CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;10 of 10 results for author: <span class="mathjax">Hauet, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Hauet%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hauet, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hauet%2C+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hauet, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03088">arXiv:2409.03088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03088">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Origin of the laser-induced picosecond spin current across magnetization compensation in ferrimagnetic GdCo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Antonio%2C+G+N">Guillermo Nava Antonio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Remy%2C+Q">Quentin Remy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J">Jun-Xiao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guen%2C+Y+L">Yann Le Guen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamara%2C+D">Dominik Hamara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Compton-Stewart%2C+J">Jude Compton-Stewart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barker%2C+J">Joseph Barker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauet%2C+T">Thomas Hauet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">Michel Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin%2C+S">St茅phane Mangin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ciccarelli%2C+C">Chiara Ciccarelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03088v1-abstract-short" style="display: inline;"> The optical manipulation of magnetism enabled by rare earth-transition metal ferrimagnets holds the promise of ultrafast, energy efficient spintronic technologies. This work investigates laser-induced picosecond spin currents generated by ferrimagnetic GdCo via terahertz emission spectroscopy. A suppression of the THz emission and spin current is observed at magnetization compensation when varying&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03088v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03088v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03088v1-abstract-full" style="display: none;"> The optical manipulation of magnetism enabled by rare earth-transition metal ferrimagnets holds the promise of ultrafast, energy efficient spintronic technologies. This work investigates laser-induced picosecond spin currents generated by ferrimagnetic GdCo via terahertz emission spectroscopy. A suppression of the THz emission and spin current is observed at magnetization compensation when varying the temperature or alloy composition in the presence of a magnetic field. It is demonstrated that this is due to the formation of domains in the GdCo equilibrium magnetic configuration. Without an applied magnetic field, the picosecond spin current persists at the compensation point. The experimental findings support the model for THz spin current generation based on transport of hot spin-polarized electrons, which is dominated by the Co sublattice at room temperature. Only at low temperature a comparable contribution from Gd is detected but with slower dynamics. Finally, spectral analysis reveals a blueshift of the THz emission related to the formation of magnetic domains close to magnetization compensation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03088v1-abstract-full').style.display = 'none'; document.getElementById('2409.03088v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10516">arXiv:2308.10516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10516">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Single laser pulse induced magnetization switching in in-plane magnetized GdCo alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J">Jun-Xiao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">Michel Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauet%2C+T">Thomas Hauet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yi Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Igarashi%2C+J">Junta Igarashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guen%2C+Y+L">Yann Le Guen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Remy%2C+Q">Quentin Remy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorchon%2C+J">Jon Gorchon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malinowski%2C+G">Gregory Malinowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin%2C+S">St茅phane Mangin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hohlfeld%2C+J">Julius Hohlfeld</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10516v1-abstract-short" style="display: inline;"> The discovery of all-optical ultra-fast deterministic magnetization switching has opened up new possibilities for manipulating magnetization in devices using femtosecond laser pulses. Previous studies on single pulse all-optical helicity-independent switching (AO-HIS) have mainly focused on perpendicularly magnetized thin films. This work presents a comprehensive study on AO-HIS for in-plane magne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10516v1-abstract-full').style.display = 'inline'; document.getElementById('2308.10516v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10516v1-abstract-full" style="display: none;"> The discovery of all-optical ultra-fast deterministic magnetization switching has opened up new possibilities for manipulating magnetization in devices using femtosecond laser pulses. Previous studies on single pulse all-optical helicity-independent switching (AO-HIS) have mainly focused on perpendicularly magnetized thin films. This work presents a comprehensive study on AO-HIS for in-plane magnetized GdxCo100-x thin films. Deterministic single femtosecond laser pulse toggle magnetization switching is demonstrated in a wider concentration range (x=10% to 25%) compared to the perpendicularly magnetized counterparts with GdCo thicknesses up to 30 nm. The switching time strongly depends on the GdxCo100-x concentration, with lower Gd concentration exhibiting shorter switching times (less than 500 fs). Our findings in this geometry provide insights into the underlying mechanisms governing single pulse AO-HIS, which challenge existing theoretical predictions. Moreover, in-plane magnetized GdxCo100-x thin films offer extended potential for opto-spintronic applications compared to their perpendicular magnetized counterparts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10516v1-abstract-full').style.display = 'none'; document.getElementById('2308.10516v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08304">arXiv:2210.08304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.08304">pdf</a>, <a href="https://arxiv.org/format/2210.08304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.144410">10.1103/PhysRevB.108.144410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-local magnon transconductance in extended magnetic insulating films.\\ Part I: spin diode effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kohno%2C+R">Ryuhei Kohno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+K">Kyongmo An</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clot%2C+E">Eric Clot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naletov%2C+V+V">Vladimir V. Naletov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiery%2C+N">Nicolas Thiery</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vila%2C+L">Laurent Vila</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlitz%2C+R">Richard Schlitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaulieu%2C+N">Nathan Beaulieu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Youssef%2C+J+B">Jamal Ben Youssef</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anane%2C+M">Madjid Anane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Merbouche%2C+H">Hugo Merbouche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauet%2C+T">Thomas Hauet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Demidov%2C+V+E">Vladislav E. Demidov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Demokritov%2C+S+O">Sergej O. Demokritov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Loubens%2C+G">Gregoire de Loubens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klein%2C+O">Olivier Klein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08304v2-abstract-short" style="display: inline;"> This review provides a comprehensive study of the nonlinear transport properties of magnons, which are electrically emitted or absorbed inside extended YIG films by spin transfer effects via a YIG$\vert$Pt interface. Our purpose is to experimentally elucidate the pertinent picture behind the asymmetric electrical variation of the magnon transconductance analogous to an electric diode. The feature&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08304v2-abstract-full').style.display = 'inline'; document.getElementById('2210.08304v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08304v2-abstract-full" style="display: none;"> This review provides a comprehensive study of the nonlinear transport properties of magnons, which are electrically emitted or absorbed inside extended YIG films by spin transfer effects via a YIG$\vert$Pt interface. Our purpose is to experimentally elucidate the pertinent picture behind the asymmetric electrical variation of the magnon transconductance analogous to an electric diode. The feature is rooted in the variation of the density of low-lying spin excitations via an electrical shift of the magnon chemical potential. As the intensity of the spin transfer increases in the forward direction (regime of magnon emission), the transport properties of low-energy magnon go through 3 distinct regimes: \textit{i)} at low currents, where the spin current is a linear function of the electrical current, the spin transport is ballistic and set by the film thickness; \textit{ii)} for amplitudes of the order of the damping compensation threshold, it switches to a highly correlated regime limited by magnon-magnon relaxation process and marked by a saturation of the magnon transconductance. Here the main bias, that controls the magnon density, are thermal fluctuations beneath the emitter. \textit{iii)} As the temperature under the emitter approaches the Curie temperature, scattering with high-energy magnons dominates, leading to diffusive transport. We note that such sequence of transport regimes bears analogy with electron hydrodynamic transport in ultra-pure media predicted by Radii Gurzhi. This study restricted to low energy part of the magnon manifold complements part II of this review\cite{kohno_2F}, which concentrates instead on the whole spectrum of propagating magnons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08304v2-abstract-full').style.display = 'none'; document.getElementById('2210.08304v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08283">arXiv:2210.08283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.08283">pdf</a>, <a href="https://arxiv.org/format/2210.08283">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.144411">10.1103/PhysRevB.108.144411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-local magnon transconductance in extended magnetic insulating films.\\Part II: two-fluid behavior </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kohno%2C+R">Ryuhei Kohno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+K">Kyongmo An</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clot%2C+E">Eric Clot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naletov%2C+V+V">Vladimir V. Naletov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiery%2C+N">Nicolas Thiery</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vila%2C+L">Laurent Vila</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlitz%2C+R">Richard Schlitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaulieu%2C+N">Nathan Beaulieu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Youssef%2C+J+B">Jamal Ben Youssef</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anane%2C+M">Madjid Anane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Merbouche%2C+H">Hugo Merbouche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauet%2C+T">Thomas Hauet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Demidov%2C+V+E">Vladislav E. Demidov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Demokritov%2C+S+O">Sergej O. Demokritov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Loubens%2C+G">Gregoire de Loubens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klein%2C+O">Olivier Klein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08283v2-abstract-short" style="display: inline;"> This review presents a comprehensive study of the spatial dispersion of propagating magnons electrically emitted in extended yttrium-iron garnet (YIG) films by the spin transfer effects across a YIG$\vert$Pt interface. Our goal is to provide a generic framework to describe the magnon transconductance inside magnetic films. We experimentally elucidate the relevant spectral contributions by studying&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08283v2-abstract-full').style.display = 'inline'; document.getElementById('2210.08283v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08283v2-abstract-full" style="display: none;"> This review presents a comprehensive study of the spatial dispersion of propagating magnons electrically emitted in extended yttrium-iron garnet (YIG) films by the spin transfer effects across a YIG$\vert$Pt interface. Our goal is to provide a generic framework to describe the magnon transconductance inside magnetic films. We experimentally elucidate the relevant spectral contributions by studying the lateral decay of the magnon signal. While most of the injected magnons do not reach the collector, the propagating magnons can be split into two-fluids: \textit{i)} a large fraction of high-energy magnons carrying energy of about $k_B T_0$, where $T_0$ is the lattice temperature, with a characteristic decay length in the sub-micrometer range, and \textit{ii)} a small fraction of low-energy magnons, which are particles carrying energy of about $\hbar 蠅_K$, where $蠅_K/(2 蟺)$ is the Kittel frequency, with a characteristic decay length in the micrometer range. Taking advantage of their different physical properties, the low-energy magnons can become the dominant fluid \textit{i)} at large spin transfer rates for the bias causing the emission of magnons, \textit{ii)} at large distance from the emitter, \textit{iii)} at small film thickness, or \textit{iv)} for reduced band mismatch between the YIG below the emitter and the bulk due to variation of the magnon concentration. This broader picture complements part I \cite{kohno_SD}, which focuses solely on the nonlinear transport properties of low-energy magnons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08283v2-abstract-full').style.display = 'none'; document.getElementById('2210.08283v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.11146">arXiv:1803.11146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.11146">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.11.014002">10.1103/PhysRevApplied.11.014002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-Dimensional Magnetic Page Memory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ozatay%2C+O">Ozhan Ozatay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gokce%2C+A">Aisha Gokce</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauet%2C+T">Thomas Hauet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Folks%2C+L">Liesl Folks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giordano%2C+A">Anna Giordano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finocchio%2C+G">Giovanni Finocchio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.11146v1-abstract-short" style="display: inline;"> The increasing need to store large amounts of information with an ultra-dense, reliable, low power and low cost memory device is driving aggressive efforts to improve upon current perpendicular magnetic recording technology. However, the difficulties in fabricating small grain recording media while maintaining thermal stability and a high signal-to-noise ratio motivate development of alternative m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.11146v1-abstract-full').style.display = 'inline'; document.getElementById('1803.11146v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.11146v1-abstract-full" style="display: none;"> The increasing need to store large amounts of information with an ultra-dense, reliable, low power and low cost memory device is driving aggressive efforts to improve upon current perpendicular magnetic recording technology. However, the difficulties in fabricating small grain recording media while maintaining thermal stability and a high signal-to-noise ratio motivate development of alternative methods, such as the patterning of magnetic nano-islands and utilizing energy-assist for future applications. In addition, both from sensor and memory perspective three-dimensional spintronic devices are highly desirable to overcome the restrictions on the functionality in the planar structures. Here we demonstrate a three-dimensional magnetic-memory (magnetic page memory) based on thermally assisted and stray-field induced transfer of domains in a vertical stack of magnetic nanowires with perpendicular anisotropy. Using spin-torque induced domain shifting in such a device with periodic pinning sites provides additional degrees of freedom by allowing lateral information flow to realize truly three-dimensional integration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.11146v1-abstract-full').style.display = 'none'; document.getElementById('1803.11146v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 11, 014002 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.02020">arXiv:1802.02020</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.02020">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.2.064410">10.1103/PhysRevMaterials.2.064410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Co/Ni multilayers for spintronics: high spin-polarization and tunable magnetic anisotropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Andrieu%2C+S">S. Andrieu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauet%2C+T">T. Hauet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gottwald%2C+M">M. Gottwald</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rajanikanth%2C+A">A. Rajanikanth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calmels%2C+L">L. Calmels</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bataille%2C+A+M">A. M. Bataille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montaigne%2C+F">F. Montaigne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin%2C+S">S. Mangin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Otero%2C+E">E. Otero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohresser%2C+P">P. Ohresser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fevre%2C+P+L">P. Le Fevre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertran%2C+F">F. Bertran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Resta%2C+A">A. Resta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vlad%2C+A">A. Vlad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coati%2C+A">A. Coati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garreau%2C+Y">Y. Garreau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.02020v1-abstract-short" style="display: inline;"> In this paper we analyze in details the electronic properties of (Co/Ni) multilayers, a model system for spintronics devices. We use magneto-optical Kerr (MOKE), spin-polarized photoemission spectroscopy (SRPES), x-ray magnetic circular dichroism (XMCD) and anomalous surface diffraction experiments to investigate the electronic properties and perpendicular magnetic anisotropy (PMA) in [Co(x)/Ni(y)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02020v1-abstract-full').style.display = 'inline'; document.getElementById('1802.02020v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.02020v1-abstract-full" style="display: none;"> In this paper we analyze in details the electronic properties of (Co/Ni) multilayers, a model system for spintronics devices. We use magneto-optical Kerr (MOKE), spin-polarized photoemission spectroscopy (SRPES), x-ray magnetic circular dichroism (XMCD) and anomalous surface diffraction experiments to investigate the electronic properties and perpendicular magnetic anisotropy (PMA) in [Co(x)/Ni(y)] single-crystalline stacks grown by molecular beam epitaxy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02020v1-abstract-full').style.display = 'none'; document.getElementById('1802.02020v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures, 1 Table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 2, 064410 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.02876">arXiv:1709.02876</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.02876">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-018-25392-x">10.1038/s41598-018-25392-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Magnetic Radial Vortex Nucleation in a Multilayer Stack with Tunable Anisotropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Karakas%2C+V">Vedat Karakas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gokce%2C+A">Aisha Gokce</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Habiboglu%2C+A+T">Ali Taha Habiboglu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arpaci%2C+S">Sevdenur Arpaci</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ozbozduman%2C+K">Kaan Ozbozduman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cinar%2C+I">Ibrahim Cinar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yanik%2C+C">Cenk Yanik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tomasello%2C+R">Riccardo Tomasello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tacchi%2C+S">Silvia Tacchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siracusano%2C+G">Giulio Siracusano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carpentieri%2C+M">Mario Carpentieri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finocchio%2C+G">Giovanni Finocchio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauet%2C+T">Thomas Hauet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ozatay%2C+O">Ozhan Ozatay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.02876v1-abstract-short" style="display: inline;"> Recently discovered exotic magnetic configurations, namely magnetic solitons appearing in the presence of bulk or interfacial Dzyaloshinskii-Moriya Interaction (i-DMI), have excited scientists to explore their potential applications in emerging spintronic technologies such as race-track magnetic memory, spin logic, radio frequency nano-oscillators and sensors. Such studies are motivated by their f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.02876v1-abstract-full').style.display = 'inline'; document.getElementById('1709.02876v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.02876v1-abstract-full" style="display: none;"> Recently discovered exotic magnetic configurations, namely magnetic solitons appearing in the presence of bulk or interfacial Dzyaloshinskii-Moriya Interaction (i-DMI), have excited scientists to explore their potential applications in emerging spintronic technologies such as race-track magnetic memory, spin logic, radio frequency nano-oscillators and sensors. Such studies are motivated by their foreseeable advantages over conventional micro-magnetic structures due to their small size, topological stability and easy spin-torque driven manipulation with much lower threshold current densities giving way to improved storage capacity, and faster operation with efficient use of energy. In this work, we show that in the presence of i-DMI in Pt/CoFeB/Ti multilayers by tuning the magnetic anisotropy (both in-plane and perpendicular-to-plane) via interface engineering and postproduction treatments, we can stabilize a variety of magnetic configurations such as N茅el skyrmions, horseshoes and most importantly for the first time, the recently predicted isolated radial vortices at room temperature and under zero bias field. Especially, the radial vortex state with its absolute convergence to or divergence from a single point can potentially offer exciting new applications such as particle trapping/detrapping in addition to magnetoresistive memories with efficient switching, where the radial vortex state can act as a source of spin-polarized current with radial polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.02876v1-abstract-full').style.display = 'none'; document.getElementById('1709.02876v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.00910">arXiv:1604.00910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.00910">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.157204">10.1103/PhysRevLett.115.157204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long range phase coherencein double barrier magnetic tunnel junctions with large thick metallic quantum well </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+B+S">B. S. Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H+X">H. X. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+Y+L">Y. L. Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devaux%2C+X">X. Devaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lengaigne%2C+G">G. Lengaigne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">M. Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lacour%2C+D">D. Lacour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrieu%2C+S">S. Andrieu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chshiev%2C+M">M. Chshiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauet%2C+T">T. Hauet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montaigne%2C+F">F. Montaigne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin%2C+S">S. Mangin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X+F">X. F. Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Y. Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.00910v1-abstract-short" style="display: inline;"> Double barrier heterostructures are model systems for the study of electron tunneling and discrete energy levels in a quantum well (QW). Until now resonant tunneling phenomena in metallicQW have been observed for limited thicknesses (1-2 nm) under which electron phase coherence is conserved. In the present study we show evidence of QW resonance states in Fe QW up to12 nmthick and at room temperatu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.00910v1-abstract-full').style.display = 'inline'; document.getElementById('1604.00910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.00910v1-abstract-full" style="display: none;"> Double barrier heterostructures are model systems for the study of electron tunneling and discrete energy levels in a quantum well (QW). Until now resonant tunneling phenomena in metallicQW have been observed for limited thicknesses (1-2 nm) under which electron phase coherence is conserved. In the present study we show evidence of QW resonance states in Fe QW up to12 nmthick and at room temperature in fully epitaxial doubleMgAlOxbarrier magnetic tunnel junctions. The electron phase coherence displayed in this QWis of unprecedented quality because ofa homogenous interface phase shift due to the small lattice mismatch at the Fe/MgAlOx interface. The physical understanding of the critical role of interface strain on QW phase coherence will greatly promote the development of the spin-dependent quantum resonant tunneling applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.00910v1-abstract-full').style.display = 'none'; document.getElementById('1604.00910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.05085">arXiv:1510.05085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.05085">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.094417">10.1103/PhysRevB.93.094417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct evidence for minority spin gap in the Co2MnSi Heusler alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Andrieu%2C+S">St茅phane Andrieu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neggache%2C+A">Amina Neggache</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauet%2C+T">Thomas Hauet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devolder%2C+T">Thibaut Devolder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hallal%2C+A">Ali Hallal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chschiev%2C+M">Mairbek Chschiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bataille%2C+A">Alexandre Bataille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fevre%2C+P+L">Patrick Le Fevre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertran%2C+F">Francois Bertran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.05085v1-abstract-short" style="display: inline;"> Half Metal Magnets are of great interest in the field of spintronics because of their potential full spin-polarization at the Fermi level and low magnetization damping. The high Curie temperature and predicted 0.7eV minority spin gap make the Heusler alloy Co2MnSi very promising for applications.We investigated the half-metallic magnetic character of this alloy using spin-resolved photoemission, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.05085v1-abstract-full').style.display = 'inline'; document.getElementById('1510.05085v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.05085v1-abstract-full" style="display: none;"> Half Metal Magnets are of great interest in the field of spintronics because of their potential full spin-polarization at the Fermi level and low magnetization damping. The high Curie temperature and predicted 0.7eV minority spin gap make the Heusler alloy Co2MnSi very promising for applications.We investigated the half-metallic magnetic character of this alloy using spin-resolved photoemission, ab initio calculation and ferromagnetic resonance. At the surface of Co2MnSi, a gap in the minority spin channel is observed, leading to 100% spin polarization. However, this gap is 0.3 eV below the Fermi level and a minority spin state is observed at the Fermi level. We show that a minority spin gap at the Fermi energy can nevertheless be recovered either by changing the stoichiometry of the alloy or by covering the surface by Mn, MnSi or MgO. This results in extremely small damping coefficients reaching values as low as 7x 10-4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.05085v1-abstract-full').style.display = 'none'; document.getElementById('1510.05085v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 094417 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.6479">arXiv:1307.6479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.6479">pdf</a>, <a href="https://arxiv.org/ps/1307.6479">ps</a>, <a href="https://arxiv.org/format/1307.6479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4869482">10.1063/1.4869482 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of magnetization using domain compressibility in CoFeB films with perpendicular anisotropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vernier%2C+N">N. Vernier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adam%2C+J+P">J. P. Adam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eimer%2C+S">S. Eimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agnus%2C+G">G. Agnus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devolder%2C+T">T. Devolder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauet%2C+T">T. Hauet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ockert%2C+B">B. Ockert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ravelosona%2C+D">D. Ravelosona</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.6479v1-abstract-short" style="display: inline;"> We present a method to map the saturation magnetization of soft ultrathin films with perpendicular anisotropy, and we illustrate it to assess the compositional dependence of the magnetization of CoFeB(1 nm)/MgO films. The method relies on the measurement of the dipolar repulsion of parallel domain walls that define a linear domain. The film magnetization is linked to the field compressibility of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.6479v1-abstract-full').style.display = 'inline'; document.getElementById('1307.6479v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.6479v1-abstract-full" style="display: none;"> We present a method to map the saturation magnetization of soft ultrathin films with perpendicular anisotropy, and we illustrate it to assess the compositional dependence of the magnetization of CoFeB(1 nm)/MgO films. The method relies on the measurement of the dipolar repulsion of parallel domain walls that define a linear domain. The film magnetization is linked to the field compressibility of the domain. The method also yields the minimal distance between two walls before their merging, which sets a practical limit to the storage density in spintronic devices using domain walls as storage entities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.6479v1-abstract-full').style.display = 'none'; document.getElementById('1307.6479v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10