd gwybodaeth am <a href="/wiki/Ffwythiannau_trigonometrig" title="Ffwythiannau trigonometrig">ffwythiannau</a> a dulliau trigonometrig <a href="/wiki/Gorllewin_Ewrop" title="Gorllewin Ewrop">Orllewin Ewrop</a> trwy gyfieithiadau i'r Lladin <i>o Almagest</i> Groegaidd <a href="/wiki/Ptolemi" title="Ptolemi">Ptolemi</a> yn ogystal â gweithiau seryddwyr <a href="/wiki/Persiaid" title="Persiaid">Persiaidd</a> ac <a href="/wiki/Arabaidd" class="mw-redirect" title="Arabaidd">Arabaidd</a> fel Al Battani a Nasir al-Din al-Tusi.[22] Un o'r gweithiau cynharaf ar trigonometreg gan fathemategydd yng ngogledd Ewrop yw <i>De Triangulis</i> gan y mathemategydd Almaeneg Regiomontanus o'r <a href="/wiki/15g" class="mw-redirect" title="15g">15g</a>, a gafodd ei annog i ysgrifennu, a darparu copi o'r <i>Almagest</i>, gan yr ysgolhaig Groegaidd Bysantaidd Basilios Bessarion a bu'r ddau'n cyd-fyw am sawl blwyddyn gyda'i gilydd.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> Ar yr un pryd, cwblhawyd cyfieithiad arall o'r <i>Almagest</i> o'r Groeg i'r Lladin gan fathemategydd o Greta (fwyaf o ynysoedd <a href="/wiki/Gwlad_Groeg" title="Gwlad Groeg">Gwlad Groeg</a>) George o Trebizond.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> Ychydig iawn o wybodaeth oedd wedi cyrraedd Ewrop, hyd nes i<a href="/wiki/Nicolaus_Copernicus" title="Nicolaus Copernicus">Nicolaus Copernicus</a> neilltuo dwy bennod o <i><a href="/wiki/De_Revolutionibus_Orbium_Coelestium" title="De Revolutionibus Orbium Coelestium">De revolutionibus orbium coelestium</a></i> i egluro ei gysyniadau sylfaenol. </p><p>Wedi'i sbarduno gan ofynion <a href="/wiki/Mordwyo" title="Mordwyo">mordwyo</a> a'r angen cynyddol am fapiau cywir o ardaloedd daearyddol mawr, tyfodd trigonometreg yn gangen fawr o fathemateg yn Ewrop hefyd.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> <a href="/w/index.php?title=Bartholomaeus_Pitiscus&amp;action=edit&amp;redlink=1" class="new" title="Bartholomaeus Pitiscus (dim tudalen ar gael)">Bartholomaeus Pitiscus</a> oedd y cyntaf i ddefnyddio'r gair, gan gyhoeddi ei <i>Trigonometria</i> ym 1595.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> Disgrifiodd Gemma Frisius am y tro cyntaf y dull <a href="/w/index.php?title=Triongli&amp;action=edit&amp;redlink=1" class="new" title="Triongli (dim tudalen ar gael)">triongli</a> (<i>triangulation</i>) sy'n dal i gael ei ddefnyddio hyd heddiw wrth fesur tir. <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> a ymgorfforodd <a href="/wiki/Rhif_cymhlyg" title="Rhif cymhlyg">rifau cymhlyg</a> i fewn i digonometreg. Roedd gweithiau mathemategwyr yr Alban - James Gregory yn yr 17g a Colin Maclaurin yn y 18g - yn ddylanwadol yn natblygiad cyfresi trigonometrig.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> Hefyd yn y 18g, diffiniodd Brook <a href="/wiki/Cyfres_Taylor" title="Cyfres Taylor">Taylor gyfres</a> gyffredinol Taylor.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Cymarebau_trigonometrig">Cymarebau trigonometrig</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=3" title="Golygu&#039;r adran: Cymarebau trigonometrig" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=3" title="Edit section&#039;s source code: Cymarebau trigonometrig"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Delwedd:TrigonometryTriangle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/TrigonometryTriangle.svg/220px-TrigonometryTriangle.svg.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/TrigonometryTriangle.svg/330px-TrigonometryTriangle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4f/TrigonometryTriangle.svg/440px-TrigonometryTriangle.svg.png 2x" data-file-width="400" data-file-height="300" /></a><figcaption>Yn y <a href="/wiki/Triongl_ongl_sgw%C3%A2r" title="Triongl ongl sgwâr">triongl sgwâr</a> hwn: sin A = a / c&#160;; cos A = b / c&#160;; tan A = a / b .</figcaption></figure> <p>Cymarebau trigonometrig yw'r cymarebau rhwng ymylon y <a href="/wiki/Triongl_ongl_sgw%C3%A2r" title="Triongl ongl sgwâr">triongl sgwâr</a>. Rhoddir y cymarebau hyn gan y <a href="/wiki/Ffwythiannau_trigonometrig" title="Ffwythiannau trigonometrig">f</a><a href="/wiki/Ffwythiannau_trigonometrig" title="Ffwythiannau trigonometrig">fwythiannau trigonometrig</a> canlynol o'r ongl hysbys <i>A</i>, lle <i>mae a</i>, <i>b</i> ac <i>c</i> yn cyfeirio at hyd yr ochrau yn y ffigur sy'n cyd-fynd: </p> <ul><li>Ffwythiant Sine (sin), a ddiffinnir fel cymhareb yr ochr gyferbyn ag ongl yr <a href="/wiki/Hypotenws" title="Hypotenws">hypotenws</a>.</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin A={\frac {\textrm {opposite}}{\textrm {hypotenuse}}}={\frac {a}{c}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mtext>opposite</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>hypotenuse</mtext> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>c</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin A={\frac {\textrm {opposite}}{\textrm {hypotenuse}}}={\frac {a}{c}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a384801cf528aaf3cd6cbf1728a4434d12b555ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.177ex; height:5.843ex;" alt="{\displaystyle \sin A={\frac {\textrm {opposite}}{\textrm {hypotenuse}}}={\frac {a}{c}}.}"></span></dd></dl></dd></dl> <ul><li>Ffwythiant cosin (cos), a ddiffinnir fel cymhareb y <a href="/wiki/Triongl" title="Triongl">goes gyfagos</a> (ochr y triongl sy'n ymuno â'r ongl i'r ongl sgwâr) i'r hypotenws.</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos A={\frac {\textrm {adjacent}}{\textrm {hypotenuse}}}={\frac {b}{c}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mtext>adjacent</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>hypotenuse</mtext> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>c</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos A={\frac {\textrm {adjacent}}{\textrm {hypotenuse}}}={\frac {b}{c}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8b2a61033a85cf52334e18c339684a8e0737e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.21ex; height:5.843ex;" alt="{\displaystyle \cos A={\frac {\textrm {adjacent}}{\textrm {hypotenuse}}}={\frac {b}{c}}.}"></span></dd></dl></dd></dl> <ul><li>Ffwythiant <a href="/wiki/Ffwythiannau_trigonometrig" title="Ffwythiannau trigonometrig">tangiad</a> (tan), a ddiffinnir fel cymhareb y goes gyferbyn â'r goes gyfagos.</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan A={\frac {\textrm {opposite}}{\textrm {adjacent}}}={\frac {a}{b}}={\frac {a/c}{b/c}}={\frac {\sin A}{\cos A}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mtext>opposite</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>adjacent</mtext> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>b</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mrow> <mrow> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan A={\frac {\textrm {opposite}}{\textrm {adjacent}}}={\frac {a}{b}}={\frac {a/c}{b/c}}={\frac {\sin A}{\cos A}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26695eaa43e49600f496aa9f09faf70755e6a035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:40.337ex; height:6.509ex;" alt="{\displaystyle \tan A={\frac {\textrm {opposite}}{\textrm {adjacent}}}={\frac {a}{b}}={\frac {a/c}{b/c}}={\frac {\sin A}{\cos A}}.}"></span></dd></dl></dd></dl> <p>Y <a href="/wiki/Hypotenws" title="Hypotenws">hypotenws</a> yw'r ochr gyferbyn â'r ongl 90 gradd mewn <a href="/wiki/Triongl_ongl_sgw%C3%A2r" title="Triongl ongl sgwâr">triongl</a> <a href="/wiki/Triongl_ongl_sgw%C3%A2r" title="Triongl ongl sgwâr">sgwâr</a>; hi yw ochr hiraf y triongl ac un o'r ddwy ochr wrth ymyl ongl <i>A.</i> Y goes gyfagos yw'r ochr arall sy'n gyfagos i ongl <i>A.</i> Yr ochr arall yw'r ochr sydd gyferbyn ag ongl <i>A.</i> Weithiau defnyddir y termau perpendicwlar a sylfaen ar gyfer yr ochrau cyferbyniol a chyfagos. Gweler isod o dan Mnemonics. </p><p>Gan fod unrhyw ddwy <a href="/wiki/Triongl_ongl_sgw%C3%A2r" title="Triongl ongl sgwâr">driongl sgwâr</a> (sydd â'r un ongl lem <i>A)</i> yn <a href="/wiki/Cyflunedd" title="Cyflunedd">debyg</a>,<sup id="cite_ref-StewartRedlin2015_21-0" class="reference"><a href="#cite_note-StewartRedlin2015-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> mae gwerth y gymhareb trigonometrig yn dibynnu ar ongl <i>A</i> yn unig . </p><p>Enwau <a href="/wiki/Cilydd" title="Cilydd">cilyddol</a> y ffwythiannau hyn yw cosecant (csc), secant (sec), a cotangent (cot), yn y drefn honno: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \csc A={\frac {1}{\sin A}}={\frac {\textrm {hypotenuse}}{\textrm {opposite}}}={\frac {c}{a}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>csc</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mtext>hypotenuse</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>opposite</mtext> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mi>a</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \csc A={\frac {1}{\sin A}}={\frac {\textrm {hypotenuse}}{\textrm {opposite}}}={\frac {c}{a}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5002e2b8611901edd865b97573ef959826292241" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:35.223ex; height:5.843ex;" alt="{\displaystyle \csc A={\frac {1}{\sin A}}={\frac {\textrm {hypotenuse}}{\textrm {opposite}}}={\frac {c}{a}},}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sec A={\frac {1}{\cos A}}={\frac {\textrm {hypotenuse}}{\textrm {adjacent}}}={\frac {c}{b}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sec</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mtext>hypotenuse</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>adjacent</mtext> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mi>b</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sec A={\frac {1}{\cos A}}={\frac {\textrm {hypotenuse}}{\textrm {adjacent}}}={\frac {c}{b}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2b0fad5e45d6027da193f6ae9392d9a0d95277d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:35.256ex; height:5.843ex;" alt="{\displaystyle \sec A={\frac {1}{\cos A}}={\frac {\textrm {hypotenuse}}{\textrm {adjacent}}}={\frac {c}{b}},}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cot A={\frac {1}{\tan A}}={\frac {\textrm {adjacent}}{\textrm {opposite}}}={\frac {\cos A}{\sin A}}={\frac {b}{a}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mtext>adjacent</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>opposite</mtext> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>a</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cot A={\frac {1}{\tan A}}={\frac {\textrm {adjacent}}{\textrm {opposite}}}={\frac {\cos A}{\sin A}}={\frac {b}{a}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/087f418e780f9d7adac7c4c9f90e241f60838b86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:42.167ex; height:5.843ex;" alt="{\displaystyle \cot A={\frac {1}{\tan A}}={\frac {\textrm {adjacent}}{\textrm {opposite}}}={\frac {\cos A}{\sin A}}={\frac {b}{a}}.}"></span></dd></dl> <p>Mae cosin, cotangent, a cosecant yn cael eu henwi felly oherwydd eu bod yn y drefn honno yn sin, tangiad, a secant yr ongl gyflenwol sydd wedi'i dalfyrru i "cyd-".<sup id="cite_ref-JardineShell-Gellasch2011_22-0" class="reference"><a href="#cite_note-JardineShell-Gellasch2011-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p><p>Gyda'r ffwythiannau hyn, gellir ateb bron pob cwestiwn am drionglau mympwyol trwy ddefnyddio deddf sin a deddf cosin.<sup id="cite_ref-ForsethBurger2008_23-0" class="reference"><a href="#cite_note-ForsethBurger2008-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> Gellir defnyddio'r deddfau hyn i gyfrifo'r onglau ac ochrau sy'n weddill o unrhyw driongl cyn gynted ag y bydd dwy ochr a'u ongl gynhwysol neu ddwy ongl ac ochr neu dair ochr yn hysbys. </p> <div class="mw-heading mw-heading3"><h3 id="Cofyddiaeth_(Mnemonics)"><span id="Cofyddiaeth_.28Mnemonics.29"></span>Cofyddiaeth (Mnemonics)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=4" title="Golygu&#039;r adran: Cofyddiaeth (Mnemonics)" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=4" title="Edit section&#039;s source code: Cofyddiaeth (Mnemonics)"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Defnydd cyffredin o <a href="/wiki/Cofair" title="Cofair">mnemonics</a> yw cymorth i gofio ffeithiau a pherthnas mewn trigonometreg. Er enghraifft, gellir cofio'r cymarebau <i>sin</i>, <i>cosin</i>, a <i>thangiad</i> mewn triongl dde trwy eu cynrychioli nhw a'u hochrau cyfatebol fel rhaff o lythrennau. Er enghraifft, mnemonig yw SOH-CAH-TOA:<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><b>S</b> ine = <b>O</b> pposite ÷ <b>H</b> ypotenuse</dd> <dd><b>C</b> osine = <b>A</b> gyfagos ÷ <b>H</b> ypotenuse</dd> <dd><b>T</b> angent = <b>O</b> pposite ÷ <b>A</b> cyfagos</dd></dl> <p><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Y_cylch_fel_uned_a_gwerthoedd_trigonometrig_cyffredin">Y cylch fel uned a gwerthoedd trigonometrig cyffredin</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=5" title="Golygu&#039;r adran: Y cylch fel uned a gwerthoedd trigonometrig cyffredin" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=5" title="Edit section&#039;s source code: Y cylch fel uned a gwerthoedd trigonometrig cyffredin"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Delwedd:Sin-cos-defn-I.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Sin-cos-defn-I.png/220px-Sin-cos-defn-I.png" decoding="async" width="220" height="213" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Sin-cos-defn-I.png/330px-Sin-cos-defn-I.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Sin-cos-defn-I.png/440px-Sin-cos-defn-I.png 2x" data-file-width="705" data-file-height="684" /></a><figcaption> Ffig. 1a - Sin a chosin ongl θ wedi'i ddiffinio gan ddefnyddio'r cylch uned.</figcaption></figure> <p>Gellir cynrychioli cymarebau trigonometrig hefyd gan ddefnyddio'r <a href="/w/index.php?title=Cylch_uned&amp;action=edit&amp;redlink=1" class="new" title="Cylch uned (dim tudalen ar gael)">uned y cylch</a>, sef cylch radiws 1 wedi'i ganoli ar darddiad y <a href="/wiki/Pl%C3%A2n_geometraidd" title="Plân geometraidd">pla</a><a href="/wiki/Pl%C3%A2n_geometraidd" title="Plân geometraidd">ân</a>.<sup id="cite_ref-CohenTheodore2009_26-0" class="reference"><a href="#cite_note-CohenTheodore2009-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> Yn y gosodiad hwn, bydd ochr-derfyn ongl <i>A</i> wedi'i gosod mewn yn y safle arferol, yn croestorri'r uned y cylch ar bwynt (x, y), lle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\cos A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\cos A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9021d5618133c8ead42c34be2590995081e82b97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.669ex; height:2.176ex;" alt="{\displaystyle x=\cos A}"></span> a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=\sin A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=\sin A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dc7ecd9349fdcd4a0be674ed1c2517d2a062a21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.24ex; height:2.509ex;" alt="{\displaystyle y=\sin A}"></span>.<sup id="cite_ref-CohenTheodore2009_26-1" class="reference"><a href="#cite_note-CohenTheodore2009-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> Mae'r gynrychiolaeth hon yn caniatáu cyfrifo gwerthoedd trigonometrig cyffredin, fel y rhai yn y tabl canlynol:<sup id="cite_ref-Kelley2002_27-0" class="reference"><a href="#cite_note-Kelley2002-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable"> <tbody><tr> <th>Ffwythiant </th> <th>0 </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi /6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi /6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f43baa7dbfaf53c6dac6ec96fd8f28d87e332f1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.657ex; height:2.843ex;" alt="{\displaystyle \pi /6}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi /4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi /4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1707aa0fec2c8ef008b9e30b6045fbf95dab9e20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.657ex; height:2.843ex;" alt="{\displaystyle \pi /4}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi /3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi /3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56c1a0cd8279cea58b0ccb583e75a0ee93975883" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.657ex; height:2.843ex;" alt="{\displaystyle \pi /3}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi /2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi /2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b44e3d874a0b229fded7ffce67a0677dd5b8b67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.657ex; height:2.843ex;" alt="{\displaystyle \pi /2}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi /3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi /3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e36a1526c55cd78034e9cc1e71f5c5f14f25d803" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.819ex; height:2.843ex;" alt="{\displaystyle 2\pi /3}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3\pi /4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3\pi /4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e9ab018f07a37399079967b3e38116975973781" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.819ex; height:2.843ex;" alt="{\displaystyle 3\pi /4}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5\pi /6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5\pi /6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8eb5b9f9706bcda3168710eabb2e3b42c616fc58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.819ex; height:2.843ex;" alt="{\displaystyle 5\pi /6}"></span> </th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span> </th></tr> <tr> <th>sin </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e308a3a46b7fdce07cc09dcab9e8d8f73e37d935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle 1/2}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92e6060e3ae8823f355e4f7288d463621806295c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.423ex; height:3.176ex;" alt="{\displaystyle {\sqrt {2}}/2}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {3}}/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {3}}/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3245e1141ec36a954dd702c886bba16d8c6cb057" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.423ex; height:3.009ex;" alt="{\displaystyle {\sqrt {3}}/2}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {3}}/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {3}}/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3245e1141ec36a954dd702c886bba16d8c6cb057" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.423ex; height:3.009ex;" alt="{\displaystyle {\sqrt {3}}/2}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92e6060e3ae8823f355e4f7288d463621806295c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.423ex; height:3.176ex;" alt="{\displaystyle {\sqrt {2}}/2}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e308a3a46b7fdce07cc09dcab9e8d8f73e37d935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle 1/2}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> </td></tr> <tr> <th>cosine </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {3}}/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {3}}/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3245e1141ec36a954dd702c886bba16d8c6cb057" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.423ex; height:3.009ex;" alt="{\displaystyle {\sqrt {3}}/2}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92e6060e3ae8823f355e4f7288d463621806295c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.423ex; height:3.176ex;" alt="{\displaystyle {\sqrt {2}}/2}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e308a3a46b7fdce07cc09dcab9e8d8f73e37d935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle 1/2}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fb9deb994fbfacb465f9a9d34b0f85d3cfc3985" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.296ex; height:2.843ex;" alt="{\displaystyle -1/2}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\sqrt {2}}/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\sqrt {2}}/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57178dad5b4ec5793bad5770cb22caab0fb0dfdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.231ex; height:3.176ex;" alt="{\displaystyle -{\sqrt {2}}/2}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\sqrt {3}}/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\sqrt {3}}/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/654126a37ecb8f7191a11ee74c08195221a92fbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.231ex; height:3.009ex;" alt="{\displaystyle -{\sqrt {3}}/2}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704fb0427140d054dd267925495e78164fee9aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -1}"></span> </td></tr> <tr> <th>tangiad </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {3}}/3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {3}}/3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1e3b1a98e902ca819e6a6150a206f3a6f01f780" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.423ex; height:3.009ex;" alt="{\displaystyle {\sqrt {3}}/3}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b19c09494138b5082459afac7f9a8d99c546fcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:2.843ex;" alt="{\displaystyle {\sqrt {3}}}"></span> </td> <td>anniffiniedig </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\sqrt {3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\sqrt {3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c7cc8150f4cf1328d10ea1883d66f073136647b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.906ex; height:2.843ex;" alt="{\displaystyle -{\sqrt {3}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704fb0427140d054dd267925495e78164fee9aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -1}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\sqrt {3}}/3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\sqrt {3}}/3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a23c888bc8892f2f4701d75d2deb260a32b853c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.231ex; height:3.009ex;" alt="{\displaystyle -{\sqrt {3}}/3}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> </td></tr> <tr> <th>secant </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2{\sqrt {3}}/3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2{\sqrt {3}}/3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/465e3ec5d5b106a6ac6f44e57d326e595a4a63e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.586ex; height:3.009ex;" alt="{\displaystyle 2{\sqrt {3}}/3}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4afc1e27d418021bf10898eb44a7f5f315735ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span> </td> <td>anniffiniedig </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46e5b5b462e546b1d3d7e5f9a23efece405b2e78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -2}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f922458d7d412e30c23d59dfdd457803b867508" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.906ex; height:3.009ex;" alt="{\displaystyle -{\sqrt {2}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -2{\sqrt {3}}/3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -2{\sqrt {3}}/3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fede71574918cc5f58d583649ceb500f221ccb88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.394ex; height:3.009ex;" alt="{\displaystyle -2{\sqrt {3}}/3}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704fb0427140d054dd267925495e78164fee9aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -1}"></span> </td></tr> <tr> <th>cosecant </th> <td>anniffiniedig </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4afc1e27d418021bf10898eb44a7f5f315735ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2{\sqrt {3}}/3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2{\sqrt {3}}/3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/465e3ec5d5b106a6ac6f44e57d326e595a4a63e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.586ex; height:3.009ex;" alt="{\displaystyle 2{\sqrt {3}}/3}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2{\sqrt {3}}/3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2{\sqrt {3}}/3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/465e3ec5d5b106a6ac6f44e57d326e595a4a63e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.586ex; height:3.009ex;" alt="{\displaystyle 2{\sqrt {3}}/3}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4afc1e27d418021bf10898eb44a7f5f315735ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span> </td> <td>anniffiniedig </td></tr> <tr> <th>cotangent </th> <td>anniffiniedig </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b19c09494138b5082459afac7f9a8d99c546fcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:2.843ex;" alt="{\displaystyle {\sqrt {3}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {3}}/3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {3}}/3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1e3b1a98e902ca819e6a6150a206f3a6f01f780" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.423ex; height:3.009ex;" alt="{\displaystyle {\sqrt {3}}/3}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\sqrt {3}}/3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\sqrt {3}}/3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a23c888bc8892f2f4701d75d2deb260a32b853c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.231ex; height:3.009ex;" alt="{\displaystyle -{\sqrt {3}}/3}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704fb0427140d054dd267925495e78164fee9aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -1}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\sqrt {3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\sqrt {3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c7cc8150f4cf1328d10ea1883d66f073136647b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.906ex; height:2.843ex;" alt="{\displaystyle -{\sqrt {3}}}"></span> </td> <td>anniffiniedig </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Ffwythianau_trigonometrig_newidynnau_real_neu_gymhlyg">Ffwythianau trigonometrig newidynnau real neu gymhlyg</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=6" title="Golygu&#039;r adran: Ffwythianau trigonometrig newidynnau real neu gymhlyg" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=6" title="Edit section&#039;s source code: Ffwythianau trigonometrig newidynnau real neu gymhlyg"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Gan ddefnyddio uned y cylch, gellir ymestyn y diffiniadau o gymarebau trigonometrig i bob dadl gadarnhaol a negyddol<sup id="cite_ref-Olive2003_28-0" class="reference"><a href="#cite_note-Olive2003-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> (gweler <a href="/wiki/Ffwythiannau_trigonometrig" title="Ffwythiannau trigonometrig">ffwythiannau trigonometrig</a>). </p> <div class="mw-heading mw-heading3"><h3 id="Graffiau_o_ffwythianau_trigonometrig">Graffiau o ffwythianau trigonometrig</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=7" title="Golygu&#039;r adran: Graffiau o ffwythianau trigonometrig" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=7" title="Edit section&#039;s source code: Graffiau o ffwythianau trigonometrig"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Mae'r tabl canlynol yn crynhoi priodweddau graffiau'r chwe phrif ffwythiant trigonometrig:<sup id="cite_ref-Attenborough2003_29-0" class="reference"><a href="#cite_note-Attenborough2003-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-LarsonEdwards2008_30-0" class="reference"><a href="#cite_note-LarsonEdwards2008-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable"> <tbody><tr> <th>Ffwythiant </th> <th>Cyfnod </th> <th>Parth </th> <th>Ystod </th> <th>Graff </th></tr> <tr> <th>sin </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\infty ,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\infty ,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c8c11c44279888c9e395eeb5f45d121348ae10a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.299ex; height:2.843ex;" alt="{\displaystyle (-\infty ,\infty )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [-1,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [-1,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51e3b7f14a6f70e614728c583409a0b9a8b9de01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.461ex; height:2.843ex;" alt="{\displaystyle [-1,1]}"></span> </td> <td>&lt;/img&gt; </td></tr> <tr> <th>cosin </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\infty ,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\infty ,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c8c11c44279888c9e395eeb5f45d121348ae10a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.299ex; height:2.843ex;" alt="{\displaystyle (-\infty ,\infty )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [-1,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [-1,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51e3b7f14a6f70e614728c583409a0b9a8b9de01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.461ex; height:2.843ex;" alt="{\displaystyle [-1,1]}"></span> </td> <td>&lt;/img&gt; </td></tr> <tr> <th>tangiad </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\neq \pi /2+n\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>+</mo> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\neq \pi /2+n\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a7a8f0eb7a10c0794219ef1fdc38bba14ee45f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.652ex; height:2.843ex;" alt="{\displaystyle x\neq \pi /2+n\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\infty ,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\infty ,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c8c11c44279888c9e395eeb5f45d121348ae10a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.299ex; height:2.843ex;" alt="{\displaystyle (-\infty ,\infty )}"></span> </td> <td>&lt;/img&gt; </td></tr> <tr> <th>secant </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\neq \pi /2+n\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>+</mo> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\neq \pi /2+n\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a7a8f0eb7a10c0794219ef1fdc38bba14ee45f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.652ex; height:2.843ex;" alt="{\displaystyle x\neq \pi /2+n\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\infty ,-1]\cup [1,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">]</mo> <mo>&#x222A;<!-- ∪ --></mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\infty ,-1]\cup [1,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e3448e2de68557e598967fb8b1f8900260c4a64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.342ex; height:2.843ex;" alt="{\displaystyle (-\infty ,-1]\cup [1,\infty )}"></span> </td> <td>&lt;/img&gt; </td></tr> <tr> <th>cosecant </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\neq n\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\neq n\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba07b0a25bc552e7cf22783cc256b7f95333ddc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.155ex; height:2.676ex;" alt="{\displaystyle x\neq n\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\infty ,-1]\cup [1,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">]</mo> <mo>&#x222A;<!-- ∪ --></mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\infty ,-1]\cup [1,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e3448e2de68557e598967fb8b1f8900260c4a64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.342ex; height:2.843ex;" alt="{\displaystyle (-\infty ,-1]\cup [1,\infty )}"></span> </td> <td>&lt;/img&gt; </td></tr> <tr> <th>cotangent </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\neq n\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\neq n\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba07b0a25bc552e7cf22783cc256b7f95333ddc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.155ex; height:2.676ex;" alt="{\displaystyle x\neq n\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\infty ,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\infty ,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c8c11c44279888c9e395eeb5f45d121348ae10a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.299ex; height:2.843ex;" alt="{\displaystyle (-\infty ,\infty )}"></span> </td> <td>&lt;/img&gt; </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Ffwythiant_trigonometrig_gwrthdro">Ffwythiant trigonometrig gwrthdro</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=8" title="Golygu&#039;r adran: Ffwythiant trigonometrig gwrthdro" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=8" title="Edit section&#039;s source code: Ffwythiant trigonometrig gwrthdro"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Gan fod y chwe phrif ffwythiant trigonometrig yn gyfnodol, nid ydyn nhw'n <a href="/w/index.php?title=Swyddogaeth_chwistrellol&amp;action=edit&amp;redlink=1" class="new" title="Swyddogaeth chwistrellol (dim tudalen ar gael)">ddyfeisgar</a> (<i>injective</i>; neu, 1 i 1), ac felly nid ydyn nhw'n wrthdroadwy. Trwy gyfyngu parth ffwythiant trigonometrig, fodd bynnag, gellir eu gwneud yn wrthdroadwy.<sup id="cite_ref-BremiganBremigan2011_31-0" class="reference"><a href="#cite_note-BremiganBremigan2011-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p><p>Gellir gweld enwau'r ffwythiannau trigonometrig gwrthdro, ynghyd â'u parthau a'u hystod, yn y tabl canlynol:<sup id="cite_ref-BremiganBremigan2011_31-1" class="reference"><a href="#cite_note-BremiganBremigan2011-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-BrokateManchanda2019_32-0" class="reference"><a href="#cite_note-BrokateManchanda2019-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable" style="text-align:center"> <tbody><tr> <th>Enw </th> <th>Nodiant arferol </th> <th>Diffiniad </th> <th>Parth <i>x</i> ar gyfer canlyniad go iawn </th> <th>Ystod o'r prif werth arferol<br />(<a href="/wiki/Radian" title="Radian">radianau</a>) </th> <th>Ystod o'r prif werth arferol<br />(graddau) </th></tr> <tr> <td><b>arcsin</b> </td> <td><i>y</i> = arcsin(x ) </td> <td><i>x</i> = sin ( y ) </td> <td>−1 ≤ <i>x</i> ≤ 1 </td> <td>-&#160; ≤ <i>y</i> ≤&#160; </td> <td>−90 ° ≤ <i>y</i> ≤ 90 ° </td></tr> <tr> <td><b>arccosin</b> </td> <td><i>y</i> = arccos(x ) </td> <td><i>x</i> = cos ( y ) </td> <td>−1 ≤ <i>x</i> ≤ 1 </td> <td>0 ≤ <i>y</i> ≤ π </td> <td>0 ° ≤ <i>y</i> ≤ 180 ° </td></tr> <tr> <td><b>arctangent</b> </td> <td><i>y</i> = arctan(x ) </td> <td><i>x</i> = tan ( y ) </td> <td>pob rhif real </td> <td>-&#160; &lt; <i>y</i> &lt;&#160; </td> <td>−90 ° &lt; <i>y</i> &lt;90 ° </td></tr> <tr> <td><b>arccotangent</b> </td> <td><i>y</i> = arccot(x ) </td> <td><i>x</i> = cot ( y ) </td> <td>pob rhif real </td> <td>0 &lt; <i>y</i> &lt; π </td> <td>0 ° &lt; <i>y</i> &lt;180 ° </td></tr> <tr> <td><b>arcsecant</b> </td> <td><i>y</i> = arcsec(x ) </td> <td><i>x</i> = sec ( y ) </td> <td><i>x</i> ≤ −1 neu 1 ≤ <i>x</i> </td> <td>0 ≤ <i>y</i> &lt;&#160; neu&#160; &lt; <i>y</i> ≤ π </td> <td>0 ° ≤ <i>y</i> &lt;90 ° neu 90 ° &lt; <i>y</i> ≤ 180 ° </td></tr> <tr> <td><b>arccosecant</b> </td> <td><i>y</i> = arccsc(x ) </td> <td><i>x</i> = csc ( y ) </td> <td><i>x</i> ≤ −1 neu 1 ≤ <i>x</i> </td> <td>-&#160; ≤ <i>y</i> &lt;0 neu 0 &lt; <i>y</i> ≤&#160; </td> <td>−90 ° ≤ <i>y</i> &lt;0 ° neu 0 ° &lt; <i>y</i> ≤ 90 ° </td></tr> </tbody></table> <div class="mw-heading mw-heading3"><h3 id="Cynrychioliadau_cyfresi_pŵer"><span id="Cynrychioliadau_cyfresi_p.C5.B5er"></span>Cynrychioliadau cyfresi pŵer</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=9" title="Golygu&#039;r adran: Cynrychioliadau cyfresi pŵer" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=9" title="Edit section&#039;s source code: Cynrychioliadau cyfresi pŵer"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Pan gânt eu hystyried fel ffwythiannau newidyn real, gellir cynrychioli'r cymarebau trigonometrig gan <a href="/w/index.php?title=Cyfres&amp;action=edit&amp;redlink=1" class="new" title="Cyfres (dim tudalen ar gael)">gyfres anfeidrol</a>. Er enghraifft, mae gan sin a chosin y cynrychioladau canlynol:<sup id="cite_ref-Lang2013_33-0" class="reference"><a href="#cite_note-Lang2013-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sin x&amp;=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots \\&amp;=\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)!}}\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mrow> <mn>5</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mrow> <mn>7</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sin x&amp;=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots \\&amp;=\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)!}}\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77ff176b8ffc0203014c89a5a4982b86a00cbdf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:33.497ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}\sin x&amp;=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots \\&amp;=\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)!}}\\\end{aligned}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\cos x&amp;=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-{\frac {x^{6}}{6!}}+\cdots \\&amp;=\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n}}{(2n)!}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow> <mn>4</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mrow> <mn>6</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\cos x&amp;=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-{\frac {x^{6}}{6!}}+\cdots \\&amp;=\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n}}{(2n)!}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c441ed0b3f9f1d19a76f59aebb86817deb422f09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:33.585ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}\cos x&amp;=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-{\frac {x^{6}}{6!}}+\cdots \\&amp;=\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n}}{(2n)!}}.\end{aligned}}}"></span></dd></dl> <p>Gyda'r diffiniadau hyn gellir diffinio'r swyddogaethau trigonometrig ar gyfer <a href="/wiki/Rhif_cymhlyg" title="Rhif cymhlyg">rhifau cymhlyg</a>.<sup id="cite_ref-Alessio2015_34-0" class="reference"><a href="#cite_note-Alessio2015-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> Pan gaiff ei ymestyn fel ffwythiannau newidynnau real neu gymhleth, mae'r <a href="/wiki/Fformiwla_Euler" title="Fformiwla Euler">fformiwla</a> ganlynol yn gywir ar gyfer yr esbonyddol cymhlyg: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{x+iy}=e^{x}(\cos y+i\sin y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>y</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>y</mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{x+iy}=e^{x}(\cos y+i\sin y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47377e0ec401e4565bc198dedecdb5870d5a64e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.811ex; height:3.176ex;" alt="{\displaystyle e^{x+iy}=e^{x}(\cos y+i\sin y).}"></span></dd></dl> <p>Mae'r ffwythiant esbonyddol gymhlyg hon, a ysgrifennwyd o ran ffwythiannau trigonometrig, yn arbennig o ddefnyddiol mewn mathemateg.<sup id="cite_ref-RAJESWARIRAO2014_35-0" class="reference"><a href="#cite_note-RAJESWARIRAO2014-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Stillwell2010_36-0" class="reference"><a href="#cite_note-Stillwell2010-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Cyfrifo_ffwythiannau_trigonometrig">Cyfrifo ffwythiannau trigonometrig</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=10" title="Golygu&#039;r adran: Cyfrifo ffwythiannau trigonometrig" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=10" title="Edit section&#039;s source code: Cyfrifo ffwythiannau trigonometrig"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Roedd ffwythiannau trigonometrig ymhlith y defnyddiau cynharaf ar gyfer <a href="/w/index.php?title=Tabl_mathemategol&amp;action=edit&amp;redlink=1" class="new" title="Tabl mathemategol (dim tudalen ar gael)">tablau mathemategol</a>.<sup id="cite_ref-Campbell-KellyCampbell-Kelly2003_37-0" class="reference"><a href="#cite_note-Campbell-KellyCampbell-Kelly2003-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> Ymgorfforwyd tablau o'r fath mewn gwerslyfrau mathemateg a dysgwyd myfyrwyr i edrych ar werthoedd a sut i ryngosod rhwng y gwerthoedd a restrir i gael cywirdeb uwch.<sup id="cite_ref-DonovanGimmestad1980_38-0" class="reference"><a href="#cite_note-DonovanGimmestad1980-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> Roedd gan y <a href="/wiki/Llithriwl" title="Llithriwl">Llithriwl</a> raddfeydd arbennig ar gyfer ffwythiannau trigonometrig.<sup id="cite_ref-Middlemiss1945_39-0" class="reference"><a href="#cite_note-Middlemiss1945-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p><p>Mae gan <a href="/w/index.php?title=Cyfrifiannell_wyddonol&amp;action=edit&amp;redlink=1" class="new" title="Cyfrifiannell wyddonol (dim tudalen ar gael)">gyfrifianellau gwyddonol</a> fotymau ar gyfer cyfrifo'r prif swyddogaethau trigonometrig (sin, cos, tan, ac weithiau <a href="/wiki/Fformiwla_Euler" title="Fformiwla Euler">cis</a> a'u gwrthdroadau). Mae'r mwyafrif o gyfrifianellau'n caniatáu dewis o ddulliau mesur ongl: graddau, radianau, ac weithiau graddyddion . Mae'r mwyafrif o <a href="/wiki/Iaith_raglennu" title="Iaith raglennu">ieithoedd rhaglennu</a> cyfrifiadurol yn darparu llyfrgelloedd o ffwythiannau sy'n cynnwys y ffwythiannau trigonometrig.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Ceisiadau">Ceisiadau</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=11" title="Golygu&#039;r adran: Ceisiadau" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=11" title="Edit section&#039;s source code: Ceisiadau"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Seryddiaeth">Seryddiaeth</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=12" title="Golygu&#039;r adran: Seryddiaeth" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=12" title="Edit section&#039;s source code: Seryddiaeth"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Am ganrifoedd, defnyddiwyd <a href="/w/index.php?title=Trigonometreg_sfferig&amp;action=edit&amp;redlink=1" class="new" title="Trigonometreg sfferig (dim tudalen ar gael)">trigonometreg sfferig</a> ar gyfer lleoli safleoedd yr haul, lleuad a'r ser,<sup id="cite_ref-Gregory1816_42-0" class="reference"><a href="#cite_note-Gregory1816-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> darogan eclipsau, ac yn disgrifio taith y planedau.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p><p>Yn y cyfnod modern, defnyddir y dechneg triongli (<i>triangulation</i>) mewn <a href="/wiki/Seryddiaeth" title="Seryddiaeth">seryddiaeth</a> i fesur y pellter i sêr cyfagos,<sup id="cite_ref-SeedsBackman2009_44-0" class="reference"><a href="#cite_note-SeedsBackman2009-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> yn ogystal ag mewn systemau llywio lloeren.<sup id="cite_ref-Willers2018_10-1" class="reference"><a href="#cite_note-Willers2018-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Fforio">Fforio</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=13" title="Golygu&#039;r adran: Fforio" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=13" title="Edit section&#039;s source code: Fforio"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Delwedd:Frieberger_drum_marine_sextant.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Frieberger_drum_marine_sextant.jpg/220px-Frieberger_drum_marine_sextant.jpg" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Frieberger_drum_marine_sextant.jpg/330px-Frieberger_drum_marine_sextant.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Frieberger_drum_marine_sextant.jpg/440px-Frieberger_drum_marine_sextant.jpg 2x" data-file-width="3072" data-file-height="2304" /></a><figcaption>Defnyddir y secstant i fesur ongl yr haul neu'r sêr mewn perthynas â'r gorwel. Gan ddefnyddio trigonometreg a chronomedr morol, gellir pennu lleoliad y llong o fesuriadau o'r fath.</figcaption></figure> <p>Yn hanesyddol, defnyddiwyd trigonometreg ar gyfer lleoli <a href="/wiki/Lledred" title="Lledred">lledred</a> a <a href="/wiki/Hydred" title="Hydred">hydred</a> llongau hwylio, plotio cyrsiau, a chyfrifo pellteroedd wrth fordwyo.<sup id="cite_ref-Sabine1800_45-0" class="reference"><a href="#cite_note-Sabine1800-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> </p><p>Mae trigonometreg yn dal i gael ei ddefnyddio wrth fordwyo trwy ddulliau fel y <a href="/w/index.php?title=System_Lleoli_Byd-eang&amp;action=edit&amp;redlink=1" class="new" title="System Lleoli Byd-eang (dim tudalen ar gael)">System Lleoli Byd-eang</a> a <a href="/wiki/Deallusrwydd_artiffisial" title="Deallusrwydd artiffisial">deallusrwydd artiffisial ar</a> gyfer <a href="/wiki/Car_diyrrwr" title="Car diyrrwr">cerbydau diyrrwr</a>.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Mesur_tir">Mesur tir</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=14" title="Golygu&#039;r adran: Mesur tir" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=14" title="Edit section&#039;s source code: Mesur tir"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Wrth fesur y tir, defnyddir trigonometreg wrth gyfrifo hyd, <a href="/wiki/Arwynebedd" title="Arwynebedd">arwynebedd</a> ac onglau cymharol rhwng gwrthrychau.<sup id="cite_ref-Perkins1853_47-0" class="reference"><a href="#cite_note-Perkins1853-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> </p><p>Ar raddfa fwy, defnyddir trigonometreg mewn <a href="/wiki/Daearyddiaeth" title="Daearyddiaeth">daearyddiaeth</a> i fesur pellteroedd rhwng tirnodau.<sup id="cite_ref-WithersLorimer2015_48-0" class="reference"><a href="#cite_note-WithersLorimer2015-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Ffwythiannau_cyfnodol">Ffwythiannau cyfnodol</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=15" title="Golygu&#039;r adran: Ffwythiannau cyfnodol" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=15" title="Edit section&#039;s source code: Ffwythiannau cyfnodol"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Frame"><a href="/wiki/Delwedd:Fourier_series_and_transform.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/2/2b/Fourier_series_and_transform.gif" decoding="async" width="300" height="240" class="mw-file-element" data-file-width="300" data-file-height="240" /></a><figcaption> Ffwythiant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10f51eec88706f1a26ac7430dc71d92c15e71a6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.229ex; height:2.843ex;" alt="{\displaystyle s(x)}"></span> (mewn coch) yw swm o chwe ffwythiant sin o wahanol argiau (neu osgledau; <i>amplitudau</i>) ac <a href="/wiki/Amledd" title="Amledd">amleddau</a> sy'n cysylltiedig. Gelwir eu crynhoad yn gyfres Fourier. Y trawsnewidiad Fourier, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04cf5fa5e69ff1a6bde0d265f3c319c17d7cf62f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.587ex; height:2.843ex;" alt="{\displaystyle S(f)}"></span> (mewn glas), sy'n darlunio <a href="/wiki/Osgled" title="Osgled">osgled yn</a> erbyn <a href="/wiki/Amledd" title="Amledd">amledd</a>, yn datgelu'r 6 amledd.</figcaption></figure> <div class="mw-heading mw-heading2"><h2 id="Darllen_pellach">Darllen pellach</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=16" title="Golygu&#039;r adran: Darllen pellach" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=16" title="Edit section&#039;s source code: Darllen pellach"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>&#160;</li> <li>Linton, Christopher M. (2004). <i>O Eudoxus i Einstein: Hanes Seryddiaeth Fathemategol</i> . Gwasg Prifysgol Caergrawnt.</li> <li><style data-mw-deduplicate="TemplateStyles:r8312344">.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}</style> <span class="citation mathworld" id="Reference-Mathworld-Trigonometric_Addition_Formulas"><cite id="CITEREFWeisstein,_Eric_W." class="citation web"><a href="/w/index.php?title=Eric_W._Weisstein&amp;action=edit&amp;redlink=1" class="new" title="Eric W. Weisstein (dim tudalen ar gael)">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html">"Trigonometric Addition Formulas"</a>. <i>MathWorld</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Trigonometric+Addition+Formulas&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=http%3A%2F%2Fmathworld.wolfram.com%2FTrigonometricAdditionFormulas.html&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Dolenni_allanol">Dolenni allanol</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=17" title="Golygu&#039;r adran: Dolenni allanol" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=17" title="Edit section&#039;s source code: Dolenni allanol"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://www.khanacademy.org/math/trigonometry">Academi Khan: Trigonometreg, micro-ddarlithoedd ar-lein am ddim</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20071104225720/http://baqaqi.chi.il.us/buecher/mathematics/trigonometry/index.html">Trigonometreg</a> gan Alfred Monroe Kenyon a Louis Ingold, The Macmillan Company, 1914. Mewn delweddau, testun llawn wedi'i gyflwyno.</li> <li><a rel="nofollow" class="external text" href="http://www.maa.org/publications/periodicals/convergence/benjamin-bannekers-trigonometry-puzzle-introduction">Pos Trigonometreg Benjamin Banneker</a> adeg <a rel="nofollow" class="external text" href="http://www.maa.org/loci-category/convergence?page=1">Cydgyfeirio</a></li> <li><a rel="nofollow" class="external text" href="http://www.clarku.edu/~djoyce/trig/">Cwrs Byr Dave mewn Trigonometreg</a> gan David Joyce o Brifysgol Clark</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20201216180745/http://mecmath.net/trig/trigbook.pdf">Trigonometreg, gan Michael Corral, Yn ymdrin â thrigonometreg elfennol, Wedi'i ddosbarthu o dan Drwydded Dogfennaeth Rydd GNU</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Cyfeiriadau">Cyfeiriadau</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometreg&amp;veaction=edit&amp;section=18" title="Golygu&#039;r adran: Cyfeiriadau" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometreg&amp;action=edit&amp;section=18" title="Edit section&#039;s source code: Cyfeiriadau"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist" style="list-style-type: decimal;"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text"><i>Encyclopedia of Science</i>, gol. R. Nagel, 2nd arg. (Gale Group, 2002)</span> </li> <li id="cite_note-Hackley1853-2"><span class="mw-cite-backlink"><a href="#cite_ref-Hackley1853_2-0">↑</a></span> <span class="reference-text"><cite id="CITEREFCharles_William_Hackley1853" class="citation book">Charles William Hackley (1853). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Q4FTAAAAYAAJ"><i>A treatise on trigonometry, plane and spherical: with its application to navigation and surveying, nautical and practical astronomy and geodesy, with logarithmic, trigonometrical, and nautical tables</i></a>. G. P. Putnam.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+treatise+on+trigonometry%2C+plane+and+spherical%3A+with+its+application+to+navigation+and+surveying%2C+nautical+and+practical+astronomy+and+geodesy%2C+with+logarithmic%2C+trigonometrical%2C+and+nautical+tables&amp;rft.pub=G.+P.+Putnam&amp;rft.date=1853&amp;rft.au=Charles+William+Hackley&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQ4FTAAAAYAAJ&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-LarsonHostetler2006-3"><span class="mw-cite-backlink"><a href="#cite_ref-LarsonHostetler2006_3-0">↑</a></span> <span class="reference-text"><cite id="CITEREFRon_LarsonRobert_P._Hostetler2006" class="citation book">Ron Larson; Robert P. Hostetler (10 Mawrth 2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=RI-t-w0AXVAC&amp;pg=PA230"><i>Trigonometry</i></a>. Cengage Learning. t.&#160;230. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/0-618-64332-X" title="Arbennig:BookSources/0-618-64332-X"><bdi>0-618-64332-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Trigonometry&amp;rft.pages=230&amp;rft.pub=Cengage+Learning&amp;rft.date=2006-03-10&amp;rft.isbn=0-618-64332-X&amp;rft.au=Ron+Larson&amp;rft.au=Robert+P.+Hostetler&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DRI-t-w0AXVAC%26pg%3DPA230&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-Sterling2014-4"><span class="mw-cite-backlink"><a href="#cite_ref-Sterling2014_4-0">↑</a></span> <span class="reference-text"><cite id="CITEREFMary_Jane_Sterling2014" class="citation book">Mary Jane Sterling (24 Chwefror 2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=cb7RAgAAQBAJ&amp;pg=PA185"><i>Trigonometry For Dummies</i></a>. John Wiley &amp; Sons. t.&#160;185. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-1-118-82741-3" title="Arbennig:BookSources/978-1-118-82741-3"><bdi>978-1-118-82741-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Trigonometry+For+Dummies&amp;rft.pages=185&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2014-02-24&amp;rft.isbn=978-1-118-82741-3&amp;rft.au=Mary+Jane+Sterling&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dcb7RAgAAQBAJ%26pg%3DPA185&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-Halmos2013-5"><span class="mw-cite-backlink"><a href="#cite_ref-Halmos2013_5-0">↑</a></span> <span class="reference-text"><cite id="CITEREFP.R._Halmos2013" class="citation book">P.R. Halmos (1 December 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=7VblBwAAQBAJ&amp;pg=PA24"><i>I Want to be a Mathematician: An Automathography</i></a>. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-1-4612-1084-9" title="Arbennig:BookSources/978-1-4612-1084-9"><bdi>978-1-4612-1084-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=I+Want+to+be+a+Mathematician%3A+An+Automathography&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2013-12-01&amp;rft.isbn=978-1-4612-1084-9&amp;rft.au=P.R.+Halmos&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D7VblBwAAQBAJ%26pg%3DPA24&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text"><cite id="CITEREFPimentelWall2018" class="citation book">Pimentel, Ric; Wall, Terry (2018). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=WcJWDwAAQBAJ"><i>Cambridge IGCSE Core Mathematics</i></a> (arg. 4th). Hachette UK. t.&#160;275. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-1-5104-2058-8" title="Arbennig:BookSources/978-1-5104-2058-8"><bdi>978-1-5104-2058-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Cambridge+IGCSE+Core+Mathematics&amp;rft.pages=275&amp;rft.edition=4th&amp;rft.pub=Hachette+UK&amp;rft.date=2018&amp;rft.isbn=978-1-5104-2058-8&amp;rft.aulast=Pimentel&amp;rft.aufirst=Ric&amp;rft.au=Wall%2C+Terry&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DWcJWDwAAQBAJ&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=WcJWDwAAQBAJ&amp;pg=PA275">Extract of page 275</a></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><a href="#cite_ref-7">↑</a></span> <span class="reference-text"><cite id="CITEREFOtto_Neugebauer1975" class="citation book">Otto Neugebauer (1975). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=vO5FCVIxz2YC&amp;pg=PA744"><i>A history of ancient mathematical astronomy. 1</i></a>. Springer-Verlag. t.&#160;744. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-3-540-06995-9" title="Arbennig:BookSources/978-3-540-06995-9"><bdi>978-3-540-06995-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+history+of+ancient+mathematical+astronomy.+1&amp;rft.pages=744&amp;rft.pub=Springer-Verlag&amp;rft.date=1975&amp;rft.isbn=978-3-540-06995-9&amp;rft.au=Otto+Neugebauer&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DvO5FCVIxz2YC%26pg%3DPA744&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-toomer-8"><span class="mw-cite-backlink"><a href="#cite_ref-toomer_8-0">↑</a></span> <span class="reference-text"><span class="citation" id="CITEREFToomer1998"><a href="/w/index.php?title=Gerald_J._Toomer&amp;action=edit&amp;redlink=1" class="new" title="Gerald J. Toomer (dim tudalen ar gael)">Toomer,&#32;G.</a>&#32;(1998),&#32;<i>Ptolemy's Almagest</i>,&#32;Princeton University Press,&#32;<a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-691-00260-6" title="Arbennig:BookSources/978-0-691-00260-6">978-0-691-00260-6</a></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">↑</a></span> <span class="reference-text">Gingerich, Owen. "Islamic astronomy." Scientific American 254.4 (1986): 74-83</span> </li> <li id="cite_note-Willers2018-10"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Willers2018_10-0">10.0</a></sup> <sup><a href="#cite_ref-Willers2018_10-1">10.1</a></sup></span> <span class="reference-text"><cite id="CITEREFMichael_Willers2018" class="citation book">Michael Willers (13 Chwefror 2018). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=45R2DwAAQBAJ&amp;pg=PA37"><i>Armchair Algebra: Everything You Need to Know From Integers To Equations</i></a>. Book Sales. t.&#160;37. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-7858-3595-0" title="Arbennig:BookSources/978-0-7858-3595-0"><bdi>978-0-7858-3595-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Armchair+Algebra%3A+Everything+You+Need+to+Know+From+Integers+To+Equations&amp;rft.pages=37&amp;rft.pub=Book+Sales&amp;rft.date=2018-02-13&amp;rft.isbn=978-0-7858-3595-0&amp;rft.au=Michael+Willers&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D45R2DwAAQBAJ%26pg%3DPA37&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><a href="#cite_ref-11">↑</a></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Biographies/Al-Tusi_Nasir/">"Nasir al-Din al-Tusi"</a>. <i><a href="/w/index.php?title=MacTutor_History_of_Mathematics_archive&amp;action=edit&amp;redlink=1" class="new" title="MacTutor History of Mathematics archive (dim tudalen ar gael)">MacTutor History of Mathematics archive</a></i><span class="reference-accessdate">. Cyrchwyd <span class="nowrap">2021-01-08</span></span>. <q>One of al-Tusi's most important mathematical contributions was the creation of trigonometry as a mathematical discipline in its own right rather than as just a tool for astronomical applications. In Treatise on the quadrilateral al-Tusi gave the first extant exposition of the whole system of plane and spherical trigonometry. This work is really the first in history on trigonometry as an independent branch of pure mathematics and the first in which all six cases for a right-angled spherical triangle are set forth.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MacTutor+History+of+Mathematics+archive&amp;rft.atitle=Nasir+al-Din+al-Tusi&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FBiographies%2FAl-Tusi_Nasir%2F&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><a href="#cite_ref-12">↑</a></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://www.cambridge.org/core/books/the-cambridge-history-of-science/islamic-mathematics/4BF4D143150C0013552902EE270AF9C2">"the cambridge history of science"</a>. October 2013.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=the+cambridge+history+of+science&amp;rft.date=2013-10&amp;rft_id=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fbooks%2Fthe-cambridge-history-of-science%2Fislamic-mathematics%2F4BF4D143150C0013552902EE270AF9C2&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-Britannica-13"><span class="mw-cite-backlink"><a href="#cite_ref-Britannica_13-0">↑</a></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="http://www.britannica.com/EBchecked/topic/605281/trigonometry">"trigonometry"</a>. <a href="/wiki/Encyclop%C3%A6dia_Britannica" title="Encyclopædia Britannica">Encyclopædia Britannica</a><span class="reference-accessdate">. Cyrchwyd <span class="nowrap">2008-07-21</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=trigonometry&amp;rft.pub=Encyclop%C3%A6dia+Britannica&amp;rft_id=http%3A%2F%2Fwww.britannica.com%2FEBchecked%2Ftopic%2F605281%2Ftrigonometry&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><a href="#cite_ref-14">↑</a></span> <span class="reference-text"><cite id="CITEREFBerggren2007" class="citation book">Berggren, J. Lennart (2007). "Mathematics in Medieval Islam". <a rel="nofollow" class="external text" href="https://archive.org/details/mathematicsofegy0000unse"><i>The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook</i></a>. Princeton University Press. t.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/mathematicsofegy0000unse/page/518">518</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-691-11485-9" title="Arbennig:BookSources/978-0-691-11485-9"><bdi>978-0-691-11485-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Mathematics+in+Medieval+Islam&amp;rft.btitle=The+Mathematics+of+Egypt%2C+Mesopotamia%2C+China%2C+India%2C+and+Islam%3A+A+Sourcebook&amp;rft.pages=518&amp;rft.pub=Princeton+University+Press&amp;rft.date=2007&amp;rft.isbn=978-0-691-11485-9&amp;rft.aulast=Berggren&amp;rft.aufirst=J.+Lennart&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicsofegy0000unse&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><a href="#cite_ref-15">↑</a></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Biographies/Regiomontanus/">"Johann Müller Regiomontanus"</a>. <i><a href="/w/index.php?title=MacTutor_History_of_Mathematics_archive&amp;action=edit&amp;redlink=1" class="new" title="MacTutor History of Mathematics archive (dim tudalen ar gael)">MacTutor History of Mathematics archive</a></i><span class="reference-accessdate">. Cyrchwyd <span class="nowrap">2021-01-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MacTutor+History+of+Mathematics+archive&amp;rft.atitle=Johann+M%C3%BCller+Regiomontanus&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FBiographies%2FRegiomontanus%2F&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><a href="#cite_ref-16">↑</a></span> <span class="reference-text">N.G. Wilson (1992). <i>From Byzantium to Italy. Greek Studies in the Italian Renaissance</i>, London. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/0-7156-2418-0" title="Arbennig:BookSources/0-7156-2418-0">0-7156-2418-0</a></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><a href="#cite_ref-17">↑</a></span> <span class="reference-text"><cite id="CITEREFGrattan-Guinness1997" class="citation book">Grattan-Guinness, Ivor (1997). <i>The Rainbow of Mathematics: A History of the Mathematical Sciences</i>. W.W. Norton. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-393-32030-5" title="Arbennig:BookSources/978-0-393-32030-5"><bdi>978-0-393-32030-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Rainbow+of+Mathematics%3A+A+History+of+the+Mathematical+Sciences&amp;rft.pub=W.W.+Norton&amp;rft.date=1997&amp;rft.isbn=978-0-393-32030-5&amp;rft.aulast=Grattan-Guinness&amp;rft.aufirst=Ivor&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><a href="#cite_ref-18">↑</a></span> <span class="reference-text"><cite id="CITEREFRobert_E._Krebs2004" class="citation book">Robert E. Krebs (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=MTXdplfiz-cC&amp;pg=PA153"><i>Groundbreaking Scientific Experiments, Inventions, and Discoveries of the Middle Ages and the Renaissance</i></a>. Greenwood Publishing Group. t.&#160;153. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-313-32433-8" title="Arbennig:BookSources/978-0-313-32433-8"><bdi>978-0-313-32433-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Groundbreaking+Scientific+Experiments%2C+Inventions%2C+and+Discoveries+of+the+Middle+Ages+and+the+Renaissance&amp;rft.pages=153&amp;rft.pub=Greenwood+Publishing+Group&amp;rft.date=2004&amp;rft.isbn=978-0-313-32433-8&amp;rft.au=Robert+E.+Krebs&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DMTXdplfiz-cC%26pg%3DPA153&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><a href="#cite_ref-19">↑</a></span> <span class="reference-text">William Bragg Ewald (2007). <i><a rel="nofollow" class="external text" href="https://books.google.com/books?id=AcuF0w-Qg08C&amp;pg=PA93">From Kant to Hilbert: a source book in the foundations of mathematics</a></i>. <a href="/wiki/Gwasg_Prifysgol_Rhydychen" title="Gwasg Prifysgol Rhydychen">Oxford University Press US</a>. p. 93. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/0-19-850535-3" title="Arbennig:BookSources/0-19-850535-3">0-19-850535-3</a></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><a href="#cite_ref-20">↑</a></span> <span class="reference-text">Kelly Dempski (2002). <i><a rel="nofollow" class="external text" href="https://books.google.com/books?id=zxdigX-KSZYC&amp;pg=PA29">Focus on Curves and Surfaces</a></i>. p. 29. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/1-59200-007-X" title="Arbennig:BookSources/1-59200-007-X">1-59200-007-X</a></span> </li> <li id="cite_note-StewartRedlin2015-21"><span class="mw-cite-backlink"><a href="#cite_ref-StewartRedlin2015_21-0">↑</a></span> <span class="reference-text"><cite id="CITEREFJames_StewartLothar_RedlinSaleem_Watson2015" class="citation book">James Stewart; Lothar Redlin; Saleem Watson (16 Ionawr 2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=uJqaBAAAQBAJ&amp;pg=PA448"><i>Algebra and Trigonometry</i></a>. Cengage Learning. t.&#160;448. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-1-305-53703-3" title="Arbennig:BookSources/978-1-305-53703-3"><bdi>978-1-305-53703-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebra+and+Trigonometry&amp;rft.pages=448&amp;rft.pub=Cengage+Learning&amp;rft.date=2015-01-16&amp;rft.isbn=978-1-305-53703-3&amp;rft.au=James+Stewart&amp;rft.au=Lothar+Redlin&amp;rft.au=Saleem+Watson&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DuJqaBAAAQBAJ%26pg%3DPA448&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-JardineShell-Gellasch2011-22"><span class="mw-cite-backlink"><a href="#cite_ref-JardineShell-Gellasch2011_22-0">↑</a></span> <span class="reference-text"><cite id="CITEREFDick_JardineAmy_Shell-Gellasch2011" class="citation book">Dick Jardine; Amy Shell-Gellasch (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Aa_VmrWEdvEC&amp;pg=PA182"><i>Mathematical Time Capsules: Historical Modules for the Mathematics Classroom</i></a>. MAA. t.&#160;182. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-88385-984-1" title="Arbennig:BookSources/978-0-88385-984-1"><bdi>978-0-88385-984-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Time+Capsules%3A+Historical+Modules+for+the+Mathematics+Classroom&amp;rft.pages=182&amp;rft.pub=MAA&amp;rft.date=2011&amp;rft.isbn=978-0-88385-984-1&amp;rft.au=Dick+Jardine&amp;rft.au=Amy+Shell-Gellasch&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DAa_VmrWEdvEC%26pg%3DPA182&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-ForsethBurger2008-23"><span class="mw-cite-backlink"><a href="#cite_ref-ForsethBurger2008_23-0">↑</a></span> <span class="reference-text"><cite id="CITEREFKrystle_Rose_ForsethChristopher_BurgerMichelle_Rose_GilmanDeborah_J._Rumsey2008" class="citation book">Krystle Rose Forseth; Christopher Burger; Michelle Rose Gilman; Deborah J. Rumsey (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nfwGEJaLlgsC&amp;pg=PA218"><i>Pre-Calculus For Dummies</i></a>. John Wiley &amp; Sons. t.&#160;218. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-470-16984-1" title="Arbennig:BookSources/978-0-470-16984-1"><bdi>978-0-470-16984-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Pre-Calculus+For+Dummies&amp;rft.pages=218&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2008&amp;rft.isbn=978-0-470-16984-1&amp;rft.au=Krystle+Rose+Forseth&amp;rft.au=Christopher+Burger&amp;rft.au=Michelle+Rose+Gilman&amp;rft.au=Deborah+J.+Rumsey&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DnfwGEJaLlgsC%26pg%3DPA218&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><a href="#cite_ref-24">↑</a></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-SOHCAHTOA"><cite id="CITEREFWeisstein,_Eric_W." class="citation web"><a href="/w/index.php?title=Eric_W._Weisstein&amp;action=edit&amp;redlink=1" class="new" title="Eric W. Weisstein (dim tudalen ar gael)">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/SOHCAHTOA.html">"SOHCAHTOA"</a>. <i>MathWorld</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=SOHCAHTOA&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=http%3A%2F%2Fmathworld.wolfram.com%2FSOHCAHTOA.html&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><a href="#cite_ref-25">↑</a></span> <span class="reference-text">A sentence more appropriate for high schools is "'<i>S<b>ome </b>O<b>ld </b>H<b>orse </b>C<b>ame </b>A''</i><b>H</b>opping <b>T</b>hrough <b>O</b>ur <b>A</b>lley". <cite id="CITEREFFoster2008" class="citation book">Foster, Jonathan K. (2008). <i>Memory: A Very Short Introduction</i>. Oxford. t.&#160;128. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-19-280675-8" title="Arbennig:BookSources/978-0-19-280675-8"><bdi>978-0-19-280675-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Memory%3A+A+Very+Short+Introduction&amp;rft.pages=128&amp;rft.pub=Oxford&amp;rft.date=2008&amp;rft.isbn=978-0-19-280675-8&amp;rft.aulast=Foster&amp;rft.aufirst=Jonathan+K.&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-CohenTheodore2009-26"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-CohenTheodore2009_26-0">26.0</a></sup> <sup><a href="#cite_ref-CohenTheodore2009_26-1">26.1</a></sup></span> <span class="reference-text"><cite id="CITEREFDavid_CohenLee_B._TheodoreDavid_Sklar2009" class="citation book">David Cohen; Lee B. Theodore; David Sklar (17 Gorffennaf 2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-ZXNfthUCOMC"><i>Precalculus: A Problems-Oriented Approach, Enhanced Edition</i></a>. Cengage Learning. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-1-4390-4460-5" title="Arbennig:BookSources/978-1-4390-4460-5"><bdi>978-1-4390-4460-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Precalculus%3A+A+Problems-Oriented+Approach%2C+Enhanced+Edition&amp;rft.pub=Cengage+Learning&amp;rft.date=2009-07-17&amp;rft.isbn=978-1-4390-4460-5&amp;rft.au=David+Cohen&amp;rft.au=Lee+B.+Theodore&amp;rft.au=David+Sklar&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-ZXNfthUCOMC&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-Kelley2002-27"><span class="mw-cite-backlink"><a href="#cite_ref-Kelley2002_27-0">↑</a></span> <span class="reference-text"><cite id="CITEREFW._Michael_Kelley2002" class="citation book">W. Michael Kelley (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=H-0L9Dxor6sC&amp;pg=PA45"><i>The Complete Idiot's Guide to Calculus</i></a>. Alpha Books. t.&#160;45. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-02-864365-6" title="Arbennig:BookSources/978-0-02-864365-6"><bdi>978-0-02-864365-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Complete+Idiot%27s+Guide+to+Calculus&amp;rft.pages=45&amp;rft.pub=Alpha+Books&amp;rft.date=2002&amp;rft.isbn=978-0-02-864365-6&amp;rft.au=W.+Michael+Kelley&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DH-0L9Dxor6sC%26pg%3DPA45&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-Olive2003-28"><span class="mw-cite-backlink"><a href="#cite_ref-Olive2003_28-0">↑</a></span> <span class="reference-text"><cite id="CITEREFJenny_Olive2003" class="citation book">Jenny Olive (18 Medi 2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_Ir7euRke_oC&amp;pg=PA175"><i>Maths: A Student's Survival Guide: A Self-Help Workbook for Science and Engineering Students</i></a>. Cambridge University Press. t.&#160;175. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-521-01707-7" title="Arbennig:BookSources/978-0-521-01707-7"><bdi>978-0-521-01707-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Maths%3A+A+Student%27s+Survival+Guide%3A+A+Self-Help+Workbook+for+Science+and+Engineering+Students&amp;rft.pages=175&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2003-09-18&amp;rft.isbn=978-0-521-01707-7&amp;rft.au=Jenny+Olive&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D_Ir7euRke_oC%26pg%3DPA175&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-Attenborough2003-29"><span class="mw-cite-backlink"><a href="#cite_ref-Attenborough2003_29-0">↑</a></span> <span class="reference-text"><cite id="CITEREFMary_P_Attenborough2003" class="citation book">Mary P Attenborough (30 Mehefin 2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CcwBLa1G8BUC&amp;pg=PA418"><i>Mathematics for Electrical Engineering and Computing</i></a>. Elsevier. t.&#160;418. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-08-047340-6" title="Arbennig:BookSources/978-0-08-047340-6"><bdi>978-0-08-047340-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+for+Electrical+Engineering+and+Computing&amp;rft.pages=418&amp;rft.pub=Elsevier&amp;rft.date=2003-06-30&amp;rft.isbn=978-0-08-047340-6&amp;rft.au=Mary+P+Attenborough&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCcwBLa1G8BUC%26pg%3DPA418&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-LarsonEdwards2008-30"><span class="mw-cite-backlink"><a href="#cite_ref-LarsonEdwards2008_30-0">↑</a></span> <span class="reference-text"><cite id="CITEREFRon_LarsonBruce_H._Edwards2008" class="citation book">Ron Larson; Bruce H. Edwards (10 Tachwedd 2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=gR7nGg5_9xcC&amp;pg=PA21"><i>Calculus of a Single Variable</i></a>. Cengage Learning. t.&#160;21. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-547-20998-2" title="Arbennig:BookSources/978-0-547-20998-2"><bdi>978-0-547-20998-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Calculus+of+a+Single+Variable&amp;rft.pages=21&amp;rft.pub=Cengage+Learning&amp;rft.date=2008-11-10&amp;rft.isbn=978-0-547-20998-2&amp;rft.au=Ron+Larson&amp;rft.au=Bruce+H.+Edwards&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DgR7nGg5_9xcC%26pg%3DPA21&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-BremiganBremigan2011-31"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-BremiganBremigan2011_31-0">31.0</a></sup> <sup><a href="#cite_ref-BremiganBremigan2011_31-1">31.1</a></sup></span> <span class="reference-text"><cite id="CITEREFElizabeth_G._BremiganRalph_J._BremiganJohn_D._Lorch2011" class="citation book">Elizabeth G. Bremigan; Ralph J. Bremigan; John D. Lorch (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OfFEC5drTVMC&amp;pg=PR48"><i>Mathematics for Secondary School Teachers</i></a>. MAA. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-88385-773-1" title="Arbennig:BookSources/978-0-88385-773-1"><bdi>978-0-88385-773-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+for+Secondary+School+Teachers&amp;rft.pub=MAA&amp;rft.date=2011&amp;rft.isbn=978-0-88385-773-1&amp;rft.au=Elizabeth+G.+Bremigan&amp;rft.au=Ralph+J.+Bremigan&amp;rft.au=John+D.+Lorch&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOfFEC5drTVMC%26pg%3DPR48&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-BrokateManchanda2019-32"><span class="mw-cite-backlink"><a href="#cite_ref-BrokateManchanda2019_32-0">↑</a></span> <span class="reference-text"><cite id="CITEREFMartin_BrokatePammy_ManchandaAbul_Hasan_Siddiqi2019" class="citation book">Martin Brokate; Pammy Manchanda; Abul Hasan Siddiqi (3 Awst 2019). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=7DenDwAAQBAJ&amp;pg=PA521"><i>Calculus for Scientists and Engineers</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/9789811384646" title="Arbennig:BookSources/9789811384646"><bdi>9789811384646</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Calculus+for+Scientists+and+Engineers&amp;rft.pub=Springer&amp;rft.date=2019-08-03&amp;rft.isbn=9789811384646&amp;rft.au=Martin+Brokate&amp;rft.au=Pammy+Manchanda&amp;rft.au=Abul+Hasan+Siddiqi&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D7DenDwAAQBAJ%26pg%3DPA521&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-Lang2013-33"><span class="mw-cite-backlink"><a href="#cite_ref-Lang2013_33-0">↑</a></span> <span class="reference-text"><cite id="CITEREFSerge_Lang2013" class="citation book">Serge Lang (14 Mawrth 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0qx3BQAAQBAJ&amp;pg=PA63"><i>Complex Analysis</i></a>. Springer. t.&#160;63. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-3-642-59273-7" title="Arbennig:BookSources/978-3-642-59273-7"><bdi>978-3-642-59273-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Complex+Analysis&amp;rft.pages=63&amp;rft.pub=Springer&amp;rft.date=2013-03-14&amp;rft.isbn=978-3-642-59273-7&amp;rft.au=Serge+Lang&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0qx3BQAAQBAJ%26pg%3DPA63&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-Alessio2015-34"><span class="mw-cite-backlink"><a href="#cite_ref-Alessio2015_34-0">↑</a></span> <span class="reference-text"><cite id="CITEREFSilvia_Maria_Alessio2015" class="citation book">Silvia Maria Alessio (9 December 2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ja8vCwAAQBAJ&amp;pg=PA339"><i>Digital Signal Processing and Spectral Analysis for Scientists: Concepts and Applications</i></a>. Springer. t.&#160;339. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-3-319-25468-5" title="Arbennig:BookSources/978-3-319-25468-5"><bdi>978-3-319-25468-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Digital+Signal+Processing+and+Spectral+Analysis+for+Scientists%3A+Concepts+and+Applications&amp;rft.pages=339&amp;rft.pub=Springer&amp;rft.date=2015-12-09&amp;rft.isbn=978-3-319-25468-5&amp;rft.au=Silvia+Maria+Alessio&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dja8vCwAAQBAJ%26pg%3DPA339&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-RAJESWARIRAO2014-35"><span class="mw-cite-backlink"><a href="#cite_ref-RAJESWARIRAO2014_35-0">↑</a></span> <span class="reference-text"><cite id="CITEREFK._RAJA_RAJESWARIB._VISVESVARA_RAO2014" class="citation book">K. RAJA RAJESWARI; B. VISVESVARA RAO (24 Mawrth 2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QZBeBAAAQBAJ&amp;pg=PA263"><i>SIGNALS AND SYSTEMS</i></a>. PHI Learning. t.&#160;263. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-81-203-4941-4" title="Arbennig:BookSources/978-81-203-4941-4"><bdi>978-81-203-4941-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=SIGNALS+AND+SYSTEMS&amp;rft.pages=263&amp;rft.pub=PHI+Learning&amp;rft.date=2014-03-24&amp;rft.isbn=978-81-203-4941-4&amp;rft.au=K.+RAJA+RAJESWARI&amp;rft.au=B.+VISVESVARA+RAO&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQZBeBAAAQBAJ%26pg%3DPA263&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-Stillwell2010-36"><span class="mw-cite-backlink"><a href="#cite_ref-Stillwell2010_36-0">↑</a></span> <span class="reference-text"><cite id="CITEREFJohn_Stillwell2010" class="citation book">John Stillwell (23 Gorffennaf 2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3bE_AAAAQBAJ&amp;pg=PA313"><i>Mathematics and Its History</i></a>. Springer Science &amp; Business Media. t.&#160;313. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-1-4419-6053-5" title="Arbennig:BookSources/978-1-4419-6053-5"><bdi>978-1-4419-6053-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+and+Its+History&amp;rft.pages=313&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2010-07-23&amp;rft.isbn=978-1-4419-6053-5&amp;rft.au=John+Stillwell&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3bE_AAAAQBAJ%26pg%3DPA313&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-Campbell-KellyCampbell-Kelly2003-37"><span class="mw-cite-backlink"><a href="#cite_ref-Campbell-KellyCampbell-Kelly2003_37-0">↑</a></span> <span class="reference-text"><cite id="CITEREFMartin_Campbell-KellyProfessor_Emeritus_of_Computer_Science_Martin_Campbell-KellyVisiting_Fellow_Department_of_Computer_Science_Mary_CroarkenRaymond_Flood2003" class="citation book">Martin Campbell-Kelly; Professor Emeritus of Computer Science Martin Campbell-Kelly; Visiting Fellow Department of Computer Science Mary Croarken; Raymond Flood; Eleanor Robson (2 Hydref 2003). <i>The History of Mathematical Tables: From Sumer to Spreadsheets</i>. OUP Oxford. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-19-850841-0" title="Arbennig:BookSources/978-0-19-850841-0"><bdi>978-0-19-850841-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+History+of+Mathematical+Tables%3A+From+Sumer+to+Spreadsheets&amp;rft.pub=OUP+Oxford&amp;rft.date=2003-10-02&amp;rft.isbn=978-0-19-850841-0&amp;rft.au=Martin+Campbell-Kelly&amp;rft.au=Professor+Emeritus+of+Computer+Science+Martin+Campbell-Kelly&amp;rft.au=Visiting+Fellow+Department+of+Computer+Science+Mary+Croarken&amp;rft.au=Raymond+Flood&amp;rft.au=Eleanor+Robson&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-DonovanGimmestad1980-38"><span class="mw-cite-backlink"><a href="#cite_ref-DonovanGimmestad1980_38-0">↑</a></span> <span class="reference-text"><cite id="CITEREFGeorge_S._DonovanBeverly_Beyreuther_Gimmestad1980" class="citation book">George S. Donovan; Beverly Beyreuther Gimmestad (1980). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=zUruGK7TOTYC"><i>Trigonometry with calculators</i></a>. Prindle, Weber &amp; Schmidt. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-87150-284-1" title="Arbennig:BookSources/978-0-87150-284-1"><bdi>978-0-87150-284-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Trigonometry+with+calculators&amp;rft.pub=Prindle%2C+Weber+%26+Schmidt&amp;rft.date=1980&amp;rft.isbn=978-0-87150-284-1&amp;rft.au=George+S.+Donovan&amp;rft.au=Beverly+Beyreuther+Gimmestad&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DzUruGK7TOTYC&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-Middlemiss1945-39"><span class="mw-cite-backlink"><a href="#cite_ref-Middlemiss1945_39-0">↑</a></span> <span class="reference-text"><cite id="CITEREFRoss_Raymond_Middlemiss1945" class="citation book">Ross Raymond Middlemiss (1945). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OH0_AAAAYAAJ"><i>Instructions for Post-trig and Mannheim-trig Slide Rules</i></a>. Frederick Post Company.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Instructions+for+Post-trig+and+Mannheim-trig+Slide+Rules&amp;rft.pub=Frederick+Post+Company&amp;rft.date=1945&amp;rft.au=Ross+Raymond+Middlemiss&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOH0_AAAAYAAJ&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><a href="#cite_ref-40">↑</a></span> <span class="reference-text"><cite id="CITEREFSteven_S._SkienaMiguel_A._Revilla2006" class="citation book">Steven S. Skiena; Miguel A. Revilla (18 April 2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dNoLBwAAQBAJ&amp;pg=PA302"><i>Programming Challenges: The Programming Contest Training Manual</i></a>. Springer Science &amp; Business Media. t.&#160;302. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-387-22081-9" title="Arbennig:BookSources/978-0-387-22081-9"><bdi>978-0-387-22081-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Programming+Challenges%3A+The+Programming+Contest+Training+Manual&amp;rft.pages=302&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2006-04-18&amp;rft.isbn=978-0-387-22081-9&amp;rft.au=Steven+S.+Skiena&amp;rft.au=Miguel+A.+Revilla&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdNoLBwAAQBAJ%26pg%3DPA302&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><a href="#cite_ref-41">↑</a></span> <span class="reference-text"><cite class="citation book"><a rel="nofollow" class="external text" href="http://download.intel.com/products/processor/manual/325462.pdf"><i>Intel® 64 and IA-32 Architectures Software Developer's Manual Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C</i></a> <span class="cs1-format">(PDF)</span>. Intel. 2013.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Intel%C2%AE+64+and+IA-32+Architectures+Software+Developer%27s+Manual+Combined+Volumes%3A+1%2C+2A%2C+2B%2C+2C%2C+3A%2C+3B+and+3C&amp;rft.pub=Intel&amp;rft.date=2013&amp;rft_id=http%3A%2F%2Fdownload.intel.com%2Fproducts%2Fprocessor%2Fmanual%2F325462.pdf&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-Gregory1816-42"><span class="mw-cite-backlink"><a href="#cite_ref-Gregory1816_42-0">↑</a></span> <span class="reference-text"><cite id="CITEREFOlinthus_Gregory1816" class="citation book">Olinthus Gregory (1816). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=j3sAAAAAMAAJ"><i>Elements of Plane and Spherical Trigonometry: With Their Applications to Heights and Distances Projections of the Sphere, Dialling, Astronomy, the Solution of Equations, and Geodesic Operations</i></a>. Baldwin, Cradock, and Joy.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Plane+and+Spherical+Trigonometry%3A+With+Their+Applications+to+Heights+and+Distances+Projections+of+the+Sphere%2C+Dialling%2C+Astronomy%2C+the+Solution+of+Equations%2C+and+Geodesic+Operations&amp;rft.pub=Baldwin%2C+Cradock%2C+and+Joy&amp;rft.date=1816&amp;rft.au=Olinthus+Gregory&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dj3sAAAAAMAAJ&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><a href="#cite_ref-43">↑</a></span> <span class="reference-text"><span class="citation Journal">Neugebauer,&#32;Otto&#32;(1948).&#32;"Mathematical methods in ancient astronomy".&#32;<i>Bulletin of the American Mathematical Society</i>&#32;<b>54</b>&#32;(11): 1013–1041.&#32;<a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1090%2FS0002-9904-1948-09089-9">10.1090/S0002-9904-1948-09089-9</a>.</span></span> </li> <li id="cite_note-SeedsBackman2009-44"><span class="mw-cite-backlink"><a href="#cite_ref-SeedsBackman2009_44-0">↑</a></span> <span class="reference-text"><cite id="CITEREFMichael_SeedsDana_Backman2009" class="citation book">Michael Seeds; Dana Backman (5 Ionawr 2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=DajpkyXS-NUC&amp;pg=PT254"><i>Astronomy: The Solar System and Beyond</i></a>. Cengage Learning. t.&#160;254. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-0-495-56203-0" title="Arbennig:BookSources/978-0-495-56203-0"><bdi>978-0-495-56203-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Astronomy%3A+The+Solar+System+and+Beyond&amp;rft.pages=254&amp;rft.pub=Cengage+Learning&amp;rft.date=2009-01-05&amp;rft.isbn=978-0-495-56203-0&amp;rft.au=Michael+Seeds&amp;rft.au=Dana+Backman&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DDajpkyXS-NUC%26pg%3DPT254&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-Sabine1800-45"><span class="mw-cite-backlink"><a href="#cite_ref-Sabine1800_45-0">↑</a></span> <span class="reference-text"><cite id="CITEREFJohn_Sabine1800" class="citation book">John Sabine (1800). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=d_9eAAAAcAAJ&amp;pg=PR1"><i>The Practical Mathematician, Containing Logarithms, Geometry, Trigonometry, Mensuration, Algebra, Navigation, Spherics and Natural Philosophy, Etc</i></a>. t.&#160;1.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Practical+Mathematician%2C+Containing+Logarithms%2C+Geometry%2C+Trigonometry%2C+Mensuration%2C+Algebra%2C+Navigation%2C+Spherics+and+Natural+Philosophy%2C+Etc&amp;rft.pages=1&amp;rft.date=1800&amp;rft.au=John+Sabine&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dd_9eAAAAcAAJ%26pg%3DPR1&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><a href="#cite_ref-46">↑</a></span> <span class="reference-text"><cite id="CITEREFMordechai_Ben-AriFrancesco_Mondada2018" class="citation book">Mordechai Ben-Ari; Francesco Mondada (2018). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=itpCDwAAQBAJ&amp;pg=PA16"><i>Elements of Robotics</i></a>. Springer. t.&#160;16. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-3-319-62533-1" title="Arbennig:BookSources/978-3-319-62533-1"><bdi>978-3-319-62533-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Robotics&amp;rft.pages=16&amp;rft.pub=Springer&amp;rft.date=2018&amp;rft.isbn=978-3-319-62533-1&amp;rft.au=Mordechai+Ben-Ari&amp;rft.au=Francesco+Mondada&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DitpCDwAAQBAJ%26pg%3DPA16&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-Perkins1853-47"><span class="mw-cite-backlink"><a href="#cite_ref-Perkins1853_47-0">↑</a></span> <span class="reference-text"><cite id="CITEREFGeorge_Roberts_Perkins1853" class="citation book">George Roberts Perkins (1853). <a rel="nofollow" class="external text" href="https://archive.org/details/planetrigonometr00perk"><i>Plane Trigonometry and Its Application to Mensuration and Land Surveying: Accompanied with All the Necessary Logarithmic and Trigonometric Tables</i></a>. D. Appleton &amp; Company.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Plane+Trigonometry+and+Its+Application+to+Mensuration+and+Land+Surveying%3A+Accompanied+with+All+the+Necessary+Logarithmic+and+Trigonometric+Tables&amp;rft.pub=D.+Appleton+%26+Company&amp;rft.date=1853&amp;rft.au=George+Roberts+Perkins&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fplanetrigonometr00perk&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> <li id="cite_note-WithersLorimer2015-48"><span class="mw-cite-backlink"><a href="#cite_ref-WithersLorimer2015_48-0">↑</a></span> <span class="reference-text"><cite id="CITEREFCharles_W._J._WithersHayden_Lorimer2015" class="citation book">Charles W. J. Withers; Hayden Lorimer (14 December 2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=eidTTrsyTr4C&amp;pg=PA6"><i>Geographers: Biobibliographical Studies</i></a>. A&amp;C Black. t.&#160;6. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Arbennig:BookSources/978-1-4411-0785-5" title="Arbennig:BookSources/978-1-4411-0785-5"><bdi>978-1-4411-0785-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geographers%3A+Biobibliographical+Studies&amp;rft.pages=6&amp;rft.pub=A%26C+Black&amp;rft.date=2015-12-14&amp;rft.isbn=978-1-4411-0785-5&amp;rft.au=Charles+W.+J.+Withers&amp;rft.au=Hayden+Lorimer&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DeidTTrsyTr4C%26pg%3DPA6&amp;rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATrigonometreg" class="Z3988"></span><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r8312344"></span> </li> </ol></div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5484c6d78d‐hl4nh Cached time: 20241111151740 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.659 seconds Real time usage: 1.039 seconds Preprocessor visited node count: 7362/1000000 Post‐expand include size: 86626/2097152 bytes Template argument size: 5223/2097152 bytes Highest expansion depth: 18/100 Expensive parser function count: 0/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 141947/5000000 bytes Lua time usage: 0.283/10.000 seconds Lua memory usage: 5714962/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 745.506 1 -total 45.16% 336.695 1 Nodyn:Pethau 42.97% 320.366 1 Nodyn:Infobox 33.19% 247.446 1 Nodyn:Cyfeiriadau 25.26% 188.347 100 Nodyn:If_first_display_both 16.56% 123.461 36 Nodyn:Cite_book 10.45% 77.939 2 Nodyn:MathWorld 7.95% 59.232 6 Nodyn:Cite_web 5.44% 40.551 3 Nodyn:ISBN 4.97% 37.072 1 Nodyn:Ailgyfeirio --> <!-- Saved in parser cache with key cywiki:pcache:idhash:24512-0!canonical and timestamp 20241111151740 and revision id 12650481. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Wedi dod o "<a dir="ltr" href="https://cy.wikipedia.org/w/index.php?title=Trigonometreg&amp;oldid=12650481">https://cy.wikipedia.org/w/index.php?title=Trigonometreg&amp;oldid=12650481</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Arbennig:Categories" title="Arbennig:Categories">Categorïau</a>: <ul><li><a href="/wiki/Categori:Trigonometreg" title="Categori:Trigonometreg">Trigonometreg</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Chategori cudd: <ul><li><a href="/wiki/Categori:Tudalennau_gyda_meysydd_deublyg_yn_y_Nodion" title="Categori:Tudalennau gyda meysydd deublyg yn y Nodion">Tudalennau gyda meysydd deublyg yn y Nodion</a></li><li><a href="/wiki/Categori:Erthyglau_sy%27n_defnyddio_Nodyn_Gwybodlen_pethau_Wicidata" title="Categori:Erthyglau sy&#039;n defnyddio Nodyn Gwybodlen pethau Wicidata">Erthyglau sy'n defnyddio Nodyn Gwybodlen pethau Wicidata</a></li><li><a href="/wiki/Categori:Tudalennau_a_chysylltiadau_toredig_i_ffeiliau_ynddynt" title="Categori:Tudalennau a chysylltiadau toredig i ffeiliau ynddynt">Tudalennau a chysylltiadau toredig i ffeiliau ynddynt</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Golygwyd y dudalen hon ddiwethaf ar 5 Mehefin 2024, am 21:36.</li> <li id="footer-info-copyright">Mae'r testun ar gael o dan <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">Creative Commons Attribution-ShareAlike License</a>; gall telerau ychwanegol fod yn berthnasol. Gweler y <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Telerau Gwasanaeth</a> am fanylion.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Polisi preifatrwydd</a></li> <li id="footer-places-about"><a href="/wiki/Wicipedia:Yngl%C5%B7n_%C3%A2_Wicipedia">Ynglŷn â Wicipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wicipedia:Gwadiad_Cyffredinol">Gwadiadau</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Cod Ymddygiad</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Datblygwyr</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/cy.wikipedia.org">Ystadegau</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Datganiad cwcis</a></li> <li id="footer-places-mobileview"><a href="//cy.m.wikipedia.org/w/index.php?title=Trigonometreg&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Golwg symudol</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-x4q2f","wgBackendResponseTime":178,"wgPageParseReport":{"limitreport":{"cputime":"0.659","walltime":"1.039","ppvisitednodes":{"value":7362,"limit":1000000},"postexpandincludesize":{"value":86626,"limit":2097152},"templateargumentsize":{"value":5223,"limit":2097152},"expansiondepth":{"value":18,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":141947,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 745.506 1 -total"," 45.16% 336.695 1 Nodyn:Pethau"," 42.97% 320.366 1 Nodyn:Infobox"," 33.19% 247.446 1 Nodyn:Cyfeiriadau"," 25.26% 188.347 100 Nodyn:If_first_display_both"," 16.56% 123.461 36 Nodyn:Cite_book"," 10.45% 77.939 2 Nodyn:MathWorld"," 7.95% 59.232 6 Nodyn:Cite_web"," 5.44% 40.551 3 Nodyn:ISBN"," 4.97% 37.072 1 Nodyn:Ailgyfeirio"]},"scribunto":{"limitreport-timeusage":{"value":"0.283","limit":"10.000"},"limitreport-memusage":{"value":5714962,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5484c6d78d-hl4nh","timestamp":"20241111151740","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Trigonometreg","url":"https:\/\/cy.wikipedia.org\/wiki\/Trigonometreg","sameAs":"http:\/\/www.wikidata.org\/entity\/Q8084","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q8084","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2007-06-03T21:42:01Z","dateModified":"2024-06-05T21:36:43Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/7\/78\/Fotothek_df_tg_0000230_Geometrie_%5E_Trigonometrie.jpg"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10