CINXE.COM

Search results for: stress corrosion cracking

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: stress corrosion cracking</title> <meta name="description" content="Search results for: stress corrosion cracking"> <meta name="keywords" content="stress corrosion cracking"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="stress corrosion cracking" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="stress corrosion cracking"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4756</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: stress corrosion cracking</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4756</span> Stress Corrosion Cracking, Parameters Affecting It, Problems Caused by It and Suggested Methods for Treatment: State of the Art</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Zaid">Adnan Zaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress corrosion cracking (SCC) may be defined as a degradation of the mechanical properties of a material under the combined action of a tensile stress and corrosive environment of the susceptible material. It is a harmful phenomenon which might cause catastrophic fracture without a sign of prior warning. In this paper, the stress corrosion cracking, SCC, process, the parameters affecting it, and the different damages caused by it are given and discussed. Utilization of shot peening as a mean of enhancing the resistance of materials to SCC is given and discussed. Finally, a method for improving materials resistance to SCC by grain refining its structure by some refining elements prior to usage is suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking" title="stress corrosion cracking">stress corrosion cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters" title=" parameters"> parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=damages" title=" damages"> damages</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20methods" title=" treatment methods"> treatment methods</a> </p> <a href="https://publications.waset.org/abstracts/65830/stress-corrosion-cracking-parameters-affecting-it-problems-caused-by-it-and-suggested-methods-for-treatment-state-of-the-art" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4755</span> A Probabilistic Study on Time to Cover Cracking Due to Corrosion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Qing%20Li">Chun-Qing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Baji"> Hassan Baji</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yang"> Wei Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion of steel in reinforced concrete structures is a major problem worldwide. The volume expansion of corrosion products causes concrete cover cracking, which could lead to delamination of concrete cover. The time to cover cracking plays a key role to the assessment of serviceability of reinforced concrete structures subjected to corrosion. Many analytical, numerical, and empirical models have been developed to predict the time to cracking initiation due to corrosion. In this study, a numerical model based on finite element modeling of corrosion-induced cracking process is used. In order to predict the service life based on time to cover initiation, the numerical approach is coupled with a probabilistic procedure. In this procedure, all the influential factors affecting time to cover cracking are modeled as random variables. The results show that the time to cover cracking is highly variables. It is also shown that rust product expansion ratio and the size of more porous concrete zone around the rebar are the most influential factors in predicting service life of corrosion-affected structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width" title=" crack width"> crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic" title=" probabilistic"> probabilistic</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20life" title=" service life"> service life</a> </p> <a href="https://publications.waset.org/abstracts/79579/a-probabilistic-study-on-time-to-cover-cracking-due-to-corrosion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4754</span> The Investigation of Cracking on the Shell of Dryers (tag No. 2DR-1745 and DR-1402) in Shahid Tondguyan Petrochemical Company (STPC)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Haghiri">Ali Haghiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research has been to investigate the cause of the stress corrosion cracking on dryer equipment (2DR-1745 and DR-1402) in Shahid Tondguyan Petrochemical Company (STPC). These dryers are as a drying powder Terphetalic acid in CTA2 and CTA1 unit. After passing through RVF equipment, wet cake moisture content of about 14% and temperature of 90C changed into a dry cake with a moisture content of less than 0.1% and the final temperature of about 140C and sent out Final Silo (FS-1820). After the declaration of the operation department concerning the observation of acid leakage under the primary insulation was decided that at the first opportunity, this issue must be investigated. So, after the shutdown of a unit at the date 2012/10/20 (2DR-1745) and 2021/11/24 (DR-1402) and after washing the dryer wall, insulation around the wall opened and it was found to crack and leakage from some points. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking" title="stress corrosion cracking">stress corrosion cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title=" austenitic stainless steel"> austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Br-%20ion" title=" Br- ion"> Br- ion</a> </p> <a href="https://publications.waset.org/abstracts/145289/the-investigation-of-cracking-on-the-shell-of-dryers-tag-no-2dr-1745-and-dr-1402-in-shahid-tondguyan-petrochemical-company-stpc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4753</span> The Effect of H2S on Crystal Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Venkataraman%20B.%20E.">C. Venkataraman B. E.</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Nagarajan%20B.%20E."> J. Nagarajan B. E.</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Srinivasan%20M.%20Tech"> V. Srinivasan M. Tech</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a better understanding on sulfide stress corrosion cracking, a theoretical approach based on crystal structure, molecule behavior, flow of electrons and electrochemical reaction is developed. Its impact on different materials such as carbon steel, low alloy, alloy for sour (H2S) environments is studied. This paper describes the theories on various disaster and failures occurred in the industry by Stress Corrosion Cracking (SCC). Parameters such as pH of process fluid, partial pressure of CO2, O2, Chlorine, effect of internal pressure (crystal structure deformation by stress), and external environment condition are considered. An analytical line graph is then created for process fluid parameter verses time, temperature, induced/residual stress due to local pressure build-up. By comparison with the load test result of NACE and ASTM, it is possible to predict and simplify the control of SCC by use of materials like ferritic, Austenitic material in the oil and gas & petroleum industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystal%20structure%20deformation" title="crystal structure deformation">crystal structure deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20assessment" title=" failure assessment"> failure assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=alloy-environment%20combination" title=" alloy-environment combination"> alloy-environment combination</a>, <a href="https://publications.waset.org/abstracts/search?q=H2S" title=" H2S"> H2S</a> </p> <a href="https://publications.waset.org/abstracts/19342/the-effect-of-h2s-on-crystal-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4752</span> Effect of Pressure and Dissolved Oxygen on Stress Corrosion Cracking Susceptibility of Inconel 617 in Steam and Supercritical Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Izhar%20Khan">Hasan Izhar Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Naiqiang%20Zhang"> Naiqiang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Xu"> Hong Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongliang%20Zhu"> Zhongliang Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongfang%20Jiang"> Dongfang Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inconel 617, a nickel-based alloy designed for high-temperature applications, got an excellent amalgamation of strength and oxidation resistance at high temperatures. For a better understanding of its suitability to be used in superheater and reheater tubes in ultra-supercritical power plants, stress corrosion cracking (SCC) susceptibility must be evaluated. In the present study, the effect of medium environment on SCC behavior of Inconel 617, in the form of a round bar tensile specimen, was tested via slow strain rate tensile tests in steam and supercritical water (SCW) at 650 °C. The results showed that SCC susceptibility has a linear relationship with exposed pressure and increases monotonically with an increase in pressure. A severe SCC susceptibility was observed in SCW followed by that in a steam environment. Fracture and gage surface showed apparent characteristics of brittle fracture. Intergranular cracks initiated from the edge region and propagated into the matrix through cross section until ductile rupture. When dissolved oxygen contents were decreased in SCW environment, it showed no noticeable effect on mechanical properties but SCC susceptibility slightly decreased. The research revealed the influence of environment on SCC susceptibility of Inconel 617 in steam and SCW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inconel%20617" title="Inconel 617">Inconel 617</a>, <a href="https://publications.waset.org/abstracts/search?q=steam" title=" steam"> steam</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20water" title=" supercritical water"> supercritical water</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking" title=" stress corrosion cracking"> stress corrosion cracking</a> </p> <a href="https://publications.waset.org/abstracts/95171/effect-of-pressure-and-dissolved-oxygen-on-stress-corrosion-cracking-susceptibility-of-inconel-617-in-steam-and-supercritical-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4751</span> Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Gholami">H. Gholami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jalali%20Azizpour"> M. Jalali Azizpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20crack" title="stress corrosion crack">stress corrosion crack</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20assessment" title=" direct assessment"> direct assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=disbondment" title=" disbondment"> disbondment</a>, <a href="https://publications.waset.org/abstracts/search?q=transgranular%20SCC" title=" transgranular SCC"> transgranular SCC</a>, <a href="https://publications.waset.org/abstracts/search?q=compressor%20station" title=" compressor station"> compressor station</a> </p> <a href="https://publications.waset.org/abstracts/20469/stress-corrosion-crack-identification-with-direct-assessment-method-in-pipeline-downstream-from-a-compressor-station" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4750</span> Electrochemical Behaviour of 2014 and 2024 Al-Cu-Mg Alloys of Various Tempers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Ghosh">K. S. Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagnik%20Bose"> Sagnik Bose</a>, <a href="https://publications.waset.org/abstracts/search?q=Kapil%20Tripati"> Kapil Tripati </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potentiodynamic polarization studies carried out on AA2024 and AA2014 Al-Cu-Mg alloys of various tempers in 3.5 wt. % NaCl and in 3.5 wt. % NaCl + 1.0 % H2O2 solution characteristic E-i curves. Corrosion potential (Ecorr) value has shifted towards more negative potential with the increase of artificial aging time. The Ecorr value for the alloy tempers has also shifted anodically in presence of H2O2 in 3.5 % NaCl solution. Further, passivity phenomenon has been observed in all the alloy tempers when tested in 3.5 wt. % NaCl solution at pH 12. Stress corrosion cracking (SCC) behaviour of friction stir weld (FSW) joint of AA2014 alloy has been studied bu slow strain rate test (SSRT) in 3.5 wt. % NaCl solution. Optical micrographs of the corroded surfaces of polarised samples showed general corrosion, extensive pitting and intergranular corrosion as well. Further, potentiodynamic cyclic polarization curves displayed wide hysteresis loop indicating that the alloy tempers are susceptible to pit growth damage. Attempts have been made to explain the variation of observed electrochemical and SCC behaviour of the alloy tempers and the electrolyte conditions with the help of microstructural features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AA%202014%20and%20AA%202024%20Al-C-Mg%20alloy" title="AA 2014 and AA 2024 Al-C-Mg alloy">AA 2014 and AA 2024 Al-C-Mg alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20ageing" title=" artificial ageing"> artificial ageing</a>, <a href="https://publications.waset.org/abstracts/search?q=potentiodynamic%20polarization" title=" potentiodynamic polarization"> potentiodynamic polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM%20micrographs" title=" TEM micrographs"> TEM micrographs</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking%20%28SCC%29" title=" stress corrosion cracking (SCC)"> stress corrosion cracking (SCC)</a> </p> <a href="https://publications.waset.org/abstracts/17400/electrochemical-behaviour-of-2014-and-2024-al-cu-mg-alloys-of-various-tempers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4749</span> Structural Properties of RC Beam with Progression of Corrosion Induced Delamination Cracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anupam%20Saxena">Anupam Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Achin%20Agrawal"> Achin Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rishabh%20Shukla"> Rishabh Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mandal"> S. Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is quite important that the properties of structural elements do not change significantly before and after cracking, and if they do, it adversely affects the structure. Corrosion in rebars causes cracking in concrete which can lead to the change in properties of beam. In the present study, two RC beams with same flexural strength but with different reinforcement arrangements are considered and modelling of cracks of RC beams has been done at different degrees of corrosion in the case of delamination using boundary conditions of Three Point Bending Test. Finite Element Analysis (FEA) has been done at different degree of corrosion to observe the variation of different parameters like modal frequency, Elasticity and Flexural strength in case of delamination. Also, the comparison between two different RC arrangements is made to conclude which one of them is more suitable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delamination" title="delamination">delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity" title=" elasticity"> elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20frequency" title=" modal frequency"> modal frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20beam" title=" RC beam"> RC beam</a> </p> <a href="https://publications.waset.org/abstracts/57700/structural-properties-of-rc-beam-with-progression-of-corrosion-induced-delamination-cracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4748</span> Rational Probabilistic Method for Calculating Thermal Cracking Risk of Mass Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naoyuki%20Sugihashi">Naoyuki Sugihashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiharu%20Kishi"> Toshiharu Kishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The probability of occurrence of thermal cracks in mass concrete in Japan is evaluated by the cracking probability diagram that represents the relationship between the thermal cracking index and the probability of occurrence of cracks in the actual structure. In this paper, we propose a method to directly calculate the cracking probability, following a probabilistic theory by modeling the variance of tensile stress and tensile strength. In this method, the relationship between the variance of tensile stress and tensile strength, the thermal cracking index, and the cracking probability are formulated and presented. In addition, standard deviation of tensile stress and tensile strength was identified, and the method of calculating cracking probability in a general construction controlled environment was also demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20crack%20control" title="thermal crack control">thermal crack control</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20concrete" title=" mass concrete"> mass concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cracking%20probability" title=" thermal cracking probability"> thermal cracking probability</a>, <a href="https://publications.waset.org/abstracts/search?q=durability%20of%20concrete" title=" durability of concrete"> durability of concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=calculating%20method%20of%20cracking%20probability" title=" calculating method of cracking probability"> calculating method of cracking probability</a> </p> <a href="https://publications.waset.org/abstracts/74943/rational-probabilistic-method-for-calculating-thermal-cracking-risk-of-mass-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4747</span> Computer Simulations of Stress Corrosion Studies of Quartz Particulate Reinforced ZA-27 Metal Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Vinutha">K. Vinutha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stress corrosion resistance of ZA-27 / TiO2 metal matrix composites (MMC’s) in high temperature acidic media has been evaluated using an autoclave. The liquid melt metallurgy technique using vortex method was used to fabricate MMC’s. TiO2 particulates of 50-80 µm in size are added to the matrix. ZA-27 containing 2,4,6 weight percentage of TiO2 are prepared. Stress corrosion tests were conducted by weight loss method for different exposure time, normality and temperature of the acidic medium. The corrosion rates of composites were lower to that of matrix ZA-27 alloy under all conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoclave" title="autoclave">autoclave</a>, <a href="https://publications.waset.org/abstracts/search?q=MMC%E2%80%99s" title=" MMC’s"> MMC’s</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion" title=" stress corrosion"> stress corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20method" title=" vortex method"> vortex method</a> </p> <a href="https://publications.waset.org/abstracts/28848/computer-simulations-of-stress-corrosion-studies-of-quartz-particulate-reinforced-za-27-metal-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4746</span> Evaluation of Stress Relief using Ultrasonic Peening in GTAW Welding and Stress Corrosion Cracking (SCC) in Stainless Steel, and Comparison with the Thermal Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Mansouri">Hamidreza Mansouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the construction industry, the lifespan of a metal structure is directly related to the quality of welding. In most metal structures, the welded area is considered critical and is one of the most important factors in design. To date, many fracture incidents caused by these types of cracks have occurred. Various methods exist to increase the lifespan of welds to prevent failure in the welded area. Among these methods, the application of ultrasonic peening, in addition to the stress relief process, can manually and more precisely adjust the geometry of the weld toe and prevent stress concentration in this part. This research examined Gas Tungsten Arc Welding (GTAW) on common structural steels and 316 stainless steel, which require precise welding, to predict the optimal condition. The GTAW method was used to create residual stress; two samples underwent ultrasonic stress relief, and for comparison, two samples underwent thermal stress relief. Also, no treatment was considered for two samples. The residual stress of all six pieces was measured by X-Ray Diffraction (XRD) method. Then, the two ultrasonically stress-relieved samples and two untreated samples were exposed to a corrosive environment to initiate cracking and determine the effectiveness of the ultrasonic stress relief method. Thus, the residual stress caused by GTAW in the samples decreased by 3.42% with thermal treatment and by 7.69% with ultrasonic peening. Furthermore, the results show that the untreated sample developed cracks after 740 hours, while the ultrasonically stress-relieved piece showed no cracks. Given the high costs of welding and post-welding zone modification processes, finding an economical, effective, and comprehensive method that has the least limitations alongside a broad spectrum of usage is of great importance. Therefore, the impact of various ultrasonic peening stress relief parameters and the selection of the best stress relief parameter to achieve the longest lifespan for the weld area is highly significant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GTAW%20welding" title="GTAW welding">GTAW welding</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking%28SCC%29" title=" stress corrosion cracking(SCC)"> stress corrosion cracking(SCC)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20method" title=" thermal method"> thermal method</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20peening." title=" ultrasonic peening."> ultrasonic peening.</a> </p> <a href="https://publications.waset.org/abstracts/185199/evaluation-of-stress-relief-using-ultrasonic-peening-in-gtaw-welding-and-stress-corrosion-cracking-scc-in-stainless-steel-and-comparison-with-the-thermal-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4745</span> Environmental Effect on Corrosion Fatigue Behaviors of Steam Generator Forging in Simulated Pressurized Water Reactor Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yakui%20Bai">Yakui Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Sun"> Chen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ke%20Wang"> Ke Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental investigation of environmental effect on fatigue behavior in SA508 Gr.3 Cl.2 Steam Generator Forging CAP1400 nuclear power plant has been carried out. In order to simulate actual loading condition, a range of strain amplitude was applied in different low cycle fatigue (LCF) tests. The current American Society of Mechanical Engineers (ASME) design fatigue code does not take full account of the interactions of environmental, loading, and material's factors. A range of strain amplitude was applied in different low cycle fatigue (LCF) tests at a strain rate of 0.01%s⁻¹. A design fatigue model was constructed by taking environmentally assisted fatigue effects into account, and the corresponding design curves were given for the convenience of engineering applications. The corrosion fatigue experiment was performed in a strain control mode in 320℃ borated and lithiated water environment to evaluate the effects of a mixed environment on fatigue life. Stress corrosion cracking (SCC) in steam generator large forging in primary water of pressurized water reactor was also observed. In addition, it is found that the CF life of SA508 Gr.3 Cl.2 decreases with increasing temperature in the water environment. The relationship between the reciprocal of temperature and the logarithm of fatigue life was found to be linear. Through experiments and subsequent analysis, the mechanisms of reduced low cycle fatigue life have been investigated for steam generator forging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20behavior" title="failure behavior">failure behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20alloy%20steel" title=" low alloy steel"> low alloy steel</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20generator%20forging" title=" steam generator forging"> steam generator forging</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking" title=" stress corrosion cracking "> stress corrosion cracking </a> </p> <a href="https://publications.waset.org/abstracts/110031/environmental-effect-on-corrosion-fatigue-behaviors-of-steam-generator-forging-in-simulated-pressurized-water-reactor-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4744</span> Stress Corrosion Crackings Test of Candidate Materials in Support of the Development of the European Small Modular Supercritical Water Cooled Rector Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radek%20Novotny">Radek Novotny</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Novak"> Michal Novak</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Marusakova"> Daniela Marusakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Sipova"> Monika Sipova</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Fuentes"> Hugo Fuentes</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Borst"> Peter Borst</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research has been conducted within the European HORIZON 2020 project ECC-SMART. The main objective is to assess whether it is feasible to design and develop a small modular reactor (SMR) that would be cooled by supercritical water (SCW). One of the main objectives for material research concerns the corrosion of the candidate cladding materials. The experimental part has been conducted in support of the qualification procedure of the future SCW-SMR constructional materials. The last objective was to identify the gaps in current norms and guidelines. Apart from corrosion, resistance testing of candidate materials stresses corrosion cracking susceptibility tests have been performed in supercritical water. This paper describes part of these tests, in particular, those slow strain rate tensile loading applied for tangential ring shape specimens of two candidate materials, Alloy 800H and 310S stainless steel. These ring tensile tests are one the methods used for tensile testing of nuclear cladding. Here full circular heads with dimensions roughly equal to the inner diameter of the sample and the gage sections are placed in the parallel direction to the applied load. Slow strain rate tensile tests have been conducted in 380 or 500oC supercritical water applying two different elongation rates, 1x10-6 and 1x10-7 s-1. The effect of temperature and dissolved oxygen content on the SCC susceptibility of Alloy 800H and 310S stainless steel was investigated when two different temperatures and concentrations of dissolved oxygen were applied in supercritical water. The post-fracture analysis includes fractographic analysis of the fracture surfaces using SEM as well as cross-sectional analysis on the occurrence of secondary cracks. Assessment of the effect of environment and dissolved oxygen content was by comparing to the results of the reference tests performed in air and N2 gas overpressure. The effect of high temperature on creep and its role in the initiation of SCC was assessed as well. It has been concluded that the applied test method could be very useful for the investigation of stress corrosion cracking susceptibility of candidate cladding materials in supercritical water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking" title="stress corrosion cracking">stress corrosion cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20tensile%20tests" title=" ring tensile tests"> ring tensile tests</a>, <a href="https://publications.waset.org/abstracts/search?q=super-critical%20water" title=" super-critical water"> super-critical water</a>, <a href="https://publications.waset.org/abstracts/search?q=alloy%20800H" title=" alloy 800H"> alloy 800H</a>, <a href="https://publications.waset.org/abstracts/search?q=310S%20stainless%20steel" title=" 310S stainless steel"> 310S stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/160187/stress-corrosion-crackings-test-of-candidate-materials-in-support-of-the-development-of-the-european-small-modular-supercritical-water-cooled-rector-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4743</span> Performance Evaluation of Composite Beam under Uniform Corrosion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ririt%20Aprilin%20Sumarsono">Ririt Aprilin Sumarsono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite member (concrete and steel) has been widely advanced for structural utilization due to its best performance in resisting load, reducing the total weight of the structure, increasing stiffness, and other available advantages. On the other hand, the environment load such as corrosion (e.g. chloride ingress) creates significant time-dependent degradation for steel. Analysis performed in this paper is mainly considered uniform corrosion for evaluating the composite beam without examining the pit corrosion as the initial corrosion formed. Corrosion level in terms of weight loss is modified in yield stress and modulus elasticity of steel. Those two mechanical properties are utilized in this paper for observing the stresses due to corrosion attacked. As corrosion level increases, the effective width of the composite beam in the concrete section will be wider. The position of a neutral axis of composite section will indicate the composite action due to corrosion of composite beam so that numerous shear connectors provided must be reconsidered. Flexure capacity quantification provides stresses, and shear capacity calculation derives connectors needed in overcoming the shear problem for composite beam under corrosion. A model of simply supported composite beam examined in this paper under uniform corrosion where the stresses as the focus of the evaluation. Principal stress at the first stage of composite construction decline as the corrosion level incline, parallel for the second stage stress analysis where the tension region held by the steel undergoes lower capacity due to corrosion. Total stresses of the composite section for steel to be born significantly decreases particularly in the outermost fiber of tension side. Whereas, the available compression side is smaller as the corrosion level increases so that the stress occurs on the compression side shows reduction as well. As a conclusion, the increment of corrosion level will degrade both compression and tension side of stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20beam" title="composite beam">composite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20analysis" title=" stress analysis"> stress analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20strength" title=" yield strength"> yield strength</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20corrosion" title=" uniform corrosion"> uniform corrosion</a> </p> <a href="https://publications.waset.org/abstracts/74914/performance-evaluation-of-composite-beam-under-uniform-corrosion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4742</span> Study of Corrosion in Structures due to Chloride Infiltration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukrit%20Ghorai">Sukrit Ghorai</a>, <a href="https://publications.waset.org/abstracts/search?q=Akku%20Aby%20Mathews"> Akku Aby Mathews</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion in reinforcing steel is the leading cause for deterioration in concrete structures. It is an electrochemical process which leads to volumetric change in concrete and causes cracking, delamination and spalling. The objective of the study is to provide a rational method to estimate the probable chloride concentration at the reinforcement level for a known surface chloride concentration. The paper derives the formulation of design charts to aid engineers for quick calculation of the chloride concentration. Furthermore, the paper focuses on comparison of durability design against corrosion with American, European and Indian design standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chloride%20infiltration" title="chloride infiltration">chloride infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20charts" title=" design charts"> design charts</a> </p> <a href="https://publications.waset.org/abstracts/61630/study-of-corrosion-in-structures-due-to-chloride-infiltration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4741</span> Effects of Tensile Pre-Stresses on Corrosion Behavior of AISI 304 Stainless Steel in 1N H2SO4</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sami%20Ibrahim%20Jafar">Sami Ibrahim Jafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Israa%20Abud%20Alkadir"> Israa Abud Alkadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Samah%20Abdul%20Kareem%20Khashin"> Samah Abdul Kareem Khashin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to assess the influence of tensile pre-stresses on the microstructure and corrosion behavior of the AISI304 stainless steel in 1N H2SO4 austenitic stainless steel. Samples of this stainless steel either with pre-stresses, corresponding to [255, 305, 355, 405, 455, 505, 555, 605 and σf] MPa induced by tensile tests, or without pre-stresses (as received), were characterized regarding their microstructure to investigate the pre-tensile stress effects on the corrosion behavior. The results showed that the corrosion rate of elastic pre-stresses 304 stainless steel was very little increased compared with that of as received specimens. The corrosion rate increases after applying pre-stress between (σ255 - σ 455) MPa. The microstructure showed that the austenitic grains begin to deform in the direction of applied pre-stresses. The maximum hardness at this region was (229.2) Hv, but at higher pre-stress (σ455 – σ 605) MPa unanticipated occurrence, the corrosion rate decreases. The microstructure inspection shows the deformed austenitic grain and ά-martensitic phase needle are appeared inside austenitic grains and the hardness reached the maximum value (332.433) Hv. The results showed that the corrosion rate increases at the values of pre-stresses between (σ605 – σf) MPa., which is inspected the result. The necking of gauge length of specimens occurs in specimens and this leads to deterioration in original properties and the corrosion rate reaches the maximum value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tensile%20pre-stresses" title="tensile pre-stresses">tensile pre-stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20rate" title=" corrosion rate"> corrosion rate</a>, <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title=" austenitic stainless steel"> austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/47841/effects-of-tensile-pre-stresses-on-corrosion-behavior-of-aisi-304-stainless-steel-in-1n-h2so4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4740</span> Effect of Tensile Strain on Microstructure of Irradiated Core Internal Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hygreeva%20Kiran%20Namburi">Hygreeva Kiran Namburi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Hojna"> Anna Hojna</a>, <a href="https://publications.waset.org/abstracts/search?q=Edita%20Lecianova"> Edita Lecianova</a>, <a href="https://publications.waset.org/abstracts/search?q=Fencl%20Zdenek"> Fencl Zdenek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Irradiation Assisted Stress Corrosion Cracking [IASCC] is one of the most significant environmental degradation in the internal components made from Austenitic stainless steel. This mechanism is still not fully understood and there are no suitable criteria for prediction of the damage during operation. In this work, core basket material 08Ch18N10T austenitic stainless steel acquired from decommissioned NPP Nord / Greifswald Unit 1, VVER 440-230 type, operated for 15 years and irradiated at 5.2 dpa is studied. This material was tensile tested at two different test temperatures and strain rates in air and at the elevated temperature under the water environment. SEM observations of the fracture surface documented ductile fracture of the samples tested in air, but areas of IASCC tested in water. This paper emphasizes on the microscopic examination results from the mechanically tested samples to determine the underlying IASCC physical damage process. TEM observations of thin foils made from the gauge sections that are closer to the fractured surface of the specimen aimed to find variances in interaction of dislocations and grain boundaries owing to different test conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irradiation%20assisted%20stress%20corrosion%20cracking" title="irradiation assisted stress corrosion cracking">irradiation assisted stress corrosion cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=core%20basket%20material" title=" core basket material"> core basket material</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM%20observations%20of%20the%20fracture%20surface" title=" SEM observations of the fracture surface"> SEM observations of the fracture surface</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20examination%20results" title=" microscopic examination results"> microscopic examination results</a> </p> <a href="https://publications.waset.org/abstracts/36446/effect-of-tensile-strain-on-microstructure-of-irradiated-core-internal-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4739</span> Electrochemical Corrosion and Mechanical Properties of Structural Materials for Oil and Gas Applications in Simulated Deep-Sea Well Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Turin%20Datta">Turin Datta</a>, <a href="https://publications.waset.org/abstracts/search?q=Kisor%20K.%20Sahu"> Kisor K. Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural materials used in today’s oil and gas exploration and drilling of both onshore and offshore oil and gas wells must possess superior tensile properties, excellent resistance to corrosive degradation that includes general, localized (pitting and crevice) and environment assisted cracking such as stress corrosion cracking and hydrogen embrittlement. The High Pressure and High Temperature (HPHT) wells are typically operated at temperature and pressure that can exceed 300-3500F and 10,000psi (69MPa) respectively which necessitates the use of exotic materials in these exotic sources of natural resources. This research investigation is focussed on the evaluation of tensile properties and corrosion behavior of AISI 4140 High-Strength Low Alloy Steel (HSLA) possessing tempered martensitic microstructure and Duplex 2205 Stainless Steel (DSS) having austenitic and ferritic phase. The selection of this two alloys are primarily based on economic considerations as 4140 HSLA is cheaper when compared to DSS 2205. Due to the harsh aggressive chemical species encountered in deep oil and gas wells like chloride ions (Cl-), carbon dioxide (CO2), hydrogen sulphide (H2S) along with other mineral organic acids, DSS 2205, having a dual-phase microstructure can mitigate the degradation resulting from the presence of both chloride ions (Cl-) and hydrogen simultaneously. Tensile properties evaluation indicates a ductile failure of DSS 2205 whereas 4140 HSLA exhibit quasi-cleavage fracture due to the phenomenon of ‘tempered martensitic embrittlement’. From the potentiodynamic polarization testing, it is observed that DSS 2205 has higher corrosion resistance than 4140 HSLA; the former exhibits passivity signifying resistance to localized corrosion while the latter exhibits active dissolution in all the environmental parameters space that was tested. From the Scanning Electron Microscopy (SEM) evaluation, it is understood that stable pits appear in DSS 2205 only when the temperature exceeds the critical pitting temperature (CPT). SEM observation of the corroded 4140 HSLA specimen tested in aqueous 3.5 wt.% NaCl solution reveals intergranular cracking which appears due to the adsorption and diffusion of hydrogen during polarization, thus, causing hydrogen-induced cracking/hydrogen embrittlement. General corrosion testing of DSS 2205 in acidic brine (pH~3.0) solution at ambient temperature using coupons indicate no weight loss even after three months whereas the corrosion rate of AISI 4140 HSLA is significantly higher after one month of testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSS%202205" title="DSS 2205">DSS 2205</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization" title=" polarization"> polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=pitting" title=" pitting"> pitting</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/56768/electrochemical-corrosion-and-mechanical-properties-of-structural-materials-for-oil-and-gas-applications-in-simulated-deep-sea-well-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4738</span> Development of Surface Modification Technology for Control Element Drive Mechanism Nozzle and Fatigue Enhancement of Ni-Based Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auezhan%20Amanov">Auezhan Amanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Inho%20Cho"> Inho Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Sik%20Pyun"> Young-Sik Pyun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control element drive mechanism (CEDM) nozzle is manufactured as welded on the reactor vessel and currently uses Alloy 690 material. The top of the reactor is equipped with about 100 CEDM nozzles with an internal diameter of about 70 mm. Relatively large Inlet/Outlet nozzles are equipped with two outlet nozzles and four inlet nozzles on the reactor wall. The inner diameter of the nozzle is vulnerable to stress corrosion cracking (SCC), and in order to solve this problem, an ultrasonic nanocrystal surface modification (UNSM) treatment is performed on the inner diameter of the nozzle and the weld surface. The ultimate goal is to improve the service life of parts by applying compressive residual stress and suppressing primary water stress corrosion cracking (PWSCC). The main purpose is to design and fabricate a UNSM treatment device for the internal diameter processing of CEDM nozzles and inlet/outlet nozzles. In order to develop the system, the basic technology such as the development of UNSM tooling is developed and the mechanical properties and fatigue performance of before and after UNSM treatment of reactor nozzle material made of Ni-based alloys using the specimen are compared and evaluated. The inner diameter of the nozzle was treated by a newly developed UNSM treatment under the optimized treatment parameters. It was found that the mechanical properties and fatigue performance of nozzle were improved in comparison with the untreated nozzle, which may be attributed to the increase in hardness, induced compressive residual stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20element%20drive%20mechanism%20nozzle" title="control element drive mechanism nozzle">control element drive mechanism nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni-based%20alloy" title=" Ni-based alloy"> Ni-based alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20nanocrystal%20surface%20modification" title=" ultrasonic nanocrystal surface modification"> ultrasonic nanocrystal surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=UNSM" title=" UNSM"> UNSM</a> </p> <a href="https://publications.waset.org/abstracts/112191/development-of-surface-modification-technology-for-control-element-drive-mechanism-nozzle-and-fatigue-enhancement-of-ni-based-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4737</span> Failure Cases Analysis in Petrochemical Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Liu">S. W. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Lv"> J. H. Lv</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Z.%20Wang"> W. Z. Wang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the failure accidents in petrochemical industry have been frequent, and have posed great security problems in personnel and property. The improvement of petrochemical safety is highly requested in order to prevent re-occurrence of severe accident. This study focuses on surveying the failure cases occurred in petrochemical field, which were extracted from journals of engineering failure, including engineering failure analysis and case studies in engineering failure analysis. The relation of failure mode, failure mechanism, type of components, and type of materials was analyzed in this study. And the analytical results showed that failures occurred more frequently in vessels and piping among the petrochemical equipment. Moreover, equipment made of carbon steel and stainless steel accounts for the majority of failures compared to other materials. This may be related to the application of the equipment and the performance of the material. In addition, corrosion failures were the largest in number of occurrence in the failure of petrochemical equipment, in which stress corrosion cracking accounts for a large proportion. This may have a lot to do with the service environment of the petrochemical equipment. Therefore, it can be concluded that the corrosion prevention of petrochemical equipment is particularly important. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cases%20analysis" title="cases analysis">cases analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemical%20industry" title=" petrochemical industry"> petrochemical industry</a> </p> <a href="https://publications.waset.org/abstracts/77797/failure-cases-analysis-in-petrochemical-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4736</span> Understanding Surface Failures in Thick Asphalt Pavement: A 3-D Finite Element Model Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hana%20Gebremariam%20Liliso">Hana Gebremariam Liliso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the factors contributing to the deterioration of thick asphalt pavements, such as rutting and cracking. We focus on the combined influence of traffic loads and pavement structure. This study uses a three-dimensional finite element model with a Mohr-Coulomb failure criterion to analyze the stress levels near the pavement's surface under realistic conditions. Our model considers various factors, including tire-pavement contact stresses, asphalt properties, moving loads, and dynamic analysis. This research suggests that cracking tends to occur between dual tires. Some key discoveries include the risk of cracking increases as temperatures rise; surface cracking at high temperatures is associated with distortional deformation; using a uniform contact stress distribution underestimates the risk of failure compared to realistic three-dimensional tire contact stress, particularly at high temperatures; the risk of failure is higher near the surface when there is a negative temperature gradient in the asphalt layer; and debonding beneath the surface layer leads to increased shear stress and premature failure around the interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement" title="asphalt pavement">asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20failure" title=" surface failure"> surface failure</a>, <a href="https://publications.waset.org/abstracts/search?q=3d%20finite%20element%20model" title=" 3d finite element model"> 3d finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=multiaxial%20stress%20states" title=" multiaxial stress states"> multiaxial stress states</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohr-Coulomb%20failure%20criterion" title=" Mohr-Coulomb failure criterion"> Mohr-Coulomb failure criterion</a> </p> <a href="https://publications.waset.org/abstracts/182482/understanding-surface-failures-in-thick-asphalt-pavement-a-3-d-finite-element-model-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4735</span> Potentiodynamic Polarization Behavior of Surface Mechanical Attrition Treated AA7075</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Pandey">Vaibhav Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Chattopadhyay"> K. Chattopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Santhi%20Srinivas"> N. C. Santhi Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vakil%20Singh"> Vakil Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminium alloy 7075 consist of different intermetallic precipitate particles MgZn2, CuAl2, which result in heterogeneity of micro structure and influence the corrosion properties of the alloy. Artificial ageing was found to enhance the strength properties, but highly susceptible to stress-corrosion cracking. Various conventional surface modification techniques are developed for improving corrosion properties of aluminum alloys. This led to development of novel surface mechanical attrition treatment (SMAT) technique the so called ultrasonic shot peening which gives nano-grain structure at surface. In the present investigation the influence of surface mechanical attrition treatment on corrosion behavior of aluminum alloy 7075 was studied in 3.5wt% NaCl solution. Two different size of 1 mm and 3 mm steel balls are used as peening media and SMAT was carried out for different time intervals 5, 15 and 30 minutes. Surface nano-grains/nano-crystallization was observed after SMAT. The formation of nano-grain structure was observed for larger size balls with time of treatment and consequent increase in micro strain. As-SMATed sample with 1 mm balls exhibits better corrosion resistance as compared to that of un-SMATed sample. The enhancement in corrosion resistance may be due to formation of surface nano-grain structure which reduced the electron release rate. In contrast the samples treated with 3 mm balls showed very poor corrosion resistance. A decrease in corrosion resistance was observed with increase in the time of peening. The decrease in corrosion resistance in the shotpeened samples with larger diameter balls may due to increase in microstrain and defect density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%207075" title="aluminum alloy 7075">aluminum alloy 7075</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=SMAT" title=" SMAT"> SMAT</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20shot%20peening" title=" ultrasonic shot peening"> ultrasonic shot peening</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20nano-grains" title=" surface nano-grains"> surface nano-grains</a> </p> <a href="https://publications.waset.org/abstracts/20395/potentiodynamic-polarization-behavior-of-surface-mechanical-attrition-treated-aa7075" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4734</span> Research on the Feasibility of Evaluating Low-Temperature Cracking Performance of Asphalt Mixture Using Fracture Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tao%20Yang">Tao Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongli%20Zhao"> Yongli Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low-temperature cracking is one of the major challenges for asphalt pavement in the cold region. Fracture energy could determine from various test methods, which is a commonly used parameter to evaluate the low-temperature cracking resistance of asphalt mixture. However, the feasibility of evaluating the low-temperature cracking performance of asphalt mixture using fracture energy is not investigated comprehensively. This paper aims to verify whether fracture energy is an appropriate parameter to evaluate the low-temperature cracking performance. To achieve this goal, this paper compared the test results of thermal stress restrained specimen test (TSRST) and semi-circular bending test (SCB) of asphalt mixture with different types of aggregate, TSRST and indirect tensile test (IDT) of asphalt mixture with different additives, and single-edge notched beam test (SENB) and TSRST of asphalt mixture with different asphalt. Finally, the correlation between in-suit cracking performance and fracture energy was surveyed. The experimental results showed the evaluation result of critical cracking temperature and fracture energy are not always consistent; the in-suit cracking performance is also not correlated well with fracture energy. These results indicated that it is not feasible to evaluate low-temperature performance by fracture energy. Then, the composition of fracture energy of TSRST, SCB, disk-shaped compact tension test (DCT), three-point bending test (3PB) and IDT was analyzed. The result showed: the area of thermal stress versus temperature curve is the multiple of fracture energy and could be used to represent fracture energy of TSRST, as the multiple is nearly equal among different asphalt mixtures for a specific specimen; the fracture energy, determined from TSRST, SCB, DCT, 3PB, SENB and IDT, is mainly the surface energy that forms the fracture face; fracture energy is inappropriate to evaluate the low-temperature cracking performance of asphalt mixture, as the relaxation/viscous performance is not considered; if the fracture energy was used, it is recommended to combine this parameter with an index characterizing the relaxation or creep performance of asphalt mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement" title="asphalt pavement">asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20region" title=" cold region"> cold region</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20cracking%20temperature" title=" critical cracking temperature"> critical cracking temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20energy" title=" fracture energy"> fracture energy</a>, <a href="https://publications.waset.org/abstracts/search?q=low-temperature%20cracking" title=" low-temperature cracking"> low-temperature cracking</a> </p> <a href="https://publications.waset.org/abstracts/131656/research-on-the-feasibility-of-evaluating-low-temperature-cracking-performance-of-asphalt-mixture-using-fracture-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4733</span> Effect of Temperature on Corrosion Fatigue Cracking Behavior of Inconel 625 in Steam and Supercritical Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Izhar%20Khan">Hasan Izhar Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Naiqiang%20Zhang"> Naiqiang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Xu"> Hong Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongliang%20Zhu"> Zhongliang Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongfang%20Jiang"> Dongfang Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inconel 625 is a nickel-based alloy having outstanding corrosion resistance and developed for use at service temperatures ranging from cryogenic to 980°C. It got a wide range of applications in nuclear, petrochemical, chemical, marine, aeronautical, and aerospace industries. Currently, it is one of the candidate materials to be used as a structural material in ultra-supercritical (USC) power plants. In the high-temperature corrosive medium environment, metallic materials are susceptible to corrosion fatigue (CF). CF is an interaction between cyclic stress and corrosive medium environment that acts on a susceptible material and results in initiation and propagation of cracks. For the application of Inconel 625 as a structural material in USC power plants, CF behavior must be evaluated in steam and supercritical water (SCW) environment. Fatigue crack growth rate (FCGR) curves obtained from CF experiments are required to predict residual life of metallic materials used in power plants. In this study, FCGR tests of Inconel 625 were obtained by using compact tension specimen at 550-650 °C in steam (8 MPa) and SCW (25 MPa). The dissolved oxygen level was kept constant at 8000 ppb for the test conducted in steam and SCW. The tests were performed under sine wave loading waveform, 1 Hz loading frequency, stress ratio of 0.6 and maximum stress intensity factor of 32 MPa√m. Crack growth rate (CGR) was detected by using direct current potential drop technique. Results showed that CGR increased with an increase in temperature in the tested environmental conditions. The mechanism concerning the influence of temperature on FCGR are further discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20fatigue" title="corrosion fatigue">corrosion fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20growth%20rate" title=" crack growth rate"> crack growth rate</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel-based%20alloy" title=" nickel-based alloy"> nickel-based alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/95120/effect-of-temperature-on-corrosion-fatigue-cracking-behavior-of-inconel-625-in-steam-and-supercritical-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4732</span> Time-Dependent Reliability Analysis of Corrosion Affected Cast Iron Pipes with Mixed Mode Fracture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Qing%20Li">Chun-Qing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoyang%20Fu"> Guoyang Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yang"> Wei Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A significant portion of current water networks is made of cast iron pipes. Due to aging and deterioration with corrosion being the most predominant mechanism, the failure rate of cast iron pipes is very high. Although considerable research has been carried out in the past few decades, most are on the effect of corrosion on the structural capacity of pipes using strength theory as the failure criterion. This paper presents a reliability-based methodology for the assessment of corrosion affected cast iron pipe cracking failures. A nonlinear limit state function taking into account all three fracture modes is proposed for brittle metal pipes with mixed mode fracture. A stochastic model of the load effect is developed, and time-dependent reliability method is employed to quantify the probability of failure and predict the remaining service life. A case study is carried out using the proposed methodology, followed by sensitivity analysis to investigate the effects of the random variables on the probability of failure. It has been found that the larger the inclination angle or the Mode I fracture toughness is, the smaller the probability of pipe failure is. It has also been found that the multiplying and exponential coefficients k and n in the power law corrosion model and the internal pressure have the most influence on the probability of failure for cast iron pipes. The methodology presented in this paper can assist pipe engineers and asset managers in developing a risk-informed and cost-effective strategy for better management of corrosion-affected pipelines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20surface%20cracks" title=" inclined surface cracks"> inclined surface cracks</a>, <a href="https://publications.waset.org/abstracts/search?q=pressurized%20cast%20iron%20pipes" title=" pressurized cast iron pipes"> pressurized cast iron pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity" title=" stress intensity"> stress intensity</a> </p> <a href="https://publications.waset.org/abstracts/61735/time-dependent-reliability-analysis-of-corrosion-affected-cast-iron-pipes-with-mixed-mode-fracture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4731</span> Corrosion Behavior of Induced Stress Duplex Stainless Steel in Chloride Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serge%20Mudinga%20Lemika">Serge Mudinga Lemika</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Olukayode%20Akinwamide"> Samuel Olukayode Akinwamide</a>, <a href="https://publications.waset.org/abstracts/search?q=Aribo%20Sunday"> Aribo Sunday</a>, <a href="https://publications.waset.org/abstracts/search?q=Babatunde%20Abiodun%20Obadele"> Babatunde Abiodun Obadele</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Apata%20Olubambi"> Peter Apata Olubambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of Duplex stainless steel has become predominant in applications where excellent corrosion resistance is of utmost importance. Corrosion behavior of duplex stainless steel induced with varying stress in a chloride media were studied. Characterization of as received 2205 duplex stainless steels were carried out to reveal its structure and properties tensile sample produced from duplex stainless steel was initially subjected to tensile test to obtain the yield strength. Stresses obtained by various percentages (20, 40, 60 and 80%) of the yield strength was induced in DSS samples. Corrosion tests were carried out in magnesium chloride solution at room temperature. Morphologies of cracks observed with optical and scanning electron microscope showed that samples induced with higher stress had its austenite and ferrite grains affected by pitting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=duplex%20stainless%20steel" title="duplex stainless steel">duplex stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoceramics" title=" nanoceramics"> nanoceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title=" spark plasma sintering"> spark plasma sintering</a> </p> <a href="https://publications.waset.org/abstracts/88383/corrosion-behavior-of-induced-stress-duplex-stainless-steel-in-chloride-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4730</span> Hot-Dip Galvanizing as a Corrosion Protection System for Steel Hydraulic Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farrokh%20Taherkhani">Farrokh Taherkhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Pinger"> Thomas Pinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Max%20G%C3%BCndel"> Max Gündel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion and suitable corrosion protection systems are a significant factor in the consideration of life cycle costs for steel hydraulic structures. In addition to classic coating systems (for example, epoxy resin or polyurethane), zinc and its alloys offer effective and very durable corrosion protection for steels. As a protective layer, hot-dip galvanizing prevents the corrosive media from penetrating into the steel matrix and acts as a sacrificial anode, which corrodes in preference to steel. However, hot-dip galvanizing as a corrosion protection system has not yet been approved by the relevant authority, the Federal Waterways Engineering and Research Institute (BAW) in Germany. In order to make hot-dip galvanizing usable as a corrosion protection system for steel hydraulic structures in the future, different factors must be considered. These factors are (i) corrosion protection type, (ii) resistance to mechanical stress (i.e., abrasion resistance), (iii) combinability with cathodic corrosion protection, (iv) environmental effects, and (v) the crack formation and propagation during hot-dip galvanizing. In this work, hot-dip galvanizing as a corrosion protection system for steel hydraulic steel structures, as well as open questions, are discussed. This paper is based on initial long-term exposure tests with corrosion protection systems consisting of hot-dip galvanizing and duplex systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20hydraulic%20structure" title="steel hydraulic structure">steel hydraulic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-dip%20galvanizing" title=" hot-dip galvanizing"> hot-dip galvanizing</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance" title=" corrosion resistance"> corrosion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20coating" title=" zinc coating"> zinc coating</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20coating%20and%20duplex%20systems" title=" organic coating and duplex systems"> organic coating and duplex systems</a> </p> <a href="https://publications.waset.org/abstracts/187712/hot-dip-galvanizing-as-a-corrosion-protection-system-for-steel-hydraulic-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4729</span> Effect of T6 and Re-Aging Heat Treatment on Mechanical Properties of 7055 Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Esmailian">M. Esmailian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shakouri"> M. Shakouri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mottahedi"> A. Mottahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Shabestari"> S. G. Shabestari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat treatable aluminium alloys such as 7075 and 7055, because of high strength and low density, are used widely in aircraft industry. For best mechanical properties, T6 heat treatment has recommended for this regards, but this temper treatment is sensitive to corrosion induced and Stress Corrosion Cracking (SCC) damage. For improving this property, the over-aging treatment (T7) applies to this alloy, but it decreases the mechanical properties up to 30 percent. Hence, to increase the mechanical properties, without any remarkable decrease in SCC resistant, Retrogression and Re-Aging (RRA) heat treatment is used. This treatment performs in a relatively short time. In this paper, the RRA heat treatment was applied to 7055 aluminum alloy and then effect of RRA time on the mechanical properties of 7055 has been investigated. The results show that the 40 minute time is suitable time for retrogression of 7055 aluminum alloy and ultimate strength increases up to 625MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=7055%20Aluminum%20alloy" title="7055 Aluminum alloy">7055 Aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=SCC%20resistance" title=" SCC resistance"> SCC resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20Treatment" title=" heat Treatment"> heat Treatment</a> </p> <a href="https://publications.waset.org/abstracts/34624/effect-of-t6-and-re-aging-heat-treatment-on-mechanical-properties-of-7055-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4728</span> Study on Comparison Between Acoustic Emission Behavior and Strain on Concrete Surface During Rebar Corrosion in Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ejazulhaq%20Rahimi">Ejazulhaq Rahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of techniques evaluating deterioration on concrete structures is vital for structural health monitoring (SHM). One of the main reasons for reinforced concrete structure's deterioration is the corroding of embedded rebars. It is a natural process that begins when the rebar starts to rust. It occurs when the protective layer on the rebar is destroyed. The rebar in concrete is usually protected against corrosion by the high pH of the surrounding cement paste. However, there are chemicals that can destroy the protective layer, making it susceptible to corrosion. It is very destructive for the lifespan and durability of the concrete structure. Corrosion products which are 3 to 6 times voluminous than the rebar stress its surrounding concrete and lead to fracture as cracks even peeling off the cover concrete over the rebar. As is clear that concrete shows limit elastic behavior in its stress strain property, so corrosion product stresses can be detected as strains from the concrete surface. It means that surface strains have a relation with the situation and amount of corrosion products and related concrete fractures inside reinforced concrete. In this paper, a comparative study of surface strains due to corrosion products detected by strain gauges and acoustic emission (AE) testing under periodic accelerated corrosion in the salty environment with 3% NaCl is reported. From the results, three different stages of strains were clearly observed based on the type and rate of strains in each corrosion situation and related fracture types. AE parameters which mostly are related to fracture and their shapes, describe the same phases. It is confirmed that there is a great agreement to the result of each other and describes three phases as generation and expansion of corrosion products and initiation and propagation of corrosion-induced cracks, and surface cracks. In addition, the strain on the concrete surface was rapidly increased before the cracks arrived at the surface of the concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission" title="acoustic emission">acoustic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=rebar%20corrosion" title=" rebar corrosion"> rebar corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a> </p> <a href="https://publications.waset.org/abstracts/132224/study-on-comparison-between-acoustic-emission-behavior-and-strain-on-concrete-surface-during-rebar-corrosion-in-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4727</span> High-Temperature Corrosion of Weldment of Fe-2%Mn-0.5%Si Steel in N2/H2O/H2S-Mixed Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Hwan%20Bak">Sang Hwan Bak</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Jung%20Kim"> Min Jung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Bok%20Lee"> Dong Bok Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fe-2%Mn-0.5%Si-0.2C steel was welded and corroded at 600, 700 and 800oC for 20 h in 1 atm of N2/H2S/H2O-mixed gas in order to characterize the high-temperature corrosion behavior of the welded joint. Corrosion proceeded fast and almost linearly. It increased with an increase in the corrosion temperature. H2S formed FeS owing to sulfur released from H2S. The scales were fragile and nonadherent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe-Mn-Si%20steel" title="Fe-Mn-Si steel">Fe-Mn-Si steel</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=welding" title=" welding"> welding</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfidation" title=" sulfidation"> sulfidation</a>, <a href="https://publications.waset.org/abstracts/search?q=H2S%20gas" title=" H2S gas"> H2S gas</a> </p> <a href="https://publications.waset.org/abstracts/45776/high-temperature-corrosion-of-weldment-of-fe-2mn-05si-steel-in-n2h2oh2s-mixed-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking&amp;page=158">158</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking&amp;page=159">159</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10