CINXE.COM
Prime number - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Prime number - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"f3383e04-7f09-4cd2-9505-db71aab4b2ea","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Prime_number","wgTitle":"Prime number","wgCurRevisionId":1256853845,"wgRevisionId":1256853845,"wgArticleId":23666,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 French-language sources (fr)","CS1 Italian-language sources (it)","Articles with short description","Short description is different from Wikidata","Good articles","Wikipedia pages semi-protected against vandalism","Articles containing potentially dated statements from October 2024","All articles containing potentially dated statements","Articles containing Ancient Greek (to 1453)-language text","Articles containing potentially dated statements from 2014", "Articles containing potentially dated statements from December 2018","Articles containing potentially dated statements from December 2019","Articles containing potentially dated statements from October 2012","Pages using Sister project links with hidden wikidata","Pages using Sister project links with default search","Webarchive template wayback links","Articles containing proofs","Prime numbers","Integer sequences"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Prime_number","wgRelevantArticleId":23666,"wgIsProbablyEditable":false,"wgRelevantPageIsProbablyEditable":false,"wgRestrictionEdit":["autoconfirmed"],"wgRestrictionMove":["autoconfirmed"],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr", "pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q49008","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready", "skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.tablesorter.styles":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.tablesorter","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns", "ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cjquery.tablesorter.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Primes-vs-composites.svg/1200px-Primes-vs-composites.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1687"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Primes-vs-composites.svg/800px-Primes-vs-composites.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1125"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Primes-vs-composites.svg/640px-Primes-vs-composites.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="900"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Prime number - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Prime_number"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Prime_number"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject page-Prime_number rootpage-Prime_number skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Prime+number" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Prime+number" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Prime+number" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Prime+number" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition_and_examples" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition_and_examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition and examples</span> </div> </a> <ul id="toc-Definition_and_examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-Primality_of_one" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Primality_of_one"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Primality of one</span> </div> </a> <ul id="toc-Primality_of_one-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Elementary_properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Elementary_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Elementary properties</span> </div> </a> <button aria-controls="toc-Elementary_properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Elementary properties subsection</span> </button> <ul id="toc-Elementary_properties-sublist" class="vector-toc-list"> <li id="toc-Unique_factorization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Unique_factorization"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Unique factorization</span> </div> </a> <ul id="toc-Unique_factorization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Infinitude" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Infinitude"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Infinitude</span> </div> </a> <ul id="toc-Infinitude-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formulas_for_primes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Formulas_for_primes"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Formulas for primes</span> </div> </a> <ul id="toc-Formulas_for_primes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Open_questions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Open_questions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Open questions</span> </div> </a> <ul id="toc-Open_questions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Analytic_properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Analytic_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Analytic properties</span> </div> </a> <button aria-controls="toc-Analytic_properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Analytic properties subsection</span> </button> <ul id="toc-Analytic_properties-sublist" class="vector-toc-list"> <li id="toc-Analytical_proof_of_Euclid's_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Analytical_proof_of_Euclid's_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Analytical proof of Euclid's theorem</span> </div> </a> <ul id="toc-Analytical_proof_of_Euclid's_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Number_of_primes_below_a_given_bound" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Number_of_primes_below_a_given_bound"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Number of primes below a given bound</span> </div> </a> <ul id="toc-Number_of_primes_below_a_given_bound-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Arithmetic_progressions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Arithmetic_progressions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Arithmetic progressions</span> </div> </a> <ul id="toc-Arithmetic_progressions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Prime_values_of_quadratic_polynomials" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Prime_values_of_quadratic_polynomials"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Prime values of quadratic polynomials</span> </div> </a> <ul id="toc-Prime_values_of_quadratic_polynomials-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Zeta_function_and_the_Riemann_hypothesis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Zeta_function_and_the_Riemann_hypothesis"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Zeta function and the Riemann hypothesis</span> </div> </a> <ul id="toc-Zeta_function_and_the_Riemann_hypothesis-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Abstract_algebra" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Abstract_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Abstract algebra</span> </div> </a> <button aria-controls="toc-Abstract_algebra-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Abstract algebra subsection</span> </button> <ul id="toc-Abstract_algebra-sublist" class="vector-toc-list"> <li id="toc-Modular_arithmetic_and_finite_fields" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Modular_arithmetic_and_finite_fields"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Modular arithmetic and finite fields</span> </div> </a> <ul id="toc-Modular_arithmetic_and_finite_fields-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-p-adic_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#p-adic_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span><i>p</i>-adic numbers</span> </div> </a> <ul id="toc-p-adic_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Prime_elements_in_rings" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Prime_elements_in_rings"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Prime elements in rings</span> </div> </a> <ul id="toc-Prime_elements_in_rings-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Prime_ideals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Prime_ideals"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Prime ideals</span> </div> </a> <ul id="toc-Prime_ideals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Group_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Group_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Group theory</span> </div> </a> <ul id="toc-Group_theory-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Computational_methods" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Computational_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Computational methods</span> </div> </a> <button aria-controls="toc-Computational_methods-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Computational methods subsection</span> </button> <ul id="toc-Computational_methods-sublist" class="vector-toc-list"> <li id="toc-Trial_division" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Trial_division"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Trial division</span> </div> </a> <ul id="toc-Trial_division-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sieves" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sieves"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Sieves</span> </div> </a> <ul id="toc-Sieves-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Primality_testing_versus_primality_proving" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Primality_testing_versus_primality_proving"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Primality testing versus primality proving</span> </div> </a> <ul id="toc-Primality_testing_versus_primality_proving-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Special-purpose_algorithms_and_the_largest_known_prime" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Special-purpose_algorithms_and_the_largest_known_prime"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Special-purpose algorithms and the largest known prime</span> </div> </a> <ul id="toc-Special-purpose_algorithms_and_the_largest_known_prime-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integer_factorization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Integer_factorization"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Integer factorization</span> </div> </a> <ul id="toc-Integer_factorization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_computational_applications" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_computational_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.6</span> <span>Other computational applications</span> </div> </a> <ul id="toc-Other_computational_applications-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Other_applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Other_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Other applications</span> </div> </a> <button aria-controls="toc-Other_applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Other applications subsection</span> </button> <ul id="toc-Other_applications-sublist" class="vector-toc-list"> <li id="toc-Constructible_polygons_and_polygon_partitions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Constructible_polygons_and_polygon_partitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Constructible polygons and polygon partitions</span> </div> </a> <ul id="toc-Constructible_polygons_and_polygon_partitions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_mechanics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_mechanics"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Quantum mechanics</span> </div> </a> <ul id="toc-Quantum_mechanics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Biology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Biology"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Biology</span> </div> </a> <ul id="toc-Biology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Arts_and_literature" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Arts_and_literature"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Arts and literature</span> </div> </a> <ul id="toc-Arts_and_literature-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <button aria-controls="toc-External_links-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle External links subsection</span> </button> <ul id="toc-External_links-sublist" class="vector-toc-list"> <li id="toc-Generators_and_calculators" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generators_and_calculators"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Generators and calculators</span> </div> </a> <ul id="toc-Generators_and_calculators-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Prime number</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 138 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-138" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">138 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Priemgetal" title="Priemgetal – Afrikaans" lang="af" hreflang="af" data-title="Priemgetal" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Primzahl" title="Primzahl – Alemannic" lang="gsw" hreflang="gsw" data-title="Primzahl" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ang mw-list-item"><a href="https://ang.wikipedia.org/wiki/Frumt%C3%A6l" title="Frumtæl – Old English" lang="ang" hreflang="ang" data-title="Frumtæl" data-language-autonym="Ænglisc" data-language-local-name="Old English" class="interlanguage-link-target"><span>Ænglisc</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%A3%D9%88%D9%84%D9%8A" title="عدد أولي – Arabic" lang="ar" hreflang="ar" data-title="عدد أولي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Numero_primero" title="Numero primero – Aragonese" lang="an" hreflang="an" data-title="Numero primero" data-language-autonym="Aragonés" data-language-local-name="Aragonese" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-hyw mw-list-item"><a href="https://hyw.wikipedia.org/wiki/%D5%8A%D5%A1%D6%80%D5%A6_%D5%A9%D5%AB%D6%82" title="Պարզ թիւ – Western Armenian" lang="hyw" hreflang="hyw" data-title="Պարզ թիւ" data-language-autonym="Արեւմտահայերէն" data-language-local-name="Western Armenian" class="interlanguage-link-target"><span>Արեւմտահայերէն</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%AE%E0%A7%8C%E0%A6%B2%E0%A6%BF%E0%A6%95_%E0%A6%B8%E0%A6%82%E0%A6%96%E0%A7%8D%E0%A6%AF%E0%A6%BE" title="মৌলিক সংখ্যা – Assamese" lang="as" hreflang="as" data-title="মৌলিক সংখ্যা" data-language-autonym="অসমীয়া" data-language-local-name="Assamese" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/N%C3%BAmberu_primu" title="Númberu primu – Asturian" lang="ast" hreflang="ast" data-title="Númberu primu" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Sad%C9%99_%C9%99d%C9%99d" title="Sadə ədəd – Azerbaijani" lang="az" hreflang="az" data-title="Sadə ədəd" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%B3%D8%A7%D8%AF%D9%87_%D8%B9%D8%AF%D8%AF" title="ساده عدد – South Azerbaijani" lang="azb" hreflang="azb" data-title="ساده عدد" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AE%E0%A7%8C%E0%A6%B2%E0%A6%BF%E0%A6%95_%E0%A6%B8%E0%A6%82%E0%A6%96%E0%A7%8D%E0%A6%AF%E0%A6%BE" title="মৌলিক সংখ্যা – Bangla" lang="bn" hreflang="bn" data-title="মৌলিক সংখ্যা" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/S%C3%B2%CD%98-s%C3%B2%CD%98" title="Sò͘-sò͘ – Minnan" lang="nan" hreflang="nan" data-title="Sò͘-sò͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%AF%D0%B1%D0%B0%D0%B9_%D2%BB%D0%B0%D0%BD" title="Ябай һан – Bashkir" lang="ba" hreflang="ba" data-title="Ябай һан" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D1%8B_%D0%BB%D1%96%D0%BA" title="Просты лік – Belarusian" lang="be" hreflang="be" data-title="Просты лік" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D1%8B_%D0%BB%D1%96%D0%BA" title="Просты лік – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Просты лік" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Просто число – Bulgarian" lang="bg" hreflang="bg" data-title="Просто число" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Prost_broj" title="Prost broj – Bosnian" lang="bs" hreflang="bs" data-title="Prost broj" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Niver_kentael" title="Niver kentael – Breton" lang="br" hreflang="br" data-title="Niver kentael" data-language-autonym="Brezhoneg" data-language-local-name="Breton" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Nombre_primer" title="Nombre primer – Catalan" lang="ca" hreflang="ca" data-title="Nombre primer" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%90%D0%BD%D1%81%D0%B0%D1%82_%D1%85%D0%B8%D1%81%D0%B5%D0%BF" title="Ансат хисеп – Chuvash" lang="cv" hreflang="cv" data-title="Ансат хисеп" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Prvo%C4%8D%C3%ADslo" title="Prvočíslo – Czech" lang="cs" hreflang="cs" data-title="Prvočíslo" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Rhif_cysefin" title="Rhif cysefin – Welsh" lang="cy" hreflang="cy" data-title="Rhif cysefin" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Primtal" title="Primtal – Danish" lang="da" hreflang="da" data-title="Primtal" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-ary mw-list-item"><a href="https://ary.wikipedia.org/wiki/%D8%B9%D8%A7%D8%AF%D8%A7%D8%AF_%D9%84%D9%88%D9%84%D9%8A" title="عاداد لولي – Moroccan Arabic" lang="ary" hreflang="ary" data-title="عاداد لولي" data-language-autonym="الدارجة" data-language-local-name="Moroccan Arabic" class="interlanguage-link-target"><span>الدارجة</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Primzahl" title="Primzahl – German" lang="de" hreflang="de" data-title="Primzahl" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Algarv" title="Algarv – Estonian" lang="et" hreflang="et" data-title="Algarv" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CF%81%CF%8E%CF%84%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Πρώτος αριθμός – Greek" lang="el" hreflang="el" data-title="Πρώτος αριθμός" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/N%C3%B9mer_prim" title="Nùmer prim – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Nùmer prim" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-es badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://es.wikipedia.org/wiki/N%C3%BAmero_primo" title="Número primo – Spanish" lang="es" hreflang="es" data-title="Número primo" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Primo" title="Primo – Esperanto" lang="eo" hreflang="eo" data-title="Primo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Zenbaki_lehen" title="Zenbaki lehen – Basque" lang="eu" hreflang="eu" data-title="Zenbaki lehen" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%A7%D9%88%D9%84" title="عدد اول – Persian" lang="fa" hreflang="fa" data-title="عدد اول" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Primtal" title="Primtal – Faroese" lang="fo" hreflang="fo" data-title="Primtal" data-language-autonym="Føroyskt" data-language-local-name="Faroese" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Nombre_premier" title="Nombre premier – French" lang="fr" hreflang="fr" data-title="Nombre premier" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Uimhir_phr%C3%ADomha" title="Uimhir phríomha – Irish" lang="ga" hreflang="ga" data-title="Uimhir phríomha" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/N%C3%BAmero_primo" title="Número primo – Galician" lang="gl" hreflang="gl" data-title="Número primo" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E8%B3%AA%E6%95%B8" title="質數 – Gan" lang="gan" hreflang="gan" data-title="質數" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%85%E0%AA%B5%E0%AA%BF%E0%AA%AD%E0%AA%BE%E0%AA%9C%E0%AB%8D%E0%AA%AF_%E0%AA%B8%E0%AA%82%E0%AA%96%E0%AB%8D%E0%AA%AF%E0%AA%BE" title="અવિભાજ્ય સંખ્યા – Gujarati" lang="gu" hreflang="gu" data-title="અવિભાજ્ય સંખ્યા" data-language-autonym="ગુજરાતી" data-language-local-name="Gujarati" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-xal mw-list-item"><a href="https://xal.wikipedia.org/wiki/%D0%AD%D0%BA%D0%BD_%D1%82%D0%BE%D0%B9%D0%B3" title="Экн тойг – Kalmyk" lang="xal" hreflang="xal" data-title="Экн тойг" data-language-autonym="Хальмг" data-language-local-name="Kalmyk" class="interlanguage-link-target"><span>Хальмг</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%86%8C%EC%88%98_(%EC%88%98%EB%A1%A0)" title="소수 (수론) – Korean" lang="ko" hreflang="ko" data-title="소수 (수론)" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-haw mw-list-item"><a href="https://haw.wikipedia.org/wiki/Helu_kumu" title="Helu kumu – Hawaiian" lang="haw" hreflang="haw" data-title="Helu kumu" data-language-autonym="Hawaiʻi" data-language-local-name="Hawaiian" class="interlanguage-link-target"><span>Hawaiʻi</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8A%D5%A1%D6%80%D5%A6_%D5%A9%D5%AB%D5%BE" title="Պարզ թիվ – Armenian" lang="hy" hreflang="hy" data-title="Պարզ թիվ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%85%E0%A4%AD%E0%A4%BE%E0%A4%9C%E0%A5%8D%E0%A4%AF_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="अभाज्य संख्या – Hindi" lang="hi" hreflang="hi" data-title="अभाज्य संख्या" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hsb mw-list-item"><a href="https://hsb.wikipedia.org/wiki/Primowa_li%C4%8Dba" title="Primowa ličba – Upper Sorbian" lang="hsb" hreflang="hsb" data-title="Primowa ličba" data-language-autonym="Hornjoserbsce" data-language-local-name="Upper Sorbian" class="interlanguage-link-target"><span>Hornjoserbsce</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Prosti_broj" title="Prosti broj – Croatian" lang="hr" hreflang="hr" data-title="Prosti broj" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Bilangan_prima" title="Bilangan prima – Indonesian" lang="id" hreflang="id" data-title="Bilangan prima" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Numero_prime" title="Numero prime – Interlingua" lang="ia" hreflang="ia" data-title="Numero prime" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Frumtala" title="Frumtala – Icelandic" lang="is" hreflang="is" data-title="Frumtala" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://it.wikipedia.org/wiki/Numero_primo" title="Numero primo – Italian" lang="it" hreflang="it" data-title="Numero primo" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A1%D7%A4%D7%A8_%D7%A8%D7%90%D7%A9%D7%95%D7%A0%D7%99" title="מספר ראשוני – Hebrew" lang="he" hreflang="he" data-title="מספר ראשוני" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/Wilangan_prima" title="Wilangan prima – Javanese" lang="jv" hreflang="jv" data-title="Wilangan prima" data-language-autonym="Jawa" data-language-local-name="Javanese" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%85%E0%B2%B5%E0%B2%BF%E0%B2%AD%E0%B2%BE%E0%B2%9C%E0%B3%8D%E0%B2%AF_%E0%B2%B8%E0%B2%82%E0%B2%96%E0%B3%8D%E0%B2%AF%E0%B3%86" title="ಅವಿಭಾಜ್ಯ ಸಂಖ್ಯೆ – Kannada" lang="kn" hreflang="kn" data-title="ಅವಿಭಾಜ್ಯ ಸಂಖ್ಯೆ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9B%E1%83%90%E1%83%A0%E1%83%A2%E1%83%98%E1%83%95%E1%83%98_%E1%83%A0%E1%83%98%E1%83%AA%E1%83%AE%E1%83%95%E1%83%98" title="მარტივი რიცხვი – Georgian" lang="ka" hreflang="ka" data-title="მარტივი რიცხვი" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%96%D0%B0%D0%B9_%D1%81%D0%B0%D0%BD" title="Жай сан – Kazakh" lang="kk" hreflang="kk" data-title="Жай сан" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kw mw-list-item"><a href="https://kw.wikipedia.org/wiki/Pennriv" title="Pennriv – Cornish" lang="kw" hreflang="kw" data-title="Pennriv" data-language-autonym="Kernowek" data-language-local-name="Cornish" class="interlanguage-link-target"><span>Kernowek</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Namba_tasa" title="Namba tasa – Swahili" lang="sw" hreflang="sw" data-title="Namba tasa" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Nonm_premye" title="Nonm premye – Haitian Creole" lang="ht" hreflang="ht" data-title="Nonm premye" data-language-autonym="Kreyòl ayisyen" data-language-local-name="Haitian Creole" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Nonm_pr%C3%A9my%C3%A9" title="Nonm prémyé – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Nonm prémyé" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/Hejmar%C3%AAn_h%C3%AEm%C3%AE" title="Hejmarên hîmî – Kurdish" lang="ku" hreflang="ku" data-title="Hejmarên hîmî" data-language-autonym="Kurdî" data-language-local-name="Kurdish" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%96%D3%A9%D0%BD%D3%A9%D0%BA%D3%A9%D0%B9_%D1%81%D0%B0%D0%BD" title="Жөнөкөй сан – Kyrgyz" lang="ky" hreflang="ky" data-title="Жөнөкөй сан" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BA%95%E0%BA%BB%E0%BA%A7%E0%BB%80%E0%BA%A5%E0%BA%81%E0%BA%AB%E0%BA%BC%E0%BA%B1%E0%BA%81" title="ຕົວເລກຫຼັກ – Lao" lang="lo" hreflang="lo" data-title="ຕົວເລກຫຼັກ" data-language-autonym="ລາວ" data-language-local-name="Lao" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Numerus_primus" title="Numerus primus – Latin" lang="la" hreflang="la" data-title="Numerus primus" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Pirmskaitlis" title="Pirmskaitlis – Latvian" lang="lv" hreflang="lv" data-title="Pirmskaitlis" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Primzuel" title="Primzuel – Luxembourgish" lang="lb" hreflang="lb" data-title="Primzuel" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luxembourgish" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Pirminis_skai%C4%8Dius" title="Pirminis skaičius – Lithuanian" lang="lt" hreflang="lt" data-title="Pirminis skaičius" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Priemgetaal" title="Priemgetaal – Limburgish" lang="li" hreflang="li" data-title="Priemgetaal" data-language-autonym="Limburgs" data-language-local-name="Limburgish" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-jbo mw-list-item"><a href="https://jbo.wikipedia.org/wiki/nalfendi_kacna%27u" title="nalfendi kacna'u – Lojban" lang="jbo" hreflang="jbo" data-title="nalfendi kacna'u" data-language-autonym="La .lojban." data-language-local-name="Lojban" class="interlanguage-link-target"><span>La .lojban.</span></a></li><li class="interlanguage-link interwiki-lmo badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://lmo.wikipedia.org/wiki/Numer_primm" title="Numer primm – Lombard" lang="lmo" hreflang="lmo" data-title="Numer primm" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Pr%C3%ADmsz%C3%A1mok" title="Prímszámok – Hungarian" lang="hu" hreflang="hu" data-title="Prímszámok" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82_%D0%B1%D1%80%D0%BE%D1%98" title="Прост број – Macedonian" lang="mk" hreflang="mk" data-title="Прост број" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Isa_tsy_azo_tsinjaraina" title="Isa tsy azo tsinjaraina – Malagasy" lang="mg" hreflang="mg" data-title="Isa tsy azo tsinjaraina" data-language-autonym="Malagasy" data-language-local-name="Malagasy" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%85%E0%B4%AD%E0%B4%BE%E0%B4%9C%E0%B5%8D%E0%B4%AF%E0%B4%B8%E0%B4%82%E0%B4%96%E0%B5%8D%E0%B4%AF" title="അഭാജ്യസംഖ്യ – Malayalam" lang="ml" hreflang="ml" data-title="അഭാജ്യസംഖ്യ" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Numru_l-ewwel" title="Numru l-ewwel – Maltese" lang="mt" hreflang="mt" data-title="Numru l-ewwel" data-language-autonym="Malti" data-language-local-name="Maltese" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%AE%E0%A5%82%E0%A4%B3_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="मूळ संख्या – Marathi" lang="mr" hreflang="mr" data-title="मूळ संख्या" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%A7%D9%88%D9%84%D9%89" title="عدد اولى – Egyptian Arabic" lang="arz" hreflang="arz" data-title="عدد اولى" data-language-autonym="مصرى" data-language-local-name="Egyptian Arabic" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Nombor_perdana" title="Nombor perdana – Malay" lang="ms" hreflang="ms" data-title="Nombor perdana" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%90%D0%BD%D1%85%D0%BD%D1%8B_%D1%82%D0%BE%D0%BE" title="Анхны тоо – Mongolian" lang="mn" hreflang="mn" data-title="Анхны тоо" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%9E%E1%80%AF%E1%80%92%E1%80%B9%E1%80%93%E1%80%80%E1%80%AD%E1%80%94%E1%80%BA%E1%80%B8" title="သုဒ္ဓကိန်း – Burmese" lang="my" hreflang="my" data-title="သုဒ္ဓကိန်း" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-fj mw-list-item"><a href="https://fj.wikipedia.org/wiki/Naba_taumada" title="Naba taumada – Fijian" lang="fj" hreflang="fj" data-title="Naba taumada" data-language-autonym="Na Vosa Vakaviti" data-language-local-name="Fijian" class="interlanguage-link-target"><span>Na Vosa Vakaviti</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Priemgetal" title="Priemgetal – Dutch" lang="nl" hreflang="nl" data-title="Priemgetal" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%BE%E0%A4%87%E0%A4%AE_%E0%A4%B8%E0%A4%99%E0%A5%8D%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="प्राइम सङ्ख्या – Nepali" lang="ne" hreflang="ne" data-title="प्राइम सङ्ख्या" data-language-autonym="नेपाली" data-language-local-name="Nepali" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%B4%A0%E6%95%B0" title="素数 – Japanese" lang="ja" hreflang="ja" data-title="素数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Primtaal" title="Primtaal – Northern Frisian" lang="frr" hreflang="frr" data-title="Primtaal" data-language-autonym="Nordfriisk" data-language-local-name="Northern Frisian" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Primtall" title="Primtall – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Primtall" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Primtal" title="Primtal – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Primtal" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Nombre_primi%C3%A8r" title="Nombre primièr – Occitan" lang="oc" hreflang="oc" data-title="Nombre primièr" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%AE%E0%AD%8C%E0%AC%B3%E0%AC%BF%E0%AC%95_%E0%AC%B8%E0%AC%82%E0%AC%96%E0%AD%8D%E0%AD%9F%E0%AC%BE" title="ମୌଳିକ ସଂଖ୍ୟା – Odia" lang="or" hreflang="or" data-title="ମୌଳିକ ସଂଖ୍ୟା" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="Odia" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Tub_son" title="Tub son – Uzbek" lang="uz" hreflang="uz" data-title="Tub son" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%85%E0%A8%AD%E0%A8%BE%E0%A8%9C_%E0%A8%B8%E0%A9%B0%E0%A8%96%E0%A8%BF%E0%A8%86" title="ਅਭਾਜ ਸੰਖਿਆ – Punjabi" lang="pa" hreflang="pa" data-title="ਅਭਾਜ ਸੰਖਿਆ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%BE%D8%B1%D8%A7%D8%A6%D9%85_%D9%86%D9%85%D8%A8%D8%B1" title="پرائم نمبر – Western Punjabi" lang="pnb" hreflang="pnb" data-title="پرائم نمبر" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Praim_nomba" title="Praim nomba – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Praim nomba" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%85%E1%9F%86%E1%9E%93%E1%9E%BD%E1%9E%93%E1%9E%94%E1%9E%8B%E1%9E%98" title="ចំនួនបឋម – Khmer" lang="km" hreflang="km" data-title="ចំនួនបឋម" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/N%C3%B9mer_prim" title="Nùmer prim – Piedmontese" lang="pms" hreflang="pms" data-title="Nùmer prim" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Primtall" title="Primtall – Low German" lang="nds" hreflang="nds" data-title="Primtall" data-language-autonym="Plattdüütsch" data-language-local-name="Low German" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Liczby_pierwsze" title="Liczby pierwsze – Polish" lang="pl" hreflang="pl" data-title="Liczby pierwsze" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/N%C3%BAmero_primo" title="Número primo – Portuguese" lang="pt" hreflang="pt" data-title="Número primo" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Num%C4%83r_prim" title="Număr prim – Romanian" lang="ro" hreflang="ro" data-title="Număr prim" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Простое число – Russian" lang="ru" hreflang="ru" data-title="Простое число" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Простое число – Yakut" lang="sah" hreflang="sah" data-title="Простое число" data-language-autonym="Саха тыла" data-language-local-name="Yakut" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Numri_i_thjesht%C3%AB" title="Numri i thjeshtë – Albanian" lang="sq" hreflang="sq" data-title="Numri i thjeshtë" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/N%C3%B9mmuru_primu" title="Nùmmuru primu – Sicilian" lang="scn" hreflang="scn" data-title="Nùmmuru primu" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%B4%E0%B7%8A%E2%80%8D%E0%B6%BB%E0%B6%AE%E0%B6%B8%E0%B6%9A_%E0%B7%83%E0%B6%82%E0%B6%9B%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B7%8F" title="ප්රථමක සංඛ්යා – Sinhala" lang="si" hreflang="si" data-title="ප්රථමක සංඛ්යා" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Prime_number" title="Prime number – Simple English" lang="en-simple" hreflang="en-simple" data-title="Prime number" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Prvo%C4%8D%C3%ADslo" title="Prvočíslo – Slovak" lang="sk" hreflang="sk" data-title="Prvočíslo" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Pra%C5%A1tevilo" title="Praštevilo – Slovenian" lang="sl" hreflang="sl" data-title="Praštevilo" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Pjyrszo_n%C5%AFmera" title="Pjyrszo nůmera – Silesian" lang="szl" hreflang="szl" data-title="Pjyrszo nůmera" data-language-autonym="Ślůnski" data-language-local-name="Silesian" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Thiin_mutuxan" title="Thiin mutuxan – Somali" lang="so" hreflang="so" data-title="Thiin mutuxan" data-language-autonym="Soomaaliga" data-language-local-name="Somali" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%98%D9%85%D8%A7%D8%B1%DB%95%DB%8C_%D8%B3%DB%95%D8%B1%DB%95%D8%AA%D8%A7%DB%8C%DB%8C" title="ژمارەی سەرەتایی – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ژمارەی سەرەتایی" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82_%D0%B1%D1%80%D0%BE%D1%98" title="Прост број – Serbian" lang="sr" hreflang="sr" data-title="Прост број" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Prost_broj" title="Prost broj – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Prost broj" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Alkuluku" title="Alkuluku – Finnish" lang="fi" hreflang="fi" data-title="Alkuluku" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Primtal" title="Primtal – Swedish" lang="sv" hreflang="sv" data-title="Primtal" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Pangunahing_bilang" title="Pangunahing bilang – Tagalog" lang="tl" hreflang="tl" data-title="Pangunahing bilang" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AA%E0%AE%95%E0%AE%BE_%E0%AE%8E%E0%AE%A3%E0%AF%8D" title="பகா எண் – Tamil" lang="ta" hreflang="ta" data-title="பகா எண்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-shi mw-list-item"><a href="https://shi.wikipedia.org/wiki/Am%E1%B8%8Dan_amnzu" title="Amḍan amnzu – Tachelhit" lang="shi" hreflang="shi" data-title="Amḍan amnzu" data-language-autonym="Taclḥit" data-language-local-name="Tachelhit" class="interlanguage-link-target"><span>Taclḥit</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%AA%E0%B1%8D%E0%B0%B0%E0%B0%A7%E0%B0%BE%E0%B0%A8_%E0%B0%B8%E0%B0%82%E0%B0%96%E0%B1%8D%E0%B0%AF" title="ప్రధాన సంఖ్య – Telugu" lang="te" hreflang="te" data-title="ప్రధాన సంఖ్య" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%88%E0%B8%B3%E0%B8%99%E0%B8%A7%E0%B8%99%E0%B9%80%E0%B8%89%E0%B8%9E%E0%B8%B2%E0%B8%B0" title="จำนวนเฉพาะ – Thai" lang="th" hreflang="th" data-title="จำนวนเฉพาะ" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%90%D0%B4%D0%B0%D0%B4%D2%B3%D0%BE%D0%B8_%D1%81%D0%BE%D0%B4%D0%B0" title="Ададҳои сода – Tajik" lang="tg" hreflang="tg" data-title="Ададҳои сода" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Asal_say%C4%B1" title="Asal sayı – Turkish" lang="tr" hreflang="tr" data-title="Asal sayı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Просте число – Ukrainian" lang="uk" hreflang="uk" data-title="Просте число" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D9%81%D8%B1%D8%AF_%D8%B9%D8%AF%D8%AF" title="مفرد عدد – Urdu" lang="ur" hreflang="ur" data-title="مفرد عدد" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-ug mw-list-item"><a href="https://ug.wikipedia.org/wiki/%D8%AA%DB%88%D9%BE_%D8%B3%D8%A7%D9%86" title="تۈپ سان – Uyghur" lang="ug" hreflang="ug" data-title="تۈپ سان" data-language-autonym="ئۇيغۇرچە / Uyghurche" data-language-local-name="Uyghur" class="interlanguage-link-target"><span>ئۇيغۇرچە / Uyghurche</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/N%C3%B9maro_primo" title="Nùmaro primo – Venetian" lang="vec" hreflang="vec" data-title="Nùmaro primo" data-language-autonym="Vèneto" data-language-local-name="Venetian" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Palatoi_lugu" title="Palatoi lugu – Veps" lang="vep" hreflang="vep" data-title="Palatoi lugu" data-language-autonym="Vepsän kel’" data-language-local-name="Veps" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://vi.wikipedia.org/wiki/S%E1%BB%91_nguy%C3%AAn_t%E1%BB%91" title="Số nguyên tố – Vietnamese" lang="vi" hreflang="vi" data-title="Số nguyên tố" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Algarv" title="Algarv – Võro" lang="vro" hreflang="vro" data-title="Algarv" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-wa mw-list-item"><a href="https://wa.wikipedia.org/wiki/Nombe_prum%C3%AE" title="Nombe prumî – Walloon" lang="wa" hreflang="wa" data-title="Nombe prumî" data-language-autonym="Walon" data-language-local-name="Walloon" class="interlanguage-link-target"><span>Walon</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E8%B3%AA%E6%95%B8" title="質數 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="質數" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-vls mw-list-item"><a href="https://vls.wikipedia.org/wiki/Priemgetal" title="Priemgetal – West Flemish" lang="vls" hreflang="vls" data-title="Priemgetal" data-language-autonym="West-Vlams" data-language-local-name="West Flemish" class="interlanguage-link-target"><span>West-Vlams</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Panguna_nga_ihap" title="Panguna nga ihap – Waray" lang="war" hreflang="war" data-title="Panguna nga ihap" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E8%B4%A8%E6%95%B0" title="质数 – Wu" lang="wuu" hreflang="wuu" data-title="质数" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A4%D7%A8%D7%99%D7%9E%D7%A6%D7%90%D7%9C" title="פרימצאל – Yiddish" lang="yi" hreflang="yi" data-title="פרימצאל" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-yo mw-list-item"><a href="https://yo.wikipedia.org/wiki/N%E1%BB%8D%CC%81mb%C3%A0_%C3%A0k%E1%BB%8D%CC%81k%E1%BB%8D%CC%81" title="Nọ́mbà àkọ́kọ́ – Yoruba" lang="yo" hreflang="yo" data-title="Nọ́mbà àkọ́kọ́" data-language-autonym="Yorùbá" data-language-local-name="Yoruba" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%B3%AA%E6%95%B8" title="質數 – Cantonese" lang="yue" hreflang="yue" data-title="質數" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Amaro_primal" title="Amaro primal – Zazaki" lang="diq" hreflang="diq" data-title="Amaro primal" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/P%C4%97rm%C4%97nis_skaitlios" title="Pėrmėnis skaitlios – Samogitian" lang="sgs" hreflang="sgs" data-title="Pėrmėnis skaitlios" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%B4%A8%E6%95%B0" title="质数 – Chinese" lang="zh" hreflang="zh" data-title="质数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zgh mw-list-item"><a href="https://zgh.wikipedia.org/wiki/%E2%B4%B0%E2%B5%8E%E2%B4%B9%E2%B4%B0%E2%B5%8F_%E2%B4%B0%E2%B5%8E%E2%B5%8F%E2%B5%A3%E2%B5%93" title="ⴰⵎⴹⴰⵏ ⴰⵎⵏⵣⵓ – Standard Moroccan Tamazight" lang="zgh" hreflang="zgh" data-title="ⴰⵎⴹⴰⵏ ⴰⵎⵏⵣⵓ" data-language-autonym="ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ" data-language-local-name="Standard Moroccan Tamazight" class="interlanguage-link-target"><span>ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q49008#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Prime_number" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Prime_number" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Prime_number"><span>Read</span></a></li><li id="ca-viewsource" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Prime_number&action=edit" title="This page is protected. You can view its source [e]" accesskey="e"><span>View source</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Prime_number&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Prime_number"><span>Read</span></a></li><li id="ca-more-viewsource" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Prime_number&action=edit"><span>View source</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Prime_number&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Prime_number" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Prime_number" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Prime_number&oldid=1256853845" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Prime_number&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Prime_number&id=1256853845&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPrime_number"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPrime_number"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Prime_number&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Prime_number&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Prime_numbers" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/A_Guide_to_the_GRE/Prime_Numbers" hreflang="en"><span>Wikibooks</span></a></li><li class="wb-otherproject-link wb-otherproject-wikinews mw-list-item"><a href="https://en.wikinews.org/wiki/Category:Prime_numbers" hreflang="en"><span>Wikinews</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/Prime_number" hreflang="en"><span>Wikiquote</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q49008" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-good-star" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Good_articles*" title="This is a good article. Click here for more information."><img alt="This is a good article. Click here for more information." src="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/19px-Symbol_support_vote.svg.png" decoding="async" width="19" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/29px-Symbol_support_vote.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/39px-Symbol_support_vote.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span></div></div> <div id="mw-indicator-pp-default" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Protection_policy#semi" title="This article is semi-protected due to vandalism"><img alt="Page semi-protected" src="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/20px-Semi-protection-shackle.svg.png" decoding="async" width="20" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/30px-Semi-protection-shackle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/40px-Semi-protection-shackle.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Number divisible only by 1 or itself</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Prime" redirects here. For other uses, see <a href="/wiki/Prime_(disambiguation)" class="mw-disambig" title="Prime (disambiguation)">Prime (disambiguation)</a>.</div> <p class="mw-empty-elt"> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Primes-vs-composites.svg" class="mw-file-description"><img alt="Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but prime numbers cannot" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Primes-vs-composites.svg/220px-Primes-vs-composites.svg.png" decoding="async" width="220" height="309" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Primes-vs-composites.svg/330px-Primes-vs-composites.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Primes-vs-composites.svg/440px-Primes-vs-composites.svg.png 2x" data-file-width="468" data-file-height="658" /></a><figcaption><a href="/wiki/Composite_number" title="Composite number">Composite numbers</a> can be arranged into <a href="/wiki/Rectangle" title="Rectangle">rectangles</a> but prime numbers cannot.</figcaption></figure> <p>A <b>prime number</b> (or a <b>prime</b>) is a <a href="/wiki/Natural_number" title="Natural number">natural number</a> greater than 1 that is not a <a href="/wiki/Product_(mathematics)" title="Product (mathematics)">product</a> of two smaller natural numbers. A natural number greater than 1 that is not prime is called a <a href="/wiki/Composite_number" title="Composite number">composite number</a>. For example, 5 is prime because the only ways of writing it as a product, <span class="nowrap">1 × 5</span> or <span class="nowrap">5 × 1</span>, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in <a href="/wiki/Number_theory" title="Number theory">number theory</a> because of the <a href="/wiki/Fundamental_theorem_of_arithmetic" title="Fundamental theorem of arithmetic">fundamental theorem of arithmetic</a>: every natural number greater than 1 is either a prime itself or can be <a href="/wiki/Factorization" title="Factorization">factorized</a> as a product of primes that is unique <a href="/wiki/Up_to" title="Up to">up to</a> their order. </p><p>The property of being prime is called <b>primality</b>. A simple but slow <a href="/wiki/Primality_test" title="Primality test">method of checking the primality</a> of a given number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, called <a href="/wiki/Trial_division" title="Trial division">trial division</a>, tests whether <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is a multiple of any integer between 2 and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a2994734eae382ce30100fb17b9447fd8e99f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.331ex; height:3.009ex;" alt="{\displaystyle {\sqrt {n}}}"></span>. Faster algorithms include the <a href="/wiki/Miller%E2%80%93Rabin_primality_test" title="Miller–Rabin primality test">Miller–Rabin primality test</a>, which is fast but has a small chance of error, and the <a href="/wiki/AKS_primality_test" title="AKS primality test">AKS primality test</a>, which always produces the correct answer in <a href="/wiki/Polynomial_time" class="mw-redirect" title="Polynomial time">polynomial time</a> but is too slow to be practical. Particularly fast methods are available for numbers of special forms, such as <a href="/wiki/Mersenne_number" class="mw-redirect" title="Mersenne number">Mersenne numbers</a>. As of October 2024<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Prime_number&action=edit">[update]</a></sup> the <a href="/wiki/Largest_known_prime_number" title="Largest known prime number">largest known prime number</a> is a Mersenne prime with 41,024,320 <a href="/wiki/Numerical_digit" title="Numerical digit">decimal digits</a>.<sup id="cite_ref-GIMPS-2024_1-0" class="reference"><a href="#cite_note-GIMPS-2024-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>There are <a href="/wiki/Infinite_set" title="Infinite set">infinitely many</a> primes, as <a href="/wiki/Euclid%27s_theorem" title="Euclid's theorem">demonstrated by Euclid</a> around 300 BC. No known simple formula separates prime numbers from composite numbers. However, the distribution of primes within the natural numbers in the large can be statistically modelled. The first result in that direction is the <a href="/wiki/Prime_number_theorem" title="Prime number theorem">prime number theorem</a>, proven at the end of the 19th century, which says that the <a href="/wiki/Probability" title="Probability">probability</a> of a randomly chosen large number being prime is inversely <a href="/wiki/Proportionality_(mathematics)" title="Proportionality (mathematics)">proportional</a> to its number of digits, that is, to its <a href="/wiki/Logarithm" title="Logarithm">logarithm</a>. </p><p>Several historical questions regarding prime numbers are still unsolved. These include <a href="/wiki/Goldbach%27s_conjecture" title="Goldbach's conjecture">Goldbach's conjecture</a>, that every even integer greater than 2 can be expressed as the sum of two primes, and the <a href="/wiki/Twin_prime" title="Twin prime">twin prime</a> conjecture, that there are infinitely many pairs of primes that differ by two. Such questions spurred the development of various branches of number theory, focusing on <a href="/wiki/Analytic_number_theory" title="Analytic number theory">analytic</a> or <a href="/wiki/Algebraic_number_theory" title="Algebraic number theory">algebraic</a> aspects of numbers. Primes are used in several routines in <a href="/wiki/Information_technology" title="Information technology">information technology</a>, such as <a href="/wiki/Public-key_cryptography" title="Public-key cryptography">public-key cryptography</a>, which relies on the difficulty of <a href="/wiki/Integer_factorization" title="Integer factorization">factoring</a> large numbers into their prime factors. In <a href="/wiki/Abstract_algebra" title="Abstract algebra">abstract algebra</a>, objects that behave in a generalized way like prime numbers include <a href="/wiki/Prime_element" title="Prime element">prime elements</a> and <a href="/wiki/Prime_ideal" title="Prime ideal">prime ideals</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition_and_examples">Definition and examples</h2></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/List_of_prime_numbers" title="List of prime numbers">List of prime numbers</a></div> <p>A <a href="/wiki/Natural_number" title="Natural number">natural number</a> (1, 2, 3, 4, 5, 6, etc.) is called a <i>prime number</i> (or a <i>prime</i>) if it is greater than 1 and cannot be written as the product of two smaller natural numbers. The numbers greater than 1 that are not prime are called <a href="/wiki/Composite_number" title="Composite number">composite numbers</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> In other words, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is prime if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> items cannot be divided up into smaller equal-size groups of more than one item,<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> or if it is not possible to arrange <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> dots into a rectangular grid that is more than one dot wide and more than one dot high.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> For example, among the numbers 1 through 6, the numbers 2, 3, and 5 are the prime numbers,<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> as there are no other numbers that divide them evenly (without a remainder). 1 is not prime, as it is specifically excluded in the definition. <span class="nowrap">4 = 2 × 2</span> and <span class="nowrap">6 = 2 × 3</span> are both composite. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Prime_number_Cuisenaire_rods_7.png" class="mw-file-description"><img alt="refer to caption" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Prime_number_Cuisenaire_rods_7.png/260px-Prime_number_Cuisenaire_rods_7.png" decoding="async" width="260" height="174" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Prime_number_Cuisenaire_rods_7.png/390px-Prime_number_Cuisenaire_rods_7.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Prime_number_Cuisenaire_rods_7.png/520px-Prime_number_Cuisenaire_rods_7.png 2x" data-file-width="580" data-file-height="388" /></a><figcaption>Demonstration, with <a href="/wiki/Cuisenaire_rods" title="Cuisenaire rods">Cuisenaire rods</a>, that 7 is prime, because none of 2, 3, 4, 5, or 6 divide it evenly</figcaption></figure> <p>The <a href="/wiki/Divisor" title="Divisor">divisors</a> of a natural number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> are the natural numbers that divide <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> evenly. Every natural number has both 1 and itself as a divisor. If it has any other divisor, it cannot be prime. This leads to an equivalent definition of prime numbers: they are the numbers with exactly two positive <a href="/wiki/Divisor" title="Divisor">divisors</a>. Those two are 1 and the number itself. As 1 has only one divisor, itself, it is not prime by this definition.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Yet another way to express the same thing is that a number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is prime if it is greater than one and if none of the numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2,3,\dots ,n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2,3,\dots ,n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc661ca19f3a62fb3fcf54e9e2ba22bfae50edda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.935ex; height:2.509ex;" alt="{\displaystyle 2,3,\dots ,n-1}"></span> divides <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> evenly.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>The first 25 prime numbers (all the prime numbers less than 100) are:<sup id="cite_ref-ziegler_9-0" class="reference"><a href="#cite_note-ziegler-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/43_(number)" title="43 (number)">43</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/53_(number)" title="53 (number)">53</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/61_(number)" title="61 (number)">61</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/73_(number)" title="73 (number)">73</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/83_(number)" title="83 (number)">83</a>, <a href="/wiki/89_(number)" title="89 (number)">89</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a> (sequence <span class="nowrap external"><a href="//oeis.org/A000040" class="extiw" title="oeis:A000040">A000040</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>).</dd></dl> <p>No <a href="/wiki/Even_number" class="mw-redirect" title="Even number">even number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> greater than 2 is prime because any such number can be expressed as the product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\times n/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>×<!-- × --></mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\times n/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06b3d623bd1e97df55c447f8b187c7a62418064c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.722ex; height:2.843ex;" alt="{\displaystyle 2\times n/2}"></span>. Therefore, every prime number other than 2 is an <a href="/wiki/Odd_number" class="mw-redirect" title="Odd number">odd number</a>, and is called an <i>odd prime</i>.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> Similarly, when written in the usual <a href="/wiki/Decimal" title="Decimal">decimal</a> system, all prime numbers larger than 5 end in 1, 3, 7, or 9. The numbers that end with other digits are all composite: decimal numbers that end in 0, 2, 4, 6, or 8 are even, and decimal numbers that end in 0 or 5 are divisible by 5.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p><p>The <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> of all primes is sometimes denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {P} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {P} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0c250ef2a112c86b93c637dfa288c6d7f34ac3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle \mathbf {P} }"></span> (a <a href="/wiki/Boldface" class="mw-redirect" title="Boldface">boldface</a> capital P)<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> or by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {P} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {P} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1053af9e662ceaf56c4455f90e0f67273422eded" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.42ex; height:2.176ex;" alt="{\displaystyle \mathbb {P} }"></span> (a <a href="/wiki/Blackboard_bold" title="Blackboard bold">blackboard bold</a> capital P).<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Rhind_Mathematical_Papyrus.jpg" class="mw-file-description"><img alt="The Rhind Mathematical Papyrus" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Rhind_Mathematical_Papyrus.jpg/220px-Rhind_Mathematical_Papyrus.jpg" decoding="async" width="220" height="132" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Rhind_Mathematical_Papyrus.jpg/330px-Rhind_Mathematical_Papyrus.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Rhind_Mathematical_Papyrus.jpg/440px-Rhind_Mathematical_Papyrus.jpg 2x" data-file-width="750" data-file-height="449" /></a><figcaption>The <a href="/wiki/Rhind_Mathematical_Papyrus" title="Rhind Mathematical Papyrus">Rhind Mathematical Papyrus</a></figcaption></figure> <p>The <a href="/wiki/Rhind_Mathematical_Papyrus" title="Rhind Mathematical Papyrus">Rhind Mathematical Papyrus</a>, from around 1550 BC, has <a href="/wiki/Egyptian_fraction" title="Egyptian fraction">Egyptian fraction</a> expansions of different forms for prime and composite numbers.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> However, the earliest surviving records of the study of prime numbers come from the <a href="/wiki/Greek_mathematics" title="Greek mathematics">ancient Greek mathematicians</a>, who called them <span title="Ancient Greek (to 1453)-language romanization"><i lang="grc-Latn">prōtos arithmòs</i></span> (<span title="Ancient Greek (to 1453)-language text"><span lang="grc">πρῶτος ἀριθμὸς</span></span>). <a href="/wiki/Euclid" title="Euclid">Euclid</a>'s <i><a href="/wiki/Euclid%27s_Elements" title="Euclid's Elements">Elements</a></i> (c. 300 BC) proves the <a href="/wiki/Infinitude_of_primes" class="mw-redirect" title="Infinitude of primes">infinitude of primes</a> and the <a href="/wiki/Fundamental_theorem_of_arithmetic" title="Fundamental theorem of arithmetic">fundamental theorem of arithmetic</a>, and shows how to construct a <a href="/wiki/Perfect_number" title="Perfect number">perfect number</a> from a <a href="/wiki/Mersenne_prime" title="Mersenne prime">Mersenne prime</a>.<sup id="cite_ref-stillwell-2010-p40_15-0" class="reference"><a href="#cite_note-stillwell-2010-p40-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> Another Greek invention, the <a href="/wiki/Sieve_of_Eratosthenes" title="Sieve of Eratosthenes">Sieve of Eratosthenes</a>, is still used to construct lists of <span class="nowrap">primes.<sup id="cite_ref-pomerance-sciam_16-0" class="reference"><a href="#cite_note-pomerance-sciam-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-mollin_17-0" class="reference"><a href="#cite_note-mollin-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup></span> </p><p>Around 1000 AD, the <a href="/wiki/Mathematics_in_medieval_Islam" class="mw-redirect" title="Mathematics in medieval Islam">Islamic</a> mathematician <a href="/wiki/Ibn_al-Haytham" title="Ibn al-Haytham">Ibn al-Haytham</a> (Alhazen) found <a href="/wiki/Wilson%27s_theorem" title="Wilson's theorem">Wilson's theorem</a>, characterizing the prime numbers as the numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> that evenly divide <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n-1)!+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n-1)!+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5241d2022a4a3e94d24081a5cfb9b7b5fbf98b16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.857ex; height:2.843ex;" alt="{\displaystyle (n-1)!+1}"></span>. He also conjectured that all even perfect numbers come from Euclid's construction using Mersenne primes, but was unable to prove it.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> Another Islamic mathematician, <a href="/wiki/Ibn_al-Banna%27_al-Marrakushi" title="Ibn al-Banna' al-Marrakushi">Ibn al-Banna' al-Marrakushi</a>, observed that the sieve of Eratosthenes can be sped up by considering only the prime divisors up to the square root of the upper limit.<sup id="cite_ref-mollin_17-1" class="reference"><a href="#cite_note-mollin-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Fibonacci" title="Fibonacci">Fibonacci</a> took the innovations from Islamic mathematics to Europe. His book <i><a href="/wiki/Liber_Abaci" title="Liber Abaci">Liber Abaci</a></i> (1202) was the first to describe <a href="/wiki/Trial_division" title="Trial division">trial division</a> for testing primality, again using divisors only up to the square root.<sup id="cite_ref-mollin_17-2" class="reference"><a href="#cite_note-mollin-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>In 1640 <a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Pierre de Fermat</a> stated (without proof) <a href="/wiki/Fermat%27s_little_theorem" title="Fermat's little theorem">Fermat's little theorem</a> (later proved by <a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Leibniz</a> and <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler</a>).<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> Fermat also investigated the primality of the <a href="/wiki/Fermat_number" title="Fermat number">Fermat numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{2^{n}}+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{2^{n}}+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b27f57a4191be088259902a790ef2fb093ffb812" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.184ex; height:2.843ex;" alt="{\displaystyle 2^{2^{n}}+1}"></span>,<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Marin_Mersenne" title="Marin Mersenne">Marin Mersenne</a> studied the <a href="/wiki/Mersenne_prime" title="Mersenne prime">Mersenne primes</a>, prime numbers of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{p}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{p}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c5977dbf385ba719fbb90f67b0a3d91e1da6d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.224ex; height:2.509ex;" alt="{\displaystyle 2^{p}-1}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> itself a prime.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Christian_Goldbach" title="Christian Goldbach">Christian Goldbach</a> formulated <a href="/wiki/Goldbach%27s_conjecture" title="Goldbach's conjecture">Goldbach's conjecture</a>, that every even number is the sum of two primes, in a 1742 letter to Euler.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> Euler proved Alhazen's conjecture (now the <a href="/wiki/Euclid%E2%80%93Euler_theorem" title="Euclid–Euler theorem">Euclid–Euler theorem</a>) that all even perfect numbers can be constructed from Mersenne primes.<sup id="cite_ref-stillwell-2010-p40_15-1" class="reference"><a href="#cite_note-stillwell-2010-p40-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> He introduced methods from <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a> to this area in his proofs of the infinitude of the primes and the <a href="/wiki/Divergence_of_the_sum_of_the_reciprocals_of_the_primes" title="Divergence of the sum of the reciprocals of the primes">divergence of the sum of the reciprocals of the primes</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{5}}+{\tfrac {1}{7}}+{\tfrac {1}{11}}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>7</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>11</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{5}}+{\tfrac {1}{7}}+{\tfrac {1}{11}}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e57e94d60efb5ad04a9ddebe807c98fff5d6d2a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:26.038ex; height:3.676ex;" alt="{\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{5}}+{\tfrac {1}{7}}+{\tfrac {1}{11}}+\cdots }"></span>.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> At the start of the 19th century, Legendre and Gauss conjectured that as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> tends to infinity, the number of primes up to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is <a href="/wiki/Asymptotic_analysis" title="Asymptotic analysis">asymptotic</a> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x/\log x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x/\log x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dcc3d89d9a592249b29d9ec90ec429423fc3db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.568ex; height:2.843ex;" alt="{\displaystyle x/\log x}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80d453de713a8c45f7bf99108752531ed7d6dd05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.689ex; height:2.509ex;" alt="{\displaystyle \log x}"></span> is the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>. A weaker consequence of this high density of primes was <a href="/wiki/Bertrand%27s_postulate" title="Bertrand's postulate">Bertrand's postulate</a>, that for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n>1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n>1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee74e1cc07e7041edf0fcbd4481f5cd32ad17b64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n>1}"></span> there is a prime between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/134afa8ff09fdddd24b06f289e92e3a045092bd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.557ex; height:2.176ex;" alt="{\displaystyle 2n}"></span>, proved in 1852 by <a href="/wiki/Pafnuty_Chebyshev" title="Pafnuty Chebyshev">Pafnuty Chebyshev</a>.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> Ideas of <a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a> in his <a href="/wiki/On_the_Number_of_Primes_Less_Than_a_Given_Magnitude" title="On the Number of Primes Less Than a Given Magnitude">1859 paper on the zeta-function</a> sketched an outline for proving the conjecture of Legendre and Gauss. Although the closely related <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a> remains unproven, Riemann's outline was completed in 1896 by <a href="/wiki/Jacques_Hadamard" title="Jacques Hadamard">Hadamard</a> and <a href="/wiki/Charles_Jean_de_la_Vall%C3%A9e-Poussin" class="mw-redirect" title="Charles Jean de la Vallée-Poussin">de la Vallée Poussin</a>, and the result is now known as the <a href="/wiki/Prime_number_theorem" title="Prime number theorem">prime number theorem</a>.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> Another important 19th century result was <a href="/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions" title="Dirichlet's theorem on arithmetic progressions">Dirichlet's theorem on arithmetic progressions</a>, that certain <a href="/wiki/Arithmetic_progression" title="Arithmetic progression">arithmetic progressions</a> contain infinitely many primes.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p><p>Many mathematicians have worked on <a href="/wiki/Primality_test" title="Primality test">primality tests</a> for numbers larger than those where trial division is practicably applicable. Methods that are restricted to specific number forms include <a href="/wiki/P%C3%A9pin%27s_test" title="Pépin's test">Pépin's test</a> for Fermat numbers (1877),<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Proth%27s_theorem" title="Proth's theorem">Proth's theorem</a> (c. 1878),<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> the <a href="/wiki/Lucas%E2%80%93Lehmer_primality_test" title="Lucas–Lehmer primality test">Lucas–Lehmer primality test</a> (originated 1856), and the generalized <a href="/wiki/Lucas_primality_test" title="Lucas primality test">Lucas primality test</a>.<sup id="cite_ref-mollin_17-3" class="reference"><a href="#cite_note-mollin-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>Since 1951 all the <a href="/wiki/Largest_known_prime" class="mw-redirect" title="Largest known prime">largest known primes</a> have been found using these tests on <a href="/wiki/Computer" title="Computer">computers</a>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> The search for ever larger primes has generated interest outside mathematical circles, through the <a href="/wiki/Great_Internet_Mersenne_Prime_Search" title="Great Internet Mersenne Prime Search">Great Internet Mersenne Prime Search</a> and other <a href="/wiki/Distributed_computing" title="Distributed computing">distributed computing</a> projects.<sup id="cite_ref-ziegler_9-1" class="reference"><a href="#cite_note-ziegler-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> The idea that prime numbers had few applications outside of <a href="/wiki/Pure_mathematics" title="Pure mathematics">pure mathematics</a><sup id="cite_ref-pure_34-0" class="reference"><a href="#cite_note-pure-34"><span class="cite-bracket">[</span>b<span class="cite-bracket">]</span></a></sup> was shattered in the 1970s when <a href="/wiki/Public-key_cryptography" title="Public-key cryptography">public-key cryptography</a> and the <a href="/wiki/RSA_(cryptosystem)" title="RSA (cryptosystem)">RSA</a> cryptosystem were invented, using prime numbers as their basis.<sup id="cite_ref-ent-7_35-0" class="reference"><a href="#cite_note-ent-7-35"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p><p>The increased practical importance of computerized primality testing and factorization led to the development of improved methods capable of handling large numbers of unrestricted form.<sup id="cite_ref-pomerance-sciam_16-1" class="reference"><a href="#cite_note-pomerance-sciam-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> The mathematical theory of prime numbers also moved forward with the <a href="/wiki/Green%E2%80%93Tao_theorem" title="Green–Tao theorem">Green–Tao theorem</a> (2004) that there are arbitrarily long arithmetic progressions of prime numbers, and <a href="/wiki/Yitang_Zhang" title="Yitang Zhang">Yitang Zhang</a>'s 2013 proof that there exist infinitely many <a href="/wiki/Prime_gap" title="Prime gap">prime gaps</a> of bounded size.<sup id="cite_ref-neale-18-47_38-0" class="reference"><a href="#cite_note-neale-18-47-38"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Primality_of_one">Primality of one</h3></div> <p>Most early Greeks did not even consider 1 to be a number,<sup id="cite_ref-crxk-34_39-0" class="reference"><a href="#cite_note-crxk-34-39"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> so they could not consider its primality. A few scholars in the Greek and later Roman tradition, including <a href="/wiki/Nicomachus" title="Nicomachus">Nicomachus</a>, <a href="/wiki/Iamblichus" title="Iamblichus">Iamblichus</a>, <a href="/wiki/Boethius" title="Boethius">Boethius</a>, and <a href="/wiki/Cassiodorus" title="Cassiodorus">Cassiodorus</a>, also considered the prime numbers to be a subdivision of the odd numbers, so they did not consider 2 to be prime either. However, Euclid and a majority of the other Greek mathematicians considered 2 as prime. The <a href="/wiki/Mathematics_in_medieval_Islam" class="mw-redirect" title="Mathematics in medieval Islam">medieval Islamic mathematicians</a> largely followed the Greeks in viewing 1 as not being a number.<sup id="cite_ref-crxk-34_39-1" class="reference"><a href="#cite_note-crxk-34-39"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> By the Middle Ages and Renaissance, mathematicians began treating 1 as a number, and by the 17th century some of them included it as the first prime number.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> In the mid-18th century, <a href="/wiki/Christian_Goldbach" title="Christian Goldbach">Christian Goldbach</a> listed 1 as prime in his correspondence with <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a>;<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> however, Euler himself did not consider 1 to be prime.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> Many 19th century mathematicians still considered 1 to be prime,<sup id="cite_ref-cx_44-0" class="reference"><a href="#cite_note-cx-44"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Derrick_Norman_Lehmer" title="Derrick Norman Lehmer">Derrick Norman Lehmer</a> included 1 in his <i>list of primes less than ten million</i> published in 1914.<sup id="cite_ref-FOOTNOTEConwayGuy1996130_45-0" class="reference"><a href="#cite_note-FOOTNOTEConwayGuy1996130-45"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> Lists of primes that included 1 continued to be published as recently <span class="nowrap">as 1956.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-cg-bon-129-130_47-0" class="reference"><a href="#cite_note-cg-bon-129-130-47"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup></span> However, around this time, by the early 20th century, mathematicians started to agree that 1 should not be classified as a prime number.<sup id="cite_ref-cx_44-1" class="reference"><a href="#cite_note-cx-44"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p><p>If 1 were to be considered a prime, many statements involving primes would need to be awkwardly reworded. For example, the fundamental theorem of arithmetic would need to be rephrased in terms of factorizations into primes greater than 1, because every number would have multiple factorizations with any number of copies <span class="nowrap">of 1.<sup id="cite_ref-cx_44-2" class="reference"><a href="#cite_note-cx-44"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup></span> Similarly, the <a href="/wiki/Sieve_of_Eratosthenes" title="Sieve of Eratosthenes">sieve of Eratosthenes</a> would not work correctly if it handled 1 as a prime, because it would eliminate all multiples of 1 (that is, all other numbers) and output only the single number 1.<sup id="cite_ref-cg-bon-129-130_47-1" class="reference"><a href="#cite_note-cg-bon-129-130-47"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> Some other more technical properties of prime numbers also do not hold for the number 1: for instance, the formulas for <a href="/wiki/Euler%27s_totient_function" title="Euler's totient function">Euler's totient function</a> or for the <a href="/wiki/Sum-of-divisors_function" class="mw-redirect" title="Sum-of-divisors function">sum of divisors function</a> are different for prime numbers than they are for 1.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> By the early 20th century, mathematicians began to agree that 1 should not be listed as prime, but rather in its own special category as a "<a href="/wiki/Unit_(ring_theory)" title="Unit (ring theory)">unit</a>".<sup id="cite_ref-cx_44-3" class="reference"><a href="#cite_note-cx-44"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Elementary_properties">Elementary properties</h2></div> <div class="mw-heading mw-heading3"><h3 id="Unique_factorization">Unique factorization</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Fundamental_theorem_of_arithmetic" title="Fundamental theorem of arithmetic">Fundamental theorem of arithmetic</a></div> <p>Writing a number as a product of prime numbers is called a <i>prime factorization</i> of the number. For example: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}50&=2\times 5\times 5\\&=2\times 5^{2}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mn>50</mn> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mo>×<!-- × --></mo> <mn>5</mn> <mo>×<!-- × --></mo> <mn>5</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mo>×<!-- × --></mo> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}50&=2\times 5\times 5\\&=2\times 5^{2}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/027ed6ef8162c47c25e9dc13c0aefa473d153a7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.343ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}50&=2\times 5\times 5\\&=2\times 5^{2}.\end{aligned}}}"></span></dd></dl> <p>The terms in the product are called <i>prime factors</i>. The same prime factor may occur more than once; this example has two copies of the prime factor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62cfda82378d02d6ff65a09e66873314c7013888" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.809ex; height:2.176ex;" alt="{\displaystyle 5.}"></span> When a prime occurs multiple times, <a href="/wiki/Exponentiation" title="Exponentiation">exponentiation</a> can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ac42c99ce3b9abb17b955f9995dd37ba270905f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.217ex; height:2.676ex;" alt="{\displaystyle 5^{2}}"></span> denotes the <a href="/wiki/Square_(algebra)" title="Square (algebra)">square</a> or second power of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62cfda82378d02d6ff65a09e66873314c7013888" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.809ex; height:2.176ex;" alt="{\displaystyle 5.}"></span> </p><p>The central importance of prime numbers to number theory and mathematics in general stems from the <i>fundamental theorem of arithmetic</i>.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> This theorem states that every integer larger than 1 can be written as a product of one or more primes. More strongly, this product is unique in the sense that any two prime factorizations of the same number will have the same numbers of copies of the same primes, although their ordering may differ.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> So, although there are many different ways of finding a factorization using an <a href="/wiki/Integer_factorization" title="Integer factorization">integer factorization</a> algorithm, they all must produce the same result. Primes can thus be considered the "basic building blocks" of the natural numbers.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p><p>Some proofs of the uniqueness of prime factorizations are based on <a href="/wiki/Euclid%27s_lemma" title="Euclid's lemma">Euclid's lemma</a>: If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is a prime number and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> divides a product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ab}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ab}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49337c5cf256196e2292f7047cb5da68c24ca95d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.227ex; height:2.176ex;" alt="{\displaystyle ab}"></span> of integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdb96677ba71b937617ca8751955f884f6306b64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.644ex; height:2.509ex;" alt="{\displaystyle b,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> divides <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> divides <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> (or both).<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> Conversely, if a number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> has the property that when it divides a product it always divides at least one factor of the product, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> must be prime.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Infinitude">Infinitude</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Euclid%27s_theorem" title="Euclid's theorem">Euclid's theorem</a></div> <p>There are <a href="/wiki/Infinitely" class="mw-redirect" title="Infinitely">infinitely</a> many prime numbers. Another way of saying this is that the sequence </p> <dl><dd>2, 3, 5, 7, 11, 13, ...</dd></dl> <p>of prime numbers never ends. This statement is referred to as <i>Euclid's theorem</i> in honor of the ancient Greek mathematician <a href="/wiki/Euclid" title="Euclid">Euclid</a>, since the first known proof for this statement is attributed to him. Many more proofs of the infinitude of primes are known, including an <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">analytical</a> proof by <a href="/wiki/Euler" class="mw-redirect" title="Euler">Euler</a>, <a href="/wiki/Christian_Goldbach" title="Christian Goldbach">Goldbach's</a> <a href="/wiki/Fermat_number#Basic_properties" title="Fermat number">proof</a> based on <a href="/wiki/Fermat_number" title="Fermat number">Fermat numbers</a>,<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Hillel_Furstenberg" title="Hillel Furstenberg">Furstenberg's</a> <a href="/wiki/Furstenberg%27s_proof_of_the_infinitude_of_primes" title="Furstenberg's proof of the infinitude of primes">proof using general topology</a>,<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Ernst_Kummer" title="Ernst Kummer">Kummer's</a> elegant proof.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Euclid%27s_theorem" title="Euclid's theorem">Euclid's proof</a><sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> shows that every <a href="/wiki/Finite_set" title="Finite set">finite list</a> of primes is incomplete. The key idea is to multiply together the primes in any given list and add <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af8c4e445819b13a052647aa3eb2be990b0a4b24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.809ex; height:2.176ex;" alt="{\displaystyle 1.}"></span> If the list consists of the primes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1},p_{2},\ldots ,p_{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1},p_{2},\ldots ,p_{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f1e3bbaf2b32c0dc5e79c1957b04b108bd09d71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:13.784ex; height:2.009ex;" alt="{\displaystyle p_{1},p_{2},\ldots ,p_{n},}"></span> this gives the number </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=1+p_{1}\cdot p_{2}\cdots p_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=1+p_{1}\cdot p_{2}\cdots p_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd1d057bffd1dbbc94420d3a0b32703cc3205f29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.824ex; height:2.509ex;" alt="{\displaystyle N=1+p_{1}\cdot p_{2}\cdots p_{n}.}"></span></dd></dl> <p>By the fundamental theorem, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> has a prime factorization </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=p'_{1}\cdot p'_{2}\cdots p'_{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> <mo>⋯<!-- ⋯ --></mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mo>′</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=p'_{1}\cdot p'_{2}\cdots p'_{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/606c652811e0772e18cccc88c216bb3647958d53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.63ex; height:2.843ex;" alt="{\displaystyle N=p'_{1}\cdot p'_{2}\cdots p'_{m}}"></span></dd></dl> <p>with one or more prime factors. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> is evenly divisible by each of these factors, but <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> has a remainder of one when divided by any of the prime numbers in the given list, so none of the prime factors of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> can be in the given list. Because there is no finite list of all the primes, there must be infinitely many primes. </p><p>The numbers formed by adding one to the products of the smallest primes are called <a href="/wiki/Euclid_number" title="Euclid number">Euclid numbers</a>.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> The first five of them are prime, but the sixth, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+{\big (}2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13{\big )}=30031=59\cdot 509,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> <mo>⋅<!-- ⋅ --></mo> <mn>11</mn> <mo>⋅<!-- ⋅ --></mo> <mn>13</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>=</mo> <mn>30031</mn> <mo>=</mo> <mn>59</mn> <mo>⋅<!-- ⋅ --></mo> <mn>509</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+{\big (}2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13{\big )}=30031=59\cdot 509,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c24968a289b6e1411be6a5825a10543603d4613b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:43.975ex; height:3.176ex;" alt="{\displaystyle 1+{\big (}2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13{\big )}=30031=59\cdot 509,}"></span></dd></dl> <p>is a composite number. </p> <div class="mw-heading mw-heading3"><h3 id="Formulas_for_primes">Formulas for primes</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Formula_for_primes" title="Formula for primes">Formula for primes</a></div> <p>There is no known efficient formula for primes. For example, there is no non-constant <a href="/wiki/Polynomial" title="Polynomial">polynomial</a>, even in several variables, that takes <i>only</i> prime values.<sup id="cite_ref-matiyasevich_59-0" class="reference"><a href="#cite_note-matiyasevich-59"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> However, there are numerous expressions that do encode all primes, or only primes. One possible formula is based on <a href="/wiki/Wilson%27s_theorem" title="Wilson's theorem">Wilson's theorem</a> and generates the number 2 many times and all other primes exactly once.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> There is also a set of <a href="/wiki/Diophantine_equations" class="mw-redirect" title="Diophantine equations">Diophantine equations</a> in nine variables and one parameter with the following property: the parameter is prime if and only if the resulting system of equations has a solution over the natural numbers. This can be used to obtain a single formula with the property that all its <i>positive</i> values are prime.<sup id="cite_ref-matiyasevich_59-1" class="reference"><a href="#cite_note-matiyasevich-59"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> </p><p>Other examples of prime-generating formulas come from <a href="/wiki/Mills%27_theorem" class="mw-redirect" title="Mills' theorem">Mills' theorem</a> and a theorem of <a href="/wiki/E._M._Wright" title="E. M. Wright">Wright</a>. These assert that there are real constants <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A>1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A>1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f763115cc85f7fd1d4ffd590bdc135c74a58afec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.004ex; height:2.176ex;" alt="{\displaystyle A>1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\lfloor A^{3^{n}}\right\rfloor {\text{ and }}\left\lfloor 2^{\cdots ^{2^{2^{\mu }}}}\right\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>⌊</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msup> <mo>⌋</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> and </mtext> </mrow> <mrow> <mo>⌊</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mo>⋯<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> </mrow> </msup> </mrow> </msup> </mrow> </msup> <mo>⌋</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\lfloor A^{3^{n}}\right\rfloor {\text{ and }}\left\lfloor 2^{\cdots ^{2^{2^{\mu }}}}\right\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6695fd076eb01dd676dbadefc5375fe802d7355" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.501ex; height:6.176ex;" alt="{\displaystyle \left\lfloor A^{3^{n}}\right\rfloor {\text{ and }}\left\lfloor 2^{\cdots ^{2^{2^{\mu }}}}\right\rfloor }"></span></dd></dl> <p>are prime for any natural number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> in the first formula, and any number of exponents in the second formula.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> Here <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor {}\cdot {}\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor {}\cdot {}\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5a17bb92075611951d0ca47b9ab7876515c2507" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.744ex; height:2.843ex;" alt="{\displaystyle \lfloor {}\cdot {}\rfloor }"></span> represents the <a href="/wiki/Floor_function" class="mw-redirect" title="Floor function">floor function</a>, the largest integer less than or equal to the number in question. However, these are not useful for generating primes, as the primes must be generated first in order to compute the values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1ef6db045c1f6193799bd25a4b68ba9f78646d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.049ex; height:2.176ex;" alt="{\displaystyle \mu .}"></span><sup id="cite_ref-matiyasevich_59-2" class="reference"><a href="#cite_note-matiyasevich-59"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Open_questions">Open questions</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Category:Conjectures_about_prime_numbers" title="Category:Conjectures about prime numbers">Category:Conjectures about prime numbers</a></div> <p>Many conjectures revolving about primes have been posed. Often having an elementary formulation, many of these conjectures have withstood proof for decades: all four of <a href="/wiki/Landau%27s_problems" title="Landau's problems">Landau's problems</a> from 1912 are still unsolved.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> One of them is <a href="/wiki/Goldbach%27s_conjecture" title="Goldbach's conjecture">Goldbach's conjecture</a>, which asserts that every even integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> greater than 2 can be written as a sum of two primes.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> As of 2014<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Prime_number&action=edit">[update]</a></sup>, this conjecture has been verified for all numbers up to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=4\cdot 10^{18}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>18</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=4\cdot 10^{18}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27c89cde8425a207680113a97590e763bdbf5126" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.183ex; height:2.676ex;" alt="{\displaystyle n=4\cdot 10^{18}.}"></span><sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> Weaker statements than this have been proven; for example, <a href="/wiki/Vinogradov%27s_theorem" title="Vinogradov's theorem">Vinogradov's theorem</a> says that every sufficiently large odd integer can be written as a sum of three primes.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Chen%27s_theorem" title="Chen's theorem">Chen's theorem</a> says that every sufficiently large even number can be expressed as the sum of a prime and a <a href="/wiki/Semiprime" title="Semiprime">semiprime</a> (the product of two primes).<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> Also, any even integer greater than 10 can be written as the sum of six primes.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> The branch of number theory studying such questions is called <a href="/wiki/Additive_number_theory" title="Additive number theory">additive number theory</a>.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> </p><p>Another type of problem concerns <a href="/wiki/Prime_gap" title="Prime gap">prime gaps</a>, the differences between consecutive primes. The existence of arbitrarily large prime gaps can be seen by noting that the sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!+2,n!+3,\dots ,n!+n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>+</mo> <mn>2</mn> <mo>,</mo> <mi>n</mi> <mo>!</mo> <mo>+</mo> <mn>3</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>!</mo> <mo>+</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!+2,n!+3,\dots ,n!+n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf39c77f9ee05de53b4ae8bcf69ab8e5bbc0d119" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:24.578ex; height:2.509ex;" alt="{\displaystyle n!+2,n!+3,\dots ,n!+n}"></span> consists of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbd0b0f32b28f51962943ee9ede4fb34198a2521" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n-1}"></span> composite numbers, for any natural number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e59df02a9f67a5da3c220f1244c99a46cc4eb1c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:1.676ex;" alt="{\displaystyle n.}"></span><sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> However, large prime gaps occur much earlier than this argument shows.<sup id="cite_ref-riesel-gaps_70-0" class="reference"><a href="#cite_note-riesel-gaps-70"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> For example, the first prime gap of length 8 is between the primes 89 and 97,<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> much smaller than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 8!=40320.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>8</mn> <mo>!</mo> <mo>=</mo> <mn>40320.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 8!=40320.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76794af19af9e0c06865ed95d9a57e594a2e9bbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.367ex; height:2.176ex;" alt="{\displaystyle 8!=40320.}"></span> It is conjectured that there are infinitely many <a href="/wiki/Twin_prime" title="Twin prime">twin primes</a>, pairs of primes with difference 2; this is the <a href="/wiki/Twin_prime_conjecture" class="mw-redirect" title="Twin prime conjecture">twin prime conjecture</a>. <a href="/wiki/Polignac%27s_conjecture" title="Polignac's conjecture">Polignac's conjecture</a> states more generally that for every positive integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44e185ab9c990830d5055fa3ae698a4225ce67e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.858ex; height:2.509ex;" alt="{\displaystyle k,}"></span> there are infinitely many pairs of consecutive primes that differ by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2k.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>k</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2k.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77f52ba9e75bf2fb39818de19d98af82aafc4d67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.021ex; height:2.176ex;" alt="{\displaystyle 2k.}"></span><sup id="cite_ref-rib-gaps_72-0" class="reference"><a href="#cite_note-rib-gaps-72"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Andrica%27s_conjecture" title="Andrica's conjecture">Andrica's conjecture</a>,<sup id="cite_ref-rib-gaps_72-1" class="reference"><a href="#cite_note-rib-gaps-72"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Brocard%27s_conjecture" title="Brocard's conjecture">Brocard's conjecture</a>,<sup id="cite_ref-rib-183_73-0" class="reference"><a href="#cite_note-rib-183-73"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Legendre%27s_conjecture" title="Legendre's conjecture">Legendre's conjecture</a>,<sup id="cite_ref-chan_74-0" class="reference"><a href="#cite_note-chan-74"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Oppermann%27s_conjecture" title="Oppermann's conjecture">Oppermann's conjecture</a><sup id="cite_ref-rib-183_73-1" class="reference"><a href="#cite_note-rib-183-73"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> all suggest that the largest gaps between primes from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> should be at most approximately <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {n}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {n}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7173717a40b3c0819656acd987cacbc2feaf533" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.977ex; height:3.009ex;" alt="{\displaystyle {\sqrt {n}},}"></span> a result that is known to follow from the Riemann hypothesis, while the much stronger <a href="/wiki/Cram%C3%A9r_conjecture" class="mw-redirect" title="Cramér conjecture">Cramér conjecture</a> sets the largest gap size at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O((\log n)^{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O((\log n)^{2}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6248bf94a4ffabcefd6bcd1c7e2dc01d3d05f0e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.847ex; height:3.176ex;" alt="{\displaystyle O((\log n)^{2}).}"></span><sup id="cite_ref-rib-gaps_72-2" class="reference"><a href="#cite_note-rib-gaps-72"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> Prime gaps can be generalized to <a href="/wiki/Prime_k-tuple" title="Prime k-tuple">prime <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-tuples</a>, patterns in the differences among more than two prime numbers. Their infinitude and density are the subject of the <a href="/wiki/First_Hardy%E2%80%93Littlewood_conjecture" title="First Hardy–Littlewood conjecture">first Hardy–Littlewood conjecture</a>, which can be motivated by the <a href="/wiki/Heuristic" title="Heuristic">heuristic</a> that the prime numbers behave similarly to a random sequence of numbers with density given by the prime number theorem.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Analytic_properties">Analytic properties</h2></div> <p><a href="/wiki/Analytic_number_theory" title="Analytic number theory">Analytic number theory</a> studies number theory through the lens of <a href="/wiki/Continuous_function" title="Continuous function">continuous functions</a>, <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limits</a>, <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">infinite series</a>, and the related mathematics of the infinite and <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a>. </p><p>This area of study began with <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> and his first major result, the solution to the <a href="/wiki/Basel_problem" title="Basel problem">Basel problem</a>. The problem asked for the value of the infinite sum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+{\tfrac {1}{4}}+{\tfrac {1}{9}}+{\tfrac {1}{16}}+\dots ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>9</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>16</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mo>…<!-- … --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+{\tfrac {1}{4}}+{\tfrac {1}{9}}+{\tfrac {1}{16}}+\dots ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/879448d9d12ad037b8fde0be5082844a3da6ae09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:22.078ex; height:3.676ex;" alt="{\displaystyle 1+{\tfrac {1}{4}}+{\tfrac {1}{9}}+{\tfrac {1}{16}}+\dots ,}"></span> which today can be recognized as the value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eff246e5aba5259593186618c576a3b7e14bc3c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \zeta (2)}"></span> of the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a>. This function is closely connected to the prime numbers and to one of the most significant unsolved problems in mathematics, the <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a>. Euler showed that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (2)=\pi ^{2}/6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (2)=\pi ^{2}/6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/780b5b024e5d868b7e89ce95dd4cb682919623f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.879ex; height:3.176ex;" alt="{\displaystyle \zeta (2)=\pi ^{2}/6}"></span>.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup> The reciprocal of this number, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6/\pi ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6/\pi ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4a29a93991c7d0dfd47e0c5b4ea3468fc2e41f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.713ex; height:3.176ex;" alt="{\displaystyle 6/\pi ^{2}}"></span>, is the limiting probability that two random numbers selected uniformly from a large range are <a href="/wiki/Coprime_integers" title="Coprime integers">relatively prime</a> (have no factors in common).<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> </p><p>The distribution of primes in the large, such as the question how many primes are smaller than a given, large threshold, is described by the <a href="/wiki/Prime_number_theorem" title="Prime number theorem">prime number theorem</a>, but no efficient <a href="/wiki/Formula_for_primes" title="Formula for primes">formula for the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-th prime</a> is known. <a href="/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions" title="Dirichlet's theorem on arithmetic progressions">Dirichlet's theorem on arithmetic progressions</a>, in its basic form, asserts that linear polynomials </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(n)=a+bn}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(n)=a+bn}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9ec0a7d51df349db548143b777ac3a56f88d8a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:14.024ex; height:2.843ex;" alt="{\displaystyle p(n)=a+bn}"></span></dd></dl> <p>with relatively prime integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> take infinitely many prime values. Stronger forms of the theorem state that the sum of the reciprocals of these prime values diverges, and that different linear polynomials with the same <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> have approximately the same proportions of primes. Although conjectures have been formulated about the proportions of primes in higher-degree polynomials, they remain unproven, and it is unknown whether there exists a quadratic polynomial that (for integer arguments) is prime infinitely often. </p> <div class="mw-heading mw-heading3"><h3 id="Analytical_proof_of_Euclid's_theorem"><span id="Analytical_proof_of_Euclid.27s_theorem"></span>Analytical proof of Euclid's theorem</h3></div> <p><a href="/wiki/Divergence_of_the_sum_of_the_reciprocals_of_the_primes" title="Divergence of the sum of the reciprocals of the primes">Euler's proof that there are infinitely many primes</a> considers the sums of <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">reciprocals</a> of primes, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{5}}+{\frac {1}{7}}+\cdots +{\frac {1}{p}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>7</mn> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{5}}+{\frac {1}{7}}+\cdots +{\frac {1}{p}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/398379c591d6687ff6a128f25a7cd2fd3b20cfc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:27.572ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{5}}+{\frac {1}{7}}+\cdots +{\frac {1}{p}}.}"></span></dd></dl> <p>Euler showed that, for any arbitrary <a href="/wiki/Real_number" title="Real number">real number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, there exists a prime <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> for which this sum is bigger than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>.<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> This shows that there are infinitely many primes, because if there were finitely many primes the sum would reach its maximum value at the biggest prime rather than growing past every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>. The growth rate of this sum is described more precisely by <a href="/wiki/Mertens%27_theorems" title="Mertens' theorems">Mertens' second theorem</a>.<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup> For comparison, the sum </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots +{\frac {1}{n^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots +{\frac {1}{n^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7be4306447ca3c94aa41f5683e7372ef912b72a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.528ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots +{\frac {1}{n^{2}}}}"></span></dd></dl> <p>does not grow to infinity as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> goes to infinity (see the <a href="/wiki/Basel_problem" title="Basel problem">Basel problem</a>). In this sense, prime numbers occur more often than squares of natural numbers, although both sets are infinite.<sup id="cite_ref-mtb-invitation_80-0" class="reference"><a href="#cite_note-mtb-invitation-80"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Brun%27s_theorem" title="Brun's theorem">Brun's theorem</a> states that the sum of the reciprocals of <a href="/wiki/Twin_prime" title="Twin prime">twin primes</a>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({{\frac {1}{3}}+{\frac {1}{5}}}\right)+\left({{\frac {1}{5}}+{\frac {1}{7}}}\right)+\left({{\frac {1}{11}}+{\frac {1}{13}}}\right)+\cdots ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>7</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>11</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>13</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({{\frac {1}{3}}+{\frac {1}{5}}}\right)+\left({{\frac {1}{5}}+{\frac {1}{7}}}\right)+\left({{\frac {1}{11}}+{\frac {1}{13}}}\right)+\cdots ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61dd979f913d0f2173e98f7d4095909780bd6977" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:45.38ex; height:6.176ex;" alt="{\displaystyle \left({{\frac {1}{3}}+{\frac {1}{5}}}\right)+\left({{\frac {1}{5}}+{\frac {1}{7}}}\right)+\left({{\frac {1}{11}}+{\frac {1}{13}}}\right)+\cdots ,}"></span></dd></dl> <p>is finite. Because of Brun's theorem, it is not possible to use Euler's method to solve the <a href="/wiki/Twin_prime_conjecture" class="mw-redirect" title="Twin prime conjecture">twin prime conjecture</a>, that there exist infinitely many twin primes.<sup id="cite_ref-mtb-invitation_80-1" class="reference"><a href="#cite_note-mtb-invitation-80"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Number_of_primes_below_a_given_bound">Number of primes below a given bound</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Prime_number_theorem" title="Prime number theorem">Prime number theorem</a> and <a href="/wiki/Prime-counting_function" title="Prime-counting function">Prime-counting function</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Prime-counting_relative_error.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/76/Prime-counting_relative_error.svg/350px-Prime-counting_relative_error.svg.png" decoding="async" width="350" height="301" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/76/Prime-counting_relative_error.svg/525px-Prime-counting_relative_error.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/76/Prime-counting_relative_error.svg/700px-Prime-counting_relative_error.svg.png 2x" data-file-width="1012" data-file-height="870" /></a><figcaption>The <a href="/wiki/Approximation_error" title="Approximation error">relative error</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {n}{\log n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>n</mi> <mrow> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {n}{\log n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/942db377004f15abd6b11d4d5487c436a2249d50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:4.311ex; height:3.676ex;" alt="{\displaystyle {\tfrac {n}{\log n}}}"></span> and the logarithmic integral <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Li} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Li</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Li} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61c711c5eda9013c9c1d65e69f35f05b99f03629" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.304ex; height:2.843ex;" alt="{\displaystyle \operatorname {Li} (n)}"></span> as approximations to the <a href="/wiki/Prime-counting_function" title="Prime-counting function">prime-counting function</a>. Both relative errors decrease to zero as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> grows, but the convergence to zero is much more rapid for the logarithmic integral.</figcaption></figure> <p>The <a href="/wiki/Prime-counting_function" title="Prime-counting function">prime-counting function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac42d38c71b368d5fbf1e05753e9c5c038cd671b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.536ex; height:2.843ex;" alt="{\displaystyle \pi (n)}"></span> is defined as the number of primes not greater than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi (11)=5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mn>11</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi (11)=5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f37a1ec8c22561cae405286228241267bec24e9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.727ex; height:2.843ex;" alt="{\displaystyle \pi (11)=5}"></span>, since there are five primes less than or equal to 11. Methods such as the <a href="/wiki/Meissel%E2%80%93Lehmer_algorithm" title="Meissel–Lehmer algorithm">Meissel–Lehmer algorithm</a> can compute exact values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac42d38c71b368d5fbf1e05753e9c5c038cd671b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.536ex; height:2.843ex;" alt="{\displaystyle \pi (n)}"></span> faster than it would be possible to list each prime up to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Prime_number_theorem" title="Prime number theorem">prime number theorem</a> states that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac42d38c71b368d5fbf1e05753e9c5c038cd671b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.536ex; height:2.843ex;" alt="{\displaystyle \pi (n)}"></span> is asymptotic to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n/\log n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n/\log n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcf375088f1428c429e63be39e7852e8b39c77c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.698ex; height:2.843ex;" alt="{\displaystyle n/\log n}"></span>, which is denoted as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi (n)\sim {\frac {n}{\log n}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi (n)\sim {\frac {n}{\log n}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/408b397046af4ade735aebb8995aa70ac2244838" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.871ex; height:5.176ex;" alt="{\displaystyle \pi (n)\sim {\frac {n}{\log n}},}"></span></dd></dl> <p>and means that the ratio of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac42d38c71b368d5fbf1e05753e9c5c038cd671b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.536ex; height:2.843ex;" alt="{\displaystyle \pi (n)}"></span> to the right-hand fraction <a href="/wiki/Convergent_sequence" class="mw-redirect" title="Convergent sequence">approaches</a> 1 as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> grows to infinity.<sup id="cite_ref-cranpom10_83-0" class="reference"><a href="#cite_note-cranpom10-83"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup> This implies that the likelihood that a randomly chosen number less than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is prime is (approximately) inversely proportional to the number of digits <span class="nowrap">in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup></span> It also implies that the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>th prime number is proportional to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\log n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\log n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/560dfdce0353a330e03e4b3e0b7ca6e484bb40fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.535ex; height:2.509ex;" alt="{\displaystyle n\log n}"></span><sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup> and therefore that the average size of a prime gap is proportional to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/317ab5292da7c7935aec01a570461fe0613b21d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.754ex; height:2.509ex;" alt="{\displaystyle \log n}"></span>.<sup id="cite_ref-riesel-gaps_70-1" class="reference"><a href="#cite_note-riesel-gaps-70"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> A more accurate estimate for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac42d38c71b368d5fbf1e05753e9c5c038cd671b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.536ex; height:2.843ex;" alt="{\displaystyle \pi (n)}"></span> is given by the <a href="/wiki/Offset_logarithmic_integral" class="mw-redirect" title="Offset logarithmic integral">offset logarithmic integral</a><sup id="cite_ref-cranpom10_83-1" class="reference"><a href="#cite_note-cranpom10-83"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi (n)\sim \operatorname {Li} (n)=\int _{2}^{n}{\frac {dt}{\log t}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>∼<!-- ∼ --></mo> <mi>Li</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>t</mi> </mrow> <mrow> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi (n)\sim \operatorname {Li} (n)=\int _{2}^{n}{\frac {dt}{\log t}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6b5a9dac3f86b36f631c01ed4aae859cdedf79c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.788ex; height:5.843ex;" alt="{\displaystyle \pi (n)\sim \operatorname {Li} (n)=\int _{2}^{n}{\frac {dt}{\log t}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Arithmetic_progressions">Arithmetic progressions</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions" title="Dirichlet's theorem on arithmetic progressions">Dirichlet's theorem on arithmetic progressions</a> and <a href="/wiki/Green%E2%80%93Tao_theorem" title="Green–Tao theorem">Green–Tao theorem</a></div> <p>An <a href="/wiki/Arithmetic_progression" title="Arithmetic progression">arithmetic progression</a> is a finite or infinite sequence of numbers such that consecutive numbers in the sequence all have the same difference.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup> This difference is called the <a href="/wiki/Modular_arithmetic" title="Modular arithmetic">modulus</a> of the progression.<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> For example, </p> <dl><dd>3, 12, 21, 30, 39, ...,</dd></dl> <p>is an infinite arithmetic progression with modulus 9. In an arithmetic progression, all the numbers have the same remainder when divided by the modulus; in this example, the remainder is 3. Because both the modulus 9 and the remainder 3 are multiples of 3, so is every element in the sequence. Therefore, this progression contains only one prime number, 3 itself. In general, the infinite progression </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,a+q,a+2q,a+3q,\dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>a</mi> <mo>+</mo> <mi>q</mi> <mo>,</mo> <mi>a</mi> <mo>+</mo> <mn>2</mn> <mi>q</mi> <mo>,</mo> <mi>a</mi> <mo>+</mo> <mn>3</mn> <mi>q</mi> <mo>,</mo> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,a+q,a+2q,a+3q,\dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d16a7879ded2fe4112aae7ab945259fc40eda8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.833ex; height:2.509ex;" alt="{\displaystyle a,a+q,a+2q,a+3q,\dots }"></span></dd></dl> <p>can have more than one prime only when its remainder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and modulus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> are relatively prime. If they are relatively prime, <a href="/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions" title="Dirichlet's theorem on arithmetic progressions">Dirichlet's theorem on arithmetic progressions</a> asserts that the progression contains infinitely many primes.<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> </p> <div class="thumb tnone" style="margin-left:auto;margin-right:auto;overflow:hidden;width:auto;max-width:823px"><div class="thumbinner"><div class="noresize" style="overflow:auto"><span typeof="mw:File"><a href="/wiki/File:Prime_numbers_in_arithmetic_progression_mod_9_zoom_in.png" class="mw-file-description" title="Primes in the arithmetic progressions modulo 9. Each row of the thin horizontal band shows one of the nine possible progressions mod 9, with prime numbers marked in red. The progressions of numbers that are 0, 3, or 6 mod 9 contain at most one prime number (the number 3); the remaining progressions of numbers that are 2, 4, 5, 7, and 8 mod 9 have infinitely many prime numbers, with similar numbers of primes in each progression."><img alt="Prime numbers in arithmetic progression mod 9" src="//upload.wikimedia.org/wikipedia/commons/e/e3/Prime_numbers_in_arithmetic_progression_mod_9_zoom_in.png" decoding="async" width="815" height="385" class="mw-file-element" data-file-width="815" data-file-height="385" /></a></span></div><div class="thumbcaption"><div class="magnify"><a href="/wiki/File:Prime_numbers_in_arithmetic_progression_mod_9_zoom_in.png" title="File:Prime numbers in arithmetic progression mod 9 zoom in.png"> </a></div>Primes in the arithmetic progressions modulo 9. Each row of the thin horizontal band shows one of the nine possible progressions mod 9, with prime numbers marked in red. The progressions of numbers that are 0, 3, or 6 mod 9 contain at most one prime number (the number 3); the remaining progressions of numbers that are 2, 4, 5, 7, and 8 mod 9 have infinitely many prime numbers, with similar numbers of primes in each progression.</div></div></div> <p>The <a href="/wiki/Green%E2%80%93Tao_theorem" title="Green–Tao theorem">Green–Tao theorem</a> shows that there are arbitrarily long finite arithmetic progressions consisting only of primes.<sup id="cite_ref-neale-18-47_38-1" class="reference"><a href="#cite_note-neale-18-47-38"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Prime_values_of_quadratic_polynomials">Prime values of quadratic polynomials</h3></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Ulam_2.png" class="mw-file-description"><img alt="The Ulam spiral" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/Ulam_2.png/240px-Ulam_2.png" decoding="async" width="240" height="240" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/7/75/Ulam_2.png 1.5x" data-file-width="345" data-file-height="345" /></a><figcaption>The <a href="/wiki/Ulam_spiral" title="Ulam spiral">Ulam spiral</a>. Prime numbers (red) cluster on some diagonals and not others. Prime values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4n^{2}-2n+41}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>41</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4n^{2}-2n+41}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47f7b0b039e84f6a35cf179e74583d3217eced75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.174ex; height:2.843ex;" alt="{\displaystyle 4n^{2}-2n+41}"></span> are shown in blue.</figcaption></figure> <p>Euler noted that the function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{2}-n+41}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>41</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{2}-n+41}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7c4504253486e5ff537490356c8529390687bdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.849ex; height:2.843ex;" alt="{\displaystyle n^{2}-n+41}"></span></dd></dl> <p>yields prime numbers for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\leq n\leq 40}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>n</mi> <mo>≤<!-- ≤ --></mo> <mn>40</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\leq n\leq 40}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1d90b605eed00af6cd0590bb9591798ea4497f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.079ex; height:2.343ex;" alt="{\displaystyle 1\leq n\leq 40}"></span>, although composite numbers appear among its later values.<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup> The search for an explanation for this phenomenon led to the deep <a href="/wiki/Algebraic_number_theory" title="Algebraic number theory">algebraic number theory</a> of <a href="/wiki/Heegner_number" title="Heegner number">Heegner numbers</a> and the <a href="/wiki/Class_number_problem" title="Class number problem">class number problem</a>.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Hardy%E2%80%93Littlewood_conjecture_F" class="mw-redirect" title="Hardy–Littlewood conjecture F">Hardy–Littlewood conjecture F</a> predicts the density of primes among the values of <a href="/wiki/Quadratic_polynomial" class="mw-redirect" title="Quadratic polynomial">quadratic polynomials</a> with integer <a href="/wiki/Coefficient" title="Coefficient">coefficients</a> in terms of the logarithmic integral and the polynomial coefficients. No quadratic polynomial has been proven to take infinitely many prime values.<sup id="cite_ref-guy-a1_93-0" class="reference"><a href="#cite_note-guy-a1-93"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup> </p><p>The <a href="/wiki/Ulam_spiral" title="Ulam spiral">Ulam spiral</a> arranges the natural numbers in a two-dimensional grid, spiraling in concentric squares surrounding the origin with the prime numbers highlighted. Visually, the primes appear to cluster on certain diagonals and not others, suggesting that some quadratic polynomials take prime values more often than others.<sup id="cite_ref-guy-a1_93-1" class="reference"><a href="#cite_note-guy-a1-93"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Zeta_function_and_the_Riemann_hypothesis">Zeta function and the Riemann hypothesis</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Riemann_zeta_function_absolute_value.png" class="mw-file-description"><img alt="Plot of the absolute values of the zeta function" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Riemann_zeta_function_absolute_value.png/330px-Riemann_zeta_function_absolute_value.png" decoding="async" width="330" height="330" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Riemann_zeta_function_absolute_value.png/495px-Riemann_zeta_function_absolute_value.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/30/Riemann_zeta_function_absolute_value.png/660px-Riemann_zeta_function_absolute_value.png 2x" data-file-width="1000" data-file-height="1000" /></a><figcaption>Plot of the absolute values of the zeta function, showing some of its features</figcaption></figure> <p>One of the most famous unsolved questions in mathematics, dating from 1859, and one of the <a href="/wiki/Millennium_Prize_Problems" title="Millennium Prize Problems">Millennium Prize Problems</a>, is the <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a>, which asks where the <a href="/wiki/Zero_of_a_function" title="Zero of a function">zeros</a> of the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbd45922057e4d7a5718ce5ed703ab493c63897a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.995ex; height:2.843ex;" alt="{\displaystyle \zeta (s)}"></span> are located. This function is an <a href="/wiki/Analytic_function" title="Analytic function">analytic function</a> on the <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>. For complex numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> with real part greater than one it equals both an <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">infinite sum</a> over all integers, and an <a href="/wiki/Infinite_product" title="Infinite product">infinite product</a> over the prime numbers, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=\prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <munder> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> prime</mtext> </mrow> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=\prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6ee4dae49e217914ed83b6d9c27155a6eca1c3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:32.015ex; height:7.176ex;" alt="{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=\prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}.}"></span></dd></dl> <p>This equality between a sum and a product, discovered by Euler, is called an <a href="/wiki/Euler_product" title="Euler product">Euler product</a>.<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> The Euler product can be derived from the fundamental theorem of arithmetic, and shows the close connection between the zeta function and the prime numbers.<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup> It leads to another proof that there are infinitely many primes: if there were only finitely many, then the sum-product equality would also be valid at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bac386d8f227fb823cede9b3e33d706cad3ed306" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.351ex; height:2.176ex;" alt="{\displaystyle s=1}"></span>, but the sum would diverge (it is the <a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">harmonic series</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+{\tfrac {1}{2}}+{\tfrac {1}{3}}+\dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+{\tfrac {1}{2}}+{\tfrac {1}{3}}+\dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/391a7209d3509160364ad66fc270afc07d84c0db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:15.723ex; height:3.676ex;" alt="{\displaystyle 1+{\tfrac {1}{2}}+{\tfrac {1}{3}}+\dots }"></span>) while the product would be finite, a contradiction.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup> </p><p>The Riemann hypothesis states that the <a href="/wiki/Zero_of_a_function" title="Zero of a function">zeros</a> of the zeta-function are all either negative even numbers, or complex numbers with <a href="/wiki/Real_part" class="mw-redirect" title="Real part">real part</a> equal to 1/2.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup> The original proof of the <a href="/wiki/Prime_number_theorem" title="Prime number theorem">prime number theorem</a> was based on a weak form of this hypothesis, that there are no zeros with real part equal to 1,<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-bcrw18_99-0" class="reference"><a href="#cite_note-bcrw18-99"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup> although other more elementary proofs have been found.<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> The prime-counting function can be expressed by <a href="/wiki/Riemann%27s_explicit_formula" class="mw-redirect" title="Riemann's explicit formula">Riemann's explicit formula</a> as a sum in which each term comes from one of the zeros of the zeta function; the main term of this sum is the logarithmic integral, and the remaining terms cause the sum to fluctuate above and below the main term.<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">[</span>99<span class="cite-bracket">]</span></a></sup> In this sense, the zeros control how regularly the prime numbers are distributed. If the Riemann hypothesis is true, these fluctuations will be small, and the <a href="/wiki/Asymptotic_distribution" title="Asymptotic distribution">asymptotic distribution</a> of primes given by the prime number theorem will also hold over much shorter intervals (of length about the square root of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> for intervals near a number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>).<sup id="cite_ref-bcrw18_99-1" class="reference"><a href="#cite_note-bcrw18-99"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Abstract_algebra">Abstract algebra</h2></div> <div class="mw-heading mw-heading3"><h3 id="Modular_arithmetic_and_finite_fields">Modular arithmetic and finite fields</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Modular_arithmetic" title="Modular arithmetic">Modular arithmetic</a></div> <p>Modular arithmetic modifies usual arithmetic by only using the numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{0,1,2,\dots ,n-1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{0,1,2,\dots ,n-1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a274c78335c05b113ff9a19b66526a9da869fbfd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.456ex; height:2.843ex;" alt="{\displaystyle \{0,1,2,\dots ,n-1\}}"></span>, for a natural number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> called the modulus. Any other natural number can be mapped into this system by replacing it by its remainder after division by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup> Modular sums, differences and products are calculated by performing the same replacement by the remainder on the result of the usual sum, difference, or product of integers.<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">[</span>101<span class="cite-bracket">]</span></a></sup> Equality of integers corresponds to <i>congruence</i> in modular arithmetic: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> are congruent (written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\equiv y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>≡<!-- ≡ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\equiv y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/344d00ea5455ff5454015cc1f00cf534be450a03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.009ex;" alt="{\displaystyle x\equiv y}"></span> mod <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>) when they have the same remainder after division by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup> However, in this system of numbers, <a href="/wiki/Division_(mathematics)" title="Division (mathematics)">division</a> by all nonzero numbers is possible if and only if the modulus is prime. For instance, with the prime number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 7}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>7</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 7}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee716ec61382a6b795092c0edd859d12e64cbba8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 7}"></span> as modulus, division by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span> is possible: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2/3\equiv 3{\bmod {7}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> <mo>≡<!-- ≡ --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo lspace="thickmathspace" rspace="thickmathspace">mod</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2/3\equiv 3{\bmod {7}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7e6eb9bb6b2d861011df01e930241a2b1338af5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.592ex; height:2.843ex;" alt="{\displaystyle 2/3\equiv 3{\bmod {7}}}"></span>, because <a href="/wiki/Clearing_denominators" title="Clearing denominators">clearing denominators</a> by multiplying both sides by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span> gives the valid formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\equiv 9{\bmod {7}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>≡<!-- ≡ --></mo> <mn>9</mn> <mrow class="MJX-TeXAtom-ORD"> <mo lspace="thickmathspace" rspace="thickmathspace">mod</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\equiv 9{\bmod {7}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9cc49f8e6ba7fbf81201a0a8d5b3ce614135853" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.267ex; height:2.176ex;" alt="{\displaystyle 2\equiv 9{\bmod {7}}}"></span>. However, with the composite modulus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39d81124420a058a7474dfeda48228fb6ee1e253" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 6}"></span>, division by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span> is impossible. There is no valid solution to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2/3\equiv x{\bmod {6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> <mo>≡<!-- ≡ --></mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo lspace="thickmathspace" rspace="thickmathspace">mod</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2/3\equiv x{\bmod {6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/959d2e86e50ec85744347d794e18cc3d107979cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.759ex; height:2.843ex;" alt="{\displaystyle 2/3\equiv x{\bmod {6}}}"></span>: clearing denominators by multiplying by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span> causes the left-hand side to become <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span> while the right-hand side becomes either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span>. In the terminology of <a href="/wiki/Abstract_algebra" title="Abstract algebra">abstract algebra</a>, the ability to perform division means that modular arithmetic modulo a prime number forms a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> or, more specifically, a <a href="/wiki/Finite_field" title="Finite field">finite field</a>, while other moduli only give a <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a> but not a field.<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup> </p><p>Several theorems about primes can be formulated using modular arithmetic. For instance, <a href="/wiki/Fermat%27s_little_theorem" title="Fermat's little theorem">Fermat's little theorem</a> states that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\not \equiv 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>≢</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\not \equiv 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff4a234827d107c1dd3ffc19005990ea92f4e4db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.492ex; height:2.676ex;" alt="{\displaystyle a\not \equiv 0}"></span> (mod <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>), then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{p-1}\equiv 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>≡<!-- ≡ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{p-1}\equiv 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3d0c1282f62b25fc17d3ce40e36e3b2a2f541f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.65ex; height:2.676ex;" alt="{\displaystyle a^{p-1}\equiv 1}"></span> (mod <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>).<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> Summing this over all choices of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> gives the equation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{a=1}^{p-1}a^{p-1}\equiv (p-1)\cdot 1\equiv -1{\pmod {p}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>≡<!-- ≡ --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>≡<!-- ≡ --></mo> <mo>−<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{a=1}^{p-1}a^{p-1}\equiv (p-1)\cdot 1\equiv -1{\pmod {p}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ac4572eadd7182309e72510091be6fe559e024f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.623ex; height:7.343ex;" alt="{\displaystyle \sum _{a=1}^{p-1}a^{p-1}\equiv (p-1)\cdot 1\equiv -1{\pmod {p}},}"></span></dd></dl> <p>valid whenever <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is prime. <a href="/wiki/Giuga%27s_conjecture" class="mw-redirect" title="Giuga's conjecture">Giuga's conjecture</a> says that this equation is also a sufficient condition for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> to be prime.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Wilson%27s_theorem" title="Wilson's theorem">Wilson's theorem</a> says that an integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p>1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p>1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f127e7a5f2449ddf3edb8164c2d2439120641f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.52ex; height:2.509ex;" alt="{\displaystyle p>1}"></span> is prime if and only if the <a href="/wiki/Factorial" title="Factorial">factorial</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (p-1)!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (p-1)!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba68358eefe786c8448a04d3be5fa11279a59c62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.628ex; height:2.843ex;" alt="{\displaystyle (p-1)!}"></span> is congruent to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704fb0427140d054dd267925495e78164fee9aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -1}"></span> mod <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>. For a composite <span class="nowrap">number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;n=r\cdot s\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>n</mi> <mo>=</mo> <mi>r</mi> <mo>⋅<!-- ⋅ --></mo> <mi>s</mi> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;n=r\cdot s\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42391cbdb9185ff409ed6c393c297c43f005078a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.602ex; height:1.676ex;" alt="{\displaystyle \;n=r\cdot s\;}"></span></span> this cannot hold, since one of its factors divides both <span class="texhtml mvar" style="font-style:italic;">n</span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n-1)!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n-1)!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7eb71a5f562b97650728f30493f43e96c15b4287" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.854ex; height:2.843ex;" alt="{\displaystyle (n-1)!}"></span>, and so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n-1)!\equiv -1{\pmod {n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo>≡<!-- ≡ --></mo> <mo>−<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n-1)!\equiv -1{\pmod {n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b29169bc8c822e9d212b319d1f610e0998d3fef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.002ex; height:2.843ex;" alt="{\displaystyle (n-1)!\equiv -1{\pmod {n}}}"></span> is impossible.<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="p-adic_numbers"><i>p</i>-adic numbers</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/P-adic_number" title="P-adic number">p-adic number</a></div> <p>The <a href="/wiki/P-adic_order" class="mw-redirect" title="P-adic order"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-adic order</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu _{p}(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ν<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu _{p}(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a740c63898dac75666e43736eb3ae87eb8c62b16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.412ex; height:3.009ex;" alt="{\displaystyle \nu _{p}(n)}"></span> of an integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is the number of copies of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> in the prime factorization of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. The same concept can be extended from integers to rational numbers by defining the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-adic order of a fraction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m/n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m/n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eebcb27a9df80445dbe86eefee5d131d6e0e7e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.598ex; height:2.843ex;" alt="{\displaystyle m/n}"></span> to be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu _{p}(m)-\nu _{p}(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ν<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msub> <mi>ν<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu _{p}(m)-\nu _{p}(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d324584195f4488cae3200e33bcb93f605f43ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.309ex; height:3.009ex;" alt="{\displaystyle \nu _{p}(m)-\nu _{p}(n)}"></span>. The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-adic absolute value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |q|_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>q</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |q|_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/699cfd1fc1d9b3543ebf4cb30e9d3a5a73a61bc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.422ex; height:3.176ex;" alt="{\displaystyle |q|_{p}}"></span> of any rational number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> is then defined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |q|_{p}=p^{-\nu _{p}(q)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>q</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <msub> <mi>ν<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |q|_{p}=p^{-\nu _{p}(q)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/121493a70b4bc560c8fe699075a1784122258128" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:12.884ex; height:3.676ex;" alt="{\displaystyle |q|_{p}=p^{-\nu _{p}(q)}}"></span>. Multiplying an integer by its <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-adic absolute value cancels out the factors of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> in its factorization, leaving only the other primes. Just as the distance between two real numbers can be measured by the absolute value of their distance, the distance between two rational numbers can be measured by their <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-adic distance, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-adic absolute value of their difference. For this definition of distance, two numbers are close together (they have a small distance) when their difference is divisible by a high power of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>. In the same way that the real numbers can be formed from the rational numbers and their distances, by adding extra limiting values to form a <a href="/wiki/Complete_field" title="Complete field">complete field</a>, the rational numbers with the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-adic distance can be extended to a different complete field, the <a href="/wiki/P-adic_number" title="P-adic number"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-adic numbers</a>.<sup id="cite_ref-childress_109-0" class="reference"><a href="#cite_note-childress-109"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup> </p><p>This picture of an order, absolute value, and complete field derived from them can be generalized to <a href="/wiki/Algebraic_number_field" title="Algebraic number field">algebraic number fields</a> and their <a href="/wiki/Valuation_(algebra)" title="Valuation (algebra)">valuations</a> (certain mappings from the <a href="/wiki/Multiplicative_group" title="Multiplicative group">multiplicative group</a> of the field to a <a href="/wiki/Totally_ordered_group" class="mw-redirect" title="Totally ordered group">totally ordered additive group</a>, also called orders), <a href="/wiki/Absolute_value_(algebra)" title="Absolute value (algebra)">absolute values</a> (certain multiplicative mappings from the field to the real numbers, also called norms),<sup id="cite_ref-childress_109-1" class="reference"><a href="#cite_note-childress-109"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup> and places (extensions to <a href="/wiki/Complete_field" title="Complete field">complete fields</a> in which the given field is a <a href="/wiki/Dense_set" title="Dense set">dense set</a>, also called completions).<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">[</span>109<span class="cite-bracket">]</span></a></sup> The extension from the rational numbers to the <a href="/wiki/Real_number" title="Real number">real numbers</a>, for instance, is a place in which the distance between numbers is the usual <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> of their difference. The corresponding mapping to an additive group would be the <a href="/wiki/Logarithm" title="Logarithm">logarithm</a> of the absolute value, although this does not meet all the requirements of a valuation. According to <a href="/wiki/Ostrowski%27s_theorem" title="Ostrowski's theorem">Ostrowski's theorem</a>, up to a natural notion of equivalence, the real numbers and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-adic numbers, with their orders and absolute values, are the only valuations, absolute values, and places on the rational numbers.<sup id="cite_ref-childress_109-2" class="reference"><a href="#cite_note-childress-109"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Local-global_principle" class="mw-redirect" title="Local-global principle">local-global principle</a> allows certain problems over the rational numbers to be solved by piecing together solutions from each of their places, again underlining the importance of primes to number theory.<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">[</span>110<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Prime_elements_in_rings">Prime elements in rings</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Prime_element" title="Prime element">Prime element</a> and <a href="/wiki/Irreducible_element" title="Irreducible element">Irreducible element</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Gaussian_primes.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Gaussian_primes.png/220px-Gaussian_primes.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Gaussian_primes.png/330px-Gaussian_primes.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/85/Gaussian_primes.png/440px-Gaussian_primes.png 2x" data-file-width="1200" data-file-height="1198" /></a><figcaption>The <a href="/wiki/Gaussian_prime" class="mw-redirect" title="Gaussian prime">Gaussian primes</a> with norm less than 500</figcaption></figure> <p>A <a href="/wiki/Commutative_ring" title="Commutative ring">commutative ring</a> is an <a href="/wiki/Algebraic_structure" title="Algebraic structure">algebraic structure</a> where addition, subtraction and multiplication are defined. The integers are a ring, and the prime numbers in the integers have been generalized to rings in two different ways, <i>prime elements</i> and <i>irreducible elements</i>. An element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> of a ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is called prime if it is nonzero, has no <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">multiplicative inverse</a> (that is, it is not a <a href="/wiki/Unit_(ring_theory)" title="Unit (ring theory)">unit</a>), and satisfies the following requirement: whenever <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> divides the product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72eb345e496513fb8b2fa4aa8c4d89b855f9a01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.485ex; height:2.009ex;" alt="{\displaystyle xy}"></span> of two elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>, it also divides at least one of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>. An element is irreducible if it is neither a unit nor the product of two other non-unit elements. In the ring of integers, the prime and irreducible elements form the same set, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\dots ,-11,-7,-5,-3,-2,2,3,5,7,11,\dots \}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mo>−<!-- − --></mo> <mn>11</mn> <mo>,</mo> <mo>−<!-- − --></mo> <mn>7</mn> <mo>,</mo> <mo>−<!-- − --></mo> <mn>5</mn> <mo>,</mo> <mo>−<!-- − --></mo> <mn>3</mn> <mo>,</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>7</mn> <mo>,</mo> <mn>11</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\dots ,-11,-7,-5,-3,-2,2,3,5,7,11,\dots \}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/521b9a30f8065b6659540de5e2d79f23b8ae8009" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.556ex; height:2.843ex;" alt="{\displaystyle \{\dots ,-11,-7,-5,-3,-2,2,3,5,7,11,\dots \}\,.}"></span></dd></dl> <p>In an arbitrary ring, all prime elements are irreducible. The converse does not hold in general, but does hold for <a href="/wiki/Unique_factorization_domain" title="Unique factorization domain">unique factorization domains</a>.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">[</span>111<span class="cite-bracket">]</span></a></sup> </p><p>The fundamental theorem of arithmetic continues to hold (by definition) in unique factorization domains. An example of such a domain is the <a href="/wiki/Gaussian_integer" title="Gaussian integer">Gaussian integers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} [i]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">[</mo> <mi>i</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} [i]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ffa94e9e2e6d9e5e5373d5fafb954b902743fde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.646ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} [i]}"></span>, the ring of <a href="/wiki/Complex_number" title="Complex number">complex numbers</a> of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+bi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+bi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92f853c2c9235c06be640b91b7c75e2a907cbda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.87ex; height:2.343ex;" alt="{\displaystyle a+bi}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> denotes the <a href="/wiki/Imaginary_unit" title="Imaginary unit">imaginary unit</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> are arbitrary integers. Its prime elements are known as <a href="/wiki/Gaussian_prime" class="mw-redirect" title="Gaussian prime">Gaussian primes</a>. Not every number that is prime among the integers remains prime in the Gaussian integers; for instance, the number 2 can be written as a product of the two Gaussian primes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a65e41a5c0369e908cf26a2452046f19bab946d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.805ex; height:2.343ex;" alt="{\displaystyle 1+i}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/685fed923493e7884e748f0dd6f932311f66bd69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.805ex; height:2.343ex;" alt="{\displaystyle 1-i}"></span>. Rational primes (the prime elements in the integers) congruent to 3 mod 4 are Gaussian primes, but rational primes congruent to 1 mod 4 are not.<sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">[</span>112<span class="cite-bracket">]</span></a></sup> This is a consequence of <a href="/wiki/Fermat%27s_theorem_on_sums_of_two_squares" title="Fermat's theorem on sums of two squares">Fermat's theorem on sums of two squares</a>, which states that an odd prime <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is expressible as the sum of two squares, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=x^{2}+y^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=x^{2}+y^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe433e9ba9c42efe1bc9fd51bb439c698b8f6843" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:11.796ex; height:3.009ex;" alt="{\displaystyle p=x^{2}+y^{2}}"></span>, and therefore factorable as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=(x+iy)(x-iy)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>i</mi> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=(x+iy)(x-iy)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cba304bbcb900df2560ef81f194004d2cd365ddc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:20.232ex; height:2.843ex;" alt="{\displaystyle p=(x+iy)(x-iy)}"></span>, exactly when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is 1 mod 4.<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">[</span>113<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Prime_ideals">Prime ideals</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Prime_ideals" class="mw-redirect" title="Prime ideals">Prime ideals</a></div> <p>Not every ring is a unique factorization domain. For instance, in the ring of numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b{\sqrt {-5}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mn>5</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b{\sqrt {-5}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5894d5cf1749ce9cb9be987542cabde8b3b8f2a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.974ex; height:3.009ex;" alt="{\displaystyle a+b{\sqrt {-5}}}"></span> (for integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>) the number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 21}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>21</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 21}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77ebb9ccf6080ba5c9a6ea8973cb2f26c50211cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 21}"></span> has two factorizations <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 21=3\cdot 7=(1+2{\sqrt {-5}})(1-2{\sqrt {-5}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>21</mn> <mo>=</mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mn>5</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mn>5</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 21=3\cdot 7=(1+2{\sqrt {-5}})(1-2{\sqrt {-5}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85ef78d9e6efc73f20864dade3df3c2c9ae57f20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.288ex; height:3.009ex;" alt="{\displaystyle 21=3\cdot 7=(1+2{\sqrt {-5}})(1-2{\sqrt {-5}})}"></span>, where neither of the four factors can be reduced any further, so it does not have a unique factorization. In order to extend unique factorization to a larger class of rings, the notion of a number can be replaced with that of an <a href="/wiki/Ideal_(ring_theory)" title="Ideal (ring theory)">ideal</a>, a subset of the elements of a ring that contains all sums of pairs of its elements, and all products of its elements with ring elements. <i>Prime ideals</i>, which generalize prime elements in the sense that the <a href="/wiki/Principal_ideal" title="Principal ideal">principal ideal</a> generated by a prime element is a prime ideal, are an important tool and object of study in <a href="/wiki/Commutative_algebra" title="Commutative algebra">commutative algebra</a>, <a href="/wiki/Number_theory" title="Number theory">algebraic number theory</a> and <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a>. The prime ideals of the ring of integers are the ideals (0), (2), (3), (5), (7), (11), ... The fundamental theorem of arithmetic generalizes to the <a href="/wiki/Lasker%E2%80%93Noether_theorem" class="mw-redirect" title="Lasker–Noether theorem">Lasker–Noether theorem</a>, which expresses every ideal in a <a href="/wiki/Noetherian_ring" title="Noetherian ring">Noetherian</a> <a href="/wiki/Commutative_ring" title="Commutative ring">commutative ring</a> as an intersection of <a href="/wiki/Primary_ideal" title="Primary ideal">primary ideals</a>, which are the appropriate generalizations of <a href="/wiki/Prime_power" title="Prime power">prime powers</a>.<sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">[</span>114<span class="cite-bracket">]</span></a></sup> </p><p>The <a href="/wiki/Spectrum_of_a_ring" title="Spectrum of a ring">spectrum of a ring</a> is a geometric space whose points are the prime ideals of the ring.<sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Arithmetic_geometry" title="Arithmetic geometry">Arithmetic geometry</a> also benefits from this notion, and many concepts exist in both geometry and number theory. For example, factorization or <a href="/wiki/Splitting_of_prime_ideals_in_Galois_extensions" title="Splitting of prime ideals in Galois extensions">ramification</a> of prime ideals when lifted to an <a href="/wiki/Field_extension" title="Field extension">extension field</a>, a basic problem of algebraic number theory, bears some resemblance with <a href="/wiki/Ramified_cover" class="mw-redirect" title="Ramified cover">ramification in geometry</a>. These concepts can even assist with in number-theoretic questions solely concerned with integers. For example, prime ideals in the <a href="/wiki/Ring_of_integers" title="Ring of integers">ring of integers</a> of <a href="/wiki/Quadratic_number_field" class="mw-redirect" title="Quadratic number field">quadratic number fields</a> can be used in proving <a href="/wiki/Quadratic_reciprocity" title="Quadratic reciprocity">quadratic reciprocity</a>, a statement that concerns the existence of square roots modulo integer prime numbers.<sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup> Early attempts to prove <a href="/wiki/Fermat%27s_Last_Theorem" title="Fermat's Last Theorem">Fermat's Last Theorem</a> led to <a href="/wiki/Ernst_Kummer" title="Ernst Kummer">Kummer</a>'s introduction of <a href="/wiki/Regular_prime" title="Regular prime">regular primes</a>, integer prime numbers connected with the failure of unique factorization in the <a href="/wiki/Cyclotomic_field" title="Cyclotomic field">cyclotomic integers</a>.<sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">[</span>117<span class="cite-bracket">]</span></a></sup> The question of how many integer prime numbers factor into a product of multiple prime ideals in an algebraic number field is addressed by <a href="/wiki/Chebotarev%27s_density_theorem" title="Chebotarev's density theorem">Chebotarev's density theorem</a>, which (when applied to the cyclotomic integers) has Dirichlet's theorem on primes in arithmetic progressions as a special case.<sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Group_theory">Group theory</h3></div> <p>In the theory of <a href="/wiki/Finite_group" title="Finite group">finite groups</a> the <a href="/wiki/Sylow_theorems" title="Sylow theorems">Sylow theorems</a> imply that, if a power of a prime number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6a7a7e74ae90ab94f01e1629177758fb68b423b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.477ex; height:2.676ex;" alt="{\displaystyle p^{n}}"></span> divides the <a href="/wiki/Order_of_a_group" class="mw-redirect" title="Order of a group">order of a group</a>, then the group has a subgroup of order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6a7a7e74ae90ab94f01e1629177758fb68b423b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.477ex; height:2.676ex;" alt="{\displaystyle p^{n}}"></span>. By <a href="/wiki/Lagrange%27s_theorem_(group_theory)" title="Lagrange's theorem (group theory)">Lagrange's theorem</a>, any group of prime order is a <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic group</a>, and by <a href="/wiki/Burnside%27s_theorem" title="Burnside's theorem">Burnside's theorem</a> any group whose order is divisible by only two primes is <a href="/wiki/Solvable_group" title="Solvable group">solvable</a>.<sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">[</span>119<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Computational_methods">Computational methods</h2></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Gears_large.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/42/Gears_large.jpg/220px-Gears_large.jpg" decoding="async" width="220" height="299" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/42/Gears_large.jpg/330px-Gears_large.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/42/Gears_large.jpg/440px-Gears_large.jpg 2x" data-file-width="500" data-file-height="680" /></a><figcaption>The small gear in this piece of farm equipment has 13 teeth, a prime number, and the middle gear has 21, relatively prime to 13.</figcaption></figure> <p>For a long time, number theory in general, and the study of prime numbers in particular, was seen as the canonical example of pure mathematics, with no applications outside of mathematics<sup id="cite_ref-pure_34-1" class="reference"><a href="#cite_note-pure-34"><span class="cite-bracket">[</span>b<span class="cite-bracket">]</span></a></sup> other than the use of prime numbered gear teeth to distribute wear evenly.<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">[</span>120<span class="cite-bracket">]</span></a></sup> In particular, number theorists such as <a href="/wiki/United_Kingdom" title="United Kingdom">British</a> mathematician <a href="/wiki/G._H._Hardy" title="G. H. Hardy">G. H. Hardy</a> prided themselves on doing work that had absolutely no military significance.<sup id="cite_ref-123" class="reference"><a href="#cite_note-123"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup> </p><p>This vision of the purity of number theory was shattered in the 1970s, when it was publicly announced that prime numbers could be used as the basis for the creation of <a href="/wiki/Public-key_cryptography" title="Public-key cryptography">public-key cryptography</a> algorithms.<sup id="cite_ref-ent-7_35-1" class="reference"><a href="#cite_note-ent-7-35"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> These applications have led to significant study of <a href="/wiki/Algorithm" title="Algorithm">algorithms</a> for computing with prime numbers, and in particular of <a href="/wiki/Primality_test" title="Primality test">primality testing</a>, methods for determining whether a given number is prime. The most basic primality testing routine, trial division, is too slow to be useful for large numbers. One group of modern primality tests is applicable to arbitrary numbers, while more efficient tests are available for numbers of special types. Most primality tests only tell whether their argument is prime or not. Routines that also provide a prime factor of composite arguments (or all of its prime factors) are called <a href="/wiki/Integer_factorization" title="Integer factorization">factorization</a> algorithms. Prime numbers are also used in computing for <a href="/wiki/Checksum" title="Checksum">checksums</a>, <a href="/wiki/Hash_table" title="Hash table">hash tables</a>, and <a href="/wiki/Pseudorandom_number_generator" title="Pseudorandom number generator">pseudorandom number generators</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Trial_division">Trial division</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Trial_division" title="Trial division">Trial division</a></div> <p>The most basic method of checking the primality of a given integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is called <i><a href="/wiki/Trial_division" title="Trial division">trial division</a></i>. This method divides <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> by each integer from 2 up to the <a href="/wiki/Square_root" title="Square root">square root</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. Any such integer dividing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> evenly establishes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> as composite; otherwise it is prime. Integers larger than the square root do not need to be checked because, whenever <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=a\cdot b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=a\cdot b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/083e9fcf193435c0829806a150b537e26641793c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.4ex; height:2.176ex;" alt="{\displaystyle n=a\cdot b}"></span>, one of the two factors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> is less than or equal to the <a href="/wiki/Square_root" title="Square root">square root</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. Another optimization is to check only primes as factors in this range.<sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup> For instance, to check whether 37 is prime, this method divides it by the primes in the range from 2 to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {37}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>37</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {37}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2253dfc4b293b631b7fa755e6e735fc6c40de39a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.261ex; height:3.009ex;" alt="{\displaystyle {\sqrt {37}}}"></span>, which are 2, 3, and 5. Each division produces a nonzero remainder, so 37 is indeed prime. </p><p>Although this method is simple to describe, it is impractical for testing the primality of large integers, because the number of tests that it performs <a href="/wiki/Exponential_growth" title="Exponential growth">grows exponentially</a> as a function of the number of digits of these integers.<sup id="cite_ref-125" class="reference"><a href="#cite_note-125"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup> However, trial division is still used, with a smaller limit than the square root on the divisor size, to quickly discover composite numbers with small factors, before using more complicated methods on the numbers that pass this filter.<sup id="cite_ref-p._220_126-0" class="reference"><a href="#cite_note-p._220-126"><span class="cite-bracket">[</span>124<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Sieves">Sieves</h3></div> <figure typeof="mw:File/Frame"><a href="/wiki/File:Sieve_of_Eratosthenes_animation.gif" class="mw-file-description"><img alt="Animation of the sieve of Eratosthenes" src="//upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif" decoding="async" width="445" height="369" class="mw-file-element" data-file-width="445" data-file-height="369" /></a><figcaption>The <a href="/wiki/Sieve_of_Eratosthenes" title="Sieve of Eratosthenes">sieve of Eratosthenes</a> starts with all numbers unmarked (gray). It repeatedly finds the first unmarked number, marks it as prime (dark colors) and marks its square and all later multiples as composite (lighter colors). After marking the multiples of 2 (red), 3 (green), 5 (blue), and 7 (yellow), all primes up to the square root of the table size have been processed, and all remaining unmarked numbers (11, 13, etc.) are marked as primes (magenta).</figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Sieve_of_Eratosthenes" title="Sieve of Eratosthenes">Sieve of Eratosthenes</a></div> <p>Before computers, <a href="/wiki/Mathematical_table" title="Mathematical table">mathematical tables</a> listing all of the primes or prime factorizations up to a given limit were commonly printed.<sup id="cite_ref-127" class="reference"><a href="#cite_note-127"><span class="cite-bracket">[</span>125<span class="cite-bracket">]</span></a></sup> The oldest known method for generating a list of primes is called the sieve of Eratosthenes.<sup id="cite_ref-128" class="reference"><a href="#cite_note-128"><span class="cite-bracket">[</span>126<span class="cite-bracket">]</span></a></sup> The animation shows an optimized variant of this method.<sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">[</span>127<span class="cite-bracket">]</span></a></sup> Another more asymptotically efficient sieving method for the same problem is the <a href="/wiki/Sieve_of_Atkin" title="Sieve of Atkin">sieve of Atkin</a>.<sup id="cite_ref-130" class="reference"><a href="#cite_note-130"><span class="cite-bracket">[</span>128<span class="cite-bracket">]</span></a></sup> In advanced mathematics, <a href="/wiki/Sieve_theory" title="Sieve theory">sieve theory</a> applies similar methods to other problems.<sup id="cite_ref-131" class="reference"><a href="#cite_note-131"><span class="cite-bracket">[</span>129<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Primality_testing_versus_primality_proving">Primality testing versus primality proving</h3></div> <p>Some of the fastest modern tests for whether an arbitrary given number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is prime are <a href="/wiki/Probabilistic_algorithm" class="mw-redirect" title="Probabilistic algorithm">probabilistic</a> (or <a href="/wiki/Monte_Carlo_algorithm" title="Monte Carlo algorithm">Monte Carlo</a>) algorithms, meaning that they have a small random chance of producing an incorrect answer.<sup id="cite_ref-hromkovic_132-0" class="reference"><a href="#cite_note-hromkovic-132"><span class="cite-bracket">[</span>130<span class="cite-bracket">]</span></a></sup> For instance the <a href="/wiki/Solovay%E2%80%93Strassen_primality_test" title="Solovay–Strassen primality test">Solovay–Strassen primality test</a> on a given number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> chooses a number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> randomly from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span> through <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p-2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p-2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54de64bfce933aaf8b8317dc54f927ef25c96774" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.262ex; height:2.509ex;" alt="{\displaystyle p-2}"></span> and uses <a href="/wiki/Modular_exponentiation" title="Modular exponentiation">modular exponentiation</a> to check whether <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{(p-1)/2}\pm 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>±<!-- ± --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{(p-1)/2}\pm 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32e41c9364089b9540708ee3514f73b1bfa62a88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.316ex; height:2.843ex;" alt="{\displaystyle a^{(p-1)/2}\pm 1}"></span> is divisible by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>.<sup id="cite_ref-133" class="reference"><a href="#cite_note-133"><span class="cite-bracket">[</span>c<span class="cite-bracket">]</span></a></sup> If so, it answers yes and otherwise it answers no. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> really is prime, it will always answer yes, but if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is composite then it answers yes with probability at most 1/2 and no with probability at least 1/2.<sup id="cite_ref-koblitz_134-0" class="reference"><a href="#cite_note-koblitz-134"><span class="cite-bracket">[</span>131<span class="cite-bracket">]</span></a></sup> If this test is repeated <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> times on the same number, the probability that a composite number could pass the test every time is at most <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afcca0eda567be34036ddbb204671dc6aee9975f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.706ex; height:2.843ex;" alt="{\displaystyle 1/2^{n}}"></span>. Because this decreases exponentially with the number of tests, it provides high confidence (although not certainty) that a number that passes the repeated test is prime. On the other hand, if the test ever fails, then the number is certainly composite.<sup id="cite_ref-135" class="reference"><a href="#cite_note-135"><span class="cite-bracket">[</span>132<span class="cite-bracket">]</span></a></sup> A composite number that passes such a test is called a <a href="/wiki/Pseudoprime" title="Pseudoprime">pseudoprime</a>.<sup id="cite_ref-koblitz_134-1" class="reference"><a href="#cite_note-koblitz-134"><span class="cite-bracket">[</span>131<span class="cite-bracket">]</span></a></sup> </p><p>In contrast, some other algorithms guarantee that their answer will always be correct: primes will always be determined to be prime and composites will always be determined to be composite. For instance, this is true of trial division. The algorithms with guaranteed-correct output include both <a href="/wiki/Deterministic_algorithm" title="Deterministic algorithm">deterministic</a> (non-random) algorithms, such as the <a href="/wiki/AKS_primality_test" title="AKS primality test">AKS primality test</a>,<sup id="cite_ref-tao-aks_136-0" class="reference"><a href="#cite_note-tao-aks-136"><span class="cite-bracket">[</span>133<span class="cite-bracket">]</span></a></sup> and randomized <a href="/wiki/Las_Vegas_algorithm" title="Las Vegas algorithm">Las Vegas algorithms</a> where the random choices made by the algorithm do not affect its final answer, such as some variations of <a href="/wiki/Elliptic_curve_primality_proving" class="mw-redirect" title="Elliptic curve primality proving">elliptic curve primality proving</a>.<sup id="cite_ref-hromkovic_132-1" class="reference"><a href="#cite_note-hromkovic-132"><span class="cite-bracket">[</span>130<span class="cite-bracket">]</span></a></sup> When the elliptic curve method concludes that a number is prime, it provides <a href="/wiki/Primality_certificate" title="Primality certificate">primality certificate</a> that can be verified quickly.<sup id="cite_ref-atkin-morain_137-0" class="reference"><a href="#cite_note-atkin-morain-137"><span class="cite-bracket">[</span>134<span class="cite-bracket">]</span></a></sup> The elliptic curve primality test is the fastest in practice of the guaranteed-correct primality tests, but its runtime analysis is based on <a href="/wiki/Heuristic_argument" title="Heuristic argument">heuristic arguments</a> rather than rigorous proofs. The <a href="/wiki/AKS_primality_test" title="AKS primality test">AKS primality test</a> has mathematically proven time complexity, but is slower than elliptic curve primality proving in practice.<sup id="cite_ref-morain_138-0" class="reference"><a href="#cite_note-morain-138"><span class="cite-bracket">[</span>135<span class="cite-bracket">]</span></a></sup> These methods can be used to generate large random prime numbers, by generating and testing random numbers until finding one that is prime; when doing this, a faster probabilistic test can quickly eliminate most composite numbers before a guaranteed-correct algorithm is used to verify that the remaining numbers are prime.<sup id="cite_ref-139" class="reference"><a href="#cite_note-139"><span class="cite-bracket">[</span>d<span class="cite-bracket">]</span></a></sup> </p><p>The following table lists some of these tests. Their running time is given in terms of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, the number to be tested and, for probabilistic algorithms, the number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> of tests performed. Moreover, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ε<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30c89172e5b88edbd45d3e2772c7f5e562e5173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle \varepsilon }"></span> is an arbitrarily small positive number, and log is the <a href="/wiki/Logarithm" title="Logarithm">logarithm</a> to an unspecified base. The <a href="/wiki/Big_O_notation" title="Big O notation">big O notation</a> means that each time bound should be multiplied by a <a href="/wiki/Constant_factor" class="mw-redirect" title="Constant factor">constant factor</a> to convert it from dimensionless units to units of time; this factor depends on implementation details such as the type of computer used to run the algorithm, but not on the input parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>. </p> <table class="wikitable sortable"> <tbody><tr> <th>Test </th> <th>Developed in </th> <th>Type </th> <th>Running time </th> <th>Notes </th> <th class="unsortable">References </th></tr> <tr> <td><a href="/wiki/AKS_primality_test" title="AKS primality test">AKS primality test</a> </td> <td>2002 </td> <td>deterministic </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O((\log n)^{6+\varepsilon })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> <mo>+</mo> <mi>ε<!-- ε --></mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O((\log n)^{6+\varepsilon })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fc16469e3af6c2a0827c49a1bc042109f80f893" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.244ex; height:3.176ex;" alt="{\displaystyle O((\log n)^{6+\varepsilon })}"></span> </td> <td> </td> <td><sup id="cite_ref-tao-aks_136-1" class="reference"><a href="#cite_note-tao-aks-136"><span class="cite-bracket">[</span>133<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-140" class="reference"><a href="#cite_note-140"><span class="cite-bracket">[</span>136<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Elliptic_curve_primality_proving" class="mw-redirect" title="Elliptic curve primality proving">Elliptic curve primality proving</a> </td> <td>1986 </td> <td>Las Vegas </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O((\log n)^{4+\varepsilon })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mo>+</mo> <mi>ε<!-- ε --></mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O((\log n)^{4+\varepsilon })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dfc882e3d4fafd81c7e758315ce91a8100bd432" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.244ex; height:3.176ex;" alt="{\displaystyle O((\log n)^{4+\varepsilon })}"></span> <i>heuristically</i> </td> <td> </td> <td><sup id="cite_ref-morain_138-1" class="reference"><a href="#cite_note-morain-138"><span class="cite-bracket">[</span>135<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Baillie%E2%80%93PSW_primality_test" title="Baillie–PSW primality test">Baillie–PSW primality test</a> </td> <td>1980 </td> <td>Monte Carlo </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O((\log n)^{2+\varepsilon })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>+</mo> <mi>ε<!-- ε --></mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O((\log n)^{2+\varepsilon })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26335494299bcaa20a6732274e174f5eaa8461e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.244ex; height:3.176ex;" alt="{\displaystyle O((\log n)^{2+\varepsilon })}"></span> </td> <td> </td> <td><sup id="cite_ref-PSW_141-0" class="reference"><a href="#cite_note-PSW-141"><span class="cite-bracket">[</span>137<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-lpsp_142-0" class="reference"><a href="#cite_note-lpsp-142"><span class="cite-bracket">[</span>138<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Miller%E2%80%93Rabin_primality_test" title="Miller–Rabin primality test">Miller–Rabin primality test</a> </td> <td>1980 </td> <td>Monte Carlo </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(k(\log n)^{2+\varepsilon })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>+</mo> <mi>ε<!-- ε --></mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(k(\log n)^{2+\varepsilon })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0341577e6a6f01b2c97fb60b0585bcad6ecbdc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.456ex; height:3.176ex;" alt="{\displaystyle O(k(\log n)^{2+\varepsilon })}"></span> </td> <td>error probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4^{-k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4^{-k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f7b428178b13d0649e586b49bd7d14fd33e42fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.53ex; height:2.676ex;" alt="{\displaystyle 4^{-k}}"></span> </td> <td><sup id="cite_ref-monier_143-0" class="reference"><a href="#cite_note-monier-143"><span class="cite-bracket">[</span>139<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Solovay%E2%80%93Strassen_primality_test" title="Solovay–Strassen primality test">Solovay–Strassen primality test</a> </td> <td>1977 </td> <td>Monte Carlo </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(k(\log n)^{2+\varepsilon })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">(</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>+</mo> <mi>ε<!-- ε --></mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(k(\log n)^{2+\varepsilon })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0341577e6a6f01b2c97fb60b0585bcad6ecbdc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.456ex; height:3.176ex;" alt="{\displaystyle O(k(\log n)^{2+\varepsilon })}"></span> </td> <td>error probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{-k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{-k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5ba5275e798107d7738afeb76e2bdb91cd37e0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.53ex; height:2.676ex;" alt="{\displaystyle 2^{-k}}"></span> </td> <td><sup id="cite_ref-monier_143-1" class="reference"><a href="#cite_note-monier-143"><span class="cite-bracket">[</span>139<span class="cite-bracket">]</span></a></sup> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Special-purpose_algorithms_and_the_largest_known_prime">Special-purpose algorithms and the largest known prime</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/List_of_prime_numbers" title="List of prime numbers">List of prime numbers</a></div> <p>In addition to the aforementioned tests that apply to any natural number, some numbers of a special form can be tested for primality more quickly. For example, the <a href="/wiki/Lucas%E2%80%93Lehmer_primality_test" title="Lucas–Lehmer primality test">Lucas–Lehmer primality test</a> can determine whether a <a href="/wiki/Mersenne_number" class="mw-redirect" title="Mersenne number">Mersenne number</a> (one less than a <a href="/wiki/Power_of_two" title="Power of two">power of two</a>) is prime, deterministically, in the same time as a single iteration of the Miller–Rabin test.<sup id="cite_ref-144" class="reference"><a href="#cite_note-144"><span class="cite-bracket">[</span>140<span class="cite-bracket">]</span></a></sup> This is why since 1992 (as of December 2018<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Prime_number&action=edit">[update]</a></sup>) the <a href="/wiki/Largest_known_prime" class="mw-redirect" title="Largest known prime">largest <i>known</i> prime</a> has always been a Mersenne prime.<sup id="cite_ref-145" class="reference"><a href="#cite_note-145"><span class="cite-bracket">[</span>141<span class="cite-bracket">]</span></a></sup> It is conjectured that there are infinitely many Mersenne primes.<sup id="cite_ref-146" class="reference"><a href="#cite_note-146"><span class="cite-bracket">[</span>142<span class="cite-bracket">]</span></a></sup> </p><p>The following table gives the largest known primes of various types. Some of these primes have been found using <a href="/wiki/Distributed_computing" title="Distributed computing">distributed computing</a>. In 2009, the <a href="/wiki/Great_Internet_Mersenne_Prime_Search" title="Great Internet Mersenne Prime Search">Great Internet Mersenne Prime Search</a> project was awarded a US$100,000 prize for first discovering a prime with at least 10 million digits.<sup id="cite_ref-147" class="reference"><a href="#cite_note-147"><span class="cite-bracket">[</span>143<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Electronic_Frontier_Foundation" title="Electronic Frontier Foundation">Electronic Frontier Foundation</a> also offers $150,000 and $250,000 for primes with at least 100 million digits and 1 billion digits, respectively.<sup id="cite_ref-148" class="reference"><a href="#cite_note-148"><span class="cite-bracket">[</span>144<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable"> <tbody><tr> <th>Type </th> <th>Prime </th> <th>Number of decimal digits </th> <th>Date </th> <th>Found by </th></tr> <tr> <td><a href="/wiki/Mersenne_prime" title="Mersenne prime">Mersenne prime</a> </td> <td>2<sup>136,279,841</sup> − 1 </td> <td style="text-align:right;">41,024,320 </td> <td>October 21, 2024<sup id="cite_ref-GIMPS-2024_1-1" class="reference"><a href="#cite_note-GIMPS-2024-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </td> <td>Luke Durant, <a href="/wiki/Great_Internet_Mersenne_Prime_Search" title="Great Internet Mersenne Prime Search">Great Internet Mersenne Prime Search</a> </td></tr> <tr> <td><a href="/wiki/Proth_prime" title="Proth prime">Proth prime</a> </td> <td>10,223 × 2<sup>31,172,165</sup> + 1 </td> <td style="text-align:right;">9,383,761 </td> <td>October 31, 2016<sup id="cite_ref-149" class="reference"><a href="#cite_note-149"><span class="cite-bracket">[</span>145<span class="cite-bracket">]</span></a></sup> </td> <td>Péter Szabolcs, <a href="/wiki/PrimeGrid" title="PrimeGrid">PrimeGrid</a><sup id="cite_ref-150" class="reference"><a href="#cite_note-150"><span class="cite-bracket">[</span>146<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Factorial_prime" title="Factorial prime">factorial prime</a> </td> <td>208,003! − 1 </td> <td style="text-align:right;">1,015,843 </td> <td>July 2016 </td> <td>Sou Fukui<sup id="cite_ref-151" class="reference"><a href="#cite_note-151"><span class="cite-bracket">[</span>147<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Primorial_prime" title="Primorial prime">primorial prime</a><sup id="cite_ref-153" class="reference"><a href="#cite_note-153"><span class="cite-bracket">[</span>e<span class="cite-bracket">]</span></a></sup> </td> <td>1,098,133# − 1 </td> <td style="text-align:right;">476,311 </td> <td>March 2012 </td> <td>James P. Burt, <a href="/wiki/PrimeGrid" title="PrimeGrid">PrimeGrid</a><sup id="cite_ref-154" class="reference"><a href="#cite_note-154"><span class="cite-bracket">[</span>149<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Twin_prime" title="Twin prime">twin primes</a> </td> <td>2,996,863,034,895 × 2<sup>1,290,000</sup> ± 1 </td> <td style="text-align:right;">388,342 </td> <td>September 2016 </td> <td>Tom Greer, <a href="/wiki/PrimeGrid" title="PrimeGrid">PrimeGrid</a><sup id="cite_ref-155" class="reference"><a href="#cite_note-155"><span class="cite-bracket">[</span>150<span class="cite-bracket">]</span></a></sup> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Integer_factorization">Integer factorization</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Integer_factorization" title="Integer factorization">Integer factorization</a></div> <p>Given a composite integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, the task of providing one (or all) prime factors is referred to as <i>factorization</i> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. It is significantly more difficult than primality testing,<sup id="cite_ref-156" class="reference"><a href="#cite_note-156"><span class="cite-bracket">[</span>151<span class="cite-bracket">]</span></a></sup> and although many factorization algorithms are known, they are slower than the fastest primality testing methods. Trial division and <a href="/wiki/Pollard%27s_rho_algorithm" title="Pollard's rho algorithm">Pollard's rho algorithm</a> can be used to find very small factors of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>,<sup id="cite_ref-p._220_126-1" class="reference"><a href="#cite_note-p._220-126"><span class="cite-bracket">[</span>124<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Elliptic_curve_factorization" class="mw-redirect" title="Elliptic curve factorization">elliptic curve factorization</a> can be effective when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> has factors of moderate size.<sup id="cite_ref-157" class="reference"><a href="#cite_note-157"><span class="cite-bracket">[</span>152<span class="cite-bracket">]</span></a></sup> Methods suitable for arbitrary large numbers that do not depend on the size of its factors include the <a href="/wiki/Quadratic_sieve" title="Quadratic sieve">quadratic sieve</a> and <a href="/wiki/General_number_field_sieve" title="General number field sieve">general number field sieve</a>. As with primality testing, there are also factorization algorithms that require their input to have a special form, including the <a href="/wiki/Special_number_field_sieve" title="Special number field sieve">special number field sieve</a>.<sup id="cite_ref-158" class="reference"><a href="#cite_note-158"><span class="cite-bracket">[</span>153<span class="cite-bracket">]</span></a></sup> As of December 2019<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Prime_number&action=edit">[update]</a></sup> the <a href="/wiki/Integer_factorization_records" title="Integer factorization records">largest number known to have been factored</a> by a general-purpose algorithm is <a href="/wiki/RSA-240" class="mw-redirect" title="RSA-240">RSA-240</a>, which has 240 decimal digits (795 bits) and is the product of two large primes.<sup id="cite_ref-159" class="reference"><a href="#cite_note-159"><span class="cite-bracket">[</span>154<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Shor%27s_algorithm" title="Shor's algorithm">Shor's algorithm</a> can factor any integer in a polynomial number of steps on a <a href="/wiki/Quantum_computer" class="mw-redirect" title="Quantum computer">quantum computer</a>.<sup id="cite_ref-160" class="reference"><a href="#cite_note-160"><span class="cite-bracket">[</span>155<span class="cite-bracket">]</span></a></sup> However, current technology can only run this algorithm for very small numbers. As of October 2012<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Prime_number&action=edit">[update]</a></sup>, the largest number that has been factored by a quantum computer running Shor's algorithm is 21.<sup id="cite_ref-161" class="reference"><a href="#cite_note-161"><span class="cite-bracket">[</span>156<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Other_computational_applications">Other computational applications</h3></div> <p>Several <a href="/wiki/Public-key_cryptography" title="Public-key cryptography">public-key cryptography</a> algorithms, such as <a href="/wiki/RSA_(algorithm)" class="mw-redirect" title="RSA (algorithm)">RSA</a> and the <a href="/wiki/Diffie%E2%80%93Hellman_key_exchange" title="Diffie–Hellman key exchange">Diffie–Hellman key exchange</a>, are based on large prime numbers (2048-<a href="/wiki/Bit" title="Bit">bit</a> primes are common).<sup id="cite_ref-162" class="reference"><a href="#cite_note-162"><span class="cite-bracket">[</span>157<span class="cite-bracket">]</span></a></sup> RSA relies on the assumption that it is much easier (that is, more efficient) to perform the multiplication of two (large) numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> than to calculate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> (assumed <a href="/wiki/Coprime" class="mw-redirect" title="Coprime">coprime</a>) if only the product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72eb345e496513fb8b2fa4aa8c4d89b855f9a01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.485ex; height:2.009ex;" alt="{\displaystyle xy}"></span> is known.<sup id="cite_ref-ent-7_35-2" class="reference"><a href="#cite_note-ent-7-35"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> The Diffie–Hellman key exchange relies on the fact that there are efficient algorithms for <a href="/wiki/Modular_exponentiation" title="Modular exponentiation">modular exponentiation</a> (computing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{b}{\bmod {c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo lspace="thickmathspace" rspace="thickmathspace">mod</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{b}{\bmod {c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cdcfa653d33b1ef6fa21a5a5fc365f6a7e0dea0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.855ex; height:2.676ex;" alt="{\displaystyle a^{b}{\bmod {c}}}"></span>), while the reverse operation (the <a href="/wiki/Discrete_logarithm" title="Discrete logarithm">discrete logarithm</a>) is thought to be a hard problem.<sup id="cite_ref-163" class="reference"><a href="#cite_note-163"><span class="cite-bracket">[</span>158<span class="cite-bracket">]</span></a></sup> </p><p>Prime numbers are frequently used for <a href="/wiki/Hash_table" title="Hash table">hash tables</a>. For instance the original method of Carter and Wegman for <a href="/wiki/Universal_hashing" title="Universal hashing">universal hashing</a> was based on computing <a href="/wiki/Hash_function" title="Hash function">hash functions</a> by choosing random <a href="/wiki/Linear_function" title="Linear function">linear functions</a> modulo large prime numbers. Carter and Wegman generalized this method to <a href="/wiki/K-independent_hashing" title="K-independent hashing"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-independent hashing</a> by using higher-degree polynomials, again modulo large primes.<sup id="cite_ref-164" class="reference"><a href="#cite_note-164"><span class="cite-bracket">[</span>159<span class="cite-bracket">]</span></a></sup> As well as in the hash function, prime numbers are used for the hash table size in <a href="/wiki/Quadratic_probing" title="Quadratic probing">quadratic probing</a> based hash tables to ensure that the probe sequence covers the whole table.<sup id="cite_ref-165" class="reference"><a href="#cite_note-165"><span class="cite-bracket">[</span>160<span class="cite-bracket">]</span></a></sup> </p><p>Some <a href="/wiki/Checksum" title="Checksum">checksum</a> methods are based on the mathematics of prime numbers. For instance the checksums used in <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">International Standard Book Numbers</a> are defined by taking the rest of the number modulo 11, a prime number. Because 11 is prime this method can detect both single-digit errors and transpositions of adjacent digits.<sup id="cite_ref-166" class="reference"><a href="#cite_note-166"><span class="cite-bracket">[</span>161<span class="cite-bracket">]</span></a></sup> Another checksum method, <a href="/wiki/Adler-32" title="Adler-32">Adler-32</a>, uses arithmetic modulo 65521, the largest prime number less than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{16}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>16</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{16}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8e0dd3c0e42794174d2dbcb9a3ee2c6d69299d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.039ex; height:2.676ex;" alt="{\displaystyle 2^{16}}"></span>.<sup id="cite_ref-167" class="reference"><a href="#cite_note-167"><span class="cite-bracket">[</span>162<span class="cite-bracket">]</span></a></sup> Prime numbers are also used in <a href="/wiki/Pseudorandom_number_generator" title="Pseudorandom number generator">pseudorandom number generators</a> including <a href="/wiki/Linear_congruential_generator" title="Linear congruential generator">linear congruential generators</a><sup id="cite_ref-168" class="reference"><a href="#cite_note-168"><span class="cite-bracket">[</span>163<span class="cite-bracket">]</span></a></sup> and the <a href="/wiki/Mersenne_Twister" title="Mersenne Twister">Mersenne Twister</a>.<sup id="cite_ref-169" class="reference"><a href="#cite_note-169"><span class="cite-bracket">[</span>164<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Other_applications">Other applications</h2></div> <p>Prime numbers are of central importance to number theory but also have many applications to other areas within mathematics, including <a href="/wiki/Abstract_algebra" title="Abstract algebra">abstract algebra</a> and elementary geometry. For example, it is possible to place prime numbers of points in a two-dimensional grid so that <a href="/wiki/No-three-in-line_problem" title="No-three-in-line problem">no three are in a line</a>, or so that every triangle formed by three of the points <a href="/wiki/Heilbronn_triangle_problem" title="Heilbronn triangle problem">has large area</a>.<sup id="cite_ref-170" class="reference"><a href="#cite_note-170"><span class="cite-bracket">[</span>165<span class="cite-bracket">]</span></a></sup> Another example is <a href="/wiki/Eisenstein%27s_criterion" title="Eisenstein's criterion">Eisenstein's criterion</a>, a test for whether a <a href="/wiki/Irreducible_polynomial" title="Irreducible polynomial">polynomial is irreducible</a> based on divisibility of its coefficients by a prime number and its square.<sup id="cite_ref-171" class="reference"><a href="#cite_note-171"><span class="cite-bracket">[</span>166<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Sum_of_knots3.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Sum_of_knots3.svg/220px-Sum_of_knots3.svg.png" decoding="async" width="220" height="88" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Sum_of_knots3.svg/330px-Sum_of_knots3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Sum_of_knots3.svg/440px-Sum_of_knots3.svg.png 2x" data-file-width="300" data-file-height="120" /></a><figcaption>The connected sum of two prime knots</figcaption></figure> <p>The concept of a prime number is so important that it has been generalized in different ways in various branches of mathematics. Generally, "prime" indicates minimality or indecomposability, in an appropriate sense. For example, the <a href="/wiki/Prime_field" class="mw-redirect" title="Prime field">prime field</a> of a given field is its smallest subfield that contains both 0 and 1. It is either the field of rational numbers or a <a href="/wiki/Finite_field" title="Finite field">finite field</a> with a prime number of elements, whence the name.<sup id="cite_ref-172" class="reference"><a href="#cite_note-172"><span class="cite-bracket">[</span>167<span class="cite-bracket">]</span></a></sup> Often a second, additional meaning is intended by using the word prime, namely that any object can be, essentially uniquely, decomposed into its prime components. For example, in <a href="/wiki/Knot_theory" title="Knot theory">knot theory</a>, a <a href="/wiki/Prime_knot" title="Prime knot">prime knot</a> is a <a href="/wiki/Knot_(mathematics)" title="Knot (mathematics)">knot</a> that is indecomposable in the sense that it cannot be written as the <a href="/wiki/Connected_sum" title="Connected sum">connected sum</a> of two nontrivial knots. Any knot can be uniquely expressed as a connected sum of prime knots.<sup id="cite_ref-173" class="reference"><a href="#cite_note-173"><span class="cite-bracket">[</span>168<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Prime_decomposition_(3-manifold)" class="mw-redirect" title="Prime decomposition (3-manifold)">prime decomposition of 3-manifolds</a> is another example of this type.<sup id="cite_ref-174" class="reference"><a href="#cite_note-174"><span class="cite-bracket">[</span>169<span class="cite-bracket">]</span></a></sup> </p><p>Beyond mathematics and computing, prime numbers have potential connections to <a href="/wiki/Quantum_mechanic" class="mw-redirect" title="Quantum mechanic">quantum mechanics</a>, and have been used metaphorically in the arts and literature. They have also been used in <a href="/wiki/Evolutionary_biology" title="Evolutionary biology">evolutionary biology</a> to explain the life cycles of <a href="/wiki/Cicada" title="Cicada">cicadas</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Constructible_polygons_and_polygon_partitions">Constructible polygons and polygon partitions</h3></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Pentagon_construct.gif" class="mw-file-description"><img alt="Construction of a regular pentagon using straightedge and compass" src="//upload.wikimedia.org/wikipedia/commons/7/76/Pentagon_construct.gif" decoding="async" width="180" height="180" class="mw-file-element" data-file-width="180" data-file-height="180" /></a><figcaption>Construction of a regular pentagon using straightedge and compass. This is only possible because 5 is a <a href="/wiki/Fermat_prime" class="mw-redirect" title="Fermat prime">Fermat prime</a>.</figcaption></figure> <p><a href="/wiki/Fermat_prime" class="mw-redirect" title="Fermat prime">Fermat primes</a> are primes of the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{k}=2^{2^{k}}+1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{k}=2^{2^{k}}+1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cc6edcaa62bbd72af19a441f8cdba0629f37eb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.408ex; height:3.343ex;" alt="{\displaystyle F_{k}=2^{2^{k}}+1,}"></span></dd></dl> <p>with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> a <a href="/wiki/Nonnegative_integer" class="mw-redirect" title="Nonnegative integer">nonnegative integer</a>.<sup id="cite_ref-175" class="reference"><a href="#cite_note-175"><span class="cite-bracket">[</span>170<span class="cite-bracket">]</span></a></sup> They are named after <a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Pierre de Fermat</a>, who conjectured that all such numbers are prime. The first five of these numbers – 3, 5, 17, 257, and 65,537 – are prime,<sup id="cite_ref-kls_176-0" class="reference"><a href="#cite_note-kls-176"><span class="cite-bracket">[</span>171<span class="cite-bracket">]</span></a></sup> but <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c64647603e8358bf2b07099963d5ac2d8b75ee9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.549ex; height:2.509ex;" alt="{\displaystyle F_{5}}"></span> is composite and so are all other Fermat numbers that have been verified as of 2017.<sup id="cite_ref-177" class="reference"><a href="#cite_note-177"><span class="cite-bracket">[</span>172<span class="cite-bracket">]</span></a></sup> A <a href="/wiki/Regular_polygon" title="Regular polygon">regular <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-gon</a> is <a href="/wiki/Constructible_polygon" title="Constructible polygon">constructible using straightedge and compass</a> if and only if the odd prime factors of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> (if any) are distinct Fermat primes.<sup id="cite_ref-kls_176-1" class="reference"><a href="#cite_note-kls-176"><span class="cite-bracket">[</span>171<span class="cite-bracket">]</span></a></sup> Likewise, a regular <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-gon may be constructed using straightedge, compass, and an <a href="/wiki/Angle_trisection" title="Angle trisection">angle trisector</a> if and only if the prime factors of <a href="/wiki/Regular_polygon" title="Regular polygon"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span></a> are any number of copies of 2 or 3 together with a (possibly empty) set of distinct <a href="/wiki/Pierpont_prime" title="Pierpont prime">Pierpont primes</a>, primes of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{a}3^{b}+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{a}3^{b}+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d06f1cc50f358fed2f88c9789d2a15fc5c003dc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.367ex; height:2.843ex;" alt="{\displaystyle 2^{a}3^{b}+1}"></span>.<sup id="cite_ref-178" class="reference"><a href="#cite_note-178"><span class="cite-bracket">[</span>173<span class="cite-bracket">]</span></a></sup> </p><p>It is possible to partition any convex polygon into <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> smaller convex polygons of equal area and equal perimeter, when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is a <a href="/wiki/Prime_power" title="Prime power">power of a prime number</a>, but this is not known for other values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.<sup id="cite_ref-179" class="reference"><a href="#cite_note-179"><span class="cite-bracket">[</span>174<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_mechanics">Quantum mechanics</h3></div> <p>Beginning with the work of <a href="/wiki/Hugh_Lowell_Montgomery" title="Hugh Lowell Montgomery">Hugh Montgomery</a> and <a href="/wiki/Freeman_Dyson" title="Freeman Dyson">Freeman Dyson</a> in the 1970s, mathematicians and physicists have speculated that the zeros of the Riemann zeta function are connected to the energy levels of <a href="/wiki/Quantum_system" class="mw-redirect" title="Quantum system">quantum systems</a>.<sup id="cite_ref-180" class="reference"><a href="#cite_note-180"><span class="cite-bracket">[</span>175<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-181" class="reference"><a href="#cite_note-181"><span class="cite-bracket">[</span>176<span class="cite-bracket">]</span></a></sup> Prime numbers are also significant in <a href="/wiki/Quantum_information_science" title="Quantum information science">quantum information science</a>, thanks to mathematical structures such as <a href="/wiki/Mutually_unbiased_bases" title="Mutually unbiased bases">mutually unbiased bases</a> and <a href="/wiki/SIC-POVM" title="SIC-POVM">symmetric informationally complete positive-operator-valued measures</a>.<sup id="cite_ref-182" class="reference"><a href="#cite_note-182"><span class="cite-bracket">[</span>177<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-183" class="reference"><a href="#cite_note-183"><span class="cite-bracket">[</span>178<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Biology">Biology</h3></div> <p>The evolutionary strategy used by <a href="/wiki/Cicada" title="Cicada">cicadas</a> of the genus <i><a href="/wiki/Magicicada" class="mw-redirect" title="Magicicada">Magicicada</a></i> makes use of prime numbers.<sup id="cite_ref-184" class="reference"><a href="#cite_note-184"><span class="cite-bracket">[</span>179<span class="cite-bracket">]</span></a></sup> These insects spend most of their lives as <a href="/wiki/Larva" title="Larva">grubs</a> underground. They only pupate and then emerge from their burrows after 7, 13 or 17 years, at which point they fly about, breed, and then die after a few weeks at most. Biologists theorize that these prime-numbered breeding cycle lengths have evolved in order to prevent predators from synchronizing with these cycles.<sup id="cite_ref-185" class="reference"><a href="#cite_note-185"><span class="cite-bracket">[</span>180<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-186" class="reference"><a href="#cite_note-186"><span class="cite-bracket">[</span>181<span class="cite-bracket">]</span></a></sup> In contrast, the multi-year periods between flowering in <a href="/wiki/Bamboo" title="Bamboo">bamboo</a> plants are hypothesized to be <a href="/wiki/Smooth_number" title="Smooth number">smooth numbers</a>, having only small prime numbers in their factorizations.<sup id="cite_ref-187" class="reference"><a href="#cite_note-187"><span class="cite-bracket">[</span>182<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Arts_and_literature">Arts and literature</h3></div> <p>Prime numbers have influenced many artists and writers. The French <a href="/wiki/Composer" title="Composer">composer</a> <a href="/wiki/Olivier_Messiaen" title="Olivier Messiaen">Olivier Messiaen</a> used prime numbers to create ametrical music through "natural phenomena". In works such as <i><a href="/wiki/La_Nativit%C3%A9_du_Seigneur" title="La Nativité du Seigneur">La Nativité du Seigneur</a></i> (1935) and <i><a href="/wiki/Quatre_%C3%A9tudes_de_rythme" class="mw-redirect" title="Quatre études de rythme">Quatre études de rythme</a></i> (1949–1950), he simultaneously employs motifs with lengths given by different prime numbers to create unpredictable rhythms: the primes 41, 43, 47 and 53 appear in the third étude, "Neumes rythmiques". According to Messiaen this way of composing was "inspired by the movements of nature, movements of free and unequal durations".<sup id="cite_ref-188" class="reference"><a href="#cite_note-188"><span class="cite-bracket">[</span>183<span class="cite-bracket">]</span></a></sup> </p><p>In his science fiction novel <i><a href="/wiki/Contact_(novel)" title="Contact (novel)">Contact</a></i>, scientist <a href="/wiki/Carl_Sagan" title="Carl Sagan">Carl Sagan</a> suggested that prime factorization could be used as a means of establishing two-dimensional image planes in communications with aliens, an idea that he had first developed informally with American astronomer <a href="/wiki/Frank_Drake" title="Frank Drake">Frank Drake</a> in 1975.<sup id="cite_ref-189" class="reference"><a href="#cite_note-189"><span class="cite-bracket">[</span>184<span class="cite-bracket">]</span></a></sup> In the novel <i><a href="/wiki/The_Curious_Incident_of_the_Dog_in_the_Night-Time" title="The Curious Incident of the Dog in the Night-Time">The Curious Incident of the Dog in the Night-Time</a></i> by <a href="/wiki/Mark_Haddon" title="Mark Haddon">Mark Haddon</a>, the narrator arranges the sections of the story by consecutive prime numbers as a way to convey the mental state of its main character, a mathematically gifted teen with <a href="/wiki/Asperger_syndrome" title="Asperger syndrome">Asperger syndrome</a>.<sup id="cite_ref-190" class="reference"><a href="#cite_note-190"><span class="cite-bracket">[</span>185<span class="cite-bracket">]</span></a></sup> Prime numbers are used as a metaphor for loneliness and isolation in the <a href="/wiki/Paolo_Giordano" title="Paolo Giordano">Paolo Giordano</a> novel <i><a href="/wiki/The_Solitude_of_Prime_Numbers_(novel)" title="The Solitude of Prime Numbers (novel)">The Solitude of Prime Numbers</a></i>, in which they are portrayed as "outsiders" among integers.<sup id="cite_ref-191" class="reference"><a href="#cite_note-191"><span class="cite-bracket">[</span>186<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text">A 44-digit prime number found in 1951 by Aimé Ferrier with a mechanical calculator remains the largest prime not to have been found with the aid of electronic computers.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-pure-34"><span class="mw-cite-backlink">^ <a href="#cite_ref-pure_34-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pure_34-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">For instance, Beiler writes that number theorist <a href="/wiki/Ernst_Kummer" title="Ernst Kummer">Ernst Kummer</a> loved his <a href="/wiki/Ideal_number" title="Ideal number">ideal numbers</a>, closely related to the primes, "because they had not soiled themselves with any practical applications",<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> and Katz writes that <a href="/wiki/Edmund_Landau" title="Edmund Landau">Edmund Landau</a>, known for his work on the distribution of primes, "loathed practical applications of mathematics", and for this reason avoided subjects such as <a href="/wiki/Geometry" title="Geometry">geometry</a> that had already shown themselves to be useful.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-133">^</a></b></span> <span class="reference-text">In this test, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pm 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>±<!-- ± --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pm 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bfeaa85da53ad1947d8000926cfea33827ef1e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.971ex; height:2.176ex;" alt="{\displaystyle \pm 1}"></span> term is negative if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> is a square modulo the given (supposed) prime <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>, and positive otherwise. More generally, for non-prime values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pm 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>±<!-- ± --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pm 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bfeaa85da53ad1947d8000926cfea33827ef1e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.971ex; height:2.176ex;" alt="{\displaystyle \pm 1}"></span> term is the (negated) <a href="/wiki/Jacobi_symbol" title="Jacobi symbol">Jacobi symbol</a>, which can be calculated using <a href="/wiki/Quadratic_reciprocity" title="Quadratic reciprocity">quadratic reciprocity</a>.</span> </li> <li id="cite_note-139"><span class="mw-cite-backlink"><b><a href="#cite_ref-139">^</a></b></span> <span class="reference-text">Indeed, much of the analysis of elliptic curve primality proving is based on the assumption that the input to the algorithm has already passed a probabilistic test.<sup id="cite_ref-atkin-morain_137-1" class="reference"><a href="#cite_note-atkin-morain-137"><span class="cite-bracket">[</span>134<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-153"><span class="mw-cite-backlink"><b><a href="#cite_ref-153">^</a></b></span> <span class="reference-text">The <a href="/wiki/Primorial" title="Primorial">primorial</a> function of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\#}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi mathvariant="normal">#<!-- # --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\#}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/167c3481839df4ace6689a25e170c5e0c0d5551e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.331ex; height:2.509ex;" alt="{\displaystyle n\#}"></span>, yields the product of the prime numbers up to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, and a <a href="/wiki/Primorial_prime" title="Primorial prime">primorial prime</a> is a prime of one of the forms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\#\pm 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi mathvariant="normal">#<!-- # --></mi> <mo>±<!-- ± --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\#\pm 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c0d1d93846f485187cb017391c93d5cc2147d0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.333ex; height:2.509ex;" alt="{\displaystyle n\#\pm 1}"></span>.<sup id="cite_ref-152" class="reference"><a href="#cite_note-152"><span class="cite-bracket">[</span>148<span class="cite-bracket">]</span></a></sup></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-GIMPS-2024-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-GIMPS-2024_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GIMPS-2024_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mersenne.org/primes/?press=M136279841">"GIMPS Discovers Largest Known Prime Number: 2<sup>136,279,841</sup> − 1"</a>. <i>Mersenne Research, Inc</i>. 21 October 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">21 October</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Mersenne+Research%2C+Inc.&rft.atitle=GIMPS+Discovers+Largest+Known+Prime+Number%3A+2%3Csup%3E136%2C279%2C841%3C%2Fsup%3E+%E2%88%92+1&rft.date=2024-10-21&rft_id=https%3A%2F%2Fwww.mersenne.org%2Fprimes%2F%3Fpress%3DM136279841&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSparkes2024" class="citation journal cs1">Sparkes, Matthew (November 2, 2024). "Amateur sleuth finds largest-known prime number". <i>New Scientist</i>: 19.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Scientist&rft.atitle=Amateur+sleuth+finds+largest-known+prime+number&rft.pages=19&rft.date=2024-11-02&rft.aulast=Sparkes&rft.aufirst=Matthew&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGardiner1997" class="citation book cs1"><a href="/wiki/Tony_Gardiner" title="Tony Gardiner">Gardiner, Anthony</a> (1997). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/mathematicalolym1997gard"><i>The Mathematical Olympiad Handbook: An Introduction to Problem Solving Based on the First 32 British Mathematical Olympiads 1965–1996</i></a></span>. Oxford University Press. p. <a rel="nofollow" class="external text" href="https://archive.org/details/mathematicalolym1997gard/page/26">26</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-850105-3" title="Special:BookSources/978-0-19-850105-3"><bdi>978-0-19-850105-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Mathematical+Olympiad+Handbook%3A+An+Introduction+to+Problem+Solving+Based+on+the+First+32+British+Mathematical+Olympiads+1965%E2%80%931996&rft.pages=26&rft.pub=Oxford+University+Press&rft.date=1997&rft.isbn=978-0-19-850105-3&rft.aulast=Gardiner&rft.aufirst=Anthony&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicalolym1997gard&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHenderson2014" class="citation book cs1">Henderson, Anne (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=uy-yGVRUilMC&pg=PA62"><i>Dyslexia, Dyscalculia and Mathematics: A practical guide</i></a> (2nd ed.). Routledge. p. 62. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-136-63662-2" title="Special:BookSources/978-1-136-63662-2"><bdi>978-1-136-63662-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Dyslexia%2C+Dyscalculia+and+Mathematics%3A+A+practical+guide&rft.pages=62&rft.edition=2nd&rft.pub=Routledge&rft.date=2014&rft.isbn=978-1-136-63662-2&rft.aulast=Henderson&rft.aufirst=Anne&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Duy-yGVRUilMC%26pg%3DPA62&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdler1960" class="citation book cs1"><a href="/wiki/Irving_Adler" title="Irving Adler">Adler, Irving</a> (1960). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/giantgoldenbooko00adle"><i>The Giant Golden Book of Mathematics: Exploring the World of Numbers and Space</i></a></span>. Golden Press. p. <a rel="nofollow" class="external text" href="https://archive.org/details/giantgoldenbooko00adle/page/16">16</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/6975809">6975809</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Giant+Golden+Book+of+Mathematics%3A+Exploring+the+World+of+Numbers+and+Space&rft.pages=16&rft.pub=Golden+Press&rft.date=1960&rft_id=info%3Aoclcnum%2F6975809&rft.aulast=Adler&rft.aufirst=Irving&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgiantgoldenbooko00adle&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeff2000" class="citation book cs1">Leff, Lawrence S. (2000). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/barronsmathworkb00leff_0"><i>Math Workbook for the SAT I</i></a></span>. Barron's Educational Series. p. <a rel="nofollow" class="external text" href="https://archive.org/details/barronsmathworkb00leff_0/page/360">360</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7641-0768-9" title="Special:BookSources/978-0-7641-0768-9"><bdi>978-0-7641-0768-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Math+Workbook+for+the+SAT+I&rft.pages=360&rft.pub=Barron%27s+Educational+Series&rft.date=2000&rft.isbn=978-0-7641-0768-9&rft.aulast=Leff&rft.aufirst=Lawrence+S.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fbarronsmathworkb00leff_0&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDudley1978" class="citation book cs1"><a href="/wiki/Underwood_Dudley" title="Underwood Dudley">Dudley, Underwood</a> (1978). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=tr7SzBTsk1UC&pg=PA10">"Section 2: Unique factorization"</a>. <a rel="nofollow" class="external text" href="https://archive.org/details/elementarynumber00dudl_0/page/10"><i>Elementary number theory</i></a> (2nd ed.). W.H. Freeman and Co. p. <a rel="nofollow" class="external text" href="https://archive.org/details/elementarynumber00dudl_0/page/10">10</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7167-0076-0" title="Special:BookSources/978-0-7167-0076-0"><bdi>978-0-7167-0076-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Section+2%3A+Unique+factorization&rft.btitle=Elementary+number+theory&rft.pages=10&rft.edition=2nd&rft.pub=W.H.+Freeman+and+Co.&rft.date=1978&rft.isbn=978-0-7167-0076-0&rft.aulast=Dudley&rft.aufirst=Underwood&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dtr7SzBTsk1UC%26pg%3DPA10&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSierpiński1988" class="citation book cs1"><a href="/wiki/Wac%C5%82aw_Sierpi%C5%84ski" title="Wacław Sierpiński">Sierpiński, Wacław</a> (1988). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ktCZ2MvgN3MC&pg=PA113"><i>Elementary Theory of Numbers</i></a>. North-Holland Mathematical Library. Vol. 31 (2nd ed.). Elsevier. p. 113. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-08-096019-7" title="Special:BookSources/978-0-08-096019-7"><bdi>978-0-08-096019-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elementary+Theory+of+Numbers&rft.series=North-Holland+Mathematical+Library&rft.pages=113&rft.edition=2nd&rft.pub=Elsevier&rft.date=1988&rft.isbn=978-0-08-096019-7&rft.aulast=Sierpi%C5%84ski&rft.aufirst=Wac%C5%82aw&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DktCZ2MvgN3MC%26pg%3DPA113&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-ziegler-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-ziegler_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ziegler_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZiegler2004" class="citation journal cs1"><a href="/wiki/G%C3%BCnter_M._Ziegler" title="Günter M. Ziegler">Ziegler, Günter M.</a> (2004). "The great prime number record races". <i><a href="/wiki/Notices_of_the_American_Mathematical_Society" title="Notices of the American Mathematical Society">Notices of the American Mathematical Society</a></i>. <b>51</b> (4): 414–416. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2039814">2039814</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Notices+of+the+American+Mathematical+Society&rft.atitle=The+great+prime+number+record+races&rft.volume=51&rft.issue=4&rft.pages=414-416&rft.date=2004&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2039814%23id-name%3DMR&rft.aulast=Ziegler&rft.aufirst=G%C3%BCnter+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStillwell1997" class="citation book cs1"><a href="/wiki/John_Stillwell" title="John Stillwell">Stillwell, John</a> (1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=4elkHwVS0eUC&pg=PA9"><i>Numbers and Geometry</i></a>. Undergraduate Texts in Mathematics. Springer. p. 9. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-98289-2" title="Special:BookSources/978-0-387-98289-2"><bdi>978-0-387-98289-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Numbers+and+Geometry&rft.series=Undergraduate+Texts+in+Mathematics&rft.pages=9&rft.pub=Springer&rft.date=1997&rft.isbn=978-0-387-98289-2&rft.aulast=Stillwell&rft.aufirst=John&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D4elkHwVS0eUC%26pg%3DPA9&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSierpiński1964" class="citation book cs1"><a href="/wiki/Wac%C5%82aw_Sierpi%C5%84ski" title="Wacław Sierpiński">Sierpiński, Wacław</a> (1964). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/selectionproblem00sier"><i>A Selection of Problems in the Theory of Numbers</i></a></span>. New York: Macmillan. p. <a rel="nofollow" class="external text" href="https://archive.org/details/selectionproblem00sier/page/n37">40</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0170843">0170843</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Selection+of+Problems+in+the+Theory+of+Numbers&rft.place=New+York&rft.pages=40&rft.pub=Macmillan&rft.date=1964&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0170843%23id-name%3DMR&rft.aulast=Sierpi%C5%84ski&rft.aufirst=Wac%C5%82aw&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fselectionproblem00sier&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNathanson2000" class="citation book cs1"><a href="/wiki/Melvyn_B._Nathanson" title="Melvyn B. Nathanson">Nathanson, Melvyn B.</a> (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=sE7lBwAAQBAJ&pg=PP10">"Notations and Conventions"</a>. <i>Elementary Methods in Number Theory</i>. Graduate Texts in Mathematics. Vol. 195. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-22738-2" title="Special:BookSources/978-0-387-22738-2"><bdi>978-0-387-22738-2</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1732941">1732941</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Notations+and+Conventions&rft.btitle=Elementary+Methods+in+Number+Theory&rft.series=Graduate+Texts+in+Mathematics&rft.pub=Springer&rft.date=2000&rft.isbn=978-0-387-22738-2&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1732941%23id-name%3DMR&rft.aulast=Nathanson&rft.aufirst=Melvyn+B.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DsE7lBwAAQBAJ%26pg%3DPP10&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFaticoni2012" class="citation book cs1">Faticoni, Theodore G. (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=I433i_ZGxRsC&pg=PA44"><i>The Mathematics of Infinity: A Guide to Great Ideas</i></a>. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Vol. 111 (2nd ed.). John Wiley & Sons. p. 44. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-118-24382-4" title="Special:BookSources/978-1-118-24382-4"><bdi>978-1-118-24382-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Mathematics+of+Infinity%3A+A+Guide+to+Great+Ideas&rft.series=Pure+and+Applied+Mathematics%3A+A+Wiley+Series+of+Texts%2C+Monographs+and+Tracts&rft.pages=44&rft.edition=2nd&rft.pub=John+Wiley+%26+Sons&rft.date=2012&rft.isbn=978-1-118-24382-4&rft.aulast=Faticoni&rft.aufirst=Theodore+G.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DI433i_ZGxRsC%26pg%3DPA44&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Bruins, Evert Marie, review in <i>Mathematical Reviews</i> of <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGillings1974" class="citation journal cs1">Gillings, R.J. (1974). "The recto of the Rhind Mathematical Papyrus. How did the ancient Egyptian scribe prepare it?". <i>Archive for History of Exact Sciences</i>. <b>12</b> (4): 291–298. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01307175">10.1007/BF01307175</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0497458">0497458</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121046003">121046003</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Archive+for+History+of+Exact+Sciences&rft.atitle=The+recto+of+the+Rhind+Mathematical+Papyrus.+How+did+the+ancient+Egyptian+scribe+prepare+it%3F&rft.volume=12&rft.issue=4&rft.pages=291-298&rft.date=1974&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0497458%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121046003%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF01307175&rft.aulast=Gillings&rft.aufirst=R.J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-stillwell-2010-p40-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-stillwell-2010-p40_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-stillwell-2010-p40_15-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStillwell2010" class="citation book cs1"><a href="/wiki/John_Stillwell" title="John Stillwell">Stillwell, John</a> (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=V7mxZqjs5yUC&pg=PA40"><i>Mathematics and Its History</i></a>. Undergraduate Texts in Mathematics (3rd ed.). Springer. p. 40. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4419-6052-8" title="Special:BookSources/978-1-4419-6052-8"><bdi>978-1-4419-6052-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics+and+Its+History&rft.series=Undergraduate+Texts+in+Mathematics&rft.pages=40&rft.edition=3rd&rft.pub=Springer&rft.date=2010&rft.isbn=978-1-4419-6052-8&rft.aulast=Stillwell&rft.aufirst=John&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DV7mxZqjs5yUC%26pg%3DPA40&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-pomerance-sciam-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-pomerance-sciam_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pomerance-sciam_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPomerance1982" class="citation journal cs1"><a href="/wiki/Carl_Pomerance" title="Carl Pomerance">Pomerance, Carl</a> (December 1982). "The Search for Prime Numbers". <i><a href="/wiki/Scientific_American" title="Scientific American">Scientific American</a></i>. <b>247</b> (6): 136–147. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982SciAm.247f.136P">1982SciAm.247f.136P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fscientificamerican1282-136">10.1038/scientificamerican1282-136</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/24966751">24966751</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+American&rft.atitle=The+Search+for+Prime+Numbers&rft.volume=247&rft.issue=6&rft.pages=136-147&rft.date=1982-12&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F24966751%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1038%2Fscientificamerican1282-136&rft_id=info%3Abibcode%2F1982SciAm.247f.136P&rft.aulast=Pomerance&rft.aufirst=Carl&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-mollin-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-mollin_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-mollin_17-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-mollin_17-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-mollin_17-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMollin2002" class="citation journal cs1">Mollin, Richard A. (2002). "A brief history of factoring and primality testing B. C. (before computers)". <i>Mathematics Magazine</i>. <b>75</b> (1): 18–29. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3219180">10.2307/3219180</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3219180">3219180</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2107288">2107288</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+Magazine&rft.atitle=A+brief+history+of+factoring+and+primality+testing+B.+C.+%28before+computers%29&rft.volume=75&rft.issue=1&rft.pages=18-29&rft.date=2002&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2107288%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3219180%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F3219180&rft.aulast=Mollin&rft.aufirst=Richard+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'ConnorRobertson" class="citation cs1">O'Connor, John J.; <a href="/wiki/Edmund_F._Robertson" title="Edmund F. Robertson">Robertson, Edmund F.</a> <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Biographies/Al-Haytham.html">"Abu Ali al-Hasan ibn al-Haytham"</a>. <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>. <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Abu+Ali+al-Hasan+ibn+al-Haytham&rft.btitle=MacTutor+History+of+Mathematics+Archive&rft.pub=University+of+St+Andrews&rft.aulast=O%27Connor&rft.aufirst=John+J.&rft.au=Robertson%2C+Edmund+F.&rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FBiographies%2FAl-Haytham.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><a href="#CITEREFSandifer2007">Sandifer 2007</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=sohHs7ExOsYC&pg=PA45">8. Fermat's Little Theorem (November 2003), p. 45</a></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSandifer2014" class="citation book cs1">Sandifer, C. Edward (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3c6iBQAAQBAJ&pg=PA42"><i>How Euler Did Even More</i></a>. Mathematical Association of America. p. 42. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-88385-584-3" title="Special:BookSources/978-0-88385-584-3"><bdi>978-0-88385-584-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=How+Euler+Did+Even+More&rft.pages=42&rft.pub=Mathematical+Association+of+America&rft.date=2014&rft.isbn=978-0-88385-584-3&rft.aulast=Sandifer&rft.aufirst=C.+Edward&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3c6iBQAAQBAJ%26pg%3DPA42&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoshy2002" class="citation book cs1">Koshy, Thomas (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-9pg-4Pa19IC&pg=PA369"><i>Elementary Number Theory with Applications</i></a>. Academic Press. p. 369. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-421171-1" title="Special:BookSources/978-0-12-421171-1"><bdi>978-0-12-421171-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elementary+Number+Theory+with+Applications&rft.pages=369&rft.pub=Academic+Press&rft.date=2002&rft.isbn=978-0-12-421171-1&rft.aulast=Koshy&rft.aufirst=Thomas&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-9pg-4Pa19IC%26pg%3DPA369&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYuan2002" class="citation book cs1">Yuan, Wang (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=g4jVCgAAQBAJ&pg=PA21"><i>Goldbach Conjecture</i></a>. Series In Pure Mathematics. Vol. 4 (2nd ed.). World Scientific. p. 21. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-4487-52-8" title="Special:BookSources/978-981-4487-52-8"><bdi>978-981-4487-52-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Goldbach+Conjecture&rft.series=Series+In+Pure+Mathematics&rft.pages=21&rft.edition=2nd&rft.pub=World+Scientific&rft.date=2002&rft.isbn=978-981-4487-52-8&rft.aulast=Yuan&rft.aufirst=Wang&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dg4jVCgAAQBAJ%26pg%3DPA21&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNarkiewicz2000" class="citation book cs1">Narkiewicz, Wladyslaw (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VVr3EuiHU0YC&pg=PA11">"1.2 Sum of Reciprocals of Primes"</a>. <i>The Development of Prime Number Theory: From Euclid to Hardy and Littlewood</i>. Springer Monographs in Mathematics. Springer. p. 11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-66289-1" title="Special:BookSources/978-3-540-66289-1"><bdi>978-3-540-66289-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=1.2+Sum+of+Reciprocals+of+Primes&rft.btitle=The+Development+of+Prime+Number+Theory%3A+From+Euclid+to+Hardy+and+Littlewood&rft.series=Springer+Monographs+in+Mathematics&rft.pages=11&rft.pub=Springer&rft.date=2000&rft.isbn=978-3-540-66289-1&rft.aulast=Narkiewicz&rft.aufirst=Wladyslaw&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVVr3EuiHU0YC%26pg%3DPA11&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTchebychev1852" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Pafnuty_Chebyshev" title="Pafnuty Chebyshev">Tchebychev, P.</a> (1852). <a rel="nofollow" class="external text" href="http://sites.mathdoc.fr/JMPA/PDF/JMPA_1852_1_17_A19_0.pdf">"Mémoire sur les nombres premiers"</a> <span class="cs1-format">(PDF)</span>. <i>Journal de mathématiques pures et appliquées</i>. Série 1 (in French): 366–390.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+de+math%C3%A9matiques+pures+et+appliqu%C3%A9es&rft.atitle=M%C3%A9moire+sur+les+nombres+premiers.&rft.pages=366-390&rft.date=1852&rft.aulast=Tchebychev&rft.aufirst=P.&rft_id=http%3A%2F%2Fsites.mathdoc.fr%2FJMPA%2FPDF%2FJMPA_1852_1_17_A19_0.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span>. (Proof of the postulate: 371–382). Also see Mémoires de l'Académie Impériale des Sciences de St. Pétersbourg, vol. 7, pp. 15–33, 1854</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApostol2000" class="citation book cs1"><a href="/wiki/Tom_M._Apostol" title="Tom M. Apostol">Apostol, Tom M.</a> (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=aiDyBwAAQBAJ&pg=PA1">"A centennial history of the prime number theorem"</a>. In Bambah, R.P.; Dumir, V.C.; Hans-Gill, R.J. (eds.). <i>Number Theory</i>. Trends in Mathematics. Basel: Birkhäuser. pp. 1–14. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1764793">1764793</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=A+centennial+history+of+the+prime+number+theorem&rft.btitle=Number+Theory&rft.place=Basel&rft.series=Trends+in+Mathematics&rft.pages=1-14&rft.pub=Birkh%C3%A4user&rft.date=2000&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1764793%23id-name%3DMR&rft.aulast=Apostol&rft.aufirst=Tom+M.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DaiDyBwAAQBAJ%26pg%3DPA1&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApostol1976" class="citation book cs1"><a href="/wiki/Tom_M._Apostol" title="Tom M. Apostol">Apostol, Tom M.</a> (1976). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3yoBCAAAQBAJ&pg=PA146">"7. Dirichlet's Theorem on Primes in Arithmetical Progressions"</a>. <i>Introduction to Analytic Number Theory</i>. New York; Heidelberg: Springer-Verlag. pp. 146–156. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0434929">0434929</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=7.+Dirichlet%27s+Theorem+on+Primes+in+Arithmetical+Progressions&rft.btitle=Introduction+to+Analytic+Number+Theory&rft.place=New+York%3B+Heidelberg&rft.pages=146-156&rft.pub=Springer-Verlag&rft.date=1976&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0434929%23id-name%3DMR&rft.aulast=Apostol&rft.aufirst=Tom+M.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3yoBCAAAQBAJ%26pg%3DPA146&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChabert2012" class="citation book cs1">Chabert, Jean-Luc (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XcDqCAAAQBAJ&pg=PA261"><i>A History of Algorithms: From the Pebble to the Microchip</i></a>. Springer. p. 261. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-18192-4" title="Special:BookSources/978-3-642-18192-4"><bdi>978-3-642-18192-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+History+of+Algorithms%3A+From+the+Pebble+to+the+Microchip&rft.pages=261&rft.pub=Springer&rft.date=2012&rft.isbn=978-3-642-18192-4&rft.aulast=Chabert&rft.aufirst=Jean-Luc&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXcDqCAAAQBAJ%26pg%3DPA261&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRosen2000" class="citation book cs1">Rosen, Kenneth H. (2000). "Theorem 9.20. Proth's Primality Test". <i>Elementary Number Theory and Its Applications</i> (4th ed.). Addison-Wesley. p. 342. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-201-87073-2" title="Special:BookSources/978-0-201-87073-2"><bdi>978-0-201-87073-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Theorem+9.20.+Proth%27s+Primality+Test&rft.btitle=Elementary+Number+Theory+and+Its+Applications&rft.pages=342&rft.edition=4th&rft.pub=Addison-Wesley&rft.date=2000&rft.isbn=978-0-201-87073-2&rft.aulast=Rosen&rft.aufirst=Kenneth+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCooperHodges2016" class="citation book cs1">Cooper, S. Barry; Hodges, Andrew (2016). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=h12cCwAAQBAJ&pg=PA37"><i>The Once and Future Turing</i></a>. Cambridge University Press. pp. 37–38. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-107-01083-3" title="Special:BookSources/978-1-107-01083-3"><bdi>978-1-107-01083-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Once+and+Future+Turing&rft.pages=37-38&rft.pub=Cambridge+University+Press&rft.date=2016&rft.isbn=978-1-107-01083-3&rft.aulast=Cooper&rft.aufirst=S.+Barry&rft.au=Hodges%2C+Andrew&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dh12cCwAAQBAJ%26pg%3DPA37&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><a href="#CITEREFRosen2000">Rosen 2000</a>, p. 245.</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeiler1999" class="citation book cs1">Beiler, Albert H. (1999) [1966]. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NbbbL9gMJ88C&pg=PA2"><i>Recreations in the Theory of Numbers: The Queen of Mathematics Entertains</i></a>. Dover. p. 2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-21096-4" title="Special:BookSources/978-0-486-21096-4"><bdi>978-0-486-21096-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/444171535">444171535</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Recreations+in+the+Theory+of+Numbers%3A+The+Queen+of+Mathematics+Entertains&rft.pages=2&rft.pub=Dover&rft.date=1999&rft_id=info%3Aoclcnum%2F444171535&rft.isbn=978-0-486-21096-4&rft.aulast=Beiler&rft.aufirst=Albert+H.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNbbbL9gMJ88C%26pg%3DPA2&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatz2004" class="citation journal cs1">Katz, Shaul (2004). "Berlin roots – Zionist incarnation: the ethos of pure mathematics and the beginnings of the Einstein Institute of Mathematics at the Hebrew University of Jerusalem". <i>Science in Context</i>. <b>17</b> (1–2): 199–234. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0269889704000092">10.1017/S0269889704000092</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2089305">2089305</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:145575536">145575536</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+in+Context&rft.atitle=Berlin+roots+%E2%80%93+Zionist+incarnation%3A+the+ethos+of+pure+mathematics+and+the+beginnings+of+the+Einstein+Institute+of+Mathematics+at+the+Hebrew+University+of+Jerusalem&rft.volume=17&rft.issue=1%E2%80%932&rft.pages=199-234&rft.date=2004&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2089305%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A145575536%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1017%2FS0269889704000092&rft.aulast=Katz&rft.aufirst=Shaul&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-ent-7-35"><span class="mw-cite-backlink">^ <a href="#cite_ref-ent-7_35-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ent-7_35-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-ent-7_35-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKraftWashington2014" class="citation book cs1">Kraft, James S.; Washington, Lawrence C. (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=4NAqBgAAQBAJ&pg=PA7"><i>Elementary Number Theory</i></a>. Textbooks in mathematics. CRC Press. p. 7. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4987-0269-0" title="Special:BookSources/978-1-4987-0269-0"><bdi>978-1-4987-0269-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elementary+Number+Theory&rft.series=Textbooks+in+mathematics&rft.pages=7&rft.pub=CRC+Press&rft.date=2014&rft.isbn=978-1-4987-0269-0&rft.aulast=Kraft&rft.aufirst=James+S.&rft.au=Washington%2C+Lawrence+C.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D4NAqBgAAQBAJ%26pg%3DPA7&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBauer2013" class="citation book cs1">Bauer, Craig P. (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=EBkEGAOlCDsC&pg=PA468"><i>Secret History: The Story of Cryptology</i></a>. Discrete Mathematics and Its Applications. CRC Press. p. 468. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4665-6186-1" title="Special:BookSources/978-1-4665-6186-1"><bdi>978-1-4665-6186-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Secret+History%3A+The+Story+of+Cryptology&rft.series=Discrete+Mathematics+and+Its+Applications&rft.pages=468&rft.pub=CRC+Press&rft.date=2013&rft.isbn=978-1-4665-6186-1&rft.aulast=Bauer&rft.aufirst=Craig+P.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DEBkEGAOlCDsC%26pg%3DPA468&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleeWagon1991" class="citation book cs1"><a href="/wiki/Victor_Klee" title="Victor Klee">Klee, Victor</a>; <a href="/wiki/Stan_Wagon" title="Stan Wagon">Wagon, Stan</a> (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=tRdoIhHh3moC&pg=PA224"><i>Old and New Unsolved Problems in Plane Geometry and Number Theory</i></a>. Dolciani mathematical expositions. Vol. 11. Cambridge University Press. p. 224. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-88385-315-3" title="Special:BookSources/978-0-88385-315-3"><bdi>978-0-88385-315-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Old+and+New+Unsolved+Problems+in+Plane+Geometry+and+Number+Theory&rft.series=Dolciani+mathematical+expositions&rft.pages=224&rft.pub=Cambridge+University+Press&rft.date=1991&rft.isbn=978-0-88385-315-3&rft.aulast=Klee&rft.aufirst=Victor&rft.au=Wagon%2C+Stan&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DtRdoIhHh3moC%26pg%3DPA224&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-neale-18-47-38"><span class="mw-cite-backlink">^ <a href="#cite_ref-neale-18-47_38-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-neale-18-47_38-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFNeale2017">Neale 2017</a>, pp. 18, 47.</span> </li> <li id="cite_note-crxk-34-39"><span class="mw-cite-backlink">^ <a href="#cite_ref-crxk-34_39-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-crxk-34_39-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaldwellReddickXiongKeller2012" class="citation journal cs1">Caldwell, Chris K.; Reddick, Angela; Xiong, Yeng; Keller, Wilfrid (2012). <a rel="nofollow" class="external text" href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Caldwell2/cald6.html">"The history of the primality of one: a selection of sources"</a>. <i><a href="/wiki/Journal_of_Integer_Sequences" title="Journal of Integer Sequences">Journal of Integer Sequences</a></i>. <b>15</b> (9): Article 12.9.8. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3005523">3005523</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Integer+Sequences&rft.atitle=The+history+of+the+primality+of+one%3A+a+selection+of+sources&rft.volume=15&rft.issue=9&rft.pages=Article+12.9.8&rft.date=2012&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3005523%23id-name%3DMR&rft.aulast=Caldwell&rft.aufirst=Chris+K.&rft.au=Reddick%2C+Angela&rft.au=Xiong%2C+Yeng&rft.au=Keller%2C+Wilfrid&rft_id=https%3A%2F%2Fcs.uwaterloo.ca%2Fjournals%2FJIS%2FVOL15%2FCaldwell2%2Fcald6.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span> For a selection of quotes from and about the ancient Greek positions on the status of 1 and 2, see in particular pp. 3–4. For the Islamic mathematicians, see p. 6.</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTarán1981" class="citation book cs1">Tarán, Leonardo (1981). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=cUPXqSb7V1wC&pg=PA35"><i>Speusippus of Athens: A Critical Study With a Collection of the Related Texts and Commentary</i></a>. Philosophia Antiqua : A Series of Monographs on Ancient Philosophy. Vol. 39. Brill. pp. 35–38. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-90-04-06505-5" title="Special:BookSources/978-90-04-06505-5"><bdi>978-90-04-06505-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Speusippus+of+Athens%3A+A+Critical+Study+With+a+Collection+of+the+Related+Texts+and+Commentary&rft.series=Philosophia+Antiqua+%3A+A+Series+of+Monographs+on+Ancient+Philosophy&rft.pages=35-38&rft.pub=Brill&rft.date=1981&rft.isbn=978-90-04-06505-5&rft.aulast=Tar%C3%A1n&rft.aufirst=Leonardo&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DcUPXqSb7V1wC%26pg%3DPA35&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><a href="#CITEREFCaldwellReddickXiongKeller2012">Caldwell et al. 2012</a>, pp. 7–13. See in particular the entries for Stevin, Brancker, Wallis, and Prestet.</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><a href="#CITEREFCaldwellReddickXiongKeller2012">Caldwell et al. 2012</a>, pp. 6–7.</span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><a href="#CITEREFCaldwellReddickXiongKeller2012">Caldwell et al. 2012</a>, p. 15.</span> </li> <li id="cite_note-cx-44"><span class="mw-cite-backlink">^ <a href="#cite_ref-cx_44-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-cx_44-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-cx_44-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-cx_44-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaldwellXiong2012" class="citation journal cs1">Caldwell, Chris K.; Xiong, Yeng (2012). <a rel="nofollow" class="external text" href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Caldwell1/cald5.pdf">"What is the smallest prime?"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Journal_of_Integer_Sequences" title="Journal of Integer Sequences">Journal of Integer Sequences</a></i>. <b>15</b> (9): Article 12.9.7. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3005530">3005530</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Integer+Sequences&rft.atitle=What+is+the+smallest+prime%3F&rft.volume=15&rft.issue=9&rft.pages=Article+12.9.7&rft.date=2012&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3005530%23id-name%3DMR&rft.aulast=Caldwell&rft.aufirst=Chris+K.&rft.au=Xiong%2C+Yeng&rft_id=https%3A%2F%2Fcs.uwaterloo.ca%2Fjournals%2FJIS%2FVOL15%2FCaldwell1%2Fcald5.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEConwayGuy1996130-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEConwayGuy1996130_45-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFConwayGuy1996">Conway & Guy 1996</a>, pp. 130.</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiesel1994" class="citation book cs1"><a href="/wiki/Hans_Riesel" title="Hans Riesel">Riesel, Hans</a> (1994). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ITvaBwAAQBAJ&pg=PA36"><i>Prime Numbers and Computer Methods for Factorization</i></a> (2nd ed.). Basel, Switzerland: Birkhäuser. p. 36. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4612-0251-6">10.1007/978-1-4612-0251-6</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8176-3743-9" title="Special:BookSources/978-0-8176-3743-9"><bdi>978-0-8176-3743-9</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1292250">1292250</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Prime+Numbers+and+Computer+Methods+for+Factorization&rft.place=Basel%2C+Switzerland&rft.pages=36&rft.edition=2nd&rft.pub=Birkh%C3%A4user&rft.date=1994&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1292250%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-1-4612-0251-6&rft.isbn=978-0-8176-3743-9&rft.aulast=Riesel&rft.aufirst=Hans&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DITvaBwAAQBAJ%26pg%3DPA36&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-cg-bon-129-130-47"><span class="mw-cite-backlink">^ <a href="#cite_ref-cg-bon-129-130_47-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-cg-bon-129-130_47-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConwayGuy1996" class="citation book cs1"><a href="/wiki/John_Horton_Conway" title="John Horton Conway">Conway, John Horton</a>; <a href="/wiki/Richard_K._Guy" title="Richard K. Guy">Guy, Richard K.</a> (1996). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/bookofnumbers0000conw"><i>The Book of Numbers</i></a></span>. New York: Copernicus. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/bookofnumbers0000conw/page/129">129–130</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4612-4072-3">10.1007/978-1-4612-4072-3</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-97993-9" title="Special:BookSources/978-0-387-97993-9"><bdi>978-0-387-97993-9</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1411676">1411676</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Book+of+Numbers&rft.place=New+York&rft.pages=129-130&rft.pub=Copernicus&rft.date=1996&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1411676%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-1-4612-4072-3&rft.isbn=978-0-387-97993-9&rft.aulast=Conway&rft.aufirst=John+Horton&rft.au=Guy%2C+Richard+K.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fbookofnumbers0000conw&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text">For the totient, see <a href="#CITEREFSierpiński1988">Sierpiński 1988</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ktCZ2MvgN3MC&pg=PA245">p. 245</a>. For the sum of divisors, see <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSandifer2007" class="citation book cs1">Sandifer, C. Edward (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=sohHs7ExOsYC&pg=PA59"><i>How Euler Did It</i></a>. MAA Spectrum. Mathematical Association of America. p. 59. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-88385-563-8" title="Special:BookSources/978-0-88385-563-8"><bdi>978-0-88385-563-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=How+Euler+Did+It&rft.series=MAA+Spectrum&rft.pages=59&rft.pub=Mathematical+Association+of+America&rft.date=2007&rft.isbn=978-0-88385-563-8&rft.aulast=Sandifer&rft.aufirst=C.+Edward&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DsohHs7ExOsYC%26pg%3DPA59&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmith2011" class="citation book cs1">Smith, Karl J. (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Di0HyCgDYq8C&pg=PA188"><i>The Nature of Mathematics</i></a> (12th ed.). Cengage Learning. p. 188. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-538-73758-6" title="Special:BookSources/978-0-538-73758-6"><bdi>978-0-538-73758-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Nature+of+Mathematics&rft.pages=188&rft.edition=12th&rft.pub=Cengage+Learning&rft.date=2011&rft.isbn=978-0-538-73758-6&rft.aulast=Smith&rft.aufirst=Karl+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DDi0HyCgDYq8C%26pg%3DPA188&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><a href="#CITEREFDudley1978">Dudley 1978</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=tr7SzBTsk1UC&pg=PA16">Section 2, Theorem 2, p. 16</a>; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeale2017" class="citation book cs1"><a href="/wiki/Vicky_Neale" title="Vicky Neale">Neale, Vicky</a> (2017). <a href="/wiki/Closing_the_Gap:_The_Quest_to_Understand_Prime_Numbers" title="Closing the Gap: The Quest to Understand Prime Numbers"><i>Closing the Gap: The Quest to Understand Prime Numbers</i></a>. Oxford University Press. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=T7Q1DwAAQBAJ&pg=PA107">p. 107</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-109243-5" title="Special:BookSources/978-0-19-109243-5"><bdi>978-0-19-109243-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Closing+the+Gap%3A+The+Quest+to+Understand+Prime+Numbers&rft.pages=p.+107&rft.pub=Oxford+University+Press&rft.date=2017&rft.isbn=978-0-19-109243-5&rft.aulast=Neale&rft.aufirst=Vicky&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFdu_Sautoy2003" class="citation book cs1"><a href="/wiki/Marcus_du_Sautoy" title="Marcus du Sautoy">du Sautoy, Marcus</a> (2003). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/musicofprimessea00dusa"><i>The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics</i></a></span>. Harper Collins. p. <a rel="nofollow" class="external text" href="https://archive.org/details/musicofprimessea00dusa/page/23">23</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-06-093558-0" title="Special:BookSources/978-0-06-093558-0"><bdi>978-0-06-093558-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Music+of+the+Primes%3A+Searching+to+Solve+the+Greatest+Mystery+in+Mathematics&rft.pages=23&rft.pub=Harper+Collins&rft.date=2003&rft.isbn=978-0-06-093558-0&rft.aulast=du+Sautoy&rft.aufirst=Marcus&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmusicofprimessea00dusa&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><a href="#CITEREFDudley1978">Dudley 1978</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=tr7SzBTsk1UC&pg=PA15">Section 2, Lemma 5, p. 15</a>; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHiggins1998" class="citation book cs1">Higgins, Peter M. (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=LeYH8P8S9oQC&pg=PA77"><i>Mathematics for the Curious</i></a>. Oxford University Press. pp. 77–78. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-150050-3" title="Special:BookSources/978-0-19-150050-3"><bdi>978-0-19-150050-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics+for+the+Curious&rft.pages=77-78&rft.pub=Oxford+University+Press&rft.date=1998&rft.isbn=978-0-19-150050-3&rft.aulast=Higgins&rft.aufirst=Peter+M.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLeYH8P8S9oQC%26pg%3DPA77&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRotman2000" class="citation book cs1">Rotman, Joseph J. (2000). <i>A First Course in Abstract Algebra</i> (2nd ed.). Prentice Hall. Problem 1.40, p. 56. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-13-011584-3" title="Special:BookSources/978-0-13-011584-3"><bdi>978-0-13-011584-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+First+Course+in+Abstract+Algebra&rft.pages=Problem+1.40%2C+p.+56&rft.edition=2nd&rft.pub=Prentice+Hall&rft.date=2000&rft.isbn=978-0-13-011584-3&rft.aulast=Rotman&rft.aufirst=Joseph+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.math.dartmouth.edu/~euler/correspondence/letters/OO0722.pdf">Letter</a> in <a href="/wiki/Latin" title="Latin">Latin</a> from Goldbach to Euler, July 1730.</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFurstenberg1955" class="citation journal cs1"><a href="/wiki/Hillel_Furstenberg" title="Hillel Furstenberg">Furstenberg, Harry</a> (1955). "On the infinitude of primes". <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a></i>. <b>62</b> (5): 353. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2307043">10.2307/2307043</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2307043">2307043</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0068566">0068566</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=On+the+infinitude+of+primes&rft.volume=62&rft.issue=5&rft.pages=353&rft.date=1955&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0068566%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2307043%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2307043&rft.aulast=Furstenberg&rft.aufirst=Harry&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRibenboim2004" class="citation book cs1"><a href="/wiki/Paulo_Ribenboim" title="Paulo Ribenboim">Ribenboim, Paulo</a> (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=SvnTBwAAQBAJ&pg=PA5"><i>The little book of bigger primes</i></a>. Berlin; New York: Springer-Verlag. p. 4. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-20169-6" title="Special:BookSources/978-0-387-20169-6"><bdi>978-0-387-20169-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+little+book+of+bigger+primes&rft.place=Berlin%3B+New+York&rft.pages=4&rft.pub=Springer-Verlag&rft.date=2004&rft.isbn=978-0-387-20169-6&rft.aulast=Ribenboim&rft.aufirst=Paulo&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSvnTBwAAQBAJ%26pg%3DPA5&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><a href="/wiki/Euclid%27s_Elements" title="Euclid's Elements">Euclid's <i>Elements</i></a>, Book IX, Proposition 20. See <a rel="nofollow" class="external text" href="http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX20.html">David Joyce's English translation of Euclid's proof</a> or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliamson1782" class="citation book cs1">Williamson, James (1782). <a rel="nofollow" class="external text" href="https://babel.hathitrust.org/cgi/pt?id=umn.31951000084215o;view=1up;seq=95"><i>The Elements of Euclid, With Dissertations</i></a>. Oxford: <a href="/wiki/Clarendon_Press" class="mw-redirect" title="Clarendon Press">Clarendon Press</a>. p. 63. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/642232959">642232959</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Elements+of+Euclid%2C+With+Dissertations&rft.place=Oxford&rft.pages=63&rft.pub=Clarendon+Press&rft.date=1782&rft_id=info%3Aoclcnum%2F642232959&rft.aulast=Williamson&rft.aufirst=James&rft_id=https%3A%2F%2Fbabel.hathitrust.org%2Fcgi%2Fpt%3Fid%3Dumn.31951000084215o%3Bview%3D1up%3Bseq%3D95&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVardi1991" class="citation book cs1">Vardi, Ilan (1991). <i>Computational Recreations in Mathematica</i>. Addison-Wesley. pp. 82–89. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-201-52989-0" title="Special:BookSources/978-0-201-52989-0"><bdi>978-0-201-52989-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computational+Recreations+in+Mathematica&rft.pages=82-89&rft.pub=Addison-Wesley&rft.date=1991&rft.isbn=978-0-201-52989-0&rft.aulast=Vardi&rft.aufirst=Ilan&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-matiyasevich-59"><span class="mw-cite-backlink">^ <a href="#cite_ref-matiyasevich_59-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-matiyasevich_59-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-matiyasevich_59-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMatiyasevich1999" class="citation book cs1"><a href="/wiki/Yuri_Matiyasevich" title="Yuri Matiyasevich">Matiyasevich, Yuri V.</a> (1999). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=oLKlk5o6WroC&pg=PA13">"Formulas for prime numbers"</a>. In <a href="/wiki/Sergei_Tabachnikov" title="Sergei Tabachnikov">Tabachnikov, Serge</a> (ed.). <i>Kvant Selecta: Algebra and Analysis</i>. Vol. II. <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>. pp. 13–24. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-1915-9" title="Special:BookSources/978-0-8218-1915-9"><bdi>978-0-8218-1915-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Formulas+for+prime+numbers&rft.btitle=Kvant+Selecta%3A+Algebra+and+Analysis&rft.pages=13-24&rft.pub=American+Mathematical+Society&rft.date=1999&rft.isbn=978-0-8218-1915-9&rft.aulast=Matiyasevich&rft.aufirst=Yuri+V.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DoLKlk5o6WroC%26pg%3DPA13&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMackinnon1987" class="citation journal cs1">Mackinnon, Nick (June 1987). "Prime number formulae". <i><a href="/wiki/The_Mathematical_Gazette" title="The Mathematical Gazette">The Mathematical Gazette</a></i>. <b>71</b> (456): 113–114. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3616496">10.2307/3616496</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3616496">3616496</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:171537609">171537609</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Mathematical+Gazette&rft.atitle=Prime+number+formulae&rft.volume=71&rft.issue=456&rft.pages=113-114&rft.date=1987-06&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A171537609%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3616496%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F3616496&rft.aulast=Mackinnon&rft.aufirst=Nick&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWright1951" class="citation journal cs1"><a href="/wiki/E._M._Wright" title="E. M. Wright">Wright, E.M.</a> (1951). "A prime-representing function". <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a></i>. <b>58</b> (9): 616–618. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2306356">10.2307/2306356</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2306356">2306356</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=A+prime-representing+function&rft.volume=58&rft.issue=9&rft.pages=616-618&rft.date=1951&rft_id=info%3Adoi%2F10.2307%2F2306356&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2306356%23id-name%3DJSTOR&rft.aulast=Wright&rft.aufirst=E.M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><a href="#CITEREFGuy2013">Guy 2013</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=EbLzBwAAQBAJ&pg=PR7">p. vii</a>.</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><a href="#CITEREFGuy2013">Guy 2013</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=EbLzBwAAQBAJ&pg=PA105">C1 Goldbach's conjecture, pp. 105–107</a>.</span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOliveira_e_SilvaHerzogPardi2014" class="citation journal cs1">Oliveira e Silva, Tomás; Herzog, Siegfried; Pardi, Silvio (2014). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-2013-02787-1">"Empirical verification of the even Goldbach conjecture and computation of prime gaps up to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4\cdot 10^{18}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>18</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4\cdot 10^{18}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddafb9809111d88d71982711a1ec9cde3e62e901" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.043ex; height:2.676ex;" alt="{\displaystyle 4\cdot 10^{18}}"></span>"</a>. <i><a href="/wiki/Mathematics_of_Computation" title="Mathematics of Computation">Mathematics of Computation</a></i>. <b>83</b> (288): 2033–2060. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-2013-02787-1">10.1090/S0025-5718-2013-02787-1</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3194140">3194140</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=Empirical+verification+of+the+even+Goldbach+conjecture+and+computation+of+prime+gaps+up+to+MATH+RENDER+ERROR&rft.volume=83&rft.issue=288&rft.pages=2033-2060&rft.date=2014&rft_id=info%3Adoi%2F10.1090%2FS0025-5718-2013-02787-1&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3194140%23id-name%3DMR&rft.aulast=Oliveira+e+Silva&rft.aufirst=Tom%C3%A1s&rft.au=Herzog%2C+Siegfried&rft.au=Pardi%2C+Silvio&rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252FS0025-5718-2013-02787-1&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><a href="#CITEREFTao2009">Tao 2009</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NxnVAwAAQBAJ&pg=PA239">3.1 Structure and randomness in the prime numbers, pp. 239–247</a>. See especially p. 239.</span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><a href="#CITEREFGuy2013">Guy 2013</a>, p. 159.</span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRamaré1995" class="citation journal cs1">Ramaré, Olivier (1995). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220209175544/http://www.numdam.org/item/?id=ASNSP_1995_4_22_4_645_0">"On Šnirel'man's constant"</a>. <i>Annali della Scuola Normale Superiore di Pisa</i>. <b>22</b> (4): 645–706. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1375315">1375315</a>. Archived from <a rel="nofollow" class="external text" href="https://www.numdam.org/item?id=ASNSP_1995_4_22_4_645_0">the original</a> on 2022-02-09<span class="reference-accessdate">. Retrieved <span class="nowrap">2018-01-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annali+della+Scuola+Normale+Superiore+di+Pisa&rft.atitle=On+%C5%A0nirel%27man%27s+constant&rft.volume=22&rft.issue=4&rft.pages=645-706&rft.date=1995&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1375315%23id-name%3DMR&rft.aulast=Ramar%C3%A9&rft.aufirst=Olivier&rft_id=https%3A%2F%2Fwww.numdam.org%2Fitem%3Fid%3DASNSP_1995_4_22_4_645_0&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRassias2017" class="citation book cs1">Rassias, Michael Th. (2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ibwpDwAAQBAJ&pg=PP6"><i>Goldbach's Problem: Selected Topics</i></a>. Cham: Springer. p. vii. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-57914-6">10.1007/978-3-319-57914-6</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-57912-2" title="Special:BookSources/978-3-319-57912-2"><bdi>978-3-319-57912-2</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3674356">3674356</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Goldbach%27s+Problem%3A+Selected+Topics&rft.place=Cham&rft.pages=vii&rft.pub=Springer&rft.date=2017&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3674356%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-3-319-57914-6&rft.isbn=978-3-319-57912-2&rft.aulast=Rassias&rft.aufirst=Michael+Th.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DibwpDwAAQBAJ%26pg%3DPP6&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><a href="#CITEREFKoshy2002">Koshy 2002</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-9pg-4Pa19IC&pg=PA109">Theorem 2.14, p. 109</a>. <a href="#CITEREFRiesel1994">Riesel 1994</a> gives a similar argument using the <a href="/wiki/Primorial" title="Primorial">primorial</a> in place of the factorial.</span> </li> <li id="cite_note-riesel-gaps-70"><span class="mw-cite-backlink">^ <a href="#cite_ref-riesel-gaps_70-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-riesel-gaps_70-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFRiesel1994">Riesel 1994</a>, "<a rel="nofollow" class="external text" href="https://books.google.com/books?id=ITvaBwAAQBAJ&pg=PA78">Large gaps between consecutive primes</a>", pp. 78–79.</span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSloane_"A100964"" class="citation web cs1"><a href="/wiki/Neil_Sloane" title="Neil Sloane">Sloane, N. J. A.</a> (ed.). <a rel="nofollow" class="external text" href="https://oeis.org/A100964">"Sequence A100964 (Smallest prime number that begins a prime gap of at least 2n)"</a>. <i>The <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">On-Line Encyclopedia of Integer Sequences</a></i>. OEIS Foundation.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+On-Line+Encyclopedia+of+Integer+Sequences&rft.atitle=Sequence%26%23x20%3BA100964%26%23x20%3B%28Smallest+prime+number+that+begins+a+prime+gap+of+at+least+2n%29&rft_id=https%3A%2F%2Foeis.org%2FA100964&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-rib-gaps-72"><span class="mw-cite-backlink">^ <a href="#cite_ref-rib-gaps_72-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-rib-gaps_72-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-rib-gaps_72-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFRibenboim2004">Ribenboim 2004</a>, Gaps between primes, pp. 186–192.</span> </li> <li id="cite_note-rib-183-73"><span class="mw-cite-backlink">^ <a href="#cite_ref-rib-183_73-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-rib-183_73-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFRibenboim2004">Ribenboim 2004</a>, p. 183.</span> </li> <li id="cite_note-chan-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-chan_74-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChan1996" class="citation journal cs1">Chan, Joel (February 1996). "Prime time!". <i>Math Horizons</i>. <b>3</b> (3): 23–25. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F10724117.1996.11974965">10.1080/10724117.1996.11974965</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/25678057">25678057</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Math+Horizons&rft.atitle=Prime+time%21&rft.volume=3&rft.issue=3&rft.pages=23-25&rft.date=1996-02&rft_id=info%3Adoi%2F10.1080%2F10724117.1996.11974965&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F25678057%23id-name%3DJSTOR&rft.aulast=Chan&rft.aufirst=Joel&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span> Note that Chan lists Legendre's conjecture as "Sierpinski's Postulate".</span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><a href="#CITEREFRibenboim2004">Ribenboim 2004</a>, Prime <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-tuples conjecture, pp. 201–202.</span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><a href="#CITEREFSandifer2007">Sandifer 2007</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=sohHs7ExOsYC&pg=PA205">Chapter 35, Estimating the Basel problem, pp. 205–208</a>.</span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOgilvyAnderson1988" class="citation book cs1"><a href="/wiki/C._Stanley_Ogilvy" title="C. Stanley Ogilvy">Ogilvy, C.S.</a>; Anderson, J.T. (1988). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=efbaDLlTXvMC&pg=PA29"><i>Excursions in Number Theory</i></a>. Dover Publications Inc. pp. 29–35. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-25778-5" title="Special:BookSources/978-0-486-25778-5"><bdi>978-0-486-25778-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Excursions+in+Number+Theory&rft.pages=29-35&rft.pub=Dover+Publications+Inc.&rft.date=1988&rft.isbn=978-0-486-25778-5&rft.aulast=Ogilvy&rft.aufirst=C.S.&rft.au=Anderson%2C+J.T.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DefbaDLlTXvMC%26pg%3DPA29&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><a href="#CITEREFApostol1976">Apostol 1976</a>, Section 1.6, Theorem 1.13</span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><a href="#CITEREFApostol1976">Apostol 1976</a>, Section 4.8, Theorem 4.12</span> </li> <li id="cite_note-mtb-invitation-80"><span class="mw-cite-backlink">^ <a href="#cite_ref-mtb-invitation_80-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-mtb-invitation_80-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMillerTakloo-Bighash2006" class="citation book cs1">Miller, Steven J.; Takloo-Bighash, Ramin (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=kLz4z8iwKiwC&pg=PA43"><i>An Invitation to Modern Number Theory</i></a>. Princeton University Press. pp. 43–44. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-12060-7" title="Special:BookSources/978-0-691-12060-7"><bdi>978-0-691-12060-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Invitation+to+Modern+Number+Theory&rft.pages=43-44&rft.pub=Princeton+University+Press&rft.date=2006&rft.isbn=978-0-691-12060-7&rft.aulast=Miller&rft.aufirst=Steven+J.&rft.au=Takloo-Bighash%2C+Ramin&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DkLz4z8iwKiwC%26pg%3DPA43&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><a href="#CITEREFCrandallPomerance2005">Crandall & Pomerance 2005</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=RbEz-_D7sAUC&pg=PA6">p. 6</a>.</span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><a href="#CITEREFCrandallPomerance2005">Crandall & Pomerance 2005</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ZXjHKPS1LEAC&pg=PA152">Section 3.7, Counting primes, pp. 152–162</a>.</span> </li> <li id="cite_note-cranpom10-83"><span class="mw-cite-backlink">^ <a href="#cite_ref-cranpom10_83-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-cranpom10_83-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFCrandallPomerance2005">Crandall & Pomerance 2005</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=RbEz-_D7sAUC&pg=PA10">p. 10</a>.</span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFdu_Sautoy2011" class="citation book cs1"><a href="/wiki/Marcus_du_Sautoy" title="Marcus du Sautoy">du Sautoy, Marcus</a> (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=snaUbkIb8SEC&pg=PA50">"What are the odds that your telephone number is prime?"</a>. <i>The Number Mysteries: A Mathematical Odyssey through Everyday Life</i>. St. Martin's Press. pp. 50–52. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-230-12028-0" title="Special:BookSources/978-0-230-12028-0"><bdi>978-0-230-12028-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=What+are+the+odds+that+your+telephone+number+is+prime%3F&rft.btitle=The+Number+Mysteries%3A+A+Mathematical+Odyssey+through+Everyday+Life&rft.pages=50-52&rft.pub=St.+Martin%27s+Press&rft.date=2011&rft.isbn=978-0-230-12028-0&rft.aulast=du+Sautoy&rft.aufirst=Marcus&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DsnaUbkIb8SEC%26pg%3DPA50&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text"><a href="#CITEREFApostol1976">Apostol 1976</a>, Section 4.6, Theorem 4.7</span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGelfandShen2003" class="citation book cs1"><a href="/wiki/Israel_Gelfand" title="Israel Gelfand">Gelfand, Israel M.</a>; Shen, Alexander (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Z9z7iliyFD0C&pg=PA37"><i>Algebra</i></a>. Springer. p. 37. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8176-3677-7" title="Special:BookSources/978-0-8176-3677-7"><bdi>978-0-8176-3677-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebra&rft.pages=37&rft.pub=Springer&rft.date=2003&rft.isbn=978-0-8176-3677-7&rft.aulast=Gelfand&rft.aufirst=Israel+M.&rft.au=Shen%2C+Alexander&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZ9z7iliyFD0C%26pg%3DPA37&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMollin1997" class="citation book cs1">Mollin, Richard A. (1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Fsaa3MUUQYkC&pg=PA76"><i>Fundamental Number Theory with Applications</i></a>. Discrete Mathematics and Its Applications. CRC Press. p. 76. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8493-3987-5" title="Special:BookSources/978-0-8493-3987-5"><bdi>978-0-8493-3987-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamental+Number+Theory+with+Applications&rft.series=Discrete+Mathematics+and+Its+Applications&rft.pages=76&rft.pub=CRC+Press&rft.date=1997&rft.isbn=978-0-8493-3987-5&rft.aulast=Mollin&rft.aufirst=Richard+A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DFsaa3MUUQYkC%26pg%3DPA76&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text"><a href="#CITEREFCrandallPomerance2005">Crandall & Pomerance 2005</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ZXjHKPS1LEAC&pg=PA">Theorem 1.1.5, p. 12</a>.</span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreenTao2008" class="citation journal cs1"><a href="/wiki/Ben_J._Green" class="mw-redirect" title="Ben J. Green">Green, Ben</a>; <a href="/wiki/Terence_Tao" title="Terence Tao">Tao, Terence</a> (2008). "The primes contain arbitrarily long arithmetic progressions". <i><a href="/wiki/Annals_of_Mathematics" title="Annals of Mathematics">Annals of Mathematics</a></i>. <b>167</b> (2): 481–547. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math.NT/0404188">math.NT/0404188</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2008.167.481">10.4007/annals.2008.167.481</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1883951">1883951</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=The+primes+contain+arbitrarily+long+arithmetic+progressions&rft.volume=167&rft.issue=2&rft.pages=481-547&rft.date=2008&rft_id=info%3Aarxiv%2Fmath.NT%2F0404188&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1883951%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4007%2Fannals.2008.167.481&rft.aulast=Green&rft.aufirst=Ben&rft.au=Tao%2C+Terence&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHua2009" class="citation book cs1">Hua, L. K. (2009) [1965]. <i>Additive Theory of Prime Numbers</i>. Translations of Mathematical Monographs. Vol. 13. Providence, RI: American Mathematical Society. pp. 176–177. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-4942-2" title="Special:BookSources/978-0-8218-4942-2"><bdi>978-0-8218-4942-2</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0194404">0194404</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/824812353">824812353</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Additive+Theory+of+Prime+Numbers&rft.place=Providence%2C+RI&rft.series=Translations+of+Mathematical+Monographs&rft.pages=176-177&rft.pub=American+Mathematical+Society&rft.date=2009&rft_id=info%3Aoclcnum%2F824812353&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0194404%23id-name%3DMR&rft.isbn=978-0-8218-4942-2&rft.aulast=Hua&rft.aufirst=L.+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text">The sequence of these primes, starting at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9ec7e1edc2e6d98f5aec2a39ae5f1c99d1e1425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=1}"></span> rather than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26819344e55f5e671c76c07c18eb4291fcec85ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=0}"></span>, is listed by <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLavaBalzarotti2010" class="citation book cs1 cs1-prop-foreign-lang-source">Lava, Paolo Pietro; Balzarotti, Giorgio (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=YfsSAAAAQBAJ&pg=PA133">"Chapter 33. Formule fortunate"</a>. <i>103 curiosità matematiche: Teoria dei numeri, delle cifre e delle relazioni nella matematica contemporanea</i> (in Italian). Ulrico Hoepli Editore S.p.A. p. 133. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-88-203-5804-4" title="Special:BookSources/978-88-203-5804-4"><bdi>978-88-203-5804-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+33.+Formule+fortunate&rft.btitle=103+curiosit%C3%A0+matematiche%3A+Teoria+dei+numeri%2C+delle+cifre+e+delle+relazioni+nella+matematica+contemporanea&rft.pages=133&rft.pub=Ulrico+Hoepli+Editore+S.p.A.&rft.date=2010&rft.isbn=978-88-203-5804-4&rft.aulast=Lava&rft.aufirst=Paolo+Pietro&rft.au=Balzarotti%2C+Giorgio&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DYfsSAAAAQBAJ%26pg%3DPA133&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChamberland2015" class="citation book cs1">Chamberland, Marc (2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=n9iqBwAAQBAJ&pg=PA213">"The Heegner numbers"</a>. <i>Single Digits: In Praise of Small Numbers</i>. Princeton University Press. pp. 213–215. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4008-6569-7" title="Special:BookSources/978-1-4008-6569-7"><bdi>978-1-4008-6569-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+Heegner+numbers&rft.btitle=Single+Digits%3A+In+Praise+of+Small+Numbers&rft.pages=213-215&rft.pub=Princeton+University+Press&rft.date=2015&rft.isbn=978-1-4008-6569-7&rft.aulast=Chamberland&rft.aufirst=Marc&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dn9iqBwAAQBAJ%26pg%3DPA213&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-guy-a1-93"><span class="mw-cite-backlink">^ <a href="#cite_ref-guy-a1_93-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-guy-a1_93-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuy2013" class="citation book cs1"><a href="/wiki/Richard_K._Guy" title="Richard K. Guy">Guy, Richard</a> (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1BnoBwAAQBAJ&pg=PA7">"A1 Prime values of quadratic functions"</a>. <i>Unsolved Problems in Number Theory</i>. Problem Books in Mathematics (3rd ed.). Springer. pp. 7–10. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-26677-0" title="Special:BookSources/978-0-387-26677-0"><bdi>978-0-387-26677-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=A1+Prime+values+of+quadratic+functions&rft.btitle=Unsolved+Problems+in+Number+Theory&rft.series=Problem+Books+in+Mathematics&rft.pages=7-10&rft.edition=3rd&rft.pub=Springer&rft.date=2013&rft.isbn=978-0-387-26677-0&rft.aulast=Guy&rft.aufirst=Richard&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1BnoBwAAQBAJ%26pg%3DPA7&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPatterson1988" class="citation book cs1">Patterson, S. J. (1988). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=IdHLCgAAQBAJ&pg=PA1"><i>An introduction to the theory of the Riemann zeta-function</i></a>. Cambridge Studies in Advanced Mathematics. Vol. 14. Cambridge University Press, Cambridge. p. 1. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9780511623707">10.1017/CBO9780511623707</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-33535-5" title="Special:BookSources/978-0-521-33535-5"><bdi>978-0-521-33535-5</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0933558">0933558</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+introduction+to+the+theory+of+the+Riemann+zeta-function&rft.series=Cambridge+Studies+in+Advanced+Mathematics&rft.pages=1&rft.pub=Cambridge+University+Press%2C+Cambridge&rft.date=1988&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D933558%23id-name%3DMR&rft_id=info%3Adoi%2F10.1017%2FCBO9780511623707&rft.isbn=978-0-521-33535-5&rft.aulast=Patterson&rft.aufirst=S.+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DIdHLCgAAQBAJ%26pg%3DPA1&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBorweinChoiRooneyWeirathmueller2008" class="citation book cs1"><a href="/wiki/Peter_Borwein" title="Peter Borwein">Borwein, Peter</a>; Choi, Stephen; Rooney, Brendan; Weirathmueller, Andrea (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Qm1aZA-UwX4C&pg=PA10"><i>The Riemann hypothesis: A resource for the afficionado and virtuoso alike</i></a>. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. New York: Springer. pp. 10–11. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-0-387-72126-2">10.1007/978-0-387-72126-2</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-72125-5" title="Special:BookSources/978-0-387-72125-5"><bdi>978-0-387-72125-5</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2463715">2463715</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Riemann+hypothesis%3A+A+resource+for+the+afficionado+and+virtuoso+alike&rft.place=New+York&rft.series=CMS+Books+in+Mathematics%2FOuvrages+de+Math%C3%A9matiques+de+la+SMC&rft.pages=10-11&rft.pub=Springer&rft.date=2008&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2463715%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-0-387-72126-2&rft.isbn=978-0-387-72125-5&rft.aulast=Borwein&rft.aufirst=Peter&rft.au=Choi%2C+Stephen&rft.au=Rooney%2C+Brendan&rft.au=Weirathmueller%2C+Andrea&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQm1aZA-UwX4C%26pg%3DPA10&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><a href="#CITEREFSandifer2007">Sandifer 2007</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=sohHs7ExOsYC&pg=PA191">pp. 191–193</a>.</span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><a href="#CITEREFBorweinChoiRooneyWeirathmueller2008">Borwein et al. 2008</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Qm1aZA-UwX4C&pg=PA15">Conjecture 2.7 (the Riemann hypothesis), p. 15</a>.</span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><a href="#CITEREFPatterson1988">Patterson 1988</a>, p. 7.</span> </li> <li id="cite_note-bcrw18-99"><span class="mw-cite-backlink">^ <a href="#cite_ref-bcrw18_99-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-bcrw18_99-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFBorweinChoiRooneyWeirathmueller2008">Borwein et al. 2008</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Qm1aZA-UwX4C&pg=PA18">p. 18.</a></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><a href="#CITEREFNathanson2000">Nathanson 2000</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=sE7lBwAAQBAJ&pg=PA289">Chapter 9, The prime number theorem, pp. 289–324</a>.</span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZagier1977" class="citation journal cs1"><a href="/wiki/Don_Zagier" title="Don Zagier">Zagier, Don</a> (1977). "The first 50 million prime numbers". <i><a href="/wiki/The_Mathematical_Intelligencer" title="The Mathematical Intelligencer">The Mathematical Intelligencer</a></i>. <b>1</b> (S2): 7–19. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf03351556">10.1007/bf03351556</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:37866599">37866599</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Mathematical+Intelligencer&rft.atitle=The+first+50+million+prime+numbers&rft.volume=1&rft.issue=S2&rft.pages=7-19&rft.date=1977&rft_id=info%3Adoi%2F10.1007%2Fbf03351556&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A37866599%23id-name%3DS2CID&rft.aulast=Zagier&rft.aufirst=Don&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span> See especially pp. 14–16.</span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><a href="#CITEREFKraftWashington2014">Kraft & Washington (2014)</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VG9YBQAAQBAJ&pg=PA96">Proposition 5.3</a>, p. 96.</span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShahriari2017" class="citation book cs1"><a href="/wiki/Shahriar_Shahriari" title="Shahriar Shahriari">Shahriari, Shahriar</a> (2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=GJwxDwAAQBAJ&pg=PA20"><i>Algebra in Action: A Course in Groups, Rings, and Fields</i></a>. Pure and Applied Undergraduate Texts. Vol. 27. American Mathematical Society. pp. 20–21. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4704-2849-5" title="Special:BookSources/978-1-4704-2849-5"><bdi>978-1-4704-2849-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebra+in+Action%3A+A+Course+in+Groups%2C+Rings%2C+and+Fields&rft.series=Pure+and+Applied+Undergraduate+Texts&rft.pages=20-21&rft.pub=American+Mathematical+Society&rft.date=2017&rft.isbn=978-1-4704-2849-5&rft.aulast=Shahriari&rft.aufirst=Shahriar&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DGJwxDwAAQBAJ%26pg%3DPA20&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"><a href="#CITEREFDudley1978">Dudley 1978</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=tr7SzBTsk1UC&pg=PA28">Theorem 3, p. 28</a>.</span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><a href="#CITEREFShahriari2017">Shahriari 2017</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=GJwxDwAAQBAJ&pg=PA27">pp. 27–28</a>.</span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><a href="#CITEREFRibenboim2004">Ribenboim 2004</a>, Fermat's little theorem and primitive roots modulo a prime, pp. 17–21.</span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><a href="#CITEREFRibenboim2004">Ribenboim 2004</a>, The property of Giuga, pp. 21–22.</span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><a href="#CITEREFRibenboim2004">Ribenboim 2004</a>, The theorem of Wilson, p. 21.</span> </li> <li id="cite_note-childress-109"><span class="mw-cite-backlink">^ <a href="#cite_ref-childress_109-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-childress_109-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-childress_109-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChildress2009" class="citation book cs1">Childress, Nancy (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=RYdy4PCJYosC&pg=PA8"><i>Class Field Theory</i></a>. Universitext. Springer, New York. pp. 8–11. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-0-387-72490-4">10.1007/978-0-387-72490-4</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-72489-8" title="Special:BookSources/978-0-387-72489-8"><bdi>978-0-387-72489-8</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2462595">2462595</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Class+Field+Theory&rft.series=Universitext&rft.pages=8-11&rft.pub=Springer%2C+New+York&rft.date=2009&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2462595%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-0-387-72490-4&rft.isbn=978-0-387-72489-8&rft.aulast=Childress&rft.aufirst=Nancy&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DRYdy4PCJYosC%26pg%3DPA8&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span> See also p. 64.</span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEricksonVazzanaGarth2016" class="citation book cs1">Erickson, Marty; Vazzana, Anthony; Garth, David (2016). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QpLwCgAAQBAJ&pg=PA200"><i>Introduction to Number Theory</i></a>. Textbooks in Mathematics (2nd ed.). Boca Raton, FL: CRC Press. p. 200. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4987-1749-6" title="Special:BookSources/978-1-4987-1749-6"><bdi>978-1-4987-1749-6</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3468748">3468748</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Number+Theory&rft.place=Boca+Raton%2C+FL&rft.series=Textbooks+in+Mathematics&rft.pages=200&rft.edition=2nd&rft.pub=CRC+Press&rft.date=2016&rft.isbn=978-1-4987-1749-6&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3468748%23id-name%3DMR&rft.aulast=Erickson&rft.aufirst=Marty&rft.au=Vazzana%2C+Anthony&rft.au=Garth%2C+David&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQpLwCgAAQBAJ%26pg%3DPA200&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeil1995" class="citation book cs1"><a href="/wiki/Andr%C3%A9_Weil" title="André Weil">Weil, André</a> (1995). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/basicnumbertheor00weil_866"><i>Basic Number Theory</i></a></span>. Classics in Mathematics. Berlin: Springer-Verlag. p. <a rel="nofollow" class="external text" href="https://archive.org/details/basicnumbertheor00weil_866/page/n56">43</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-58655-5" title="Special:BookSources/978-3-540-58655-5"><bdi>978-3-540-58655-5</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1344916">1344916</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Basic+Number+Theory&rft.place=Berlin&rft.series=Classics+in+Mathematics&rft.pages=43&rft.pub=Springer-Verlag&rft.date=1995&rft.isbn=978-3-540-58655-5&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1344916%23id-name%3DMR&rft.aulast=Weil&rft.aufirst=Andr%C3%A9&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fbasicnumbertheor00weil_866&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span> Note however that some authors such as <a href="#CITEREFChildress2009">Childress (2009)</a> instead use "place" to mean an equivalence class of norms.</span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoch1997" class="citation book cs1">Koch, H. (1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wt1sCQAAQBAJ&pg=PA136"><i>Algebraic Number Theory</i></a>. Berlin: Springer-Verlag. p. 136. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.309.8812">10.1.1.309.8812</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-58095-6">10.1007/978-3-642-58095-6</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-63003-6" title="Special:BookSources/978-3-540-63003-6"><bdi>978-3-540-63003-6</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1474965">1474965</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebraic+Number+Theory&rft.place=Berlin&rft.pages=136&rft.pub=Springer-Verlag&rft.date=1997&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.309.8812%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1474965%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-3-642-58095-6&rft.isbn=978-3-540-63003-6&rft.aulast=Koch&rft.aufirst=H.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dwt1sCQAAQBAJ%26pg%3DPA136&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLauritzen2003" class="citation book cs1">Lauritzen, Niels (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=BdAbcje-TZUC&pg=PA127"><i>Concrete Abstract Algebra: From numbers to Gröbner bases</i></a>. Cambridge: Cambridge University Press. p. 127. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9780511804229">10.1017/CBO9780511804229</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-53410-9" title="Special:BookSources/978-0-521-53410-9"><bdi>978-0-521-53410-9</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2014325">2014325</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Concrete+Abstract+Algebra%3A+From+numbers+to+Gr%C3%B6bner+bases&rft.place=Cambridge&rft.pages=127&rft.pub=Cambridge+University+Press&rft.date=2003&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2014325%23id-name%3DMR&rft_id=info%3Adoi%2F10.1017%2FCBO9780511804229&rft.isbn=978-0-521-53410-9&rft.aulast=Lauritzen&rft.aufirst=Niels&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DBdAbcje-TZUC%26pg%3DPA127&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text"><a href="#CITEREFLauritzen2003">Lauritzen 2003</a>, Corollary 3.5.14, p. 133; Lemma 3.5.18, p. 136.</span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text"><a href="#CITEREFKraftWashington2014">Kraft & Washington 2014</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=4NAqBgAAQBAJ&pg=PA297">Section 12.1, Sums of two squares, pp. 297–301</a>.</span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEisenbud1995" class="citation book cs1"><a href="/wiki/David_Eisenbud" title="David Eisenbud">Eisenbud, David</a> (1995). <i>Commutative Algebra</i>. Graduate Texts in Mathematics. Vol. 150. Berlin; New York: Springer-Verlag. Section 3.3. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4612-5350-1">10.1007/978-1-4612-5350-1</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-94268-1" title="Special:BookSources/978-0-387-94268-1"><bdi>978-0-387-94268-1</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1322960">1322960</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Commutative+Algebra&rft.place=Berlin%3B+New+York&rft.series=Graduate+Texts+in+Mathematics&rft.pages=Section+3.3&rft.pub=Springer-Verlag&rft.date=1995&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1322960%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-1-4612-5350-1&rft.isbn=978-0-387-94268-1&rft.aulast=Eisenbud&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShafarevich2013" class="citation book cs1"><a href="/wiki/Igor_Shafarevich" title="Igor Shafarevich">Shafarevich, Igor R.</a> (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=zDW8BAAAQBAJ&pg=PA5">"Definition of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Spec} A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Spec</mi> <mo>⁡<!-- --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Spec} A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ad53059b6a9d6c309ab164aa4eaed021844b5ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.78ex; height:2.509ex;" alt="{\displaystyle \operatorname {Spec} A}"></span>"</a>. <i>Basic Algebraic Geometry 2: Schemes and Complex Manifolds</i> (3rd ed.). Springer, Heidelberg. p. 5. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-38010-5">10.1007/978-3-642-38010-5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-38009-9" title="Special:BookSources/978-3-642-38009-9"><bdi>978-3-642-38009-9</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3100288">3100288</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Definition+of+MATH+RENDER+ERROR&rft.btitle=Basic+Algebraic+Geometry+2%3A+Schemes+and+Complex+Manifolds&rft.pages=5&rft.edition=3rd&rft.pub=Springer%2C+Heidelberg&rft.date=2013&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3100288%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-3-642-38010-5&rft.isbn=978-3-642-38009-9&rft.aulast=Shafarevich&rft.aufirst=Igor+R.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DzDW8BAAAQBAJ%26pg%3DPA5&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeukirch1999" class="citation book cs1"><a href="/wiki/J%C3%BCrgen_Neukirch" title="Jürgen Neukirch">Neukirch, Jürgen</a> (1999). <i>Algebraic Number Theory</i>. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Vol. 322. Berlin: Springer-Verlag. Section I.8, p. 50. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-662-03983-0">10.1007/978-3-662-03983-0</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-65399-8" title="Special:BookSources/978-3-540-65399-8"><bdi>978-3-540-65399-8</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1697859">1697859</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebraic+Number+Theory&rft.place=Berlin&rft.series=Grundlehren+der+Mathematischen+Wissenschaften+%5BFundamental+Principles+of+Mathematical+Sciences%5D&rft.pages=Section+I.8%2C+p.+50&rft.pub=Springer-Verlag&rft.date=1999&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1697859%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-3-662-03983-0&rft.isbn=978-3-540-65399-8&rft.aulast=Neukirch&rft.aufirst=J%C3%BCrgen&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text"><a href="#CITEREFNeukirch1999">Neukirch 1999</a>, Section I.7, p. 38</span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-120">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStevenhagenLenstra1996" class="citation journal cs1">Stevenhagen, P.; <a href="/wiki/Hendrik_Lenstra" title="Hendrik Lenstra">Lenstra, H.W. Jr.</a> (1996). "Chebotarëv and his density theorem". <i><a href="/wiki/The_Mathematical_Intelligencer" title="The Mathematical Intelligencer">The Mathematical Intelligencer</a></i>. <b>18</b> (2): 26–37. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.116.9409">10.1.1.116.9409</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF03027290">10.1007/BF03027290</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1395088">1395088</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14089091">14089091</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Mathematical+Intelligencer&rft.atitle=Chebotar%C3%ABv+and+his+density+theorem&rft.volume=18&rft.issue=2&rft.pages=26-37&rft.date=1996&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.116.9409%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1395088%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14089091%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF03027290&rft.aulast=Stevenhagen&rft.aufirst=P.&rft.au=Lenstra%2C+H.W.+Jr.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHall2018" class="citation book cs1"><a href="/wiki/Marshall_Hall_(mathematician)" title="Marshall Hall (mathematician)">Hall, Marshall</a> (2018). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=K8hEDwAAQBAJ"><i>The Theory of Groups</i></a>. Dover Books on Mathematics. Courier Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-81690-6" title="Special:BookSources/978-0-486-81690-6"><bdi>978-0-486-81690-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Theory+of+Groups&rft.series=Dover+Books+on+Mathematics&rft.pub=Courier+Dover+Publications&rft.date=2018&rft.isbn=978-0-486-81690-6&rft.aulast=Hall&rft.aufirst=Marshall&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DK8hEDwAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span> For the Sylow theorems see p. 43; for Lagrange's theorem, see p. 12; for Burnside's theorem see p. 143.</span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBryantSangwin2008" class="citation book cs1">Bryant, John; Sangwin, Christopher J. (2008). <a href="/wiki/How_Round_Is_Your_Circle" class="mw-redirect" title="How Round Is Your Circle"><i>How Round is Your Circle?: Where Engineering and Mathematics Meet</i></a>. Princeton University Press. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=iIN_2WjBH1cC&pg=PA178">p. 178</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-13118-4" title="Special:BookSources/978-0-691-13118-4"><bdi>978-0-691-13118-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=How+Round+is+Your+Circle%3F%3A+Where+Engineering+and+Mathematics+Meet&rft.pages=p.+178&rft.pub=Princeton+University+Press&rft.date=2008&rft.isbn=978-0-691-13118-4&rft.aulast=Bryant&rft.aufirst=John&rft.au=Sangwin%2C+Christopher+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-123">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardy2012" class="citation book cs1"><a href="/wiki/G._H._Hardy" title="G. H. Hardy">Hardy, Godfrey Harold</a> (2012) [1940]. <a href="/wiki/A_Mathematician%27s_Apology" title="A Mathematician's Apology"><i>A Mathematician's Apology</i></a>. Cambridge University Press. p. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=EkY2im6xkVkC&pg=PA140">140</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-42706-7" title="Special:BookSources/978-0-521-42706-7"><bdi>978-0-521-42706-7</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/922010634">922010634</a>. <q>No one has yet discovered any warlike purpose to be served by the theory of numbers or relativity, and it seems unlikely that anyone will do so for many years.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Mathematician%27s+Apology&rft.pages=140&rft.pub=Cambridge+University+Press&rft.date=2012&rft_id=info%3Aoclcnum%2F922010634&rft.isbn=978-0-521-42706-7&rft.aulast=Hardy&rft.aufirst=Godfrey+Harold&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiblin1993" class="citation book cs1"><a href="/wiki/Peter_Giblin" title="Peter Giblin">Giblin, Peter</a> (1993). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/primesprogrammin0000gibl"><i>Primes and Programming</i></a></span>. Cambridge University Press. p. <a rel="nofollow" class="external text" href="https://archive.org/details/primesprogrammin0000gibl/page/39">39</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-40988-9" title="Special:BookSources/978-0-521-40988-9"><bdi>978-0-521-40988-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Primes+and+Programming&rft.pages=39&rft.pub=Cambridge+University+Press&rft.date=1993&rft.isbn=978-0-521-40988-9&rft.aulast=Giblin&rft.aufirst=Peter&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fprimesprogrammin0000gibl&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-125">^</a></b></span> <span class="reference-text"><a href="#CITEREFGiblin1993">Giblin 1993</a>, <a rel="nofollow" class="external text" href="https://archive.org/details/primesprogrammin0000gibl/page/54">p. 54</a></span> </li> <li id="cite_note-p._220-126"><span class="mw-cite-backlink">^ <a href="#cite_ref-p._220_126-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-p._220_126-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFRiesel1994">Riesel 1994</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ITvaBwAAQBAJ&pg=PA220">p. 220</a>.</span> </li> <li id="cite_note-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-127">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBullynck2010" class="citation journal cs1">Bullynck, Maarten (2010). <a rel="nofollow" class="external text" href="https://hal-univ-paris8.archives-ouvertes.fr/hal-01103903/">"A history of factor tables with notes on the birth of number theory 1657–1817"</a>. <i>Revue d'Histoire des Mathématiques</i>. <b>16</b> (2): 133–216.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Revue+d%27Histoire+des+Math%C3%A9matiques&rft.atitle=A+history+of+factor+tables+with+notes+on+the+birth+of+number+theory+1657%E2%80%931817&rft.volume=16&rft.issue=2&rft.pages=133-216&rft.date=2010&rft.aulast=Bullynck&rft.aufirst=Maarten&rft_id=https%3A%2F%2Fhal-univ-paris8.archives-ouvertes.fr%2Fhal-01103903%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-128">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWagstaff2013" class="citation book cs1"><a href="/wiki/Samuel_S._Wagstaff_Jr." title="Samuel S. Wagstaff Jr.">Wagstaff, Samuel S. Jr.</a> (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=rowCAQAAQBAJ&pg=PA191"><i>The Joy of Factoring</i></a>. Student mathematical library. Vol. 68. American Mathematical Society. p. 191. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4704-1048-3" title="Special:BookSources/978-1-4704-1048-3"><bdi>978-1-4704-1048-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Joy+of+Factoring&rft.series=Student+mathematical+library&rft.pages=191&rft.pub=American+Mathematical+Society&rft.date=2013&rft.isbn=978-1-4704-1048-3&rft.aulast=Wagstaff&rft.aufirst=Samuel+S.+Jr.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DrowCAQAAQBAJ%26pg%3DPA191&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-129">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCrandallPomerance2005" class="citation book cs1"><a href="/wiki/Richard_Crandall" title="Richard Crandall">Crandall, Richard</a>; <a href="/wiki/Carl_Pomerance" title="Carl Pomerance">Pomerance, Carl</a> (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=RbEz-_D7sAUC&pg=PA121"><i>Prime Numbers: A Computational Perspective</i></a> (2nd ed.). Springer. p. 121. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-25282-7" title="Special:BookSources/978-0-387-25282-7"><bdi>978-0-387-25282-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Prime+Numbers%3A+A+Computational+Perspective&rft.pages=121&rft.edition=2nd&rft.pub=Springer&rft.date=2005&rft.isbn=978-0-387-25282-7&rft.aulast=Crandall&rft.aufirst=Richard&rft.au=Pomerance%2C+Carl&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DRbEz-_D7sAUC%26pg%3DPA121&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-130">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFarach-ColtonTsai2015" class="citation conference cs1"><a href="/wiki/Martin_Farach-Colton" title="Martin Farach-Colton">Farach-Colton, Martín</a>; Tsai, Meng-Tsung (2015). "On the complexity of computing prime tables". In Elbassioni, Khaled; Makino, Kazuhisa (eds.). <i>Algorithms and Computation: 26th International Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings</i>. Lecture Notes in Computer Science. Vol. 9472. Springer. pp. 677–688. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1504.05240">1504.05240</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-662-48971-0_57">10.1007/978-3-662-48971-0_57</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-662-48970-3" title="Special:BookSources/978-3-662-48970-3"><bdi>978-3-662-48970-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.atitle=On+the+complexity+of+computing+prime+tables&rft.btitle=Algorithms+and+Computation%3A+26th+International+Symposium%2C+ISAAC+2015%2C+Nagoya%2C+Japan%2C+December+9-11%2C+2015%2C+Proceedings&rft.series=Lecture+Notes+in+Computer+Science&rft.pages=677-688&rft.pub=Springer&rft.date=2015&rft_id=info%3Aarxiv%2F1504.05240&rft_id=info%3Adoi%2F10.1007%2F978-3-662-48971-0_57&rft.isbn=978-3-662-48970-3&rft.aulast=Farach-Colton&rft.aufirst=Mart%C3%ADn&rft.au=Tsai%2C+Meng-Tsung&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-131">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreaves2013" class="citation book cs1">Greaves, George (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=G0TtCAAAQBAJ&pg=PA1"><i>Sieves in Number Theory</i></a>. Ergebnisse der Mathematik und ihrer Grenzgebiete (3. Folge). Vol. 43. Springer. p. 1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-662-04658-6" title="Special:BookSources/978-3-662-04658-6"><bdi>978-3-662-04658-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Sieves+in+Number+Theory&rft.series=Ergebnisse+der+Mathematik+und+ihrer+Grenzgebiete+%283.+Folge%29&rft.pages=1&rft.pub=Springer&rft.date=2013&rft.isbn=978-3-662-04658-6&rft.aulast=Greaves&rft.aufirst=George&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DG0TtCAAAQBAJ%26pg%3DPA1&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-hromkovic-132"><span class="mw-cite-backlink">^ <a href="#cite_ref-hromkovic_132-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-hromkovic_132-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHromkovič2001" class="citation book cs1"><a href="/wiki/Juraj_Hromkovi%C4%8D" title="Juraj Hromkovič">Hromkovič, Juraj</a> (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nkeqCAAAQBAJ&pg=PA383">"5.5 Bibliographic Remarks"</a>. <i>Algorithmics for Hard Problems</i>. Texts in Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin. pp. 383–385. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-662-04616-6">10.1007/978-3-662-04616-6</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-66860-2" title="Special:BookSources/978-3-540-66860-2"><bdi>978-3-540-66860-2</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1843669">1843669</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:31159492">31159492</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=5.5+Bibliographic+Remarks&rft.btitle=Algorithmics+for+Hard+Problems&rft.series=Texts+in+Theoretical+Computer+Science.+An+EATCS+Series&rft.pages=383-385&rft.pub=Springer-Verlag%2C+Berlin&rft.date=2001&rft_id=info%3Adoi%2F10.1007%2F978-3-662-04616-6&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1843669%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A31159492%23id-name%3DS2CID&rft.isbn=978-3-540-66860-2&rft.aulast=Hromkovi%C4%8D&rft.aufirst=Juraj&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DnkeqCAAAQBAJ%26pg%3DPA383&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-koblitz-134"><span class="mw-cite-backlink">^ <a href="#cite_ref-koblitz_134-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-koblitz_134-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoblitz1987" class="citation book cs1"><a href="/wiki/Neal_Koblitz" title="Neal Koblitz">Koblitz, Neal</a> (1987). "Chapter V. Primality and Factoring". <i>A Course in Number Theory and Cryptography</i>. Graduate Texts in Mathematics. Vol. 114. Springer-Verlag, New York. pp. 112–149. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4684-0310-7_5">10.1007/978-1-4684-0310-7_5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-96576-5" title="Special:BookSources/978-0-387-96576-5"><bdi>978-0-387-96576-5</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0910297">0910297</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+V.+Primality+and+Factoring&rft.btitle=A+Course+in+Number+Theory+and+Cryptography&rft.series=Graduate+Texts+in+Mathematics&rft.pages=112-149&rft.pub=Springer-Verlag%2C+New+York&rft.date=1987&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D910297%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-1-4684-0310-7_5&rft.isbn=978-0-387-96576-5&rft.aulast=Koblitz&rft.aufirst=Neal&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-135"><span class="mw-cite-backlink"><b><a href="#cite_ref-135">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPieprzykHardjonoSeberry2013" class="citation book cs1">Pieprzyk, Josef; Hardjono, Thomas; <a href="/wiki/Jennifer_Seberry" title="Jennifer Seberry">Seberry, Jennifer</a> (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=BG2rCAAAQBAJ&pg=PA51">"2.3.9 Probabilistic Computations"</a>. <i>Fundamentals of Computer Security</i>. Springer. pp. 51–52. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-662-07324-7" title="Special:BookSources/978-3-662-07324-7"><bdi>978-3-662-07324-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=2.3.9+Probabilistic+Computations&rft.btitle=Fundamentals+of+Computer+Security&rft.pages=51-52&rft.pub=Springer&rft.date=2013&rft.isbn=978-3-662-07324-7&rft.aulast=Pieprzyk&rft.aufirst=Josef&rft.au=Hardjono%2C+Thomas&rft.au=Seberry%2C+Jennifer&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DBG2rCAAAQBAJ%26pg%3DPA51&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-tao-aks-136"><span class="mw-cite-backlink">^ <a href="#cite_ref-tao-aks_136-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-tao-aks_136-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTao2010" class="citation book cs1"><a href="/wiki/Terence_Tao" title="Terence Tao">Tao, Terence</a> (2010). <a rel="nofollow" class="external text" href="https://terrytao.wordpress.com/2009/08/11/the-aks-primality-test/">"1.11 The AKS primality test"</a>. <i>An epsilon of room, II: Pages from year three of a mathematical blog</i>. Graduate Studies in Mathematics. Vol. 117. Providence, RI: American Mathematical Society. pp. 82–86. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fgsm%2F117">10.1090/gsm/117</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-5280-4" title="Special:BookSources/978-0-8218-5280-4"><bdi>978-0-8218-5280-4</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2780010">2780010</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=1.11+The+AKS+primality+test&rft.btitle=An+epsilon+of+room%2C+II%3A+Pages+from+year+three+of+a+mathematical+blog&rft.place=Providence%2C+RI&rft.series=Graduate+Studies+in+Mathematics&rft.pages=82-86&rft.pub=American+Mathematical+Society&rft.date=2010&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2780010%23id-name%3DMR&rft_id=info%3Adoi%2F10.1090%2Fgsm%2F117&rft.isbn=978-0-8218-5280-4&rft.aulast=Tao&rft.aufirst=Terence&rft_id=https%3A%2F%2Fterrytao.wordpress.com%2F2009%2F08%2F11%2Fthe-aks-primality-test%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-atkin-morain-137"><span class="mw-cite-backlink">^ <a href="#cite_ref-atkin-morain_137-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-atkin-morain_137-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtkinMorain1993" class="citation journal cs1"><a href="/wiki/A._O._L._Atkin" title="A. O. L. Atkin">Atkin, A O.L.</a>; Morain, F. (1993). <a rel="nofollow" class="external text" href="https://www.ams.org/mcom/1993-61-203/S0025-5718-1993-1199989-X/S0025-5718-1993-1199989-X.pdf">"Elliptic curves and primality proving"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Mathematics_of_Computation" title="Mathematics of Computation">Mathematics of Computation</a></i>. <b>61</b> (203): 29–68. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1993MaCom..61...29A">1993MaCom..61...29A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fs0025-5718-1993-1199989-x">10.1090/s0025-5718-1993-1199989-x</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2152935">2152935</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1199989">1199989</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=Elliptic+curves+and+primality+proving&rft.volume=61&rft.issue=203&rft.pages=29-68&rft.date=1993&rft_id=info%3Adoi%2F10.1090%2Fs0025-5718-1993-1199989-x&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1199989%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2152935%23id-name%3DJSTOR&rft_id=info%3Abibcode%2F1993MaCom..61...29A&rft.aulast=Atkin&rft.aufirst=A+O.L.&rft.au=Morain%2C+F.&rft_id=https%3A%2F%2Fwww.ams.org%2Fmcom%2F1993-61-203%2FS0025-5718-1993-1199989-X%2FS0025-5718-1993-1199989-X.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-morain-138"><span class="mw-cite-backlink">^ <a href="#cite_ref-morain_138-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-morain_138-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorain2007" class="citation journal cs1">Morain, F. (2007). "Implementing the asymptotically fast version of the elliptic curve primality proving algorithm". <i><a href="/wiki/Mathematics_of_Computation" title="Mathematics of Computation">Mathematics of Computation</a></i>. <b>76</b> (257): 493–505. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0502097">math/0502097</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007MaCom..76..493M">2007MaCom..76..493M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-06-01890-4">10.1090/S0025-5718-06-01890-4</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2261033">2261033</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:133193">133193</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=Implementing+the+asymptotically+fast+version+of+the+elliptic+curve+primality+proving+algorithm&rft.volume=76&rft.issue=257&rft.pages=493-505&rft.date=2007&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A133193%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2007MaCom..76..493M&rft_id=info%3Aarxiv%2Fmath%2F0502097&rft_id=info%3Adoi%2F10.1090%2FS0025-5718-06-01890-4&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2261033%23id-name%3DMR&rft.aulast=Morain&rft.aufirst=F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-140"><span class="mw-cite-backlink"><b><a href="#cite_ref-140">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLenstraPomerance2019" class="citation journal cs1"><a href="/wiki/Hendrik_Lenstra" title="Hendrik Lenstra">Lenstra, H. W. Jr.</a>; <a href="/wiki/Carl_Pomerance" title="Carl Pomerance">Pomerance, Carl</a> (2019). <a rel="nofollow" class="external text" href="https://math.dartmouth.edu/~carlp/aks111216.pdf">"Primality testing with Gaussian periods"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Journal_of_the_European_Mathematical_Society" title="Journal of the European Mathematical Society">Journal of the European Mathematical Society</a></i>. <b>21</b> (4): 1229–1269. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4171%2FJEMS%2F861">10.4171/JEMS/861</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/21.11116%2F0000-0005-717D-0">21.11116/0000-0005-717D-0</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3941463">3941463</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:127807021">127807021</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+European+Mathematical+Society&rft.atitle=Primality+testing+with+Gaussian+periods&rft.volume=21&rft.issue=4&rft.pages=1229-1269&rft.date=2019&rft_id=info%3Ahdl%2F21.11116%2F0000-0005-717D-0&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3941463%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A127807021%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4171%2FJEMS%2F861&rft.aulast=Lenstra&rft.aufirst=H.+W.+Jr.&rft.au=Pomerance%2C+Carl&rft_id=https%3A%2F%2Fmath.dartmouth.edu%2F~carlp%2Faks111216.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-PSW-141"><span class="mw-cite-backlink"><b><a href="#cite_ref-PSW_141-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPomeranceSelfridgeWagstaff,_Jr.1980" class="citation journal cs1"><a href="/wiki/Carl_Pomerance" title="Carl Pomerance">Pomerance, Carl</a>; <a href="/wiki/John_L._Selfridge" class="mw-redirect" title="John L. Selfridge">Selfridge, John L.</a>; <a href="/wiki/Samuel_S._Wagstaff,_Jr." class="mw-redirect" title="Samuel S. Wagstaff, Jr.">Wagstaff, Jr., Samuel S.</a> (July 1980). <a rel="nofollow" class="external text" href="http://math.dartmouth.edu/~carlp/PDF/paper25.pdf">"The pseudoprimes to 25·10<sup>9</sup>"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Mathematics_of_Computation" title="Mathematics of Computation">Mathematics of Computation</a></i>. <b>35</b> (151): 1003–1026. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-1980-0572872-7">10.1090/S0025-5718-1980-0572872-7</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2006210">2006210</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=The+pseudoprimes+to+25%C2%B710%3Csup%3E9%3C%2Fsup%3E&rft.volume=35&rft.issue=151&rft.pages=1003-1026&rft.date=1980-07&rft_id=info%3Adoi%2F10.1090%2FS0025-5718-1980-0572872-7&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2006210%23id-name%3DJSTOR&rft.aulast=Pomerance&rft.aufirst=Carl&rft.au=Selfridge%2C+John+L.&rft.au=Wagstaff%2C+Jr.%2C+Samuel+S.&rft_id=http%3A%2F%2Fmath.dartmouth.edu%2F~carlp%2FPDF%2Fpaper25.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-lpsp-142"><span class="mw-cite-backlink"><b><a href="#cite_ref-lpsp_142-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaillieWagstaff,_Jr.1980" class="citation journal cs1">Baillie, Robert; <a href="/wiki/Samuel_S._Wagstaff,_Jr." class="mw-redirect" title="Samuel S. Wagstaff, Jr.">Wagstaff, Jr., Samuel S.</a> (October 1980). <a rel="nofollow" class="external text" href="http://mpqs.free.fr/LucasPseudoprimes.pdf">"Lucas Pseudoprimes"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Mathematics_of_Computation" title="Mathematics of Computation">Mathematics of Computation</a></i>. <b>35</b> (152): 1391–1417. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-1980-0583518-6">10.1090/S0025-5718-1980-0583518-6</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2006406">2006406</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0583518">0583518</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=Lucas+Pseudoprimes&rft.volume=35&rft.issue=152&rft.pages=1391-1417&rft.date=1980-10&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D583518%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2006406%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1090%2FS0025-5718-1980-0583518-6&rft.aulast=Baillie&rft.aufirst=Robert&rft.au=Wagstaff%2C+Jr.%2C+Samuel+S.&rft_id=http%3A%2F%2Fmpqs.free.fr%2FLucasPseudoprimes.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-monier-143"><span class="mw-cite-backlink">^ <a href="#cite_ref-monier_143-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-monier_143-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMonier1980" class="citation journal cs1">Monier, Louis (1980). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0304-3975%2880%2990007-9">"Evaluation and comparison of two efficient probabilistic primality testing algorithms"</a>. <i><a href="/wiki/Theoretical_Computer_Science_(journal)" title="Theoretical Computer Science (journal)">Theoretical Computer Science</a></i>. <b>12</b> (1): 97–108. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0304-3975%2880%2990007-9">10.1016/0304-3975(80)90007-9</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0582244">0582244</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Theoretical+Computer+Science&rft.atitle=Evaluation+and+comparison+of+two+efficient+probabilistic+primality+testing+algorithms&rft.volume=12&rft.issue=1&rft.pages=97-108&rft.date=1980&rft_id=info%3Adoi%2F10.1016%2F0304-3975%2880%2990007-9&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D582244%23id-name%3DMR&rft.aulast=Monier&rft.aufirst=Louis&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252F0304-3975%252880%252990007-9&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-144"><span class="mw-cite-backlink"><b><a href="#cite_ref-144">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTao2009" class="citation book cs1"><a href="/wiki/Terence_Tao" title="Terence Tao">Tao, Terence</a> (2009). <a rel="nofollow" class="external text" href="https://terrytao.wordpress.com/2008/10/02/the-lucas-lehmer-test-for-mersenne-primes/">"1.7 The Lucas–Lehmer test for Mersenne primes"</a>. <i>Poincaré's legacies, pages from year two of a mathematical blog. Part I</i>. Providence, RI: American Mathematical Society. pp. 36–41. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-4883-8" title="Special:BookSources/978-0-8218-4883-8"><bdi>978-0-8218-4883-8</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2523047">2523047</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=1.7+The+Lucas%E2%80%93Lehmer+test+for+Mersenne+primes&rft.btitle=Poincar%C3%A9%27s+legacies%2C+pages+from+year+two+of+a+mathematical+blog.+Part+I&rft.place=Providence%2C+RI&rft.pages=36-41&rft.pub=American+Mathematical+Society&rft.date=2009&rft.isbn=978-0-8218-4883-8&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2523047%23id-name%3DMR&rft.aulast=Tao&rft.aufirst=Terence&rft_id=https%3A%2F%2Fterrytao.wordpress.com%2F2008%2F10%2F02%2Fthe-lucas-lehmer-test-for-mersenne-primes%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-145"><span class="mw-cite-backlink"><b><a href="#cite_ref-145">^</a></b></span> <span class="reference-text"><a href="#CITEREFKraftWashington2014">Kraft & Washington 2014</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=4NAqBgAAQBAJ&pg=PA41">p. 41</a>.</span> </li> <li id="cite_note-146"><span class="mw-cite-backlink"><b><a href="#cite_ref-146">^</a></b></span> <span class="reference-text">For instance see <a href="#CITEREFGuy2013">Guy 2013</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1BnoBwAAQBAJ&pg=PA13">A3 Mersenne primes. Repunits. Fermat numbers. Primes of shape <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\cdot 2^{n}+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\cdot 2^{n}+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b4e701ab91db138d631d50abf2452c3991e3d31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.274ex; height:2.509ex;" alt="{\displaystyle k\cdot 2^{n}+1}"></span>. pp. 13–21</a>.</span> </li> <li id="cite_note-147"><span class="mw-cite-backlink"><b><a href="#cite_ref-147">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.eff.org/press/archives/2009/10/14-0">"Record 12-Million-Digit Prime Number Nets $100,000 Prize"</a>. Electronic Frontier Foundation. October 14, 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-01-04</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Record+12-Million-Digit+Prime+Number+Nets+%24100%2C000+Prize&rft.pub=Electronic+Frontier+Foundation&rft.date=2009-10-14&rft_id=https%3A%2F%2Fwww.eff.org%2Fpress%2Farchives%2F2009%2F10%2F14-0&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-148"><span class="mw-cite-backlink"><b><a href="#cite_ref-148">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.eff.org/awards/coop">"EFF Cooperative Computing Awards"</a>. Electronic Frontier Foundation. 2008-02-29<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-01-04</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=EFF+Cooperative+Computing+Awards&rft.pub=Electronic+Frontier+Foundation&rft.date=2008-02-29&rft_id=https%3A%2F%2Fwww.eff.org%2Fawards%2Fcoop&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-149"><span class="mw-cite-backlink"><b><a href="#cite_ref-149">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.primegrid.com/download/SOB-31172165.pdf">"PrimeGrid's Seventeen or Bust Subproject"</a> <span class="cs1-format">(PDF)</span><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-01-03</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=PrimeGrid%27s+Seventeen+or+Bust+Subproject&rft_id=https%3A%2F%2Fwww.primegrid.com%2Fdownload%2FSOB-31172165.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-150"><span class="mw-cite-backlink"><b><a href="#cite_ref-150">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaldwell" class="citation web cs1">Caldwell, Chris K. <a rel="nofollow" class="external text" href="http://primes.utm.edu/top20/page.php?id=3">"The Top Twenty: Largest Known Primes"</a>. <i><a href="/wiki/Prime_Pages" class="mw-redirect" title="Prime Pages">The Prime Pages</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-01-03</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Prime+Pages&rft.atitle=The+Top+Twenty%3A+Largest+Known+Primes&rft.aulast=Caldwell&rft.aufirst=Chris+K.&rft_id=http%3A%2F%2Fprimes.utm.edu%2Ftop20%2Fpage.php%3Fid%3D3&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-151"><span class="mw-cite-backlink"><b><a href="#cite_ref-151">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaldwell" class="citation web cs1">Caldwell, Chris K. <a rel="nofollow" class="external text" href="http://primes.utm.edu/top20/page.php?id=30">"The Top Twenty: Factorial"</a>. <i><a href="/wiki/Prime_Pages" class="mw-redirect" title="Prime Pages">The Prime Pages</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-01-03</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Prime+Pages&rft.atitle=The+Top+Twenty%3A+Factorial&rft.aulast=Caldwell&rft.aufirst=Chris+K.&rft_id=http%3A%2F%2Fprimes.utm.edu%2Ftop20%2Fpage.php%3Fid%3D30&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-152"><span class="mw-cite-backlink"><b><a href="#cite_ref-152">^</a></b></span> <span class="reference-text"><a href="#CITEREFRibenboim2004">Ribenboim 2004</a>, p. 4.</span> </li> <li id="cite_note-154"><span class="mw-cite-backlink"><b><a href="#cite_ref-154">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaldwell" class="citation web cs1">Caldwell, Chris K. <a rel="nofollow" class="external text" href="http://primes.utm.edu/top20/page.php?id=5">"The Top Twenty: Primorial"</a>. <i><a href="/wiki/Prime_Pages" class="mw-redirect" title="Prime Pages">The Prime Pages</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-01-03</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Prime+Pages&rft.atitle=The+Top+Twenty%3A+Primorial&rft.aulast=Caldwell&rft.aufirst=Chris+K.&rft_id=http%3A%2F%2Fprimes.utm.edu%2Ftop20%2Fpage.php%3Fid%3D5&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-155"><span class="mw-cite-backlink"><b><a href="#cite_ref-155">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaldwell" class="citation web cs1">Caldwell, Chris K. <a rel="nofollow" class="external text" href="http://primes.utm.edu/top20/page.php?id=1">"The Top Twenty: Twin Primes"</a>. <i><a href="/wiki/Prime_Pages" class="mw-redirect" title="Prime Pages">The Prime Pages</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-01-03</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Prime+Pages&rft.atitle=The+Top+Twenty%3A+Twin+Primes&rft.aulast=Caldwell&rft.aufirst=Chris+K.&rft_id=http%3A%2F%2Fprimes.utm.edu%2Ftop20%2Fpage.php%3Fid%3D1&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-156"><span class="mw-cite-backlink"><b><a href="#cite_ref-156">^</a></b></span> <span class="reference-text"><a href="#CITEREFKraftWashington2014">Kraft & Washington 2014</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=4NAqBgAAQBAJ&pg=PA275">p. 275</a>.</span> </li> <li id="cite_note-157"><span class="mw-cite-backlink"><b><a href="#cite_ref-157">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoffsteinPipherSilverman2014" class="citation book cs1">Hoffstein, Jeffrey; <a href="/wiki/Jill_Pipher" title="Jill Pipher">Pipher, Jill</a>; <a href="/wiki/Joseph_H._Silverman" title="Joseph H. Silverman">Silverman, Joseph H.</a> (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=cbl_BAAAQBAJ&pg=PA329"><i>An Introduction to Mathematical Cryptography</i></a>. Undergraduate Texts in Mathematics (2nd ed.). Springer. p. 329. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4939-1711-2" title="Special:BookSources/978-1-4939-1711-2"><bdi>978-1-4939-1711-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Introduction+to+Mathematical+Cryptography&rft.series=Undergraduate+Texts+in+Mathematics&rft.pages=329&rft.edition=2nd&rft.pub=Springer&rft.date=2014&rft.isbn=978-1-4939-1711-2&rft.aulast=Hoffstein&rft.aufirst=Jeffrey&rft.au=Pipher%2C+Jill&rft.au=Silverman%2C+Joseph+H.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dcbl_BAAAQBAJ%26pg%3DPA329&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-158"><span class="mw-cite-backlink"><b><a href="#cite_ref-158">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPomerance1996" class="citation journal cs1"><a href="/wiki/Carl_Pomerance" title="Carl Pomerance">Pomerance, Carl</a> (1996). "A tale of two sieves". <i><a href="/wiki/Notices_of_the_American_Mathematical_Society" title="Notices of the American Mathematical Society">Notices of the American Mathematical Society</a></i>. <b>43</b> (12): 1473–1485. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1416721">1416721</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Notices+of+the+American+Mathematical+Society&rft.atitle=A+tale+of+two+sieves&rft.volume=43&rft.issue=12&rft.pages=1473-1485&rft.date=1996&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1416721%23id-name%3DMR&rft.aulast=Pomerance&rft.aufirst=Carl&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-159"><span class="mw-cite-backlink"><b><a href="#cite_ref-159">^</a></b></span> <span class="reference-text">Emmanuel Thomé, <a rel="nofollow" class="external text" href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;fd743373.1912">“795-bit factoring and discrete logarithms,”</a> December 2, 2019.</span> </li> <li id="cite_note-160"><span class="mw-cite-backlink"><b><a href="#cite_ref-160">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRieffelPolak2011" class="citation book cs1"><a href="/wiki/Eleanor_Rieffel" title="Eleanor Rieffel">Rieffel, Eleanor G.</a>; Polak, Wolfgang H. (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=iYX6AQAAQBAJ&pg=PA163">"Chapter 8. Shor's Algorithm"</a>. <a href="/wiki/Quantum_Computing:_A_Gentle_Introduction" title="Quantum Computing: A Gentle Introduction"><i>Quantum Computing: A Gentle Introduction</i></a>. MIT Press. pp. 163–176. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-262-01506-6" title="Special:BookSources/978-0-262-01506-6"><bdi>978-0-262-01506-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+8.+Shor%27s+Algorithm&rft.btitle=Quantum+Computing%3A+A+Gentle+Introduction&rft.pages=163-176&rft.pub=MIT+Press&rft.date=2011&rft.isbn=978-0-262-01506-6&rft.aulast=Rieffel&rft.aufirst=Eleanor+G.&rft.au=Polak%2C+Wolfgang+H.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DiYX6AQAAQBAJ%26pg%3DPA163&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-161"><span class="mw-cite-backlink"><b><a href="#cite_ref-161">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartín-LópezLaingLawsonAlvarez2012" class="citation journal cs1">Martín-López, Enrique; Laing, Anthony; Lawson, Thomas; Alvarez, Roberto; Zhou, Xiao-Qi; O'Brien, Jeremy L. (12 October 2012). "Experimental realization of Shor's quantum factoring algorithm using qubit recycling". <i>Nature Photonics</i>. <b>6</b> (11): 773–776. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1111.4147">1111.4147</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NaPho...6..773M">2012NaPho...6..773M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnphoton.2012.259">10.1038/nphoton.2012.259</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:46546101">46546101</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Photonics&rft.atitle=Experimental+realization+of+Shor%27s+quantum+factoring+algorithm+using+qubit+recycling&rft.volume=6&rft.issue=11&rft.pages=773-776&rft.date=2012-10-12&rft_id=info%3Aarxiv%2F1111.4147&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A46546101%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2Fnphoton.2012.259&rft_id=info%3Abibcode%2F2012NaPho...6..773M&rft.aulast=Mart%C3%ADn-L%C3%B3pez&rft.aufirst=Enrique&rft.au=Laing%2C+Anthony&rft.au=Lawson%2C+Thomas&rft.au=Alvarez%2C+Roberto&rft.au=Zhou%2C+Xiao-Qi&rft.au=O%27Brien%2C+Jeremy+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-162"><span class="mw-cite-backlink"><b><a href="#cite_ref-162">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChirgwin2016" class="citation news cs1">Chirgwin, Richard (October 9, 2016). <a rel="nofollow" class="external text" href="https://www.theregister.co.uk/2016/10/09/crypto_needs_more_transparency_researchers_warn/">"Crypto needs more transparency, researchers warn"</a>. <i><a href="/wiki/The_Register" title="The Register">The Register</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Register&rft.atitle=Crypto+needs+more+transparency%2C+researchers+warn&rft.date=2016-10-09&rft.aulast=Chirgwin&rft.aufirst=Richard&rft_id=https%3A%2F%2Fwww.theregister.co.uk%2F2016%2F10%2F09%2Fcrypto_needs_more_transparency_researchers_warn%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-163"><span class="mw-cite-backlink"><b><a href="#cite_ref-163">^</a></b></span> <span class="reference-text"><a href="#CITEREFHoffsteinPipherSilverman2014">Hoffstein, Pipher & Silverman 2014</a>, Section 2.3, Diffie–Hellman key exchange, pp. 65–67.</span> </li> <li id="cite_note-164"><span class="mw-cite-backlink"><b><a href="#cite_ref-164">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCormenLeisersonRivestStein2001" class="citation book cs1"><a href="/wiki/Thomas_H._Cormen" title="Thomas H. Cormen">Cormen, Thomas H.</a>; <a href="/wiki/Charles_E._Leiserson" title="Charles E. Leiserson">Leiserson, Charles E.</a>; <a href="/wiki/Ron_Rivest" title="Ron Rivest">Rivest, Ronald L.</a>; <a href="/wiki/Clifford_Stein" title="Clifford Stein">Stein, Clifford</a> (2001) [1990]. "11.3 Universal hashing". <a href="/wiki/Introduction_to_Algorithms" title="Introduction to Algorithms"><i>Introduction to Algorithms</i></a> (2nd ed.). MIT Press and McGraw-Hill. pp. 232–236. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-262-03293-7" title="Special:BookSources/0-262-03293-7"><bdi>0-262-03293-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=11.3+Universal+hashing&rft.btitle=Introduction+to+Algorithms&rft.pages=232-236&rft.edition=2nd&rft.pub=MIT+Press+and+McGraw-Hill&rft.date=2001&rft.isbn=0-262-03293-7&rft.aulast=Cormen&rft.aufirst=Thomas+H.&rft.au=Leiserson%2C+Charles+E.&rft.au=Rivest%2C+Ronald+L.&rft.au=Stein%2C+Clifford&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span> For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-independent hashing see problem 11–4, p. 251. For the credit to Carter and Wegman, see the chapter notes, p. 252.</span> </li> <li id="cite_note-165"><span class="mw-cite-backlink"><b><a href="#cite_ref-165">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoodrichTamassia2006" class="citation book cs1"><a href="/wiki/Michael_T._Goodrich" title="Michael T. Goodrich">Goodrich, Michael T.</a>; <a href="/wiki/Roberto_Tamassia" title="Roberto Tamassia">Tamassia, Roberto</a> (2006). <i>Data Structures & Algorithms in Java</i> (4th ed.). John Wiley & Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-73884-8" title="Special:BookSources/978-0-471-73884-8"><bdi>978-0-471-73884-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Data+Structures+%26+Algorithms+in+Java&rft.edition=4th&rft.pub=John+Wiley+%26+Sons&rft.date=2006&rft.isbn=978-0-471-73884-8&rft.aulast=Goodrich&rft.aufirst=Michael+T.&rft.au=Tamassia%2C+Roberto&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span> See "Quadratic probing", p. 382, and exercise C–9.9, p. 415.</span> </li> <li id="cite_note-166"><span class="mw-cite-backlink"><b><a href="#cite_ref-166">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKirtland2001" class="citation book cs1"><a href="/wiki/Joseph_Kirtland" title="Joseph Kirtland">Kirtland, Joseph</a> (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Z8eka35WUb8C&pg=PA43"><i>Identification Numbers and Check Digit Schemes</i></a>. Classroom Resource Materials. Vol. 18. Mathematical Association of America. pp. 43–44. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-88385-720-5" title="Special:BookSources/978-0-88385-720-5"><bdi>978-0-88385-720-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Identification+Numbers+and+Check+Digit+Schemes&rft.series=Classroom+Resource+Materials&rft.pages=43-44&rft.pub=Mathematical+Association+of+America&rft.date=2001&rft.isbn=978-0-88385-720-5&rft.aulast=Kirtland&rft.aufirst=Joseph&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZ8eka35WUb8C%26pg%3DPA43&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-167"><span class="mw-cite-backlink"><b><a href="#cite_ref-167">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeutsch1996" class="citation cs1">Deutsch, P. (May 1996). <a rel="nofollow" class="external text" href="https://datatracker.ietf.org/doc/html/rfc1950"><i>ZLIB Compressed Data Format Specification version 3.3</i></a>. Network Working Group. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.17487%2FRFC1950">10.17487/RFC1950</a></span>. <a href="/wiki/Request_for_Comments" title="Request for Comments">RFC</a> <a rel="nofollow" class="external text" href="https://datatracker.ietf.org/doc/html/rfc1950">1950</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=ZLIB+Compressed+Data+Format+Specification+version+3.3&rft.pub=Network+Working+Group&rft.date=1996-05&rft_id=info%3Adoi%2F10.17487%2FRFC1950&rft.aulast=Deutsch&rft.aufirst=P.&rft_id=https%3A%2F%2Fdatatracker.ietf.org%2Fdoc%2Fhtml%2Frfc1950&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-168"><span class="mw-cite-backlink"><b><a href="#cite_ref-168">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnuth1998" class="citation book cs1"><a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, Donald E.</a> (1998). "3.2.1 The linear congruential model". <a href="/wiki/The_Art_of_Computer_Programming" title="The Art of Computer Programming"><i>The Art of Computer Programming, Vol. 2: Seminumerical algorithms</i></a> (3rd ed.). Addison-Wesley. pp. 10–26. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-201-89684-8" title="Special:BookSources/978-0-201-89684-8"><bdi>978-0-201-89684-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=3.2.1+The+linear+congruential+model&rft.btitle=The+Art+of+Computer+Programming%2C+Vol.+2%3A+Seminumerical+algorithms&rft.pages=10-26&rft.edition=3rd&rft.pub=Addison-Wesley&rft.date=1998&rft.isbn=978-0-201-89684-8&rft.aulast=Knuth&rft.aufirst=Donald+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-169"><span class="mw-cite-backlink"><b><a href="#cite_ref-169">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMatsumotoNishimura1998" class="citation journal cs1">Matsumoto, Makoto; Nishimura, Takuji (1998). "Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-random number generator". <i>ACM Transactions on Modeling and Computer Simulation</i>. <b>8</b> (1): 3–30. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.1141">10.1.1.215.1141</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F272991.272995">10.1145/272991.272995</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3332028">3332028</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ACM+Transactions+on+Modeling+and+Computer+Simulation&rft.atitle=Mersenne+Twister%3A+A+623-dimensionally+equidistributed+uniform+pseudo-random+number+generator&rft.volume=8&rft.issue=1&rft.pages=3-30&rft.date=1998&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.215.1141%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3332028%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1145%2F272991.272995&rft.aulast=Matsumoto&rft.aufirst=Makoto&rft.au=Nishimura%2C+Takuji&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-170"><span class="mw-cite-backlink"><b><a href="#cite_ref-170">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoth1951" class="citation journal cs1"><a href="/wiki/Klaus_Roth" title="Klaus Roth">Roth, Klaus F.</a> (1951). "On a problem of Heilbronn". <i><a href="/wiki/Journal_of_the_London_Mathematical_Society" class="mw-redirect" title="Journal of the London Mathematical Society">Journal of the London Mathematical Society</a></i>. Second Series. <b>26</b> (3): 198–204. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fjlms%2Fs1-26.3.198">10.1112/jlms/s1-26.3.198</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0041889">0041889</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+London+Mathematical+Society&rft.atitle=On+a+problem+of+Heilbronn&rft.volume=26&rft.issue=3&rft.pages=198-204&rft.date=1951&rft_id=info%3Adoi%2F10.1112%2Fjlms%2Fs1-26.3.198&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0041889%23id-name%3DMR&rft.aulast=Roth&rft.aufirst=Klaus+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-171"><span class="mw-cite-backlink"><b><a href="#cite_ref-171">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCox2011" class="citation journal cs1"><a href="/wiki/David_A._Cox" title="David A. Cox">Cox, David A.</a> (2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230326032030/https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Cox-2012.pdf">"Why Eisenstein proved the Eisenstein criterion and why Schönemann discovered it first"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a></i>. <b>118</b> (1): 3–31. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.398.3440">10.1.1.398.3440</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4169%2Famer.math.monthly.118.01.003">10.4169/amer.math.monthly.118.01.003</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15978494">15978494</a>. Archived from <a rel="nofollow" class="external text" href="https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Cox-2012.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2023-03-26<span class="reference-accessdate">. Retrieved <span class="nowrap">2018-01-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=Why+Eisenstein+proved+the+Eisenstein+criterion+and+why+Sch%C3%B6nemann+discovered+it+first&rft.volume=118&rft.issue=1&rft.pages=3-31&rft.date=2011&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.398.3440%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15978494%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4169%2Famer.math.monthly.118.01.003&rft.aulast=Cox&rft.aufirst=David+A.&rft_id=https%3A%2F%2Fwww.maa.org%2Fsites%2Fdefault%2Ffiles%2Fpdf%2Fupload_library%2F22%2FFord%2FCox-2012.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-172"><span class="mw-cite-backlink"><b><a href="#cite_ref-172">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang2002" class="citation book cs1"><a href="/wiki/Serge_Lang" title="Serge Lang">Lang, Serge</a> (2002). <i>Algebra</i>. Graduate Texts in Mathematics. Vol. 211. Berlin, Germany; New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4613-0041-0">10.1007/978-1-4613-0041-0</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-95385-4" title="Special:BookSources/978-0-387-95385-4"><bdi>978-0-387-95385-4</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1878556">1878556</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebra&rft.place=Berlin%2C+Germany%3B+New+York&rft.series=Graduate+Texts+in+Mathematics&rft.pub=Springer-Verlag&rft.date=2002&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1878556%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-1-4613-0041-0&rft.isbn=978-0-387-95385-4&rft.aulast=Lang&rft.aufirst=Serge&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span> Section II.1, p. 90.</span> </li> <li id="cite_note-173"><span class="mw-cite-backlink"><b><a href="#cite_ref-173">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchubert1949" class="citation journal cs1">Schubert, Horst (1949). "Die eindeutige Zerlegbarkeit eines Knotens in Primknoten". <i>S.-B Heidelberger Akad. Wiss. Math.-Nat. Kl</i>. <b>1949</b> (3): 57–104. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0031733">0031733</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=S.-B+Heidelberger+Akad.+Wiss.+Math.-Nat.+Kl.&rft.atitle=Die+eindeutige+Zerlegbarkeit+eines+Knotens+in+Primknoten&rft.volume=1949&rft.issue=3&rft.pages=57-104&rft.date=1949&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0031733%23id-name%3DMR&rft.aulast=Schubert&rft.aufirst=Horst&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-174"><span class="mw-cite-backlink"><b><a href="#cite_ref-174">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMilnor1962" class="citation journal cs1"><a href="/wiki/John_Milnor" title="John Milnor">Milnor, J.</a> (1962). "A unique decomposition theorem for 3-manifolds". <i>American Journal of Mathematics</i>. <b>84</b> (1): 1–7. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2372800">10.2307/2372800</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2372800">2372800</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0142125">0142125</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Mathematics&rft.atitle=A+unique+decomposition+theorem+for+3-manifolds&rft.volume=84&rft.issue=1&rft.pages=1-7&rft.date=1962&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0142125%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2372800%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2372800&rft.aulast=Milnor&rft.aufirst=J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-175"><span class="mw-cite-backlink"><b><a href="#cite_ref-175">^</a></b></span> <span class="reference-text"><a href="#CITEREFBoklanConway2017">Boklan & Conway (2017)</a> also include <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{0}+1=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{0}+1=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40aef6ea07e6b06ea63ac98c5ea5ac8a8a93fbf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.48ex; height:2.843ex;" alt="{\displaystyle 2^{0}+1=2}"></span>, which is not of this form.</span> </li> <li id="cite_note-kls-176"><span class="mw-cite-backlink">^ <a href="#cite_ref-kls_176-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-kls_176-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKřížekLucaSomer2001" class="citation book cs1">Křížek, Michal; Luca, Florian; Somer, Lawrence (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=hgfSBwAAQBAJ&pg=PA1"><i>17 Lectures on Fermat Numbers: From Number Theory to Geometry</i></a>. CMS Books in Mathematics. Vol. 9. New York: Springer-Verlag. pp. 1–2. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-0-387-21850-2">10.1007/978-0-387-21850-2</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-95332-8" title="Special:BookSources/978-0-387-95332-8"><bdi>978-0-387-95332-8</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1866957">1866957</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=17+Lectures+on+Fermat+Numbers%3A+From+Number+Theory+to+Geometry&rft.place=New+York&rft.series=CMS+Books+in+Mathematics&rft.pages=1-2&rft.pub=Springer-Verlag&rft.date=2001&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1866957%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-0-387-21850-2&rft.isbn=978-0-387-95332-8&rft.aulast=K%C5%99%C3%AD%C5%BEek&rft.aufirst=Michal&rft.au=Luca%2C+Florian&rft.au=Somer%2C+Lawrence&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DhgfSBwAAQBAJ%26pg%3DPA1&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-177"><span class="mw-cite-backlink"><b><a href="#cite_ref-177">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoklanConway2017" class="citation journal cs1">Boklan, Kent D.; <a href="/wiki/John_Horton_Conway" title="John Horton Conway">Conway, John H.</a> (January 2017). "Expect at most one billionth of a new Ferma<i>t</i> prime!". <i><a href="/wiki/The_Mathematical_Intelligencer" title="The Mathematical Intelligencer">The Mathematical Intelligencer</a></i>. <b>39</b> (1): 3–5. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1605.01371">1605.01371</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00283-016-9644-3">10.1007/s00283-016-9644-3</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119165671">119165671</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Mathematical+Intelligencer&rft.atitle=Expect+at+most+one+billionth+of+a+new+Fermat+prime%21&rft.volume=39&rft.issue=1&rft.pages=3-5&rft.date=2017-01&rft_id=info%3Aarxiv%2F1605.01371&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119165671%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs00283-016-9644-3&rft.aulast=Boklan&rft.aufirst=Kent+D.&rft.au=Conway%2C+John+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-178"><span class="mw-cite-backlink"><b><a href="#cite_ref-178">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGleason1988" class="citation journal cs1"><a href="/wiki/Andrew_M._Gleason" title="Andrew M. Gleason">Gleason, Andrew M.</a> (1988). "Angle trisection, the heptagon, and the triskaidecagon". <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a></i>. <b>95</b> (3): 185–194. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2323624">10.2307/2323624</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2323624">2323624</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0935432">0935432</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=Angle+trisection%2C+the+heptagon%2C+and+the+triskaidecagon&rft.volume=95&rft.issue=3&rft.pages=185-194&rft.date=1988&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D935432%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2323624%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2323624&rft.aulast=Gleason&rft.aufirst=Andrew+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-179"><span class="mw-cite-backlink"><b><a href="#cite_ref-179">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZiegler2015" class="citation journal cs1"><a href="/wiki/G%C3%BCnter_M._Ziegler" title="Günter M. Ziegler">Ziegler, Günter M.</a> (2015). "Cannons at sparrows". <i>European Mathematical Society Newsletter</i> (95): 25–31. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3330472">3330472</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=European+Mathematical+Society+Newsletter&rft.atitle=Cannons+at+sparrows&rft.issue=95&rft.pages=25-31&rft.date=2015&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3330472%23id-name%3DMR&rft.aulast=Ziegler&rft.aufirst=G%C3%BCnter+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-180"><span class="mw-cite-backlink"><b><a href="#cite_ref-180">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeterson1999" class="citation web cs1"><a href="/wiki/Ivars_Peterson" title="Ivars Peterson">Peterson, Ivars</a> (June 28, 1999). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20071020141624/http://maa.org/mathland/mathtrek_6_28_99.html">"The Return of Zeta"</a>. <i>MAA Online</i>. Archived from <a rel="nofollow" class="external text" href="http://www.maa.org/mathland/mathtrek_6_28_99.html">the original</a> on October 20, 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">2008-03-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MAA+Online&rft.atitle=The+Return+of+Zeta&rft.date=1999-06-28&rft.aulast=Peterson&rft.aufirst=Ivars&rft_id=http%3A%2F%2Fwww.maa.org%2Fmathland%2Fmathtrek_6_28_99.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-181"><span class="mw-cite-backlink"><b><a href="#cite_ref-181">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHayes2003" class="citation journal cs1"><a href="/wiki/Brian_Hayes_(scientist)" title="Brian Hayes (scientist)">Hayes, Brian</a> (2003). "Computing science: The spectrum of Riemannium". <i><a href="/wiki/American_Scientist" title="American Scientist">American Scientist</a></i>. <b>91</b> (4): 296–300. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1511%2F2003.26.3349">10.1511/2003.26.3349</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/27858239">27858239</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16785858">16785858</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Scientist&rft.atitle=Computing+science%3A+The+spectrum+of+Riemannium&rft.volume=91&rft.issue=4&rft.pages=296-300&rft.date=2003&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16785858%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F27858239%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1511%2F2003.26.3349&rft.aulast=Hayes&rft.aufirst=Brian&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-182"><span class="mw-cite-backlink"><b><a href="#cite_ref-182">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBengtssonŻyczkowski2017" class="citation book cs1">Bengtsson, Ingemar; <a href="/wiki/Karol_%C5%BByczkowski" title="Karol Życzkowski">Życzkowski, Karol</a> (2017). <i>Geometry of quantum states : an introduction to quantum entanglement</i> (Second ed.). Cambridge: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. pp. 313–354. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-107-02625-4" title="Special:BookSources/978-1-107-02625-4"><bdi>978-1-107-02625-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/967938939">967938939</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometry+of+quantum+states+%3A+an+introduction+to+quantum+entanglement&rft.place=Cambridge&rft.pages=313-354&rft.edition=Second&rft.pub=Cambridge+University+Press&rft.date=2017&rft_id=info%3Aoclcnum%2F967938939&rft.isbn=978-1-107-02625-4&rft.aulast=Bengtsson&rft.aufirst=Ingemar&rft.au=%C5%BByczkowski%2C+Karol&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-183"><span class="mw-cite-backlink"><b><a href="#cite_ref-183">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhu2010" class="citation journal cs1">Zhu, Huangjun (2010). <a rel="nofollow" class="external text" href="http://stacks.iop.org/1751-8121/43/i=30/a=305305?key=crossref.45cb006b9f3c7e510461594ea8dfa7f7">"SIC POVMs and Clifford groups in prime dimensions"</a>. <i>Journal of Physics A: Mathematical and Theoretical</i>. <b>43</b> (30): 305305. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1003.3591">1003.3591</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010JPhA...43D5305Z">2010JPhA...43D5305Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1751-8113%2F43%2F30%2F305305">10.1088/1751-8113/43/30/305305</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118363843">118363843</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+A%3A+Mathematical+and+Theoretical&rft.atitle=SIC+POVMs+and+Clifford+groups+in+prime+dimensions&rft.volume=43&rft.issue=30&rft.pages=305305&rft.date=2010&rft_id=info%3Aarxiv%2F1003.3591&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118363843%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1751-8113%2F43%2F30%2F305305&rft_id=info%3Abibcode%2F2010JPhA...43D5305Z&rft.aulast=Zhu&rft.aufirst=Huangjun&rft_id=http%3A%2F%2Fstacks.iop.org%2F1751-8121%2F43%2Fi%3D30%2Fa%3D305305%3Fkey%3Dcrossref.45cb006b9f3c7e510461594ea8dfa7f7&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-184"><span class="mw-cite-backlink"><b><a href="#cite_ref-184">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGolesSchulzMarkus2001" class="citation journal cs1">Goles, E.; Schulz, O.; Markus, M. (2001). "Prime number selection of cycles in a predator-prey model". <i><a href="/wiki/Complexity_(journal)" title="Complexity (journal)">Complexity</a></i>. <b>6</b> (4): 33–38. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001Cmplx...6d..33G">2001Cmplx...6d..33G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fcplx.1040">10.1002/cplx.1040</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Complexity&rft.atitle=Prime+number+selection+of+cycles+in+a+predator-prey+model&rft.volume=6&rft.issue=4&rft.pages=33-38&rft.date=2001&rft_id=info%3Adoi%2F10.1002%2Fcplx.1040&rft_id=info%3Abibcode%2F2001Cmplx...6d..33G&rft.aulast=Goles&rft.aufirst=E.&rft.au=Schulz%2C+O.&rft.au=Markus%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-185"><span class="mw-cite-backlink"><b><a href="#cite_ref-185">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCamposde_OliveiraGiroGalvão2004" class="citation journal cs1">Campos, Paulo R. A.; de Oliveira, Viviane M.; Giro, Ronaldo; Galvão, Douglas S. (2004). "Emergence of prime numbers as the result of evolutionary strategy". <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>93</b> (9): 098107. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/q-bio/0406017">q-bio/0406017</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004PhRvL..93i8107C">2004PhRvL..93i8107C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.93.098107">10.1103/PhysRevLett.93.098107</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15447148">15447148</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:88332">88332</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Emergence+of+prime+numbers+as+the+result+of+evolutionary+strategy&rft.volume=93&rft.issue=9&rft.pages=098107&rft.date=2004&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A88332%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2004PhRvL..93i8107C&rft_id=info%3Aarxiv%2Fq-bio%2F0406017&rft_id=info%3Apmid%2F15447148&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.93.098107&rft.aulast=Campos&rft.aufirst=Paulo+R.+A.&rft.au=de+Oliveira%2C+Viviane+M.&rft.au=Giro%2C+Ronaldo&rft.au=Galv%C3%A3o%2C+Douglas+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-186"><span class="mw-cite-backlink"><b><a href="#cite_ref-186">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://economist.com/PrinterFriendly.cfm?Story_ID=2647052">"Invasion of the Brood"</a>. <i><a href="/wiki/The_Economist" title="The Economist">The Economist</a></i>. May 6, 2004<span class="reference-accessdate">. Retrieved <span class="nowrap">2006-11-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Economist&rft.atitle=Invasion+of+the+Brood&rft.date=2004-05-06&rft_id=http%3A%2F%2Feconomist.com%2FPrinterFriendly.cfm%3FStory_ID%3D2647052&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-187"><span class="mw-cite-backlink"><b><a href="#cite_ref-187">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZimmer2015" class="citation magazine cs1"><a href="/wiki/Carl_Zimmer" title="Carl Zimmer">Zimmer, Carl</a> (May 15, 2015). <a rel="nofollow" class="external text" href="https://www.nationalgeographic.com/science/article/bamboo-mathematicians">"Bamboo Mathematicians"</a>. Phenomena: The Loom. <i><a href="/wiki/National_Geographic" title="National Geographic">National Geographic</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">February 22,</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=National+Geographic&rft.atitle=Bamboo+Mathematicians&rft.date=2015-05-15&rft.aulast=Zimmer&rft.aufirst=Carl&rft_id=https%3A%2F%2Fwww.nationalgeographic.com%2Fscience%2Farticle%2Fbamboo-mathematicians&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-188"><span class="mw-cite-backlink"><b><a href="#cite_ref-188">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHill1995" class="citation book cs1">Hill, Peter Jensen, ed. (1995). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=7ag3ymWqvfgC&pg=PT225"><i>The Messiaen companion</i></a>. Portland, OR: Amadeus Press. Ex. 13.2 <i>Messe de la Pentecôte</i> 1 'Entrée'. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-931340-95-6" title="Special:BookSources/978-0-931340-95-6"><bdi>978-0-931340-95-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Messiaen+companion&rft.place=Portland%2C+OR&rft.pages=Ex.+13.2+%27%27Messe+de+la+Pentec%C3%B4te%27%27+1+%27Entr%C3%A9e%27&rft.pub=Amadeus+Press&rft.date=1995&rft.isbn=978-0-931340-95-6&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D7ag3ymWqvfgC%26pg%3DPT225&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-189"><span class="mw-cite-backlink"><b><a href="#cite_ref-189">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPomerance2004" class="citation book cs1"><a href="/wiki/Carl_Pomerance" title="Carl Pomerance">Pomerance, Carl</a> (2004). <a rel="nofollow" class="external text" href="https://gauss.dartmouth.edu/~carlp/PDF/extraterrestrial.pdf">"Prime Numbers and the Search for Extraterrestrial Intelligence"</a> <span class="cs1-format">(PDF)</span>. In Hayes, David F.; Ross, Peter (eds.). <i>Mathematical Adventures for Students and Amateurs</i>. MAA Spectrum. Washington, DC: Mathematical Association of America. pp. 3–6. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-88385-548-5" title="Special:BookSources/978-0-88385-548-5"><bdi>978-0-88385-548-5</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2085842">2085842</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Prime+Numbers+and+the+Search+for+Extraterrestrial+Intelligence&rft.btitle=Mathematical+Adventures+for+Students+and+Amateurs&rft.place=Washington%2C+DC&rft.series=MAA+Spectrum&rft.pages=3-6&rft.pub=Mathematical+Association+of+America&rft.date=2004&rft.isbn=978-0-88385-548-5&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2085842%23id-name%3DMR&rft.aulast=Pomerance&rft.aufirst=Carl&rft_id=https%3A%2F%2Fgauss.dartmouth.edu%2F~carlp%2FPDF%2Fextraterrestrial.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-190"><span class="mw-cite-backlink"><b><a href="#cite_ref-190">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrrlScientist2010" class="citation news cs1">GrrlScientist (September 16, 2010). <a rel="nofollow" class="external text" href="https://www.theguardian.com/science/punctuated-equilibrium/2010/sep/16/curious-incident-dog-night-time">"The Curious Incident of the Dog in the Night-Time"</a>. Science. <i><a href="/wiki/The_Guardian" title="The Guardian">The Guardian</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">February 22,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Guardian&rft.atitle=The+Curious+Incident+of+the+Dog+in+the+Night-Time&rft.date=2010-09-16&rft.au=GrrlScientist&rft_id=https%3A%2F%2Fwww.theguardian.com%2Fscience%2Fpunctuated-equilibrium%2F2010%2Fsep%2F16%2Fcurious-incident-dog-night-time&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> <li id="cite_note-191"><span class="mw-cite-backlink"><b><a href="#cite_ref-191">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchillinger2010" class="citation news cs1">Schillinger, Liesl (April 9, 2010). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2010/04/11/books/review/Schillinger-t.html">"Counting on Each Other"</a>. Sunday Book Review. <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+New+York+Times&rft.atitle=Counting+on+Each+Other&rft.date=2010-04-09&rft.aulast=Schillinger&rft.aufirst=Liesl&rft_id=https%3A%2F%2Fwww.nytimes.com%2F2010%2F04%2F11%2Fbooks%2Freview%2FSchillinger-t.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1250146164">.mw-parser-output .sister-box .side-box-abovebelow{padding:0.75em 0;text-align:center}.mw-parser-output .sister-box .side-box-abovebelow>b{display:block}.mw-parser-output .sister-box .side-box-text>ul{border-top:1px solid #aaa;padding:0.75em 0;width:217px;margin:0 auto}.mw-parser-output .sister-box .side-box-text>ul>li{min-height:31px}.mw-parser-output .sister-logo{display:inline-block;width:31px;line-height:31px;vertical-align:middle;text-align:center}.mw-parser-output .sister-link{display:inline-block;margin-left:4px;width:182px;vertical-align:middle}@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-v2.svg"]{background-color:white}}</style><div role="navigation" aria-labelledby="sister-projects" class="side-box metadata side-box-right sister-box sistersitebox plainlinks"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-abovebelow"> <b>Prime number</b> at Wikipedia's <a href="/wiki/Wikipedia:Wikimedia_sister_projects" title="Wikipedia:Wikimedia sister projects"><span id="sister-projects">sister projects</span></a></div> <div class="side-box-flex"> <div class="side-box-text plainlist"><ul><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/0/06/Wiktionary-logo-v2.svg/27px-Wiktionary-logo-v2.svg.png" decoding="async" width="27" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/0/06/Wiktionary-logo-v2.svg/41px-Wiktionary-logo-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/0/06/Wiktionary-logo-v2.svg/54px-Wiktionary-logo-v2.svg.png 2x" data-file-width="391" data-file-height="391" /></span></span></span><span class="sister-link"><a href="https://en.wiktionary.org/wiki/Special:Search/Prime_number" class="extiw" title="wikt:Special:Search/Prime number">Definitions</a> from Wiktionary</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/20px-Commons-logo.svg.png" decoding="async" width="20" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/40px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></span><span class="sister-link"><a href="https://commons.wikimedia.org/wiki/Category:Prime_numbers" class="extiw" title="c:Category:Prime numbers">Media</a> from Commons</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/27px-Wikinews-logo.svg.png" decoding="async" width="27" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/41px-Wikinews-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/54px-Wikinews-logo.svg.png 2x" data-file-width="759" data-file-height="415" /></span></span></span><span class="sister-link"><a href="https://en.wikinews.org/wiki/Category:Prime_numbers" class="extiw" title="n:Category:Prime numbers">News</a> from Wikinews</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/23px-Wikiquote-logo.svg.png" decoding="async" width="23" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/35px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/46px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></span><span class="sister-link"><a href="https://en.wikiquote.org/wiki/Prime_number" class="extiw" title="q:Prime number">Quotations</a> from Wikiquote</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/26px-Wikisource-logo.svg.png" decoding="async" width="26" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/39px-Wikisource-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/51px-Wikisource-logo.svg.png 2x" data-file-width="410" data-file-height="430" /></span></span></span><span class="sister-link"><a href="https://en.wikisource.org/wiki/Special:Search/Prime_number" class="extiw" title="s:Special:Search/Prime number">Texts</a> from Wikisource</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/27px-Wikibooks-logo.svg.png" decoding="async" width="27" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/41px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/54px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></span></span></span><span class="sister-link"><a href="https://en.wikibooks.org/wiki/A_Guide_to_the_GRE/Prime_Numbers" class="extiw" title="b:A Guide to the GRE/Prime Numbers">Textbooks</a> from Wikibooks</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/27px-Wikiversity_logo_2017.svg.png" decoding="async" width="27" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/41px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/54px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></span></span></span><span class="sister-link"><a href="https://en.wikiversity.org/wiki/Special:Search/Prime_number" class="extiw" title="v:Special:Search/Prime number">Resources</a> from Wikiversity</span></li></ul></div></div> </div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs1"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Prime_number">"Prime number"</a>. <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>. <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>. 2001 [1994].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Prime+number&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DPrime_number&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrime+number" class="Z3988"></span></li> <li>Caldwell, Chris, The <a href="/wiki/Prime_Pages" class="mw-redirect" title="Prime Pages">Prime Pages</a> at <a rel="nofollow" class="external text" href="http://primes.utm.edu/">primes.utm.edu</a>.</li> <li><a rel="nofollow" class="external text" href="https://www.bbc.co.uk/programmes/p003hyf5">Prime Numbers</a> on <a href="/wiki/In_Our_Time_(radio_series)" title="In Our Time (radio series)"><i>In Our Time</i></a> at the <a href="/wiki/BBC" title="BBC">BBC</a>.</li> <li><a rel="nofollow" class="external text" href="http://plus.maths.org/issue49/package/index.html">Plus teacher and student package: prime numbers</a> from Plus, the free online mathematics magazine produced by the Millennium Mathematics Project at the University of Cambridge.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Generators_and_calculators">Generators and calculators</h3></div> <ul><li><a rel="nofollow" class="external text" href="http://www.javascripter.net/math/calculators/primefactorscalculator.htm">Prime factors calculator</a> can factorize any positive integer up to 20 digits.</li> <li><a rel="nofollow" class="external text" href="https://www.alpertron.com.ar/ECM.HTM">Fast Online primality test with factorization</a> makes use of the Elliptic Curve Method (up to thousand-digits numbers, requires Java).</li> <li><a rel="nofollow" class="external text" href="http://www.bigprimes.net/">Huge database of prime numbers</a>.</li> <li><a rel="nofollow" class="external text" href="http://www.primos.mat.br/indexen.html">Prime Numbers up to 1 trillion</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210227001026/http://www.primos.mat.br/indexen.html">Archived</a> 2021-02-27 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q49008#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q49008#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q49008#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">International</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/1041241/">FAST</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4047263-2">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85093218">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Nombres premiers"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11932592t">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Nombres premiers"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11932592t">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00571462">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="prvočísla"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph139050&CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://kopkatalogs.lv/F?func=direct&local_base=lnc10&doc_number=000232578&P_CON_LNG=ENG">Latvia</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007538747905171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Number_theory" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="background:#ffb;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Number_theory" title="Template:Number theory"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Number_theory" title="Template talk:Number theory"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Number_theory" title="Special:EditPage/Template:Number theory"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Number_theory" style="font-size:114%;margin:0 4em"><a href="/wiki/Number_theory" title="Number theory">Number theory</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#ffd;">Fields</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Algebraic_number_theory" title="Algebraic number theory">Algebraic number theory</a> (<a href="/wiki/Class_field_theory" title="Class field theory">class field theory</a>, <a href="/wiki/Non-abelian_class_field_theory" title="Non-abelian class field theory">non-abelian class field theory</a>, <a href="/wiki/Iwasawa_theory" title="Iwasawa theory">Iwasawa theory</a>, <a href="/wiki/Iwasawa%E2%80%93Tate_theory" class="mw-redirect" title="Iwasawa–Tate theory">Iwasawa–Tate theory</a>, <a href="/wiki/Kummer_theory" title="Kummer theory">Kummer theory</a>)</li> <li><a href="/wiki/Analytic_number_theory" title="Analytic number theory">Analytic number theory</a> (<a href="/wiki/L-function" title="L-function">analytic theory of L-functions</a>, <a href="/wiki/Probabilistic_number_theory" title="Probabilistic number theory">probabilistic number theory</a>, <a href="/wiki/Sieve_theory" title="Sieve theory">sieve theory</a>)</li> <li><a href="/wiki/Geometry_of_numbers" title="Geometry of numbers">Geometric number theory</a></li> <li><a href="/wiki/Computational_number_theory" title="Computational number theory">Computational number theory</a></li> <li><a href="/wiki/Transcendental_number_theory" title="Transcendental number theory">Transcendental number theory</a></li> <li><a href="/wiki/Diophantine_geometry" title="Diophantine geometry">Diophantine geometry</a> (<a href="/wiki/Arakelov_theory" title="Arakelov theory">Arakelov theory</a>, <a href="/wiki/Hodge%E2%80%93Arakelov_theory" title="Hodge–Arakelov theory">Hodge–Arakelov theory</a>)</li> <li><a href="/wiki/Arithmetic_combinatorics" title="Arithmetic combinatorics">Arithmetic combinatorics</a> (<a href="/wiki/Additive_number_theory" title="Additive number theory">additive number theory</a>)</li> <li><a href="/wiki/Arithmetic_geometry" title="Arithmetic geometry">Arithmetic geometry</a> (<a href="/wiki/Anabelian_geometry" title="Anabelian geometry">anabelian geometry</a>, <a href="/wiki/P-adic_Hodge_theory" title="P-adic Hodge theory">P-adic Hodge theory</a>)</li> <li><a href="/wiki/Arithmetic_topology" title="Arithmetic topology">Arithmetic topology</a></li> <li><a href="/wiki/Arithmetic_dynamics" title="Arithmetic dynamics">Arithmetic dynamics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#ffd;">Key concepts</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Number" title="Number">Numbers</a></li> <li><a href="/wiki/0" title="0">0</a></li> <li><a href="/wiki/Natural_number" title="Natural number">Natural numbers</a></li> <li><a href="/wiki/1" title="1">Unity</a></li> <li><a class="mw-selflink selflink">Prime numbers</a></li> <li><a href="/wiki/Composite_number" title="Composite number">Composite numbers</a></li> <li><a href="/wiki/Rational_number" title="Rational number">Rational numbers</a></li> <li><a href="/wiki/Irrational_number" title="Irrational number">Irrational numbers</a></li> <li><a href="/wiki/Algebraic_number" title="Algebraic number">Algebraic numbers</a></li> <li><a href="/wiki/Transcendental_number" title="Transcendental number">Transcendental numbers</a></li> <li><a href="/wiki/P-adic_number" title="P-adic number">P-adic numbers</a> (<a href="/wiki/P-adic_analysis" title="P-adic analysis">P-adic analysis</a>)</li> <li><a href="/wiki/Arithmetic" title="Arithmetic">Arithmetic</a></li> <li><a href="/wiki/Modular_arithmetic" title="Modular arithmetic">Modular arithmetic</a></li> <li><a href="/wiki/Chinese_remainder_theorem" title="Chinese remainder theorem">Chinese remainder theorem</a></li> <li><a href="/wiki/Arithmetic_function" title="Arithmetic function">Arithmetic functions</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#ffd;">Advanced concepts</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quadratic_form" title="Quadratic form">Quadratic forms</a></li> <li><a href="/wiki/Modular_form" title="Modular form">Modular forms</a></li> <li><a href="/wiki/L-function" title="L-function">L-functions</a></li> <li><a href="/wiki/Diophantine_equation" title="Diophantine equation">Diophantine equations</a></li> <li><a href="/wiki/Diophantine_approximation" title="Diophantine approximation">Diophantine approximation</a></li> <li><a href="/wiki/Irrationality_measure" title="Irrationality measure">Irrationality measure</a></li> <li><a href="/wiki/Simple_continued_fraction" title="Simple continued fraction">Simple continued fractions</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Number_theory" title="Category:Number theory">Category</a></li> <li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/List_of_number_theory_topics" title="List of number theory topics">List of topics</a></li> <li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/List_of_recreational_number_theory_topics" title="List of recreational number theory topics">List of recreational topics</a></li> <li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikibooks-logo.svg" class="mw-file-description" title="Wikibooks page"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/16px-Wikibooks-logo.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/24px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/32px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></a></span> <a href="https://en.wikibooks.org/wiki/Number_Theory" class="extiw" title="wikibooks:Number Theory">Wikibook</a></li> <li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikiversity_logo_2017.svg" class="mw-file-description" title="Wikiversity page"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/16px-Wikiversity_logo_2017.svg.png" decoding="async" width="16" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/24px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/32px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></a></span> <a href="https://en.wikiversity.org/wiki/Number_Theory" class="extiw" title="wikiversity:Number Theory">Wikiversity</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Divisibility-based_sets_of_integers" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Divisor_classes" title="Template:Divisor classes"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Divisor_classes" title="Template talk:Divisor classes"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Divisor_classes" title="Special:EditPage/Template:Divisor classes"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Divisibility-based_sets_of_integers" style="font-size:114%;margin:0 4em">Divisibility-based sets of integers</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Overview</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Integer_factorization" title="Integer factorization">Integer factorization</a></li> <li><a href="/wiki/Divisor" title="Divisor">Divisor</a></li> <li><a href="/wiki/Unitary_divisor" title="Unitary divisor">Unitary divisor</a></li> <li><a href="/wiki/Divisor_function" title="Divisor function">Divisor function</a></li> <li><a href="/wiki/Prime_factor" class="mw-redirect" title="Prime factor">Prime factor</a></li> <li><a href="/wiki/Fundamental_theorem_of_arithmetic" title="Fundamental theorem of arithmetic">Fundamental theorem of arithmetic</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="7" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Lattice_of_the_divisibility_of_60.svg" class="mw-file-description" title="Divisibility of 60"><img alt="Divisibility of 60" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Lattice_of_the_divisibility_of_60.svg/175px-Lattice_of_the_divisibility_of_60.svg.png" decoding="async" width="175" height="140" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Lattice_of_the_divisibility_of_60.svg/263px-Lattice_of_the_divisibility_of_60.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/51/Lattice_of_the_divisibility_of_60.svg/350px-Lattice_of_the_divisibility_of_60.svg.png 2x" data-file-width="313" data-file-height="250" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Factorization forms</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Prime</a></li> <li><a href="/wiki/Composite_number" title="Composite number">Composite</a></li> <li><a href="/wiki/Semiprime" title="Semiprime">Semiprime</a></li> <li><a href="/wiki/Pronic_number" title="Pronic number">Pronic</a></li> <li><a href="/wiki/Sphenic_number" title="Sphenic number">Sphenic</a></li> <li><a href="/wiki/Square-free_integer" title="Square-free integer">Square-free</a></li> <li><a href="/wiki/Powerful_number" title="Powerful number">Powerful</a></li> <li><a href="/wiki/Perfect_power" title="Perfect power">Perfect power</a></li> <li><a href="/wiki/Achilles_number" title="Achilles number">Achilles</a></li> <li><a href="/wiki/Smooth_number" title="Smooth number">Smooth</a></li> <li><a href="/wiki/Regular_number" title="Regular number">Regular</a></li> <li><a href="/wiki/Rough_number" title="Rough number">Rough</a></li> <li><a href="/wiki/Unusual_number" title="Unusual number">Unusual</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Constrained divisor sums</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Perfect_number" title="Perfect number">Perfect</a></li> <li><a href="/wiki/Almost_perfect_number" title="Almost perfect number">Almost perfect</a></li> <li><a href="/wiki/Quasiperfect_number" title="Quasiperfect number">Quasiperfect</a></li> <li><a href="/wiki/Multiply_perfect_number" title="Multiply perfect number">Multiply perfect</a></li> <li><a href="/wiki/Hemiperfect_number" title="Hemiperfect number">Hemiperfect</a></li> <li><a href="/wiki/Hyperperfect_number" title="Hyperperfect number">Hyperperfect</a></li> <li><a href="/wiki/Superperfect_number" title="Superperfect number">Superperfect</a></li> <li><a href="/wiki/Unitary_perfect_number" title="Unitary perfect number">Unitary perfect</a></li> <li><a href="/wiki/Semiperfect_number" title="Semiperfect number">Semiperfect</a></li> <li><a href="/wiki/Practical_number" title="Practical number">Practical</a></li> <li><a href="/wiki/Descartes_number" title="Descartes number">Descartes</a></li> <li><a href="/wiki/Erd%C5%91s%E2%80%93Nicolas_number" title="Erdős–Nicolas number">Erdős–Nicolas</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">With many divisors</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abundant_number" title="Abundant number">Abundant</a></li> <li><a href="/wiki/Primitive_abundant_number" title="Primitive abundant number">Primitive abundant</a></li> <li><a href="/wiki/Highly_abundant_number" title="Highly abundant number">Highly abundant</a></li> <li><a href="/wiki/Superabundant_number" title="Superabundant number">Superabundant</a></li> <li><a href="/wiki/Colossally_abundant_number" title="Colossally abundant number">Colossally abundant</a></li> <li><a href="/wiki/Highly_composite_number" title="Highly composite number">Highly composite</a></li> <li><a href="/wiki/Superior_highly_composite_number" title="Superior highly composite number">Superior highly composite</a></li> <li><a href="/wiki/Weird_number" title="Weird number">Weird</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Aliquot_sequence" title="Aliquot sequence">Aliquot sequence</a>-related</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Untouchable_number" title="Untouchable number">Untouchable</a></li> <li><a href="/wiki/Amicable_numbers" title="Amicable numbers">Amicable</a> (<a href="/wiki/Amicable_triple" title="Amicable triple">Triple</a>)</li> <li><a href="/wiki/Sociable_number" title="Sociable number">Sociable</a></li> <li><a href="/wiki/Betrothed_numbers" title="Betrothed numbers">Betrothed</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Radix" title="Radix">Base</a>-dependent</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Equidigital_number" title="Equidigital number">Equidigital</a></li> <li><a href="/wiki/Extravagant_number" title="Extravagant number">Extravagant</a></li> <li><a href="/wiki/Frugal_number" title="Frugal number">Frugal</a></li> <li><a href="/wiki/Harshad_number" title="Harshad number">Harshad</a></li> <li><a href="/wiki/Polydivisible_number" title="Polydivisible number">Polydivisible</a></li> <li><a href="/wiki/Smith_number" title="Smith number">Smith</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other sets</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arithmetic_number" title="Arithmetic number">Arithmetic</a></li> <li><a href="/wiki/Deficient_number" title="Deficient number">Deficient</a></li> <li><a href="/wiki/Friendly_number" title="Friendly number">Friendly</a></li> <li><a href="/wiki/Friendly_number#Solitary_numbers" title="Friendly number">Solitary</a></li> <li><a href="/wiki/Sublime_number" title="Sublime number">Sublime</a></li> <li><a href="/wiki/Harmonic_divisor_number" title="Harmonic divisor number">Harmonic divisor</a></li> <li><a href="/wiki/Refactorable_number" title="Refactorable number">Refactorable</a></li> <li><a href="/wiki/Superperfect_number" title="Superperfect number">Superperfect</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Prime_number_classes" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Prime_number_classes" title="Template:Prime number classes"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Prime_number_classes" title="Template talk:Prime number classes"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Prime_number_classes" title="Special:EditPage/Template:Prime number classes"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Prime_number_classes" style="font-size:114%;margin:0 4em"><a class="mw-selflink selflink">Prime number</a> classes</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">By formula</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fermat_number" title="Fermat number">Fermat (<span class="texhtml texhtml-big" style="font-size:110%;">2<sup>2<sup><i>n</i></sup></sup> + 1</span>)</a></li> <li><a href="/wiki/Mersenne_prime" title="Mersenne prime">Mersenne (<span class="texhtml texhtml-big" style="font-size:110%;">2<sup><i>p</i></sup> − 1</span>)</a></li> <li><a href="/wiki/Double_Mersenne_number" title="Double Mersenne number">Double Mersenne (<span class="texhtml texhtml-big" style="font-size:110%;">2<sup>2<sup><i>p</i></sup>−1</sup> − 1</span>)</a></li> <li><a href="/wiki/Wagstaff_prime" title="Wagstaff prime">Wagstaff <span class="texhtml texhtml-big" style="font-size:110%;">(2<sup><i>p</i></sup> + 1)/3</span></a></li> <li><a href="/wiki/Proth_prime" title="Proth prime">Proth (<span class="texhtml texhtml-big" style="font-size:110%;"><i>k</i>·2<sup><i>n</i></sup> + 1</span>)</a></li> <li><a href="/wiki/Factorial_prime" title="Factorial prime">Factorial (<span class="texhtml texhtml-big" style="font-size:110%;"><i>n</i>! ± 1</span>)</a></li> <li><a href="/wiki/Primorial_prime" title="Primorial prime">Primorial (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p<sub>n</sub></i># ± 1</span>)</a></li> <li><a href="/wiki/Euclid_number" title="Euclid number">Euclid (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p<sub>n</sub></i># + 1</span>)</a></li> <li><a href="/wiki/Pythagorean_prime" title="Pythagorean prime">Pythagorean (<span class="texhtml texhtml-big" style="font-size:110%;">4<i>n</i> + 1</span>)</a></li> <li><a href="/wiki/Pierpont_prime" title="Pierpont prime">Pierpont (<span class="texhtml texhtml-big" style="font-size:110%;">2<sup><i>m</i></sup>·3<sup><i>n</i></sup> + 1</span>)</a></li> <li><a href="/wiki/Quartan_prime" title="Quartan prime">Quartan (<span class="texhtml texhtml-big" style="font-size:110%;"><i>x</i><sup>4</sup> + <i>y</i><sup>4</sup></span>)</a></li> <li><a href="/wiki/Solinas_prime" title="Solinas prime">Solinas (<span class="texhtml texhtml-big" style="font-size:110%;">2<sup><i>m</i></sup> ± 2<sup><i>n</i></sup> ± 1</span>)</a></li> <li><a href="/wiki/Cullen_number" title="Cullen number">Cullen (<span class="texhtml texhtml-big" style="font-size:110%;"><i>n</i>·2<sup><i>n</i></sup> + 1</span>)</a></li> <li><a href="/wiki/Woodall_number" title="Woodall number">Woodall (<span class="texhtml texhtml-big" style="font-size:110%;"><i>n</i>·2<sup><i>n</i></sup> − 1</span>)</a></li> <li><a href="/wiki/Cuban_prime" title="Cuban prime">Cuban (<span class="texhtml texhtml-big" style="font-size:110%;"><i>x</i><sup>3</sup> − <i>y</i><sup>3</sup>)/(<i>x</i> − <i>y</i></span>)</a></li> <li><a href="/wiki/Leyland_number" title="Leyland number">Leyland (<span class="texhtml texhtml-big" style="font-size:110%;"><i>x<sup>y</sup></i> + <i>y<sup>x</sup></i></span>)</a></li> <li><a href="/wiki/Thabit_number" title="Thabit number">Thabit (<span class="texhtml texhtml-big" style="font-size:110%;">3·2<sup><i>n</i></sup> − 1</span>)</a></li> <li><a href="/wiki/Williams_number" title="Williams number">Williams (<span class="texhtml texhtml-big" style="font-size:110%;">(<i>b</i>−1)·<i>b</i><sup><i>n</i></sup> − 1</span>)</a></li> <li><a href="/wiki/Mills%27_constant" title="Mills' constant">Mills (<span class="texhtml texhtml-big" style="font-size:110%;"><span style="font-size:1em">⌊</span><i>A</i><sup>3<sup><i>n</i></sup></sup><span style="font-size:1em">⌋</span></span>)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By integer sequence</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fibonacci_prime" title="Fibonacci prime">Fibonacci</a></li> <li><a href="/wiki/Lucas_prime" class="mw-redirect" title="Lucas prime">Lucas</a></li> <li><a href="/wiki/Pell_prime" class="mw-redirect" title="Pell prime">Pell</a></li> <li><a href="/wiki/Newman%E2%80%93Shanks%E2%80%93Williams_prime" title="Newman–Shanks–Williams prime">Newman–Shanks–Williams</a></li> <li><a href="/wiki/Perrin_prime" class="mw-redirect" title="Perrin prime">Perrin</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By property</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Wieferich_prime" title="Wieferich prime">Wieferich</a> (<a href="/wiki/Wieferich_pair" title="Wieferich pair">pair</a>)</li> <li><a href="/wiki/Wall%E2%80%93Sun%E2%80%93Sun_prime" title="Wall–Sun–Sun prime">Wall–Sun–Sun</a></li> <li><a href="/wiki/Wolstenholme_prime" title="Wolstenholme prime">Wolstenholme</a></li> <li><a href="/wiki/Wilson_prime" title="Wilson prime">Wilson</a></li> <li><a href="/wiki/Lucky_number" title="Lucky number">Lucky</a></li> <li><a href="/wiki/Fortunate_number" title="Fortunate number">Fortunate</a></li> <li><a href="/wiki/Ramanujan_prime" title="Ramanujan prime">Ramanujan</a></li> <li><a href="/wiki/Pillai_prime" title="Pillai prime">Pillai</a></li> <li><a href="/wiki/Regular_prime" title="Regular prime">Regular</a></li> <li><a href="/wiki/Strong_prime" title="Strong prime">Strong</a></li> <li><a href="/wiki/Stern_prime" title="Stern prime">Stern</a></li> <li><a href="/wiki/Supersingular_prime_(algebraic_number_theory)" title="Supersingular prime (algebraic number theory)">Supersingular (elliptic curve)</a></li> <li><a href="/wiki/Supersingular_prime_(moonshine_theory)" title="Supersingular prime (moonshine theory)">Supersingular (moonshine theory)</a></li> <li><a href="/wiki/Good_prime" title="Good prime">Good</a></li> <li><a href="/wiki/Super-prime" title="Super-prime">Super</a></li> <li><a href="/wiki/Higgs_prime" title="Higgs prime">Higgs</a></li> <li><a href="/wiki/Highly_cototient_number" title="Highly cototient number">Highly cototient</a></li> <li><a href="/wiki/Reciprocals_of_primes#Unique_primes" title="Reciprocals of primes">Unique</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Radix" title="Radix">Base</a>-dependent</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Palindromic_prime" title="Palindromic prime">Palindromic</a></li> <li><a href="/wiki/Emirp" title="Emirp">Emirp</a></li> <li><a href="/wiki/Repunit" title="Repunit">Repunit <span class="texhtml texhtml-big" style="font-size:110%;">(10<sup><i>n</i></sup> − 1)/9</span></a></li> <li><a href="/wiki/Permutable_prime" title="Permutable prime">Permutable</a></li> <li><a href="/wiki/Circular_prime" title="Circular prime">Circular</a></li> <li><a href="/wiki/Truncatable_prime" title="Truncatable prime">Truncatable</a></li> <li><a href="/wiki/Minimal_prime_(recreational_mathematics)" title="Minimal prime (recreational mathematics)">Minimal</a></li> <li><a href="/wiki/Delicate_prime" title="Delicate prime">Delicate</a></li> <li><a href="/wiki/Primeval_number" title="Primeval number">Primeval</a></li> <li><a href="/wiki/Full_reptend_prime" title="Full reptend prime">Full reptend</a></li> <li><a href="/wiki/Unique_prime_number" class="mw-redirect" title="Unique prime number">Unique</a></li> <li><a href="/wiki/Happy_number#Happy_primes" title="Happy number">Happy</a></li> <li><a href="/wiki/Self_number" title="Self number">Self</a></li> <li><a href="/wiki/Smarandache%E2%80%93Wellin_prime" class="mw-redirect" title="Smarandache–Wellin prime">Smarandache–Wellin</a></li> <li><a href="/wiki/Strobogrammatic_prime" class="mw-redirect" title="Strobogrammatic prime">Strobogrammatic</a></li> <li><a href="/wiki/Dihedral_prime" title="Dihedral prime">Dihedral</a></li> <li><a href="/wiki/Tetradic_number" title="Tetradic number">Tetradic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Patterns</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="k-tuples" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Prime_k-tuple" title="Prime k-tuple"><i>k</i>-tuples</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Twin_prime" title="Twin prime">Twin (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i>, <i>p</i> + 2</span>)</a></li> <li><a href="/wiki/Prime_triplet" title="Prime triplet">Triplet (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i>, <i>p</i> + 2 or <i>p</i> + 4, <i>p</i> + 6</span>)</a></li> <li><a href="/wiki/Prime_quadruplet" title="Prime quadruplet">Quadruplet (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i>, <i>p</i> + 2, <i>p</i> + 6, <i>p</i> + 8</span>)</a></li> <li><a href="/wiki/Cousin_prime" title="Cousin prime">Cousin (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i>, <i>p</i> + 4</span>)</a></li> <li><a href="/wiki/Sexy_prime" title="Sexy prime">Sexy (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i>, <i>p</i> + 6</span>)</a></li> <li><a href="/wiki/Primes_in_arithmetic_progression" title="Primes in arithmetic progression">Arithmetic progression (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i> + <i>a·n</i>, <i>n</i> = 0, 1, 2, 3, ...</span>)</a></li> <li><a href="/wiki/Balanced_prime" title="Balanced prime">Balanced (<span class="texhtml texhtml-big" style="font-size:110%;">consecutive <i>p</i> − <i>n</i>, <i>p</i>, <i>p</i> + <i>n</i></span>)</a></li></ul> </div></td></tr></tbody></table><div> <ul><li><a href="/wiki/Bi-twin_chain" title="Bi-twin chain">Bi-twin chain (<span class="texhtml texhtml-big" style="font-size:110%;"><i>n</i> ± 1, 2<i>n</i> ± 1, 4<i>n</i> ± 1, …</span>)</a></li> <li><a href="/wiki/Chen_prime" title="Chen prime">Chen</a></li> <li><a href="/wiki/Safe_and_Sophie_Germain_primes" title="Safe and Sophie Germain primes">Sophie Germain/Safe (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i>, 2<i>p</i> + 1</span>)</a></li> <li><a href="/wiki/Cunningham_chain" title="Cunningham chain">Cunningham (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i>, 2<i>p</i> ± 1, 4<i>p</i> ± 3, 8<i>p</i> ± 7, ...</span>)</a></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By size</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <li><a href="/wiki/Megaprime" title="Megaprime">Mega (1,000,000+ digits)</a></li> <li><a href="/wiki/Largest_known_prime_number" title="Largest known prime number">Largest known</a> <ul><li><a href="/wiki/List_of_largest_known_primes_and_probable_primes" title="List of largest known primes and probable primes">list</a></li></ul></li> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Complex_number" title="Complex number">Complex numbers</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Eisenstein_prime" class="mw-redirect" title="Eisenstein prime">Eisenstein prime</a></li> <li><a href="/wiki/Gaussian_integer#Gaussian_primes" title="Gaussian integer">Gaussian prime</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Composite_number" title="Composite number">Composite numbers</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pseudoprime" title="Pseudoprime">Pseudoprime</a> <ul><li><a href="/wiki/Catalan_pseudoprime" title="Catalan pseudoprime">Catalan</a></li> <li><a href="/wiki/Elliptic_pseudoprime" title="Elliptic pseudoprime">Elliptic</a></li> <li><a href="/wiki/Euler_pseudoprime" title="Euler pseudoprime">Euler</a></li> <li><a href="/wiki/Euler%E2%80%93Jacobi_pseudoprime" title="Euler–Jacobi pseudoprime">Euler–Jacobi</a></li> <li><a href="/wiki/Fermat_pseudoprime" title="Fermat pseudoprime">Fermat</a></li> <li><a href="/wiki/Frobenius_pseudoprime" title="Frobenius pseudoprime">Frobenius</a></li> <li><a href="/wiki/Lucas_pseudoprime" title="Lucas pseudoprime">Lucas</a></li> <li><a href="/wiki/Perrin_pseudoprime" class="mw-redirect" title="Perrin pseudoprime">Perrin</a></li> <li><a href="/wiki/Somer%E2%80%93Lucas_pseudoprime" title="Somer–Lucas pseudoprime">Somer–Lucas</a></li> <li><a href="/wiki/Strong_pseudoprime" title="Strong pseudoprime">Strong</a></li></ul></li> <li><a href="/wiki/Carmichael_number" title="Carmichael number">Carmichael number</a></li> <li><a href="/wiki/Almost_prime" title="Almost prime">Almost prime</a></li> <li><a href="/wiki/Semiprime" title="Semiprime">Semiprime</a></li> <li><a href="/wiki/Sphenic_number" title="Sphenic number">Sphenic number</a></li> <li><a href="/wiki/Interprime" title="Interprime">Interprime</a></li> <li><a href="/wiki/Pernicious_number" title="Pernicious number">Pernicious</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related topics</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Probable_prime" title="Probable prime">Probable prime</a></li> <li><a href="/wiki/Industrial-grade_prime" title="Industrial-grade prime">Industrial-grade prime</a></li> <li><a href="/wiki/Illegal_prime" class="mw-redirect" title="Illegal prime">Illegal prime</a></li> <li><a href="/wiki/Formula_for_primes" title="Formula for primes">Formula for primes</a></li> <li><a href="/wiki/Prime_gap" title="Prime gap">Prime gap</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">First 60 primes</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/2" title="2">2</a></li> <li><a href="/wiki/3" title="3">3</a></li> <li><a href="/wiki/5" title="5">5</a></li> <li><a href="/wiki/7" title="7">7</a></li> <li><a href="/wiki/11_(number)" title="11 (number)">11</a></li> <li><a href="/wiki/13_(number)" title="13 (number)">13</a></li> <li><a href="/wiki/17_(number)" title="17 (number)">17</a></li> <li><a href="/wiki/19_(number)" title="19 (number)">19</a></li> <li><a href="/wiki/23_(number)" title="23 (number)">23</a></li> <li><a href="/wiki/29_(number)" title="29 (number)">29</a></li> <li><a href="/wiki/31_(number)" title="31 (number)">31</a></li> <li><a href="/wiki/37_(number)" title="37 (number)">37</a></li> <li><a href="/wiki/41_(number)" title="41 (number)">41</a></li> <li><a href="/wiki/43_(number)" title="43 (number)">43</a></li> <li><a href="/wiki/47_(number)" title="47 (number)">47</a></li> <li><a href="/wiki/53_(number)" title="53 (number)">53</a></li> <li><a href="/wiki/59_(number)" title="59 (number)">59</a></li> <li><a href="/wiki/61_(number)" title="61 (number)">61</a></li> <li><a href="/wiki/67_(number)" title="67 (number)">67</a></li> <li><a href="/wiki/71_(number)" title="71 (number)">71</a></li> <li><a href="/wiki/73_(number)" title="73 (number)">73</a></li> <li><a href="/wiki/79_(number)" title="79 (number)">79</a></li> <li><a href="/wiki/83_(number)" title="83 (number)">83</a></li> <li><a href="/wiki/89_(number)" title="89 (number)">89</a></li> <li><a href="/wiki/97_(number)" title="97 (number)">97</a></li> <li><a href="/wiki/101_(number)" title="101 (number)">101</a></li> <li><a href="/wiki/103_(number)" title="103 (number)">103</a></li> <li><a href="/wiki/107_(number)" title="107 (number)">107</a></li> <li><a href="/wiki/109_(number)" title="109 (number)">109</a></li> <li><a href="/wiki/113_(number)" title="113 (number)">113</a></li> <li><a href="/wiki/127_(number)" title="127 (number)">127</a></li> <li><a href="/wiki/131_(number)" title="131 (number)">131</a></li> <li><a href="/wiki/137_(number)" title="137 (number)">137</a></li> <li><a href="/wiki/139_(number)" title="139 (number)">139</a></li> <li><a href="/wiki/149_(number)" title="149 (number)">149</a></li> <li><a href="/wiki/151_(number)" title="151 (number)">151</a></li> <li><a href="/wiki/157_(number)" title="157 (number)">157</a></li> <li><a href="/wiki/163_(number)" title="163 (number)">163</a></li> <li><a href="/wiki/167_(number)" title="167 (number)">167</a></li> <li><a href="/wiki/173_(number)" title="173 (number)">173</a></li> <li><a href="/wiki/179_(number)" title="179 (number)">179</a></li> <li><a href="/wiki/181_(number)" title="181 (number)">181</a></li> <li><a href="/wiki/191_(number)" title="191 (number)">191</a></li> <li><a href="/wiki/193_(number)" title="193 (number)">193</a></li> <li><a href="/wiki/197_(number)" title="197 (number)">197</a></li> <li><a href="/wiki/199_(number)" title="199 (number)">199</a></li> <li><a href="/wiki/211_(number)" title="211 (number)">211</a></li> <li><a href="/wiki/223_(number)" title="223 (number)">223</a></li> <li><a href="/wiki/227_(number)" title="227 (number)">227</a></li> <li><a href="/wiki/229_(number)" title="229 (number)">229</a></li> <li><a href="/wiki/233_(number)" title="233 (number)">233</a></li> <li><a href="/wiki/239_(number)" title="239 (number)">239</a></li> <li><a href="/wiki/241_(number)" title="241 (number)">241</a></li> <li><a href="/wiki/251_(number)" title="251 (number)">251</a></li> <li><a href="/wiki/257_(number)" title="257 (number)">257</a></li> <li><a href="/wiki/263_(number)" title="263 (number)">263</a></li> <li><a href="/wiki/269_(number)" title="269 (number)">269</a></li> <li><a href="/wiki/271_(number)" title="271 (number)">271</a></li> <li><a href="/wiki/277_(number)" title="277 (number)">277</a></li> <li><a href="/wiki/281_(number)" title="281 (number)">281</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2"><div><a href="/wiki/List_of_prime_numbers" title="List of prime numbers">List of prime numbers</a></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Classes_of_natural_numbers" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Classes_of_natural_numbers" title="Template:Classes of natural numbers"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Classes_of_natural_numbers" title="Template talk:Classes of natural numbers"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Classes_of_natural_numbers" title="Special:EditPage/Template:Classes of natural numbers"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Classes_of_natural_numbers" style="font-size:114%;margin:0 4em">Classes of <a href="/wiki/Natural_number" title="Natural number">natural numbers</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Powers_and_related_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Exponentiation" title="Exponentiation">Powers</a> and related numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Achilles_number" title="Achilles number">Achilles</a></li> <li><a href="/wiki/Power_of_two" title="Power of two">Power of 2</a></li> <li><a href="/wiki/Power_of_three" title="Power of three">Power of 3</a></li> <li><a href="/wiki/Power_of_10" title="Power of 10">Power of 10</a></li> <li><a href="/wiki/Square_number" title="Square number">Square</a></li> <li><a href="/wiki/Cube_(algebra)" title="Cube (algebra)">Cube</a></li> <li><a href="/wiki/Fourth_power" title="Fourth power">Fourth power</a></li> <li><a href="/wiki/Fifth_power_(algebra)" title="Fifth power (algebra)">Fifth power</a></li> <li><a href="/wiki/Sixth_power" title="Sixth power">Sixth power</a></li> <li><a href="/wiki/Seventh_power" title="Seventh power">Seventh power</a></li> <li><a href="/wiki/Eighth_power" title="Eighth power">Eighth power</a></li> <li><a href="/wiki/Perfect_power" title="Perfect power">Perfect power</a></li> <li><a href="/wiki/Powerful_number" title="Powerful number">Powerful</a></li> <li><a href="/wiki/Prime_power" title="Prime power">Prime power</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Of_the_form_a_×_2b_±_1" style="font-size:114%;margin:0 4em">Of the form <i>a</i> × 2<sup><i>b</i></sup> ± 1</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cullen_number" title="Cullen number">Cullen</a></li> <li><a href="/wiki/Double_Mersenne_number" title="Double Mersenne number">Double Mersenne</a></li> <li><a href="/wiki/Fermat_number" title="Fermat number">Fermat</a></li> <li><a href="/wiki/Mersenne_prime" title="Mersenne prime">Mersenne</a></li> <li><a href="/wiki/Proth_number" class="mw-redirect" title="Proth number">Proth</a></li> <li><a href="/wiki/Thabit_number" title="Thabit number">Thabit</a></li> <li><a href="/wiki/Woodall_number" title="Woodall number">Woodall</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Other_polynomial_numbers" style="font-size:114%;margin:0 4em">Other polynomial numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hilbert_number" title="Hilbert number">Hilbert</a></li> <li><a href="/wiki/Idoneal_number" title="Idoneal number">Idoneal</a></li> <li><a href="/wiki/Leyland_number" title="Leyland number">Leyland</a></li> <li><a href="/wiki/Loeschian_number" class="mw-redirect" title="Loeschian number">Loeschian</a></li> <li><a href="/wiki/Lucky_numbers_of_Euler" title="Lucky numbers of Euler">Lucky numbers of Euler</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Recursively_defined_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Recursion" title="Recursion">Recursively</a> defined numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fibonacci_sequence" title="Fibonacci sequence">Fibonacci</a></li> <li><a href="/wiki/Jacobsthal_number" title="Jacobsthal number">Jacobsthal</a></li> <li><a href="/wiki/Leonardo_number" title="Leonardo number">Leonardo</a></li> <li><a href="/wiki/Lucas_number" title="Lucas number">Lucas</a></li> <li><a href="/wiki/Supergolden_ratio#Narayana_sequence" title="Supergolden ratio">Narayana</a></li> <li><a href="/wiki/Padovan_sequence" title="Padovan sequence">Padovan</a></li> <li><a href="/wiki/Pell_number" title="Pell number">Pell</a></li> <li><a href="/wiki/Perrin_number" title="Perrin number">Perrin</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Possessing_a_specific_set_of_other_numbers" style="font-size:114%;margin:0 4em">Possessing a specific set of other numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amenable_number" title="Amenable number">Amenable</a></li> <li><a href="/wiki/Congruent_number" title="Congruent number">Congruent</a></li> <li><a href="/wiki/Kn%C3%B6del_number" title="Knödel number">Knödel</a></li> <li><a href="/wiki/Riesel_number" title="Riesel number">Riesel</a></li> <li><a href="/wiki/Sierpi%C5%84ski_number" title="Sierpiński number">Sierpiński</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Expressible_via_specific_sums" style="font-size:114%;margin:0 4em">Expressible via specific sums</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nonhypotenuse_number" title="Nonhypotenuse number">Nonhypotenuse</a></li> <li><a href="/wiki/Polite_number" title="Polite number">Polite</a></li> <li><a href="/wiki/Practical_number" title="Practical number">Practical</a></li> <li><a href="/wiki/Primary_pseudoperfect_number" title="Primary pseudoperfect number">Primary pseudoperfect</a></li> <li><a href="/wiki/Ulam_number" title="Ulam number">Ulam</a></li> <li><a href="/wiki/Wolstenholme_number" title="Wolstenholme number">Wolstenholme</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Figurate_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Figurate_number" title="Figurate number">Figurate numbers</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Plane_(mathematics)" title="Plane (mathematics)">2-dimensional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Centered_polygonal_number" title="Centered polygonal number">centered</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Centered_triangular_number" title="Centered triangular number">Centered triangular</a></li> <li><a href="/wiki/Centered_square_number" title="Centered square number">Centered square</a></li> <li><a href="/wiki/Centered_pentagonal_number" title="Centered pentagonal number">Centered pentagonal</a></li> <li><a href="/wiki/Centered_hexagonal_number" title="Centered hexagonal number">Centered hexagonal</a></li> <li><a href="/wiki/Centered_heptagonal_number" title="Centered heptagonal number">Centered heptagonal</a></li> <li><a href="/wiki/Centered_octagonal_number" title="Centered octagonal number">Centered octagonal</a></li> <li><a href="/wiki/Centered_nonagonal_number" title="Centered nonagonal number">Centered nonagonal</a></li> <li><a href="/wiki/Centered_decagonal_number" title="Centered decagonal number">Centered decagonal</a></li> <li><a href="/wiki/Star_number" title="Star number">Star</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Polygonal_number" title="Polygonal number">non-centered</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Triangular_number" title="Triangular number">Triangular</a></li> <li><a href="/wiki/Square_number" title="Square number">Square</a></li> <li><a href="/wiki/Square_triangular_number" title="Square triangular number">Square triangular</a></li> <li><a href="/wiki/Pentagonal_number" title="Pentagonal number">Pentagonal</a></li> <li><a href="/wiki/Hexagonal_number" title="Hexagonal number">Hexagonal</a></li> <li><a href="/wiki/Heptagonal_number" title="Heptagonal number">Heptagonal</a></li> <li><a href="/wiki/Octagonal_number" title="Octagonal number">Octagonal</a></li> <li><a href="/wiki/Nonagonal_number" title="Nonagonal number">Nonagonal</a></li> <li><a href="/wiki/Decagonal_number" title="Decagonal number">Decagonal</a></li> <li><a href="/wiki/Dodecagonal_number" title="Dodecagonal number">Dodecagonal</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Three-dimensional_space" title="Three-dimensional space">3-dimensional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Centered_polyhedral_number" title="Centered polyhedral number">centered</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Centered_tetrahedral_number" title="Centered tetrahedral number">Centered tetrahedral</a></li> <li><a href="/wiki/Centered_cube_number" title="Centered cube number">Centered cube</a></li> <li><a href="/wiki/Centered_octahedral_number" title="Centered octahedral number">Centered octahedral</a></li> <li><a href="/wiki/Centered_dodecahedral_number" title="Centered dodecahedral number">Centered dodecahedral</a></li> <li><a href="/wiki/Centered_icosahedral_number" title="Centered icosahedral number">Centered icosahedral</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Polyhedral_number" class="mw-redirect" title="Polyhedral number">non-centered</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Tetrahedral_number" title="Tetrahedral number">Tetrahedral</a></li> <li><a href="/wiki/Cube_(algebra)" title="Cube (algebra)">Cubic</a></li> <li><a href="/wiki/Octahedral_number" title="Octahedral number">Octahedral</a></li> <li><a href="/wiki/Dodecahedral_number" title="Dodecahedral number">Dodecahedral</a></li> <li><a href="/wiki/Icosahedral_number" title="Icosahedral number">Icosahedral</a></li> <li><a href="/wiki/Stella_octangula_number" title="Stella octangula number">Stella octangula</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Pyramidal_number" title="Pyramidal number">pyramidal</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Square_pyramidal_number" title="Square pyramidal number">Square pyramidal</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Four-dimensional_space" title="Four-dimensional space">4-dimensional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">non-centered</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pentatope_number" title="Pentatope number">Pentatope</a></li> <li><a href="/wiki/Squared_triangular_number" title="Squared triangular number">Squared triangular</a></li> <li><a href="/wiki/Fourth_power" title="Fourth power">Tesseractic</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Combinatorial_numbers" style="font-size:114%;margin:0 4em">Combinatorial numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bell_number" title="Bell number">Bell</a></li> <li><a href="/wiki/Cake_number" title="Cake number">Cake</a></li> <li><a href="/wiki/Catalan_number" title="Catalan number">Catalan</a></li> <li><a href="/wiki/Dedekind_number" title="Dedekind number">Dedekind</a></li> <li><a href="/wiki/Delannoy_number" title="Delannoy number">Delannoy</a></li> <li><a href="/wiki/Euler_number" class="mw-redirect" title="Euler number">Euler</a></li> <li><a href="/wiki/Eulerian_number" title="Eulerian number">Eulerian</a></li> <li><a href="/wiki/Fuss%E2%80%93Catalan_number" title="Fuss–Catalan number">Fuss–Catalan</a></li> <li><a href="/wiki/Lah_number" title="Lah number">Lah</a></li> <li><a href="/wiki/Lazy_caterer%27s_sequence" title="Lazy caterer's sequence">Lazy caterer's sequence</a></li> <li><a href="/wiki/Lobb_number" title="Lobb number">Lobb</a></li> <li><a href="/wiki/Motzkin_number" title="Motzkin number">Motzkin</a></li> <li><a href="/wiki/Narayana_number" title="Narayana number">Narayana</a></li> <li><a href="/wiki/Ordered_Bell_number" title="Ordered Bell number">Ordered Bell</a></li> <li><a href="/wiki/Schr%C3%B6der_number" title="Schröder number">Schröder</a></li> <li><a href="/wiki/Schr%C3%B6der%E2%80%93Hipparchus_number" title="Schröder–Hipparchus number">Schröder–Hipparchus</a></li> <li><a href="/wiki/Stirling_numbers_of_the_first_kind" title="Stirling numbers of the first kind">Stirling first</a></li> <li><a href="/wiki/Stirling_numbers_of_the_second_kind" title="Stirling numbers of the second kind">Stirling second</a></li> <li><a href="/wiki/Telephone_number_(mathematics)" title="Telephone number (mathematics)">Telephone number</a></li> <li><a href="/wiki/Wedderburn%E2%80%93Etherington_number" title="Wedderburn–Etherington number">Wedderburn–Etherington</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Primes" style="font-size:114%;margin:0 4em"><a class="mw-selflink selflink">Primes</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Wieferich_prime#Wieferich_numbers" title="Wieferich prime">Wieferich</a></li> <li><a href="/wiki/Wall%E2%80%93Sun%E2%80%93Sun_prime" title="Wall–Sun–Sun prime">Wall–Sun–Sun</a></li> <li><a href="/wiki/Wolstenholme_prime" title="Wolstenholme prime">Wolstenholme prime</a></li> <li><a href="/wiki/Wilson_prime#Wilson_numbers" title="Wilson prime">Wilson</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Pseudoprimes" style="font-size:114%;margin:0 4em"><a href="/wiki/Pseudoprime" title="Pseudoprime">Pseudoprimes</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Carmichael_number" title="Carmichael number">Carmichael number</a></li> <li><a href="/wiki/Catalan_pseudoprime" title="Catalan pseudoprime">Catalan pseudoprime</a></li> <li><a href="/wiki/Elliptic_pseudoprime" title="Elliptic pseudoprime">Elliptic pseudoprime</a></li> <li><a href="/wiki/Euler_pseudoprime" title="Euler pseudoprime">Euler pseudoprime</a></li> <li><a href="/wiki/Euler%E2%80%93Jacobi_pseudoprime" title="Euler–Jacobi pseudoprime">Euler–Jacobi pseudoprime</a></li> <li><a href="/wiki/Fermat_pseudoprime" title="Fermat pseudoprime">Fermat pseudoprime</a></li> <li><a href="/wiki/Frobenius_pseudoprime" title="Frobenius pseudoprime">Frobenius pseudoprime</a></li> <li><a href="/wiki/Lucas_pseudoprime" title="Lucas pseudoprime">Lucas pseudoprime</a></li> <li><a href="/wiki/Lucas%E2%80%93Carmichael_number" title="Lucas–Carmichael number">Lucas–Carmichael number</a></li> <li><a href="/wiki/Perrin_number#Perrin_primality_test" title="Perrin number">Perrin pseudoprime</a></li> <li><a href="/wiki/Somer%E2%80%93Lucas_pseudoprime" title="Somer–Lucas pseudoprime">Somer–Lucas pseudoprime</a></li> <li><a href="/wiki/Strong_pseudoprime" title="Strong pseudoprime">Strong pseudoprime</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Arithmetic_functions_and_dynamics" style="font-size:114%;margin:0 4em"><a href="/wiki/Arithmetic_function" title="Arithmetic function">Arithmetic functions</a> and <a href="/wiki/Arithmetic_dynamics" title="Arithmetic dynamics">dynamics</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Divisor_function" title="Divisor function">Divisor functions</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abundant_number" title="Abundant number">Abundant</a></li> <li><a href="/wiki/Almost_perfect_number" title="Almost perfect number">Almost perfect</a></li> <li><a href="/wiki/Arithmetic_number" title="Arithmetic number">Arithmetic</a></li> <li><a href="/wiki/Betrothed_numbers" title="Betrothed numbers">Betrothed</a></li> <li><a href="/wiki/Colossally_abundant_number" title="Colossally abundant number">Colossally abundant</a></li> <li><a href="/wiki/Deficient_number" title="Deficient number">Deficient</a></li> <li><a href="/wiki/Descartes_number" title="Descartes number">Descartes</a></li> <li><a href="/wiki/Hemiperfect_number" title="Hemiperfect number">Hemiperfect</a></li> <li><a href="/wiki/Highly_abundant_number" title="Highly abundant number">Highly abundant</a></li> <li><a href="/wiki/Highly_composite_number" title="Highly composite number">Highly composite</a></li> <li><a href="/wiki/Hyperperfect_number" title="Hyperperfect number">Hyperperfect</a></li> <li><a href="/wiki/Multiply_perfect_number" title="Multiply perfect number">Multiply perfect</a></li> <li><a href="/wiki/Perfect_number" title="Perfect number">Perfect</a></li> <li><a href="/wiki/Practical_number" title="Practical number">Practical</a></li> <li><a href="/wiki/Primitive_abundant_number" title="Primitive abundant number">Primitive abundant</a></li> <li><a href="/wiki/Quasiperfect_number" title="Quasiperfect number">Quasiperfect</a></li> <li><a href="/wiki/Refactorable_number" title="Refactorable number">Refactorable</a></li> <li><a href="/wiki/Semiperfect_number" title="Semiperfect number">Semiperfect</a></li> <li><a href="/wiki/Sublime_number" title="Sublime number">Sublime</a></li> <li><a href="/wiki/Superabundant_number" title="Superabundant number">Superabundant</a></li> <li><a href="/wiki/Superior_highly_composite_number" title="Superior highly composite number">Superior highly composite</a></li> <li><a href="/wiki/Superperfect_number" title="Superperfect number">Superperfect</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Prime_omega_function" title="Prime omega function">Prime omega functions</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Almost_prime" title="Almost prime">Almost prime</a></li> <li><a href="/wiki/Semiprime" title="Semiprime">Semiprime</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Euler%27s_totient_function" title="Euler's totient function">Euler's totient function</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Highly_cototient_number" title="Highly cototient number">Highly cototient</a></li> <li><a href="/wiki/Highly_totient_number" title="Highly totient number">Highly totient</a></li> <li><a href="/wiki/Noncototient" title="Noncototient">Noncototient</a></li> <li><a href="/wiki/Nontotient" title="Nontotient">Nontotient</a></li> <li><a href="/wiki/Perfect_totient_number" title="Perfect totient number">Perfect totient</a></li> <li><a href="/wiki/Sparsely_totient_number" title="Sparsely totient number">Sparsely totient</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Aliquot_sequence" title="Aliquot sequence">Aliquot sequences</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amicable_numbers" title="Amicable numbers">Amicable</a></li> <li><a href="/wiki/Perfect_number" title="Perfect number">Perfect</a></li> <li><a href="/wiki/Sociable_numbers" class="mw-redirect" title="Sociable numbers">Sociable</a></li> <li><a href="/wiki/Untouchable_number" title="Untouchable number">Untouchable</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Primorial" title="Primorial">Primorial</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Euclid_number" title="Euclid number">Euclid</a></li> <li><a href="/wiki/Fortunate_number" title="Fortunate number">Fortunate</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Other_prime_factor_or_divisor_related_numbers" style="font-size:114%;margin:0 4em">Other <a href="/wiki/Prime_factor" class="mw-redirect" title="Prime factor">prime factor</a> or <a href="/wiki/Divisor" title="Divisor">divisor</a> related numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Blum_integer" title="Blum integer">Blum</a></li> <li><a href="/wiki/Cyclic_number_(group_theory)" title="Cyclic number (group theory)">Cyclic</a></li> <li><a href="/wiki/Erd%C5%91s%E2%80%93Nicolas_number" title="Erdős–Nicolas number">Erdős–Nicolas</a></li> <li><a href="/wiki/Erd%C5%91s%E2%80%93Woods_number" title="Erdős–Woods number">Erdős–Woods</a></li> <li><a href="/wiki/Friendly_number" title="Friendly number">Friendly</a></li> <li><a href="/wiki/Giuga_number" title="Giuga number">Giuga</a></li> <li><a href="/wiki/Harmonic_divisor_number" title="Harmonic divisor number">Harmonic divisor</a></li> <li><a href="/wiki/Jordan%E2%80%93P%C3%B3lya_number" title="Jordan–Pólya number">Jordan–Pólya</a></li> <li><a href="/wiki/Lucas%E2%80%93Carmichael_number" title="Lucas–Carmichael number">Lucas–Carmichael</a></li> <li><a href="/wiki/Pronic_number" title="Pronic number">Pronic</a></li> <li><a href="/wiki/Regular_number" title="Regular number">Regular</a></li> <li><a href="/wiki/Rough_number" title="Rough number">Rough</a></li> <li><a href="/wiki/Smooth_number" title="Smooth number">Smooth</a></li> <li><a href="/wiki/Sphenic_number" title="Sphenic number">Sphenic</a></li> <li><a href="/wiki/St%C3%B8rmer_number" title="Størmer number">Størmer</a></li> <li><a href="/wiki/Super-Poulet_number" title="Super-Poulet number">Super-Poulet</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Numeral_system-dependent_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Numeral_system" title="Numeral system">Numeral system</a>-dependent numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Arithmetic_function" title="Arithmetic function">Arithmetic functions</a> <br />and <a href="/wiki/Arithmetic_dynamics" title="Arithmetic dynamics">dynamics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Persistence_of_a_number" title="Persistence of a number">Persistence</a> <ul><li><a href="/wiki/Additive_persistence" class="mw-redirect" title="Additive persistence">Additive</a></li> <li><a href="/wiki/Multiplicative_persistence" class="mw-redirect" title="Multiplicative persistence">Multiplicative</a></li></ul></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Digit_sum" title="Digit sum">Digit sum</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Digit_sum" title="Digit sum">Digit sum</a></li> <li><a href="/wiki/Digital_root" title="Digital root">Digital root</a></li> <li><a href="/wiki/Self_number" title="Self number">Self</a></li> <li><a href="/wiki/Sum-product_number" title="Sum-product number">Sum-product</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Digit product</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Multiplicative_digital_root" title="Multiplicative digital root">Multiplicative digital root</a></li> <li><a href="/wiki/Sum-product_number" title="Sum-product number">Sum-product</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Coding-related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Meertens_number" title="Meertens number">Meertens</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dudeney_number" title="Dudeney number">Dudeney</a></li> <li><a href="/wiki/Factorion" title="Factorion">Factorion</a></li> <li><a href="/wiki/Kaprekar_number" title="Kaprekar number">Kaprekar</a></li> <li><a href="/wiki/Kaprekar%27s_routine" title="Kaprekar's routine">Kaprekar's constant</a></li> <li><a href="/wiki/Keith_number" title="Keith number">Keith</a></li> <li><a href="/wiki/Lychrel_number" title="Lychrel number">Lychrel</a></li> <li><a href="/wiki/Narcissistic_number" title="Narcissistic number">Narcissistic</a></li> <li><a href="/wiki/Perfect_digit-to-digit_invariant" title="Perfect digit-to-digit invariant">Perfect digit-to-digit invariant</a></li> <li><a href="/wiki/Perfect_digital_invariant" title="Perfect digital invariant">Perfect digital invariant</a> <ul><li><a href="/wiki/Happy_number" title="Happy number">Happy</a></li></ul></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/P-adic_numbers" class="mw-redirect" title="P-adic numbers">P-adic numbers</a>-related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Automorphic_number" title="Automorphic number">Automorphic</a> <ul><li><a href="/wiki/Trimorphic_number" class="mw-redirect" title="Trimorphic number">Trimorphic</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Numerical_digit" title="Numerical digit">Digit</a>-composition related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Palindromic_number" title="Palindromic number">Palindromic</a></li> <li><a href="/wiki/Pandigital_number" title="Pandigital number">Pandigital</a></li> <li><a href="/wiki/Repdigit" title="Repdigit">Repdigit</a></li> <li><a href="/wiki/Repunit" title="Repunit">Repunit</a></li> <li><a href="/wiki/Self-descriptive_number" title="Self-descriptive number">Self-descriptive</a></li> <li><a href="/wiki/Smarandache%E2%80%93Wellin_number" title="Smarandache–Wellin number">Smarandache–Wellin</a></li> <li><a href="/wiki/Undulating_number" title="Undulating number">Undulating</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Digit-<a href="/wiki/Permutation" title="Permutation">permutation</a> related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cyclic_number" title="Cyclic number">Cyclic</a></li> <li><a href="/wiki/Digit-reassembly_number" title="Digit-reassembly number">Digit-reassembly</a></li> <li><a href="/wiki/Parasitic_number" title="Parasitic number">Parasitic</a></li> <li><a href="/wiki/Primeval_number" title="Primeval number">Primeval</a></li> <li><a href="/wiki/Transposable_integer" title="Transposable integer">Transposable</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Divisor-related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Equidigital_number" title="Equidigital number">Equidigital</a></li> <li><a href="/wiki/Extravagant_number" title="Extravagant number">Extravagant</a></li> <li><a href="/wiki/Frugal_number" title="Frugal number">Frugal</a></li> <li><a href="/wiki/Harshad_number" title="Harshad number">Harshad</a></li> <li><a href="/wiki/Polydivisible_number" title="Polydivisible number">Polydivisible</a></li> <li><a href="/wiki/Smith_number" title="Smith number">Smith</a></li> <li><a href="/wiki/Vampire_number" title="Vampire number">Vampire</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Friedman_number" title="Friedman number">Friedman</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Binary_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Binary_number" title="Binary number">Binary numbers</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Evil_number" title="Evil number">Evil</a></li> <li><a href="/wiki/Odious_number" title="Odious number">Odious</a></li> <li><a href="/wiki/Pernicious_number" title="Pernicious number">Pernicious</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Generated_via_a_sieve" style="font-size:114%;margin:0 4em">Generated via a <a href="/wiki/Sieve_theory" title="Sieve theory">sieve</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Lucky_number" title="Lucky number">Lucky</a></li> <li><a href="/wiki/Generation_of_primes" title="Generation of primes">Prime</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Sorting_related" style="font-size:114%;margin:0 4em"><a href="/wiki/Sorting_algorithm" title="Sorting algorithm">Sorting</a> related</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pancake_sorting" title="Pancake sorting">Pancake number</a></li> <li><a href="/wiki/Sorting_number" title="Sorting number">Sorting number</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Natural_language_related" style="font-size:114%;margin:0 4em"><a href="/wiki/Natural_language" title="Natural language">Natural language</a> related</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aronson%27s_sequence" title="Aronson's sequence">Aronson's sequence</a></li> <li><a href="/wiki/Ban_number" title="Ban number">Ban</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Graphemics_related" style="font-size:114%;margin:0 4em"><a href="/wiki/Graphemics" title="Graphemics">Graphemics</a> related</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Strobogrammatic_number" title="Strobogrammatic number">Strobogrammatic</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2" style="font-weight:bold;"><div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Symbol_portal_class.svg" class="mw-file-description" title="Portal"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/16px-Symbol_portal_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/23px-Symbol_portal_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/31px-Symbol_portal_class.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span> <a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></li></ul> </div></td></tr></tbody></table></div> <style data-mw-deduplicate="TemplateStyles:r1130092004">.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;justify-content:center;align-items:baseline}.mw-parser-output .portal-bar-bordered{padding:0 2em;background-color:#fdfdfd;border:1px solid #a2a9b1;clear:both;margin:1em auto 0}.mw-parser-output .portal-bar-related{font-size:100%;justify-content:flex-start}.mw-parser-output .portal-bar-unbordered{padding:0 1.7em;margin-left:0}.mw-parser-output .portal-bar-header{margin:0 1em 0 0.5em;flex:0 0 auto;min-height:24px}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;flex:0 1 auto;padding:0.15em 0;column-gap:1em;align-items:baseline;margin:0;list-style:none}.mw-parser-output .portal-bar-content-related{margin:0;list-style:none}.mw-parser-output .portal-bar-item{display:inline-block;margin:0.15em 0.2em;min-height:24px;line-height:24px}@media screen and (max-width:768px){.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;flex-flow:column wrap;align-items:baseline}.mw-parser-output .portal-bar-header{text-align:center;flex:0;padding-left:0.5em;margin:0 auto}.mw-parser-output .portal-bar-related{font-size:100%;align-items:flex-start}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;align-items:center;flex:0;column-gap:1em;border-top:1px solid #a2a9b1;margin:0 auto;list-style:none}.mw-parser-output .portal-bar-content-related{border-top:none;margin:0;list-style:none}}.mw-parser-output .navbox+link+.portal-bar,.mw-parser-output .navbox+style+.portal-bar,.mw-parser-output .navbox+link+.portal-bar-bordered,.mw-parser-output .navbox+style+.portal-bar-bordered,.mw-parser-output .sister-bar+link+.portal-bar,.mw-parser-output .sister-bar+style+.portal-bar,.mw-parser-output .portal-bar+.navbox-styles+.navbox,.mw-parser-output .portal-bar+.navbox-styles+.sister-bar{margin-top:-1px}</style><div class="portal-bar noprint metadata noviewer portal-bar-bordered" role="navigation" aria-label="Portals"><span class="portal-bar-header"><a href="/wiki/Wikipedia:Contents/Portals" title="Wikipedia:Contents/Portals">Portals</a>:</span><ul class="portal-bar-content"><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/19px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/29px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/38px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:Nuvola_apps_kalzium.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/19px-Nuvola_apps_kalzium.svg.png" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/29px-Nuvola_apps_kalzium.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/38px-Nuvola_apps_kalzium.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Science" title="Portal:Science">Science</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="image" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Newton%27s_reflecting_telescope.jpg/17px-Newton%27s_reflecting_telescope.jpg" decoding="async" width="17" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Newton%27s_reflecting_telescope.jpg/26px-Newton%27s_reflecting_telescope.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Newton%27s_reflecting_telescope.jpg/34px-Newton%27s_reflecting_telescope.jpg 2x" data-file-width="1140" data-file-height="1276" /></span></span> </span><a href="/wiki/Portal:History_of_science" title="Portal:History of science">History of science</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Arithmetic_symbols.svg/19px-Arithmetic_symbols.svg.png" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Arithmetic_symbols.svg/29px-Arithmetic_symbols.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Arithmetic_symbols.svg/38px-Arithmetic_symbols.svg.png 2x" data-file-width="210" data-file-height="210" /></span></span> </span><a href="/wiki/Portal:Arithmetic" title="Portal:Arithmetic">Arithmetic</a></li></ul></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐f9ddp Cached time: 20241122140404 Cache expiry: 35761 Reduced expiry: true Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.899 seconds Real time usage: 3.371 seconds Preprocessor visited node count: 16018/1000000 Post‐expand include size: 505873/2097152 bytes Template argument size: 10447/2097152 bytes Highest expansion depth: 23/100 Expensive parser function count: 32/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 606724/5000000 bytes Lua time usage: 1.599/10.000 seconds Lua memory usage: 16202171/52428800 bytes Lua Profile: ? 320 ms 19.3% dataWrapper <mw.lua:672> 220 ms 13.3% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 220 ms 13.3% recursiveClone <mwInit.lua:45> 120 ms 7.2% type 80 ms 4.8% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::sub 60 ms 3.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 60 ms 3.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 40 ms 2.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::preprocess 40 ms 2.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::plain 40 ms 2.4% [others] 460 ms 27.7% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2461.525 1 -total 50.04% 1231.858 2 Template:Reflist 20.35% 500.990 81 Template:Cite_book 9.53% 234.513 39 Template:Cite_journal 7.08% 174.309 10 Template:Cite_web 5.77% 142.015 1 Template:Authority_control 5.46% 134.497 1 Template:Sfn 5.08% 125.003 11 Template:Navbox 4.54% 111.805 1 Template:Transl 4.46% 109.833 1 Template:Short_description --> <!-- Saved in parser cache with key enwiki:pcache:idhash:23666-0!canonical and timestamp 20241122140404 and revision id 1256853845. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Prime_number&oldid=1256853845">https://en.wikipedia.org/w/index.php?title=Prime_number&oldid=1256853845</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Prime_numbers" title="Category:Prime numbers">Prime numbers</a></li><li><a href="/wiki/Category:Integer_sequences" title="Category:Integer sequences">Integer sequences</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:CS1_Italian-language_sources_(it)" title="Category:CS1 Italian-language sources (it)">CS1 Italian-language sources (it)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Good_articles" title="Category:Good articles">Good articles</a></li><li><a href="/wiki/Category:Wikipedia_pages_semi-protected_against_vandalism" title="Category:Wikipedia pages semi-protected against vandalism">Wikipedia pages semi-protected against vandalism</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_October_2024" title="Category:Articles containing potentially dated statements from October 2024">Articles containing potentially dated statements from October 2024</a></li><li><a href="/wiki/Category:All_articles_containing_potentially_dated_statements" title="Category:All articles containing potentially dated statements">All articles containing potentially dated statements</a></li><li><a href="/wiki/Category:Articles_containing_Ancient_Greek_(to_1453)-language_text" title="Category:Articles containing Ancient Greek (to 1453)-language text">Articles containing Ancient Greek (to 1453)-language text</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_2014" title="Category:Articles containing potentially dated statements from 2014">Articles containing potentially dated statements from 2014</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_December_2018" title="Category:Articles containing potentially dated statements from December 2018">Articles containing potentially dated statements from December 2018</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_December_2019" title="Category:Articles containing potentially dated statements from December 2019">Articles containing potentially dated statements from December 2019</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_October_2012" title="Category:Articles containing potentially dated statements from October 2012">Articles containing potentially dated statements from October 2012</a></li><li><a href="/wiki/Category:Pages_using_Sister_project_links_with_hidden_wikidata" title="Category:Pages using Sister project links with hidden wikidata">Pages using Sister project links with hidden wikidata</a></li><li><a href="/wiki/Category:Pages_using_Sister_project_links_with_default_search" title="Category:Pages using Sister project links with default search">Pages using Sister project links with default search</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_containing_proofs" title="Category:Articles containing proofs">Articles containing proofs</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 11 November 2024, at 22:07<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Prime_number&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-h9gxb","wgBackendResponseTime":189,"wgPageParseReport":{"limitreport":{"cputime":"2.899","walltime":"3.371","ppvisitednodes":{"value":16018,"limit":1000000},"postexpandincludesize":{"value":505873,"limit":2097152},"templateargumentsize":{"value":10447,"limit":2097152},"expansiondepth":{"value":23,"limit":100},"expensivefunctioncount":{"value":32,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":606724,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 2461.525 1 -total"," 50.04% 1231.858 2 Template:Reflist"," 20.35% 500.990 81 Template:Cite_book"," 9.53% 234.513 39 Template:Cite_journal"," 7.08% 174.309 10 Template:Cite_web"," 5.77% 142.015 1 Template:Authority_control"," 5.46% 134.497 1 Template:Sfn"," 5.08% 125.003 11 Template:Navbox"," 4.54% 111.805 1 Template:Transl"," 4.46% 109.833 1 Template:Short_description"]},"scribunto":{"limitreport-timeusage":{"value":"1.599","limit":"10.000"},"limitreport-memusage":{"value":16202171,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAdler1960\"] = 1,\n [\"CITEREFApostol1976\"] = 1,\n [\"CITEREFApostol2000\"] = 1,\n [\"CITEREFAtkinMorain1993\"] = 1,\n [\"CITEREFBaillieWagstaff,_Jr.1980\"] = 1,\n [\"CITEREFBauer2013\"] = 1,\n [\"CITEREFBeiler1999\"] = 1,\n [\"CITEREFBengtssonŻyczkowski2017\"] = 1,\n [\"CITEREFBoklanConway2017\"] = 1,\n [\"CITEREFBorweinChoiRooneyWeirathmueller2008\"] = 1,\n [\"CITEREFBryantSangwin2008\"] = 1,\n [\"CITEREFBullynck2010\"] = 1,\n [\"CITEREFCaldwell\"] = 4,\n [\"CITEREFCaldwellReddickXiongKeller2012\"] = 1,\n [\"CITEREFCaldwellXiong2012\"] = 1,\n [\"CITEREFCamposde_OliveiraGiroGalvão2004\"] = 1,\n [\"CITEREFChabert2012\"] = 1,\n [\"CITEREFChamberland2015\"] = 1,\n [\"CITEREFChan1996\"] = 1,\n [\"CITEREFChildress2009\"] = 1,\n [\"CITEREFChirgwin2016\"] = 1,\n [\"CITEREFConwayGuy1996\"] = 1,\n [\"CITEREFCooperHodges2016\"] = 1,\n [\"CITEREFCox2011\"] = 1,\n [\"CITEREFCrandallPomerance2005\"] = 1,\n [\"CITEREFDeutsch1996\"] = 1,\n [\"CITEREFDudley1978\"] = 1,\n [\"CITEREFEisenbud1995\"] = 1,\n [\"CITEREFEricksonVazzanaGarth2016\"] = 1,\n [\"CITEREFFarach-ColtonTsai2015\"] = 1,\n [\"CITEREFFaticoni2012\"] = 1,\n [\"CITEREFFurstenberg1955\"] = 1,\n [\"CITEREFGardiner1997\"] = 1,\n [\"CITEREFGelfandShen2003\"] = 1,\n [\"CITEREFGiblin1993\"] = 1,\n [\"CITEREFGillings1974\"] = 1,\n [\"CITEREFGleason1988\"] = 1,\n [\"CITEREFGolesSchulzMarkus2001\"] = 1,\n [\"CITEREFGoodrichTamassia2006\"] = 1,\n [\"CITEREFGreaves2013\"] = 1,\n [\"CITEREFGreenTao2008\"] = 1,\n [\"CITEREFGrrlScientist2010\"] = 1,\n [\"CITEREFGuy2013\"] = 1,\n [\"CITEREFHall2018\"] = 1,\n [\"CITEREFHardy2012\"] = 1,\n [\"CITEREFHayes2003\"] = 1,\n [\"CITEREFHenderson2014\"] = 1,\n [\"CITEREFHiggins1998\"] = 1,\n [\"CITEREFHill1995\"] = 1,\n [\"CITEREFHoffsteinPipherSilverman2014\"] = 1,\n [\"CITEREFHromkovič2001\"] = 1,\n [\"CITEREFHua2009\"] = 1,\n [\"CITEREFKatz2004\"] = 1,\n [\"CITEREFKirtland2001\"] = 1,\n [\"CITEREFKleeWagon1991\"] = 1,\n [\"CITEREFKnuth1998\"] = 1,\n [\"CITEREFKoblitz1987\"] = 1,\n [\"CITEREFKoch1997\"] = 1,\n [\"CITEREFKoshy2002\"] = 1,\n [\"CITEREFKraftWashington2014\"] = 1,\n [\"CITEREFKřížekLucaSomer2001\"] = 1,\n [\"CITEREFLang2002\"] = 1,\n [\"CITEREFLauritzen2003\"] = 1,\n [\"CITEREFLavaBalzarotti2010\"] = 1,\n [\"CITEREFLeff2000\"] = 1,\n [\"CITEREFLenstraPomerance2019\"] = 1,\n [\"CITEREFMackinnon1987\"] = 1,\n [\"CITEREFMartín-LópezLaingLawsonAlvarez2012\"] = 1,\n [\"CITEREFMatiyasevich1999\"] = 1,\n [\"CITEREFMatsumotoNishimura1998\"] = 1,\n [\"CITEREFMillerTakloo-Bighash2006\"] = 1,\n [\"CITEREFMilnor1962\"] = 1,\n [\"CITEREFMollin1997\"] = 1,\n [\"CITEREFMollin2002\"] = 1,\n [\"CITEREFMonier1980\"] = 1,\n [\"CITEREFMorain2007\"] = 1,\n [\"CITEREFNarkiewicz2000\"] = 1,\n [\"CITEREFNathanson2000\"] = 1,\n [\"CITEREFNeale2017\"] = 1,\n [\"CITEREFNeukirch1999\"] = 1,\n [\"CITEREFOgilvyAnderson1988\"] = 1,\n [\"CITEREFOliveira_e_SilvaHerzogPardi2014\"] = 1,\n [\"CITEREFPatterson1988\"] = 1,\n [\"CITEREFPeterson1999\"] = 1,\n [\"CITEREFPieprzykHardjonoSeberry2013\"] = 1,\n [\"CITEREFPomerance1982\"] = 1,\n [\"CITEREFPomerance1996\"] = 1,\n [\"CITEREFPomerance2004\"] = 1,\n [\"CITEREFPomeranceSelfridgeWagstaff,_Jr.1980\"] = 1,\n [\"CITEREFRamaré1995\"] = 1,\n [\"CITEREFRassias2017\"] = 1,\n [\"CITEREFRibenboim2004\"] = 1,\n [\"CITEREFRieffelPolak2011\"] = 1,\n [\"CITEREFRiesel1994\"] = 1,\n [\"CITEREFRosen2000\"] = 1,\n [\"CITEREFRoth1951\"] = 1,\n [\"CITEREFRotman2000\"] = 1,\n [\"CITEREFSandifer2007\"] = 1,\n [\"CITEREFSandifer2014\"] = 1,\n [\"CITEREFSchillinger2010\"] = 1,\n [\"CITEREFSchubert1949\"] = 1,\n [\"CITEREFShafarevich2013\"] = 1,\n [\"CITEREFShahriari2017\"] = 1,\n [\"CITEREFSierpiński1964\"] = 1,\n [\"CITEREFSierpiński1988\"] = 1,\n [\"CITEREFSmith2011\"] = 1,\n [\"CITEREFSparkes2024\"] = 1,\n [\"CITEREFStevenhagenLenstra1996\"] = 1,\n [\"CITEREFStillwell1997\"] = 1,\n [\"CITEREFStillwell2010\"] = 1,\n [\"CITEREFTao2009\"] = 1,\n [\"CITEREFTao2010\"] = 1,\n [\"CITEREFTarán1981\"] = 1,\n [\"CITEREFTchebychev1852\"] = 1,\n [\"CITEREFVardi1991\"] = 1,\n [\"CITEREFWagstaff2013\"] = 1,\n [\"CITEREFWeil1995\"] = 1,\n [\"CITEREFWilliamson1782\"] = 1,\n [\"CITEREFWright1951\"] = 1,\n [\"CITEREFYuan2002\"] = 1,\n [\"CITEREFZagier1977\"] = 1,\n [\"CITEREFZhu2010\"] = 1,\n [\"CITEREFZiegler2004\"] = 1,\n [\"CITEREFZiegler2015\"] = 1,\n [\"CITEREFZimmer2015\"] = 1,\n [\"CITEREFdu_Sautoy2003\"] = 1,\n [\"CITEREFdu_Sautoy2011\"] = 1,\n}\ntemplate_list = table#1 {\n [\"11\"] = 1,\n [\"13\"] = 1,\n [\"As of\"] = 5,\n [\"Authority control\"] = 1,\n [\"Cite IETF\"] = 1,\n [\"Cite OEIS\"] = 1,\n [\"Cite book\"] = 80,\n [\"Cite conference\"] = 1,\n [\"Cite journal\"] = 39,\n [\"Cite magazine\"] = 1,\n [\"Cite news\"] = 4,\n [\"Cite web\"] = 9,\n [\"Classes of natural numbers\"] = 1,\n [\"Divisor classes\"] = 1,\n [\"Efn\"] = 6,\n [\"Further\"] = 2,\n [\"Good article\"] = 1,\n [\"Harvnb\"] = 47,\n [\"Harvtxt\"] = 3,\n [\"In Our Time\"] = 1,\n [\"Introduction to Algorithms\"] = 1,\n [\"Lang\"] = 1,\n [\"MacTutor Biography\"] = 1,\n [\"Main\"] = 14,\n [\"Mvar\"] = 1,\n [\"Notelist\"] = 1,\n [\"Nowrap\"] = 9,\n [\"Number theory\"] = 1,\n [\"OEIS\"] = 1,\n [\"Portal bar\"] = 1,\n [\"Pp-vandalism\"] = 1,\n [\"Prime number classes\"] = 1,\n [\"Redirect\"] = 1,\n [\"Reflist\"] = 1,\n [\"Sfn\"] = 1,\n [\"Short description\"] = 1,\n [\"Sister project links\"] = 1,\n [\"SpringerEOM\"] = 1,\n [\"Transl\"] = 1,\n [\"Webarchive\"] = 1,\n [\"Wide image\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n","limitreport-profile":[["?","320","19.3"],["dataWrapper \u003Cmw.lua:672\u003E","220","13.3"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","220","13.3"],["recursiveClone \u003CmwInit.lua:45\u003E","120","7.2"],["type","80","4.8"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::sub","60","3.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","60","3.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","40","2.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::preprocess","40","2.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::plain","40","2.4"],["[others]","460","27.7"]]},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-f9ddp","timestamp":"20241122140404","ttl":35761,"transientcontent":true}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Prime number","url":"https:\/\/en.wikipedia.org\/wiki\/Prime_number","sameAs":"http:\/\/www.wikidata.org\/entity\/Q49008","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q49008","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-10-11T22:46:31Z","dateModified":"2024-11-11T22:07:45Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/f\/f0\/Primes-vs-composites.svg","headline":"positive integer with exactly two divisors, 1 and itself"}</script> </body> </html>