CINXE.COM

Romesh Kaul - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Romesh Kaul - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="XXt2EtWztZEePNvs7GawlSy+gtB5unZ5oajZ6CyA+Gbyw2Vo70/uydx3oS4ICTO2TJjKcRTkxlnub6AexgsAmA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="romesh kaul" /> <meta name="description" content="Romesh Kaul: 34 Followers, 4 Following, 48 Research papers. Research interests: Loop Quantum Gravity, Field Theory, and Pure Mathematics." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"113 million","monthly_visitor_count":113468711,"monthly_visitor_count_in_millions":113,"user_count":277159723,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732431802000); window.Aedu.timeDifference = new Date().getTime() - 1732431802000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/RomeshKaul" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":28545,"name":"Loop Quantum Gravity","url":"https://www.academia.edu/Documents/in/Loop_Quantum_Gravity"},{"id":333,"name":"Field Theory","url":"https://www.academia.edu/Documents/in/Field_Theory"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":353,"name":"Algebraic Geometry","url":"https://www.academia.edu/Documents/in/Algebraic_Geometry"},{"id":1247,"name":"Quantum Gravity","url":"https://www.academia.edu/Documents/in/Quantum_Gravity"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/RomeshKaul&quot;,&quot;location&quot;:&quot;/RomeshKaul&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/RomeshKaul&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-6342df37-c7bc-42e9-8a65-dc700a790502"></div> <div id="ProfileCheckPaperUpdate-react-component-6342df37-c7bc-42e9-8a65-dc700a790502"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Romesh Kaul</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Romesh" data-follow-user-id="47139266" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="47139266"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">34</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">4</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-author</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="47139266" href="https://www.academia.edu/Documents/in/Loop_Quantum_Gravity"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/RomeshKaul&quot;,&quot;location&quot;:&quot;/RomeshKaul&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/RomeshKaul&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Loop Quantum Gravity&quot;]}" data-trace="false" data-dom-id="Pill-react-component-67789e4e-1f29-48ca-8745-c8a5d5f0be82"></div> <div id="Pill-react-component-67789e4e-1f29-48ca-8745-c8a5d5f0be82"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="47139266" href="https://www.academia.edu/Documents/in/Field_Theory"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Field Theory&quot;]}" data-trace="false" data-dom-id="Pill-react-component-73d7051c-75b1-4f30-90c4-c059f1d8f2db"></div> <div id="Pill-react-component-73d7051c-75b1-4f30-90c4-c059f1d8f2db"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="47139266" href="https://www.academia.edu/Documents/in/Pure_Mathematics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Pure Mathematics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-3f604f07-7e0b-4626-974e-5c01de82bfd5"></div> <div id="Pill-react-component-3f604f07-7e0b-4626-974e-5c01de82bfd5"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="47139266" href="https://www.academia.edu/Documents/in/Algebraic_Geometry"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Algebraic Geometry&quot;]}" data-trace="false" data-dom-id="Pill-react-component-4ac1fd85-5769-4b23-82bc-c35305742601"></div> <div id="Pill-react-component-4ac1fd85-5769-4b23-82bc-c35305742601"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="47139266" href="https://www.academia.edu/Documents/in/Quantum_Gravity"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Quantum Gravity&quot;]}" data-trace="false" data-dom-id="Pill-react-component-b944236b-c3d0-4f1a-a33d-a97e3abc3e9b"></div> <div id="Pill-react-component-b944236b-c3d0-4f1a-a33d-a97e3abc3e9b"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Romesh Kaul</h3></div><div class="js-work-strip profile--work_container" data-work-id="24498112"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498112/Supersymmetric_solution_of_gauge_hierarchy_problem"><img alt="Research paper thumbnail of Supersymmetric solution of gauge hierarchy problem" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498112/Supersymmetric_solution_of_gauge_hierarchy_problem">Supersymmetric solution of gauge hierarchy problem</a></div><div class="wp-workCard_item"><span>Pramana</span><span>, 1982</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Some recent developments with respect to the resolution of the gauge hierarchy problem in grand u...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Some recent developments with respect to the resolution of the gauge hierarchy problem in grand unified theories by supersymmetry are presented. A general argument is developed to show how global supersymmetry maintains the stability of the different mass-scales under perturbative effects.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498112"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498112"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498112; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498112]").text(description); $(".js-view-count[data-work-id=24498112]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498112; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498112']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498112, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498112]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498112,"title":"Supersymmetric solution of gauge hierarchy problem","translated_title":"","metadata":{"abstract":"Some recent developments with respect to the resolution of the gauge hierarchy problem in grand unified theories by supersymmetry are presented. A general argument is developed to show how global supersymmetry maintains the stability of the different mass-scales under perturbative effects.","publication_date":{"day":null,"month":null,"year":1982,"errors":{}},"publication_name":"Pramana"},"translated_abstract":"Some recent developments with respect to the resolution of the gauge hierarchy problem in grand unified theories by supersymmetry are presented. A general argument is developed to show how global supersymmetry maintains the stability of the different mass-scales under perturbative effects.","internal_url":"https://www.academia.edu/24498112/Supersymmetric_solution_of_gauge_hierarchy_problem","translated_internal_url":"","created_at":"2016-04-17T13:54:25.145-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Supersymmetric_solution_of_gauge_hierarchy_problem","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":738257,"name":"Pramana","url":"https://www.academia.edu/Documents/in/Pramana"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498108"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/24498108/Degenerate_spacetimes_in_first_order_gravity"><img alt="Research paper thumbnail of Degenerate spacetimes in first order gravity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/24498108/Degenerate_spacetimes_in_first_order_gravity">Degenerate spacetimes in first order gravity</a></div><div class="wp-workCard_item"><span>Physical Review D</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498108"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498108"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498108; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498108]").text(description); $(".js-view-count[data-work-id=24498108]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498108; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498108']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498108, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498108]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498108,"title":"Degenerate spacetimes in first order gravity","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Physical Review D"},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498108/Degenerate_spacetimes_in_first_order_gravity","translated_internal_url":"","created_at":"2016-04-17T13:54:10.650-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Degenerate_spacetimes_in_first_order_gravity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498107"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498107/Instanton_anti_instanton_induced_vacuum_energy_in_supersymmetric_QCD"><img alt="Research paper thumbnail of Instanton-anti-instanton induced vacuum energy in supersymmetric QCD" class="work-thumbnail" src="https://attachments.academia-assets.com/44830248/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498107/Instanton_anti_instanton_induced_vacuum_energy_in_supersymmetric_QCD">Instanton-anti-instanton induced vacuum energy in supersymmetric QCD</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b9c6cb6ef9c5be7927c53fc5b8794b5e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830248,&quot;asset_id&quot;:24498107,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830248/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498107"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498107"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498107; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498107]").text(description); $(".js-view-count[data-work-id=24498107]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498107; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498107']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498107, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b9c6cb6ef9c5be7927c53fc5b8794b5e" } } $('.js-work-strip[data-work-id=24498107]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498107,"title":"Instanton-anti-instanton induced vacuum energy in supersymmetric QCD","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1984,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498107/Instanton_anti_instanton_induced_vacuum_energy_in_supersymmetric_QCD","translated_internal_url":"","created_at":"2016-04-17T13:54:10.370-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830248,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830248/thumbnails/1.jpg","file_name":"Instanton-anti-instanton_induced_vacuum_20160417-26366-zo4i6n.pdf","download_url":"https://www.academia.edu/attachments/44830248/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Instanton_anti_instanton_induced_vacuum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830248/Instanton-anti-instanton_induced_vacuum_20160417-26366-zo4i6n-libre.pdf?1460926671=\u0026response-content-disposition=attachment%3B+filename%3DInstanton_anti_instanton_induced_vacuum.pdf\u0026Expires=1732435402\u0026Signature=ewxYfV4ac~mpslfDpk-NUoDpjac0PNBWiQcWfGHAKNqUEwu6IS61VrpT8FCSP4s92d1GfuE2NH49bdlbOUyA8RLt8Xp44~b69jAhhCEy513PUBrStBtwgE1QmK9HIQ19uWK1KOagL1yNkhwGPSVFzStOf0YhFggaVFMWHumAU6OTG03u~lSk1E-b8Ou7XnpIuAPR~AcG9i1zrTkA3so~tkhrH5zsxMwLSBhXnJobj6omxjBpZIA4jp6N6FtaRNCJkGIi2ihI7OVlKG0DJf5km-u~LKnu6AlFMPgTykLcoeTwMKAgjp4FmCbOyCVfRWPaCO0dHmGvqyQiToinPjAJGw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Instanton_anti_instanton_induced_vacuum_energy_in_supersymmetric_QCD","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830248,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830248/thumbnails/1.jpg","file_name":"Instanton-anti-instanton_induced_vacuum_20160417-26366-zo4i6n.pdf","download_url":"https://www.academia.edu/attachments/44830248/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Instanton_anti_instanton_induced_vacuum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830248/Instanton-anti-instanton_induced_vacuum_20160417-26366-zo4i6n-libre.pdf?1460926671=\u0026response-content-disposition=attachment%3B+filename%3DInstanton_anti_instanton_induced_vacuum.pdf\u0026Expires=1732435402\u0026Signature=ewxYfV4ac~mpslfDpk-NUoDpjac0PNBWiQcWfGHAKNqUEwu6IS61VrpT8FCSP4s92d1GfuE2NH49bdlbOUyA8RLt8Xp44~b69jAhhCEy513PUBrStBtwgE1QmK9HIQ19uWK1KOagL1yNkhwGPSVFzStOf0YhFggaVFMWHumAU6OTG03u~lSk1E-b8Ou7XnpIuAPR~AcG9i1zrTkA3so~tkhrH5zsxMwLSBhXnJobj6omxjBpZIA4jp6N6FtaRNCJkGIi2ihI7OVlKG0DJf5km-u~LKnu6AlFMPgTykLcoeTwMKAgjp4FmCbOyCVfRWPaCO0dHmGvqyQiToinPjAJGw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2578,"name":"Particle Physics","url":"https://www.academia.edu/Documents/in/Particle_Physics"},{"id":5412,"name":"Energy","url":"https://www.academia.edu/Documents/in/Energy"},{"id":14025,"name":"Supersymmetry","url":"https://www.academia.edu/Documents/in/Supersymmetry"},{"id":160877,"name":"Vacuum","url":"https://www.academia.edu/Documents/in/Vacuum"},{"id":718538,"name":"Instanton","url":"https://www.academia.edu/Documents/in/Instanton"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498106"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498106/Topological_parameters_in_gravity"><img alt="Research paper thumbnail of Topological parameters in gravity" class="work-thumbnail" src="https://attachments.academia-assets.com/44830214/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498106/Topological_parameters_in_gravity">Topological parameters in gravity</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present the Hamiltonian analysis of the theory of gravity based on a Lagrangian density contai...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present the Hamiltonian analysis of the theory of gravity based on a Lagrangian density containing Hilbert-Palatini term along with three topological densities, Nieh-Yan, Pontryagin and Euler. The addition of these topological terms modifies the symplectic structure non-trivially. The resulting canonical theory develops a dependence on three parameters which are coefficients of these terms. In the time gauge, we obtain</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a4b7946bc4394bff787001b55afc2293" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830214,&quot;asset_id&quot;:24498106,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830214/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498106"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498106"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498106; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498106]").text(description); $(".js-view-count[data-work-id=24498106]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498106; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498106']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498106, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a4b7946bc4394bff787001b55afc2293" } } $('.js-work-strip[data-work-id=24498106]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498106,"title":"Topological parameters in gravity","translated_title":"","metadata":{"abstract":"We present the Hamiltonian analysis of the theory of gravity based on a Lagrangian density containing Hilbert-Palatini term along with three topological densities, Nieh-Yan, Pontryagin and Euler. The addition of these topological terms modifies the symplectic structure non-trivially. The resulting canonical theory develops a dependence on three parameters which are coefficients of these terms. In the time gauge, we obtain","publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":"We present the Hamiltonian analysis of the theory of gravity based on a Lagrangian density containing Hilbert-Palatini term along with three topological densities, Nieh-Yan, Pontryagin and Euler. The addition of these topological terms modifies the symplectic structure non-trivially. The resulting canonical theory develops a dependence on three parameters which are coefficients of these terms. In the time gauge, we obtain","internal_url":"https://www.academia.edu/24498106/Topological_parameters_in_gravity","translated_internal_url":"","created_at":"2016-04-17T13:54:10.035-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830214,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830214/thumbnails/1.jpg","file_name":"1106.3027.pdf","download_url":"https://www.academia.edu/attachments/44830214/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Topological_parameters_in_gravity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830214/1106.3027-libre.pdf?1460926517=\u0026response-content-disposition=attachment%3B+filename%3DTopological_parameters_in_gravity.pdf\u0026Expires=1732435402\u0026Signature=QDHF9nmHNRS9ntrtYTdpmDixGWROOdSixnU7Y6Cgz4GVj9jwGuDpEPViRVJxNMsbkm6MbMIZDyPE~l0J4tgGniWx7EvZYEeR-cqeu3rpXoWsdnMGGXgjPKEGkgSDDkY0NsEzNR~lt1gfb9yoaHfM5LytzztTf3oV9DR3huC7IyuOZhHAekK6n26gbNPqWbaZ6Vdp4kpjP8eT7MQGBxTPdUWUA0n0P5iKnuEamu1y6GcX~SZvu~uSuJoCICJIesFWkbNTQU8vkf6cHUBLvIWN3nxY167QBTGbhlWhNjCUhtvnhbxD-PyUAEEAmZkjU4Wzuoo6IFJskIEzse69MGWPjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Topological_parameters_in_gravity","translated_slug":"","page_count":30,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830214,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830214/thumbnails/1.jpg","file_name":"1106.3027.pdf","download_url":"https://www.academia.edu/attachments/44830214/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Topological_parameters_in_gravity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830214/1106.3027-libre.pdf?1460926517=\u0026response-content-disposition=attachment%3B+filename%3DTopological_parameters_in_gravity.pdf\u0026Expires=1732435402\u0026Signature=QDHF9nmHNRS9ntrtYTdpmDixGWROOdSixnU7Y6Cgz4GVj9jwGuDpEPViRVJxNMsbkm6MbMIZDyPE~l0J4tgGniWx7EvZYEeR-cqeu3rpXoWsdnMGGXgjPKEGkgSDDkY0NsEzNR~lt1gfb9yoaHfM5LytzztTf3oV9DR3huC7IyuOZhHAekK6n26gbNPqWbaZ6Vdp4kpjP8eT7MQGBxTPdUWUA0n0P5iKnuEamu1y6GcX~SZvu~uSuJoCICJIesFWkbNTQU8vkf6cHUBLvIWN3nxY167QBTGbhlWhNjCUhtvnhbxD-PyUAEEAmZkjU4Wzuoo6IFJskIEzse69MGWPjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":6813,"name":"Quantum Cosmology","url":"https://www.academia.edu/Documents/in/Quantum_Cosmology"},{"id":14024,"name":"High Energy Physics","url":"https://www.academia.edu/Documents/in/High_Energy_Physics"},{"id":108262,"name":"Gauge theory","url":"https://www.academia.edu/Documents/in/Gauge_theory"},{"id":1636662,"name":"Coupling Constant","url":"https://www.academia.edu/Documents/in/Coupling_Constant"}],"urls":[{"id":7024530,"url":"http://adsabs.harvard.edu/abs/2011arXiv1106.3027K"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498105"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498105/Naturalness_and_Electroweak_Symmetry_Breaking"><img alt="Research paper thumbnail of Naturalness and Electroweak Symmetry Breaking" class="work-thumbnail" src="https://attachments.academia-assets.com/44830213/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498105/Naturalness_and_Electroweak_Symmetry_Breaking">Naturalness and Electroweak Symmetry Breaking</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Principle of Naturalness of small parameters of a theory is reviewed. While quantum field the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Principle of Naturalness of small parameters of a theory is reviewed. While quantum field theories constructed from gauge fields and fermions only are natural, those containing elementary scalar fields are not. In particular the Higgs boson mass in the Standard Model of electro-weak forces is not stable against radiative corrections. Two old canonical solutions of this problem are: (i)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7bead24f5d8b7cd9fa637c2f8af45068" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830213,&quot;asset_id&quot;:24498105,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830213/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498105"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498105"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498105; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498105]").text(description); $(".js-view-count[data-work-id=24498105]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498105; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498105']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498105, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7bead24f5d8b7cd9fa637c2f8af45068" } } $('.js-work-strip[data-work-id=24498105]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498105,"title":"Naturalness and Electroweak Symmetry Breaking","translated_title":"","metadata":{"abstract":"The Principle of Naturalness of small parameters of a theory is reviewed. While quantum field theories constructed from gauge fields and fermions only are natural, those containing elementary scalar fields are not. In particular the Higgs boson mass in the Standard Model of electro-weak forces is not stable against radiative corrections. Two old canonical solutions of this problem are: (i)","publication_date":{"day":null,"month":null,"year":2008,"errors":{}}},"translated_abstract":"The Principle of Naturalness of small parameters of a theory is reviewed. While quantum field theories constructed from gauge fields and fermions only are natural, those containing elementary scalar fields are not. In particular the Higgs boson mass in the Standard Model of electro-weak forces is not stable against radiative corrections. Two old canonical solutions of this problem are: (i)","internal_url":"https://www.academia.edu/24498105/Naturalness_and_Electroweak_Symmetry_Breaking","translated_internal_url":"","created_at":"2016-04-17T13:54:09.637-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830213,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830213/thumbnails/1.jpg","file_name":"0803.0381.pdf","download_url":"https://www.academia.edu/attachments/44830213/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Naturalness_and_Electroweak_Symmetry_Bre.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830213/0803.0381-libre.pdf?1460926518=\u0026response-content-disposition=attachment%3B+filename%3DNaturalness_and_Electroweak_Symmetry_Bre.pdf\u0026Expires=1732435402\u0026Signature=JFruqGfH~sdi~RtgkGg3LaBVEZV-n7NEotXBAD-rIbyk5j4d4mJPqoKpaSAM7Cq5xip28fxAYCSFgvcMNDUUYt1behsXL0L3W2FGUJYqAAGtlEoAf1G7wWudZIO~RZDoQgsZ92JSFcmwPdVfYD81rwq3ZgHvbWrjDVf7E5eq9NdDBccghfZd9exfeZxE1bWzmS9uXKl0bg-vaCLdWuJAokZKGMPt90rrK09qEABO2sWXgDMfBU8vUpYon4zzkqFvi7tM3QeBP~kk92du7Sol8ywIAVaqiFSJCDCRxJdE2clrqldcdWfpd2nFYVQgKOgTVKbKVQVd7LQ8~PSY-RuJXQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Naturalness_and_Electroweak_Symmetry_Breaking","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830213,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830213/thumbnails/1.jpg","file_name":"0803.0381.pdf","download_url":"https://www.academia.edu/attachments/44830213/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Naturalness_and_Electroweak_Symmetry_Bre.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830213/0803.0381-libre.pdf?1460926518=\u0026response-content-disposition=attachment%3B+filename%3DNaturalness_and_Electroweak_Symmetry_Bre.pdf\u0026Expires=1732435402\u0026Signature=JFruqGfH~sdi~RtgkGg3LaBVEZV-n7NEotXBAD-rIbyk5j4d4mJPqoKpaSAM7Cq5xip28fxAYCSFgvcMNDUUYt1behsXL0L3W2FGUJYqAAGtlEoAf1G7wWudZIO~RZDoQgsZ92JSFcmwPdVfYD81rwq3ZgHvbWrjDVf7E5eq9NdDBccghfZd9exfeZxE1bWzmS9uXKl0bg-vaCLdWuJAokZKGMPt90rrK09qEABO2sWXgDMfBU8vUpYon4zzkqFvi7tM3QeBP~kk92du7Sol8ywIAVaqiFSJCDCRxJdE2clrqldcdWfpd2nFYVQgKOgTVKbKVQVd7LQ8~PSY-RuJXQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":10092,"name":"Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Quantum_Field_Theory"},{"id":10193,"name":"Electroweak Symmetry Breaking","url":"https://www.academia.edu/Documents/in/Electroweak_Symmetry_Breaking"},{"id":130616,"name":"Standard Model","url":"https://www.academia.edu/Documents/in/Standard_Model"},{"id":203396,"name":"Higgs boson","url":"https://www.academia.edu/Documents/in/Higgs_boson"},{"id":339310,"name":"Symmetry Breaking","url":"https://www.academia.edu/Documents/in/Symmetry_Breaking"},{"id":403158,"name":"Gauge Field","url":"https://www.academia.edu/Documents/in/Gauge_Field"}],"urls":[{"id":7024529,"url":"http://arxiv.org/abs/0803.0381"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498104"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498104/Chern_Simons_Theory_Knot_Invariants_Vertex_Models_and_Three_manifold_Invariants"><img alt="Research paper thumbnail of Chern-Simons Theory, Knot Invariants, Vertex Models and Three-manifold Invariants" class="work-thumbnail" src="https://attachments.academia-assets.com/44830217/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498104/Chern_Simons_Theory_Knot_Invariants_Vertex_Models_and_Three_manifold_Invariants">Chern-Simons Theory, Knot Invariants, Vertex Models and Three-manifold Invariants</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Chern-Simons theories, which are topological quantum field theories, provide a field theoretic fr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Chern-Simons theories, which are topological quantum field theories, provide a field theoretic framework for the study of knots and links in three dimensions. These are rare examples of quantum field theories which can be exactly and explicitly solved. Expectation values of Wilson link operators yield a class of link invariants, the simplest of them is the famous Jones polynomial. Other</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5916d995d939f6010c0cb997ec001502" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830217,&quot;asset_id&quot;:24498104,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830217/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498104"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498104"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498104; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498104]").text(description); $(".js-view-count[data-work-id=24498104]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498104; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498104']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498104, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5916d995d939f6010c0cb997ec001502" } } $('.js-work-strip[data-work-id=24498104]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498104,"title":"Chern-Simons Theory, Knot Invariants, Vertex Models and Three-manifold Invariants","translated_title":"","metadata":{"abstract":"Chern-Simons theories, which are topological quantum field theories, provide a field theoretic framework for the study of knots and links in three dimensions. These are rare examples of quantum field theories which can be exactly and explicitly solved. Expectation values of Wilson link operators yield a class of link invariants, the simplest of them is the famous Jones polynomial. Other","publication_date":{"day":null,"month":null,"year":1998,"errors":{}}},"translated_abstract":"Chern-Simons theories, which are topological quantum field theories, provide a field theoretic framework for the study of knots and links in three dimensions. These are rare examples of quantum field theories which can be exactly and explicitly solved. Expectation values of Wilson link operators yield a class of link invariants, the simplest of them is the famous Jones polynomial. Other","internal_url":"https://www.academia.edu/24498104/Chern_Simons_Theory_Knot_Invariants_Vertex_Models_and_Three_manifold_Invariants","translated_internal_url":"","created_at":"2016-04-17T13:54:09.268-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830217,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830217/thumbnails/1.jpg","file_name":"9804122.pdf","download_url":"https://www.academia.edu/attachments/44830217/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chern_Simons_Theory_Knot_Invariants_Vert.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830217/9804122-libre.pdf?1460926517=\u0026response-content-disposition=attachment%3B+filename%3DChern_Simons_Theory_Knot_Invariants_Vert.pdf\u0026Expires=1732435402\u0026Signature=RKjYCuSTRxh9XlJC6HMxxAoLI5mYCFJQXVGXUxz9v1hJeMgIaRNV-xFB3AyprPVjpYUaW1wZA93~sJ7Ao-G0OG3qlZmX~kra7AqJpHXAD~vDFcWcdE61Z0VxrZf3UN6nvw0-zgCD-x--jlnVpKT2gZMmAM227ZWwrVj93TofsNKnR~0dTMuwEg0Peqp~h1GyIT5D-IRumyvUWK4gTNIfNT9-8zJhP5w7gn7RxKs-lKN95CDWW8dYtIXdjdA515Tld0EDvjiTtQR6wSsGTwP~edlbb7wU1CnYcEGGV6Cap~fQLGWMZT8t5XyZj~1lXG4kEBSJwKA0pwEegpvWdRhFjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Chern_Simons_Theory_Knot_Invariants_Vertex_Models_and_Three_manifold_Invariants","translated_slug":"","page_count":27,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830217,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830217/thumbnails/1.jpg","file_name":"9804122.pdf","download_url":"https://www.academia.edu/attachments/44830217/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chern_Simons_Theory_Knot_Invariants_Vert.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830217/9804122-libre.pdf?1460926517=\u0026response-content-disposition=attachment%3B+filename%3DChern_Simons_Theory_Knot_Invariants_Vert.pdf\u0026Expires=1732435402\u0026Signature=RKjYCuSTRxh9XlJC6HMxxAoLI5mYCFJQXVGXUxz9v1hJeMgIaRNV-xFB3AyprPVjpYUaW1wZA93~sJ7Ao-G0OG3qlZmX~kra7AqJpHXAD~vDFcWcdE61Z0VxrZf3UN6nvw0-zgCD-x--jlnVpKT2gZMmAM227ZWwrVj93TofsNKnR~0dTMuwEg0Peqp~h1GyIT5D-IRumyvUWK4gTNIfNT9-8zJhP5w7gn7RxKs-lKN95CDWW8dYtIXdjdA515Tld0EDvjiTtQR6wSsGTwP~edlbb7wU1CnYcEGGV6Cap~fQLGWMZT8t5XyZj~1lXG4kEBSJwKA0pwEegpvWdRhFjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":44830216,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830216/thumbnails/1.jpg","file_name":"9804122.pdf","download_url":"https://www.academia.edu/attachments/44830216/download_file","bulk_download_file_name":"Chern_Simons_Theory_Knot_Invariants_Vert.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830216/9804122-libre.pdf?1460926518=\u0026response-content-disposition=attachment%3B+filename%3DChern_Simons_Theory_Knot_Invariants_Vert.pdf\u0026Expires=1732435402\u0026Signature=EFiBOpiGF2BolQ7DXhNbBoB4byhhosqA83l2o474K3FKuL-qfL26Jyi90Z~dWKVhse5yfnMYVAOfrv1xYWVhY~MgEIGjV~dT0vxi55cpkTgn0WzT7C906316fmAspo9mAwRh5nWqb1Q1dro~TNMedSUqcN8nSgb2VTuOqz~hntJ2C-aZHouh~zo5grVqZgjHi-6fWgFG2dErpilDA33nvdTO7hksevu4X8EgZSwZcgF-VaofxT2g-x4okEwLTW7i0dhNkYBmcCegHqGy9Ww~yR7bMM4UWVi5AKme4N5p0Qdx55R-1BGZoChNXlrgPFhKgFAFzmRxVDkHXVbL2KPvkg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4427,"name":"Topological Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Topological_Quantum_Field_Theory"},{"id":10092,"name":"Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Quantum_Field_Theory"},{"id":364279,"name":"Chern Simons Theory","url":"https://www.academia.edu/Documents/in/Chern_Simons_Theory"},{"id":412636,"name":"Theoretical Framework","url":"https://www.academia.edu/Documents/in/Theoretical_Framework"},{"id":1296393,"name":"Crossing Number","url":"https://www.academia.edu/Documents/in/Crossing_Number"}],"urls":[{"id":7024528,"url":"http://arxiv.org/abs/hep-th/9804122"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498103"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498103/The_validity_of_the_Adler_Bardeen_theorem_in_the_supersymmetric_U_1_gauge_model"><img alt="Research paper thumbnail of The validity of the Adler-Bardeen theorem in the supersymmetric U(1) gauge model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498103/The_validity_of_the_Adler_Bardeen_theorem_in_the_supersymmetric_U_1_gauge_model">The validity of the Adler-Bardeen theorem in the supersymmetric U(1) gauge model</a></div><div class="wp-workCard_item"><span>Physics Letters B</span><span>, 1983</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using the dimensional reduction regularization scheme, we show that radiative corrections to the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using the dimensional reduction regularization scheme, we show that radiative corrections to the anomaly of the axial current, which is coupled to the gauge field, are absent in a supersymmetric U(1) gauge model for both &amp;amp;#39;t Hooft-Veltman and Bardeen prescriptions for gamma5. We also discuss the results with reference to conventional dimensional regularization. This result has significant implications with respect</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498103"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498103"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498103; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498103]").text(description); $(".js-view-count[data-work-id=24498103]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498103; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498103']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498103, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498103]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498103,"title":"The validity of the Adler-Bardeen theorem in the supersymmetric U(1) gauge model","translated_title":"","metadata":{"abstract":"Using the dimensional reduction regularization scheme, we show that radiative corrections to the anomaly of the axial current, which is coupled to the gauge field, are absent in a supersymmetric U(1) gauge model for both \u0026amp;#39;t Hooft-Veltman and Bardeen prescriptions for gamma5. We also discuss the results with reference to conventional dimensional regularization. This result has significant implications with respect","publication_date":{"day":null,"month":null,"year":1983,"errors":{}},"publication_name":"Physics Letters B"},"translated_abstract":"Using the dimensional reduction regularization scheme, we show that radiative corrections to the anomaly of the axial current, which is coupled to the gauge field, are absent in a supersymmetric U(1) gauge model for both \u0026amp;#39;t Hooft-Veltman and Bardeen prescriptions for gamma5. We also discuss the results with reference to conventional dimensional regularization. This result has significant implications with respect","internal_url":"https://www.academia.edu/24498103/The_validity_of_the_Adler_Bardeen_theorem_in_the_supersymmetric_U_1_gauge_model","translated_internal_url":"","created_at":"2016-04-17T13:54:09.022-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_validity_of_the_Adler_Bardeen_theorem_in_the_supersymmetric_U_1_gauge_model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[{"id":27762,"name":"Supersymmetric Models","url":"https://www.academia.edu/Documents/in/Supersymmetric_Models"},{"id":403158,"name":"Gauge Field","url":"https://www.academia.edu/Documents/in/Gauge_Field"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498102"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498102/Chern_Simons_theory_coloured_oriented_braids_and_link_invariants"><img alt="Research paper thumbnail of Chern-Simons theory, coloured-oriented braids and link invariants" class="work-thumbnail" src="https://attachments.academia-assets.com/44830250/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498102/Chern_Simons_theory_coloured_oriented_braids_and_link_invariants">Chern-Simons theory, coloured-oriented braids and link invariants</a></div><div class="wp-workCard_item"><span>Communications in Mathematical Physics</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A method to obtain explicit and complete topological solution of SU(2) Chern-Simons theory on S 3...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A method to obtain explicit and complete topological solution of SU(2) Chern-Simons theory on S 3 is developed. To this effect the necessary aspects of the theory of coloured-oriented braids and duality properties of conformal blocks for the correlators of SU(2) k Wess-Zumino conformal field theory are presented. A large class of representations of the generators of the groupoid of coloured-oriented braids are obtained. These provide a whole lot of new link invariants of which Jones polynomials are the simplest examples. These new invariants are explicity calculated as illustrations for knots up to eight crossings and twocomponent multicoloured links up to seven crossings.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d5fb637f1495d1812e3c885fc3845613" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830250,&quot;asset_id&quot;:24498102,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830250/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498102"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498102"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498102; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498102]").text(description); $(".js-view-count[data-work-id=24498102]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498102; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498102']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498102, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d5fb637f1495d1812e3c885fc3845613" } } $('.js-work-strip[data-work-id=24498102]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498102,"title":"Chern-Simons theory, coloured-oriented braids and link invariants","translated_title":"","metadata":{"abstract":"A method to obtain explicit and complete topological solution of SU(2) Chern-Simons theory on S 3 is developed. To this effect the necessary aspects of the theory of coloured-oriented braids and duality properties of conformal blocks for the correlators of SU(2) k Wess-Zumino conformal field theory are presented. A large class of representations of the generators of the groupoid of coloured-oriented braids are obtained. These provide a whole lot of new link invariants of which Jones polynomials are the simplest examples. These new invariants are explicity calculated as illustrations for knots up to eight crossings and twocomponent multicoloured links up to seven crossings.","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Communications in Mathematical Physics"},"translated_abstract":"A method to obtain explicit and complete topological solution of SU(2) Chern-Simons theory on S 3 is developed. To this effect the necessary aspects of the theory of coloured-oriented braids and duality properties of conformal blocks for the correlators of SU(2) k Wess-Zumino conformal field theory are presented. A large class of representations of the generators of the groupoid of coloured-oriented braids are obtained. These provide a whole lot of new link invariants of which Jones polynomials are the simplest examples. These new invariants are explicity calculated as illustrations for knots up to eight crossings and twocomponent multicoloured links up to seven crossings.","internal_url":"https://www.academia.edu/24498102/Chern_Simons_theory_coloured_oriented_braids_and_link_invariants","translated_internal_url":"","created_at":"2016-04-17T13:54:08.643-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830250,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830250/thumbnails/1.jpg","file_name":"9305032.pdf","download_url":"https://www.academia.edu/attachments/44830250/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chern_Simons_theory_coloured_oriented_br.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830250/9305032-libre.pdf?1460926672=\u0026response-content-disposition=attachment%3B+filename%3DChern_Simons_theory_coloured_oriented_br.pdf\u0026Expires=1732435402\u0026Signature=YBVI7C2P~Hk2~DtpDHAj89Ily66U~n2eeBf9xIeQvwNA0SRup2lkxVQKd3EAPaeEaxhJ-rIDDyTl9OyX3nwc42n5O1h53XVrgdb0f0LUNSa~0Vgf2ulKLcwyQqqMVO2Qw4RWFJRsET6NxpQ5dR0kO8rRezLbCe9r4dLov9TpwoD369pwgi6q88MV0a27ncSvKTJEJ6T1BnbWsfPTsm4Hllp0-s4wulLHxWvBEfDhAYLw-jB0kffRZfiXPXv2xVc3l3RJ1T5lmD8FIZzQp8ilA5wv3v-GRESwX1PSpKOB1MY7Nb6bV3pQAhapvfjVZhYQyX8K3a8vyo~W~LVRWuCr5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Chern_Simons_theory_coloured_oriented_braids_and_link_invariants","translated_slug":"","page_count":47,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830250,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830250/thumbnails/1.jpg","file_name":"9305032.pdf","download_url":"https://www.academia.edu/attachments/44830250/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chern_Simons_theory_coloured_oriented_br.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830250/9305032-libre.pdf?1460926672=\u0026response-content-disposition=attachment%3B+filename%3DChern_Simons_theory_coloured_oriented_br.pdf\u0026Expires=1732435402\u0026Signature=YBVI7C2P~Hk2~DtpDHAj89Ily66U~n2eeBf9xIeQvwNA0SRup2lkxVQKd3EAPaeEaxhJ-rIDDyTl9OyX3nwc42n5O1h53XVrgdb0f0LUNSa~0Vgf2ulKLcwyQqqMVO2Qw4RWFJRsET6NxpQ5dR0kO8rRezLbCe9r4dLov9TpwoD369pwgi6q88MV0a27ncSvKTJEJ6T1BnbWsfPTsm4Hllp0-s4wulLHxWvBEfDhAYLw-jB0kffRZfiXPXv2xVc3l3RJ1T5lmD8FIZzQp8ilA5wv3v-GRESwX1PSpKOB1MY7Nb6bV3pQAhapvfjVZhYQyX8K3a8vyo~W~LVRWuCr5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":10092,"name":"Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Quantum_Field_Theory"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":108262,"name":"Gauge theory","url":"https://www.academia.edu/Documents/in/Gauge_theory"},{"id":154823,"name":"Conformal Field Theory","url":"https://www.academia.edu/Documents/in/Conformal_Field_Theory"},{"id":364279,"name":"Chern Simons Theory","url":"https://www.academia.edu/Documents/in/Chern_Simons_Theory"},{"id":410032,"name":"Invariant","url":"https://www.academia.edu/Documents/in/Invariant"}],"urls":[{"id":7024527,"url":"http://adsabs.harvard.edu/abs/1994cmaph.162..289k"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498101"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/24498101/Supersymmetry_and_Supergravity"><img alt="Research paper thumbnail of Supersymmetry and Supergravity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/24498101/Supersymmetry_and_Supergravity">Supersymmetry and Supergravity</a></div><div class="wp-workCard_item"><span>Gravitation, Gauge Theories and the Early Universe</span><span>, 1989</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498101"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498101"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498101; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498101]").text(description); $(".js-view-count[data-work-id=24498101]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498101; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498101']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498101, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498101]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498101,"title":"Supersymmetry and Supergravity","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1989,"errors":{}},"publication_name":"Gravitation, Gauge Theories and the Early Universe"},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498101/Supersymmetry_and_Supergravity","translated_internal_url":"","created_at":"2016-04-17T13:54:08.413-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Supersymmetry_and_Supergravity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498099"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498099/On_non_perturbative_contributions_to_vacuum_energy_in_supersymmetric_quantum_mechanical_models"><img alt="Research paper thumbnail of On non-perturbative contributions to vacuum energy in supersymmetric quantum mechanical models" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498099/On_non_perturbative_contributions_to_vacuum_energy_in_supersymmetric_quantum_mechanical_models">On non-perturbative contributions to vacuum energy in supersymmetric quantum mechanical models</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498099"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498099"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498099; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498099]").text(description); $(".js-view-count[data-work-id=24498099]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498099; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498099']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498099, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498099]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498099,"title":"On non-perturbative contributions to vacuum energy in supersymmetric quantum mechanical models","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1984,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498099/On_non_perturbative_contributions_to_vacuum_energy_in_supersymmetric_quantum_mechanical_models","translated_internal_url":"","created_at":"2016-04-17T13:54:08.237-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_non_perturbative_contributions_to_vacuum_energy_in_supersymmetric_quantum_mechanical_models","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1124186,"name":"Supersymmetric Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Supersymmetric_Quantum_Mechanics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498098"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498098/The_representation_of_Temperley_Lieb_Jones_algebras"><img alt="Research paper thumbnail of The representation of Temperley-Lieb-Jones algebras" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498098/The_representation_of_Temperley_Lieb_Jones_algebras">The representation of Temperley-Lieb-Jones algebras</a></div><div class="wp-workCard_item"><span>Nuclear Physics B</span><span>, 1994</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498098"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498098"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498098; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498098]").text(description); $(".js-view-count[data-work-id=24498098]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498098; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498098']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498098, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498098]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498098,"title":"The representation of Temperley-Lieb-Jones algebras","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Nuclear Physics B"},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498098/The_representation_of_Temperley_Lieb_Jones_algebras","translated_internal_url":"","created_at":"2016-04-17T13:54:08.043-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_representation_of_Temperley_Lieb_Jones_algebras","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[{"id":10092,"name":"Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Quantum_Field_Theory"},{"id":50118,"name":"Representation","url":"https://www.academia.edu/Documents/in/Representation"}],"urls":[{"id":7024526,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=4070926"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498097"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/24498097/Knot_invariants_from_quantum_field_theories"><img alt="Research paper thumbnail of Knot invariants from quantum field theories" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/24498097/Knot_invariants_from_quantum_field_theories">Knot invariants from quantum field theories</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498097"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498097"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498097; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498097]").text(description); $(".js-view-count[data-work-id=24498097]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498097; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498097']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498097, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498097]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498097,"title":"Knot invariants from quantum field theories","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1994,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498097/Knot_invariants_from_quantum_field_theories","translated_internal_url":"","created_at":"2016-04-17T13:54:07.870-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Knot_invariants_from_quantum_field_theories","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[{"id":10092,"name":"Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Quantum_Field_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498096"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498096/Canonical_supergravity_with_Barbero_Immirzi_parameter"><img alt="Research paper thumbnail of Canonical supergravity with Barbero-Immirzi parameter" class="work-thumbnail" src="https://attachments.academia-assets.com/44830212/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498096/Canonical_supergravity_with_Barbero_Immirzi_parameter">Canonical supergravity with Barbero-Immirzi parameter</a></div><div class="wp-workCard_item"><span>Physical Review D Particles and Fields</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A Hamiltonian description of the N=1 supergravity theory containing the topological Nieh-Yan term...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A Hamiltonian description of the N=1 supergravity theory containing the topological Nieh-Yan term in its Lagrangian density is developed. The constraints are analyzed without choosing any gauge. In the time gauge, this theory results in a real SU(2) formulation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9acbbdbcb2a7416306716f8281b5f6f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830212,&quot;asset_id&quot;:24498096,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830212/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498096"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498096"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498096; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498096]").text(description); $(".js-view-count[data-work-id=24498096]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498096; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498096']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498096, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9acbbdbcb2a7416306716f8281b5f6f0" } } $('.js-work-strip[data-work-id=24498096]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498096,"title":"Canonical supergravity with Barbero-Immirzi parameter","translated_title":"","metadata":{"abstract":"A Hamiltonian description of the N=1 supergravity theory containing the topological Nieh-Yan term in its Lagrangian density is developed. The constraints are analyzed without choosing any gauge. In the time gauge, this theory results in a real SU(2) formulation.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Physical Review D Particles and Fields"},"translated_abstract":"A Hamiltonian description of the N=1 supergravity theory containing the topological Nieh-Yan term in its Lagrangian density is developed. The constraints are analyzed without choosing any gauge. In the time gauge, this theory results in a real SU(2) formulation.","internal_url":"https://www.academia.edu/24498096/Canonical_supergravity_with_Barbero_Immirzi_parameter","translated_internal_url":"","created_at":"2016-04-17T13:54:07.574-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830212,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830212/thumbnails/1.jpg","file_name":"0909.4850.pdf","download_url":"https://www.academia.edu/attachments/44830212/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Canonical_supergravity_with_Barbero_Immi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830212/0909.4850-libre.pdf?1460926517=\u0026response-content-disposition=attachment%3B+filename%3DCanonical_supergravity_with_Barbero_Immi.pdf\u0026Expires=1732435402\u0026Signature=X6THkNsvzwFAhm2sx~-ZCI8wlD8TSwK32YzF9BuaIgCV6LNR9nnF7669mXq41oEk84R~dBRjlbIIxtZRjHDTSNvzGlWAyqlKApYxnDMJNJOSoMK7mITySlPMz-VAIhXDmPhO3HYEZd6mv45aMG0IirhzWwvUBdzwDxfDNrmxQEi4veZu7IFZFiZTnEU9ttY84xNyb0P7BJf346m-~YW~etuOV9mvo51qMwxNda1lRHElg9US~qZSLcfCttf0NWzwWO50hoBuZQES66FLcSriQEQJCNTXAlWc~dl63BwypQ-3sJo1Mp1d86aA4MXZsWtG6Bqk3Mzs6xZhJy6bgfSAcQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Canonical_supergravity_with_Barbero_Immirzi_parameter","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830212,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830212/thumbnails/1.jpg","file_name":"0909.4850.pdf","download_url":"https://www.academia.edu/attachments/44830212/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Canonical_supergravity_with_Barbero_Immi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830212/0909.4850-libre.pdf?1460926517=\u0026response-content-disposition=attachment%3B+filename%3DCanonical_supergravity_with_Barbero_Immi.pdf\u0026Expires=1732435402\u0026Signature=X6THkNsvzwFAhm2sx~-ZCI8wlD8TSwK32YzF9BuaIgCV6LNR9nnF7669mXq41oEk84R~dBRjlbIIxtZRjHDTSNvzGlWAyqlKApYxnDMJNJOSoMK7mITySlPMz-VAIhXDmPhO3HYEZd6mv45aMG0IirhzWwvUBdzwDxfDNrmxQEi4veZu7IFZFiZTnEU9ttY84xNyb0P7BJf346m-~YW~etuOV9mvo51qMwxNda1lRHElg9US~qZSLcfCttf0NWzwWO50hoBuZQES66FLcSriQEQJCNTXAlWc~dl63BwypQ-3sJo1Mp1d86aA4MXZsWtG6Bqk3Mzs6xZhJy6bgfSAcQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":333,"name":"Field Theory","url":"https://www.academia.edu/Documents/in/Field_Theory"},{"id":1247,"name":"Quantum Gravity","url":"https://www.academia.edu/Documents/in/Quantum_Gravity"},{"id":7936,"name":"Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Quantum_Mechanics"},{"id":28545,"name":"Loop Quantum Gravity","url":"https://www.academia.edu/Documents/in/Loop_Quantum_Gravity"},{"id":77311,"name":"Unified Field Theory","url":"https://www.academia.edu/Documents/in/Unified_Field_Theory"},{"id":603952,"name":"Lie Group","url":"https://www.academia.edu/Documents/in/Lie_Group"},{"id":956755,"name":"Point Group Symmetry","url":"https://www.academia.edu/Documents/in/Point_Group_Symmetry"},{"id":1228946,"name":"Physical Properties","url":"https://www.academia.edu/Documents/in/Physical_Properties"},{"id":1760204,"name":"Elementary Particles","url":"https://www.academia.edu/Documents/in/Elementary_Particles"}],"urls":[{"id":7024525,"url":"http://adsabs.harvard.edu/abs/2009arxiv0909.4850s"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498095"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498095/Monopole_mass_in_supersymmetric_gauge_theories"><img alt="Research paper thumbnail of Monopole mass in supersymmetric gauge theories" class="work-thumbnail" src="https://attachments.academia-assets.com/44830251/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498095/Monopole_mass_in_supersymmetric_gauge_theories">Monopole mass in supersymmetric gauge theories</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="22d073ad382253e7f4eba61bbc20d8bc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830251,&quot;asset_id&quot;:24498095,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830251/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498095"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498095"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498095; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498095]").text(description); $(".js-view-count[data-work-id=24498095]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498095; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498095']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498095, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "22d073ad382253e7f4eba61bbc20d8bc" } } $('.js-work-strip[data-work-id=24498095]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498095,"title":"Monopole mass in supersymmetric gauge theories","translated_title":"","metadata":{"grobid_abstract":"The one-loop quantum corrections to the mass of a monopole in a non-abelian supersymmetric gauge field theory are calculated. The corrections due to Bose and Fermi fluctuations around the monopole are shown to the governed essentially by the eigenvalues of two related second order differential operators, with the same nonzero mode spectrum but different densities of the continuum eigenmodes. However, the one-loop monopole mass, when expressed in terms of one-loop renormalized parameters, does not obtain any corrections.","publication_date":{"day":null,"month":null,"year":1984,"errors":{}},"grobid_abstract_attachment_id":44830251},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498095/Monopole_mass_in_supersymmetric_gauge_theories","translated_internal_url":"","created_at":"2016-04-17T13:54:07.342-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830251,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830251/thumbnails/1.jpg","file_name":"0370-2693_2884_2991495-3.pdf20160417-18885-ur53c4","download_url":"https://www.academia.edu/attachments/44830251/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Monopole_mass_in_supersymmetric_gauge_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830251/0370-2693_2884_2991495-3-libre.pdf20160417-18885-ur53c4?1460926672=\u0026response-content-disposition=attachment%3B+filename%3DMonopole_mass_in_supersymmetric_gauge_th.pdf\u0026Expires=1732435402\u0026Signature=gigpsMHxHqlcahhZVK64lI-kFT7KtV35g5Vp36mO7oc7tleQoXg3-1-IWCKch7a-bARA9S8CoASn8kJ~DlXUZbl8yCKmIIA9glXPSLIao5C-QHBbSVmb6qDH0A8R3SrVFgAa4hhJMcuK8QiQ4EAG3p4MVCYeAnGQi6XRlYxdmf44WI-QjBx39V1d8ZJsiF3QyCPjS3824by-n~17jEPk1pvBbLMG7IMh5LiSt01WGGsTRWaDHJmbzVdw8woDmEZ4pz1EqxF5T4pMpU3C5kEgyd6JIQeGUjg5WI51AQsAjR0MKsyoPQkXAy1~FyRT43FOHNz9ORXMMFC-9gVJSAXcKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Monopole_mass_in_supersymmetric_gauge_theories","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830251,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830251/thumbnails/1.jpg","file_name":"0370-2693_2884_2991495-3.pdf20160417-18885-ur53c4","download_url":"https://www.academia.edu/attachments/44830251/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Monopole_mass_in_supersymmetric_gauge_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830251/0370-2693_2884_2991495-3-libre.pdf20160417-18885-ur53c4?1460926672=\u0026response-content-disposition=attachment%3B+filename%3DMonopole_mass_in_supersymmetric_gauge_th.pdf\u0026Expires=1732435402\u0026Signature=gigpsMHxHqlcahhZVK64lI-kFT7KtV35g5Vp36mO7oc7tleQoXg3-1-IWCKch7a-bARA9S8CoASn8kJ~DlXUZbl8yCKmIIA9glXPSLIao5C-QHBbSVmb6qDH0A8R3SrVFgAa4hhJMcuK8QiQ4EAG3p4MVCYeAnGQi6XRlYxdmf44WI-QjBx39V1d8ZJsiF3QyCPjS3824by-n~17jEPk1pvBbLMG7IMh5LiSt01WGGsTRWaDHJmbzVdw8woDmEZ4pz1EqxF5T4pMpU3C5kEgyd6JIQeGUjg5WI51AQsAjR0MKsyoPQkXAy1~FyRT43FOHNz9ORXMMFC-9gVJSAXcKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":14025,"name":"Supersymmetry","url":"https://www.academia.edu/Documents/in/Supersymmetry"},{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum"},{"id":915258,"name":"Supersymmetric Gauge Theory","url":"https://www.academia.edu/Documents/in/Supersymmetric_Gauge_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498094"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498094/No_ghost_theorem_for_the_pomeron_sector_of_Neuveu_Schwarz_dual_resonance_model"><img alt="Research paper thumbnail of No-ghost theorem for the pomeron sector of Neuveu-Schwarz dual resonance model" class="work-thumbnail" src="https://attachments.academia-assets.com/44830249/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498094/No_ghost_theorem_for_the_pomeron_sector_of_Neuveu_Schwarz_dual_resonance_model">No-ghost theorem for the pomeron sector of Neuveu-Schwarz dual resonance model</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="136ec79a712fe6a3cc6c3acf2d7c9205" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830249,&quot;asset_id&quot;:24498094,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830249/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498094"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498094"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498094; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498094]").text(description); $(".js-view-count[data-work-id=24498094]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498094; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498094']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498094, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "136ec79a712fe6a3cc6c3acf2d7c9205" } } $('.js-work-strip[data-work-id=24498094]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498094,"title":"No-ghost theorem for the pomeron sector of Neuveu-Schwarz dual resonance model","translated_title":"","metadata":{"grobid_abstract":"With certain forms for the pomeron propagator in the non-planar single loops for the N-S model with positive Gparity, no-ghost theorem for the pomeron sector is proved by the method of Olive and Scherk.","publication_date":{"day":null,"month":null,"year":1975,"errors":{}},"grobid_abstract_attachment_id":44830249},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498094/No_ghost_theorem_for_the_pomeron_sector_of_Neuveu_Schwarz_dual_resonance_model","translated_internal_url":"","created_at":"2016-04-17T13:54:07.194-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830249,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830249/thumbnails/1.jpg","file_name":"0370-2693_2875_2990633-4.pdf20160417-19407-1m30tzr","download_url":"https://www.academia.edu/attachments/44830249/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"No_ghost_theorem_for_the_pomeron_sector.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830249/0370-2693_2875_2990633-4-libre.pdf20160417-19407-1m30tzr?1460926672=\u0026response-content-disposition=attachment%3B+filename%3DNo_ghost_theorem_for_the_pomeron_sector.pdf\u0026Expires=1732435402\u0026Signature=VdzorvHKrSCA2JqCA8753EEIu7j1FwSMVljzWxXbahdxWYKz6hTPR~DJkv6XGF8Hk0a5OfkcveZDT83S8fDmq3zRdndyCAqERVDpxJeRCs7UlJera4muw6nudE5mO1Bbm4dVeJQD5-in4HUdyEbCfKAUncCy24cAkSfqbAFAtymoAvXN1AIGjTmlc7CWPM7o6~OQuZ-11bFbJ57RCPAO3IylULGWHVbnaEj~RYJJP3bPb93Xwn49ItP7aGlHXPlHMixRAf6bcrmZxbUwGmT5lPQaL5yIpOyYIfRhKcwysANoVHjl1EJHSGlpVeZeKP-3O6yP8hRjb2gN~PbMwln2LQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"No_ghost_theorem_for_the_pomeron_sector_of_Neuveu_Schwarz_dual_resonance_model","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830249,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830249/thumbnails/1.jpg","file_name":"0370-2693_2875_2990633-4.pdf20160417-19407-1m30tzr","download_url":"https://www.academia.edu/attachments/44830249/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"No_ghost_theorem_for_the_pomeron_sector.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830249/0370-2693_2875_2990633-4-libre.pdf20160417-19407-1m30tzr?1460926672=\u0026response-content-disposition=attachment%3B+filename%3DNo_ghost_theorem_for_the_pomeron_sector.pdf\u0026Expires=1732435402\u0026Signature=VdzorvHKrSCA2JqCA8753EEIu7j1FwSMVljzWxXbahdxWYKz6hTPR~DJkv6XGF8Hk0a5OfkcveZDT83S8fDmq3zRdndyCAqERVDpxJeRCs7UlJera4muw6nudE5mO1Bbm4dVeJQD5-in4HUdyEbCfKAUncCy24cAkSfqbAFAtymoAvXN1AIGjTmlc7CWPM7o6~OQuZ-11bFbJ57RCPAO3IylULGWHVbnaEj~RYJJP3bPb93Xwn49ItP7aGlHXPlHMixRAf6bcrmZxbUwGmT5lPQaL5yIpOyYIfRhKcwysANoVHjl1EJHSGlpVeZeKP-3O6yP8hRjb2gN~PbMwln2LQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498093"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/24498093/Torsional_instanton_effects_in_quantum_gravity"><img alt="Research paper thumbnail of Torsional instanton effects in quantum gravity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/24498093/Torsional_instanton_effects_in_quantum_gravity">Torsional instanton effects in quantum gravity</a></div><div class="wp-workCard_item"><span>Physical Review D</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498093"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498093"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498093; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498093]").text(description); $(".js-view-count[data-work-id=24498093]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498093; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498093']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498093, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498093]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498093,"title":"Torsional instanton effects in quantum gravity","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Physical Review D"},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498093/Torsional_instanton_effects_in_quantum_gravity","translated_internal_url":"","created_at":"2016-04-17T13:54:07.036-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Torsional_instanton_effects_in_quantum_gravity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498092"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498092/Canonical_supergravity_with_Barbero_Immirzi_parameter"><img alt="Research paper thumbnail of Canonical supergravity with Barbero-Immirzi parameter" class="work-thumbnail" src="https://attachments.academia-assets.com/44830247/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498092/Canonical_supergravity_with_Barbero_Immirzi_parameter">Canonical supergravity with Barbero-Immirzi parameter</a></div><div class="wp-workCard_item"><span>Physical Review D</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="21a3d3b0c40b532a327bf20cdd8177ca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830247,&quot;asset_id&quot;:24498092,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830247/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498092"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498092"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498092; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498092]").text(description); $(".js-view-count[data-work-id=24498092]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498092; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498092']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498092, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "21a3d3b0c40b532a327bf20cdd8177ca" } } $('.js-work-strip[data-work-id=24498092]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498092,"title":"Canonical supergravity with Barbero-Immirzi parameter","translated_title":"","metadata":{"grobid_abstract":"A canonical formulation of the N = 1 supergravity theory containing the topological Nieh-Yan term in its Lagrangian density is developed. The constraints are analysed without choosing any gauge. In the time gauge, the theory is shown to be described in terms of real SU (2) variables.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Physical Review D","grobid_abstract_attachment_id":44830247},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498092/Canonical_supergravity_with_Barbero_Immirzi_parameter","translated_internal_url":"","created_at":"2016-04-17T13:54:06.868-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830247,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830247/thumbnails/1.jpg","file_name":"0909.4850.pdf","download_url":"https://www.academia.edu/attachments/44830247/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Canonical_supergravity_with_Barbero_Immi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830247/0909.4850-libre.pdf?1460926671=\u0026response-content-disposition=attachment%3B+filename%3DCanonical_supergravity_with_Barbero_Immi.pdf\u0026Expires=1732435402\u0026Signature=LNOxUuaU2Zp7allZxC4VgIstcjt33xjfMBG9UGfOet6ik9CDJKxwoftlIcV6GS2ZUbzrCffKCOO1Sl5niN3TRRX3WQyTHWHtrSdtTWxYX3mMnJ07lxNQs7t2qbe6hQX4nMot5zaKLgQ2Ku5UYRAMZYQefsZXLuZoafMJ2zXdnlClozlcx6lpuvPvxpAx2QvHgIBCIYtRruOfR5QMSFjUMgqozi9mFKr2jVXTw2hvo-KrYdqNEPg62pX9plB241M-6356tUyn3qNrR90JcT7rA5eMFmhuU0vkmK~VerfFTQZ54UxXMJn~ere3KHWW6MOFJNBxUco5A2g0ZauoF4l6Ag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Canonical_supergravity_with_Barbero_Immirzi_parameter","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830247,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830247/thumbnails/1.jpg","file_name":"0909.4850.pdf","download_url":"https://www.academia.edu/attachments/44830247/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Canonical_supergravity_with_Barbero_Immi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830247/0909.4850-libre.pdf?1460926671=\u0026response-content-disposition=attachment%3B+filename%3DCanonical_supergravity_with_Barbero_Immi.pdf\u0026Expires=1732435402\u0026Signature=LNOxUuaU2Zp7allZxC4VgIstcjt33xjfMBG9UGfOet6ik9CDJKxwoftlIcV6GS2ZUbzrCffKCOO1Sl5niN3TRRX3WQyTHWHtrSdtTWxYX3mMnJ07lxNQs7t2qbe6hQX4nMot5zaKLgQ2Ku5UYRAMZYQefsZXLuZoafMJ2zXdnlClozlcx6lpuvPvxpAx2QvHgIBCIYtRruOfR5QMSFjUMgqozi9mFKr2jVXTw2hvo-KrYdqNEPg62pX9plB241M-6356tUyn3qNrR90JcT7rA5eMFmhuU0vkmK~VerfFTQZ54UxXMJn~ere3KHWW6MOFJNBxUco5A2g0ZauoF4l6Ag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":333,"name":"Field Theory","url":"https://www.academia.edu/Documents/in/Field_Theory"},{"id":1247,"name":"Quantum Gravity","url":"https://www.academia.edu/Documents/in/Quantum_Gravity"},{"id":7936,"name":"Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Quantum_Mechanics"},{"id":28545,"name":"Loop Quantum Gravity","url":"https://www.academia.edu/Documents/in/Loop_Quantum_Gravity"},{"id":77311,"name":"Unified Field Theory","url":"https://www.academia.edu/Documents/in/Unified_Field_Theory"},{"id":603952,"name":"Lie Group","url":"https://www.academia.edu/Documents/in/Lie_Group"},{"id":956755,"name":"Point Group Symmetry","url":"https://www.academia.edu/Documents/in/Point_Group_Symmetry"},{"id":1228946,"name":"Physical Properties","url":"https://www.academia.edu/Documents/in/Physical_Properties"},{"id":1760204,"name":"Elementary Particles","url":"https://www.academia.edu/Documents/in/Elementary_Particles"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498091"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498091/A_gauge_mapping_theorem_for_the_spinning_string_in_an_orthonormal_gauge"><img alt="Research paper thumbnail of A gauge mapping theorem for the spinning string in an orthonormal gauge" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498091/A_gauge_mapping_theorem_for_the_spinning_string_in_an_orthonormal_gauge">A gauge mapping theorem for the spinning string in an orthonormal gauge</a></div><div class="wp-workCard_item"><span>Nuovo Cimento Della Societa Italiana Di Fisica A-nuclei Particles and Fields - NUOVO CIMENTO A-NUCL PART F</span><span>, 1977</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498091"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498091"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498091; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498091]").text(description); $(".js-view-count[data-work-id=24498091]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498091; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498091']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498091, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498091]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498091,"title":"A gauge mapping theorem for the spinning string in an orthonormal gauge","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1977,"errors":{}},"publication_name":"Nuovo Cimento Della Societa Italiana Di Fisica A-nuclei Particles and Fields - NUOVO CIMENTO A-NUCL PART F"},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498091/A_gauge_mapping_theorem_for_the_spinning_string_in_an_orthonormal_gauge","translated_internal_url":"","created_at":"2016-04-17T13:54:06.545-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_gauge_mapping_theorem_for_the_spinning_string_in_an_orthonormal_gauge","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[],"urls":[{"id":7024524,"url":"http://adsabs.harvard.edu/abs/1977NCimA..38..167K"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498090"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498090/Entropy_of_Quantum_Black_Holes"><img alt="Research paper thumbnail of Entropy of Quantum Black Holes" class="work-thumbnail" src="https://attachments.academia-assets.com/44830242/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498090/Entropy_of_Quantum_Black_Holes">Entropy of Quantum Black Holes</a></div><div class="wp-workCard_item"><span>Symmetry, Integrability and Geometry: Methods and Applications</span><span>, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="baf8cf0ddc2d17183d610640ca800d79" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830242,&quot;asset_id&quot;:24498090,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830242/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498090"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498090"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498090; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498090]").text(description); $(".js-view-count[data-work-id=24498090]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498090; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498090']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498090, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "baf8cf0ddc2d17183d610640ca800d79" } } $('.js-work-strip[data-work-id=24498090]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498090,"title":"Entropy of Quantum Black Holes","translated_title":"","metadata":{"grobid_abstract":"In the Loop Quantum Gravity, black holes (or even more general Isolated Horizons) are described by a SU (2) Chern-Simons theory. There is an equivalent formulation of the horizon degrees of freedom in terms of a U (1) gauge theory which is just a gauged fixed version of the SU (2) theory. These developments will be surveyed here. Quantum theory based on either formulation can be used to count the horizon micro-states associated with quantum geometry fluctuations and from this the micro-canonical entropy can be obtained. We shall review the computation in SU (2) formulation. Leading term in the entropy is proportional to horizon area with a coefficient depending on the Barbero-Immirzi parameter which is fixed by matching this result with the Bekenstein-Hawking formula. Remarkably there are corrections beyond the area term, the leading one is logarithm of the horizon area with a definite coefficient −3/2, a result which is more than a decade old now. How the same results are obtained in the equivalent U (1) framework will also be indicated. Over years, this entropy formula has also been arrived at from a variety of other perspectives. In particular, entropy of BTZ black holes in three dimensional gravity exhibits the same logarithmic correction. Even in the String Theory, many black hole models are known to possess such properties. This suggests a possible universal nature of this logarithmic correction.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Symmetry, Integrability and Geometry: Methods and Applications","grobid_abstract_attachment_id":44830242},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498090/Entropy_of_Quantum_Black_Holes","translated_internal_url":"","created_at":"2016-04-17T13:54:06.307-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830242,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830242/thumbnails/1.jpg","file_name":"1201.6102.pdf","download_url":"https://www.academia.edu/attachments/44830242/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Entropy_of_Quantum_Black_Holes.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830242/1201.6102-libre.pdf?1460926573=\u0026response-content-disposition=attachment%3B+filename%3DEntropy_of_Quantum_Black_Holes.pdf\u0026Expires=1732435402\u0026Signature=a-X1k4d1ZeJ665uYzbaNxBZqc6yTp2udixoVfieBFxDjhkS4zFW3Q7ThTEbWHIOPF05HhyfKJVUnbv2Wq6I80zfHimd8Ixm09C9nOXjMWK0odeBriELYFqfcffyrAicbtvscRvGTSx8uCZXFYxFsoiD0Hgb1eIgUtI7qHnhS-ueA~VwHJbwD5Yol3IX99jKzL~WN8Ue702nLdgl~~HEDnmj26emYEWcqlMuVeECE87neYh-HOWN5ZSBRKpltQ8ieOtmvFQqJ-pF-2s0C08TCXpvVVQ2ex4LNtnGCTrLrHCwSlzzCBIpXYyHDG101Sv7R8j3TIu4xSCneTScC4Whx1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Entropy_of_Quantum_Black_Holes","translated_slug":"","page_count":30,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830242,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830242/thumbnails/1.jpg","file_name":"1201.6102.pdf","download_url":"https://www.academia.edu/attachments/44830242/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Entropy_of_Quantum_Black_Holes.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830242/1201.6102-libre.pdf?1460926573=\u0026response-content-disposition=attachment%3B+filename%3DEntropy_of_Quantum_Black_Holes.pdf\u0026Expires=1732435402\u0026Signature=a-X1k4d1ZeJ665uYzbaNxBZqc6yTp2udixoVfieBFxDjhkS4zFW3Q7ThTEbWHIOPF05HhyfKJVUnbv2Wq6I80zfHimd8Ixm09C9nOXjMWK0odeBriELYFqfcffyrAicbtvscRvGTSx8uCZXFYxFsoiD0Hgb1eIgUtI7qHnhS-ueA~VwHJbwD5Yol3IX99jKzL~WN8Ue702nLdgl~~HEDnmj26emYEWcqlMuVeECE87neYh-HOWN5ZSBRKpltQ8ieOtmvFQqJ-pF-2s0C08TCXpvVVQ2ex4LNtnGCTrLrHCwSlzzCBIpXYyHDG101Sv7R8j3TIu4xSCneTScC4Whx1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":467035,"name":"Black hole entropy","url":"https://www.academia.edu/Documents/in/Black_hole_entropy"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498089"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498089/Technicolor"><img alt="Research paper thumbnail of Technicolor" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498089/Technicolor">Technicolor</a></div><div class="wp-workCard_item"><span>Reviews of Modern Physics</span><span>, 1983</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The need for reexamination of the standard model of strong, weak, and electromagnetic interaction...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The need for reexamination of the standard model of strong, weak, and electromagnetic interactions is discussed, especially with regard to &amp;amp;#39;t Hooft&amp;amp;#39;s criterion of naturalness. It has been argued that theories with fundamental scalar fields tend to be unnatural at relatively low energies. There are two solutions to this problem: (i) a global supersymmetry, which ensures the absence of all</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498089"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498089"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498089; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498089]").text(description); $(".js-view-count[data-work-id=24498089]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498089; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498089']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498089, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498089]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498089,"title":"Technicolor","translated_title":"","metadata":{"abstract":"The need for reexamination of the standard model of strong, weak, and electromagnetic interactions is discussed, especially with regard to \u0026amp;#39;t Hooft\u0026amp;#39;s criterion of naturalness. It has been argued that theories with fundamental scalar fields tend to be unnatural at relatively low energies. There are two solutions to this problem: (i) a global supersymmetry, which ensures the absence of all","publication_date":{"day":null,"month":null,"year":1983,"errors":{}},"publication_name":"Reviews of Modern Physics"},"translated_abstract":"The need for reexamination of the standard model of strong, weak, and electromagnetic interactions is discussed, especially with regard to \u0026amp;#39;t Hooft\u0026amp;#39;s criterion of naturalness. It has been argued that theories with fundamental scalar fields tend to be unnatural at relatively low energies. There are two solutions to this problem: (i) a global supersymmetry, which ensures the absence of all","internal_url":"https://www.academia.edu/24498089/Technicolor","translated_internal_url":"","created_at":"2016-04-17T13:54:06.117-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Technicolor","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="5047913" id="papers"><div class="js-work-strip profile--work_container" data-work-id="24498112"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498112/Supersymmetric_solution_of_gauge_hierarchy_problem"><img alt="Research paper thumbnail of Supersymmetric solution of gauge hierarchy problem" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498112/Supersymmetric_solution_of_gauge_hierarchy_problem">Supersymmetric solution of gauge hierarchy problem</a></div><div class="wp-workCard_item"><span>Pramana</span><span>, 1982</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Some recent developments with respect to the resolution of the gauge hierarchy problem in grand u...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Some recent developments with respect to the resolution of the gauge hierarchy problem in grand unified theories by supersymmetry are presented. A general argument is developed to show how global supersymmetry maintains the stability of the different mass-scales under perturbative effects.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498112"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498112"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498112; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498112]").text(description); $(".js-view-count[data-work-id=24498112]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498112; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498112']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498112, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498112]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498112,"title":"Supersymmetric solution of gauge hierarchy problem","translated_title":"","metadata":{"abstract":"Some recent developments with respect to the resolution of the gauge hierarchy problem in grand unified theories by supersymmetry are presented. A general argument is developed to show how global supersymmetry maintains the stability of the different mass-scales under perturbative effects.","publication_date":{"day":null,"month":null,"year":1982,"errors":{}},"publication_name":"Pramana"},"translated_abstract":"Some recent developments with respect to the resolution of the gauge hierarchy problem in grand unified theories by supersymmetry are presented. A general argument is developed to show how global supersymmetry maintains the stability of the different mass-scales under perturbative effects.","internal_url":"https://www.academia.edu/24498112/Supersymmetric_solution_of_gauge_hierarchy_problem","translated_internal_url":"","created_at":"2016-04-17T13:54:25.145-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Supersymmetric_solution_of_gauge_hierarchy_problem","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":738257,"name":"Pramana","url":"https://www.academia.edu/Documents/in/Pramana"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498108"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/24498108/Degenerate_spacetimes_in_first_order_gravity"><img alt="Research paper thumbnail of Degenerate spacetimes in first order gravity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/24498108/Degenerate_spacetimes_in_first_order_gravity">Degenerate spacetimes in first order gravity</a></div><div class="wp-workCard_item"><span>Physical Review D</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498108"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498108"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498108; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498108]").text(description); $(".js-view-count[data-work-id=24498108]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498108; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498108']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498108, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498108]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498108,"title":"Degenerate spacetimes in first order gravity","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Physical Review D"},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498108/Degenerate_spacetimes_in_first_order_gravity","translated_internal_url":"","created_at":"2016-04-17T13:54:10.650-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Degenerate_spacetimes_in_first_order_gravity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498107"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498107/Instanton_anti_instanton_induced_vacuum_energy_in_supersymmetric_QCD"><img alt="Research paper thumbnail of Instanton-anti-instanton induced vacuum energy in supersymmetric QCD" class="work-thumbnail" src="https://attachments.academia-assets.com/44830248/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498107/Instanton_anti_instanton_induced_vacuum_energy_in_supersymmetric_QCD">Instanton-anti-instanton induced vacuum energy in supersymmetric QCD</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b9c6cb6ef9c5be7927c53fc5b8794b5e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830248,&quot;asset_id&quot;:24498107,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830248/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498107"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498107"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498107; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498107]").text(description); $(".js-view-count[data-work-id=24498107]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498107; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498107']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498107, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b9c6cb6ef9c5be7927c53fc5b8794b5e" } } $('.js-work-strip[data-work-id=24498107]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498107,"title":"Instanton-anti-instanton induced vacuum energy in supersymmetric QCD","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1984,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498107/Instanton_anti_instanton_induced_vacuum_energy_in_supersymmetric_QCD","translated_internal_url":"","created_at":"2016-04-17T13:54:10.370-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830248,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830248/thumbnails/1.jpg","file_name":"Instanton-anti-instanton_induced_vacuum_20160417-26366-zo4i6n.pdf","download_url":"https://www.academia.edu/attachments/44830248/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Instanton_anti_instanton_induced_vacuum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830248/Instanton-anti-instanton_induced_vacuum_20160417-26366-zo4i6n-libre.pdf?1460926671=\u0026response-content-disposition=attachment%3B+filename%3DInstanton_anti_instanton_induced_vacuum.pdf\u0026Expires=1732435402\u0026Signature=ewxYfV4ac~mpslfDpk-NUoDpjac0PNBWiQcWfGHAKNqUEwu6IS61VrpT8FCSP4s92d1GfuE2NH49bdlbOUyA8RLt8Xp44~b69jAhhCEy513PUBrStBtwgE1QmK9HIQ19uWK1KOagL1yNkhwGPSVFzStOf0YhFggaVFMWHumAU6OTG03u~lSk1E-b8Ou7XnpIuAPR~AcG9i1zrTkA3so~tkhrH5zsxMwLSBhXnJobj6omxjBpZIA4jp6N6FtaRNCJkGIi2ihI7OVlKG0DJf5km-u~LKnu6AlFMPgTykLcoeTwMKAgjp4FmCbOyCVfRWPaCO0dHmGvqyQiToinPjAJGw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Instanton_anti_instanton_induced_vacuum_energy_in_supersymmetric_QCD","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830248,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830248/thumbnails/1.jpg","file_name":"Instanton-anti-instanton_induced_vacuum_20160417-26366-zo4i6n.pdf","download_url":"https://www.academia.edu/attachments/44830248/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Instanton_anti_instanton_induced_vacuum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830248/Instanton-anti-instanton_induced_vacuum_20160417-26366-zo4i6n-libre.pdf?1460926671=\u0026response-content-disposition=attachment%3B+filename%3DInstanton_anti_instanton_induced_vacuum.pdf\u0026Expires=1732435402\u0026Signature=ewxYfV4ac~mpslfDpk-NUoDpjac0PNBWiQcWfGHAKNqUEwu6IS61VrpT8FCSP4s92d1GfuE2NH49bdlbOUyA8RLt8Xp44~b69jAhhCEy513PUBrStBtwgE1QmK9HIQ19uWK1KOagL1yNkhwGPSVFzStOf0YhFggaVFMWHumAU6OTG03u~lSk1E-b8Ou7XnpIuAPR~AcG9i1zrTkA3so~tkhrH5zsxMwLSBhXnJobj6omxjBpZIA4jp6N6FtaRNCJkGIi2ihI7OVlKG0DJf5km-u~LKnu6AlFMPgTykLcoeTwMKAgjp4FmCbOyCVfRWPaCO0dHmGvqyQiToinPjAJGw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2578,"name":"Particle Physics","url":"https://www.academia.edu/Documents/in/Particle_Physics"},{"id":5412,"name":"Energy","url":"https://www.academia.edu/Documents/in/Energy"},{"id":14025,"name":"Supersymmetry","url":"https://www.academia.edu/Documents/in/Supersymmetry"},{"id":160877,"name":"Vacuum","url":"https://www.academia.edu/Documents/in/Vacuum"},{"id":718538,"name":"Instanton","url":"https://www.academia.edu/Documents/in/Instanton"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498106"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498106/Topological_parameters_in_gravity"><img alt="Research paper thumbnail of Topological parameters in gravity" class="work-thumbnail" src="https://attachments.academia-assets.com/44830214/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498106/Topological_parameters_in_gravity">Topological parameters in gravity</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present the Hamiltonian analysis of the theory of gravity based on a Lagrangian density contai...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present the Hamiltonian analysis of the theory of gravity based on a Lagrangian density containing Hilbert-Palatini term along with three topological densities, Nieh-Yan, Pontryagin and Euler. The addition of these topological terms modifies the symplectic structure non-trivially. The resulting canonical theory develops a dependence on three parameters which are coefficients of these terms. In the time gauge, we obtain</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a4b7946bc4394bff787001b55afc2293" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830214,&quot;asset_id&quot;:24498106,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830214/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498106"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498106"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498106; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498106]").text(description); $(".js-view-count[data-work-id=24498106]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498106; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498106']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498106, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a4b7946bc4394bff787001b55afc2293" } } $('.js-work-strip[data-work-id=24498106]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498106,"title":"Topological parameters in gravity","translated_title":"","metadata":{"abstract":"We present the Hamiltonian analysis of the theory of gravity based on a Lagrangian density containing Hilbert-Palatini term along with three topological densities, Nieh-Yan, Pontryagin and Euler. The addition of these topological terms modifies the symplectic structure non-trivially. The resulting canonical theory develops a dependence on three parameters which are coefficients of these terms. In the time gauge, we obtain","publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":"We present the Hamiltonian analysis of the theory of gravity based on a Lagrangian density containing Hilbert-Palatini term along with three topological densities, Nieh-Yan, Pontryagin and Euler. The addition of these topological terms modifies the symplectic structure non-trivially. The resulting canonical theory develops a dependence on three parameters which are coefficients of these terms. In the time gauge, we obtain","internal_url":"https://www.academia.edu/24498106/Topological_parameters_in_gravity","translated_internal_url":"","created_at":"2016-04-17T13:54:10.035-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830214,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830214/thumbnails/1.jpg","file_name":"1106.3027.pdf","download_url":"https://www.academia.edu/attachments/44830214/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Topological_parameters_in_gravity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830214/1106.3027-libre.pdf?1460926517=\u0026response-content-disposition=attachment%3B+filename%3DTopological_parameters_in_gravity.pdf\u0026Expires=1732435402\u0026Signature=QDHF9nmHNRS9ntrtYTdpmDixGWROOdSixnU7Y6Cgz4GVj9jwGuDpEPViRVJxNMsbkm6MbMIZDyPE~l0J4tgGniWx7EvZYEeR-cqeu3rpXoWsdnMGGXgjPKEGkgSDDkY0NsEzNR~lt1gfb9yoaHfM5LytzztTf3oV9DR3huC7IyuOZhHAekK6n26gbNPqWbaZ6Vdp4kpjP8eT7MQGBxTPdUWUA0n0P5iKnuEamu1y6GcX~SZvu~uSuJoCICJIesFWkbNTQU8vkf6cHUBLvIWN3nxY167QBTGbhlWhNjCUhtvnhbxD-PyUAEEAmZkjU4Wzuoo6IFJskIEzse69MGWPjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Topological_parameters_in_gravity","translated_slug":"","page_count":30,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830214,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830214/thumbnails/1.jpg","file_name":"1106.3027.pdf","download_url":"https://www.academia.edu/attachments/44830214/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Topological_parameters_in_gravity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830214/1106.3027-libre.pdf?1460926517=\u0026response-content-disposition=attachment%3B+filename%3DTopological_parameters_in_gravity.pdf\u0026Expires=1732435402\u0026Signature=QDHF9nmHNRS9ntrtYTdpmDixGWROOdSixnU7Y6Cgz4GVj9jwGuDpEPViRVJxNMsbkm6MbMIZDyPE~l0J4tgGniWx7EvZYEeR-cqeu3rpXoWsdnMGGXgjPKEGkgSDDkY0NsEzNR~lt1gfb9yoaHfM5LytzztTf3oV9DR3huC7IyuOZhHAekK6n26gbNPqWbaZ6Vdp4kpjP8eT7MQGBxTPdUWUA0n0P5iKnuEamu1y6GcX~SZvu~uSuJoCICJIesFWkbNTQU8vkf6cHUBLvIWN3nxY167QBTGbhlWhNjCUhtvnhbxD-PyUAEEAmZkjU4Wzuoo6IFJskIEzse69MGWPjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":6813,"name":"Quantum Cosmology","url":"https://www.academia.edu/Documents/in/Quantum_Cosmology"},{"id":14024,"name":"High Energy Physics","url":"https://www.academia.edu/Documents/in/High_Energy_Physics"},{"id":108262,"name":"Gauge theory","url":"https://www.academia.edu/Documents/in/Gauge_theory"},{"id":1636662,"name":"Coupling Constant","url":"https://www.academia.edu/Documents/in/Coupling_Constant"}],"urls":[{"id":7024530,"url":"http://adsabs.harvard.edu/abs/2011arXiv1106.3027K"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498105"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498105/Naturalness_and_Electroweak_Symmetry_Breaking"><img alt="Research paper thumbnail of Naturalness and Electroweak Symmetry Breaking" class="work-thumbnail" src="https://attachments.academia-assets.com/44830213/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498105/Naturalness_and_Electroweak_Symmetry_Breaking">Naturalness and Electroweak Symmetry Breaking</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Principle of Naturalness of small parameters of a theory is reviewed. While quantum field the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Principle of Naturalness of small parameters of a theory is reviewed. While quantum field theories constructed from gauge fields and fermions only are natural, those containing elementary scalar fields are not. In particular the Higgs boson mass in the Standard Model of electro-weak forces is not stable against radiative corrections. Two old canonical solutions of this problem are: (i)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7bead24f5d8b7cd9fa637c2f8af45068" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830213,&quot;asset_id&quot;:24498105,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830213/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498105"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498105"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498105; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498105]").text(description); $(".js-view-count[data-work-id=24498105]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498105; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498105']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498105, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7bead24f5d8b7cd9fa637c2f8af45068" } } $('.js-work-strip[data-work-id=24498105]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498105,"title":"Naturalness and Electroweak Symmetry Breaking","translated_title":"","metadata":{"abstract":"The Principle of Naturalness of small parameters of a theory is reviewed. While quantum field theories constructed from gauge fields and fermions only are natural, those containing elementary scalar fields are not. In particular the Higgs boson mass in the Standard Model of electro-weak forces is not stable against radiative corrections. Two old canonical solutions of this problem are: (i)","publication_date":{"day":null,"month":null,"year":2008,"errors":{}}},"translated_abstract":"The Principle of Naturalness of small parameters of a theory is reviewed. While quantum field theories constructed from gauge fields and fermions only are natural, those containing elementary scalar fields are not. In particular the Higgs boson mass in the Standard Model of electro-weak forces is not stable against radiative corrections. Two old canonical solutions of this problem are: (i)","internal_url":"https://www.academia.edu/24498105/Naturalness_and_Electroweak_Symmetry_Breaking","translated_internal_url":"","created_at":"2016-04-17T13:54:09.637-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830213,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830213/thumbnails/1.jpg","file_name":"0803.0381.pdf","download_url":"https://www.academia.edu/attachments/44830213/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Naturalness_and_Electroweak_Symmetry_Bre.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830213/0803.0381-libre.pdf?1460926518=\u0026response-content-disposition=attachment%3B+filename%3DNaturalness_and_Electroweak_Symmetry_Bre.pdf\u0026Expires=1732435402\u0026Signature=JFruqGfH~sdi~RtgkGg3LaBVEZV-n7NEotXBAD-rIbyk5j4d4mJPqoKpaSAM7Cq5xip28fxAYCSFgvcMNDUUYt1behsXL0L3W2FGUJYqAAGtlEoAf1G7wWudZIO~RZDoQgsZ92JSFcmwPdVfYD81rwq3ZgHvbWrjDVf7E5eq9NdDBccghfZd9exfeZxE1bWzmS9uXKl0bg-vaCLdWuJAokZKGMPt90rrK09qEABO2sWXgDMfBU8vUpYon4zzkqFvi7tM3QeBP~kk92du7Sol8ywIAVaqiFSJCDCRxJdE2clrqldcdWfpd2nFYVQgKOgTVKbKVQVd7LQ8~PSY-RuJXQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Naturalness_and_Electroweak_Symmetry_Breaking","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830213,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830213/thumbnails/1.jpg","file_name":"0803.0381.pdf","download_url":"https://www.academia.edu/attachments/44830213/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Naturalness_and_Electroweak_Symmetry_Bre.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830213/0803.0381-libre.pdf?1460926518=\u0026response-content-disposition=attachment%3B+filename%3DNaturalness_and_Electroweak_Symmetry_Bre.pdf\u0026Expires=1732435402\u0026Signature=JFruqGfH~sdi~RtgkGg3LaBVEZV-n7NEotXBAD-rIbyk5j4d4mJPqoKpaSAM7Cq5xip28fxAYCSFgvcMNDUUYt1behsXL0L3W2FGUJYqAAGtlEoAf1G7wWudZIO~RZDoQgsZ92JSFcmwPdVfYD81rwq3ZgHvbWrjDVf7E5eq9NdDBccghfZd9exfeZxE1bWzmS9uXKl0bg-vaCLdWuJAokZKGMPt90rrK09qEABO2sWXgDMfBU8vUpYon4zzkqFvi7tM3QeBP~kk92du7Sol8ywIAVaqiFSJCDCRxJdE2clrqldcdWfpd2nFYVQgKOgTVKbKVQVd7LQ8~PSY-RuJXQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":10092,"name":"Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Quantum_Field_Theory"},{"id":10193,"name":"Electroweak Symmetry Breaking","url":"https://www.academia.edu/Documents/in/Electroweak_Symmetry_Breaking"},{"id":130616,"name":"Standard Model","url":"https://www.academia.edu/Documents/in/Standard_Model"},{"id":203396,"name":"Higgs boson","url":"https://www.academia.edu/Documents/in/Higgs_boson"},{"id":339310,"name":"Symmetry Breaking","url":"https://www.academia.edu/Documents/in/Symmetry_Breaking"},{"id":403158,"name":"Gauge Field","url":"https://www.academia.edu/Documents/in/Gauge_Field"}],"urls":[{"id":7024529,"url":"http://arxiv.org/abs/0803.0381"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498104"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498104/Chern_Simons_Theory_Knot_Invariants_Vertex_Models_and_Three_manifold_Invariants"><img alt="Research paper thumbnail of Chern-Simons Theory, Knot Invariants, Vertex Models and Three-manifold Invariants" class="work-thumbnail" src="https://attachments.academia-assets.com/44830217/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498104/Chern_Simons_Theory_Knot_Invariants_Vertex_Models_and_Three_manifold_Invariants">Chern-Simons Theory, Knot Invariants, Vertex Models and Three-manifold Invariants</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Chern-Simons theories, which are topological quantum field theories, provide a field theoretic fr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Chern-Simons theories, which are topological quantum field theories, provide a field theoretic framework for the study of knots and links in three dimensions. These are rare examples of quantum field theories which can be exactly and explicitly solved. Expectation values of Wilson link operators yield a class of link invariants, the simplest of them is the famous Jones polynomial. Other</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5916d995d939f6010c0cb997ec001502" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830217,&quot;asset_id&quot;:24498104,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830217/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498104"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498104"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498104; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498104]").text(description); $(".js-view-count[data-work-id=24498104]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498104; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498104']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498104, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5916d995d939f6010c0cb997ec001502" } } $('.js-work-strip[data-work-id=24498104]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498104,"title":"Chern-Simons Theory, Knot Invariants, Vertex Models and Three-manifold Invariants","translated_title":"","metadata":{"abstract":"Chern-Simons theories, which are topological quantum field theories, provide a field theoretic framework for the study of knots and links in three dimensions. These are rare examples of quantum field theories which can be exactly and explicitly solved. Expectation values of Wilson link operators yield a class of link invariants, the simplest of them is the famous Jones polynomial. Other","publication_date":{"day":null,"month":null,"year":1998,"errors":{}}},"translated_abstract":"Chern-Simons theories, which are topological quantum field theories, provide a field theoretic framework for the study of knots and links in three dimensions. These are rare examples of quantum field theories which can be exactly and explicitly solved. Expectation values of Wilson link operators yield a class of link invariants, the simplest of them is the famous Jones polynomial. Other","internal_url":"https://www.academia.edu/24498104/Chern_Simons_Theory_Knot_Invariants_Vertex_Models_and_Three_manifold_Invariants","translated_internal_url":"","created_at":"2016-04-17T13:54:09.268-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830217,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830217/thumbnails/1.jpg","file_name":"9804122.pdf","download_url":"https://www.academia.edu/attachments/44830217/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chern_Simons_Theory_Knot_Invariants_Vert.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830217/9804122-libre.pdf?1460926517=\u0026response-content-disposition=attachment%3B+filename%3DChern_Simons_Theory_Knot_Invariants_Vert.pdf\u0026Expires=1732435402\u0026Signature=RKjYCuSTRxh9XlJC6HMxxAoLI5mYCFJQXVGXUxz9v1hJeMgIaRNV-xFB3AyprPVjpYUaW1wZA93~sJ7Ao-G0OG3qlZmX~kra7AqJpHXAD~vDFcWcdE61Z0VxrZf3UN6nvw0-zgCD-x--jlnVpKT2gZMmAM227ZWwrVj93TofsNKnR~0dTMuwEg0Peqp~h1GyIT5D-IRumyvUWK4gTNIfNT9-8zJhP5w7gn7RxKs-lKN95CDWW8dYtIXdjdA515Tld0EDvjiTtQR6wSsGTwP~edlbb7wU1CnYcEGGV6Cap~fQLGWMZT8t5XyZj~1lXG4kEBSJwKA0pwEegpvWdRhFjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Chern_Simons_Theory_Knot_Invariants_Vertex_Models_and_Three_manifold_Invariants","translated_slug":"","page_count":27,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830217,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830217/thumbnails/1.jpg","file_name":"9804122.pdf","download_url":"https://www.academia.edu/attachments/44830217/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chern_Simons_Theory_Knot_Invariants_Vert.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830217/9804122-libre.pdf?1460926517=\u0026response-content-disposition=attachment%3B+filename%3DChern_Simons_Theory_Knot_Invariants_Vert.pdf\u0026Expires=1732435402\u0026Signature=RKjYCuSTRxh9XlJC6HMxxAoLI5mYCFJQXVGXUxz9v1hJeMgIaRNV-xFB3AyprPVjpYUaW1wZA93~sJ7Ao-G0OG3qlZmX~kra7AqJpHXAD~vDFcWcdE61Z0VxrZf3UN6nvw0-zgCD-x--jlnVpKT2gZMmAM227ZWwrVj93TofsNKnR~0dTMuwEg0Peqp~h1GyIT5D-IRumyvUWK4gTNIfNT9-8zJhP5w7gn7RxKs-lKN95CDWW8dYtIXdjdA515Tld0EDvjiTtQR6wSsGTwP~edlbb7wU1CnYcEGGV6Cap~fQLGWMZT8t5XyZj~1lXG4kEBSJwKA0pwEegpvWdRhFjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":44830216,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830216/thumbnails/1.jpg","file_name":"9804122.pdf","download_url":"https://www.academia.edu/attachments/44830216/download_file","bulk_download_file_name":"Chern_Simons_Theory_Knot_Invariants_Vert.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830216/9804122-libre.pdf?1460926518=\u0026response-content-disposition=attachment%3B+filename%3DChern_Simons_Theory_Knot_Invariants_Vert.pdf\u0026Expires=1732435402\u0026Signature=EFiBOpiGF2BolQ7DXhNbBoB4byhhosqA83l2o474K3FKuL-qfL26Jyi90Z~dWKVhse5yfnMYVAOfrv1xYWVhY~MgEIGjV~dT0vxi55cpkTgn0WzT7C906316fmAspo9mAwRh5nWqb1Q1dro~TNMedSUqcN8nSgb2VTuOqz~hntJ2C-aZHouh~zo5grVqZgjHi-6fWgFG2dErpilDA33nvdTO7hksevu4X8EgZSwZcgF-VaofxT2g-x4okEwLTW7i0dhNkYBmcCegHqGy9Ww~yR7bMM4UWVi5AKme4N5p0Qdx55R-1BGZoChNXlrgPFhKgFAFzmRxVDkHXVbL2KPvkg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4427,"name":"Topological Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Topological_Quantum_Field_Theory"},{"id":10092,"name":"Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Quantum_Field_Theory"},{"id":364279,"name":"Chern Simons Theory","url":"https://www.academia.edu/Documents/in/Chern_Simons_Theory"},{"id":412636,"name":"Theoretical Framework","url":"https://www.academia.edu/Documents/in/Theoretical_Framework"},{"id":1296393,"name":"Crossing Number","url":"https://www.academia.edu/Documents/in/Crossing_Number"}],"urls":[{"id":7024528,"url":"http://arxiv.org/abs/hep-th/9804122"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498103"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498103/The_validity_of_the_Adler_Bardeen_theorem_in_the_supersymmetric_U_1_gauge_model"><img alt="Research paper thumbnail of The validity of the Adler-Bardeen theorem in the supersymmetric U(1) gauge model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498103/The_validity_of_the_Adler_Bardeen_theorem_in_the_supersymmetric_U_1_gauge_model">The validity of the Adler-Bardeen theorem in the supersymmetric U(1) gauge model</a></div><div class="wp-workCard_item"><span>Physics Letters B</span><span>, 1983</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using the dimensional reduction regularization scheme, we show that radiative corrections to the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using the dimensional reduction regularization scheme, we show that radiative corrections to the anomaly of the axial current, which is coupled to the gauge field, are absent in a supersymmetric U(1) gauge model for both &amp;amp;#39;t Hooft-Veltman and Bardeen prescriptions for gamma5. We also discuss the results with reference to conventional dimensional regularization. This result has significant implications with respect</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498103"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498103"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498103; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498103]").text(description); $(".js-view-count[data-work-id=24498103]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498103; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498103']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498103, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498103]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498103,"title":"The validity of the Adler-Bardeen theorem in the supersymmetric U(1) gauge model","translated_title":"","metadata":{"abstract":"Using the dimensional reduction regularization scheme, we show that radiative corrections to the anomaly of the axial current, which is coupled to the gauge field, are absent in a supersymmetric U(1) gauge model for both \u0026amp;#39;t Hooft-Veltman and Bardeen prescriptions for gamma5. We also discuss the results with reference to conventional dimensional regularization. This result has significant implications with respect","publication_date":{"day":null,"month":null,"year":1983,"errors":{}},"publication_name":"Physics Letters B"},"translated_abstract":"Using the dimensional reduction regularization scheme, we show that radiative corrections to the anomaly of the axial current, which is coupled to the gauge field, are absent in a supersymmetric U(1) gauge model for both \u0026amp;#39;t Hooft-Veltman and Bardeen prescriptions for gamma5. We also discuss the results with reference to conventional dimensional regularization. This result has significant implications with respect","internal_url":"https://www.academia.edu/24498103/The_validity_of_the_Adler_Bardeen_theorem_in_the_supersymmetric_U_1_gauge_model","translated_internal_url":"","created_at":"2016-04-17T13:54:09.022-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_validity_of_the_Adler_Bardeen_theorem_in_the_supersymmetric_U_1_gauge_model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[{"id":27762,"name":"Supersymmetric Models","url":"https://www.academia.edu/Documents/in/Supersymmetric_Models"},{"id":403158,"name":"Gauge Field","url":"https://www.academia.edu/Documents/in/Gauge_Field"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498102"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498102/Chern_Simons_theory_coloured_oriented_braids_and_link_invariants"><img alt="Research paper thumbnail of Chern-Simons theory, coloured-oriented braids and link invariants" class="work-thumbnail" src="https://attachments.academia-assets.com/44830250/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498102/Chern_Simons_theory_coloured_oriented_braids_and_link_invariants">Chern-Simons theory, coloured-oriented braids and link invariants</a></div><div class="wp-workCard_item"><span>Communications in Mathematical Physics</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A method to obtain explicit and complete topological solution of SU(2) Chern-Simons theory on S 3...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A method to obtain explicit and complete topological solution of SU(2) Chern-Simons theory on S 3 is developed. To this effect the necessary aspects of the theory of coloured-oriented braids and duality properties of conformal blocks for the correlators of SU(2) k Wess-Zumino conformal field theory are presented. A large class of representations of the generators of the groupoid of coloured-oriented braids are obtained. These provide a whole lot of new link invariants of which Jones polynomials are the simplest examples. These new invariants are explicity calculated as illustrations for knots up to eight crossings and twocomponent multicoloured links up to seven crossings.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d5fb637f1495d1812e3c885fc3845613" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830250,&quot;asset_id&quot;:24498102,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830250/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498102"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498102"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498102; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498102]").text(description); $(".js-view-count[data-work-id=24498102]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498102; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498102']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498102, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d5fb637f1495d1812e3c885fc3845613" } } $('.js-work-strip[data-work-id=24498102]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498102,"title":"Chern-Simons theory, coloured-oriented braids and link invariants","translated_title":"","metadata":{"abstract":"A method to obtain explicit and complete topological solution of SU(2) Chern-Simons theory on S 3 is developed. To this effect the necessary aspects of the theory of coloured-oriented braids and duality properties of conformal blocks for the correlators of SU(2) k Wess-Zumino conformal field theory are presented. A large class of representations of the generators of the groupoid of coloured-oriented braids are obtained. These provide a whole lot of new link invariants of which Jones polynomials are the simplest examples. These new invariants are explicity calculated as illustrations for knots up to eight crossings and twocomponent multicoloured links up to seven crossings.","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Communications in Mathematical Physics"},"translated_abstract":"A method to obtain explicit and complete topological solution of SU(2) Chern-Simons theory on S 3 is developed. To this effect the necessary aspects of the theory of coloured-oriented braids and duality properties of conformal blocks for the correlators of SU(2) k Wess-Zumino conformal field theory are presented. A large class of representations of the generators of the groupoid of coloured-oriented braids are obtained. These provide a whole lot of new link invariants of which Jones polynomials are the simplest examples. These new invariants are explicity calculated as illustrations for knots up to eight crossings and twocomponent multicoloured links up to seven crossings.","internal_url":"https://www.academia.edu/24498102/Chern_Simons_theory_coloured_oriented_braids_and_link_invariants","translated_internal_url":"","created_at":"2016-04-17T13:54:08.643-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830250,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830250/thumbnails/1.jpg","file_name":"9305032.pdf","download_url":"https://www.academia.edu/attachments/44830250/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chern_Simons_theory_coloured_oriented_br.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830250/9305032-libre.pdf?1460926672=\u0026response-content-disposition=attachment%3B+filename%3DChern_Simons_theory_coloured_oriented_br.pdf\u0026Expires=1732435402\u0026Signature=YBVI7C2P~Hk2~DtpDHAj89Ily66U~n2eeBf9xIeQvwNA0SRup2lkxVQKd3EAPaeEaxhJ-rIDDyTl9OyX3nwc42n5O1h53XVrgdb0f0LUNSa~0Vgf2ulKLcwyQqqMVO2Qw4RWFJRsET6NxpQ5dR0kO8rRezLbCe9r4dLov9TpwoD369pwgi6q88MV0a27ncSvKTJEJ6T1BnbWsfPTsm4Hllp0-s4wulLHxWvBEfDhAYLw-jB0kffRZfiXPXv2xVc3l3RJ1T5lmD8FIZzQp8ilA5wv3v-GRESwX1PSpKOB1MY7Nb6bV3pQAhapvfjVZhYQyX8K3a8vyo~W~LVRWuCr5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Chern_Simons_theory_coloured_oriented_braids_and_link_invariants","translated_slug":"","page_count":47,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830250,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830250/thumbnails/1.jpg","file_name":"9305032.pdf","download_url":"https://www.academia.edu/attachments/44830250/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chern_Simons_theory_coloured_oriented_br.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830250/9305032-libre.pdf?1460926672=\u0026response-content-disposition=attachment%3B+filename%3DChern_Simons_theory_coloured_oriented_br.pdf\u0026Expires=1732435402\u0026Signature=YBVI7C2P~Hk2~DtpDHAj89Ily66U~n2eeBf9xIeQvwNA0SRup2lkxVQKd3EAPaeEaxhJ-rIDDyTl9OyX3nwc42n5O1h53XVrgdb0f0LUNSa~0Vgf2ulKLcwyQqqMVO2Qw4RWFJRsET6NxpQ5dR0kO8rRezLbCe9r4dLov9TpwoD369pwgi6q88MV0a27ncSvKTJEJ6T1BnbWsfPTsm4Hllp0-s4wulLHxWvBEfDhAYLw-jB0kffRZfiXPXv2xVc3l3RJ1T5lmD8FIZzQp8ilA5wv3v-GRESwX1PSpKOB1MY7Nb6bV3pQAhapvfjVZhYQyX8K3a8vyo~W~LVRWuCr5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":10092,"name":"Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Quantum_Field_Theory"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":108262,"name":"Gauge theory","url":"https://www.academia.edu/Documents/in/Gauge_theory"},{"id":154823,"name":"Conformal Field Theory","url":"https://www.academia.edu/Documents/in/Conformal_Field_Theory"},{"id":364279,"name":"Chern Simons Theory","url":"https://www.academia.edu/Documents/in/Chern_Simons_Theory"},{"id":410032,"name":"Invariant","url":"https://www.academia.edu/Documents/in/Invariant"}],"urls":[{"id":7024527,"url":"http://adsabs.harvard.edu/abs/1994cmaph.162..289k"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498101"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/24498101/Supersymmetry_and_Supergravity"><img alt="Research paper thumbnail of Supersymmetry and Supergravity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/24498101/Supersymmetry_and_Supergravity">Supersymmetry and Supergravity</a></div><div class="wp-workCard_item"><span>Gravitation, Gauge Theories and the Early Universe</span><span>, 1989</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498101"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498101"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498101; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498101]").text(description); $(".js-view-count[data-work-id=24498101]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498101; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498101']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498101, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498101]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498101,"title":"Supersymmetry and Supergravity","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1989,"errors":{}},"publication_name":"Gravitation, Gauge Theories and the Early Universe"},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498101/Supersymmetry_and_Supergravity","translated_internal_url":"","created_at":"2016-04-17T13:54:08.413-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Supersymmetry_and_Supergravity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498099"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498099/On_non_perturbative_contributions_to_vacuum_energy_in_supersymmetric_quantum_mechanical_models"><img alt="Research paper thumbnail of On non-perturbative contributions to vacuum energy in supersymmetric quantum mechanical models" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498099/On_non_perturbative_contributions_to_vacuum_energy_in_supersymmetric_quantum_mechanical_models">On non-perturbative contributions to vacuum energy in supersymmetric quantum mechanical models</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498099"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498099"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498099; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498099]").text(description); $(".js-view-count[data-work-id=24498099]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498099; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498099']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498099, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498099]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498099,"title":"On non-perturbative contributions to vacuum energy in supersymmetric quantum mechanical models","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1984,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498099/On_non_perturbative_contributions_to_vacuum_energy_in_supersymmetric_quantum_mechanical_models","translated_internal_url":"","created_at":"2016-04-17T13:54:08.237-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_non_perturbative_contributions_to_vacuum_energy_in_supersymmetric_quantum_mechanical_models","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1124186,"name":"Supersymmetric Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Supersymmetric_Quantum_Mechanics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498098"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498098/The_representation_of_Temperley_Lieb_Jones_algebras"><img alt="Research paper thumbnail of The representation of Temperley-Lieb-Jones algebras" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498098/The_representation_of_Temperley_Lieb_Jones_algebras">The representation of Temperley-Lieb-Jones algebras</a></div><div class="wp-workCard_item"><span>Nuclear Physics B</span><span>, 1994</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498098"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498098"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498098; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498098]").text(description); $(".js-view-count[data-work-id=24498098]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498098; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498098']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498098, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498098]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498098,"title":"The representation of Temperley-Lieb-Jones algebras","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Nuclear Physics B"},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498098/The_representation_of_Temperley_Lieb_Jones_algebras","translated_internal_url":"","created_at":"2016-04-17T13:54:08.043-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_representation_of_Temperley_Lieb_Jones_algebras","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[{"id":10092,"name":"Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Quantum_Field_Theory"},{"id":50118,"name":"Representation","url":"https://www.academia.edu/Documents/in/Representation"}],"urls":[{"id":7024526,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=4070926"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498097"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/24498097/Knot_invariants_from_quantum_field_theories"><img alt="Research paper thumbnail of Knot invariants from quantum field theories" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/24498097/Knot_invariants_from_quantum_field_theories">Knot invariants from quantum field theories</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498097"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498097"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498097; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498097]").text(description); $(".js-view-count[data-work-id=24498097]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498097; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498097']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498097, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498097]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498097,"title":"Knot invariants from quantum field theories","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1994,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498097/Knot_invariants_from_quantum_field_theories","translated_internal_url":"","created_at":"2016-04-17T13:54:07.870-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Knot_invariants_from_quantum_field_theories","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[{"id":10092,"name":"Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Quantum_Field_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498096"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498096/Canonical_supergravity_with_Barbero_Immirzi_parameter"><img alt="Research paper thumbnail of Canonical supergravity with Barbero-Immirzi parameter" class="work-thumbnail" src="https://attachments.academia-assets.com/44830212/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498096/Canonical_supergravity_with_Barbero_Immirzi_parameter">Canonical supergravity with Barbero-Immirzi parameter</a></div><div class="wp-workCard_item"><span>Physical Review D Particles and Fields</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A Hamiltonian description of the N=1 supergravity theory containing the topological Nieh-Yan term...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A Hamiltonian description of the N=1 supergravity theory containing the topological Nieh-Yan term in its Lagrangian density is developed. The constraints are analyzed without choosing any gauge. In the time gauge, this theory results in a real SU(2) formulation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9acbbdbcb2a7416306716f8281b5f6f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830212,&quot;asset_id&quot;:24498096,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830212/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498096"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498096"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498096; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498096]").text(description); $(".js-view-count[data-work-id=24498096]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498096; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498096']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498096, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9acbbdbcb2a7416306716f8281b5f6f0" } } $('.js-work-strip[data-work-id=24498096]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498096,"title":"Canonical supergravity with Barbero-Immirzi parameter","translated_title":"","metadata":{"abstract":"A Hamiltonian description of the N=1 supergravity theory containing the topological Nieh-Yan term in its Lagrangian density is developed. The constraints are analyzed without choosing any gauge. In the time gauge, this theory results in a real SU(2) formulation.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Physical Review D Particles and Fields"},"translated_abstract":"A Hamiltonian description of the N=1 supergravity theory containing the topological Nieh-Yan term in its Lagrangian density is developed. The constraints are analyzed without choosing any gauge. In the time gauge, this theory results in a real SU(2) formulation.","internal_url":"https://www.academia.edu/24498096/Canonical_supergravity_with_Barbero_Immirzi_parameter","translated_internal_url":"","created_at":"2016-04-17T13:54:07.574-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830212,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830212/thumbnails/1.jpg","file_name":"0909.4850.pdf","download_url":"https://www.academia.edu/attachments/44830212/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Canonical_supergravity_with_Barbero_Immi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830212/0909.4850-libre.pdf?1460926517=\u0026response-content-disposition=attachment%3B+filename%3DCanonical_supergravity_with_Barbero_Immi.pdf\u0026Expires=1732435402\u0026Signature=X6THkNsvzwFAhm2sx~-ZCI8wlD8TSwK32YzF9BuaIgCV6LNR9nnF7669mXq41oEk84R~dBRjlbIIxtZRjHDTSNvzGlWAyqlKApYxnDMJNJOSoMK7mITySlPMz-VAIhXDmPhO3HYEZd6mv45aMG0IirhzWwvUBdzwDxfDNrmxQEi4veZu7IFZFiZTnEU9ttY84xNyb0P7BJf346m-~YW~etuOV9mvo51qMwxNda1lRHElg9US~qZSLcfCttf0NWzwWO50hoBuZQES66FLcSriQEQJCNTXAlWc~dl63BwypQ-3sJo1Mp1d86aA4MXZsWtG6Bqk3Mzs6xZhJy6bgfSAcQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Canonical_supergravity_with_Barbero_Immirzi_parameter","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830212,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830212/thumbnails/1.jpg","file_name":"0909.4850.pdf","download_url":"https://www.academia.edu/attachments/44830212/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Canonical_supergravity_with_Barbero_Immi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830212/0909.4850-libre.pdf?1460926517=\u0026response-content-disposition=attachment%3B+filename%3DCanonical_supergravity_with_Barbero_Immi.pdf\u0026Expires=1732435402\u0026Signature=X6THkNsvzwFAhm2sx~-ZCI8wlD8TSwK32YzF9BuaIgCV6LNR9nnF7669mXq41oEk84R~dBRjlbIIxtZRjHDTSNvzGlWAyqlKApYxnDMJNJOSoMK7mITySlPMz-VAIhXDmPhO3HYEZd6mv45aMG0IirhzWwvUBdzwDxfDNrmxQEi4veZu7IFZFiZTnEU9ttY84xNyb0P7BJf346m-~YW~etuOV9mvo51qMwxNda1lRHElg9US~qZSLcfCttf0NWzwWO50hoBuZQES66FLcSriQEQJCNTXAlWc~dl63BwypQ-3sJo1Mp1d86aA4MXZsWtG6Bqk3Mzs6xZhJy6bgfSAcQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":333,"name":"Field Theory","url":"https://www.academia.edu/Documents/in/Field_Theory"},{"id":1247,"name":"Quantum Gravity","url":"https://www.academia.edu/Documents/in/Quantum_Gravity"},{"id":7936,"name":"Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Quantum_Mechanics"},{"id":28545,"name":"Loop Quantum Gravity","url":"https://www.academia.edu/Documents/in/Loop_Quantum_Gravity"},{"id":77311,"name":"Unified Field Theory","url":"https://www.academia.edu/Documents/in/Unified_Field_Theory"},{"id":603952,"name":"Lie Group","url":"https://www.academia.edu/Documents/in/Lie_Group"},{"id":956755,"name":"Point Group Symmetry","url":"https://www.academia.edu/Documents/in/Point_Group_Symmetry"},{"id":1228946,"name":"Physical Properties","url":"https://www.academia.edu/Documents/in/Physical_Properties"},{"id":1760204,"name":"Elementary Particles","url":"https://www.academia.edu/Documents/in/Elementary_Particles"}],"urls":[{"id":7024525,"url":"http://adsabs.harvard.edu/abs/2009arxiv0909.4850s"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498095"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498095/Monopole_mass_in_supersymmetric_gauge_theories"><img alt="Research paper thumbnail of Monopole mass in supersymmetric gauge theories" class="work-thumbnail" src="https://attachments.academia-assets.com/44830251/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498095/Monopole_mass_in_supersymmetric_gauge_theories">Monopole mass in supersymmetric gauge theories</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="22d073ad382253e7f4eba61bbc20d8bc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830251,&quot;asset_id&quot;:24498095,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830251/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498095"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498095"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498095; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498095]").text(description); $(".js-view-count[data-work-id=24498095]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498095; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498095']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498095, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "22d073ad382253e7f4eba61bbc20d8bc" } } $('.js-work-strip[data-work-id=24498095]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498095,"title":"Monopole mass in supersymmetric gauge theories","translated_title":"","metadata":{"grobid_abstract":"The one-loop quantum corrections to the mass of a monopole in a non-abelian supersymmetric gauge field theory are calculated. The corrections due to Bose and Fermi fluctuations around the monopole are shown to the governed essentially by the eigenvalues of two related second order differential operators, with the same nonzero mode spectrum but different densities of the continuum eigenmodes. However, the one-loop monopole mass, when expressed in terms of one-loop renormalized parameters, does not obtain any corrections.","publication_date":{"day":null,"month":null,"year":1984,"errors":{}},"grobid_abstract_attachment_id":44830251},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498095/Monopole_mass_in_supersymmetric_gauge_theories","translated_internal_url":"","created_at":"2016-04-17T13:54:07.342-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830251,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830251/thumbnails/1.jpg","file_name":"0370-2693_2884_2991495-3.pdf20160417-18885-ur53c4","download_url":"https://www.academia.edu/attachments/44830251/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Monopole_mass_in_supersymmetric_gauge_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830251/0370-2693_2884_2991495-3-libre.pdf20160417-18885-ur53c4?1460926672=\u0026response-content-disposition=attachment%3B+filename%3DMonopole_mass_in_supersymmetric_gauge_th.pdf\u0026Expires=1732435402\u0026Signature=gigpsMHxHqlcahhZVK64lI-kFT7KtV35g5Vp36mO7oc7tleQoXg3-1-IWCKch7a-bARA9S8CoASn8kJ~DlXUZbl8yCKmIIA9glXPSLIao5C-QHBbSVmb6qDH0A8R3SrVFgAa4hhJMcuK8QiQ4EAG3p4MVCYeAnGQi6XRlYxdmf44WI-QjBx39V1d8ZJsiF3QyCPjS3824by-n~17jEPk1pvBbLMG7IMh5LiSt01WGGsTRWaDHJmbzVdw8woDmEZ4pz1EqxF5T4pMpU3C5kEgyd6JIQeGUjg5WI51AQsAjR0MKsyoPQkXAy1~FyRT43FOHNz9ORXMMFC-9gVJSAXcKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Monopole_mass_in_supersymmetric_gauge_theories","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830251,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830251/thumbnails/1.jpg","file_name":"0370-2693_2884_2991495-3.pdf20160417-18885-ur53c4","download_url":"https://www.academia.edu/attachments/44830251/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Monopole_mass_in_supersymmetric_gauge_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830251/0370-2693_2884_2991495-3-libre.pdf20160417-18885-ur53c4?1460926672=\u0026response-content-disposition=attachment%3B+filename%3DMonopole_mass_in_supersymmetric_gauge_th.pdf\u0026Expires=1732435402\u0026Signature=gigpsMHxHqlcahhZVK64lI-kFT7KtV35g5Vp36mO7oc7tleQoXg3-1-IWCKch7a-bARA9S8CoASn8kJ~DlXUZbl8yCKmIIA9glXPSLIao5C-QHBbSVmb6qDH0A8R3SrVFgAa4hhJMcuK8QiQ4EAG3p4MVCYeAnGQi6XRlYxdmf44WI-QjBx39V1d8ZJsiF3QyCPjS3824by-n~17jEPk1pvBbLMG7IMh5LiSt01WGGsTRWaDHJmbzVdw8woDmEZ4pz1EqxF5T4pMpU3C5kEgyd6JIQeGUjg5WI51AQsAjR0MKsyoPQkXAy1~FyRT43FOHNz9ORXMMFC-9gVJSAXcKw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":14025,"name":"Supersymmetry","url":"https://www.academia.edu/Documents/in/Supersymmetry"},{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum"},{"id":915258,"name":"Supersymmetric Gauge Theory","url":"https://www.academia.edu/Documents/in/Supersymmetric_Gauge_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498094"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498094/No_ghost_theorem_for_the_pomeron_sector_of_Neuveu_Schwarz_dual_resonance_model"><img alt="Research paper thumbnail of No-ghost theorem for the pomeron sector of Neuveu-Schwarz dual resonance model" class="work-thumbnail" src="https://attachments.academia-assets.com/44830249/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498094/No_ghost_theorem_for_the_pomeron_sector_of_Neuveu_Schwarz_dual_resonance_model">No-ghost theorem for the pomeron sector of Neuveu-Schwarz dual resonance model</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="136ec79a712fe6a3cc6c3acf2d7c9205" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830249,&quot;asset_id&quot;:24498094,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830249/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498094"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498094"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498094; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498094]").text(description); $(".js-view-count[data-work-id=24498094]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498094; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498094']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498094, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "136ec79a712fe6a3cc6c3acf2d7c9205" } } $('.js-work-strip[data-work-id=24498094]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498094,"title":"No-ghost theorem for the pomeron sector of Neuveu-Schwarz dual resonance model","translated_title":"","metadata":{"grobid_abstract":"With certain forms for the pomeron propagator in the non-planar single loops for the N-S model with positive Gparity, no-ghost theorem for the pomeron sector is proved by the method of Olive and Scherk.","publication_date":{"day":null,"month":null,"year":1975,"errors":{}},"grobid_abstract_attachment_id":44830249},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498094/No_ghost_theorem_for_the_pomeron_sector_of_Neuveu_Schwarz_dual_resonance_model","translated_internal_url":"","created_at":"2016-04-17T13:54:07.194-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830249,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830249/thumbnails/1.jpg","file_name":"0370-2693_2875_2990633-4.pdf20160417-19407-1m30tzr","download_url":"https://www.academia.edu/attachments/44830249/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"No_ghost_theorem_for_the_pomeron_sector.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830249/0370-2693_2875_2990633-4-libre.pdf20160417-19407-1m30tzr?1460926672=\u0026response-content-disposition=attachment%3B+filename%3DNo_ghost_theorem_for_the_pomeron_sector.pdf\u0026Expires=1732435402\u0026Signature=VdzorvHKrSCA2JqCA8753EEIu7j1FwSMVljzWxXbahdxWYKz6hTPR~DJkv6XGF8Hk0a5OfkcveZDT83S8fDmq3zRdndyCAqERVDpxJeRCs7UlJera4muw6nudE5mO1Bbm4dVeJQD5-in4HUdyEbCfKAUncCy24cAkSfqbAFAtymoAvXN1AIGjTmlc7CWPM7o6~OQuZ-11bFbJ57RCPAO3IylULGWHVbnaEj~RYJJP3bPb93Xwn49ItP7aGlHXPlHMixRAf6bcrmZxbUwGmT5lPQaL5yIpOyYIfRhKcwysANoVHjl1EJHSGlpVeZeKP-3O6yP8hRjb2gN~PbMwln2LQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"No_ghost_theorem_for_the_pomeron_sector_of_Neuveu_Schwarz_dual_resonance_model","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830249,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830249/thumbnails/1.jpg","file_name":"0370-2693_2875_2990633-4.pdf20160417-19407-1m30tzr","download_url":"https://www.academia.edu/attachments/44830249/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"No_ghost_theorem_for_the_pomeron_sector.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830249/0370-2693_2875_2990633-4-libre.pdf20160417-19407-1m30tzr?1460926672=\u0026response-content-disposition=attachment%3B+filename%3DNo_ghost_theorem_for_the_pomeron_sector.pdf\u0026Expires=1732435402\u0026Signature=VdzorvHKrSCA2JqCA8753EEIu7j1FwSMVljzWxXbahdxWYKz6hTPR~DJkv6XGF8Hk0a5OfkcveZDT83S8fDmq3zRdndyCAqERVDpxJeRCs7UlJera4muw6nudE5mO1Bbm4dVeJQD5-in4HUdyEbCfKAUncCy24cAkSfqbAFAtymoAvXN1AIGjTmlc7CWPM7o6~OQuZ-11bFbJ57RCPAO3IylULGWHVbnaEj~RYJJP3bPb93Xwn49ItP7aGlHXPlHMixRAf6bcrmZxbUwGmT5lPQaL5yIpOyYIfRhKcwysANoVHjl1EJHSGlpVeZeKP-3O6yP8hRjb2gN~PbMwln2LQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498093"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/24498093/Torsional_instanton_effects_in_quantum_gravity"><img alt="Research paper thumbnail of Torsional instanton effects in quantum gravity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/24498093/Torsional_instanton_effects_in_quantum_gravity">Torsional instanton effects in quantum gravity</a></div><div class="wp-workCard_item"><span>Physical Review D</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498093"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498093"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498093; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498093]").text(description); $(".js-view-count[data-work-id=24498093]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498093; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498093']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498093, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498093]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498093,"title":"Torsional instanton effects in quantum gravity","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Physical Review D"},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498093/Torsional_instanton_effects_in_quantum_gravity","translated_internal_url":"","created_at":"2016-04-17T13:54:07.036-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Torsional_instanton_effects_in_quantum_gravity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498092"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498092/Canonical_supergravity_with_Barbero_Immirzi_parameter"><img alt="Research paper thumbnail of Canonical supergravity with Barbero-Immirzi parameter" class="work-thumbnail" src="https://attachments.academia-assets.com/44830247/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498092/Canonical_supergravity_with_Barbero_Immirzi_parameter">Canonical supergravity with Barbero-Immirzi parameter</a></div><div class="wp-workCard_item"><span>Physical Review D</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="21a3d3b0c40b532a327bf20cdd8177ca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830247,&quot;asset_id&quot;:24498092,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830247/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498092"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498092"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498092; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498092]").text(description); $(".js-view-count[data-work-id=24498092]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498092; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498092']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498092, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "21a3d3b0c40b532a327bf20cdd8177ca" } } $('.js-work-strip[data-work-id=24498092]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498092,"title":"Canonical supergravity with Barbero-Immirzi parameter","translated_title":"","metadata":{"grobid_abstract":"A canonical formulation of the N = 1 supergravity theory containing the topological Nieh-Yan term in its Lagrangian density is developed. The constraints are analysed without choosing any gauge. In the time gauge, the theory is shown to be described in terms of real SU (2) variables.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Physical Review D","grobid_abstract_attachment_id":44830247},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498092/Canonical_supergravity_with_Barbero_Immirzi_parameter","translated_internal_url":"","created_at":"2016-04-17T13:54:06.868-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830247,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830247/thumbnails/1.jpg","file_name":"0909.4850.pdf","download_url":"https://www.academia.edu/attachments/44830247/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Canonical_supergravity_with_Barbero_Immi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830247/0909.4850-libre.pdf?1460926671=\u0026response-content-disposition=attachment%3B+filename%3DCanonical_supergravity_with_Barbero_Immi.pdf\u0026Expires=1732435402\u0026Signature=LNOxUuaU2Zp7allZxC4VgIstcjt33xjfMBG9UGfOet6ik9CDJKxwoftlIcV6GS2ZUbzrCffKCOO1Sl5niN3TRRX3WQyTHWHtrSdtTWxYX3mMnJ07lxNQs7t2qbe6hQX4nMot5zaKLgQ2Ku5UYRAMZYQefsZXLuZoafMJ2zXdnlClozlcx6lpuvPvxpAx2QvHgIBCIYtRruOfR5QMSFjUMgqozi9mFKr2jVXTw2hvo-KrYdqNEPg62pX9plB241M-6356tUyn3qNrR90JcT7rA5eMFmhuU0vkmK~VerfFTQZ54UxXMJn~ere3KHWW6MOFJNBxUco5A2g0ZauoF4l6Ag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Canonical_supergravity_with_Barbero_Immirzi_parameter","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830247,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830247/thumbnails/1.jpg","file_name":"0909.4850.pdf","download_url":"https://www.academia.edu/attachments/44830247/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Canonical_supergravity_with_Barbero_Immi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830247/0909.4850-libre.pdf?1460926671=\u0026response-content-disposition=attachment%3B+filename%3DCanonical_supergravity_with_Barbero_Immi.pdf\u0026Expires=1732435402\u0026Signature=LNOxUuaU2Zp7allZxC4VgIstcjt33xjfMBG9UGfOet6ik9CDJKxwoftlIcV6GS2ZUbzrCffKCOO1Sl5niN3TRRX3WQyTHWHtrSdtTWxYX3mMnJ07lxNQs7t2qbe6hQX4nMot5zaKLgQ2Ku5UYRAMZYQefsZXLuZoafMJ2zXdnlClozlcx6lpuvPvxpAx2QvHgIBCIYtRruOfR5QMSFjUMgqozi9mFKr2jVXTw2hvo-KrYdqNEPg62pX9plB241M-6356tUyn3qNrR90JcT7rA5eMFmhuU0vkmK~VerfFTQZ54UxXMJn~ere3KHWW6MOFJNBxUco5A2g0ZauoF4l6Ag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":333,"name":"Field Theory","url":"https://www.academia.edu/Documents/in/Field_Theory"},{"id":1247,"name":"Quantum Gravity","url":"https://www.academia.edu/Documents/in/Quantum_Gravity"},{"id":7936,"name":"Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Quantum_Mechanics"},{"id":28545,"name":"Loop Quantum Gravity","url":"https://www.academia.edu/Documents/in/Loop_Quantum_Gravity"},{"id":77311,"name":"Unified Field Theory","url":"https://www.academia.edu/Documents/in/Unified_Field_Theory"},{"id":603952,"name":"Lie Group","url":"https://www.academia.edu/Documents/in/Lie_Group"},{"id":956755,"name":"Point Group Symmetry","url":"https://www.academia.edu/Documents/in/Point_Group_Symmetry"},{"id":1228946,"name":"Physical Properties","url":"https://www.academia.edu/Documents/in/Physical_Properties"},{"id":1760204,"name":"Elementary Particles","url":"https://www.academia.edu/Documents/in/Elementary_Particles"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498091"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498091/A_gauge_mapping_theorem_for_the_spinning_string_in_an_orthonormal_gauge"><img alt="Research paper thumbnail of A gauge mapping theorem for the spinning string in an orthonormal gauge" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498091/A_gauge_mapping_theorem_for_the_spinning_string_in_an_orthonormal_gauge">A gauge mapping theorem for the spinning string in an orthonormal gauge</a></div><div class="wp-workCard_item"><span>Nuovo Cimento Della Societa Italiana Di Fisica A-nuclei Particles and Fields - NUOVO CIMENTO A-NUCL PART F</span><span>, 1977</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498091"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498091"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498091; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498091]").text(description); $(".js-view-count[data-work-id=24498091]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498091; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498091']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498091, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498091]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498091,"title":"A gauge mapping theorem for the spinning string in an orthonormal gauge","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1977,"errors":{}},"publication_name":"Nuovo Cimento Della Societa Italiana Di Fisica A-nuclei Particles and Fields - NUOVO CIMENTO A-NUCL PART F"},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498091/A_gauge_mapping_theorem_for_the_spinning_string_in_an_orthonormal_gauge","translated_internal_url":"","created_at":"2016-04-17T13:54:06.545-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_gauge_mapping_theorem_for_the_spinning_string_in_an_orthonormal_gauge","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[],"urls":[{"id":7024524,"url":"http://adsabs.harvard.edu/abs/1977NCimA..38..167K"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498090"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498090/Entropy_of_Quantum_Black_Holes"><img alt="Research paper thumbnail of Entropy of Quantum Black Holes" class="work-thumbnail" src="https://attachments.academia-assets.com/44830242/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498090/Entropy_of_Quantum_Black_Holes">Entropy of Quantum Black Holes</a></div><div class="wp-workCard_item"><span>Symmetry, Integrability and Geometry: Methods and Applications</span><span>, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="baf8cf0ddc2d17183d610640ca800d79" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:44830242,&quot;asset_id&quot;:24498090,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/44830242/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498090"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498090"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498090; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498090]").text(description); $(".js-view-count[data-work-id=24498090]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498090; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498090']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498090, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "baf8cf0ddc2d17183d610640ca800d79" } } $('.js-work-strip[data-work-id=24498090]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498090,"title":"Entropy of Quantum Black Holes","translated_title":"","metadata":{"grobid_abstract":"In the Loop Quantum Gravity, black holes (or even more general Isolated Horizons) are described by a SU (2) Chern-Simons theory. There is an equivalent formulation of the horizon degrees of freedom in terms of a U (1) gauge theory which is just a gauged fixed version of the SU (2) theory. These developments will be surveyed here. Quantum theory based on either formulation can be used to count the horizon micro-states associated with quantum geometry fluctuations and from this the micro-canonical entropy can be obtained. We shall review the computation in SU (2) formulation. Leading term in the entropy is proportional to horizon area with a coefficient depending on the Barbero-Immirzi parameter which is fixed by matching this result with the Bekenstein-Hawking formula. Remarkably there are corrections beyond the area term, the leading one is logarithm of the horizon area with a definite coefficient −3/2, a result which is more than a decade old now. How the same results are obtained in the equivalent U (1) framework will also be indicated. Over years, this entropy formula has also been arrived at from a variety of other perspectives. In particular, entropy of BTZ black holes in three dimensional gravity exhibits the same logarithmic correction. Even in the String Theory, many black hole models are known to possess such properties. This suggests a possible universal nature of this logarithmic correction.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Symmetry, Integrability and Geometry: Methods and Applications","grobid_abstract_attachment_id":44830242},"translated_abstract":null,"internal_url":"https://www.academia.edu/24498090/Entropy_of_Quantum_Black_Holes","translated_internal_url":"","created_at":"2016-04-17T13:54:06.307-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44830242,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830242/thumbnails/1.jpg","file_name":"1201.6102.pdf","download_url":"https://www.academia.edu/attachments/44830242/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Entropy_of_Quantum_Black_Holes.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830242/1201.6102-libre.pdf?1460926573=\u0026response-content-disposition=attachment%3B+filename%3DEntropy_of_Quantum_Black_Holes.pdf\u0026Expires=1732435402\u0026Signature=a-X1k4d1ZeJ665uYzbaNxBZqc6yTp2udixoVfieBFxDjhkS4zFW3Q7ThTEbWHIOPF05HhyfKJVUnbv2Wq6I80zfHimd8Ixm09C9nOXjMWK0odeBriELYFqfcffyrAicbtvscRvGTSx8uCZXFYxFsoiD0Hgb1eIgUtI7qHnhS-ueA~VwHJbwD5Yol3IX99jKzL~WN8Ue702nLdgl~~HEDnmj26emYEWcqlMuVeECE87neYh-HOWN5ZSBRKpltQ8ieOtmvFQqJ-pF-2s0C08TCXpvVVQ2ex4LNtnGCTrLrHCwSlzzCBIpXYyHDG101Sv7R8j3TIu4xSCneTScC4Whx1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Entropy_of_Quantum_Black_Holes","translated_slug":"","page_count":30,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[{"id":44830242,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44830242/thumbnails/1.jpg","file_name":"1201.6102.pdf","download_url":"https://www.academia.edu/attachments/44830242/download_file?st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&st=MTczMjQzMTgwMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Entropy_of_Quantum_Black_Holes.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44830242/1201.6102-libre.pdf?1460926573=\u0026response-content-disposition=attachment%3B+filename%3DEntropy_of_Quantum_Black_Holes.pdf\u0026Expires=1732435402\u0026Signature=a-X1k4d1ZeJ665uYzbaNxBZqc6yTp2udixoVfieBFxDjhkS4zFW3Q7ThTEbWHIOPF05HhyfKJVUnbv2Wq6I80zfHimd8Ixm09C9nOXjMWK0odeBriELYFqfcffyrAicbtvscRvGTSx8uCZXFYxFsoiD0Hgb1eIgUtI7qHnhS-ueA~VwHJbwD5Yol3IX99jKzL~WN8Ue702nLdgl~~HEDnmj26emYEWcqlMuVeECE87neYh-HOWN5ZSBRKpltQ8ieOtmvFQqJ-pF-2s0C08TCXpvVVQ2ex4LNtnGCTrLrHCwSlzzCBIpXYyHDG101Sv7R8j3TIu4xSCneTScC4Whx1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":467035,"name":"Black hole entropy","url":"https://www.academia.edu/Documents/in/Black_hole_entropy"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="24498089"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/24498089/Technicolor"><img alt="Research paper thumbnail of Technicolor" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/24498089/Technicolor">Technicolor</a></div><div class="wp-workCard_item"><span>Reviews of Modern Physics</span><span>, 1983</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The need for reexamination of the standard model of strong, weak, and electromagnetic interaction...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The need for reexamination of the standard model of strong, weak, and electromagnetic interactions is discussed, especially with regard to &amp;amp;#39;t Hooft&amp;amp;#39;s criterion of naturalness. It has been argued that theories with fundamental scalar fields tend to be unnatural at relatively low energies. There are two solutions to this problem: (i) a global supersymmetry, which ensures the absence of all</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="24498089"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="24498089"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 24498089; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=24498089]").text(description); $(".js-view-count[data-work-id=24498089]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 24498089; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='24498089']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 24498089, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=24498089]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":24498089,"title":"Technicolor","translated_title":"","metadata":{"abstract":"The need for reexamination of the standard model of strong, weak, and electromagnetic interactions is discussed, especially with regard to \u0026amp;#39;t Hooft\u0026amp;#39;s criterion of naturalness. It has been argued that theories with fundamental scalar fields tend to be unnatural at relatively low energies. There are two solutions to this problem: (i) a global supersymmetry, which ensures the absence of all","publication_date":{"day":null,"month":null,"year":1983,"errors":{}},"publication_name":"Reviews of Modern Physics"},"translated_abstract":"The need for reexamination of the standard model of strong, weak, and electromagnetic interactions is discussed, especially with regard to \u0026amp;#39;t Hooft\u0026amp;#39;s criterion of naturalness. It has been argued that theories with fundamental scalar fields tend to be unnatural at relatively low energies. There are two solutions to this problem: (i) a global supersymmetry, which ensures the absence of all","internal_url":"https://www.academia.edu/24498089/Technicolor","translated_internal_url":"","created_at":"2016-04-17T13:54:06.117-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":47139266,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Technicolor","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":47139266,"first_name":"Romesh","middle_initials":null,"last_name":"Kaul","page_name":"RomeshKaul","domain_name":"independent","created_at":"2016-04-16T02:35:37.265-07:00","display_name":"Romesh Kaul","url":"https://independent.academia.edu/RomeshKaul"},"attachments":[],"research_interests":[{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "2e2ab3f71e93a1fd8007907c7f8e9663dae0d5e02761eca9e3581f82b6298f0f", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="zrIAhHxFkSbIRWW97iDvS2CWCSenHlLnTNSz68qX4GxhChP+RrnKfgoOH38KT2xoALBBhspA4scDE8odIBwYkg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/RomeshKaul" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="yK4ZXtLOU8CaJU5HU1FogGhtc2hdEBXd19PFXj0awkVnFgok6DIImFhuNIW3PuujCEs7yTBOpf2YFLyo15E6uw==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10